
Optimizing Parkinson’s Disease progression

scales using computational methods

Assaf Benesh1, Roy N. Alcalay2,3,5, Anat Mirelman4,5, and Ron Shamir1,6

1School of Computer Science and Artificial Intelligence, Tel Aviv University, Israel

2Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel

Aviv, Israel

3Department of Neurology, Columbia University Irving Medical Center, New York, NY

4Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel

Aviv Sourasky Medical Center, Tel Aviv, Israel

5Gray Faculty of Medicine and Health Sciences and Sagol School of Neuroscience, Tel Aviv

University, Tel Aviv, Israel

6rshamir@tauex.tau.ac.il

July 2025

Abstract

Parkinson’s disease is a highly heterogeneous condition with symptoms spanning

motor and non-motor domains. Clinical scales like the Movement Disorder Society’s

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), are standard in clinical

trials where disease progression is monitored. They rely on summing item values,

assuming uniform item importance and score increments.

Here we propose a novel data-driven approach to optimize weights for such

scales — so that total scores better reflect the underlying disease severity. By

leveraging large-scale longitudinal data from the Parkinson’s Progression Mark-

ers Initiative (PPMI), our methods identified which items (and value increments)

most strongly indicate PD progression, down-weighting or excluding less informa-

tive items. The learned weights substantially improve the monotonic relationship

between total scores and clinical progression. We validated our weights using both

held-out PPMI data and an independent dataset (BeaT-PD), demonstrating their

robustness. Applying such weights in clinical trials may increase power and reduce

the required sample size [1].
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1 Introduction

Parkinson’s disease (PD) is a complex, progressive neurological disorder characterized by

a range of motor and non-motor symptoms. The most commonly used assessment in

PD is the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) [2], a 65-item scale divided into four parts. Each item has five possible answers

numbered 0 to 4, reflecting increasing severity. Although thoroughly validated [3–5] and

widely accepted [6], MDS-UPDRS exhibits several limitations. First, the total score is

obtained by summing item scores, assuming that all items—and all increments within

items—are equally informative. For instance, a score of 2 on two different items could

have markedly different clinical implications, yet both add the same amount to the to-

tal score. Similarly, increasing an item’s score from 0 to 2 has the same effect on the

total score as increasing it from 2 to 4, although these increments have different clinical

significance. Second, medication-induced fluctuations in the score may not reflect dis-

ease progression and obscure the underlying trajectory of PD. Lastly, administering the

full scale is time-consuming and some items may not consistently contribute to tracking

disease progression.

Due to these reasons, a more robust measure of disease trajectory is needed — one that

captures underlying progression better and is also less affected by medication regimens.

Moreover, identifying and discarding redundant or minimally informative questions can

streamline patient evaluations, reducing both clinical burden and patient fatigue. This

work aimed to optimize the weighting of MDS-UPDRS (and related) scale items in order

to produce a more accurate and concise PD progression index, capture biology better,

and help reduce recruitment needs for clinical trials.

We formulated an optimization problem that seeks weights yielding a score that increases

as patients progress, thereby providing a more accurate representation of the true disease

state, which we assume progresses monotonically (but not necessarily linearly [7]) over

time [8–10]. Concretely, for each MDS-UPDRS question we allowed assigning different

weights to the increments between answers (0 to 1, 1 to 2, 2 to 3, 3 to 4), and possibly

different weights for different questions, and leveraged computational methods (e.g., linear

or integer programming) to choose the weights such that the longitudinal monotonicity of

the data is maximized. This data-driven approach enabled us to (1) discover the relative

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 1, 2025. ; https://doi.org/10.1101/2025.07.31.25332494doi: medRxiv preprint 

https://doi.org/10.1101/2025.07.31.25332494
http://creativecommons.org/licenses/by/4.0/


importance of different items and scores, (2) reduce the influence of medication-induced

fluctuations by focusing on genuine signs of progression, and (3) minimize redundancy

by identifying and down-weighting less informative items.

We constructed six indexes corresponding to different exact or approximate formulations

of the optimization problem, named MeanDiff, MeanDiff-W, MeanDiff-QP, MeanDiff-SV,

Cons and Cons-Int. The MeanDiff variants aim to maximize the overall score increase

between later and earlier examinations from the same patient, while the two Cons versions

aim to optimize consistency, defined as the proportion of exam pairs from the same

patient in which the later exam attains a higher score. We used data from the Parkinson’s

Progression Markers Initiative (PPMI) [11] to develop the indexes and validated them on

held-out PPMI data, external progression criteria and an external cohort of PD patients

obtained from the BeaT-PD project (204-16TLV) [12]. The resulting indexes offer greater

accuracy and more concise measurement instruments.

2 Results

2.1 Comparing the performance of the different approaches

Table 1 presents the characteristics of the final PPMI cohort after data cleaning.

Table 2 shows the results when all items were used, as well as the results from applying

the original weights of the complete MDS-UPDRS, its individual sections, and MoCA.

The new methods outperformed the MDS-UPDRS and its parts as well as MoCA, with

MeanDiff-QP performing best.

When limited to self-reported items (Table 3), a similar advantage of the new scale is

observed. MeanDiff-QP performs on par with the Cons method, with the latter being

slightly better for shorter time gaps.

Figure 1 compares the performance of MeanDiff-QP and MDS-UPDRS when all items

are used and when only self-reported items are used. Remarkably, in both cases our

optimized method shows better consistency compared to MDS-UPDRS across all time

gaps. Moreover, the self-reported version is almost as good as what we can get with all

items.
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Characteristic Mean Std Min Max

Age (years) 63.29 9.6 33.2 85.9

Disease duration (years) 2.54 1.9 0.92 14.09

MDS-UPDRS total score 36.65 16.62 4 122

H&Y Stage 1.78 0.55 0 4

MoCA total score 26.22 3.25 6 30

Gender (M%) 61.6%

Follow-up time (years) 4.78 3.23 0.5 12.08

Number of visits 4.63 2.47 2 12

Table 1: PPMI participants characteristics. Results are shown for PPMI cohort after

filtering (3,295 examinations for 711 PD patients). The first five characteristics listed

correspond to each patient’s first visit included in the analysis. MDS-UPDRS: Movement

Disorder Society’s Unified Parkinson’s Disease Rating Scale. MoCA: Montreal Cognitive

Assessment. H&Y: Hoehn and Yahr.

Years Gap 1 2 3 4 5 6 7 8 9 10 All

Number of Pairs 417 319 242 185 134 96 71 53 38 21 1,576

MDS-UPDRS P1 49.64 56.43 55.79 64.32 62.69 68.75 70.42 73.58 73.68 76.19 58.63

MDS-UPDRS P2 53.00 58.31 60.33 69.19 72.39 78.12 83.10 90.57 92.11 95.24 64.40

MDS-UPDRS P3 50.84 54.55 47.93 51.89 55.97 54.17 69.01 75.47 81.58 80.95 54.70

MDS-UPDRS 54.44 57.05 57.44 63.24 66.42 63.54 78.87 84.91 89.47 90.48 61.48

MoCA 38.13 37.93 38.43 40.00 44.03 43.75 32.39 45.28 42.11 57.14 39.53

MeanDiff 55.40 57.68 61.57 69.73 73.88 76.04 83.10 84.91 92.11 85.71 64.85

MeanDiff-W 58.51 62.07 62.81 72.97 76.12 80.21 85.92 90.57 92.11 90.48 67.96

MeanDiff-QP 62.35 66.14 73.14 78.38 85.07 91.67 91.55 98.11 97.37 100.00 74.24

MeanDiff-SV 59.71 63.01 64.05 72.97 79.85 81.25 88.73 92.45 94.74 95.24 69.35

Cons 59.71 64.26 69.01 76.76 79.85 84.38 88.73 94.34 97.37 95.24 71.13

Cons-Int 58.27 65.52 68.18 76.76 85.07 85.42 91.55 88.68 94.74 100.00 71.32

Table 2: Performance comparison when all MDS-UPDRS and MoCA items are used.

