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Abstract 

To date, most studies explored changes in 3D-genome organization between different tissues or during differentiation, which in v olv e massiv e 
reprogramming of transcriptional programs. Much fe w er studies examined alterations in genome organization in response to cellular stress, which 
in v olv es less perv asiv e transcriptional modulation. Here, w e e xamined associations betw een spatial chromatin organization and gene expression 
in two different biological contexts: transcriptional programs determining cell identity and transcriptional responses to stress, using p53 activation 
as a model. We selected 10 cell lines of diverse tissues, and in each performed micro-C, RNA-seq, and p53 ChIP-seq, before and after p53 
induction. In the comparison between cell types, we delineated marked correlations between gene expression and spatial genome organization 
and identified hundreds of active enhancer–promoter loops associated with the expression of cell-type marker genes. In contrast, within each 
cell type, no such links were observed for expression changes induced by p53 activation, even for enhancers and promoters activated by p53 
binding. Our analysis points to a fundamental difference between chromatin interactions that define cell identity and those that are established 
in response to cellular stress. Our results on p53-induced transcriptional responses support the recently proposed TF activity gradient model, 
which speculated a contact-independent mechanism for enhancer–promoter communication. 
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Introduction 

The relationship between genome structure and function is
a longstanding question [ 1 ]. Transcriptional programs that
determine cell fate or cellular responses to environmental
stresses are controlled by hundreds of thousands regulatory el-
ements embedded in our genome, which exert their functions
in the context of the dynamic 3D chromatin organization [ 2–
4 ]. The development and refinement of the Hi-C technique
[ 5–7 ] and its enhanced derivatives, like the micro-C method
[ 8 , 9 ], which measure interaction frequencies between any two
mappable segments in the genome, revolutionized our under-
standing of chromatin spatial organization in the nucleus and
its association with transcriptional regulation. Yet, despite re-
cent advancements in the field, key aspects of cell-type specific
finer-scale loops and chromatin structures induced by tran-
sient stress responses remain unsolved. 

A three-layer 3D organization hierarchy has emerged from
Hi-C studies [ 10 ]: at the top of the hierarchy, the genome
is spatially divided into two major compartments referred
to as A and B compartments, which roughly correspond to
active and inactive transcriptional regions, respectively [ 11 ].
Markedly, a study that explored the 3D genome organization
in 21 primary human tissues and cell types observed a substan-
tial A / B compartment switching across tissues, finding that
∼60% of the genome showed a change in A / B compartmen-
talization over the analyzed tissue panel [ 12 ]. 

In the next organization layer are the topologically asso-
ciating domains (TADs), defined by the preferential interac-
tion of chromatin segments located within a domain and rel-
ative depletion of interactions between genomic segments lo-
cated in different domains. TAD boundaries are significantly
enriched with CTCF-binding sites, mostly set in a conver-
gent orientation [ 13 , 14 ]. TADs are relatively conserved across
different tissues [ 12 ]. Many studies applying perturbations
of TAD boundary elements indicated that TADs form in-
sulated domains for transcriptional regulation, which deter-
mine specificity of enhancer–promoter (E–P) interactions by
considerably confining them to contacts between elements
residing within the same TAD [ 15–18 ]. However, overall,
the insulation imposed by TADs is generally low, as intra-
TAD interaction frequency is only ∼2-fold higher than in-
teractions between distance-matched inter-TAD loci [ 19 ]. Yet,
even mild TAD insulation can have a marked regulatory im-
pact, as the disruption of a weak TAD boundary can re-
sult in a substantial ( > 10-fold) difference in gene expression
[ 20 ]. 

However, interestingly, a severe loss of TAD structures
across the genome, induced by acute degradation of the ar-
chitectural proteins CTCF or cohesin, resulted in an unex-
pectedly limited effect on gene expression [ 21 ]. Therefore, it
seems that TAD boundaries with very strong roles in gene reg-
ulation are not common or that their regulatory effect may
be highly context dependent [ 22 , 23 ]. Moreover, both recent
single-cell Hi-C studies and chromatin tracing experiments
coupled with super-resolution microscopy show that intra-
TAD contacts vary significantly from cell to cell and that the
globular structure of TADs only emerges when the entire cell
ensemble is considered collectively [ 24 , 25 ]. Thus, the per-
spective that TADs represent population-level statistical pat-
terns of dynamic chromatin polymer movements that mainly
occur within confined domains is gaining increasing support
[ 26–28 ]. 
As for the third layer in the hierarchy of the 3D 

genome organization, TADs are often subdivided into smaller,
nested micro-compartments [ 29 ]. Some of the strongest intra- 
TAD contacts are between active enhancers and promoters 
(referred to as “E–P loops”). Many such E–P loops are formed 

during cell differentiation and correlate with the activation 

of cell-type specific genes [ 4 , 30 , 31 ]. Imaging studies showed 

that these contacts are dynamic and transient rather than sta- 
ble structures and that even for the strongest E–P loops de- 
tected by Hi-C, the enhancers and promoters were in spatial 
proximity in only 10%–30% of cells [ 27 , 32 , 33 ]. These ob- 
servations bring into focus key open questions, which require 
a higher-resolution 3D genome mapping, including whether 
E–P proximity is a general rule for gene activation and if such 

proximity is a prerequisite for transcription activation of cell- 
identity or stress-induced genes. 

Many studies explored changes in 3D genome organiza- 
tion between different tissues or during differentiation, which 

involves massive reprogramming of cellular transcriptional 
programs [ 34–37 ]. Much fewer studies examined alterations 
in spatial genome organization in response to cellular stress,
which involves less pervasive and more transient transcrip- 
tional modulation [ 38 , 39 ]. In this study, we used a panel of 
10 cell lines to examine and contrast associations between spa- 
tial chromatin organization and gene expression in transcrip- 
tional programs that define cell identity on one hand and tran- 
scriptional responses to p53 activation (by Nutlin-3a treat- 
ment [ 40 ]), which we used as a model for stress responses, on 

the other. 

