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Abstract

Parkinson’s disease (PD) is a highly heterogeneous condition with symptoms spanning motor

and non-motor domains. Standard clinical scales, such as the Movement Disorder Society’s

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), are commonly used in clinical

trials where disease status is carefully monitored. They often rely on simply summing item

values, assuming uniform item importance and potentially conflating true disease progression

with medication effects.

Here we propose a novel data-driven approach to learn optimized weights for individual

items in such scales — both rater-based and self-reported — so that total scores better

reflect the underlying disease trajectory. By leveraging large-scale longitudinal data from

the Parkinson’s Progression Markers Initiative (PPMI) database, our methods identified

which items and value increments most strongly indicate PD progression, down-weighting

less informative items and excluding redundant ones. Our results show that learned weights

substantially improve the monotonic relationship between total scores and clinical progres-

sion. We validated our weights using both held-out PPMI data and an independent dataset

(BeaT-PD), demonstrating their robustness and generalizability. Applying our results in

clinical trials may assist in increasing power and in reducing the number of participants

required to demonstrate intervention effect. Moreover, even a modest subset of purely self-

reported items, when weighted appropriately, can track progression nearly as effectively as

the full instrument. These findings open avenues for streamlined assessments and for reduced

patient and clinician burden.
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Introduction

This thesis proposes a new methodology to improve ordinal scales, by using optimization

algorithms. Such scales are commonly used in clinical practice. Our work is motivated by the

MDS-UPDRS scale for Parkinson’s disease (PD), and all method development and testing

is shown for it.

The thesis is organized as follows:

Section 1 provides comprehensive background information relevant for this thesis. The first

part contains an overview of PD, including its clinical characteristics, diagnosis, monitor-

ing and treatment strategies. The second part discusses the existing clinical scales and

instruments commonly used to track PD progression. The third part provides background

on computational methods relevant to the thesis, and on alternative approaches for scale

optimization.

Section 2 presents the methods developed and applied in this research. It describes the data

preprocessing steps, introduce consistency, the optimization function that we used, and the

external validations we conducted. Finally, it describes in detail all the approaches we took

to optimize consistency both directly and heuristically.

Section 3 presents the results of this study. It compares the performance of the various

optimization approaches in terms of consistency. This section further evaluates the potential

for simplifying clinical scales by reducing the number of required items without sacrificing

accuracy. It also contains validation of our outcomes against external clinical measures as

well as correlations with other clinical scales.

Section 4 provides an in-depth discussion of the implications of the findings and suggests

avenues for future research.

The Supplementary section (Section 5) contains additional supporting information and data.
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1 Background

1.1 Parkinson’s Disease

1.1.1 Characteristics

Parkinson’s disease (PD - see abbreviations list in Supplementary 5.1) is the second most

common neurodegenerative disorder globally, following Alzheimer’s disease, with an esti-

mated 10 million individuals affected worldwide [1]. Projections indicate that by 2050, the

number of people living with PD could exceed 25 million, primarily due to an aging global

population [2].

PD has a long and notable history since its first description by Dr. James Parkinson in his

1817 essay, An Essay on the Shaking Palsy [3], and research into its nature continues today.

PD is widely recognized by its most visible symptom — a characteristic “resting” tremor of

the hands — but the full range of symptoms is broad and complex. Motor symptoms often

begin asymmetrically, and typically include slowness of movement (bradykinesia), muscle

rigidity, and problems with balance and posture. Beyond motor issues, many individuals

with PD experience non-motor symptoms such as disturbances in sleep, mood changes like

depression or anxiety, and subtle shifts in cognition. These wide-ranging symptoms reflect

the complexity of the disease, which stems primarily from the loss of dopamine-producing

neurons in a region of the brain called the substantia nigra [4], which is a part of the basal

ganglia.

Age plays a major role in the development of PD [5]. While it can sometimes occur in younger

adults, the risk of PD increases significantly after the age of 60. It is also more common in

men than in women [6], although scientists are still examining why these differences exist

[7, 8]. Interestingly, certain lifestyle factors have been found to influence the chances of

developing PD; for instance, smoking has been surprisingly correlated with a lower risk of

the disease (even after adjusting for age-related mortality, indicating the association is not

solely due to smokers dying before typical PD onset) [9].

As to PD causes, most cases are idiopathic, i.e. there is no clear or confirmed reason why
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they occur [10]. However, genetics does play a role for some patients. Researchers have

discovered specific genes—such as LRRK2, SNCA, and GBA—that when mutated are linked

to an increased likelihood of developing PD [11–13]. Nevertheless, these genetic causes

account for only 10% to 15% of the cases [14], leaving many questions unanswered about

how environmental and other factors might interact with one’s biology.

Adding to the complexity, scientists increasingly suspect that what we currently label as

“Parkinson’s disease” may actually be a collection of related disorders, or subtypes, that fall

under the same umbrella term [15]. Each subtype could involve slightly different pathways

in the brain or even different risk factors [16]. Ongoing research is focused on understanding

these variations in order to provide insights into how PD begins and progresses. By unrav-

eling these details, researchers hope to create more targeted ways to address and eventually

prevent this far-reaching disease.

1.1.2 Diagnosis

Diagnosing PD often begins with a careful clinical assessment, since there is no single test

or biomarker that definitively confirms the disorder [17]. In its earliest stages, PD can be

subtle. Many people initially notice only mild symptoms that may resemble other condi-

tions—making a confident diagnosis difficult. Consequently, movement disorder specialists

rely on a range of criteria and observations to increase diagnostic accuracy.

One major guideline is the Movement Disorder Society (MDS) Clinical Diagnostic Criteria

[18]. Under these criteria, the presence of bradykinesia is a core requirement. Bradykinesia

should be observed along with at least one additional cardinal motor symptom: rest tremor

or muscular rigidity. Over time, problems with balance and posture can also emerge, but

these typically appear in more advanced stages of PD. Physicians also examine a patient’s

overall medical history (including family history), evaluate any changes in facial expression

or speech, and look for supporting signs such as improvement when given dopaminergic

therapy. Although a positive response to medication is not expected in every PD case, it

can strengthen the clinical impression of PD.

Certain “red flags” can indicate an alternate diagnosis or a Parkinson’s-plus syndrome, rather
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than classical PD. For example, if significant issues with memory or cognitive function appear

very early, that might suggest a different disorder, such as dementia with Lewy bodies

[19]. Likewise, if symptoms progress unusually fast or start highly symmetric, or if patients

have severe autonomic dysfunction (like major blood pressure drops when standing, bladder

problems, or severe constipation) at disease onset, clinicians may suspect conditions such as

multiple system atrophy [20]. Identifying these red flags helps doctors avoid misdiagnosis

and ensures that individuals receive the most appropriate care.

Another dimension of PD diagnosis involves the concept of a prodromal phase [21, 22]. This

refers to a period that may begin several years before the classical movement symptoms

become obvious. During this prodromal stage, subtle indicators may appear, such as an

impaired sense of smell (hyposmia), mood changes (depression or anxiety), or a sleep disorder

known as REM sleep behavior disorder (RBD), where a person physically acts out their

dreams. Although not everyone with these early symptoms will go on to develop PD, they

do increase the likelihood of a future diagnosis [23–25]. Recognizing these non-motor signals

can be particularly helpful, as it allows for closer monitoring of individuals who may be at

a higher risk [26].

To support a clinical diagnosis, physicians may order brain imaging. A dopamine transporter

(DaT) scan, for instance, assesses the level of dopamine function in the basal ganglia—a

region central to movement control and significantly affected by PD [27]. While a DaT scan

showing reduced dopamine activity in the relevant brain regions can reinforce a suspected

PD diagnosis, it is not, by itself, conclusive [28]. Ultimately, no single test can definitively

confirm PD; the gold standard remains a thorough clinical examination combined with an

ongoing evaluation of how symptoms progress. Regular follow-up with a neurologist or a

movement disorder specialist allows for adjustments if new signs emerge, and it helps ensure

that what appears to be PD truly aligns with the clinical picture over the long term.

1.1.3 Monitoring

Monitoring and evaluating PD progression is essential for guiding clinical decisions and

comparing research findings. Over the years, a variety of rating scales and assessment tools
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have been developed to capture the disease’s diverse symptoms and degrees of severity. These

tools standardize how clinicians document progression and response to treatment, helping

ensure consistency both within a clinical setting and across different studies.

Hoehn and Yahr Scale. One of the earliest and most widely known staging systems is

the Hoehn and Yahr (H&Y) scale, introduced in 1967 [29]. The H&Y scale categorizes

PD into five stages based on the distribution and severity of motor symptoms—ranging from

mild, unilateral symptoms (Stage 1) through bilateral involvement, and ultimately significant

postural instability or complete dependence (Stage 5). This straightforward approach has the

advantage of simplicity and clear cut-offs but focuses primarily on motor features, overlooking

many non-motor symptoms of PD.

Parkinson’s Disease Rating Scale and Columbia University Rating Scale. Fol-

lowing the H&Y scale, other tools like the Parkinson’s Disease Rating Scale (PDRS) [30]

and the Columbia University Rating Scale (CURS) [31] emerged. They provide more de-

tailed breakdown of motor symptoms (tremor, rigidity, bradykinesia, and postural stability)

and generate cumulative scores. By separating different motor features, these scales offer

more nuanced clinical insights than the simpler H&Y stages, yet they still largely neglect

non-motor aspects such as mood disturbances or cognitive changes.

Unified Parkinson’s Disease Rating Scale. In the late 1980s, the Unified Parkinson’s

Disease Rating Scale (UPDRS) was introduced [32, 33]. It attempted to provide a more

holistic picture of PD by including multiple parts: mentation, behavior, and mood; activities

of daily living; motor examination; and treatment-related complications. This comprehen-

sive structure made the UPDRS a widely accepted tool for clinical trials and day-to-day

practice. Nevertheless, it did not fully address every potential facet of PD, and questions

arose regarding inter-rater variability, as the scale left room for subjective interpretation in

how evaluations were performed [34].

Movement Disorder Society Unified Parkinson’s Disease Rating Scale. To refine

and modernize the UPDRS, a task force organized by the MDS launched a revised ver-

sion in 2007–2008, called the MDS-UPDRS [35]. Building on the older scale’s multi-part

structure, the MDS-UPDRS includes additional items focused on non-motor symptoms such
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as sleep disturbances, cognitive changes, and autonomic dysfunction. A key innovation of

the MDS-UPDRS is its detailed instructions for performing each examination and scoring

each item. These guidelines were introduced specifically to reduce inter-rater variability. By

standardizing how each assessment should be conducted, the MDS-UPDRS aims to improve

consistency within clinics and between research centers, thus making it more reliable for

tracking progression over time or comparing outcomes across studies.

In addition to these core rating scales, specialized tests help quantify specific PD-related

issues. For instance, various measures exist for sleep disruptions, including assessments for

RBD [36, 37]. Smell tests, such as the University of Pennsylvania Smell Identification Test

(UPSIT), are commonly used to detect olfactory deficits that often appear well before classic

motor symptoms [38]. To evaluate activities of daily living, the Schwab and England (S&E)

scale measures the degree of independence a person retains in tasks like dressing and eating

[39].

Cognitive function is another critical domain in PD, as many individuals experience mild

cognitive impairment or more pronounced difficulties over time. The Montreal Cognitive

Assessment (MoCA) is a commonly used tool to screen for mild cognitive impairment

[40]. It tends to be more sensitive in capturing the subtle cognitive changes seen in PD than

some older tests [41]. By applying these specialized scales alongside broader assessments

(such as the MDS-UPDRS), clinicians gain a detailed perspective on both the motor and

non-motor facets of PD.

1.1.4 Treatment

Treating PD is a complex and evolving process that aims to relieve symptoms, maintain

quality of life, and preserve function for as long as possible. No single strategy works for

every individual, and therapy often needs to be adjusted over time. Clinicians consider many

factors—including age, symptoms, comorbidities, and personal preferences—when designing

a treatment plan [42]. Although there are different approaches to the timing and sequence of

medications, levodopa remains the cornerstone therapy for most patients with PD, especially

once motor symptoms begin to significantly affect daily life.
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PD progresses steadily (monotonically) over the course of the illness, and there are currently

no proven disease-modifying treatments capable of slowing or stopping the underlying neu-

rodegeneration [43]. As a result, all available therapies alleviate symptoms but do not alter

the fundamental disease trajectory.

