
Nature Medicine

nature medicine

https://doi.org/10.1038/s41591-025-03716-5Resource

A reference model of circulating 
hematopoietic stem cells across the lifespan 
with applications to diagnostics
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E. Meiri7, G. Yanai7, S. Shapira8, N. Arber8, S. Berdichevsky9, J. Tyner    10,11, 
S. Joshi    10,11, D. Landau    12,13,14,15, S. Ganesan12,13,14,15, N. Dusaj    12,13,14,15, 
P. Chamely12,13,14,15, N. Kaushansky1, N. Chapal-Ilani1, R. Shamir    2, 
A. Tanay    3,17   & L. Shlush    1,5,16,17 

With aging, deviation of human blood counts from their normal range 
accompanies the transition from health to disease. Hematopoietic stem 
and progenitor cells (HSPCs) deliver life-long multi-lineage output, but 
their variation across healthy humans with aging, and their diagnostic utility, 
haven’t been characterized in depth thus far. To address this, we introduced 
an HSPC reference model using single-cell RNA profiling of circulating CD34+ 
HSPCs from 148 healthy age- and sex-diverse individuals. We characterized 
physiological circulating HSPC composition, showed that age-related myeloid 
bias is predominant in older men and defined age-related transcriptional 
signatures in lymphoid progenitors. We further demonstrated the potential 
of this resource to facilitate the diagnosis of myelodysplastic syndrome (MDS) 
from peripheral blood without bone marrow sampling, defining classes 
of patients with MDS and abnormal lymphocyte, basophil or granulocyte 
progenitor frequencies. Our resource provides insights into HSPC reference 
ranges across the lifespan and has the potential to facilitate the clinical 
applications of single-cell genomics in hematology.

The basis for understanding and defining human pathophysiologi-
cal states is a detailed description of interindividual heterogeneity 
among healthy individuals. Large population studies have identified 
wide interindividual differences in complete blood counts (CBCs) of 
healthy individuals1 and exposed different age-related blood count 
changes, such as high red blood cell (RBC) distribution width (RDW), 
macrocytic anemia and a reduction in absolute lymphocyte counts2. 
The establishment of reference values, or population-wide normal 
ranges for certain blood parameters, has been crucial for patient evalu-
ation, diagnosis and treatment.

Although CBC reference ranges are used in the clinic daily, the 
equivalent reference range for hematopoietic stem and progenitor 

cells (HSPCs) has not been established so far. As HSPCs reside mainly 
in the bone marrow (BM), access to these cells, especially in the healthy 
population, has been problematic, whereas their general paucity in the 
circulation made it quite challenging to characterize them efficiently 
from the blood. This has become feasible given modern technologies 
such as single-cell RNA sequencing (scRNA-seq).

Individual heterogeneity in the frequency of circulating HSPCs 
(cHSPCs) has been reported in the past and was linked to age, sex, smok-
ing status, lipid profiles and hereditary factors3, as well as to different 
pathological states4. Few studies have analyzed HSPC heterogeneity 
in higher resolution, but their sample size was limited5,6. Previous 
studies, including some based on scRNA-seq analysis7, demonstrated 
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(Extended Data Fig. 3c,d). Altogether, the data suggest that cHSPCs, 
although not fully reflecting BM hematopoiesis, can serve as a highly 
accessible proxy for hematopoietic dynamics.

HLF, GATA3, HOXB5 and TLE4 as HSC TFs
One of the hallmarks of our cHSPC model is a distinct HSC state that 
is transcriptionally linked with two major differentiation gradients: 
the first represents a continuum of common lymphoid progenitors 
(CLPs; subdivided into early (E) mid (M) and late (L) states). The second, 
more common branch, represents multipotent progenitor (MPP) states 
and their differentiation toward granulocyte–monocyte progenitors 
(GMPs), erythrocyte progenitors (ERYPs) and basophil, eosinophil or 
mast progenitors (BEMPs). Platelet contamination prevented precise 
megakaryocyte progenitor modeling (Extended Data Fig. 3e), such 
that states at the base of the myeloid trajectory were annotated as 
megakaryocyte, erythrocyte, basophil, eosinophil or mast progenitors 
(MEBEMPs, subdivided into early (E) and late (L) states).

Early HSCs are marked by high AVP and HLF expression and were 
previously shown to represent a rare cell population enriched with 
self-renewal capacity in both the BM and cord blood13. Our model 
included data on 14,440 HLF and AVP expressing HSCs that could be 
matched with cells from independent BM atlases14, suggesting that, 
under a steady state, HSCs with potential self-renewal capacity are 
present in the PB (Extended Data Fig. 3f). Further functional studies 
are needed to establish this finding. Together with HLF and AVP, we dis-
covered 14 genes expressed at least 1.75-fold higher in HSCs compared 
with their 2 immediate differentiation branches (Extended Data Fig. 3g 
and Supplementary Table 2). We identified several transcription fac-
tors (TFs) enriched in HSCs, including HOXB5, TLE4 and GATA3 (Fig. 1c). 
GATA3 was previously reported to regulate self-renewal in murine 
long-term HSCs15. Its role in human HSCs has not been studied thus far. 
We note that, although the HSC state is defined by unique markers that 
are symmetrically downregulated on exiting to the CLP and MEBEMP 
trajectories (Fig. 1c), it also expresses several lineage-specific regula-
tors at intermediate levels, which are bifurcating anti-symmetrically 
on exiting the HSC state to the CLP and MEBEMP trajectories (Fig. 1d 
and Extended Data Fig. 3g). This may suggest that the multipotent 
capacity of HSCs is associated with intermediate expression of multiple 
regulators, which is resolved with differentiation.

BEMPs and NKTDPs are enriched in cHSPCs
The cHSPC atlas was enriched for BEMPs. Although classic studies 
linked these cells with a GMP origin, more recent studies suggested that 
these emerge, at least in part, from erythroid progenitors in both mice 
and humans7,16. Our analysis identified a small population of metacells 
linking BEMPs with their MEBEMP-L precursors (Fig. 1e). This high-
lighted TFs (Fig. 1f) and other factors (Extended Data Fig. 4a) positively 
or negatively regulated in this postulated early stage of BEMP speci-
fication. Another interesting cHSPC population included lymphoid 
states with high ACY3 expression and intermediate-to-low DNTT levels, 
a combination rarely found in human BM but present in PB (Extended 
Data Fig. 4b). We observed co-variation of key T cell regulators within 
this population and anti-correlation of these factors with some Hall-
mark plasmacytoid dendritic cell (pDC) regulators, as demonstrated 

that most HSPC subpopulations can be identified in the peripheral 
blood (PB)8 and functional stem cells were identified in the PB of mice9  
and humans7.