The table shows the percentage of consistent pairs of visits for each method, for different

time gaps between the visits. Time gaps are rounded to the closest year. The number

in bold shows the best performer for each gap. The last column gives the weighted aver-

age percentage of consistent pairs. MDS-UPDRS: Movement Disorder Society’s Unified

Parkinson’s Disease Rating Scale. MoCA: Montreal Cognitive Assessment.
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Years Gap 1 2 3 4 5 6 7 8 9 10 All

Number of Pairs 417 319 242 185 134 96 71 53 38 21 1,576

MDS-UPDRS P1 46.76 52.66 58.68 61.62 57.46 65.62 71.83 75.47 76.32 66.67 56.66

MDS-UPDRS P2 53.00 58.31 60.33 69.19 72.39 78.12 83.10 90.57 92.11 95.24 64.40

MDS-UPDRS 53.96 61.13 66.94 74.05 74.63 72.92 85.92 90.57 94.74 100.00 66.94

MeanDiff 54.44 61.76 66.94 72.43 76.12 73.96 84.51 92.45 94.74 100.00 67.20

MeanDiff-W 54.20 61.13 66.12 72.43 77.61 76.04 84.51 90.57 94.74 100.00 67.07

MeanDiff-QP 58.99 61.13 71.90 76.22 82.09 84.38 91.55 96.23 97.37 100.00 71.13

MeanDiff-SV 58.51 64.89 67.36 74.05 76.12 80.21 88.73 94.34 94.74 100.00 69.48

Cons 60.91 67.71 68.60 76.22 83.58 87.50 91.55 94.34 92.11 90.48 72.46

Cons-Int 54.68 64.58 67.77 74.59 80.60 88.54 90.14 92.45 92.11 100.00 69.67

Table 3: Performance comparison when only the self-reported items in MDS-UPDRS are

used. See the caption of Table 2 for details. MoCA and MDS-UPDRS part 3 are excluded

as they do not contain self-reported items.

Figure 1: Percentage of consistent pairs for MDS-UPDRS and our MeanDiff-QP scale

in various time gaps. MDS-UPDRS: Movement Disorder Society’s Unified Parkinson’s

Disease Rating Scale.
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2.2 Reducing the number of items

Figure 2 shows, for each method, its consistency and the number of non-zero items used.

In Figure 2A all items were considered, and in Figure 2B only the self-reported items

were allowed.

Figure 2: Consistency versus number of items used by each method. Each point represents

a method, with the x-axis indicating how many items it includes and the y-axis showing

the percentage of visit pairs with increasing scores over time. Methods with the same

x-value can be compared by their consistency (higher y is better), while those with the

same y-value can be compared by efficiency (lower x is better). An item refers to a

single unit increase in a response on the original scale. A. Performance when using all

items. B. Performance when using only self-reported items. The red lines indicated the

Pareto optimal contour. MDS-UPDRS: Movement Disorder Society’s Unified Parkinson’s

Disease Rating Scale. MoCA: Montreal Cognitive Assessment.

In both cases Cons-Int achieved very good consistency, while using a very small number of

items. Table 4 shows the learned weights for that solution using only self-reported items.

Remarkably, only eleven questions are used, and in ten of those only one threshold value

is needed. In the 11th (Getting out of bed) two thresholds are needed. Put differently,

this scale uses only twelve self-reported items yet it outperforms the original 200-item

MDS-UPDRS. The only scale to achieve higher consistency is Meandiff-QP with 176

items. Supplementary table S3 gives the weights of Const-Int when all items are allowed.

The learned weights for all methods are provided as supplementary files. Supplementary
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File 1 contains the weights for scales based on all items. Supplementary File 2 contains

the weights of scales using only self-reported items.

Item Threshold Score

1.7 Sleep problems 1 13

1.8 Daytime sleepiness 1 25

1.10 Urinary problems 2 55

1.11 Constipation problems 1 43

1.13 Fatigue 1 30

2.1 Speech 1 44

2.2 Saliva and drooling 1 51

2.9 Turning in bed 1 66

2.11 Getting out of bed 1 52

2.11 Getting out of bed 2 45

2.12 Walking and balance 2 100

2.13 Freezing 1 67

Table 4: The scale obtained by Cons-Int using only self-reported items. Only the non

zero weights are shown. The final index is obtained by summing the scores for all rows

in which the item’s value is equal or larger than the threshold.

2.3 Additional validation using PPMI

2.3.1 Initiation of symptomatic therapy

Supplementary Table S4 lists the correlation between each tested method and the time to

initiation of levodopa. Indeed, we see highly significant negative correlations between the

scores and the time difference. Figure 3 shows the results of the best performing method

in terms of the significance of correlation in each scenario: MeanDiff-QP using all items

and Cons-Int using just self-reported items.

2.3.2 Activities of daily living

When testing the scores correlation with the S&E ADL questionnaire [13], the results of

all methods were significant (Supplementary Table S5). Figure 4 shows the results for
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Figure 3: Total scores vs. the number of years prior to initiation of levodopa treatment.

A. MeanDiff-QP using all items B. Cons-Int using self-reported items only.

MeanDiff-QP, which achieved the highest correlation using all items and the second-best

using only self-reported items, surpassed only by MDS-UPDRS Part 2.

Figure 4: Total scores compared to the S&E ADL scores. A. MeanDiff-QP results when

using all items. B. MeanDiff-QP results when using only self-reported items.

Both tests validate the relevancy of our suggested scores, showing high correlations to

external data that was not a part of the training process. Many methods outperform the

original scales, reaching correlations of -0.73 (p=1.20e-07) with the Cons-Int method

for time before levodopa treatment and -0.68 (p=1.13e-89) with MeanDiff-QP for S&E

ADL.

2.3.3 Time to milestone

When measuring the correlation between each index and the time to the first milestone as

defined in [14], all our scales achieved correlation below -0.41, outperforming the MDS-

UPDRS. The results for methods using all items can be seen in Figure 5. The correlation

8

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 1, 2025. ; https://doi.org/10.1101/2025.07.31.25332494doi: medRxiv preprint 

https://doi.org/10.1101/2025.07.31.25332494
http://creativecommons.org/licenses/by/4.0/


coefficients and p values for all methods are available in Supplementary Table S6.

Figure 5: Correlation between the progression index and the time (in month) until the

patient reaches at least one of the defined milestones, for each method. All visits after the

first visit where a patient reaches a milestone are excluded. The vertical dotted red line

indicates the best correlation for a baseline method; our suggested methods exceed this

threshold significantly. MDS-UPDRS: Movement Disorder Society’s Unified Parkinson’s

Disease Rating Scale. MoCA: Montreal Cognitive Assessment.