Levodopa and Its Role. Levodopa, often combined with carbidopa (to reduce peripheral

side effects), is the most effective treatment for the motor symptoms of PD [44]. Levodopa

crosses the blood-brain barrier and is converted into dopamine in the brain, helping to

replenish the diminished dopamine levels that underlie many of the motor symptoms of PD.

When a person first starts levodopa, lower doses can often achieve good symptom control.

However, as PD progresses and more dopaminergic neurons are lost, higher or more frequent

doses may be needed to maintain the same level of benefit. Over time, the therapeutic

window (the dose range that effectively relieves symptoms without causing side effects) may

narrow, posing new challenges in balancing symptom control with adverse effects [45].

One innovation that aims to stabilize levodopa’s delivery is extended-release formulations,

which release the drug gradually over several hours [46]. These formulations can help smooth

out fluctuations in blood levels of the medication, potentially reducing “wearing off” peri-

ods—times when symptoms return as the previous dose tapers off. Even so, many patients

still need to take multiple doses of levodopa throughout the day. Other variations, such as

orally disintegrating tablets and gel infusions (e.g., levodopa-carbidopa intestinal gel) [47,

48], offer different ways to manage dosage and absorption issues, especially in more advanced

PD.

Adjunct Medications. While levodopa is central, additional medications can enhance or

extend its benefits:

• Dopamine Agonists (e.g., pramipexole [49], ropinirole [50], rotigotine [51]) directly

stimulate dopamine receptors, offering another route for managing PD symptoms [52].

These are sometimes used early in the disease to delay the introduction of levodopa,

especially in younger patients. Over the long term, they can be added to levodopa

therapy for more comprehensive control of symptoms.

• Monoamine Oxidase B (MAO-B) Inhibitors (e.g., selegiline [53], rasagiline [54], safi-
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namide [55]) slow down the breakdown of dopamine within the brain, thereby pro-

longing the effect of both natural and medication induced dopamine [56]. They can

be used as monotherapy in the early stages of PD or added to levodopa to enhance its

effect.

• Catechol-O-methyl Transferase (COMT) Inhibitors (e.g., entacapone [57], opicapone

[58]) block an enzyme that degrades levodopa, increasing the amount of levodopa

available to the brain [59]. These are commonly prescribed alongside levodopa to

stabilize its plasma levels and reduce “wearing off” intervals.

• Amantadine can help reduce dyskinesias (involuntary, writhing movements) that often

develop in response to long-term levodopa use [60]. It also has some mild antiparkin-

sonian properties that can be helpful in early or later stages.

Although each class of PD medications can offer benefit, they also carry risks for side effects.

For example, dopamine agonists may cause sleepiness, hallucinations, or impulse control

disorders (such as compulsive gambling) [61], while MAO-B inhibitors can interact with other

medications and cause insomnia or dizziness [62]. Balancing effectiveness and tolerability is

a careful process that often takes trial, adjustment, and close collaboration between patient

and clinician.

Fluctuations and “On/Off” Phenomenon. A major challenge in long-term levodopa

therapy is the “on/off” phenomenon [63, 64]. During “on” periods symptoms are controlled,

while “off” periods involve the return of PD symptoms as levodopa’s effect wanes. Initially,

“off” times tend to occur at predictable intervals—often just before the next dose [65].

As PD advances, these fluctuations can become more unpredictable, placing a burden on

patients’ daily routines and overall quality of life. One way to address these fluctuations is by

increasing the frequency of levodopa doses or adding adjunct medications to smooth out levels

of dopamine in the brain. In some instances, changing from short-acting to extended-release

formulations or adding rescue therapies (like inhaled levodopa) for sudden “off” episodes may

also provide relief [66].

Despite these strategies, finding the “perfect” blend of medications and timing remains an
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ongoing art. Clinicians must constantly balance dose adjustments to achieve maximum symp-

tom control while minimizing side effects such as dyskinesias, hallucinations, or orthostatic

hypotension [67]. It can take several medication trials, dose modifications, and combination

therapies to arrive at a regimen that feels optimal to the individual patient [68].

Treatment Onset and Timing. Not all clinicians and patients start levodopa therapy right

away. Some prefer to delay dopaminergic treatment in milder or earlier stages—particularly

in younger patients—due to concerns about dyskinesias or reduced medication efficacy over

the long term [69]. In such cases, medications like dopamine agonists or MAO-B inhibitors

might be used initially, providing moderate relief without introducing levodopa too soon.

Conversely, many neurologists argue that there is little benefit in postponing levodopa if

quality of life is compromised; the risk of unnecessarily enduring symptoms may outweigh

concerns regarding future side effects [70]. Ultimately, the decision about when to start

dopaminergic therapy is highly individualized and depends on a person’s clinical needs,

symptom burden, and lifestyle considerations.

Deep Brain Stimulation. As PD progresses, managing motor fluctuations, dyskinesias,

and medication side effects can become increasingly difficult. At this stage, advanced ther-

apies like deep brain stimulation (DBS) can offer meaningful improvement for carefully se-

lected patients. DBS involves implanting electrodes into specific brain regions (commonly

the subthalamic nucleus or the globus pallidus interna) and connecting them to a device

that delivers controlled electrical impulses [71]. This stimulation helps normalize abnormal

brain signaling and can significantly reduce both “off” times and dyskinesias, allowing for

lower doses of levodopa in many cases.

While DBS has revolutionized treatment for some individuals, it is not suitable for every-

one. Proper patient selection—typically those with clear motor fluctuations, relatively intact

cognitive function, and no major psychiatric complications—is critical to good outcomes.

Overall, treating PD is a dynamic process that requires continuous monitoring and adapta-

tion of therapy. Through a combination of levodopa, adjunct medications, and potentially

advanced interventions like DBS, many individuals living with PD can achieve meaningful

relief of their symptoms. Nonetheless, the journey to find the right medication “cocktail”
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and dose schedule can be lengthy and requires close cooperation between patients, caregivers,

and clinicians.

1.2 Clinical scales

In the previous section we briefly discussed the clinical scales relevant to PD. Here we will

elaborate more on MDS-UPDRS and MoCA, the scales that we optimized in this research.

We will also discuss S&E ADL and disease milestones, which were used for evaluation of our

results.

1.2.1 MDS-UPDRS

The MDS-UPDRS is one of the most comprehensive tools for evaluating the various signs,

symptoms, and impacts of PD. Figure 1 shows the scales’s structure.

MDS-UPDRS consists of 65 items organized in four main parts:

1. Part I: Non-Motor Aspects of Experiences of Daily Living

• Part IA assesses cognitive function, depression, apathy, and other self-perceived

non-motor symptoms. This part is filled by the rater after questioning the patient

or caregiver.

• Part IB focuses on items such as pain, constipation and sleep problems, and is

filled by the patient or caregiver themselves.

2. Part II: Motor Aspects of Experiences of Daily Living (self-reported). This section eval-

uates how motor symptoms—like tremor, slowness, or stiffness—affect daily activities

such as eating, dressing, and handwriting. Patients or caregivers typically complete

these items, with the clinician providing guidance as needed.

3. Part III: Motor Examination (rater-assessed). This is a clinician-rated physical exam-

ination of a patient’s motor function. Items can be divided into several domains:

• Axial symptoms (e.g., speech, facial expression, posture, and gait)
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Figure 1: The MDS-UPDRS scale [35]
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• Rigidity (muscle stiffness in the patient’s limbs and neck)

• Bradykinesia (slowness of movement, measured by tasks such as finger tapping or

hand movements)

• Tremor (both resting and action tremors are observed in different limb positions)

4. Part IV: Motor Complications (rater-assessed). This part targets complications from

dopaminergic therapy, including motor fluctuations (such as “on” and “off” times) and

dyskinesias. These items are usually based on patient reports and the clinician’s judg-

ment regarding frequency, severity, and impact on quality of life.

Scoring System and Item Summation. Each item in the MDS-UPDRS is scored on a

scale of 0 to 4, where:

• 0 typically indicates no symptoms or normal function

• 1 corresponds to minimal symptoms or slight impairment

• 2 represents mild impairment that is noticeable but may not strongly affect daily life

• 3 is moderate impairment

• 4 is severe impairment

Figure 2 shows an example of the scoring of one item. The final score is the sum of the

items scores. It is important to note that this naive summation assumes linearity and equal

increments. However, the criteria for different scores vary from one item to another in a

nonlinear fashion. For example, in assessing facial expression, scoring “1” reflects reduced

blinking while “2” represents partially masked face. Clinicians must carefully follow the

detailed instructions to apply these criteria consistently, minimizing inter-rater variability.

The sum of item values is the overall total MDS-UPDRS score, which offers a snapshot of

disease severity at a given point in time. However, in both research and clinical practice,

certain sub-parts are sometimes emphasized over others, depending on the study’s goals

or the clinical question. For instance, many clinical trials use the Part III motor score as a
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Figure 2: An example of an MDS-UPDRS question in part III about bradykinesia and the

detailed scoring instructions [35]

primary outcome measure to gauge improvements in motor function following an intervention

[72–74].

Additional Recorded Information. Along with the four parts of the scale, the MDS-

UPDRS collects additional clinical details that can be useful for interpreting scores or com-

paring patients. These include the patient’s H&Y stage, whether the patient is taking lev-

odopa (and if so, time since last dose) and whether the patient is currently in "on" or "off"

state. Clinicians can use this contextual information to gain a better understanding of how

the patient’s current status fits into their broader PD journey and to interpret MDS-UPDRS

scores more accurately over time.

Differences in Symptom Responsiveness. An important point about Part III is that

different sub-items—axial, rigidity, bradykinesia, and tremor—may not all respond equally

to dopaminergic treatments. For instance, tremor and bradykinesia often show a noticeable

response to levodopa or dopamine agonists, whereas certain axial symptoms, such as gait

instability or speech changes, can be more resistant [75].
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Usage in Clinical Trials. The MDS-UPDRS total score—or, in many cases, the Part

III motor subscore—has become one of the most frequently used primary endpoints in PD

clinical trials. As of May 2025, over 300 registered interventional studies on ClinicalTrials.gov

list MDS-UPDRS Part III as a primary outcome measure [76]. Researchers value it for

its ability to capture a broad range of motor and non-motor domains. By focusing on a

unified metric, studies can more consistently determine whether a new intervention provides

meaningful benefit for individuals with PD.

The MDS-UPDRS has become a key tool in both research and practice. It provides an

in-depth look at how PD affects individuals’ daily lives and tracks symptoms in a structured

way. However, while better than previous scales, the MDS-UPDRS still lacks precision in

detecting early stage PD progression [77], suffers from significant error [78], and only a big

change in the score (at least 5 points) is considered clinically pertinent [79].

1.2.2 MoCA

The MoCA is a brief, standardized tool developed by Dr. Ziad Nasreddine to screen for mild

cognitive impairment (MCI) and other cognitive deficits [40]. It has gained popularity in

clinical and research settings for its ability to detect subtle changes in cognitive function.

Figure 3 shows the instrument.

Test Structure The MoCA typically takes about 10–15 minutes to administer and covers

several cognitive domains:

• Visuospatial/Executive Function: Assessed through tasks such as drawing a clock

to a specific time or copying a geometric figure.

• Naming: Uses images (often animals) to evaluate the ability to identify and name

objects.

• Memory: Involves immediate and delayed recall of a short list of words.

• Attention: Includes digit span, serial subtraction (e.g., 100 minus 7 repeatedly), and

a vigilance task (tapping when a certain letter is heard).
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Figure 3: The MoCA instrument [40]
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• Language: Evaluates sentence repetition and verbal fluency (e.g., generating words

that begin with a given letter).

• Abstraction: Assessed by asking how two words (such as "banana" and "orange")

are alike.

• Orientation: Determines awareness of the current date, place, and situation.