We have developed a reference model for healthy cHSPC distribu-
tions and provided proof-of-concept evidence supporting potential 
diagnostic applications. We applied scRNA-seq analysis to cHSPCs from 
148 healthy age- and sex-diverse individuals, to capture a spectrum of 
states, from hematopoietic stem cells (HSCs), through early common 
myeloid and lymphoid progenitor states and more specific progenitor 
populations. All data can be explored in https://apps.tanaylab.com/
MCV/blood_aging. We discovered extensive interindividual heteroge-
neity in the frequency of cHSPC subtypes and found that these correlate 
with certain CBC parameters, aging and the presence of clonal hemat-
opoiesis (CH). We then developed tools for projecting new samples on 
our reference model and analyzed 73 additional samples from patients 
with cytopenia and myelodysplastic syndrome (MDS), to demonstrate 
our model’s potential applications in MDS diagnosis. The healthy  
reference model and methodologies used in the present study provide 
a framework for the deployment of single-cell genomics in hematology, 
for the diagnosis of MDS, and possibly other stem cell-related blood 
malignancies, from the PB, reducing the need for BM analysis.

Results
HSPC states observed across humans in PB
To evaluate interpersonal diversity in subtype distribution and regu-
lation of cHSPCs, we combined multiplexed scRNA-seq, bulk DNA 
genotyping and integrated clinical data (Fig. 1a). Multiplexing was 
resolved using SNPs identified in the 3′-UTR of cHSPCs’ RNA, facili-
tating precise matching of cells to individuals and improving control 
for batch effects and doublets. Altogether, we collected cHSPCs from  
79 men and 69 women between the ages of 23 years and 91 years 
(median 61.5 years) (Extended Data Fig. 1a and Supplementary Table 1). 
We performed deep targeted somatic mutation analysis to identify 
cases of CH (Supplementary Table 1)10. After quality control and filter-
ing, we retained 840,104 single-cell profiles, which were normalized 
to control for sequencing-platform batch effects and combined to 
construct and annotate a metacell manifold model11 (Extended Data 
Fig. 1b,c). We retained 626,966 CD34+ single cells for downstream analy-
sis (Extended Data Fig. 1d). These formed a rich repertoire of states, 
associated with cHSPCs and their differentiation trajectories (Fig. 1b 
and Extended Data Fig. 1e,f). The derived model recapitulated and 
deepened earlier characterization efforts of HSPC states from the BM. 
We noted that, although we could not assume that cHSPCs fully reflect 
BM HSPC dynamics, previous studies, as well as our own BM scRNA-seq 
comparisons, supported at least partial compatibility between the two12 
(Extended Data Figs. 2 and 3a). One notable characteristic specific to 
cHSPCs was, however, the repression of cell-cycle gene expression 
(Extended Data Fig. 3b), previously demonstrated by others7. Impor-
tantly, we found our cHSPC model to be consistent across individuals. 
The median number of individuals contributing cells to each metacell 
was 84 and all metacells included cells from at least 47 individuals. 
Expression differences between cell states were greater than between 
individuals, limiting individually specific differential expression when 
controlling for each sample’s cell distribution over the atlas states 

Fig. 1 | Mapping cHSPCs. a, Experimental design. b, Annotated two- 
dimensional Uniform Manifold Approximation and Projection (UMAP) of our 
metacell manifold after filtration of metacells with low CD34 expression.  
For all subsequent panels in Figs. 1–3, metacell color denotes cell state as here. 
c,d, Symmetrical (c) and asymmetrical (d) regulation of specific HSC TFs on 
bifurcation to the CLP (right) and MEBEMP (left) lineages. Each panel shows 
the expression of one gene (y axis). Metacells in all panels are ordered (left to 
right) by increasing AVP expression in the MEBEMP lineage and decreasing AVP 
expression in the CLP lineage. The y axes denote log2(fractional expression) of 
each gene. e, The metacell population of interest (dashed line) linking BEMPs to 

their MEBEMP-L precursors. f, Positively and negatively regulated TFs involved 
in early BEMP differentiation. g, Gene–gene plot of IRF8 against TCF7 expression 
as Hallmark markers of DC and T cell differentiation, respectively. The high 
ACY3 NKTDP metacell population of interest is depicted (dashed line). h, This 
population exhibits high expression of both T cell and DC regulators, forming a 
gradient consisting of NK or T cell-like progenitors exhibiting a high TCF7:IRF8 
expression ratio along with high expression of other T cell Hallmarks such as CD7, 
MAF, IL7R, TRBC2 and DC-like progenitors exhibiting a low TCF7:IRF8 expression 
ratio, along with high expression of other DC Hallmarks, such as the myeloid TF 
PU.1 and the MHC-II gene CD74. Panel a created with BioRender.com.
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by comparison of TCF7 and IRF8 expression (Fig. 1g,h and Extended 
Data Fig. 4c). We therefore termed this population natural killer (NK) 
cell, T cell and DC progenitors (NKTDPs)17,18. To summarize, our map 
of cHSPCs showed a rich spectrum of progenitor states, which refined 
previous analyses and a remarkable consistency of these states across 
individuals. This provided an opportunity for deciphering interindi-
vidual hematopoietic variability based on our solid and quantitative 
definition of cHSPC subtypes.

Interindividual variation in cHSPC state composition
To study interindividual cHSPC variation, we first analyzed cell-state 
compositions by quantifying cell-state relative frequencies within each 
individual’s single-cell ensemble (Fig. 2a). These frequencies varied 
extensively between individuals as shown in Fig. 2b. For example, HSCs 
and CLP-Ms, representing 2.4% and 12.6% of the CD34+ population on 
average, showed s.d. values of 1.0% and 6.8%, respectively. The abun-
dant MPP and MEBEMP-E states (mean frequencies of 20.7% and 37.6%) 
showed smaller relative variations (s.d. values of 4.9% and 5.8%, respec-
tively). To analyze the stability of cell-state frequencies across time 
and sampling instances, we re-sampled 20 individuals 1 year after their 
original sampling date. Both CLP (CLP-E, CLP-M, CLP-L and NKTDP) and 
MEBEMP (MEBEMP-E, MEBEMP-L, ERYP and BEMP) frequencies were 
stable within the same individual across time (Fig. 2c).

To analyze composition in higher resolution, we profiled each indi-
vidual’s enrichment over the CLP and MEBEMP trajectories. Clustering 
of these enrichment profiles yielded six archetypes of cHSPC composi-
tion within the healthy population (classes I–VI, Fig. 2d). These were 
composed of individuals with relative lymphoid enrichment (classes I 
and II) or depletion (classes V and VI), further subdivided by a stemness 
gradient, enriched in classes II, IV and VI and depleted in classes I, III and 
V. Analysis of technical and biological replicates confirmed this varia-
tion to be robust and individual-specific (Extended Data Fig. 5a,b). To 
summarize, we constructed cHSPC subtype normal reference ranges 
and showed that, although HSPC cell states are consistent among 
healthy individuals, their compositions are highly variable.