2.4 External Validation

The participants characteristics of the BeaT-PD cohort after applying the filtering are

described in Table 5.
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Characteristic Mean Std Min Max

Age (years) 64.05 11.32 36 86

Disease Duration (years) 2.82 1.94 1 7

MDS-UPDRS Total Score 33.18 16.69 7 89

H&Y Stage 1.68 0.57 0 3

MoCA Total Score 24.73 3.49 17 30

Gender (M%) 77.22%

Follow-up Time (years) 3.71 1.6 1 6

Number of Visits 2.54 0.76 2 5

Table 5: BeaT-PD participants characteristics. Statistics are shown for the cohort after

filtering, consisting of 201 visits of 79 patients. The first five characteristics listed corre-

spond to each patient’s initial visit. MDS-UPDRS: Movement Disorder Society’s Unified

Parkinson’s Disease Rating Scale. MoCA: Montreal Cognitive Assessment. H&Y: Hoehn

and Yahr

The consistency of all the tested methods on the BeaT-PD cohort is shown in Table 6.

Reassuringly, all but one method exceeded the performance of the strongest baseline scale,

supporting the robustness of our approach. Validation results using only self-reported

items are available in Supplementary B.4.

2.5 An online tool

We created an online tool that calculates our progression index using the self-reported an-

swers, available via https://shamir-lab.github.io/MOPS/self_report_short.html.

The tool uses the weights of Table 4, normalized so that the range is 0-100.

3 Discussion

Contributions and key findings. We introduced a method for optimizing PD progres-

sion indexes by reweighting items and increments in the MDS-UPDRS and MoCA scales.

The new indexes have higher precision and efficiency, benefiting both patients and clini-

cians. Our main findings are: (1) Compared to the current approach of merely summing

raw item values, our indexes enhance score consistency with disease progression while
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Method Consistency (%)

MDS-UPDRS P1 62.29

MDS-UPDRS P2 65.71

MDS-UPDRS P3 61.71

MDS-UPDRS 65.71

MoCA 54.29

MeanDiff 69.14

MeanDiff-W 70.29

MeanDiff-QP 67.43

MeanDiff-SV 71.43

Cons 64.57

Cons-Int 67.43

Table 6: The percentage of consistent pairs of visits for each method on the external

validation BeaT-PD dataset, evaluated using the scale derived from the PPMI data.

maintaining a simple “sum-of-items” format. (2) Indexes based solely on self-reported

items perform on par with, or in some cases better than, the full MDS-UPDRS scale,

including the parts that are clinician-rated. (3) Indexes using only a few items are al-

most as good as those based on all items. In particular, eleven self-reported items and

twelve weights outperformed the original MDS-UPDRS, which includes 59 items and 236

weights. These findings were corroborated by strong correlations with external progres-

sion markers and validated in an external cohort.

Implications for clinical practice. First, by removing questions that contribute min-

imally to tracking PD progression, one can focus on the more meaningful indicators of

progression without sacrificing diagnostic or prognostic accuracy. Second, the potential

to base progression tracking on properly weighted self-reported items alone enables more

frequent as well as remote evaluations, offering patients the flexibility to complete assess-

ments at home, while reducing the burden from clinicians. Importantly, our decision to

train only on data of patients in ’ON’ state leads to indexes that are applicable to the

real-world daily presentation of patients. Overall, the optimized index could enhance the

quality and efficiency of patient care and improve long-term disease management.
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MoCA The MoCA exhibits a low consistency, and had a minimal contribution to the

indexes, likely due to two factors. Many PD patients, particularly in the early stages,

do not experience significant cognitive decline. More importantly, MoCA performance is

affected by practice effect, where repeated tests lead to improved scores independent of

actual cognitive changes [15].

MDS-UPDRS Part 2. It is noteworthy that the score based on part 2 only outperforms

the full MDS-UPDRS score. In particular, it outperforms part 3, which is often regarded

as the most clinically relevant and reliable. This can be attributed to the influence of

medications, which strongly affect the motor symptoms assessed in part 3. Changes in

medication or dosage adjustments frequently lead to lower part 3 scores when patients are

in the ON state (as in the dataset used here). Additionally, part 2 assessments, being self-

reported, avoid the inter-rater variability that affects part 3, reducing measurement noise

and improving consistency. Lastly, while part 3 measures the present state, part 2 items

usually ask about the last weak, making them less susceptible to symptoms fluctuations.

Other approaches One approach relevant to our application is Item Response Theory

(IRT) [16]. It assumes that each person’s responses are influenced by an underlying

trait — in our case, PD severity — and estimates how each item relates to this trait.

While IRT has been applied to the MDS-UPDRS [17–22], it has some limitations. First,

the IRT model assumptions are not fulfilled by the MDS-UPDRS [23]. In particular, the

assumption that each item is measuring the same trait independently does not hold for the

diverse symptoms of PD. Second, IRT does not incentivize sparsity, as it fits the optimal

parameters for each item or question separately. Lastly, IRT is primarily designed for

cross-sectional data and does not effectively capture changes over time, which are crucial

for tracking disease progression.

Additionally, recent studies have proposed re-weighting MDS-UPDRS items using partial

least squares regression [24, 25]. These methods optimized an internal criterion—the

mean-to-standard-deviation ratio—which differs from our focus on consistency. Morinan

et al. [26] sought to shorten the scale by selecting a subset of eight items suitable for

remote monitoring, optimizing explained variance in the process. Unlike our approach,

none of these studies allowed for assigning different weights to individual score increments

within the same item.
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Early vs. advanced patients. Since PPMI mostly enrolls patients in an early stage of

the disease, our data is biased towards early patients; for example, 92.8% of the exams

are of patients with H&Y stage ≤ 2. Therefore, the utility of our progression scale will be

highest for earlier PD patients, and less informative for more advanced patients. While

it is mathematically easy to balance the index and adjust the optimization target to give

more weight to more severe patients, we decided against such a change for a few reasons.

First, a progression index is much more valuable in earlier stages of the disease, since in

later, more severe stages it is easier to identify the progression manifested in a wide range

of symptoms. Second, giving more weight to patients with higher H&Y will introduce

additional noise and bias, as these stages are characterized by specific aspects of PD,

and do not capture the full range of symptoms. Moreover, the H&Y staging itself also

exhibits moderate inter-rater reliability [27].

Tremor. Previous research shows that the tremor items in part 3 contain limited

information about the underlying state in PD and do not show worsening over time

[28].Additionally, an IRT scoring of part 3 items gives negative coefficients to the tremor

items, claiming they are anti-correlative to the other part 3 items [29]. One contributing

factor might be that these items are strongly affected by PD medications like levodopa

[30]. Indeed, in our computational approaches these items usually receive little or no

weight, supporting the observation that they are poor indicators of PD progression.

Computational hardness. Our study explored two ways to rescale the data. The first

method focused on an objective that is slightly different from consistency, but it still often

led to well-performing scales. We were able to optimize this objective efficiently using fast

algorithms. The second method aimed directly at maximizing consistency, but this made

the problem much more challenging to solve (in fact, it is proven to be computationally

hard—see Supplementary A.5). To tackle it, we used algorithms that can be very slow

for large problems. As a result, these algorithms could only find approximately optimal

solutions within the available time.

Limitations and future work. Our study has several limitations. First, we constructed

our scales using only data from patients who are drug-näıve or in ON state. This aimed

to ensure our results are applicable to patients in their typical daily conditions, where

medication are not intentionally withheld. Future studies can use our methodology while

focusing on more advanced PD patients who naturally experience frequent OFF-state
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periods. A more detailed pharmacological profile for each patient—capturing medication

types, dosage, and timing —may also allow the model to re-weigh items dominated by

temporary symptomatic relief rather than true disease progression.