The MoCA has a total maximum score of 30 points. Individuals with 12 years of education

or less are often granted one extra point to their total score, aiming to compensate for

disparities in formal education. A cutoff score of 26 or higher is generally deemed "normal",

but this may vary depending on the population and purpose of the assessment.

Practice Effect and Localization A known limitation of the MoCA is the practice

effect : if an individual repeats the test within a short time frame, previous familiarity with

tasks can lead to an artificial improvement [80, 81]. Also, the test has been translated into

multiple languages and culturally adapted, but these modifications usually require additional

validation as cultural and linguistic nuances may influence comprehension [82–84]. Using

validated local versions can improve accuracy and fairness in interpreting the results.

In summary, the MoCA is an efficient tool that samples several cognitive domains and can

detect even mild cognitive impairment. Despite challenges such as practice effects and the

need for proper localization, the MoCA remains a widely used instrument for early cognitive

assessment.

1.2.3 The S&E ADL Scale

The S&E ADL scale is a simple yet widely used method to gauge how independently an

individual with PD can manage everyday tasks. Developed by J.F. Schwab and A.C. England

[39], it has been incorporated into many PD evaluations to complement other motor and

non-motor assessments.
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Scale Structure: The S&E scale is expressed as a percentage, ranging in 10% decrements

from 100% (complete independence) down to 0% (bedridden or no activity possible). A rating

of 100% typically indicates full function, with no difficulty in performing daily activities

such as dressing, eating, or managing finances. Scores in the 70%–80% range reflect mild

difficulties; the person can still manage most tasks but may require extra time or effort.

When scores drop to around 50%, assistance for some tasks becomes necessary, and daily

life is noticeably affected by symptoms. At 20%–30%, individuals generally need significant

help for most activities and may no longer be able to live independently. A score of 0%

signifies complete dependence, often with the individual confined to bed and unable to carry

out even basic self-care.

Administration and Use. The S&E scale can be completed by either the clinician, the

patient, or both in collaboration. Because it focuses on real-world task performance, it

provides a rapid overview of how motor and non-motor symptoms manifest in daily life. In

research, the S&E scale is often used alongside other scales (e.g., MDS-UPDRS) to correlate

functional independence with more detailed motor or cognitive assessments.

Advantages and Limitations. The S&E ADL measure is quick to administer and requires

minimal instructions, making it practical in both clinical and research settings. It provides

a straightforward, intuitive percentage format that clearly conveys a patient’s overall func-

tional capacity, which holds value for both clinicians and patients. However, it has notable

limitations. It does not offer fine-grained insights into which specific activities pose the

greatest challenge. Additionally, the measure can be somewhat subjective, as ratings hinge

on patient or rater perception of "difficulty" or independence. Scores may also be influenced

by non-PD factors, such as comorbidities, the patient’s living environment, or the level of

available support.

Overall, the S&E ADL scale offers a valuable "snapshot" of functional independence. It

complements more detailed rating scales and provides an easily communicated metric of

how PD affects everyday life.
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1.2.4 Disease Milestones Approach

A recent strategy for monitoring PD progression identified 25 specific "milestones" that mark

meaningful changes in clinical status. As described by Brumm et al. [85], this milestone-

based framework was devised within the PPMI cohort to capture distinct, functionally rel-

evant events in several symptom domains. The underlying premise is that each milestone

reflects a level of severity likely to indicate a notable shift in how PD affects daily life. Figure

4 shows these milestones’ definition. The milestones domains are walking and balance, mo-

tor complications, cognition, autonomic dysfunction, functional dependence and activities of

daily living. Each milestone is triggered by meeting strict criteria (e.g., certain MDS-UPDRS

item scores). These cutoffs are intended to ensure that only clearly “clinically meaningful”

events are captured, thereby reducing ambiguity about whether a given change truly reflects

a significant progression.

Scoring and Practical Considerations Brumm et al. defined the composite milestone

endpoint as meeting any one (or more) of the listed criteria. Because these milestones are

chosen to represent disability rather than mild or easily reversible changes, this method aims

to be less susceptible to temporary symptomatic improvement.

Advantages and Limitations. The milestone-based approach emphasizes clinically mean-

ingful changes, reflecting the onset or worsening of disability rather than minor score fluc-

tuations. By integrating both motor and non-motor domains, it offers a composite view

of disease progression and remains relatively unaffected by medication state—particularly

in areas like cognition and functional dependence—making it suitable for pragmatic trial

designs. However, its complexity can hinder precise interpretation, especially as some mile-

stones may recur or partially remit. While useful for identifying shifts into more advanced

stages, this method may miss subtler, subclinical changes.

In summary, disease milestones provide an alternative perspective on PD staging and pro-

gression. Rather than relying solely on continuous scale scores, these milestones represent

key points at which patients experience functionally significant changes. As reported in [85],

the milestone approach appears promising for both observational studies and clinical trials

aiming to evaluate interventions with a focus on meaningful, patient-relevant outcomes.
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Figure 4: The definitions of milestones used in Brumm et al. [85]
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1.3 Computational Methods

In this section we describe briefly some basic background on the formulations and algorithms

used in this study.

1.3.1 Linear Programming

The linear programming (LP) problem aims to optimize a linear objective function subject

to a set of linear constraints [86]. A typical LP can be written in the following canonical

form:
maximize cTx

subject to Ax ≤ b

x ∈ Rn

(1)

where x ∈ Rn is the vector of decision variables, c ∈ Rn defines the coefficients of the objective

function, A ∈ Rm×n is a matrix of constraint coefficients, and b ∈ Rm is the corresponding

right-hand side vector. In addition to inequalities of the form Ax ≤ b, other types of linear

constraints such as Ax ≥ b or Ax = b can be accommodated by simple transformations.

Linear programs are exceptionally versatile, allowing a diverse array of real-world prob-

lems to be modeled effectively, including resource allocation, transportation, network flow,

scheduling, and other combinatorial optimization subproblems. The essential requirement is

that both the objective function and the constraints must be linear in terms of the decision

variables.

Importantly, linear programs can be solved in polynomial time. Historically, the simplex

algorithm [87] was the first widely adopted LP algorithm. Although the simplex method

demonstrates worst-case exponential running time on certain constructed problem instances,

it is often extremely efficient for practical problems. On the other hand, interior-point

methods, such as Karmarkar’s algorithm [88], admit proven polynomial-time complexity and

thus establish that LP lies within the complexity class P. Modern LP solvers typically

combine both simplex-based approaches (which tend to exploit the structure of large-scale,

sparse problems) and interior-point methods (which can be very effective for more dense or

ill-conditioned instances).
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1.3.2 Quadratic Programming

Quadratic programming (QP) extends the framework of LP by allowing a quadratic objective

function, while the constraints typically remain linear [89]. A canonical form of a quadratic

program can be written as:

minimize
1

2
xTQx+ cTx

subject to Ax ≤ b

x ∈ Rn

(2)

where x ∈ Rn is the vector of decision variables, Q ∈ Rn×n is a matrix that defines the

quadratic portion of the objective function, c ∈ Rn represents the linear component of the

objective, A ∈ Rm×n is a matrix of constraint coefficients, and b ∈ Rm is the right-hand-side

vector for the constraints. Additional constraints such as Ax ≥ b or Ax = b can be introduced

similarly to LP. The factor of 1
2

in the objective is largely conventional, facilitating simpler

gradient expressions in optimization algorithms.

A critical feature of QP is the definiteness of the matrix Q. If Q is positive semidefinite

(PSD), the objective function is convex, and the problem is termed a convex quadratic

program [90]. Convex QPs can be solved in polynomial time, but if Q is indefinite (contains

both positive and negative eigenvalues), then the problem is generally non-convex and can

be NP-hard [91].

Several heuristic approaches are commonly employed for solving QPs, differing in efficiency,

numerical stability, and suitability for particular problem structures. These include active

set methods [92], interior point methods [93], gradient based methods [94–96] and branch-

and-bound [97].

1.3.3 Integer Programming and Mixed-Integer Programming

Integer programming (IP) extends LP by restricting some or all of the decision variables

to be integers [98]. A general integer linear program (ILP) can be written in the following
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form:
minimize cTx

subject to Ax ≤ b

x ∈ Zn

(3)

where x ∈ Zn indicates that each component of x must be an integer, c ∈ Rn is the cost

vector, and A ∈ Rm×n, b ∈ Rm define the linear constraints. Notably, if only a subset of the

variables need to be integral, the problem is called a mixed-integer linear program (MILP).

In such cases,

x =

xI

xC


with xI ∈ Zk (integer variables) and xC ∈ Rn−k (continuous variables).

Solving a general ILP is NP-hard [99]. Hence, ILP and MILP solvers typically rely on

exponential-time techniques in the worst case, though many specialized algorithms and

heuristics exploit problem structure to achieve reasonable performance in practice [100].

Key algorithmic frameworks employed in ILP and MILP include branch-and-bound methods

[101, 102], cutting plane methods [103], branch-and-cut [104] and various heuristics and

metaheuristics [105–109].

1.3.4 Item Response Theory

Item Response Theory (IRT) is a family of statistical models and methods widely used in

psychometrics. At its core, IRT aims to relate the probability of a respondent (e.g., an

examinee) providing a particular response (e.g., a correct answer) to both the respondent’s

latent trait level and certain characteristics of the test items themselves. In a typical IRT

model, each respondent’s ability or latent trait is represented by a single numerical value

θ ∈ R. Each item has its own parameters that describe how it discriminates among different

ability levels and how challenging or difficult it is. One of the simplest and most frequently

used IRT models is the Rasch model [110] (also known as the 1-parameter logistic model),

defined as:

P (correct | θi, bj) =
1

1 + e−(θi−bj)
(4)
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where θi is the ability level of person i and bj is the difficulty parameter of item j.

Variants of this formulation allow for additional item parameters, such as discrimination and

guessing (in 2-parameter and 3-parameter logistic models), leading to more flexible curves

[111–113].

Estimation and Implementation. IRT models often involve estimating both person

and item parameters from observed response data. This estimation is typically carried out

via maximum likelihood or Bayesian methods, using algorithms such as the Expectation-

Maximization (EM) approach [114] or Markov Chain Monte Carlo (MCMC) in a Bayesian

context [115, 116].
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2 Methods

In this section we will discuss our data and the various methods that we developed and

applied.

2.1 Preprocessing

2.1.1 Data

We used data from the PPMI [117] - an international, multi-center longitudinal study aimed

at identifying biomarkers of PD progression. While PPMI contains a variety of data types

including imaging and genetic data, in this study we only used MDS-UPDRS [118] for

summarizing patients’ clinical state and MoCA [40] for their cognition, as well as a few

other examination types for validation. The cohort contained >12,000 MDS-UPDRS tests

of ∼1,500 PD patients. See supplementary 5.2 for more details.

2.1.2 Filtering

The MDS-UPDRS [35] is a 65-item scale divided into four parts (Part I: non-motor ex-

periences of daily living, II: motor experiences of daily living, III: clinician-rated motor

examination, IV: motor complications. See Section 1.2.1). As our input, we used the 59

questions in parts I, II and III as well as MoCA. While PPMI contains various types of sub-

jects (Healthy, PD, prodromal PD and other disorders) we focused only on PD patients in

this analysis, and in particular excluded prodromal patients. We also removed examinations

where the rater noted that dyskinesia interfered with the rating.

Since we wanted our tool to be applicable in regular clinical visits, we excluded visits where

the PD patients were measured in ’OFF’ state, as this kind of measurement often requires

patients to purposely stop taking their medications and thus introduces undesired burden

on them. See ’Discussion’ section where we address this decision.

Finally, we removed the baseline visit of each patient from our analysis, as we suspect the

first visit might be biased due to the Hawthorn effect [119], as the act of joining a clinical
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trial by itself might create some temporal positive "improvement" in the patients state,

compared to followup visits.

After filtering the data we had a total of 3,295 examinations for 711 distinct patients (averag-

ing in 4.63 exams per patient, with median time difference of one year between consecutive

visits). Note the data is not distributed evenly across PD severity levels, and is heavily

biased towards early patients - which, as we shall argue later, is beneficial for the analyses.