Circulating HSPC frequencies correlate with CBCs and CH
To extract an initial clinical annotation for the observed interindi-
vidual variation in cHSPC state frequencies, we correlated individual 
compositions with longitudinal CBC data (Methods). We observed 
a significant positive correlation (P < 0.01) between PB mature lym-
phocyte counts (%) and CLP frequencies (Fig. 2e, left). Given the high 
variability in female RBC counts and volumes during menstruation, 
pregnancies and prolonged perimenopausal periods, we analyzed RBC 
indices (count, hematocrit (HCT), mean corpuscular volume (MCV) 
and RDW) separately for men and women. We observed a significant 
negative correlation (P < 0.02) between CLP frequencies and HCT  
(men, Fig. 2e, middle) and a significant positive correlation (P < 0.01) 
between increased RDW and relative CLP depletion (men, Fig. 2e, right). 

Our previous work19 and the work of others20 correlated high RDW with 
CH and predisposition to acute myeloid leukemia. Our data suggest 
that reduction in CLP frequencies is associated with CH (Extended Data 
Fig. 6a). A similar trend was suggested by genotyping of transcriptomes 
(GoT)21 performed on one of our DNMT3A R882H cases, showing a 
lower fraction of CLP cells within the mutant clone (P < 0.005, Fisher’s 
exact test; Extended Data Fig. 6b). Although this trend was suggested in 
other GoT data22, sample size is insufficient to prove it statistically and 
explore the clonal mechanisms underlying it. To further explore the 
association between CH and RDW, we studied a cohort of 18,147 healthy 
individuals for whom we had both longitudinal CBCs and DNA avail-
able. We identified 602 individuals with a high RDW (>15%, not meeting 
minimal criteria for MDS diagnosis) and 602 age- and sex-matched 
normal RDW controls. We performed deep targeted sequencing to 
identify leukemia-associated mutations on both high-RDW individuals 
and controls, and found a significant enrichment of CH+ cases in the 
high-RDW group (Fisher’s exact test, P < 0.002; Fig. 2f and Supplemen-
tary Tables 3 and 4). Altogether, the data suggest associations across 
decreased CLP frequencies and elevated RDW and CH. Determination 
of the existence of a direct (and perhaps three-way) linkage for these 
variables requires further investigation.

Age-related myeloid bias is predominantly observed in men
Analysis of age-linked compositional changes in cHSPCs within 
CH-negative individuals showed a remarkable increase in myeloid 
(MEBEMP) to lymphoid (CLP) progenitor ratios in men (when compar-
ing <50 to >60-year-old individuals; Fig. 3a and Extended Data Fig. 6c). 
This effect was insignificant in women. Of note, although both men and 
women experience a decline in lymphocyte counts with aging, it occurs 
at an older age in women, as confirmed by recent analyses2. Notably, 
women show a temporary postmenopausal surge in lymphocyte counts, 
which delays their decline. Within the MEBEMP differentiation trajec-
tory, aging was correlated with over-representation of more differen-
tiated states, once again only in men (Fig. 3b). Of note, the frequency 
of cHSCs did not significantly change with age (Fig. 3c). Although 
previous studies suggest that aging is linked with an increase in HSC 
frequency23,24, this was not observed with the restrictive definitions 
employed in the present study. We further identified an age-related 
decline in CD34+ HSPC frequency in a cohort of 1,000 healthy individu-
als undergoing peripheral blood mononuclear cell (PBMC) scRNA-seq25 
(Fig. 3d and Extended Data Fig. 6d), which has also been reported by 
fluorescence-activated cell sorting (FACS) in the past3. The sex-specific 
correlation between age and cHSPC myeloid bias could be related to 
cell intrinsic properties, such as male-specific leukemia-associated 
mutations predisposing to myeloid differentiation26. This is less likely 
because canonical CH-positive cases were excluded from this analysis. 
Alternatively, this predominantly male myeloid bias could be related 
to cell extrinsic factors such as age-related hormonal and BM micro-
environmental changes27,28.

Fig. 2 | Normal cHSPC composition. a, Characterization of interindividual 
cHSPC compositional variation and its correlation to clinical parameters 
(scheme). b, Boxplots of cHSPC state frequency distributions across 148 
healthy individuals (logarithmic scale). The percentage was calculated from 
all CD34+ cells within each individual’s single-cell ensemble. Boxplot centers, 
hinges and whiskers represent the median, first and third quartiles and 1.5× the 
interquartile range, respectively. Outliers are marked by circles. The numbers 
represent the mean ± s.d. for each distribution. c, Comparison of cell-state 
frequencies between 19 biological replicates and their original samples, for CLP 
(CLP-E, CLP-M, CLP-L and NKTDP) populations (top) and MEBEMP (MEBEMP-E, 
MEBEMP-L, ERYP and BEMP) populations (bottom). The diagonal y = x is shown 
in red. All biological replicates were sampled 1 year after their original sampling 
date. d, Top: cell-state frequency profiles over the HSC-MEBEMP and HSC-
CLP differentiation gradients of six sampled individuals (colored lines), each 
representing one of six archetypes (classes) of cHSPC composition observed 

in healthy individuals. The dashed lines represent the median (black) and the 
5th and 95th percentiles (gray) of the studied population. Bottom: cell-state 
enrichment map over 15 differentiation bins (rows), for all studied individuals 
(columns) clustered into six classes (Methods). Classes I and II represent 
individuals relatively enriched in lymphoid progenitors, whereas classes V 
and VI represent individuals with relative depletion of lymphoid progenitors. 
Individuals are sorted by stemness within each class. Age and sex are denoted 
for each individual. e, CBC correlations to cell-state frequencies: %lymphocytes 
(from white blood cells, calculated for the entire cohort, left), HCT (men only, 
center) and RDW (men only, right). Missing individuals lacked sufficient cells for 
analysis. Two-sided permutation test P values are displayed for each correlation. 
See Methods for details on the permutation-based test. f, CH frequency (by gene) 
in age- and sex-matched high (red, n = 602) and normal (black, n = 602) RDW 
individuals selected from a cohort of 18,147 individuals. Panel a created with 
BioRender.com.
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Composition-controlled cHSPC expression correlates with age
As shown above, individual cHSPC compositions provide an initial 
blueprint of hematopoietic dynamics along the stemness and CLP or 
MEBEMP axes, with age-dependent changes. Composition-normalized 
gene expression profiles were further correlated with age, enabling age 
prediction based on normalized gene expression alone (Fig. 3e and 
Extended Data Fig. 6e; see Supplementary Tables 5 and 6 for additional 
screening for age-, CBC-, CH- and sex-associated gene expression). 
We next looked for gene groups (signatures) that co-variate between 