Materials and methods 

Micro-C experiments and data generation 

Cells were treated with 20 μM Nutlin-3a (dissolved in 

ethanol) or the same volume of pure ethanol (mock treatment) 
for 4 h. Cells were cross-linked for 10 min at room tempera- 
ture with 1% formaldehyde-containing medium; cross-linking 
was stopped by Tris-glycine. Cells were washed twice with 

PBS and cross-linked for 45 min at room temperature with 

3 mM disuccinimidyl glutarate (DSG) in phosphate-buffered 

saline (PBS). Cross-linking was halted by Tris-glycine, and 

cells were washed twice in PBS. Micro-C protocol was per- 
formed as the following steps: (i) digest cross-linked chro- 
matin by MNase; (ii) repair fragment ends with biotin-dNTP; 
(iii) proximal ligation and purge unligated ends; and (iv) pu- 
rify ligated dinucleosomal DNA. Nucleosomal fragment size 
distribution at various steps is shown in Supplementary Fig. 
S1 . Purified DNA with biotin-dNTPs was captured by Dyn- 
abeads® MyOne™ Streptavidin C1 [ 41 ]. Micro-C libraries 
were prepared using the NEBNext® Ultra™ II DNA Library 
Prep Kit for Illumina® (NEB E7645) according to manufac- 
turer instructions with a few modifications. The sequencing 
library was amplified by Kapa HiFi PCR enzyme with the low- 
est possible cycles to reduce polymerase chain reaction (PCR) 
duplicates. Library concentration, quality, and fragment size 
were assessed by Qubit fluorometric quantification (Qubit™
dsDNA HS Assay Kit, Invitrogen 

TM Q32851), quantitative 
polymerase chain reaction (qPCR), and Fragment Analyz- 
er™. Twenty multiplexed libraries were pooled and sequenced 

in six lanes on the Illumina NovaSeq sequencing platform 

(100 bp, paired-end reads). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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icro-C data analysis 

e used HiC-Pro (2.10 version) [ 42 ] to generate allValid-
airs from 40 libraries total, two biological replicates per con-
ition. mcool files were converted from allValidPairs by the
ooler package [ 43 ]. Mapping and QC statistics are provided

n Supplementary Table S1 . All analyses were conducted using
uman genome version hg38. 

 / B compartments correlation with gene 

xpression 

rincipal Component Analysis (PCA) was applied to the con-
act matrix of each sample (after merging duplicates) using
ooltools [ 44 ] with 100 kb resolution contact maps. Genes
ere assigned to the A / B compartment based on the sign of
C1 at the location of the gene’s transcription start site (TSS).
he intersection between compartments and TSS locations
as done using bedtools [ 45 ]. Gene expression level differed

ignificantly between the two compartments. The “A” label
as assigned to the compartment with higher levels of gene

xpression. 

ADs analysis 

ADs were called in each sample using the arrowhead algo-
ithm implemented in the Juicer package [ 46 ] with 10 kb reso-
ution contact maps and default parameters. TADs longer than
 Mb were filtered out. 

hromatin loops 

hromatin loops were identified using Mustache [ 47 ] with 5
b resolution contact maps and using False Discovery Rate
FDR) < 0.1. To create a pooled set of all the loops detected
n all samples, we merged individual loop lists using pgltools
 48 ]. Loop interaction frequency (“loop intensity”) was ex-
racted from .cool files using cooler [ 43 ]. Finally, pooled loop
ntensity data were normalized across all samples using quan-
ile normalization. 

romoter interactions 

romoter loops (P loops) were identified by intersecting chro-
atin loops and genes’ TSS coordinates after adding ±2.5
b flanks around the TSSs. 

NA-seq experiments and data generation 

ells were treated with 20 μM Nutlin-3a (dissolved in
thanol) or the same volume of pure ethanol (mock treat-
ent) for 4 h. Total RNA was extracted with TRIzol reagent

ollowed by ribosomal RNA (rRNA) depletion [NEBNext®
RNA Depletion Kit (Human / Mouse / Rat) with RNA Sam-
le Purification Beads; cat. E6350L]. RNA-seq libraries were
repared with the NEBNext® Ultra™ II Directional RNA Li-
rary Prep Kit for Illumina (cat. E7760S). Library concen-
ration, quality, and fragment size were assessed by Qubit
uorometric quantification (Qubit™ dsDNA HS Assay Kit,
nvitrogen 

TM Q32851), qPCR, and Fragment Analyzer™.
en multiplexed libraries were pooled and sequenced in one

ane on the Illumina HiSeq4000 sequencing platform (100 bp,
aired-end reads). RNA-seq reads (40 libraries total, two bio-
ogical replicates per condition) were quantified with Kallisto
 49 ]. Mapping statistics are provided in Supplementary 
able S1 . Differentially expressed genes (between different cell
lines and within a cell line in response to Nutlin-3a treatment)
were called using DESeq2 [ 50 ]. 

Removal of copy number aberration effects 

Cancer cell lines are characterized by high level of genomic
aberration (large deletion and amplification events) leading to
changes in copy number of chromosomal segments (CNV).
CNV may affect both interaction frequencies measured by
micro-C and gene expression data measured by RNA-seq.
To inspect the effect of CNVs on our data, we used the
CaSpER tool [ 51 ], which identifies gross chromosomal dele-
tions and amplifications from RNA-seq data. CaSpER divides
the genome in each cell line into five CNV states: (i) ho-
mozygotic deletion, (ii) heterozygotic deletion, (iii) diploid,
(iv) triploid amplification, and (v) amplification. We then as-
signed each gene to a CNV state according to the state at the
location of its TSS. As expected, in all cell lines, CNV state was
significantly correlated with raw interaction frequency and
gene expression levels ( Supplementary Fig. S2 ). ICE balanc-
ing [ 52 ] effectively removed CNV impact on interaction fre-
quency ( Supplementary Fig. S2 A). As for gene expression, to
remove CNV effects, we fitted, for each cell line, a linear model
(expression ∼ CNV state) ( Supplementary Fig. S2 B), and in
subsequent analyses, used the residual expression levels, which
represent the component that is independent of CNV. 

p53 ChIP-seq experiments and data generation 

ChIP was performed as described with few modifications
[ 53 ]. Cells were treated with 20 μM Nutlin-3a (dissolved in
ethanol) or the same volume of pure ethanol (mock treat-
ment) for 4 h and cross-linked for 6 min at room tempera-
ture with 1% formaldehyde-containing, serum-free medium.
Cross-linking was stopped by PBS-glycine (0.125 M final).
Cells were washed twice with ice-cold PBS, scraped, cen-
trifuged for 10 min, and pellets were flash-frozen. Cell pel-
lets were thawed and resuspended in cell lysis buffer (5 mM
PIPES, pH 8.0, 85 mM KCl, and 0.5% NP-40, 1 ml / 15 cm
plate) with protease inhibitors and incubated for 10 min on
ice. Lysates were centrifuged for 10 min at 4000 rpm, and nu-
clear pellets resuspended in six volumes of sonication buffer
[50 mM Tris–HCl, pH 8.1, 10 mM ethylenediaminetetraacetic
acid (EDTA), 0.1% sodium dodecyl sulphate (SDS)] with pro-
tease inhibitors, incubated on ice for 10 min, and sonicated
to obtain DNA fragments below 2000 bp in length (Covaris
S220 sonicator, 20% Duty factor, 200 cycles / burst, 150 peak
incident power, 7–16 cycles 30 s on and 30 s off). Sonicated
lysates were cleared by centrifugation, and chromatin (100–
800 μg per antibody) was diluted in RIPA buffer (10 mM
Tris–HCl, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 1% Triton
X-100, 0.1% SDS, 0.1% Na-deoxycholate, 140 mM NaCl)
with protease inhibitors to a final concentration of 0.8 μg / μl,
precleared with Protein G sepharose (GE Healthcare) for 2
h at 4 