Table 1 presents the characteristics of the final cohort after data cleaning.

Characteristic Mean Std Min Max

Age (years) 63.29 9.6 33.2 85.9

Disease duration (years) 2.54 1.9 0.92 14.09

MDS-UPDRS total score 36.65 16.62 4 122

H&Y Stage 1.78 0.55 0 4

MoCA total score 26.22 3.25 6 30

Gender (M%) 61.6%

Follow-up time (years) 4.78 3.23 0.5 12.08

Number of visits 4.63 2.47 2 12

Table 1: PPMI participants characteristics. Results are shown for PPMI cohort after filtering

(3,295 examinations for 711 PD patients). The first five characteristics listed correspond to

each patient’s first visit included in the analysis.

2.1.3 Encoding

To make the data canonic and usable for the next step, we transformed it as follows. First,

while MDS-UPDRS gives higher scores for more severe patients, the MoCA score decreases

with severity from 30 to 0 - patients get full points for correct answers. To have both scales

monotone increasing with severity, we flipped the values of each MoCA item such that the

value is the number of points deducted instead of the number of points gained.

Next, for each question, we assigned a binary variable for each unit increment in the answer.

For example, an MDS-UPDRS question that can have an answer between 0 and 4 was
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transformed into four binary variables x1, x2, x3, x4, where xi = 1 if the answer is at least i.

Hence, the answer 0 is mapped to [0,0,0,0], 1 is mapped to [1,0,0,0], 2 is mapped to [1,1,0,0],

3 is mapped to [1,1,1,0] and 4 is mapped to [1,1,1,1]. This way, for example, the answers to

the 59 questions used from the MDS-UPDRS are represented by 236 binary variables. This

type of encoding for ordinal data is sometimes referred to as thermometer encoding [120]

or cumulative binary encoding. By giving non-negative weights to items, w1, w2, w3, w4, the

score of a question
∑

i wi ·xi is monotone non-decreasing: Higher answers are assigned higher

scores. The total weighted sum of all answers in a patient’s visit is called its progression

index.

2.2 Evaluation

We split the data into 80% training set and 20% test/evaluation set, such that no patient

appears in both train and test sets. The learning of weights was done only on the training

set, and evaluated on the test set (note that splitting by site was not possible as recruitment

site information is not available in PPMI).

Our primary metric for assessing the optimized weights was the percentage of visit pairs for

the same patient in which the later visit received a higher progression index. We call this

metric consistency. A score with higher consistency is better. We also measured the number

of non-zero weights assigned to items. A lower number reflects a simpler scale that is easier

to implement.

2.2.1 External validation

We compared the performance of the computed progression index against external progres-

sion criteria, and tested whether it performs better than the baseline approaches. The first

set of criteria were based on data available in PPMI. First, we examined the relationship

between a visit’s score and the time elapsed from that visit until the start of levodopa

treatment, assuming an effective scale should assign higher scores to patients who are closer

to beginning treatment. Second, we checked the scores concordance with the Schwab and
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England Activities of Daily Living (S&E ADL) scale [39], expecting a negative correlation

between our disease progression score and the ADL score. Lastly, we used the milestones

defined by Brumm et al. [85] and checked how well our progression index predicts the time

it would take a patient to reach the first milestone. We tested 20 out of the 25 milestones

defined in [85], for which a sufficiently large fraction of the visits had data. We assumed a

good index should exhibit a strong negative correlation, so that higher scores are associated

with a shorter time to reaching the first milestone.

Finally, we validated the consistency of our weights against an additional, external cohort of

PD patients obtained from the BeaT-PD project (204-16TLV) [121]. The BeaT-PD cohort

included 300 recently diagnosed patients with PD (mean age 61.67±10.34 years with mean

disease duration of 2.5±1.1 years) who were clinically and genetically assessed over 5 years.

After applying filtering criteria similar to those used for the PPMI dataset, as described in

Section 2.1.2 - but without removing baseline visits, to preserve dataset size - we retained

79 patients with a total of 201 visits. For the validation of the self-report index we applied a

milder filtering approach, and did not exclude visits based on MDS-UPDRS part 3 criteria

(clinical state or dyskinesia interference), as these are not self-reported measures.

2.2.2 Full index vs self-reported index

We also developed an index that uses only MDS-UPDRS questions that are self-reported

and do not require a trained rater. This index uses only the patient’s questionnaire (the

second half of part I and the entire part II). We tested if we can develop an index with good

results that uses only self-reported items. Such data is significantly easier and cheaper to

collect than a rater’s evaluation. It can be regularly collected in every visit of a patient to

the clinic, and even via a remote application that the patient can operate from home.
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2.3 Formulations and weight optimization

2.3.1 Overview

We developed a variety of formulations for optimizing the weights in the scale. The first set

of approaches seek to maximize objective functions that are similar to — but not identical

to — the consistency measure, are justified by a solid rationale, and can be optimized

efficiently. Empirically, they can be solved to optimality on our data within a few minutes

of computation on a standard laptop. These approaches include:

• MeanDiff - maximizing the mean difference between pairs of visits of the same patient,

across all patients.

• MeanDiff-W (Weighted) - similar to the above, but penalizing more for negative

differences, corresponding to pairs of visits for which the score decreased. The objective

is to maximize the weighted sum of differences.

• MeanDiff-QP (Quadratic Penalty) - similar the former but introducing quadratic

penalty for decreases - thus penalizing larger decreases more heavily. The objective is

to maximize the sum of differences while minimizing the penalty.

• MeanDiff-SV (Small Variance) - similar to the MeanDiff approach, with an addi-

tional penalty factor measuring the variance of score differences between visits. The

objective is to maximize the mean difference while minimizing the differences’ variance,

incentivizing stable increases.

For each of the approaches above, we also added an optional regularization term for minimiz-

ing the number of non-zero weights, incentivizing sparse solutions. This was both a goal by

itself (as discussed earlier), and was also beneficial to prevent overfitting the training data.

Our second set of approaches aim to optimize consistency. They seek weights that will

maximize the number of consistent pairs. We considered two variants of this problem: one

where weights can have any real value, and one where only integer weights are allowed. We

call these formulations Cons and Cons-Int, respectively. The objective functions in these
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formulations are not convex, so finding the global optimum is computationally harder. We

used algorithms that may take exponential time to reach an optimum. In practice, we limited

the runtime to a few hours and settled for the best solution found in that time.

2.3.2 Terminology

We start with some basic definitions needed for formulating our problem.

The questions in the original questionnaire have a scale of k values of possible answers

(For example, 0, . . . , 4 in the MDS-UPDRS). Without loss of generality we renumber them

1, . . . , k, where higher numbers indicate more severity. Each such question is translated into

k − 1 binary features called items, where item i indicates that the answer to the question is

at least i.

In this convention, a visit is a binary vector v ∈ {0, 1}m , where for each item i, vi = 1 if

and only if this item is true for that visit. We denote the j-th visit of patient p by vp
j . The

sequence of visits of patient p is denoted by (vp
1, . . .v

p
mp

), where we assume that for each

patient p mp ≥ 2, and the visits are numbered in increasing time order. A pair of visits

(vp
i ,v

r
j) is called proper if p = r and i < j. In words, the two visits should be for the same

patient and they should be ordered chronologically.

The formulation assigns a weight wi ∈ R+ to each item i, together forming a weight vector

w ∈ Rm
+ . Ensuring that item weights wi are non-negative and defining the weight of an

answer with value j as w1 + . . . + wj guarantees that the answer weights are monotone

increasing. For a visit v and weights w, the score of the visit is defined as w · v.

A longitudinal dataset is a collection of sequences of visits, one per patient. Formally

{(vp
1, . . .v

p
mp

)| p = 1 . . . , n}. For such dataset, we define S as the set of all proper pairs

of visits. In other words, S = {(vp
i ,v

p
j )|i < j, p = 1, . . . n}.

For a proper pair of visits (vp
i ,v

p
j ) and weights w, if w · vp

i < w · vp
j we say that the pair’s

order is consistent with the weights, or simply that the pair is consistent. Note the strict

inequality in the last equation. If we allowed instead w · vp
i ≤ w · vp

j , then the weight vector

w = 0m would be a trivial set of weights for which all proper pairs are consistent.
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We are now ready to define two basic formulations of our problem.

Maximum consistency: Given a longitudinal dataset, find a weight vector w that maxi-

mizes the number of consistent pairs. In other words,

max |{(vp
i ,v

p
j )| i < j and w · vp

i < w · vp
j , p = 1, . . . , n}|

.

Maximum weighted difference: Given a longitudinal dataset, find a weight vector w

that maximizes the weighted difference across all proper pairs. In other words,

max
∑
p

∑
i<j

(w · vp
j −w · vp

i )

We will introduce several variations of these objectives in the sequel, and also consider

a secondary objective of sparsity, aiming to reduce the number of items with non-zero

weights.

2.3.3 Formulations maximizing the weighted difference

Linear Programming

A basic LP formulation of the problem is

max
∑
p

∑
i<j

(w · vp
j −w · vp

i )

0 ≤ wi ≤ 1 i = 1, . . .m

(MeanDiff)

This problem has a closed form solution: The objective is equal to w ·
∑

p

∑
i<j(v

p
j − vp

i ).

Define d =
∑

p

∑
i<j(v

p
j − vp

i ). Setting wi = 1 if di > 0 and zero otherwise is an optimal

solution.

The following formulation takes into account also the solution sparsity:

max
∑
p

∑
i<j

(w · vp
j −w · vp

i )− γ
∑
i

wi (5)

0 ≤ wi ≤ 1 i = 1, . . .m (6)
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The second term is an L1 regularization of the weights, which incentives sparsity. γ is a

hyper-parameter that balances between the weighted difference objective and the aim of

minimizing the number of used items. This problem too has a closed form solution, since

the objective can be written as
∑

k wk · dk − γ
∑

k wk =
∑

k wk(dk − γ) so setting wk = 1 if

dk − γ > 0 and zero otherwise is an optimal solution.

Variable pair scores. A possible generalization of the first term in the objective is by

assigning different values to different pairs:
∑

p

∑
i<j q(p, i, j)(w · vp

j − w · vp
i ). The value

q(p, i, j) of the pair can be used to reduce the weight of visit pairs for patients that have

a lot of visits. For example, if patient p has t visits, then we can make q(p, i, j) = 1

(t2)
to

give each patient equal total weight, or q(p, i, j) = t

(t2)
to make the total weight proportional

to the number of visits (as opposed to t2). Alternatively, we can assign different weights to

different pairs of visits based on their time span, as larger time gaps are expected to more

strongly capture changes in disease severity.

Penalizing score drops. This approach is similar to the previous one, but instead of

simply maximizing the weighted sum of differences, we would like to punish more heavily

inconsistent pairs. We show this for the basic formulation. Denote by S the set of all proper

visit pairs, where the elements in S are the triplets (p, i, j) such that i and j are visits of

patient p with j > i. For each (p, i, j) ∈ S define nonnegative variables Up,i,j (for up) and

Dp,i,j (down).

max
∑
p

∑
i<j

(
Up,i,j − δ Dp,i,j

)
(MeanDiff-W)

w · vp
j − w · vp

i = Up,i,j −Dp,i,j ∀(p, i, j) ∈ S (7)

0 ≤ wi ≤ 1, i = 1, . . . ,m (8)

Up,i,j, Dp,i,j ≥ 0 (9)

δ > 1 is the penalty coefficient for inconsistent pairs.

Claim 1. Any optimal solution of the problem must satisfy:

(i) If w · (vp
j − vp

i ) ≥ 0, then Up,i,j = w · (vp
j − vp

i ) and Dp,i,j = 0.
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(ii) If w · (vp
j − vp

i ) ≤ 0, then Dp,i,j = −w · (vp
j − vp

i ) and Up,i,j = 0.

Proof: We prove case (i). The proof of (ii) is analogous. If w · (vp
j − vp

i ) = 0 then by

(7) Up,i,j = Dp,i,j. The contribution of this triplet (p, i, j) to the objective is Dp,i,j − δDp,i,j,

which is negative since δ > 1 unless Up,i,j = Dp,i,j = 0.