individuals, filtering out sex-linked signatures and those showing strong 
batch effects. The most prominent of these signatures included Lamin-A 
(LMNA) as well as ANXA1, AHNAK, MYADM, TSPAN2 and VIM, among 
others (Fig. 3f, Extended Data Fig. 6f and Supplementary Table 7). Indi-
vidual LMNA signature expression varied across a range of more than 
twofold (Extended Data Fig. 6g), exhibiting high expression variability 
in HSCs and early myeloid and lymphoid cell states, and a homogene-
ously low expression in late MEBEMPs and CLPs (Extended Data Fig. 6h). 
Individual LMNA signature expression was consistent in myeloid and 
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lymphoid cell states (Fig. 3g) and was stable in our follow-up cohort 
(Extended Data Fig. 6i). We observed an age-linked increase in LMNA 
signature expression in lymphoid, but not myeloid, cHSPCs (Fig. 3h). 
Future studies on larger cohorts, enriched with clinical data, could 
further explore the age-related LMNA signature overexpression in 
CLPs and how it correlates with disease and immune function. Taken 
together, we show that, in addition to the accumulation of leukemic 
mutations in HSPCs, aging is linked with changes in the distribution 
of progenitor cell states within the PB and with notable expression 
differences in certain gene signatures. The mechanistic basis for this 
variation and its clinical impact remain unresolved.

Coordination of stemness and myeloid signatures
The differentiation of HSPCs toward MEBEMP and CLP fates involves 
coordinated activation and repression of specific transcriptional 
programs which are conserved across individuals. Yet, our screen for 
interindividual variation in gene signature expression suggested that 
individuals differed in the way in which they synchronized the opposing 
effects of these stemness and differentiation programs. To quantify this 
variation, we compared AVP (stemness) and GATA1 (MEBEMP differen-
tiation) signatures (Supplementary Table 8) on a 20 × 20 bin expression 
matrix (Fig. 3i). Although most individuals displayed dynamics close 
to the diagonal line (individuals N16 and N86, for example), following 
the typical transition from stemness to differentiation, some individu-
als deviated from the diagonal, indicating skewed synchronization 
between AVP and GATA1 signatures. We quantified this deviation (that 
is, off-diagonal frequency) using a synchronization-score (sync-score). 
This facilitated the identification of individuals with sync-scores as low 
as 0.12 (N122 and N172, for example, Fig. 3i, top), indicating delayed 
activation of GATA1 relative to AVP repression. In contrast, individuals 
exhibiting a high sync-score (N98 and N121, for example, Fig. 3i, bottom) 
show early activation of GATA1 expression, which precedes AVP repres-
sion. Interindividual sync-score variability (Extended Data Fig. 6j) was 
positively correlated with RBC levels and consistently anti-correlated 
with MCV in men (P < 0.01 (Spearman’s) for both RBC and MCV; Fig. 3j). 
Analysis of the correlation between individual sync-scores and cHSPC 
compositions in men demonstrated a negative correlation with ERYPs 
(Fig. 3k). In summary, variation in the coordination of stemness and 
MEBEMP differentiation programs correlated with RBC counts and 
volumes. More studies on larger cohorts are needed to explore how 
this coordination relates to age-related macrocytic anemia.

Circulating HSPC composition abnormality in cytopenia  
and MDS
Diagnosis of myeloid malignancies requires the identification of 
clonal markers (mutations or structural variants) and the detec-
tion and quantification of blasts and dysplasia, by next-generation 
sequencing, polymerase chain reaction, cytogenetics, fluorescence 

in situ hybridization, microscopy and flow cytometry of BM specimens. 
In Fig. 4a we described a stepwise approach for analysis of myeloid 
disorders based on sampling of cHSPCs and comparison of their 
compositions, normalized expression and copy number variations 
(CNVs) to our normal reference (Extended Data Fig. 7a–c). As proof 
of concept, we focused on MDS diagnosis. First, we reconstructed 
the reference model using data from 79 healthy individuals, putting 
aside some normal samples for classifier training. We then performed 
additional sequencing to obtain data from 44 patients with MDS and 
29 patients with cytopenia (Supplementary Tables 9–11). We devel-
oped a streamlined in silico sorting scheme for quantifying the cHSPC 
composition of a new PB sample given the reference (Extended Data 
Fig. 7a,b) and used it to identify cases with abnormal compositions 
(Fig. 4b,c, Extended Data Fig. 8a and Methods). Classification included 
subpopulations (GMP-L, pre-B, pro-B and MkP) that were rare in the 
normal reference model and were not shown in Fig. 1. We then marked 
MDS or cytopenic samples with normal compositions (matching the 
reference model, group 1) and organized them along the myeloid and 
lymphoid spectrum. The remaining cases were clustered into distinc-
tive subclasses. Although most cases of MDS showed significantly lower 
CLP frequencies (groups 3 and 4; Extended Data Fig. 8b), we identified 
a subclass of MDS and cytopenia with high CLP frequencies (group 2). 
Other subclasses included high MPP (group 4.2), high BEMP (group 
4.1) and high GMP (group 3) frequencies. This sorting scheme partially 
separated MDS from other, non-MDS-related, cases of cytopenia, with 
most cytopenia cases exhibiting normal (group 1) compositions. Cases 
of MDS with abnormal CNVs (Methods) were enriched in groups 2–4 
(P < 0.004, Fisher’s exact test; Fig. 4d and Supplementary Table 12) 
and patients with high RDW were enriched in group 4 (Extended Data 
Fig. 8c). In summary, cHSPC compositions reveal molecular features 
that offer possibilities for identifying MDS subclasses and pathophysi-
ology. Classification of MDS cases with normal cHSPC compositions 
(group 1) depends on further analysis of genetic and transcriptional 
states within specific cHSPC subtypes.

PB-based MDS diagnosis with CBC, mutation and cHSPC  
RNA data
To improve our diagnostic accuracy, we next derived specific gene 
signatures showing additional variation within cell types, from the 
reference model (Supplementary Table 13), and scored these signatures 
based on their ability to separate patients with MDS and cytopenia 
from healthy donors. A group of major histocompatibility complex 
class II (MHC-II) genes in MEBEMP-L, multi-potency genes in BEMP 
and S-phase genes in MEBEMP-L (Fig. 4e) emerged as top-ranking. 
These signatures were overall consistent across different samples of 
the same individuals (Extended Data Fig. 8d). We then combined CBCs, 
maximum variant allele frequency (VAF), cHSPC compositions and all 
afore-mentioned expression signatures into a feature set that formed 