◦C, and immunoprecipitated overnight with 1 μg of
anti-p53 antibody (Cell Signaling, #9282) per 100 μg of chro-
matin. About 4% of the precleared chromatin was saved as
input. Immunoprecipitated DNA was purified with the Qi-
agen QIAquick PCR Purification Kit and eluted in 45 μl of
0.1 × TE (1 mM Tris–HCl, pH 8.0, 0.01 mM EDTA). ChIP-
seq libraries were prepared using the NEBNext® Ultra™ II
DNA Library Prep Kit for Illumina® (NEB E7645) accord-
ing to manufacturer instructions with a few modifications.
Twenty nanograms of ChIP input DNA (as measured by Nan-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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odrop) and 25 μl of the immunoprecipitated DNA were used
as a starting material. The recommended reagents’ volumes
were cut in half. The NEBNext Adaptor for Illumina was di-
luted 1:5 to 1:10 in Tris / NaCl, pH 8.0 (10 mM Tris–HCl, pH
8.0, 10 mM NaCl), and the ligation step extended to 30 min.
After ligation, a single purification step with 0.9 × volumes
of Agencourt AMPure XP PCR purification beads (Beckman
Coulter A63880) was performed, eluting DNA in 22 μl of 10
mM Tris–HCl (pH 8.0). Twenty microliters of the eluted DNA
were used for the library enrichment step, performed with the
KAPA HotStart PCR kit (Roche Diagnostics KK2502) in 50
μl of total reaction volume (10 μl 5 × KAPA buffer, 1.5 μl 10
mM dNTPs, 0.5 μl 10 uM NEB Universal PCR primer, 0.5
μl 10 μM NEB index primer, 1 μl KAPA polymerase, 16.5
μl nuclease-free water, and 20 μl sample). Samples were en-
riched with 10–12 PCR cycles (98 

◦C, 45 s; [98 

◦C, 15 s; 60 

◦C,
10 s] × 9; 72 

◦C, 1 min; 4 

◦C, hold), purified with 0.9 volumes
of AMPure XP PCR purification beads, and eluted with 33
μl of 10 mM Tris–HCl, pH 8.0. Library concentration, qual-
ity and fragment size were assessed by Qubit fluorometric
quantification (Qubit™ dsDNA HS Assay Kit, InvitrogenTM
Q32851) qPCR and Fragment Analyzer™. Ten multiplexed li-
braries were pooled and sequenced in one lane on the Illumina
HiSeq4000 sequencing platform (50 bp, single-end reads). 

ChIP-seq raw reads from ethanol- or Nutlin-3a-treated
cells (80 libraries total, two biological replicates per condi-
tion) were quality-checked with FastQC, trimmed with cu-
tadapt and aligned onto the human genome (hg38 assem-
bly) using bowtie2 [ 54 ]. Mapping statistics are provided in
Supplementary Table S1 . Biological replicates were pooled
and p53 binding events (“peaks”) induced by Nutlin-3a were
detected using MACS2 [ 55 ], comparing p53 IP samples in the
treated versus untreated cells. MACS2 bedGraph output files
were converted to bigwig files with bedGraphToBigWig [ 56 ].
p53 ChIP-seq peaks were tested for transcription factor bind-
ing motif enrichment using HOMER (Hypergeometric Opti-
mization of Motif Enrichment) [ 57 ]. 

Signal of epigenetic mark er s over genomic 

intervals 

All analyses of signal of epigenetic markers over genomic in-
tervals were done by calculating the mean fold-change-over-
control signal over the specified intervals using publicly avail-
able data from ENCODE ( Supplementary Table S6 ) using EN-
CODE’ s bigWigA verageOverBed tool [ 58 ]. 

Results 

We selected 10 cell lines of diverse tissue of origin (Fig. 1 ):
GM12878 and IMR90 (normal cell lines); HEK293 (immor-
talized); and MCF7, HCT116, HepG2, HeLa, A549, SK-N-
SH, and U2OS (cancer cell lines). All these cell lines are in-
cluded in the ENCODE project (and therefore have ample
publicly available epigenomic profiles). As a model for stress
responses, we focused on p53 activation (using the potent p53
activator Nutlin-3a [ 40 ]). All the selected cell lines except two
(HeLa and HEK293) have functional wild-type p53. To allow
comprehensive and systematic investigation of genome orga-
nization in 3D and gene expression under these conditions, for
each cell line we performed micro-C, RNA-seq, and p53 ChIP-
seq experiments, both in basal conditions and after Nutlin-3a
treatment. In the first part of this study, we focus on differences
between the cell lines in basal conditions and analyze correla- 
tions between cell-type specific gene expression programs and 

differential 3D genome organization. In the second part, we 
turn to analyze alterations in gene expression and 3D genome 
organization upon induction of p53. 

Seven cell lines in our panel are tumor-derived, carrying un- 
balanced karyotypes with frequent amplifications and dele- 
tions. As expected, we observed significant correlations be- 
tween copy number aberrations (CNAs) and chromatin inter- 
actions and gene expression ( Supplementary Fig. S2 ). As our 
aim was to analyze cell-type-intrinsic regulatory links between 

chromatin organization and gene expression (rather than 

characterizing the impact of chromosomal amplifications and 

deletions on expression levels), we first aimed to remove the 
impact of CNA. In line with previous reports [ 59 ], we found 

that balancing the interaction frequency matrix using the it- 
erative correction and eigenvector decomposition algorithm 

[ 52 ] largely cancelled the CNA bias ( Supplementary Fig. S2 A).
For the RNA-seq data, we applied linear regression to can- 
cel the link between CNA and expression level (see the “Ma- 
terials and methods” section; Supplementary Fig. S2 B). The 
subsequent analyses were performed on these normalized 

datasets. 
In the next sections, we present the analyses in accordance 

with their order in the hierarchy of the spatial organization of 
the genome: (i) A / B compartments, (ii) TADs, and (iii) intra- 
TAD loops. 