If w · (vp
j −vp

i ) > 0, suppose Up,i,j ̸= w · (vp
j −vp

i ). Define d = Up,i,j−w · (vp
j −vp

i ). To satisfy

(7), we get Dp,i,j = d. d ≥ 0 due to the non-negativity constraints. Assume by contradiction

that d > 0. The objective function then changes by:

Up,i,j − δDp,i,j = w · (vp
j − vp

i ) + d− δd = w · (vp
j − vp

i )− (δ − 1)d

Since δ > 1 and d > 0, we get a strictly worse objective value than if d = Dp,i,j = 0, in

contradiction to the assignment being optimal. ■

Quadratic Programming

Similarly to the LP approach, we can also introduce quadratic terms in the objective - thus

formulating a quadratic programming problem.

Squaring the changes. This approach simply squares Up,i,j and Dp,i,j, thus giving more

weight to the big changes compared to the smaller ones:

max
∑
p

∑
i<j

(U2
p,i,j − δD2

p,i,j) (10)

w · vp
j −w · vp

i = Up,i,j −Dp,i,j ∀(p, i, j) ∈ S (11)

0 ≤ wi ≤ 1 i = 1, . . .m (12)

Up,i,j, Dp,i,j ≥ 0 (13)

Penalizing drops quadratically. Instead of squaring both terms, here we do so just for

the drops - so the loss from a drop is bigger than the gain from an increase of the same size.

This steers the solution toward greater consistency. We do it by replacing the objective with:

max
∑
p

∑
i<j

(Up,i,j − δD2
p,i,j) (MeanDiff-QP)
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Mixing linear and quadratic penalties. The caveat of the last approach is that it

is tolerant to small decreases. To avoid that, we mix both linear penalty and quadratic

penalties for drops, using two coefficients:

max
∑
p

∑
i<j

(Up,i,j − δDp,i,j − δ′D2
p,i,j) (14)

In our tests we used version (MeanDiff-QP), as we preferred a minimal amount of hyper-

parameters.

Reducing variance. Another approach utilizing quadratic programming adds a penalty

for the variance of score differences. Denote by ∆ := 1
|S|

∑
p

∑
i<j(w · vp

j −w · vp
i ) the mean

difference in the progression index between pairs of visits. The new objective function is:

max [∆− γ

|S|
∑
p

∑
i<j

(w · vp
j −w · vp

i −∆)2] (MeanDiff-SV)

Where again γ is an hyper-parameter that balances between the weighted difference objective

and the objective of the differences being more stable.

2.3.4 Formulations maximizing consistency

In this section we describe formulations that aim to find integer weights that directly maxi-

mize the consistency.

Matrix representation. Recall that S is the set of all proper visit pairs, where the elements

in S are the triplets (p, i, j) such that i and j are visits of patient p with j > i. Denote

s := |S|. We define a matrix of differences A ∈ {−1, 0, 1}s×m, such that for every triplet

Sl = (p, i, j) and item a ∈ {1, . . . ,m}, we have Al,a = (vp
j − vp

i )a. In words, Al,a is the

difference in the value of item a between visits j and i of patient p. Since items are binary

A’s entries are 1, 0 or -1.
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Integer Programming (IP). We define two boolean vectors of indicators I+, I− ∈ {0, 1}s,

and use the following IP formulation:

max
∑

l=1,...,s

I+l (Cons-Int)

(Aw)l ≥ ε− C(1− I+l ) l = 1, . . . , s (15)

(Aw)l ≤ C · I+l l = 1, . . . , s (16)

(Aw)l ≤ −ε+ C(1− I−l ) l = 1, . . . , s (17)

(Aw)l ≥ −C · I−l l = 1, . . . , s (18)

0 ≤ wi ≤ B i = 1, . . . ,m integer (19)

0 ≤ I+l , I
−
l ≤ 1 i = 1, . . . , s integer (20)

Where 0 < ε ≪ 1 is a sufficiently small constant, B is an upper bound on weight values,

and C is a large constant such that C > B ·m+ ε. We call this problem, which maximizes

consistency and requires weight integrality Cons-Int. The version where (19) is changed so

that weights wi can be real valued forms the mixed IP problem called Cons.

Lemma 1. Let w, I+, I− be a feasible solution of the problem. Then for every l = 1, . . . , s:

1. (Aw)l > 0 if and only if I+l = 1.

2. (Aw)l < 0 if and only if I−l = 1.

3. (Aw)l = 0 if and only if I−l = I+l = 0.

Proof: (1) Assume I+l = 1. From (15) we get (Aw)l ≥ ε− C(1− 1) = ε. Since 0 < ε < 1,

(Aw)l > 0. In the other direction, assume (Aw)l > 0 and I+l = 0. Then from (16) we

get (Aw)l ≤ C · I+l = C · 0 = 0, a contradiction. (2) Assume I−l = 1. From (17) we

get (Aw)l ≤ −ε + C(1 − 1) = −ε. Since 0 < ε < 1, (Aw)l < 0. In the other direction,

assume (Aw)l < 0 and I−l = 0. Then from (18) we get (Aw)l ≥ −C · I−l = −C · 0 = 0, a

contradiction. (3) follows from (1) and (2). ■

Claim 2. The solution to Cons-Int maximizes consistency.
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Proof: By Lemma 1, our objective is equivalent to consistency. Denote by ŵ an integer

vector of weights 0 ≤ ŵk ≤ B that achieves optimal consistency. We will show that it

corresponds to a feasible solution.

For every consistent pair Sl according to ŵ we assign I+l = 1 and I−l = 0. For every

inconsistent pair Sl we assign I+l = 0, and assign I−l = 1 if (Aŵ)l < 0 or I−l = 0 if

(Aŵ)l = 0. We claim (ŵ, Î+, Î−) is a feasible solution. Constraints (19) are satisfied by

assumption, and (20) by construction. Assume first Sl is consistent, i.e. (Aŵ)l > 0, I+l =

1, I−l = 0. The constraint (15) holds since ŵ is an integer vector and A ∈ {−1, 0, 1}s×m, so

(Aŵ)l ≥ 1 > ε. Constraint (16) holds since (Aŵ)l ≤ mB < C. Constraint (17) holds since

(Aŵ)l ≤ mB < C − ε. Constraint (18) holds since (Aŵ)l > 0.

Assume now Sl is inconsistent and decreasing, i.e. (Aŵ)l < 0, I+l = 0, I−l = 1. The

constraint (15) holds since (Aŵ)l ≥ −mB > −C + ε. (16) holds since (Aŵ)l ≤ 0. (17)

holds since (Aŵ)l < 0 ((Aŵ)l ≤ −1). (18) holds since (Aŵ)l ≥ −mB > −C + ε > −C.

Finally, assume Sl is inconsistent and unchanged, i.e. (Aŵ)l = 0, I+l = 0, I−l = 0. The

constraint (15) holds since (Aŵ)l ≥ −mB > −C + ε. (16) holds since (Aŵ)l ≤ 0. (17)

holds since (Aŵ)l ≤ mB < C − ε. (18) holds since (Aŵ)l ≥ 0. ■

Sparsity. To encourage a sparse solution, we can introduce a regularization term to the

objective, as before:

max
∑

l=1,...,s

I+l − γ
∑
i

wi (21)

This drives down the sum of the weights, but not sparsity per se. The following IP formu-

lation achieves this goal. To penalize the number of non-zero weights, we introduce helper
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boolean variables z ∈ {0, 1}m and formulate the problem as

max
∑

l=1,...,s

I+l − γ
∑
i

zi (22)

(Aw)l ≥ ε− C(1− I+l ) l = 1, . . . , s (23)

(Aw)l ≤ C · I+l l = 1, . . . , s (24)

(Aw)l ≤ −ε+ C(1− I−l ) l = 1, . . . , s (25)

(Aw)l ≥ −C · I−l l = 1, . . . , s (26)

0 ≤ wi ≤ B · zi i = 1, . . . ,m integer (27)

0 ≤ I+l , I
−
l ≤ 1 i = 1, . . . , s integer (28)

0 ≤ zi ≤ 1 i = 1, . . . ,m binary (29)

Where again γ > 0 balances between consistency and sparsity.

Claim 3. An optimal solution of the system must satisfy
∑

i zi = |{i|wi > 0}|

Proof: We claim zi = 1 if and only if wi > 0, from which the claim follows. If wi > 0

then it must be that zi = 1, to satisfy 27. If zi = 1 but wi = 0, then assigning zi = 0 will

increase the objective value by γ without invalidating any constraint, in contradiction to the

solution’s optimality. ■

Thus, the penalty term is exactly γ times the number of non-zero weights. In our tests we

tried both Cons-Int and Cons, and included a regularization term for sparsity.

An alternative objective. By definition, when optimizing for consistency we do not

differentiate between the cases where w · (vp
j − vp

i ) = 0 and w · (vp
j − vp

i ) < 0. However,

no change is preferred over negative change when pursuing a monotonic score. This can be

achieved using a similar formulation, by adding a penalty term for the number of strictly

negative decreases, with a balance parameter γ:

max
∑

l=1,...,s

I+l − γ
∑

l=1,...,s

I−l (30)

We note that a sparsity term can also be added to the objective.
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3 Results

3.1 Comparing the performance of the different approaches

We learned the weights for each formulation and algorithm on the training set, and measured

their performance in tracking disease progression, as quantified by the consistency on the left-

out validation set. Table 2 shows the results when all items were used, as well as the results

from applying the original weights of the complete MDS-UPDRS, its individual sections, and

MoCA. The new scales outperform the MDS-UPDRS and its parts as well as MoCA, with

MeanDiff-QP performing best.

Years Gap 1 2 3 4 5 6 7 8 9 10 All

Number of Pairs 417 319 242 185 134 96 71 53 38 21 1,576

MDS-UPDRS P1 49.64 56.43 55.79 64.32 62.69 68.75 70.42 73.58 73.68 76.19 58.63

MDS-UPDRS P2 53.00 58.31 60.33 69.19 72.39 78.12 83.10 90.57 92.11 95.24 64.40

MDS-UPDRS P3 50.84 54.55 47.93 51.89 55.97 54.17 69.01 75.47 81.58 80.95 54.70

MDS-UPDRS 54.44 57.05 57.44 63.24 66.42 63.54 78.87 84.91 89.47 90.48 61.48

MoCA 38.13 37.93 38.43 40.00 44.03 43.75 32.39 45.28 42.11 57.14 39.53

MeanDiff 55.40 57.68 61.57 69.73 73.88 76.04 83.10 84.91 92.11 85.71 64.85

MeanDiff-W 58.51 62.07 62.81 72.97 76.12 80.21 85.92 90.57 92.11 90.48 67.96

MeanDiff-QP 62.35 66.14 73.14 78.38 85.07 91.67 91.55 98.11 97.37 100.00 74.24

MeanDiff-SV 59.71 63.01 64.05 72.97 79.85 81.25 88.73 92.45 94.74 95.24 69.35

Cons 59.71 64.26 69.01 76.76 79.85 84.38 88.73 94.34 97.37 95.24 71.13

Cons-Int 58.27 65.52 68.18 76.76 85.07 85.42 91.55 88.68 94.74 100.00 71.32

Table 2: Performance comparison when all MDS-UPDRS and MoCA questions are used.

The table shows the percentage of consistent pairs of visits for each method, for different

time gaps between the visits. Time gaps are rounded to the closest year. The number in

bold shows the best performer for each gap. The last column gives the weighted average

percentage of consistent pairs.

Several observations can be derived from these results. First, the MoCA exhibits low consis-

tency, likely due to two factors. Many PD patients, particularly in the early stages, do not

experience significant cognitive decline. More importantly, MoCA performance is affected

by practice effect, where repeated tests lead to improved scores independent of actual cog-
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nitive changes [122]. Second, it is noteworthy that the simple score based on part 2 only

outperforms the full MDS-UPDRS score. In particular, it outperforms part 3, which is often

regarded as the most clinically relevant and reliable. This can be attributed to the influence

of medications, which strongly affect the motor symptoms assessed in part 3. Changes in

medication or dosage adjustments frequently lead to lower part 3 scores when patients are

in the ON state (as in the dataset used here). Additionally, part 2 assessments, being self-

reported, avoid the inter-rater variability that affects part 3, reducing measurement noise

and improving consistency. Third, while all our new methods outperform the baseline meth-

ods, MeanDiff-QP achieves the highest consistency. Note that it outperforms both Cons

and Cons-Int, which strive to directly optimize consistency, likely due to the computational

hardness of the latter problems, which necessitates early stopping of the algorithms before

reaching optimality.