Fig. 3 | Age- and sex-linked changes in cHSPC composition. a, Frequency of 
MEBEMP (MEBEMP-E, MEBEMP-L, ERYP and BEMP, left) and CLP (CLP-E, CLP-M 
and CLP-L, right) populations, out of a total CD34+ population, in young (<50 
years) versus old (>60 years) individuals without CH, in men (blue) and women 
(red). The two-sided Kruskal–Wallis P values for differences among groups are 
denoted. The number of individuals per group is (left to right): 31, 15, 24 and 
31. b, Analysis of age-linked compositional differences within the MEBEMP 
differentiation trajectory, comparing abundance of more (MEBEMP-L) with 
less (MPP) differentiated states in young versus old individuals. The two-sided 
Kruskal–Wallis P value for difference among groups is denoted. The number 
of individuals is as in a. c, As in a, for the HSC population. d, cHSPC frequency 
per age decimal in an scRNA-seq PBMC dataset of 1,000 healthy individuals25. 
For each decade, mean CD34+ cell frequency is shown (Methods). The 95% 
confidence intervals are indicated as error bars. The number of individuals in 
each decade is indicated (top). e, True age (x axis) versus age predicted based 
on composition-controlled MPP expression (y axis). The diagonal y = x is shown 

in red. f, Gene–gene correlation heatmap, calculated over individual-level MPP 
gene expression controlled for MPP composition. g, Individual LMNA signatures 
(log2(observed:expected ratios)) in lymphoid (CLPs) and early myeloid (MPPs) 
cell states. h, Analysis of age-linked differences in LMNA signature expression 
for CLP (right) and MPP (left) populations in young (<50 years) versus old 
(>60 years) individuals. The y axis denotes log2(observed:expected expression) 
normalized for composition. The number of individuals is 66 young, 65 old on  
the left and 48 young, 53 old on the right. The two-sided Mann–Whitney U-test  
P values are indicated. i, Individual heatmaps of single-cell counts over 20 bins of 
stemness (AVP signature, y axis) and MEBEMP differentiation (GATA1 signature, 
x axis). Individual identifier, MCV and RBC are denoted at the top. The diagonal 
is indicated in black for reference. j, MCV versus RBC in male donors, with 
colors indicating high (red) and low (black) sync-scores. k, Correlation between 
individual sync-scores and cell-state compositions in men. The two-sided 
permutation test P value is denoted. All boxplots are as in Fig. 2b.
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the basis for construction of an MDS diagnostic classifier using stand-
ard machine learning tools. We created two cohorts: the first (cohort 
1), composed of 28 patients with MDS, 20 patients with cytopenia 
and 41 healthy individuals, and the second (cohort 2) composed of 16 
patients with MDS and 9 patients with cytopenia. We observed classi-
fier training performance (even when aiming to separate MDS from 
cytopenia cases) was better when including normal cases in the dataset. 

Analysis of classifier performance showed very high specificity and 
sensitivity (Fig. 4f; area under the curve (AUC) = 0.93 in leave-one-out 
cross-validation for cohort 1 separation of MDS from cytopenia). Per-
formance of the cohort 1 model on cohort 2 (which was not used during 
classifier training) was even higher (AUC = 0.97). Although cohort 2 data 
was not used in classifier training or feature selection, it was accessible 
to us during project analysis phases, such that we were cautious not to 
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treat this as formal validation. The most informative feature used by 
the MDS classifier was the maximum VAF (Extended Data Fig. 9a). Yet, 
classifier performance was high even when excluding VAF information 
(Extended Data Fig. 9b,c).

Diagnosis and risk stratification of MDS rely on quantification of 
BM blast fractions. Our analysis of cohort 1 and cohort 2 samples, with 
the addition of three cases of MDS exhibiting complex karyotypes, sug-
gests that we can predict this percentage quantitatively from cHSPC 

data using the fraction of cells showing a mixed HSC and CLP state 
(Fig. 4g,h and Extended Data Fig. 9d). All in all, this implies that, with 
further validation and testing, cHSPC profiling has the potential to 
replace BM analysis for MDS diagnosis and risk stratification, offer-
ing substantial benefits, such as noninvasive follow-ups and watchful 
waiting protocols. We present two case studies supporting this idea 
in Extended Data Fig. 10a,b. The first is an 82-year-old man showing 
progressive clonal expansion over a span of 3 years, accompanied by 
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deteriorating anemia. The second is a 65-year-old woman presenting 
with clonal del5q showing complete cytogenetic remission after lena-
lidomide treatment. Additional follow-up examples (Extended Data 
Fig. 10c) suggest small changes in (normal or abnormal) composition 
across time, further supporting the idea of using cHSPCs for noninva-
sive assessment of disease progression.

Discussion
The present study characterizes interindividual heterogeneity in 
cHSPCs across 148 healthy individuals using scRNA-seq analysis of PB 
CD34+ cells. The magnitude of our cohort, along with the potency and 
resolution of modern single-cell technologies and the computational 
methods used in the present study, allowed us to characterize in detail 
the transcriptional programs of diverse, sometimes rare (NKTDP and 
BEMP), HSPC subpopulations, refining and augmenting previous find-
ings from smaller cohorts (Fig. 1). We defined a normal reference range 
for cHSPC subpopulation frequencies within an age- and sex-diverse 
healthy population and showed that cHSPC subtype compositions were 
highly variable between individuals, whereas the cell states themselves 
were remarkably general (Fig. 2). These compositions remained sta-
ble over a 1-year follow-up period. Future studies will need to further 
explore and better define the mechanistic and genetic basis for this 
compositional heterogeneity. With current sample size, we showed 
that the known age-related myeloid bias in HSPCs is predominantly 
male driven and that composition-controlled RNA expression can be 
used to infer chronological age (Fig. 3).

Our data show that cHSPCs are transcriptionally similar to their 
BM counterparts (Extended Data Figs. 2 and 3), except for reduced 
cell-cycle gene expression. Although not a complete model for BM 
hematopoiesis, cHSPCs serve as a highly accessible proxy for key 
hematological processes. Interindividual differences in cHSPC com-
positions and states can thus serve as a tool for capturing key aspects 
of a patient’s hematopoietic state. The relevance and importance of a 
cHSPC normal reference (Fig. 2b) can perhaps be better understood in 
view of the normal CBC reference range, developed in the 1930s1. The 
development of a population-wide CBC reference enabled the identi-
fication of numerous pathological blood states that characterize dis-
tinct clinical entities. In a similar fashion, our cHSPC reference can be 
used to characterize physiological and pathological states. In Fig. 4 we 
describe a pipeline for the identification and characterization of blood 
pathologies based on our normal cHSPC reference and show how this 
can be applied to MDS diagnostics (including inference of cytogenetics 
and blast counts from the PB). We present scRNA-seq data on cHSPCs 
from 73 cases of cytopenia and MDS, greatly extending currently avail-
able BM MDS scRNA-seq datasets5,29–32. The data described supports 
MDS diagnosis (over non-MDS-related cytopenia) and suggests the 
possibility of MDS subclassification based on over-representation 
of distinct HSPC progenitor populations. The MDS-related gene 
expression signatures identified in the present study open avenues 
for research that might contribute to better understanding of MDS 

pathophysiology and drug design strategies. Importantly, further 
follow-up, validation in prospective studies and cohort expansion to 
ethnically diverse populations are needed to prove that the tools intro-
duced here can become a clinical standard. The diagnostic potential 
of our reference model may be further enhanced upon acquisition 
and analysis of additional blood subpopulations and disease states 
in contrast with the reference. Practically, application of scRNA-seq 
for diagnostics would have to rely on stable and minimally biased 
cell acquisition and processing technologies that can be deployed 
across diverse clinical settings and provide consistent and trustworthy 
results. Development in this domain is promising, but more work must 
be done to reach clinical standards.