Association between chromatin 

compartmentalization and differential gene 

expression between cell lines 

For each micro-C sample, A / B compartments were called 

using cooltools [ 44 ] with a resolution of 100k bp (see the 
“Materials and methods” section). As expected, in all cell 
lines there was a marked difference in expression levels be- 
tween genes assigned to the two compartments, and we la- 
beled by “A” the compartment with the higher expression 

( Supplementary Fig. S3 A). Next, for each pair of cell lines,
we assigned each gene to one of four groups: AA, BB, AB,
or BA, according to the gene’s compartment in the two cell 
lines. In all 45 pairwise analyses, compartment switch was 
strongly associated with a corresponding change in gene ex- 
pression (Fig. 2 A and B). To further quantify the association 

between A / B compartmentalization and differential expres- 
sion between cell lines, we calculated, for each pairwise com- 
parison, the percentage of “concordant genes”—that is, genes 
that showed expression difference in the expected direction: 
genes switching from A to B compartment between cell lines 
1 and 2 have higher expression in cell line 1 than cell line 
2, and vice versa. Over the 45 comparisons, the average per- 
centage of such concordant genes was 64% (with SD of 5%) 
( Supplementary Fig. S3 B). 

Following these results, we next tested if compartmental- 
ization can be represented as a continuous feature (using the 
quantitative value of the eigenvector as a compartment score ) 
rather than a binary one (A / B determined by the sign of the 
eigenvector) [ 60 ]. This finer analysis showed a significant cor- 
relation between changes in compartment scores and differ- 
ences in gene expression in all 45 pairwise comparisons (Fig.
2 C and D). While the correlation was highly statistically sig- 
nificant, its magnitude was mostly low ( Supplementary Fig. 
S3 C; mean = 0.18, SD = 0.09), indicating that compartmen- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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Figure 1. The cell lines used in our study and their tissue of origin. 
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alization is only one of many factors that affect changes in
ene expression between different cell lines. 

ssociation between TADs and differential gene 

xpression between cell lines 

ADs were called in each cell line using the arrowhead algo-
ithm implemented in Juicer [ 46 ] with contact maps of 10k bp
esolution. The average number of TADs detected per cell line
as 4836 (min = 3717, max = 6598; Fig. 3 A), the average
AD length was ∼308k bp (median ∼230k bp) (Fig. 3 B), and
he average number of genes per TAD was 2.36 (SD = 3) (Fig.
 C). TADs are considered largely cell-type invariants [ 12 ]. To
nvestigate this in our dataset, we examined the overlap be-
ween TADs detected in different cell lines and compared it
o the overlap between TADs detected in samples from the
ame cell line. As the contact maps we obtained from indi-
idual samples were relatively sparse, hindering robust detec-
ion of TADs, we calculated the overlap between TADs de-
tected in the same cell line in basal state and after p53 activa-
tion (merging replicate samples in each biological condition),
in addition to calculating TAD overlaps between individual
replicate samples. Conservatively assuming that p53 activa-
tion has only a mild effect on TADs, the comparison between
the basal and Nutlin-treated samples provides us with a lower
bound estimate for TADs overlap expected for replicate sam-
ples using our experimental protocol and sequencing depth.
While TAD overlap between samples from the same cell line
was ∼60%, the overlap observed between TADs called in dif-
ferent cell lines was markedly lower ( ∼40%) (Fig. 3 D). This
indicates that in addition to a substantial core set of TADs that
are cell-type invariant, there is also a non-negligible portion of
dynamic TAD structures. 

Previous studies established that CTCF plays a key role in
constructing TAD boundaries. Accordingly, the boundaries of
the TADs called in our cell lines were significantly enriched
for CTCF binding signal (Fig. 3 E). We next examined over-
laps between TAD boundaries and gene promoters. Of the
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Figure 2. Association between chromatin compartmentalization and differential gene expression between cell lines. ( A ) Association between switch in 
chromatin compartmentalization and changes in gene expression level. As an example, shown here are results for the comparison between A549 and 
GM12878. Genes were assigned to one of the four groups: AA, BB, AB, and BA, according to their compartment in A549 and GM12878, respectively. 
P -v alue f or the difference in the distribution of f old-change (FC) of e xpression betw een the genes assigned to the AB and BA groups w as calculated 
using Wilco x on’s test. ( B ) R esults of the analy sis described in panel (A) applied to all 45 pairwise comparisons. F or all pairs, diff erence in the relative 
expression of genes assigned to the AB and BA groups were highly statistically significant. ( C ) Volcano plot for differential gene expression between 
GM12878 and A549. Genes are colored according to the difference in their compartment score between the two cell lines. The horizontal line indicates 
q -value = 0.05 for the differential expression test (using DESeq). ( D ) The statistical significance of the correlation observed between expression FC and 
differential compartmentalization score in each of the 45 pairwise comparisons. P -values calculated using Spearman’s correlation test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/13/gkaf607/8192815 by guest on 08 July 2025
58 520 TADs identified across all cell lines, 22% overlap a
promoter at one of their boundaries (we named such TADs “P-
TADs”). Permutation tests showed that this overlap is highly
significant (Fig. 3 F). TADs detected in only a single cell line
(“unique TADs”) showed markedly lower overlap with pro-
moters (13%), compared to 25% of the TADs detected in
at least seven cell lines (“invariant TADs”). Examination of
the binding of CTCF and RAD21 (cohesin-complex subunit)
at the boundaries of TADs showed these signals were sig-
nificantly stronger at the invariant TADs’ boundaries than
in the unique TADs’ boundaries ( Supplementary Fig. S4 A).
Similarly, we observed that CTCF signal was stronger at
TAD boundaries overlapping promoters ( Supplementary Fig.
S4 B). Next, we sought TADs where both boundaries over-
lapped promoters and named them “PP-T ADs. ” W e found
that ∼14% of the P-TADs were PP-TADs. Permutation tests
showed that this fraction of PP-TADs is much higher than ex-
pected by chance (Fig. 3 G). 