Second, due to limited computational resources, we split the data into training and test

sets but did not allocate a separate validation set for extensive hyperparameter tuning.

Instead, for each formulation we tried several parameter values on the training set and

took one that performed best. A more systematic approach (e.g., nested cross-validation)

using more computation power may lead to better parameter choices and improve the

scales.

Finally, including prodromal patients can similarly expand the applicability of our ap-

proach, enabling earlier and more nuanced detection of progression trajectories.

Other domains. While this study focused only on PD, the computational approach and

methods provided here can lead to improvement in scales of other diseases or conditions.

Examples include Apgar score [31] for newborn infants evaluation, the RENAL nephrol-

ogy scoring system [32], the Glasgow Coma Scale [33], the Barthel Index for activities of

daily living [34], the Mini-Mental State Examination for cognition [35], the NIH Stroke

Scale [36] and many others. Such scores are broadly used in healthcare, and improving

and simplifying them can increase their utility.

4 Methods

4.1 Preprocessing

4.1.1 Data

We used data from the Parkinson’s Progression Markers Initiative (PPMI) [11] - an inter-

national, multi-center longitudinal study aimed at identifying biomarkers of PD progres-

sion. In this study, various assessments including MDS-UPDRS are conducted regularly

at intervals of 3, 6, or 12 months to track changes in clinical and cognitive status over

time (See Supplement A.1 for additional details). While PPMI contains a variety of

data types including imaging and genetic data, for constructing the new index we only

used MDS-UPDRS [37] for summarizing patients’ clinical state and MoCA [38] for their
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cognition.

4.1.2 Filtering

The MDS-UPDRS [2] is a 65-item scale divided into four parts (Part I: non-motor ex-

periences of daily living, II: motor experiences of daily living, III: clinician-rated motor

examination, IV: motor complications). As our input, we used the 59 questions in parts

I, II and III as well as MoCA. While PPMI contains various types of subjects (Healthy,

PD, prodromal PD and other disorders) we focused only on PD patients in this analysis,

and in particular excluded prodromal patients. We also removed examinations where the

rater noted that dyskinesia interfered with the rating.

Since we wanted our tool to be applicable in regular clinical visits, we excluded visits

where the PD patients were measured in ’OFF’ state, as this kind of measurement often

requires patients to purposely stop taking their medications and thus introduces undesired

burden on them.

Finally, we removed the baseline visit of each patient from our analysis, as we suspect the

first visit might be biased due to the Hawthorn effect [39], as the act of joining a clinical

trial by itself might create some temporal positive ”improvement” in the patients state,

compared to followup visits.

After filtering the data we had a total of 3,295 examinations for 711 different patients

(averaging in 4.63 exams per patient, with median time difference between adjacent visits

of 1 year). Note the data is not distributed evenly across PD severity levels, and is heavily

biased towards early patients. See supplementary A.1 for the additional details on the

PPMI data.

4.1.3 Encoding

To make the data canonic and usable for the next step, we transformed it as follows.

First, while MDS-UPDRS gives higher scores for more severe patients, the MoCA score

decreases with severity from 30 to 0 - patients get full points for correct answers. To have

both monotone increasing with severity, we flipped the values of each MoCA item such

that the value is the number of points deducted instead of the number of points gained.
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Next, for each question, we assigned a binary variable for each unit increment in the

answer. For example, an MDS-UPDRS question that can have an answer between 0 and

4 was transformed into four binary variables x1, x2, x3, x4, where xi = 1 if the answer is at

least i. Hence, the answer 0 is mapped to [0,0,0,0], 1 is mapped to [1,0,0,0], 2 is mapped to

[1,1,0,0], 3 is mapped to [1,1,1,0] and 4 is mapped to [1,1,1,1]. This way, for example, the

answers to the 59 questions used from the MDS-UPDRS are represented by 236 binary

variables. This type of encoding for ordinal data is sometimes referred to as thermometer

encoding [40] or cumulative binary encoding. By giving non-negative weights to items,

w1, w2, w3, w4, the score of a question
∑

iwi · xi is monotone non-decreasing: Higher

answers are assigned higher scores. The total weighted sum of all answers in a patient’s

visit is called its progression index.

4.2 Evaluation

We split the data into 80% training set and 20% test/evaluation set, such that no patient

appeared in both train and test sets. The learning of weights was done only on the

training set, and evaluated on the test set.

Our primary metric for assessing the optimized weights was the percentage of visit pairs

for the same patient in which the later visit received a higher total score. We call this

metric consistency. A score with higher consistency is better. We also measured the

number of non-zero weights assigned to items. A lower number reflects a simpler scale

that is easier to implement.

4.2.1 External validation

We compared the computed progression index against external progression criteria, and

tested whether it performs better than the baseline approaches. The first set of criteria

were based on data available in PPMI. First, we examined the relationship between a

visit’s score and the time elapsed from that visit until the start of levodopa treatment,

assuming an effective scale should assign higher scores to patients who are closer to

beginning treatment. Second, we checked the scores concordance with the Schwab and

England Activities of Daily Living (S&E ADL) scale [13], expecting a negative correlation

between our disease progression score and the ADL score. Lastly, we used the milestones
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defined by Brumm et al. [14] and checked how well our progression index predicts the

time it would take a patient to reach the first milestone. We tested 20 out of the 25

milestones defined in [14], for which a sufficiently large fraction of the visits had data.

We assumed a good index should exhibit a strong negative correlation, so that higher

scores are associated with a shorter time to reaching the first milestone.

Finally, we validated the consistency of our weights against an additional, external co-

hort of PD patients obtained from the BeaT-PD project (204-16TLV) [12]. The BeaT-

PD cohort included 300 recently diagnosed patients with PD (mean age at recruitment

61.67±10.34 years with mean disease duration of 2.5±1.1 years) who were clinically and

genetically assessed over 5 years. After applying filtering criteria similar to those used for

the PPMI dataset, as described in Section 4.1.2 - but without removing baseline visits,

to preserve dataset size - we retained 79 patients with a total of 201 visits.

For the validation of the self-report index we applied a milder filtering approach, and

did not exclude visits based on MDS-UPDRS part 3 criteria (clinical state or dyskinesia

interference), as these are not self-reported measures.

4.3 Full index vs self-reported index

We also developed an index that uses only MDS-UPDRS items that are self-reported

and do not require a trained rater. This index uses only the items in the patient’s

questionnaire (the second half of part I and the entire part II).

4.4 Approaches for weights optimization

We developed a variety of formulations for optimizing the weights in the scale. The first

set of approaches seek to maximize objective functions that are similar to — but not

identical to — the consistency measure, are justified by a solid rationale, and can be

optimized efficiently. Empirically, they can be solved to optimality on our data within a

few minutes of computation on a standard laptop. These approaches include:

• MeanDiff - maximizing the mean difference between pairs of visits of the same

patient, across all patients.
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• MeanDiff-W (Weighted) - similar to the above, but penalizing more for negative

differences, corresponding to pairs of visits for which the score decreased. The

objective is to maximize the weighted sum of differences.

• MeanDiff-QP (Quadratic Penalty) - similar the former but introducing quadratic

penalty for decreases - thus penalizing larger decreases more heavily. The objective

is to maximize the sum of differences while minimizing the penalty.

• MeanDiff-SV (Small Variance) - similar to the MeanDiff approach, with an ad-

ditional penalty factor measuring the variance of score differences between visits.