To conclude, our study delves into the basic molecular physiology 
of cHSPCs at the population level, uncovering age-related phenotypes 
and proposing a platform for mechanistic and diagnostic insights into 
blood malignancies. This resource, along with various other tools for 
profiling genetics and epigenomics in the blood, has the potential to 
redefine normal versus pathological states in hematology and provide 
both clinicians and researchers the means for mapping the transition 
from health to disease.
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Methods
Patient recruitment
All healthy reference model individuals (n = 148, analyzed in Figs. 1–3 
and Extended Data Figs. 1–6) volunteered to participate in our study 
and donated blood at the Weizmann Institute of Science (WIS) between 
November 2020 and December 2023. They were recruited from the 
WIS community and primary care clinics and consisted of 79 men and 
69 women aged 23–91 (median 61.5) years. Their demographic data 
and CBCs are included in Supplementary Table 1. Written informed 
consent allowing access to their demographic, longitudinal CBC and 
sequencing data (CH and genotyping panels) was obtained from all 
participants in accordance with the Declaration of Helsinki. All relevant 
ethical regulations were followed and all protocols were approved 
by the WIS ethics committee (under Institutional Review Board (IRB) 
protocol no. 283-1).

For the main reference model (Figs. 1–3), recruitment was intended 
to allow characterization of the normal variation in cHSPC states. As no 
such profiling had been previously performed, we could not assume 
much about the variance in the population a priori. Participants were 
therefore required to lack any known hematological condition, includ-
ing hematological malignancy or premalignant state, or any prior 
evidence of blood clonality. An Illumina-sequenced subset of these 
148 individuals (n = 79) was used for constructing the healthy reference 
model used in Fig. 4 (‘Fig. 4 reference model’), filtering out individuals 
with any blood count abnormality (up to 5 years before sampling) and 
putting aside 41 healthy samples for classifier training.

Recruitment of the cytopenic cohort (including patients with MDS 
and non-MDS-related cytopenia, analyzed in Fig. 4 and Extended Data 
Figs. 7–10) took place between November 2021 and February 2024. 
These patients were recruited from several outpatient hematological 
clinics by collaborating physicians to represent the wide clinical spec-
trum of MDS, from patients with moderate anemia and mild dysplasia 
as their sole BM abnormality to those with severe cytopenia and excess 
blasts on BM analysis. Key patient characteristics, including CBCs, 
BM FACS blasts and mutational data, are included in Supplementary 
Tables 9 and 11. Median age for the cytopenic cohort was 73 years (range 
27–93 years), with men representing 53% of patients. Patient PB samples 
were either drawn at WIS or transported to WIS within <2 h of blood 
drawing. All cytopenic samples were processed in an identical fashion 
to the healthy ones (described below). Longitudinal CBCs, mutational 
data and most recent BM analyses were collected from patients and 
analyzed along with their scRNA-seq data.

The cytopenic cohort included a total of 83 individuals, 50 of 
whom were labeled as cases of ‘MDS’, based on BM morphology and/or 
mutational and karyotypic abnormalities (as detected in the clinic or by 
our CH panel and scRNA CNA analysis). The remaining 33 patients with 
cytopenia not satisfying MDS criteria were labeled as cases of ‘cytope-
nia’. We note that, consistent with common medical practice in Israel, 
most of these 33 patients with cytopenia did not undergo BM examina-
tion, which may have resulted in missed MDS diagnoses. To address 
this limitation, we collected the most recent clinical data available for 
patients with cytopenia, with a median follow-up period exceeding 
600 d after cHSPC sampling (Extended Data Fig. 10d and Supplemen-
tary Table 9). Importantly, no new diagnoses of myeloid malignancy 
were recorded in any of the cytopenic cases, except for N193 who was 
diagnosed with VEXAS syndrome 1 year after cHSPC sampling, exhibit-
ing a UBA1 mutation c.121A>G;p.Met41Val, but had not been diagnosed 
with MDS yet. In addition, during this follow-up, median change in 
RDW% was zero. In contrast, over a similar period (looking at histori-
cal records before cHSPC sampling; Extended Data Fig. 10e), median 
RDW% change in cases of MDS was 0.75, significantly higher than in 
patients with cytopenia (Extended Data Fig. 10f; P = 0.001, two-sided 
Mann–Whitney U-test). Overall, these data support the accurate clas-
sification of cytopenic cases. Eleven cHSPC samples were acquired 
from patients under treatment, six of which were included in Fig. 4 

(Supplementary Table 9). Of the 83 patients with cytopenia, 17 who 
presented with asymptomatic, mild cytopenia, were also included in 
the original healthy cohort of 148 individuals.

Sampling of cHSPCs
We drew 50 ml of PB from each individual into lithium–heparin tubes 
and put aside 1 ml of blood for DNA production. The remaining volume 
was used for PBMC isolation via Ficoll using Lymphoprep-filled Sep-
mate tubes (STEMCELL Technologies), followed by CD34 magnetic 
bead-based enrichment using the EasySep human CD34+ selection 
kit II (STEMCELL Technologies). We found this enrichment strategy 
to be simple and reproducible and chose it for a couple of reasons: 
(1) RNA-seq data were most reproducible when cells were not sorted, 
but rather enriched for using beads (lower mitochondrial gene frac-
tion); and (2) CD34 purity could be highly regulated by this method, 
to achieve anywhere between 50% and 95% enrichment of CD34+ cells, 
which could later be easily distinguished based on their single-cell 
expression data.

ScRNA-seq of cHSPCs
ScRNA libraries were generated using the 10x Genomics scRNA-seq 
platform (Chromium Next Gem single-cell 3ʹ reagent kit v.3.1). Chip 
loading was preceded by flow cytometry to verify that enrichment was 
successful and that enough CD34+CD45int live cells were gathered. All 
blood samples were either drawn at WIS or transferred from partici-
pating clinics on the morning of each experiment day, and time from 
blood draw to 10x loading was restricted to 5 h. The motivation for 
working with fresh samples was based on our previous experience with 
PB CD34+ cells being vulnerable to freezing–thawing rounds and long 
manipulation times. The 10x libraries were sequenced on two alterna-
tive platforms (Illumina and Ultima Genomics). Twelve libraries were 
simultaneously sequenced on both platforms for comparison purposes 
and to demonstrate the scalability of our approach. We observed the 
Ultima-sequenced data to be highly similar to the Illumina-sequenced 
data (Extended Data Fig. 5a).