Table 3 shows the results when only the self-reported items are used.

Years Gap 1 2 3 4 5 6 7 8 9 10 All

Number of Pairs 417 319 242 185 134 96 71 53 38 21 1,576

MDS-UPDRS P1 46.76 52.66 58.68 61.62 57.46 65.62 71.83 75.47 76.32 66.67 56.66

MDS-UPDRS P2 53.00 58.31 60.33 69.19 72.39 78.12 83.10 90.57 92.11 95.24 64.40

MDS-UPDRS 53.96 61.13 66.94 74.05 74.63 72.92 85.92 90.57 94.74 100.00 66.94

MeanDiff 54.44 61.76 66.94 72.43 76.12 73.96 84.51 92.45 94.74 100.00 67.20

MeanDiff-W 54.20 61.13 66.12 72.43 77.61 76.04 84.51 90.57 94.74 100.00 67.07

MeanDiff-QP 58.99 61.13 71.90 76.22 82.09 84.38 91.55 96.23 97.37 100.00 71.13

MeanDiff-SV 58.51 64.89 67.36 74.05 76.12 80.21 88.73 94.34 94.74 100.00 69.48

Cons 60.91 67.71 68.60 76.22 83.58 87.50 91.55 94.34 92.11 90.48 72.46

Cons-Int 54.68 64.58 67.77 74.59 80.60 88.54 90.14 92.45 92.11 100.00 69.67

Table 3: Performance comparison when only the self-reported items in MDS-UPDRS are

used. See the caption of Table 2 for details. MoCA and MDS-UPDRS part 3 are excluded

as they do not contain self-reported items.

When limited to self-reported items, a similar advantage of the new scale is observed.

MeanDiff-QP performs on par with the Cons method, with the latter being slightly bet-

ter for shorter time gaps. Note this comparison does not account for other factors such as

model simplicity, which will be discussed next.
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Figure 5 compared the performance of MeanDiff-QP and MDS-UPDRS when all items are

used and when only self-reported items are used. Remarkably, in both cases our optimized

method shows better consistency compared to MDS-UPDRS across all time gaps. Moreover,

the self-reported version is almost as good as what we can get with all items.

Figure 5: Percentage of consistent pairs for MDS-UPDRS and our suggested MeanDiff-QP

formulation in various time gaps.

3.2 Reducing the number of items

Another potential benefit of our formulation and optimization methods can be to reduce

the number of items and scoring thresholds being used, thus simplifying the scale. Figure 6

shows, for each method, its consistency and the number of non-zero items it uses. In Figure

6A all items were considered, and in Figure 6B only the self-reported items were allowed. In

both cases Cons-Int achieved very good consistency, while using a very small number of items.

Table 4 shows the learned weights of Cons-Int using only self-reported items. Remarkably,
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only eleven questions are used, and in ten of those only one threshold value is needed. In

the 11th (Getting out of bed) two thresholds are needed. Put differently, this scale uses only

twelve self-reported items yet it outperforms the original 200-item MDS-UPDRS. The only

scale to achieve higher consistency is Meandiff-QP with 176 items. Supplementary table

S3 gives the weights of Const-Int when all items are allowed. See Supplementary 5.3 for

additional information on the learned weights.

Figure 6: Consistency versus the number of items used by each method. The plots show, for

each approach, the number of items it used (x axis) and the percentage of score increases

between pairs of visits (y axis). A. Performance when using all items. B. Performance when

using only self-reported items. The red lines indicate the Pareto optimal contour

3.3 Additional validation using PPMI

3.3.1 Initiation of symptomatic therapy

To support the clinical value of our methods, we compared their scores against two external

metrics. First, we examined the relationship between a visit’s score and the time elapsed

from that visit until the start of levodopa treatment. An effective scale should assign higher

scores to patients who are closer to beginning treatment. Supplementary Table S4 lists the
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Item Threshold Score

1.7 Sleep problems 1 13

1.8 Daytime sleepiness 1 25

1.10 Urinary problems 2 55

1.11 Constipation problems 1 43

1.13 Fatigue 1 30

2.1 Speech 1 44

2.2 Saliva and drooling 1 51

2.9 Turning in bed 1 66

2.11 Getting out of bed 1 52

2.11 Getting out of bed 2 45

2.12 Walking and balance 2 100

2.13 Freezing 1 67

Table 4: The scale obtained by Cons-Int using only self-reported items. Only the non zero

weights are shown. The final index is obtained by summing the scores for all rows in which

the item’s value is equal or larger than the threshold.

correlation between each tested method and the time to initiation of levodopa. Indeed, we

see highly significant negative correlations between the scores and the time difference. Figure

7 shows the results of the best performing method in terms of the significance of correlation

in each scenario: MeanDiff-QP using all items and Cons-Int using just self-reported items.

We also checked the scores concordance with the Schwab and England Activities of Daily

Living (S&E ADL) scale [39]. Again, we expect a negative correlation between our disease

progression score and the ADL score. Here too, the results of all scales were significant

(Supplementary Table S5). Figure 8 shows the results for MeanDiff-QP, which achieved

the highest correlation using all items, and was second-best using only self-reported items,

surpassed only by MDS-UPDRS Part 2.

Both tests validate the relevancy of our suggested scores, showing high correlations to exter-

nal data that was not a part of the training process. Many methods outperform the original
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Figure 7: Total scores vs. the number of years prior to initiation of levodopa treatment. A.

MeanDiff-QP using all items. B. Cons-Int using self-reported items only.

Figure 8: Total scores compared to the S&E ADL scores. A. MeanDiff-QP results when

using all items. B. MeanDiff-QP results when using only self-reported items.
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scales, reaching correlations of -0.73 (p=1.20e-07) with the Cons-Int method for time before

levodopa treatment and -0.68 (p=1.13e-89) with MeanDiff-QP for S&E ADL.

3.3.2 Time to milestone

Recent studies suggested to quantify disease progression based on combinations of the indi-

vidual item scores in the MDS-UPDRS, in addition to the total score of the scale. Brumm

et al. [85] defined a set of milestones based on the MDS-UPDRS and defined as a first

milestone the first time a patient reaches any of them. We wanted to see how well our

progression index predicts the time it would take a patient to reach the first milestone. We

tested 20 out of the 25 milestones defined in [85]; the remaining milestones were excluded

due to limited availability of the necessary data. For each patient we checked which visit

was the first to reach any of the milestones, and then checked the correlation between the

value of our suggested progression index in each preceding visit and the time to the first

milestone. A good index should exhibit a strong negative correlation, meaning that higher

scores are associated with a shorter time to reaching the first milestone.

The results for methods using all items can be seen in Figure 9. All suggested scales achieved

correlation below -0.39, outperforming MDS-UPDRS. The correlation coefficients and p val-

ues for all methods are available in Supplementary Table S6.

3.4 External Validation

The consistency of all the tested methods on the BeaT-PD cohort is shown in Table 5.

Reassuringly, all but one method exceeded the performance of the strongest baseline scale,

supporting the robustness of our approach. Validation results using only self-reported items

are available in Supplementary 5.6.

The participants characteristics of the BeaT-PD cohort after applying the filtering are de-

scribed in Table 6.
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Figure 9: Correlation between the progression index and the time (in months) until the

patient reaches the first milestone, as defined in [85]. All visits after the first visit where

a patient reaches a milestone are excluded. The red line indicates the correlation for the

MDS-UPDRS; our suggested methods exceed this threshold significantly.
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Method Consistency (%)

MDS-UPDRS P1 62.29

MDS-UPDRS P2 65.71

MDS-UPDRS P3 61.71

MDS-UPDRS 65.71

MoCA 54.29

MeanDiff 69.14

MeanDiff-W 70.29

MeanDiff-QP 67.43

MeanDiff-SV 71.43

Cons 64.57

Cons-Int 67.43

Table 5: The percentage of consistent pairs of visits for each method on the external valida-

tion BeaT-PD dataset, evaluated using the weights derived from the PPMI data.

Characteristic Mean Std Min Max

Age (years) 64.05 11.32 36 86

Disease Duration (years) 2.82 1.94 1 7

MDS-UPDRS Total Score 33.18 16.69 7 89

H&Y Stage 1.68 0.57 0 3

MoCA Total Score 24.73 3.49 17 30

Gender (M%) 77.22%

Follow-up Time (years) 3.71 1.6 1 6

Number of Visits 2.54 0.76 2 5

Table 6: BeaT-PD participants characteristics. Statistics are shown for the cohort after fil-

tering, consisting of 201 visits of 79 patients. The first five characteristics listed correspond

to each patient’s initial visit. MDS-UPDRS: Movement Disorder Society’s Unified Parkin-

son’s Disease Rating Scale. MoCA: Montreal Cognitive Assessment. H&Y: Hoehn and Yahr

3.5 Hardness of the computational problem

In this section we show that the maximum consistency problem is NP-hard.
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First, recall the Partial Maximum Feasible Subsystem problem (Partial Max-FS, also called

Constrained Max-FS) [123, 124]. In Partial Max-FS we are given a set of linear inequality

constraints, where some of them are called hard constraints and the rest are called soft

constraints. We wish to find a largest cardinality subset of the constraints containing all

the hard constraints and some of the soft constraints that is feasible. Partial Max-FS is

NP-Hard and also hard to approximate efficiently [125]. It is also NP-hard if the variables

are integer or binary, and if the inequalities are strict (<) [124].

Observe that the consistency maximization problem is a special case of Partial Max-FS. In

our case, the non-negativity constraints are hard, and set of soft constraints is the set of

examination pairs, where for each pair we want the score of the later examination to be

higher. The optimal weights are those that maximize the number of constraints that are

satisfied.

Theorem: The consistency maximization problem is NP-Hard, even when B = 1 (i.e.,

w ∈ {0, 1}m).

Proof: Observe first that any matrix A ∈ {−1, 0, 1}s×m can be viewed as a matrix of

differences of a set of visits as defined in Section 2.3.4. This follows by forming a dataset

with s patients where each patient i has exactly two visits, and the coordinate-wise differences

between the item values in the two visits match the values in row Ai,·. By the observation,

we can conveniently discuss the problem in terms of constraints, where the weights are the

variables.

We show a reduction from the 3-SAT problem. Given a 3-SAT instance with k variables and

n clauses, we construct an instance of the consistency maximization problem as follows:

Variable Constraints: Set m = 2 · k, where for each variable xi, the index 2i− 1 corresponds

to the positive literal xi, and the index 2i corresponds to the negation ¬xi. For each variable

xi, introduce two inequalities:
w2i−1 − w2i ≥ 1

w2i − w2i−1 ≥ 1
(31)

Observation: If w2i−1 = 1 and w2i = 0, or w2i−1 = 0 and w2i = 1, then exactly one of the

inequalities (31) holds. If w2i−1 = w2i = 1, or w2i−1 = w2i = 0, then none holds.
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Clause Constraints: For each clause Cl in the 3-SAT formula, introduce an inequality corre-

sponding to the literals in the clause. Specifically:

wi + wj + wk ≥ 1 (32)

where i, j, k are the indices corresponding to the literals in the clause.

Clearly, this reduction is polynomial in the size of the 3-SAT input. Note that since the

variables wi ∈ {0, 1} and all the coefficients in (31) and (32) are 0,1, or -1, the constraints

≥ 1 are equivalent to the ≥ ε constraints that we had in the Cons-Int formulation.

We claim that the 3-SAT instance is satisfiable if and only if there exists w ∈ {0, 1}m that

achieves consistency in exactly n+ k vectors of differences.