The objective is to maximize the mean difference while minimizing the differences’

variance, incentivizing stable increases.

For each of the approaches above, we also added an optional regularization term for min-

imizing the number of non-zero weights, incentivizing sparse solutions. This was both a

goal by itself (as discussed earlier), and was also beneficial to prevent overfitting the train-

ing data. The full definition for each of these approaches can be found in Supplementary

A.3.

Our second set of approaches aim to optimize consistency. They seek weights that will

maximize the number of consistent pairs. We considered two variants of this problem: one

where weights can have any real value, and one where only integer weights are allowed We

call these formulations Cons and Cons-Int, respectively. The full definitions are given

in Supplementary A.4. The objective functions in these formulations are not convex, so

finding the global optimum is computationally harder. We used algorithms that may

take exponential time to reach an optimum. In practice, we limited the runtime to a few

hours and settled for the best solution found in that time.

4.5 Implementation details

All computations were conducted on a system with an AMD EPYC 7702 processor,

featuring 128 logical CPUs (64 cores, 2 threads per core) at 2.0 GHz. The machine runs

on GNU/Linux 4.15.0-65-generic within an NVIDIA DGX Server environment. Solving

Integer Programming and Mixed Integer Programming formulations was done using the

Gurobi Optimizer [41].
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The first set of weights optimization formulations took each up to 30 minutes to complete

using just a single thread. The second set of formulations, which aimed to maximize con-

sistency, dealt with hard computational problem and thus was solved using all available

cores and were each allotted a 24-hour time limit. Within this timeframe, an optimal

solution could not be reached. However, the bound for the gap between the best solution

found and the optimal solution ranged between 14.3% and 38.7% across all formulations.

These values represent upper bounds, and the actual gaps are likely much smaller.

5 Data availability

Access to the PPMI dataset is publicly available upon request at https://www.ppmi-info.

org. The BeaT-PD dataset is available from AM upon reasonable request.

6 Code Availability

The code developed in this paper is available at https://github.com/Shamir-Lab/MOPS.
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Appendices

A Supplementary text

A.1 Data

Our data (downloaded from PPMI on August 7 2024) contained information for 1,879

PD patients, 2,089 Prodromal patients and 400 healthy controls. In our analysis we only

used the PD patients’ data. Supplementary Table S1 summarizes the data available for

these 1,879 PD patients. Part 3 has more visits because patients are often measured

twice - in ON and in OFF states. Of the 16,715 visits with Part 3 data, 7,139 were in

ON state, 5,158 in OFF and 4,418 were of drug naive patients.

Exam Total Visits Unique Patients Repeat Patients

MDS-UPDRS Part 1 12,453 1,492 1,284

MDS-UPDRS Part 2 12,467 1,496 1,284

MDS-UPDRS Part 3 16,715 1,497 1,285

MoCA 6,544 1,709 1,096

Table S1: Statistics on the PD patients in the PPMI. Repeat patients are patients who

had more than one visit. MDS-UPDRS: Movement Disorder Society’s Unified Parkinson’s

Disease Rating Scale. MoCA: Montreal Cognitive Assessment.

After removing visits in OFF-state and patients with just a single visit, we were left

with 4,919 visits of 823 unique patients that contain all MDS-UPDRS parts and MoCA.

Removing the baseline and screening visits of all patients left us with 4,269 visits of 763

unique patients. Finally, we filtered visits where dyskinesia interfered with the rating or

where critical values were missing or misaligned. The final dataset used in the analysis

consisted of 3,295 visits of 711 unique patients (an average of 4.63 visits per patient).

Supplementary Table S2 presents the number of visits in each severity level in the final

dataset, showing the bias towards early patients.
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H&Y Stage 0 1 2 3 4 5

Number of Visits 16 599 2445 192 39 4

Table S2: Number of visits for each H&Y stage. H&Y: Hoehn and Yahr.

A.2 Mathematical formulations of progression index problem

A.2.1 Terminology

We start with some basic definitions needed for formulating our problem.

The questions in the original scale have a range of k values of possible answers (For

example, 0, . . . , 4 in the MDS-UPDRS). Without loss of generality we renumber them

1, . . . , k, where higher numbers indicate more severity. Each such question is translated

into k − 1 binary features called items, where item i indicates that the answer to the

question is at least i.

In this convention, a visit is a binary vector v ∈ {0, 1}m , where for each item i, vi = 1

if and only if this item is true for that visit. We denote the j-th visit of patient p by vp
j .

The sequence of visits of patient p is denoted by (vp
1, . . .v

p
mp

), where we assume that for

each patient p mp ≥ 2, and the visits are numbered in increasing time order. A pair of

visits (vp
i ,v

r
j) is called proper if p = r and i < j. In words, the two visits should be for

the same patient and they should be ordered chronologically.

The formulation assigns a weight wi ∈ R+ to each item i, together forming a weight vector

w ∈ Rm
+ . Ensuring that item weights wi are non-negative and defining the weight of an

answer with value j as w1 + . . . + wj guarantees that the answer weights are monotone

increasing. For a visit v and weights w, the score of the visit is defined as w · v.

A longitudinal dataset is a collection of sequences of visits, one per patient. Formally

{(vp
1, . . .v

p
mp

)| p = 1 . . . , n}. For such dataset, we define S as the set of all proper pairs

of visits. In other words, S = {(vp
i ,v

p
j )|i < j, p = 1, . . . n}.

For a proper pair of visits (vp
i ,v

p
j ) and weights w, if w ·vp

i < w ·vp
j we say that the pair’s

order is consistent with the weights, or simply that the pair is consistent. Note the strict

inequality in the last equation. If we allowed instead w · vp
i ≤ w · vp

j , then the weight

vector w = 0m would be a trivial set of weights for which all proper pairs are consistent.

We are now ready to define two basic formulations of our problem.
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Maximum consistency: Given a longitudinal dataset, find a weight vector w that

maximizes the number of consistent pairs. In other words,

max |{(vp
i ,v

p
j )| i < j and w · vp

i < w · vp
j , p = 1, . . . , n}|

.

Maximum weighted difference: Given a longitudinal dataset, find a weight vector w

that maximizes the weighted difference across all proper pairs. In other words,

max
∑
p

∑
i<j

(w · vp
j −w · vp

i )

We will introduce several variations of these objectives in the sequel, and also consider

a secondary objective of sparsity, aiming to reduce the number of items with non-zero

weights.

A.3 Formulations maximizing the weighted difference

A.3.1 Linear Programming

A basic linear programming formulation of the problem is

max
∑
p

∑
i<j

(w · vp
j −w · vp

i )

0 ≤ wi ≤ 1 i = 1, . . .m

(MeanDiff)

This problem has a closed form solution: The objective is equal to w ·
∑

p

∑
i<j(v

p
j −vp

i ).

Define d =
∑

p

∑
i<j(v

p
j − vp

i ). Setting wi = 1 if di > 0 and zero otherwise is an optimal

solution.

The following formulation takes into account also the solution sparsity:

max
∑
p

∑
i<j

(w · vp
j −w · vp

i )− γ
∑
i

wi (1)

0 ≤ wi ≤ 1 i = 1, . . .m (2)

The second term is an L1 regularization of the weights, which incentives sparsity. γ is an

hyper-parameter that balances between the weighted difference objective and the aim of

minimizing the number of used items. This problem too has a closed form solution, since
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the objective can be written as
∑

k wk · dk − γ
∑

k wk =
∑

k wk(dk − γ) so setting wk = 1

if dk − γ > 0 and zero otherwise is an optimal solution.