TADs are often regarded as insulated regulatory units
of transcriptional control. Previous studies suggested that
genes residing in the same TAD show a greater level of co-
regulation compared to genes located in adjacent TADs [ 61 ].
Seeking evidence for such roles for TADs, we first exam- 
ined whether genes located within the same T AD (intra-T AD 

genes) show higher expression correlation over the 10 cell 
lines in our panel compared to matched control pairs of genes 
located at comparable distance but not within the same TAD.
Somewhat unexpectedly, the intra-TAD genes did not show 

significantly higher correlated expression patterns than the 
matched controls (Fig. 3 H and Supplementary Fig. S4 C). Seek- 
ing further support for the notion of TADs as insulated reg- 
ulatory territories, we next focused on highly cell-type spe- 
cific genes (“HCTS genes”) that share their TADs with addi- 
tional genes. Under the assumption that genes within a TAD 

show higher level of co-regulation, we expected that genes 
sharing TADs with HCTS genes would show a concordant 
cell-type specific expression pattern. However, compared to 

distance-matched extra-TAD genes, we did not find evidence 
for higher level of co-regulation between HCTS genes and 

their intra-TAD companion genes: While the intra-TAD mates 
of HCTS genes did show some degree of concordant ele- 
vated expression in the same cell line as their HCTS genes,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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Figure 3. Association between TADs and differential gene expression across cell lines. ( A ) Number of TADs detected in each cell line (mean = 4836, 
SD = 933). ( B ) Distribution of TAD lengths in each cell line (Md = 230 kb, SD = 166.6 kb). ( C ) Distribution of the number of genes per TAD in each cell 
line (a v erage 2.36, SD = 3). ( D ) Ov erlap betw een TADs detected in different cell lines (red), in the same cell line without and after Nutlin-3a treatment 
(blue), and between individual replicate samples (green), using different flanks around TAD boundaries. For each pair of samples, TAD o v erlap w as 
calculated using the Jaccard similarity (defined as the ratio between the number of overlapping TADs and the number of TADs in the union set). (The 
o v erlap obtained between individual replicates was lower than the one obtained for the same cell line without and after Nutlin treatment, as merging 
replicates doubles depth and results in a more robust TAD detection.) ( E ) Profiles of CTCF ChIP-seq signal (ENCODE data) around TAD boundaries. ( F ) A 

permutation test for enrichment of TAD boundaries overlapping promoters (P-TADs). We created random shifts of TAD boundaries, which preserve the 
length of the original ones, by shifting, in each chromosome, the original boundaries’ coordinates together by a constant shift that was randomly 
selected from the [10K, 1M] interval. We repeated these shifts 10 0 0 0 times, and in each iteration, counted the number of boundaries that o v erlapped 
promoters. This created a Null distribution for the number of P-TADs. The number of P-TADs observed in the real data (black arrow) was significantly 
higher. ( G ) A similar randomization test as in panel (F) to examine the enrichment of P-TADs for PP-TADs. Here, we took record of the lengths of the 
P-TADs and then randomly matched each promoter boundary with a distal boundary in a w a y that preserved the original length distribution of the 
P-TADs, and then counted the number of PP-TADs that occurred in this random setting. We repeated this random shuffling 10 0 0 0 times to create a Null 
distribution for the proportion of P-TADs that are PP-TADs. The observed proportion in the real dataset (black arrow) is significantly higher than the 
expected under the Null. ( H ) Correlation between expression profiles over the 10 cell lines for intra-TAD gene pairs (red) and distance-matched control 
gene pairs (“extra-TADs”; blue). ( I ) Comparing GM12878 and A549, we focused on the top 400 differentially expressed genes (“highly cell-type specific 
genes”—HCTGs) that ha v e additional genes within their TADs (taking the top 200 HCTGs in each cell line compared to the other). Then, for each 
intra-TAD mate gene of an HCTS gene, we selected a matched control gene that is located in an adjacent TAD or outside any TAD but is as close to the 
HCTS gene as the intra-TAD mate [that is, located at a distance from the HCTS gene that is not larger than the intra-TAD gene 
( Supplement ary Fig . S4 C)]. T he distribution of e xpression FC (betw een GM12878 and A549) did not differ betw een the intra-TAD mate and the matched 
control genes ( t -test; ns = not significant). Similar results were obtained for pairwise comparisons between all cell lines. 
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Figure 4. Association between chromatin loops and differential gene expression across cell lines. ( A ) Number of PP, PD, and DD loops called in each cell 
line. ( B ) Interaction intensities measured in A549 and in GM12878 cell lines for all the loops in the pooled set. Green: loops called only in A549; blue: 
called only in GM12878; orange: called in both; and gray: called in none of these two cell lines. ( C ) Correlation between changes in gene expression and 
in promoter interaction intensity. Comparing A549 and GM12878, for each gene we calculated the FC in expression level and the FC in interaction 
intensity of all the loops that ha v e an anchor in the gene’s promoter. We divided the genes into 10 bins according to FC in expression and calculated the 
distribution of FC in P-loops interaction intensities in each bin. The correlation between expression FC and mean interaction intensity over the bins was 
calculated using Pearson coefficient. ( D ) Results of the correlation test in panel (C) applied to all 45 pairwise comparisons. In all cases, the correlation 
between differential gene expression and changes in P-loop intensity was highly statistically significant. 
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the distance-matched control genes showed a similar trend
(Fig. 3 I). 

Association between chromatin loops and 

differential gene expression across cell lines 

Chromatin loops in each sample were identified using Mus-
tache [ 47 ] with 5k bp resolution contact maps. We iden-
tified an average of 17 920 loops per sample, with a to-
tal of 174 025 unique chromatin loops across all samples.
We categorized the loops into three groups: PP (promoter–
promoter, N = 6031), PD (promoter–distal, N = 41 861),
and DD (distal–distal, N = 126 133) loops—indicating loops
with two, one, and no anchors overlapping a promoter re-
gion, respectively (Fig. 4 A). Permutation tests showed that the
loops detected in our dataset are highly enriched for P loops
( Supplementary Fig. S5 A) and that the P loops themselves are
highly enriched for PP loops ( Supplementary Fig. S5 B). Inter-
estingly, CTCF and Cohesin (RAD21 subunit) binding was
enriched much more strongly at anchors of cell-line invari- 
ant loops (“constitutive loops,” detected in more than eight 
cell lines) than in anchors of cell-type specific loops (detected 

in only one cell line) ( Supplementary Fig. S5 C). Next, seek- 
ing to handle chromatin loops as quantitative, rather than bi- 
nary (present / absent) entities, we analyzed the pooled set of 
loops from all cell lines and extracted the normalized interac- 
tion frequencies of each loop (“loop intensities”) in each of 
the 10 cell lines (Fig. 4 B). Importantly, in all pairwise com- 
parisons, changes in gene expression were significantly corre- 
lated with changes in intensities of the corresponding P loops 
(Fig. 4 C and D). This observation remained valid when PD 

and, to a lesser extent, PP loops were considered separately 
( Supplementary Fig. S5 D and E). Notably, in line with a pre- 
vious observation [ 20 , 62 ], the dynamic range of changes in 