DNA production and sequencing
All healthy and patient DNA was produced from PB at sampling. DNA 
sequencing was performed on two targeted panels: the first a rich 
myeloid CH panel (InfiniSeq Myeloid Malignancies Panel, Sequentify, 
Israel) covering all known pre-leukemic mutations10 and the second a 
genotyping panel specifically designed to capture polymorphic sites 
prevalently expressed by RNA molecules from all cell types in our data. 
This allowed demultiplexing of individual pools based on individual 
specific SNP combinations and replaced previous, antibody-based 
multiplexing methods. Three to six individual samples were pooled on 
each experiment day after extraction of DNA aliquots, such that CD34 
enrichment was performed on the entire pool of PBMCs produced. As 
with other methods of sample multiplexing, genotype-based multiplex-
ing allows for robust doublet detection during data analysis, which 
enabled loading of 30,000–40,000 cells on each Chromium Chip lane.

Both our CH and genotyping panels are Molecular Inversion 
Probe (MIP) panels described in detail previously10. For the healthy 
cohort we used our CH panel v.3, containing 705 probes, covering 
leukemia-related SNVs and insertions/deletions (indels) in 47 genes, 
complemented by two amplicon-sequencing reactions to cover GC-rich 
regions in SRSF2 and ASXL1. For the cytopenic cohort, we used our CH 
panel v.4 (Supplementary Table 10). For alignment of reads we used 
Burrow–Wheeler Aligner (BWA)-MEM v.2 (ref. 33). As MIP sequencing 
is cost-effective yet noisy, we developed an in-house variant calling 
method to reliably identify low-VAF CH events10. For the genotyp-
ing panel we used Varscan for variant calling34. Each DNA sample was 
sequenced twice with a minimum depth of 106 paired-end reads on an 
Illumina Novaseq machine. Variant calling was performed as previ-
ously reported10. Our genotyping panel allows for the simultaneous 
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detection of >2,000 SNVs. It includes heterozygous sites with at least 
a 5% minor allele frequency from the 1,000 Genomes project, which 
were extensively covered in our data (at least 80 unique molecular 
modifiers (UMIs) across all cells in a test 10x library), excluding sites in 
repetitive elements and sex chromosomes. Both panels were designed 
using MIPgen35 to ensure capture uniformity and specificity.

CH sequencing of high-RDW samples and controls
To compare propensity for CH and high-risk CH mutations in high-RDW 
cases and normal RDW controls, we performed deep targeted sequenc-
ing of DNA samples from 602 high-RDW (>15%) individuals, whose 
blood count did not meet MDS criteria (11.5 g dl−1 ≤ Hg ≤ 15.5 g dl−1 (F), 
13 g dl−1 ≤ Hg ≤ 17 g dl−1 (M), 80 fL ≤ MCV ≤ 96 fl, PLT ≥ 100 × 109 l−1, Abs 
Neut ≥ 1.8 × 109 l−1) and 602 normal RDW, age- and sex-matched con-
trols. Case–control matching was performed using the R MatchIt pack-
age, balanced on age and sex, method = ‘nearest’, ratio = 1, from a total 
of 18,147 individuals with longitudinal blood counts and available DNA 
at the Tel Aviv Sourasky Medical Center (TASMC) Integrated Cancer 
Prevention Center. All DNA samples were collected after obtaining writ-
ten informed consent in accordance with the Declaration of Helsinki 
and were received de-identified from the TASMC. All relevant ethical 
regulations were followed and all protocols were approved by the 
TASMC ethics committee (under IRB protocol no. 02-130).

ScRNA-seq processing
We processed fastq files by executing cell-ranger (v.3.1.0) with an hg-38 
reference genome. We filtered out cells with at least 20% mitochondrial 
expression, then removed mitochondrial genes (as well as few other 
batch-prone genes) and further filtered cells with ≤500 UMIs.

Doublet calling
We performed several steps to assign cells to individuals and to detect 
doublets. Our pipeline included the following steps:

(1)	 Demultiplexing cells and calling doublets based on SNPs 
found in the scRNA-seq data

(2)	 Building a metacell model using cells from all libraries, 
including cells previously marked as doublets, identifying and 
removing metacells made of doublets

(3)	 Identifying doublet metacells based on expression of marker 
genes

(4)	 Building the final metacell model and marking metacells as 
doublets based on expression markers

In the first step, we identified doublets and assigned cells to indi-
viduals using Vireo v.0.3.2 (ref. 36) and Souporcell v.2.4 (ref. 37), which 
cluster cells based on SNPs found in sequenced RNA molecules. We 
executed Vireo (preceded by running cellsnp v.0.3.0) and Souporcell 
on each library separately. Both methods used SNPs from our geno-
typing panel10 which were covered by at least 20 UMIs in the library 
(in Souporcell—at least 10 from the major and minor allele each). We 
observed high agreement in doublet calling between the two methods.

In the next step, we built a metacell model with cells from all librar-
ies. This model included cells that we already identified as doublets. 
The model was built with metacell2 (ref. 11), with a target metacell size 
of 200 cells. We then marked all metacells, where at least 35% of the 
cells were already marked as doublets, and all metacells that expressed 
key markers of distinct cell types as doublet metacells. All cells that 
belonged to a doublet metacell were then marked as doublets. We then 
built an additional metacell model (see below), without cells that were 
marked as doublets.

Assignment of cells to individuals
Vireo and Souporcell both cluster cells based on SNPs found in the 
sequenced RNA, such that cells in the same cluster belong to the same 
individual. We next assigned clusters of cells to the individual to whom 

they belonged. To this end, we correlated the genotypes of each cell 
cluster, as inferred by Vireo, to all genotypes that we measured using 
the MIP panel (only using sites with sufficient sequencing depth). As a 
control, this matching was performed against the MIP genotypes of all 
individuals in the cohort and not only those from the specific library 
analyzed. We observed clear matchings between Vireo clusters and 
individuals from the expected libraries in all cases. This method also 
correctly identified related individuals. The sex of all matched individu-
als was confirmed by expression of XIST in the RNA data.

Removal of droplets with megakaryocyte signatures
Droplets with complete or partial megakaryocyte expression (at least 
5% of UMIs coming from a megakaryocyte gene program including 
PF4, PPBP and 131 additional genes) were removed from our model as 
a result of their overall high doublet rate, and a final metacell model 
was constructed from the retained cells ((1) not marked as doublets, 
(2) confidently assigned to an individual and (3) not exhibiting mega-
karyocyte expression).