Variable pair scores. A possible generalization of the first term in the objective is by

assigning different values to different pairs:
∑

p

∑
i<j q(p, i, j)(w ·vp

j −w ·vp
i ). The value

q(p, i, j) of the pair can be used to reduce the weight of visit pairs for patients that have a

lot of visits. For example, if patient p has t visits, then we can make q(p, i, j) = 1

(t2)
to give

each patient equal total weight, or q(p, i, j) = t

(t2)
to make the total weight proportional

to the number of visits (as opposed to t2). Alternatively, we can assign different weights

to different pairs of visits based on their time span, as larger time gaps are expected to

more strongly capture changes in disease severity.

Penalizing score drops. This approach is similar to the previous one, but instead of

simply maximizing the weighted sum of differences, we would like to punish more heavily

inconsistent pairs. We show this for the basic formulation. Denote by S the set of all

proper visit pairs, where the elements in S are the triplets (p, i, j) such that i and j are

visits of patient p with j > i. For each (p, i, j) ∈ S define nonnegative variables Up,i,j (for

up) and Dp,i,j (down).

max
∑
p

∑
i<j

(
Up,i,j − δ Dp,i,j

)
(MeanDiff-W)

w · vp
j − w · vp

i = Up,i,j −Dp,i,j ∀(p, i, j) ∈ S (3)

0 ≤ wi ≤ 1, i = 1, . . . ,m (4)

Up,i,j, Dp,i,j ≥ 0 (5)

δ > 1 is the penalty coefficient for inconsistent pairs.

Claim: Any optimal solution of the problem must satisfy:

(i) If w · (vp
j − vp

i ) ≥ 0, then Up,i,j = w · (vp
j − vp

i ) and Dp,i,j = 0.

(ii) If w · (vp
j − vp

i ) ≤ 0, then Dp,i,j = −w · (vp
j − vp

i ) and Up,i,j = 0.

Proof: We prove case (i). The proof of (ii) is analogous. If w · (vp
j −vp

i ) = 0 then by (3)

Up,i,j = Dp,i,j. The contribution of this triplet (p, i, j) to the objective is Dp,i,j − δDp,i,j,

which is negative since δ > 1 unless Up,i,j = Dp,i,j = 0.
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If w · (vp
j − vp

i ) > 0, suppose Up,i,j ̸= w · (vp
j − vp

i ). Define d = Up,i,j −w · (vp
j − vp

i ). To

satisfy (3), we get Dp,i,j = d. d ≥ 0 due to the non-negativity constraints. Assume by

contradiction that d > 0. The objective function then changes by:

Up,i,j − δDp,i,j = w · (vp
j − vp

i ) + d− δd = w · (vp
j − vp

i )− (δ − 1)d

Since δ > 1 and d > 0, we get a strictly worse objective value than if d = Dp,i,j = 0, in

contradiction to the assignment being optimal. ■

A.3.2 Quadratic Programming

Similarly to the linear programming approach, we can also introduce quadratic terms in

the objective - thus formulating a quadratic programming problem.

Squaring the changes. This approach simply squares Up,i,j and Dp,i,j, thus giving more

weight to the big changes compared to the smaller ones:

max
∑
p

∑
i<j

(U2
p,i,j − δD2

p,i,j) (6)

w · vp
j −w · vp

i = Up,i,j −Dp,i,j ∀(p, i, j) ∈ S (7)

0 ≤ wi ≤ 1 i = 1, . . .m (8)

Up,i,j, Dp,i,j ≥ 0 (9)

Penalizing drops quadratically. Instead of squaring both terms, here we do so just

for the drops - so the loss from a drop is bigger than the gain from an increase of the

same size. This steers the solution toward greater consistency. We do it by replacing the

objective with:

max
∑
p

∑
i<j

(Up,i,j − δD2
p,i,j) (MeanDiff-QP)

Mixing linear and quadratic penalties. The caveat of the last approach is that it

is tolerant to small decreases. To avoid that, we mix both linear penalty and quadratic

penalties for drops, using two coefficients:

max
∑
p

∑
i<j

(Up,i,j − δDp,i,j − δ′D2
p,i,j) (10)

In our tests we used version (MeanDiff-QP), as we preferred a minimal amount of

hyper-parameters.
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Reducing variance. Another approach utilizing quadratic programming adds a penalty

for the variance of score differences. Denote by ∆ := 1
|S|

∑
p

∑
i<j(w · vp

j − w · vp
i ) the

mean difference in the total score between pairs of visits. The new objective function is:

max [∆− γ

|S|
∑
p

∑
i<j

(w · vp
j −w · vp

i −∆)2] (MeanDiff-SV)

Where again γ is an hyper-parameter that balances between the weighted difference

objective and the objective of the differences being more stable.

A.4 Formulations maximizing consistency

In this section we describe formulations that aim to find integer weights that directly

maximize the consistency.

Matrix representation. Recall that S is the set of all proper visit pairs, where the

elements in S are the triplets (p, i, j) such that i and j are visits of patient p with j > i.

Denote s := |S|. We define a matrix of differences A ∈ {−1, 0, 1}s×m, such that for every

triplet Sl = (p, i, j) and item a ∈ {1, . . . ,m}, we have Al,a = (vp
j −vp

i )a. In words, Al,a is

the difference in the value of item a between visits j and i of patient p. Since items are

binary A’s entries are 1, 0 or -1.

Integer Programming (IP). We define two boolean vectors of indicators I+, I− ∈

{0, 1}s, and use the following IP formulation:

max
∑

l=1,...,s

I+l (Cons-Int)

(Aw)l ≥ ε− C(1− I+l ) l = 1, . . . , s (11)

(Aw)l ≤ C · I+l l = 1, . . . , s (12)

(Aw)l ≤ −ε+ C(1− I−l ) l = 1, . . . , s (13)

(Aw)l ≥ −C · I−l l = 1, . . . , s (14)

0 ≤ wi ≤ B i = 1, . . . ,m integer (15)

0 ≤ I+l , I
−
l ≤ 1 i = 1, . . . , s integer (16)

Where 0 < ϵ ≪ 1 is a sufficiently small constant, B is an upper bound on weight values,

and C is a large constant such that C > B ·m+ε. We call this problem, which maximizes
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consistency and requires weight integrality Cons-Int. The version where (15) is changed

so that weights wi can be real valued is called Cons.

Lemma: Let w, I+, I− be a feasible solution of the problem. Then for every l = 1, . . . , s:

1. (Aw)l > 0 if and only if I+l = 1.

2. (Aw)l < 0 if and only if I−l = 1.

3. (Aw)l = 0 if and only if I−l = I+l = 0.

Proof: (1) Assume I+l = 1. From (11) we get (Aw)l ≥ ε−C(1−1) = ε. Since 0 < ϵ < 1,

(Aw)l > 0. In the other direction, assume (Aw)l > 0 and I+l = 0. Then from (12) we

get (Aw)l ≤ C · I+l = C · 0 = 0, a contradiction. (2) Assume I−l = 1. From (13) we

get (Aw)l ≤ −ε + C(1 − 1) = −ε. Since 0 < ϵ < 1, (Aw)l < 0. In the other direction,

assume (Aw)l < 0 and I−l = 0. Then from (14) we get (Aw)l ≥ −C · I−l = −C · 0 = 0,

a contradiction. (3) follows from (1) and (2). ■

Claim: The solution to Cons-Int maximizes consistency.