gene expression levels was an order of magnitude larger than 

the range of changes in interaction frequencies. This implies 
that mild alterations in P-loop interaction intensity could be 
associated with strong changes in gene expression. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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Figure 5. Candidate functional P loops. ( A ) Clustering of the candidate functional P loops. Each cluster shows the mean activity pattern of the P loops 
(blue) and the mean expression profile (red) of the genes assigned to the cluster. The numbers of P loops ( N l ) and genes ( N g ) assigned to each cluster 
are indicated in its title . Clustering was done using the CLICK algorithm from the EXPANDER package [ 77 ]. Interaction intensities and gene expression 
le v els w ere standardiz ed across the 10 samples (mean = 0, SD = 1) bef ore clustering . ( B ) Examples of cont act maps in the vicinit y of t wo highly 
cell-type specific genes: CD80 (GM12878-specific) and APOB (HepG2-specific). Cell-type specific functional P loops linked to these genes are indicated 
b y arro ws. Dashed red line marks the location of the gene ’s TSS . (T he plot w as generated using FANC [ 78 ]). ( C ) Enriched Gene Ontology (GO) categories 
(FDR < 5%) detected in cluster 2 (P loops specifically active in GM12878) and cluster 6 (P loops specifically active in HepG2). GO enrichment analysis 
was done using the clusterProfiler R package [ 79 ] (The set of all genes associated with any P loop was used as the background set in these tests). ( D ) 
Heatmaps of H3K27ac signal (based on ENCODE ChIP-seq data) in the promoter and distal anchors of the P loops assigned to clusters 2 (GM12878) and 
6 (HepG2 ). 
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Notwithstanding the significant association between
hanges in P-loop intensities and differential gene expression,
he magnitude of the correlation was modest ( < 0.25 for all
airwise analyses), indicating that, in general, alterations in

ntensity of promoter chromatin interactions account for
nly a small part of gene expression modulation. Therefore,
e next sought to identify candidate P loops that play a
rincipal role in controlling the transcription of their target
enes. To this end, we linked each gene with its P loops,
nd then for each of the 61 138 gene-P-loop pairs in our
ataset, we calculated the correlation between the intensity
f the P loop and the expression level of its linked gene
cross all samples in the dataset. While the distribution of
orrelations was significantly skewed to positive values, the
orrelation magnitude was generally low (mean = 0.11)
 Supplementary Fig. S6 A). Yet, this analysis identified thou-
ands of P loops whose intensities are highly correlated with
he expression of their target genes ( Supplementary Fig. S6 A;
or example, 6897 P loops associated with 3132 genes
howed r > 0.5, ∼7-fold higher than the number showing the
pposite trend of r < −0.5). A permutation test showed that
ur dataset is markedly enriched for P loops whose intensities
re highly correlated ( r > 0.5) with the expression of their
inked genes ( Supplementary Fig. S6 B). As these P loops are
andidate regulatory interactions that play a marked role in
the transcriptional regulation of their targets, hereafter we
refer to them as “functional P loops.”

The functional P loops identified in our dataset display
many different intensity profiles over the panel of 10 cell
lines. Thus, we next applied clustering analysis to systemat-
ically delineate sets of loops with similar profiles. This anal-
ysis identified 12 major clusters, each with > 150 functional
P loops. Each cluster is characterized by a particular activ-
ity profile shared by the P loops assigned to it and a highly
correlated expression profile of their associated target genes
(Fig. 5 A). Some of these clusters represent P loops and tar-
get genes that are active in only one specific cell line (e.g.
cluster 2—GM12878; cluster 6—HepG2). Thus, these clus-
ters represent cell-type specific transcriptional programs as-
sociated with their cell-type specific chromatin loops. Two
prominent examples of cell-type specific genes and the 3D
genome organization in their vicinity are shown in Fig. 5 B:
CD80, specifically expressed in GM12878, and APOB, specif-
ically expressed in HepG2. 

GO enrichment analysis showed that clusters with cell-type
specific profiles are enriched for genes that carry out funda-
mental biological processes related to that cell type. For ex-
ample, cluster 2, which shows an activity profile that is highly
specific to GM12878 (a lymphoblastoid cell line), is enriched
for genes that function in various immune processes. Clus-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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ter 6, which shows an activity profile that is highly specific to
HepG2 (a liver cancer cell line), is enriched for genes that func-
tion in main liver processes (Fig. 5 C and Supplementary Fig.
S6 C). Therefore, our analysis delineated hundreds of P loops
that are associated with cell-type specific gene regulation
( Supplementary Table S2 ). We expected that many of these
loops represent E–P loops. To test this expectation, we exam-
ined the signal for H3K27ac and H3K4me1, key markers of
active regulatory elements, at both the promoter and distal
anchors of the cell-type specific functional P loops (by con-
struction, one of the anchors of P loops is located at a pro-
moter). Collectively, for most cell-type specific clusters, we in-
deed found an enrichment for H3K27ac and H3K4me1 sig-
nals specifically in the cell line where the P loops and the target
genes are active (Fig. 5 D and Supplementary Fig. S6 D), sug-
gesting that many of the functional P loops we detected are
genuine active E–P loops. 

Associations between spatial chromatin 

organization and differential gene expression upon 

p53 activation 

The preceding analyses focused on differences between cell
lines of highly diverse tissue of origin and demonstrated a
strong link between spatial genome organization and tran-
scriptional programs that determine cell identity. Next, we
turned to analyze milder transcriptional differences—namely,
those that are induced by cellular stress. As a model sys-
tem, we used transcriptional responses to p53 activation. We
treated each of the panel’s cell lines with the potent p53 acti-
vator Nutlin-3a, which acts by inhibiting MDM2, a protein
that directs p53 for degradation [ 40 ]. In each cell line, we
recorded the spatial genome organization 4 h after Nutlin-3a
treatment using micro-C. In parallel, we performed RNA-seq
and p53 ChIP-seq in the same biological conditions to obtain
comprehensive snapshots of gene expression levels and p53-
chromatin binding profiles, both without and after Nutlin-3a
treatment. All the cell lines in our panel except two, HeLa and
HEK293, have functional p53. The number of induced genes
differed by more than threefold between the cell lines with
functional p53 (min = 45; max = 199; as expected, HeLa
and HEK293 showed a minimal response, Supplementary 
Fig. S7 A; Supplementary Table S3 ), and most of the re-
sponsive genes were cell-type specific (Fig. 6 A). The core
responding genes, induced in all eight cell lines with func-
tional p53, included well-documented canonical p53 target
genes as CDKN1A , MDM2 , SESN1-2 , BBC3 , GDF15 , and
PPM1D . 