For proof, by the observation, out of each variable-related pair (31) at most one constraint can

be satisfied by any assignment. Therefore, the maximal possible number of simultaneously

feasible inequalities is n+ k.

Assume the 3-SAT instance is satisfiable. Then there exists an assignment of the k variables

that satisfies all n clauses. Construct the weight vector w as follows: For each variable xi:

If xi is True, set w2i−1 = 1 and w2i = 0. If xi is False, set w2i−1 = 0 and w2i = 1. By the

observation, exactly k inequalities corresponding to the variables are consistent. Since all

clauses are satisfied by the assignment, each clause inequality has at least one corresponding

index in w set to 1, making all n clause inequalities consistent. Therefore, the total number

of satisfied constraints is n+ k.

Conversely, assume there exists a weight vector w such that n + k inequalities hold. Since

there are k variable-related pairs, at least k of the satisfied inequalities correspond to the

variable constraints. By the observation, for each variable xi, exactly one of the inequali-

ties (31) holds. If w2i−1 = 1 and w2i = 0, set xi to be True. If w2i−1 = 0 and w2i = 1, set

xi to be False. Since the total number of satisfied inequalities is n + k, it follows that all

n clause inequalities hold as well. By construction, a clause vector is consistent if and only

if at least one of its corresponding literals is True. Therefore, the assignment satisfies all

clauses. ■
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3.6 Implementation details

All computations were conducted on a system with an AMD EPYC 7702 processor, featuring

128 logical CPUs (64 cores, 2 threads per core) at 2.0 GHz. The machine runs on GNU/Linux

4.15.0-65-generic within an NVIDIA DGX Server environment. Solving LP and QP problems

was done using standard libraries like pulp and cvxpy. Solving IP and MIP formulations was

done using the Gurobi Optimizer [126].

The first set of weights optimization formulations took each up to 30 minutes to complete

using just a single thread. The second set of formulations, which aimed to maximize consis-

tency, dealt with hard computational problem and thus were solved using all available cores

and were each allotted a 24-hour time limit. Within this timeframe, an optimal solution

could not be reached. However, the bound for the gap between the best solution found and

the optimal solution ranged between 14.3% and 38.7% across all formulations. These values

represent upper bounds, and the actual gaps are likely much smaller.

3.7 Tool and code availability

The code in this paper is available via https://github.com/Shamir-Lab/MOPS.

We also created an online tool that calculates the progression index using the self-reported

answers, available via https://shamir-lab.github.io/MOPS/self_report_short.html.
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4 Discussion

Contributions and key findings. We introduced a method for optimizing PD progression

indexes by reweighting items and increments in the MDS-UPDRS and MoCA scales. The

new indexes have higher precision and efficiency, benefiting both patients and clinicians.

Compared to the current approach of merely summing raw item values, our scales enhance

score consistency with disease progression while maintaining a simple “sum-of-items” for-

mat. Our results show that MoCA has low contribution to the scores, and most scales

use MDS-UPDRS only. Notably, scaled based only on weighted self-reported items perform

comparably to clinician-rated scales. Such scales enable reliance on self reports and remote

monitoring. We also developed weights that substantially shorten the scale while maintain-

ing a high level of consistency. For example, we propose a scale with eleven self-reported

items and twelve weights that outperforms the original MDS-UPDRS with 59 items and 236

weights. Strong correlations with external progression markers and validation of the indexes

on the external BeaT-PD cohort validate our approach.

Similar research. Several studies addressed the problem of optimal numerical encoding

for ordinal categorical data [127, 128]. The choice of the encoding depends on the model

used and on the size of the dataset. If the model is complex enough and there is plenty of

data, usually one hot (or similar) encoding suffice [129]. Such a model can learn the optimal

weights and will optimally utilize the data to achieve the desired outcome. However, in our

case we aimed to construct a very simple model, where the progression index simply sums

up the weights of the items. Such a requirement is important in terms of interpretability,

and helps to prevent overfit.

Several previous studies dealt with optimizing the encoding of ordinal data in the context of

clustering [130–132]. The Distance Learning-Based Clustering algorithm [133] heuristically

finds the best numerical distances between adjacent ordinal values in a way that will make

the clusters well separated. However, assuming PD severity levels are continuous and are

not expected to be well clustered, these approaches are less suitable for our case.

Another approach to our application is IRT [134]. It assumes that each person’s responses

are influenced by an underlying, hidden trait — in our case, PD severity — and estimates
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how each item relates to this trait. While IRT has been applied to the MDS-UPDRS [135–

140], it has some limitations. First, the IRT model assumptions are not fulfilled by the

MDS-UPDRS [77]. In particular, the assumption that each item is measuring the same

trait independently does not hold for the diverse symptoms of PD. Second, IRT can not

incentivize sparsity, as it fits the optimal parameters for each item or question separately.

Lastly, IRT is primarily designed for cross-sectional data and does not effectively capture

changes over time, which are crucial for tracking disease progression.

Finally, researchers recently proposed re-weighting of MDS-UPDRS items by using partial

least squares regression [141, 142], and have also developed distinct scores for a few different

PD populations. However, unlike our work, the studies focused only on part 3, did not allow

different weights to different increments of the same question, and used an internal criterion

(mean to standard deviation ratio) that differs from consistency.

Early vs. advanced patients. Since PPMI mostly enrolls patients in an early stage of

the disease, our data is biased towards early patients; for example, 92.8% of the exams are

of patients with H&Y stage ≤ 2. Therefore, the utility of our progression scale will be

highest for earlier PD patients, and less informative for more advanced patients. While it is

mathematically easy to balance the index and adjust the optimization target to give more

weight to more severe patients, we decided against such a change for a few reasons. First, a

progression index is much more valuable in earlier stages of the disease, since in later, more

severe stages it is easier to identify the progression manifested in a wide range of symptoms.

Second, giving more weight to patients with higher H&Y will introduce additional noise and

bias, as these stages are characterized by specific aspects of PD, and do not capture the full

range of symptoms. Moreover, the H&Y staging itself also exhibits inter-rater variability

[143].

MoCA The MoCA exhibits a low consistency, and had a minimal contribution to the in-

dexes, likely due to two factors. Many PD patients, particularly in the early stages, do not

experience significant cognitive decline. More importantly, MoCA performance is affected by

practice effect, where repeated tests lead to improved scores independent of actual cognitive

changes [122].
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Tremor. Previous research shows that the tremor items in part 3 contain limited information

about the underlying state in PD and do not show worsening over time [144]. Additionally,

an IRT scoring of part 3 items gives negative coefficients to the tremor items, claiming

they are anti-correlative to the other part 3 items [145]. One contributing factor might be

that tremor items are hard to assess accurately. Another issue might be that these items

are strongly affected by PD medications like levodopa [146]. Indeed, in our computational

approaches these items usually receive little or no weight, supporting the observation that

they are poor indicators of PD progression.

MDS-UPDRS Part 2. It is noteworthy that the score based on part 2 only outperforms the

full MDS-UPDRS score. In particular, it outperforms part 3, which is often regarded as the

most clinically relevant and reliable. This can be attributed to the influence of medications,

which strongly affect the motor symptoms assessed in part 3. Changes in medication or

dosage adjustments frequently lead to lower part 3 scores when patients are in the ON state

(as in the dataset used here). Additionally, part 2 assessments, being self-reported, avoid

the inter-rater variability that affects part 3, reducing measurement noise and improving

consistency. Lastly, while part 3 measures the present state, part 2 items usually ask about

the last weak, making them less susceptible to symptoms fluctuations.

Implications for clinical practice. Our weighted scales offer several tangible benefits

for both clinicians and patients. First, by removing questions that contribute minimally to

tracking PD progression, one can focus on the more meaningful indicators of progression

without sacrificing diagnostic or prognostic accuracy. Second, the potential to base progres-

sion tracking on properly weighted self-reported items alone enables more frequent as well as

remote evaluations, offering patients the flexibility to complete assessments at home, while

reducing the burden from clinicians. Importantly, our decision to train only on data of pa-

tients in ’ON’ state leads to indexes that are applicable to the real-world daily presentation

of patients. Overall, the optimized index could enhance the quality and efficiency of patient

care and improve long-term disease management.

Computational hardness. Our study developed two approaches to rescaling. The first

optimizes a closely related but different objective than consistency. Still, the resulting scales
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often show good performance. Our solutions to these formulations used polynomial algo-

rithms. The second approach, which directly optimizes consistency, translates to an NP-hard

problem (see 3.5) and we solved it by Integer Programming and Mixed Integer Programming

algorithms, which take exponential time in the worst case. These algorithms could produce

only near-optimal scales within the allocated time frame.

Limitations and Future Work. Our study has several limitations. First, we constructed

our scales using only data from patients who are drug-naïve or in ON state. This aimed to en-

sure our results are applicable to patients in their typical daily conditions, where medication

are not intentionally withheld. Future studies can use our methodology while focusing on

more advanced PD patients who naturally experience frequent OFF-state periods. A more

detailed pharmacological profile for each patient—capturing medication types, dosage, and

timing —may also allow the model to re-weigh items dominated by temporary symptomatic

relief rather than true disease progression.

Second, due to limited computational resources, we split the data into training and test sets

but did not allocate a separate validation set for extensive hyperparameter tuning. Instead,

for each formulation we tried several parameter values on the training set and took one

that performed best. A more systematic approach (e.g., nested cross-validation) using more

computation power may lead to better parameter choices and improve the scales.

Finally, our current analysis was based on PD patients only. Incorporating data from healthy

individuals can help refine the model’s specificity and sensitivity in detecting the onset of PD,

especially in individuals at the borderline between healthy and prodromal state. Including

prodromal patients would similarly expand the applicability of our approach, enabling earlier

and more nuanced detection of progression trajectories.

PD subtypes. As mentioned earlier, PD is a very heterogeneous disease, probably an

"umbrella term" for multiple disorders with similar symptoms that may have completely

different underlying disease mechanisms. Recent studies used state of the art clustering

approaches to separate PD patients into different clusters [147–151]. However, systematic

reviews of these attempts show their results are very unreliable [152], often mistreat ordinal

data as numeric, and are poorly reproducible on different datasets [153]. Should robust

59



subtypes be identified in the future, weight optimization could then be conducted separately

for each disease subtype.

Alternative objectives. In this study we focused on consistency - the number of visit pairs

where the score is strictly higher in the later visit. Other objectives can be considered, e.g.,

a version of consistency that prefers no change over negative change between visits. Our

formulations can be adapted to this alternative, as discussed in Supplementary 2.3.4. We

plan to explore such variants in future studies.

Other domains. While this study focused only on PD, the computational approach and

methods provided here can lead to improvement in scales of other disease or conditions.

Examples include Apgar score for newborn infants evaluation [154], the RENAL nephrology

scoring system [155], the Glasgow Coma Scale [156], the Barthel Index for activities of daily

living [157], the Mini-Mental State Examination for cognition [158], the NIH Stroke Scale

[159] and many others. Such scores are broadly used in healthcare, and improving and

simplifying them can increase their utility.
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5 Supplementary

5.1 List of Abbreviations

Below is a list of all the abbreviations used in this manuscript and their meaning:

• DBS: Deep Brain Stimulation

• H&Y: Hoehn and Yahr

• ILP: Integer Linear Programming

• IRT: Item Response Theory

• LP: Linear Programming

• MDS: Movement Disorder Society

• MDS-UPDRS: Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale

• MILP: Mixed Integer Linear Programming

• MoCA: Montreal Cognitive Assessment

• PD: Parkinson’s Disease

• PPMI: Parkinson’s Progression Markers Initiative

• RBD: REM sleep Behavior Disorder

• S&E ADL: Schwab and England Activities of Daily Living scale

5.2 PPMI Data

Our data (downloaded from PPMI on August 7 2024) contained information for 1,879 PD

patients, 2,089 Prodromal patients and 400 Healthy Control. In our analysis we only used

the PD patients’ data. Supplementary Table S1 summarizes the data available for these
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1,879 PD patients. Part 3 has more visits because patients are often measured twice - in ON

and in OFF states. Of the 16,715 visits with Part 3 data, 7,139 were in ON state, 5,158 in

OFF and 4,418 were of drug naive patients.