Proof: By the lemma, our objective is equivalent to consistency. Denote by ŵ an integer

vector of weights 0 ≤ ŵk ≤ B that achieves optimal consistency. We will show that it

corresponds to a feasible solution.

For every consistent pair Sl according to ŵ we assign I+l = 1 and I−l = 0. For every

inconsistent pair Sl we assign I+l = 0, and assign I−l = 1 if (Aŵ)l < 0 or I−l = 0 if

(Aŵ)l = 0. We claim (ŵ, Î+, Î−) is a feasible solution. Constraints (15) are satisfied by

assumption, and (16) by construction. Assume first Sl is consistent, i.e. (Aŵ)l > 0, I+l =

1, I−l = 0. The constraint (11) holds since ŵ is an integer vector and A ∈ {−1, 0, 1}s×m,

so (Aŵ)l ≥ 1 > ε. Constraint (12) holds since (Aŵ)l ≤ mB < C. Constraint (13) holds

since (Aŵ)l ≤ mB < C − ε. Constraint (14) holds since (Aŵ)l > 0.

Assume now Sl is inconsistent and decreasing, i.e. (Aŵ)l < 0, I+l = 0, I−l = 1. The

constraint (11) holds since (Aŵ)l ≥ −mB > −C + ε. (12) holds since (Aŵ)l ≤ 0. (13)

holds since (Aŵ)l < 0 ((Aŵ)l ≤ −1). (14) holds since (Aŵ)l ≥ −mB > −C + ε > −C.

Finally, assume Sl is inconsistent and unchanged, i.e. (Aŵ)l = 0, I+l = 0, I−l = 0. The

constraint (11) holds since (Aŵ)l ≥ −mB > −C + ε. (12) holds since (Aŵ)l ≤ 0. (13)

holds since (Aŵ)l ≤ mB < C − ε. (14) holds since (Aŵ)l ≥ 0. ■
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Sparsity. To encourage a sparse solution, we can introduce a regularization term to the

objective, as before:

max
∑

l=1,...,s

I+l − γ
∑
i

wi (17)

This drives down the sum of the weights, but not sparsity per se. The following IP

formulation achieves this goal. To penalize the number of non-zero weights, we introduce

helper boolean variables z ∈ {0, 1}m and formulate the problem as

max
∑

l=1,...,s

I+l − γ
∑
i

zi (18)

(Aw)l ≥ ε− C(1− I+l ) l = 1, . . . , s (19)

(Aw)l ≤ C · I+l l = 1, . . . , s (20)

(Aw)l ≤ −ε+ C(1− I−l ) l = 1, . . . , s (21)

(Aw)l ≥ −C · I−l l = 1, . . . , s (22)

0 ≤ wi ≤ B · zi i = 1, . . . ,m integer (23)

0 ≤ I+l , I
−
l ≤ 1 i = 1, . . . , s integer (24)

0 ≤ zi ≤ 1 i = 1, . . . ,m binary (25)

Where again γ > 0 balances between consistency and sparsity.

Claim: An optimal solution of the system must satisfy
∑

i zi = |{i|wi > 0}|

Proof: We claim zi = 1 if and only if wi > 0, from which the claim follows. If wi > 0

then it must be that zi = 1, to satisfy 23. If zi = 1 but wi = 0, then assigning zi = 0 will

increase the objective value by γ without invalidating any constraint, in contradiction to

the solution’s optimality. ■

Thus, the penalty term is exactly γ times the number of non-zero weights.

Mixed Integer Programming. We can relax the integrality constraints for the weights

wi, and allow them to have real values instead. This yields a Mixed Integer Programming

(MIP) formulation, which can be solved similarly to the previous one. In our tests we

tried both approaches, and included a regularization term for sparsity.

An alternative objective. By definition, when optimizing for consistency we do not

differentiate between the cases where w ·(vp
j −vp

i ) = 0 and w ·(vp
j −vp

i ) < 0. However, no

change is preferred over negative change when pursuing a monotonic score. This can be
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achieved using a similar formulation, by adding a penalty term for the number of strictly

negative decreases, with a balance parameter γ:

max
∑

l=1,...,s

I+l − γ
∑

l=1,...,s

I−l (26)

We note that a sparsity term can also be added to the objective.

A.5 Hardness of the computational problem

In this section we show that the maximum consistency problem is NP-hard.

First, recall the Partial Maximum Feasible Subsystem problem (Partial Max-FS, also

called Constrained Max-FS) [42, 43]. In Partial Max-FS we are given a set of linear

inequality constraints, where some of them are called hard constraints and the rest are

called soft constraints. We wish to find a largest cardinality subset of the constraints

containing all the hard constraints and some of the soft constraints that is feasible. Partial

Max-FS is NP-Hard and also hard to approximate efficiently [44]. It is also NP-hard if

the variables are integer or binary, and if the inequalities are strict (<) [43].

Observe that the consistency maximization problem is a special case of Partial Max-FS.

In our case, the variables are binary, the non-negativity constraints are hard, and set of

soft constraints is the set of examination pairs, where for each pair we want the score

of the later examination to be higher. The optimal weights are those that maximize the

number of constraints that are satisfied.

Theorem: The consistency maximization problem is NP-Hard, even when B = 1 (i.e.,

w ∈ {0, 1}m).

Proof: Observe first that any matrix A ∈ {−1, 0, 1}s×m can be viewed as a matrix of

differences of a set of visits as defined in Section A.4. This follows by forming a dataset

with s patients where each patient i has exactly two visits, and the coordinate-wise

differences between the item values in the two visits match the values in row Ai,·. By the

observation, we can conveniently discuss the problem in terms of constraints, where the

weights are the variables.

We show a reduction from the 3-SAT problem. Given a 3-SAT instance with k variables

and n clauses, we construct an instance of the consistency maximization problem as

follows:
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Variable Constraints: Setm = 2·k, where for each variable xi, the index 2i−1 corresponds

to the positive literal xi, and the index 2i corresponds to the negation ¬xi. For each

variable xi, introduce two inequalities:

w2i−1 − w2i ≥ 1

w2i − w2i−1 ≥ 1
(27)

Observation: If w2i−1 = 1 and w2i = 0, or w2i−1 = 0 and w2i = 1, then exactly one of

the inequalities (27) holds. If w2i−1 = w2i = 1, or w2i−1 = w2i = 0, then none holds.

Clause Constraints: For each clause Cl in the 3-SAT formula, introduce an inequality

corresponding to the literals in the clause. Specifically:

wi + wj + wk ≥ 1 (28)

where i, j, k are the indices corresponding to the literals in the clause.

Clearly, this reduction is polynomial in the size of the 3-SAT input. Note that since the

variables wi ∈ {0, 1} and all the coefficients in (27) and (28) are 0,1, or -1, the constraints

≥ 1 are equivalent to the ≥ ϵ constraints that we had in the Cons-Int formulation.

We claim that the 3-SAT instance is satisfiable if and only if there exists w ∈ {0, 1}m

that achieves consistency in exactly n+ k vectors of differences.

For proof, by the observation, out of each variable-related pair (27) at most one con-

straint can be satisfied by any assignment. Therefore, the maximal possible number of

simultaneously feasible inequalities is n+ k.