We next turned to correlate the transcriptional response in-
duced by p53 activation with changes in 3D chromatin or-
ganization. First, we found that in all cell lines, there were
minimal events of A / B compartment switching upon Nutlin-
3a treatment ( < 10 in all cell lines; Supplementary Fig. S7 B).
Second, hypothesizing that many of the induced genes are
driven by E–P loops that are established or stabilized upon
p53 activation, we sought correlations between changes in
gene expression and alterations in P-loop intensity induced
in response to Nutlin-3a treatment. However, in contrast to
the significant association that we observed when compar-
ing different cell lines (Fig. 4 C and D), changes in gene ex-
pression upon p53 activation were not correlated with cor-
responding alterations in P-loop intensities (Fig. 6 B). Aim-
ing to enhance the detection of such correlations, we con-
fined this analysis to the set of genes that responded most 
strongly to p53 activation, contrasting, in each cell line, the 
induced and repressed genes. However, this analysis too did 

not detect significant association between alterations in P-loop 

intensities and changes in the expression of the responding 
genes ( Supplementary Fig. S7 C). Nevertheless, visual inspec- 
tion of the contact plots near p53 canonical target genes did 

detect some changes in chromatin organization that were in- 
duced upon Nutlin-3a treatment ( Supplementary Fig. S7 D).
But these changes were subtle and did not pass strict statisti- 
cal tests for differential loop intensity. 

Next, we used our p53 ChIP-seq data to define sets of 
putative direct target genes of p53 in each cell line. p53 

ChIP-seq analysis detected thousands of p53-chromatin bind- 
ing events that were induced upon Nutlin-3a treatment 
( Supplementary Tables S3 and S4 ). Reassuringly, in all cell 
lines, the genomic sequences at these p53 binding locations 
(“p53 peaks”) were highly enriched for the known p53 bind- 
ing motif ( Supplementary Table S5 ). Intersecting p53 peaks 
with the pooled set of loops detected in our micro-C dataset 
identified chromatin loops with p53 binding at one of their an- 
chors (we call such loops “p53 loops”). Unexpectedly, when 

considered collectively, we did not find an increase in the inten- 
sity of these loops upon Nutlin-3a treatment and the ensuing 
p53 binding ( Supplementary Fig. S7 E). However, examining 
the expression of genes linked to p53 P loops (that is, genes 
linked to loops with one of their anchors at the gene’s pro- 
moter and the other at a Nutlin-3a induced p53 binding site) 
did show modest and nominally significant ( P < .05) induc- 
tion upon Nutlin-3a treatment in seven of the eight cell lines 
with functional p53 ( Supplementary Fig. S7 F). In addition, we 
created in each cell line a set of putative p53 direct target genes 
by merely linking p53 peaks to their nearest gene (up to a dis- 
tance of 50 kb). In line with previous studies [ 63 ], most of 
these genes were not induced in response to p53 activation 

( Supplementary T able S6 ). Y et, when considered collectively,
we found in all eight cell lines that these sets of genes showed 

significant up-regulation in response to Nutlin-3a treatment 
(Fig. 6 C, Supplementary Fig. S7 G and H). The marked induc- 
tion of these genes indicates a regulatory role for the bind- 
ing of p53 at the respective regulatory elements detected by 
the ChIP-seq analysis. However, in most of these cases, our 
micro-C data did not detect chromatin looping between the 
p53 binding sites and the promoters of the induced genes.
Taken together, despite the significant correlation we observed 

between the induction of p53 binding to its regulatory sites 
and the transcriptional responses to p53 activation, our micro- 
C data did not detect a correlated modulation of the spatial 
chromatin organization. 

Last, seeking some determinants of the highly cell-type spe- 
cific transcriptional responses to p53 activation (Fig. 6 A), we 
examined if cell-type specific p53 binding sites (as detected 

by our ChIP-seq analysis) were primed for activation before 
the exposure of cells to Nutlin-3a treatment. To this end,
we analyzed public DHS-seq data (from ENCODE), which 

were measured under basal conditions in the cell lines used 

in our study. We found that, in general, cell-type specific p53 

binding sites were associated with an open-chromatin state in 

the untreated condition specifically in the cell line in which 

these sites were bound by p53 in response to the treatment 
( Supplementary Fig. S8 A–C). Furthermore, in few cell lines,
motif analysis found that the p53-bound regions were en- 
riched for motifs of cell-fate determining TFs of the corre- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf607#supplementary-data
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Figure 6. Associations between spatial chromatin organization and differential gene expression upon p53 activation. ( A ) Most of the transcriptional 
response to Nutlin-3a treatment is cell-type specific. The histogram shows the distribution of the number of cell lines in which the activated genes were 
induced. Se v enteen p53 core target genes w ere induced in all eight cell lines with functional p53. ( B ) Genes e xpressed in GM12878 (CPM ≥ 1, 
N = 11 069) were binned into 10 equally sized bins according to their expression FC in response to Nutlin-3a treatment (781 genes per bin). The 
distribution of loop intensity FC was calculated for the P loops associated with the genes in each bin (numbers of P loops in each bin are indicated). No 
correlation was found between changes in expression and promoter interaction intensity. Similar results were obtained for all cell lines. ( C ) p53 peaks 
induced by Nutlin-3a in GM12878 were linked to their nearest promoters, up to a distance of 50 kb, and the expression FC of the corresponding genes 
(“putative p53 targets”) was compared to the FC of all the other genes in the dataset. P -value calculated using Wilco x on’s test. ( D ) Distribution of 
expression FC, considering all genes in the data, in the comparison between different cell lines (GM12878 versus A549) and within a cell line in 
response to Nutlin-3a treatment (A549). 
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ponding cell line lineages (in addition to the p53 motif). These

Fs included IRFs, NF κb, and SPI [ 64 ] in GM12878 lym-
hoblastoid cell line, HNF4 [ 65 ] in HepG2 liver cancer cell
ine, GRHLs [ 66 ] in MCF7 breast cancer cell line and NFIX
 67 ] in SKNSH neuroblastoma cell line. This result suggests
hat in each cell type, lineage-determining TFs play a role in
utlining cell-type specific p53 responses by shaping the chro-
atin landscape that is available for binding of p53 upon its

ctivation. 

iscussion 

n the first part of our study, we focused on characterizing
ssociations between the spatial organization of the genome
nd gene expression profiles in a diverse set of cell lines. At
he layer of A / B compartmentalization, our results reaffirm
the substantial correlation between differential expression and
compartment switching, suggesting dynamic localization of
mega-base-pair chromatin compartments to the nucleus’ pe-
riphery or center in a way that is linked to transcriptional ac-
tivity (Fig. 2 ). As for TAD structures, while our results indi-
cate a substantial core set of cell-type invariant TADs, they
also suggest a non-negligible portion of TADs that are dy-
namic (Fig. 3 D). Focusing on highly cell-type specific genes
(HCTGs), whose expression is supposedly controlled by po-
tent cell-type specific enhancers, we did not observe evidence
supporting strong and global insulating activity for TADs.
We found that while genes that share TADs with HCTGs
show consistent, albeit attenuated, preferential expression in
the same cell type, suggesting some extent of enhancer shar-
ing between genes in the same TAD, genes located outside
the TAD but matched with respect to their distance to the
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HCTGs showed similar level of preferential expression as the
mate TAD genes (Fig. 3 I). 