Exam Total Visits Unique Patients Repeat Patients

MDS-UPDRS Part 1 12,453 1,492 1,284

MDS-UPDRS Part 2 12,467 1,496 1,284

MDS-UPDRS Part 3 16,715 1,497 1,285

MoCA 6,544 1,709 1,096

Table S1: Statistics on the PD patients in the PPMI. Repeat patients are patients who had

more than one visit.

After removing visits in OFF-state and patients with just a single visit, we were left with

4,919 visits of 823 unique patients that contain all MDS-UPDRS parts and MoCA. Removing

the baseline and screening visits of all patients left us with 4,269 visits of 763 unique patients.

Finally, we filtered visits where dyskinesia interfered with the rating or where critical values

were missing or misaligned. The final dataset used in the analysis consisted of 3,304 visits

of 715 unique patients (an average of 4.62 visits per patient, with median time difference

between consecutive visits of 1 year). Supplementary Table S2 presents the number of visits

in each severity level in the final dataset, showing the bias towards early patients.

H&Y Stage 0 1 2 3 4 5

Number of Visits 16 602 2451 192 39 4

Table S2: Number of visits for each H&Y stage.

5.3 The weights learned by each approach

The learned weights for the scales based on all items, and for scales using only self-reported

items, are available in the project’s launch page: https://acgt.cs.tau.ac.il/mops/. For

each method, the values were normalized to sum to 100. Note that for MoCA items the values

were flipped, so for example a threshold of 1 means 1 point below the maximal possible score.
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Item Threshold Score

1.1 Cognitive impairment 1 16

1.7 Sleep problems 1 9

1.7 Sleep problems 2 25

2.2 Saliva and drooling 2 14

2.3 Chewing and swallowing 1 10

2.3 Eating tasks 1 13

2.8 Doing hobbies and other activities 1 7

2.9 Turning in bed 1 27

2.12 Walking and balance 2 47

2.13 Freezing 1 35

3.4b Finger tapping - Left hand 1 13

3.7b Toe tapping - Left hand 1 7

3.13 Posture 1 19

3.13 Posture 3 100

MoCA - Clock hands < 1 (fail) 15

Table S3: The scale obtained by Cons-Int when all items can be used. Only non zero weights

are shown. The index is obtained by summing the scores for all rows where the item’s value

is equal or larger than the threshold.

5.4 Comparison of the indexes to external scales
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Method All Items Self-Reported Items

MDS-UPDRS Part 1 -0.31 (p=5.09e-02) -0.25 (p=1.19e-01)

MDS-UPDRS Part 2 -0.67 (p=3.83e-06) -0.67 (p=3.83e-06)

MDS-UPDRS Part 3 -0.46 (p=3.44e-03) NA

MDS-UPDRS -0.63 (p=2.07e-05) -0.64 (p=1.15e-05)

MoCA 0.41 (p=1.04e-02) NA

MeanDiff -0.62 (p=2.62e-05) -0.60 (p=4.57e-05)

MeanDiff-W -0.64 (p=9.98e-06) -0.61 (p=3.19e-05)

MeanDiff-QP -0.70 (p=7.06e-07) -0.67 (p=3.30e-06)

MeanDiff-SV -0.69 (p=1.51e-06) -0.61 (p=4.33e-05)

Cons -0.62 (p=2.73e-05) -0.68 (p=1.74e-06)

Cons-Int -0.60 (p=6.02e-05) -0.73 (p=1.20e-07)

Table S4: Correlation between the score of each method and the time to Levodopa. Results

are shown for scores that use all items and for scores that use self-reported items only. p-

values are calculated using Pearson’s ρ.

Method All Items Self-Reported Items

MDS-UPDRS Part 1 -0.42 (p=3.32e-29) -0.31 (p=6.62e-16)

MDS-UPDRS Part 2 -0.62 (p=3.51e-69) -0.62 (p=3.51e-69)

MDS-UPDRS Part 3 -0.40 (p=2.43e-26) NA

MDS-UPDRS -0.59 (p=1.33e-62) -0.57 (p=2.80e-57)

MoCA -0.41 (p=2.90e-27) NA

MeanDiff -0.65 (p=3.64e-78) -0.56 (p=8.12e-54)

MeanDiff-W -0.65 (p=2.55e-78) -0.56 (p=8.53e-55)

MeanDiff-QP -0.68 (p=1.13e-89) -0.60 (p=2.59e-64)

MeanDiff-SV -0.62 (p=4.14e-69) -0.54 (p=1.31e-50)

Cons -0.64 (p=7.17e-77) -0.58 (p=1.14e-60)

Cons-Int -0.57 (p=8.55e-58) -0.52 (p=2.20e-45)

Table S5: Correlation between the score of each method and S&E ADL. Results are shown

for scores that use all items and for scores that use self-reported items only. p-values are

calculated using Pearson’s ρ.
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5.5 Correlation of the indexes with the time to first milestone

Method All Items Self-Reported Items

MDS-UPDRS Part 1 -0.37 (p=3.75e-56) -0.33 (p=4.54e-44)

MDS-UPDRS Part 2 -0.39 (p=9.49e-60) -0.39 (p=9.49e-60)

MDS-UPDRS Part 3 -0.24 (p=1.39e-23) NA

MDS-UPDRS -0.38 (p=2.00e-59) -0.41 (p=9.70e-68)

MoCA -0.24 (p=2.98e-22) NA

MeanDiff -0.44 (p=4.69e-80) -0.42 (p=3.84e-71)

MeanDiff-W -0.46 (p=7.03e-87) -0.42 (p=5.53e-72)

MeanDiff-QP -0.45 (p=6.44e-84) -0.42 (p=1.94e-71)

MeanDiff-SV -0.47 (p=2.97e-91) -0.42 (p=2.87e-71)

Cons -0.45 (p=1.54e-82) -0.42 (p=5.42e-73)

Cons-Int -0.43 (p=1.80e-75) -0.41 (p=4.55e-67)

Table S6: Correlation between each method’s score and the time to first milestone. Results

are shown for scores that use all items and for scores that use self-reported items only. p-

values are calculated using Pearson’s ρ.
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5.6 External validation using self-reported items

Table S7 shows the consistency results on the external cohort when using only the self-

reported items. In this analysis we did not filter by clinical state or presence of dyskinesia,

which are relevant to part 3 of MDS-UPDRS. Only one of our suggested methods fell behind

the best baseline method. Also, the best performing method using all items, MeanDiff-SV,

is ranked second-best in the self-report-only setting.

Method Consistency (%)

MDS-UPDRS P1 51.57

MDS-UPDRS P2 68.85

MDS-UPDRS 68.06

MeanDiff 69.63

MeanDiff-W 68.85

MeanDiff-QP 70.94

MeanDiff-SV 71.99

Cons 74.61

Cons-Int 66.23

Table S7: Percentage of consistent visit pairs for each method on the external validation

dataset, evaluated with PPMI-derived weights based solely on self-reported items. MDS-

UPDRS: Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale. MoCA:

Montreal Cognitive Assessment.
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 תקציר

 מטרות

 שאלון ובפרט – פרקינסון מחלת של קליניים התקדמות מדדי האופן שבו את לשפר נועד זה מחקר

 MDS‑UPDRS וכן( כמו  נוספים מבחניםMoCA )זמן. לאורך המחלה התקדמות את משקפים – לקוגניציה 

 שלהם והשקלול מהשאלות( אחת בכל 4 ל 0 )בין אורדינליים משתנים הינם MDS-UPDRS ב השאלות ציוני

 להניח סביר שלא מכיוון זהה. משקל מקבלת שאלה כל כאשר - השאלון כל של הציונים סכימת ע״י נעשה כיום

 ההבדל שמשמעות להניח סיבה אין כן וכמו המחלה, התקדמות מבחינת זהה חשיבות יש השאלות שלכל

 שבשאלון. במידע השימוש את לשפר שניתן היתה הנחתנו זהה, הוא סמוכים ציונים זוג כל בין הקליני

 

 שיטות 

 פרקינסון חולי אצל הנ״ל השאלונים של הציונים אחרי מעקב הכולל (PPMI) גדול נתונים בסיס באמצעות

 למדנו בשלמים( ותכנון ריבועי תכנון ליניארי, )תכנון מתמטי תכנון של בשיטות שימוש ידי ועל זמן, לאורך

 בשיטתנו זמן. לאורך המחלה התקדמות את יותר טוב המשקפים שאלה כל של לציונים חדשים משקלים

 תהליך של הבנה לקלינאים ומאפשר לשימוש נוח שהינו ציונים, סכימת של המקורי השאלון מבנה על שמרנו

 המודל. של החישוב

 יותר גבוה ערך שמקבל כמדד עקבי מדד הגדרנו - עקביות היתה באופטימיזציה שלנו המטרה פונקציית

 -קשהNP שהינה שהוכחנו )בעיה העקביות את ישירות שמשפרות שיטות הפעלנו יותר. מאוחרים בביקורים

 לו, זהה לא אבל לעקביות הדומה מדד שמשפרות שיטות וגם בינאריים(, משקלים של הפשוט במקרה אפילו

 פולינומיאלית. פתירות לבעיות המביאות

 תוצאות

 עקביות, 74%ל עד הגיעו שהצענו המדדים לאימון, שימש לא עליהם שהמידע מהחולים 20% על בבדיקה

 של בדיקה ללא עצמי, בדיווח שאלות על רק שמבוססים מדדים גם הקיימים. במדדים היותר לכל 61% לעומת

 בתוספת בשלמים, תכנון של בשיטה הנהוגים. המדדים את משמעותי באופן ועקפו 71%ל הגיעו קלינאי,

 11ב שימוש תוך מעולה עקביות בעל למדד הגענו שאלות(, במעט )שימוש דלילות שמעודדת רגולריזציה

 שלא נוספים למדדים המוצעים המדדים של הקורלציה את בחנו כאשר בנוסף, בלבד. עצמי דיווח של שאלות

 לא שהיא גילינו - יומיומי לתפקוד S&E שאלון או בלבודופה הטיפול להתחלת עד זמן כמו - מהאימון חלק היו

 ויכולות כלליות, הן שהצענו החישוביות השיטות בהרבה. עליה עולה ולעיתים הקיימים המדדים של מזו יורדת

 נוספים. בתחומים קליניים מדדים של לשיפור בעתיד לשמש

82



 

אביב תל אוניברסיטת  

סאקלר ובברלי ריימונד ע"ש מדויקים למדעים הפקולטה  

בלווטניק ע"ש מלאכותית ובינה המחשב למדעי ביה"ס  

 

 במחלת ויישום מתודולוגיה דירוג: סולמות של מיטבי מחדש שקלול

  פרקינסון

 

אביב תל באוניברסיטת אוניברסיטה' 'מוסמך לתואר גמר כעבודת הוגש זה חיבור ​

המחשב למדעי הספר בבית  

 

ידי על  

 בנש אסף

 

 בהנחיית

שמיר רון פרופ'  

 

 

 2025 אוגוסט

83


	Acknowledgments
	Abstract
	Introduction
	Background
	Parkinson’s Disease
	Characteristics
	Diagnosis
	Monitoring
	Treatment

	Clinical scales
	MDS-UPDRS
	MoCA
	The S&E ADL Scale
	Disease Milestones Approach

	Computational Methods
	Linear Programming
	Quadratic Programming
	Integer Programming and Mixed-Integer Programming
	Item Response Theory


	Methods
	Preprocessing
	Data
	Filtering
	Encoding

	Evaluation
	External validation
	Full index vs self-reported index

	Formulations and weight optimization
	Overview
	Terminology
	Formulations maximizing the weighted difference
	Formulations maximizing consistency


	Results
	Comparing the performance of the different approaches
	Reducing the number of items
	Additional validation using PPMI
	Initiation of symptomatic therapy
	Time to milestone

	External Validation
	Hardness of the computational problem
	Implementation details
	Tool and code availability

	Discussion
	Supplementary
	List of Abbreviations
	PPMI Data
	The weights learned by each approach
	Comparison of the indexes to external scales
	Correlation of the indexes with the time to first milestone
	External validation using self-reported items