Assume the 3-SAT instance is satisfiable. Then there exists an assignment of the k

variables that satisfies all n clauses. Construct the weight vector w as follows: For each

variable xi: If xi is True, set w2i−1 = 1 and w2i = 0. If xi is False, set w2i−1 = 0 and

w2i = 1. By the observation, exactly k inequalities corresponding to the variables are

consistent. Since all clauses are satisfied by the assignment, each clause inequality has at

least one corresponding index in w set to 1, making all n clause inequalities consistent.

Therefore, the total number of satisfied constraints is n+ k.

Conversely, assume there exists a weight vector w such that n + k inequalities hold.

Since there are k variable-related pairs, at least k of the satisfied inequalities correspond

to the variable constraints. By the observation, for each variable xi, exactly one of the
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inequalities (27) holds. If w2i−1 = 1 and w2i = 0, set xi to be True. If w2i−1 = 0 and

w2i = 1, set xi to be False. Since the total number of satisfied inequalities is n + k, it

follows that all n clause inequalities hold as well. By construction, a clause vector is

consistent if and only if at least one of its corresponding literals is True. Therefore, the

assignment satisfies all clauses. ■
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B Figures and tables

B.1 The weights learned by each approach

Supplementary File 1 contains the weights for scales based on all items. Supplementary

File 2 contains the weights of scales using only self-reported items. For each method,

the values were normalized to sum to 100. Note that for MoCA items the values were

flipped, so for example a threshold of 1 means 1 point below the maximal possible score.

Item Threshold Score

1.1 Cognitive impairment 1 16

1.7 Sleep problems 1 9

1.7 Sleep problems 2 25

2.2 Saliva and drooling 2 14

2.3 Chewing and swallowing 1 10

2.3 Eating tasks 1 13

2.8 Doing hobbies and other activities 1 7

2.9 Turning in bed 1 27

2.12 Walking and balance 2 47

2.13 Freezing 1 35

3.4b Finger tapping - Left hand 1 13

3.7b Toe tapping - Left hand 1 7

3.13 Posture 1 19

3.13 Posture 3 100

MoCA - Clock hands <1 (fail) 15

Table S3: The scale obtained by Cons-Int when all items can be used. Only non zero

weights are shown. The index is obtained by summing the scores for all rows where the

item’s value is equal or larger than the threshold. MoCA: Montreal Cognitive Assessment.
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B.2 Comparison of the indexes to external scales

Method All Items Self-Reported Items

MDS-UPDRS Part 1 -0.31 (p=5.09e-02) -0.25 (p=1.19e-01)

MDS-UPDRS Part 2 -0.67 (p=3.83e-06) -0.67 (p=3.83e-06)

MDS-UPDRS Part 3 -0.46 (p=3.44e-03) NA

MDS-UPDRS -0.63 (p=2.07e-05) -0.64 (p=1.15e-05)

MoCA 0.41 (p=1.04e-02) NA

MeanDiff -0.62 (p=2.62e-05) -0.60 (p=4.57e-05)

MeanDiff-W -0.64 (p=9.98e-06) -0.61 (p=3.19e-05)

MeanDiff-QP -0.70 (p=7.06e-07) -0.67 (p=3.30e-06)

MeanDiff-SV -0.69 (p=1.51e-06) -0.61 (p=4.33e-05)

Cons -0.62 (p=2.73e-05) -0.68 (p=1.74e-06)

Cons-Int -0.60 (p=6.02e-05) -0.73 (p=1.20e-07)

Table S4: Correlation between the score of each method and the time to Levodopa. Re-

sults are shown for scores that use all items and for scores that use self-reported items

only. p-values are calculated using Pearson’s ρ. MDS-UPDRS: Movement Disorder Soci-

ety’s Unified Parkinson’s Disease Rating Scale. MoCA: Montreal Cognitive Assessment.

B.3 Correlation of the indexes with the time to first milestone
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Method All Items Self-Reported Items

MDS-UPDRS Part 1 -0.42 (p=3.32e-29) -0.31 (p=6.62e-16)

MDS-UPDRS Part 2 -0.62 (p=3.51e-69) -0.62 (p=3.51e-69)

MDS-UPDRS Part 3 -0.40 (p=2.43e-26) NA

MDS-UPDRS -0.59 (p=1.33e-62) -0.57 (p=2.80e-57)

MoCA -0.41 (p=2.90e-27) NA

MeanDiff -0.65 (p=3.64e-78) -0.56 (p=8.12e-54)

MeanDiff-W -0.65 (p=2.55e-78) -0.56 (p=8.53e-55)

MeanDiff-QP -0.68 (p=1.13e-89) -0.60 (p=2.59e-64)

MeanDiff-SV -0.62 (p=4.14e-69) -0.54 (p=1.31e-50)

Cons -0.64 (p=7.17e-77) -0.58 (p=1.14e-60)

Cons-Int -0.57 (p=8.55e-58) -0.52 (p=2.20e-45)

Table S5: Correlation between the score of each method and S&E ADL. Results are

shown for scores that use all items and for scores that use self-reported items only. p-

values are calculated using Pearson’s ρ. MDS-UPDRS: Movement Disorder Society’s

Unified Parkinson’s Disease Rating Scale. MoCA: Montreal Cognitive Assessment.

B.4 External validation using self-reported items

Table S7 shows the consistency results on the external cohort when using only the self-

reported items. In this analysis we did not filter by clinical state or presence of dyskinesia,

which are relevant to part 3 of MDS-UPDRS. Only one of our suggested methods fell

behind the best baseline method. Also, the best performing method using all items,

MeanDiff-SV, is ranked second-best in the self-report-only setting.
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Method All Items Self-Reported Items

MDS-UPDRS Part 1 -0.37 (p=3.75e-56) -0.33 (p=4.54e-44)

MDS-UPDRS Part 2 -0.39 (p=9.49e-60) -0.39 (p=9.49e-60)

MDS-UPDRS Part 3 -0.24 (p=1.39e-23) NA

MDS-UPDRS -0.38 (p=2.00e-59) -0.41 (p=9.70e-68)

MoCA -0.24 (p=2.98e-22) NA

MeanDiff -0.44 (p=4.69e-80) -0.42 (p=3.84e-71)

MeanDiff-W -0.46 (p=7.03e-87) -0.42 (p=5.53e-72)

MeanDiff-QP -0.45 (p=6.44e-84) -0.42 (p=1.94e-71)

MeanDiff-SV -0.47 (p=2.97e-91) -0.42 (p=2.87e-71)

Cons -0.45 (p=1.54e-82) -0.42 (p=5.42e-73)

Cons-Int -0.43 (p=1.80e-75) -0.41 (p=4.55e-67)

Table S6: Correlation between each method’s score and the time to first milestone. Re-

sults are shown for scores that use all items and for scores that use self-reported items

only. p-values are calculated using Pearson’s ρ. MDS-UPDRS: Movement Disorder Soci-

ety’s Unified Parkinson’s Disease Rating Scale. MoCA: Montreal Cognitive Assessment.

Method Consistency (%)

MDS-UPDRS P1 51.57

MDS-UPDRS P2 68.85

MDS-UPDRS 68.06

MeanDiff 69.63

MeanDiff-W 68.85

MeanDiff-QP 70.94

MeanDiff-SV 71.99

Cons 74.61

Cons-Int 66.23

Table S7: Percentage of consistent visit pairs for each method on the external validation

dataset, evaluated with PPMI-derived weights based solely on self-reported items. MDS-

UPDRS: Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale. MoCA:

Montreal Cognitive Assessment.
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