As for intra-TAD chromatin loops, first, we observed a sig-
nificant enrichment for P loops and P–P loops ( Supplementary 
Fig. S5 A and B), further supporting the concept that active
promoters form higher-order hub-like structures in which
multiple active promoters co-localize [ 68–70 ]. Second, we
show the quantitative nature of the micro-C measurements
(Fig. 4 B) and demonstrate that across cell types, differential
promoter transcriptional activity is strongly correlated with
differential engagement of the promoters in chromatin loop-
ing (Fig. 4 C and D). In line with a previous report [ 62 ], we
observed that changes in promoter interaction intensity are
an order of magnitude lower than the correlated changes in
gene expression (Fig. 4 C), indicating that even mild changes
in contact frequency between an active enhancer and its tar-
get promoter could be associated with substantial induction
of gene expression. Next, we found hundreds of chromatin
P loops that are highly correlated with the expression pro-
file of their target genes, which play key roles in biological
processes that carry out fundamental functions of the respec-
tive cell types / tissues. Thus, we have systematically delineated
multiple networks of E–P loops and their associated gene ex-
pression programs that determine cell identity (Fig. 5 ). 

Last, we characterized correlations in a much subtler bio-
logical context: cellular response to stress, using p53 activa-
tion as a model system, which elicits transcriptional programs
that are weaker than those establishing cell identity. Accord-
ingly, p53 activation, which typically resulted in the induc-
tion of a few dozen genes (in contrast to thousands of dif-
ferentially expressed genes in comparisons between different
cell lines), was associated with very few, if any, events of A / B
compartment switching. Additionally, we did not observe a
global correlation between gene induction and elevated chro-
matin interaction intensity at the promoters of the induced
genes (Fig. 6 B). However, the genes that are closest to p53-
bound regulatory elements in each cell line did show signif-
icant induction of expression upon p53 activation (Fig. 6 C
and Supplementary Fig. S7 G). Yet, our micro-C data detected
only very mild 3D genome reorganization near the promot-
ers of p53 canonical target genes ( Supplementary Fig. S7 D)
and only subtle links between “p53 loops” and gene acti-
vation upon Nutlin-3a treatment ( Supplementary Fig. S7 F).
These results may represent the much weaker and more tran-
sient propensity of E–P loops established upon p53 activation
in comparison to E–P loops that control cell-identity genes.
Congruently, alteration in gene expression driven by p53 acti-
vation (max. induction is typically 2–4-fold) is markedly nar-
rower than the level of differential expression exhibited by
cell-identity genes (Fig. 6 D). As an alternative explanation for
the lack of correlation between change in expression and in-
teraction intensity at the promoters of the induced genes, our
results are in line with the recently proposed TF activity gradi-
ent (TAG) model [ 71 ], which suggested a contact-independent
mechanism for E–P communication. According to the TAG
model, TFs are first recruited to enhancers where they are acti-
vated (e.g. by p300 acetylation). Next, activated TFs disengage
from the enhancers and communicate with target promoters
through diffusion. Rapid deactivation (deacetylation) of TFs
ensures that the spatial range of their effect is limited. Thus,
under this model, the requirement for proximity between the
distal enhancer and its target promoter(s) is met without ne-
cessitating a direct contact between the two elements [ 71 ]. No-
tably, p53 particularly fits the TAG model, as its activation by 
p300 acetylation upon its binding to enhancers was demon- 
strated [ 72 , 73 ]. 

One puzzle that remains is the high cell-type specificity 
of the transcriptional response to p53 activation (Fig. 6 A),
reflected by the high cell-type specific landscape of p53- 
chromatin interactions ( Supplementary Fig. S8 B). Interest- 
ingly, we found that regulatory elements that are bound by 
p53 in a specific cell line are in an open-chromatin state 
already in the basal condition, specifically in that cell line 
( Supplementary Fig. S8 C). Furthermore, for several cell lines,
we found that these genomic regions are enriched for binding 
motifs of key TFs that determine cell fate of the correspond- 
ing cell lineage. This suggests that key transcriptional regula- 
tors in each cell type shape the genomic space that is available 
for binding by stress-induced TFs, and consequently, play a 
role in the determination of cell-type specific transcriptional 
responses to stress. 

Our study has a few limitations. First, we used cell lines 
as our experimental systems. It will be interesting to examine 
how our observations generalize to in vivo tissues and primary 
cells. Second, although we used the micro-C technique to de- 
lineate the spatial genome organization, the highest resolution 

of contact maps we used in our analyses was 5 kb. We also per- 
formed chromatin loop analysis using contact matrices with 

lower bin sizes, but these matrices were too sparse, and the 
loops detected were less robust. Yet, the advantages of using 
Micro-C in our study are that MNase digestion introduces 
lower sequence biases compared to restriction digestion and 

that the use of MNase allows for milder detergent pretreat- 
ment of cross-linked cells, thereby improving the preserva- 
tion of E–P contacts, which are more sensitive to experimen- 
tal conditions than CTCF-based TAD interactions. [ 74 , 75 ].
Advanced variation of micro-C (Micro-Capture-C) can deter- 
mine E–P contacts in specified genomic regions at base-pair 
resolution [ 76 ]. Application of such techniques to p53-bound 

enhancers would further examine the validity of the contact- 
independent TAG model for the activation of p53 target genes.
Last, our study is based on correlative patterns, and as such,
the set of putative functional P loops identified by our analysis 
requires an experimental validation. 

Our micro-C data, together with matched RNA-seq and 

p53 ChIP-seq data, provide an extensive resource for the ge- 
nomics research community. Our results further establish links 
between chromatin organization and transcriptional regula- 
tion. Collectively, we have delineated hundreds of candidate 
functional cell-type specific E–P loops and highlighted the con- 
trast between chromatin interactions associated with genes in- 
volved in cell-fate determination and those involved in cellular 
responses to p53 stress. 
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