Correcting for sequencing-platform bias
Our 10x libraries were sequenced on Ultima Genomics and Illumina 
sequencers. To minimize batch effects related to these sequencing- 
platform variations, we used libraries that were sequenced on both plat-
forms to calculate an Illumina–Ultima correction factor per gene as the 
mean log2(fold-change) in expression of the gene across re-sequenced 
libraries. We then normalized each Ultima-sequenced library by down-
sampling genes with at least 0.28 log2(fold) Ultima overexpression 
and resampling genes with at least 0.2 Illumina overexpression. The 
downsampling and resampling were performed for each gene indepen-
dently, across all cells in each Ultima library. The thresholds for down-
sampling and resampling were chosen such that the overall number of  
UMIs per cells remained similar; 87 genes with at least 4-fold-change 
between Ultima and Illumina were excluded from further processing.

Computing the reference metacell model
Our metacell model was built using metacell2, with a target meta-
cell size of 200 cells, deriving 4,253 metacells. We marked histone, 
cell-cycle, ribosomal, sex-linked and stress response genes (including 
FOS and JUN) as forbidden genes, as well as genes with high technical 
variation, such as those with high or inconsistent differences between 
Illumina- and Ultima-sequenced technical replicates. These genes were 
not used for calculating gene–gene similarities but were included in 
downstream analyses. We annotated metacells using known markers 
as illustrated in Extended Data Fig. 1c. We excluded metacells with low 
CD34 expression, such as mature monocytes, B cells, T cells, natural 
killer (NK) cells, dendritic cells (DCs) and endothelial cells, as well as 
20 GMP-L metacells, from most downstream analyses. We used UMAP 
projections of the metacell expression vector over genes with specific 
enrichment over cell types for visualization of the metacell manifold.

BM comparisons and projections
We used three BM datasets for comparison purposes: a dataset includ-
ing CD34-enriched cells from two individual BM samples collected 
by us and processed similarly to PB (Fig. 1a), the Human Cell Atlas 
(HCA) BM dataset14 and a CD34+CD38− bead-based enriched BM data-
set12. We previously processed and annotated the HCA dataset in a 
metacell model. We further constructed a metacell model for the two 
CD34-enriched BM samples collected by us using metacell2, in a similar 
fashion to that described previously, and downloaded the Setty et al. 
sequencing data12, processed it by running cell-ranger, and created 
a third BM metacell model from their data. To project our own PB 
data, our own BM data and the Setty CD34-enriched BM data on the 
HCA model, we correlated projected metacells from each of these 
models with HCA metacells over genes showing high variance in the 
HCA model. We annotated each Setty metacell using the mode of its 
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five most correlated HCA metacells. We annotated our own BM data 
using both the mode of the five most correlated HCA metacells and 
expression of gene markers. We projected metacells from each of these 
models on the HCA UMAP using the mean x and y values of the five most 
correlated HCA metacells. To compare S-phase genes between PB and 
BM (Extended Data Fig. 3b), we calculated the S-phase signature (mean 
expression of six cell-cycle genes: TYMS, H2AFZ, PCNA, MCM4, HELLS 
and MKI67) for each PB and HCA metacell and plotted the distribution 
of these scores across metacells for each cell type.

HSC differentiation gene programs
To visualize transcriptional dynamics in HSCs, we sorted MEBEMP and 
CLP metacells based on their AVP expression. To calculate differential 
expression (DE) between HSCs and neighboring cell types (Extended 
Data Fig. 3g), we took the geometric mean expression of each gene 
across each of these cell states (within HSC or CLP-M or MEBEMP-E 
metacells) and calculated the difference of means between HSC and 
MEBEMP-E and between HSC and CLP-M metacells.

DE between individuals unexplained by the metacell model
We compared each individual’s pooled expression profile to a matched 
expression profile based on the individual’s distribution across meta-
cells. We performed this analysis separately for MPPs or MEBEMPs 
(MPP, GMP-E, MEBEMP-E/-L, ERYP and BEMP) and CLPs (CLP-E/-M/-L 
and NKTDP). In each of these cell states, we downsampled each cell to 
have 500 UMIs and summed the UMIs across all cells of each individual, 
normalized the sum to 1 and calculated the log2(value) to obtain the 
observed expression. To compute matched expression, we downsam-
pled each metacell to have 90,000 UMIs and summed all UMIs of the 
metacell to which each cell belongs for each individual. We normal-
ized this matched expression to sum to 1 and took the log2(value). For 
Extended Data Fig. 3c,d, we plotted all genes that were expressed in 
either the observed or the matched expression in at least one individual 
(log2(expression) > 2−14.5 for MPPs or MEBEMPs, > 2−13.5 for CLPs), with 
at least a twofold change between matched and observed in at least 
one individual. We excluded genes exhibiting strong batch effects.

HSPC compositional analysis
To explore variance in cell-type composition between individuals, 
we first calculated the distribution of each individual’s cells across 
the CD34+ cell states. We further partitioned cells from the CD34+ cell 
states into finer-grained bins, using one HSC, four CLPs and ten MPP 
or MEBEMP bins, for a total of fifteen bins. We assigned HSC cells to bin 
0, CLP-E cells to CLP bin 1 and CLP-M/-L cells to CLP bins 2–4 based on 
an AVP expression gradient, such that each of these bins consisted of 
an equal number of cells. We similarly assigned MPP and MEBEMP-E/-L 
cells into equal size MPP or MEBEMP bins 1–10 based on decreasing 
AVP expression.

The bottom panel of Fig. 2d shows individual enrichment across 
bins (log2(ratio of each individual’s cell frequency in each bin to the 
median cell frequency in that bin across individuals)). We partitioned 
individuals into three groups based on their mean enrichment across 
CLP bins 2–4—those with mean enrichment >0.5 are high CLP, those 
with <−0.5 are low and the rest are intermediate. We next defined the 
stemness score as the ratio between the number of cells in MPP or 
MEBEMP bins 1–5 and the total MPP or MEBEMP cells (bins 1–10). Indi-
viduals with stemness score >0.5 had enriched stemness. Individuals 
within each cluster were further sorted based on their stemness score. 
The combination of CLP enrichment and stemness defines the six 
classes shown in the figure.

Test for association between cell-state compositions and a 
numerical label
We used permutation tests to test for an association between cell-state 
distributions and a label, such as CBC indices or sync-scores. We sorted 

CD34+ cell states into 11 bins from late MEBEMP differentiation through 
HSCs to late CLP differentiation (as ordered in Fig. 2b). We correlated 
each of the 11 cell-state frequency vectors to the numerical label vec-
tor. We then looked at triplets of adjacent cell states in this order and 
calculated the mean correlation for each triplet to obtain nine mean 
correlation values and took the maximal absolute correlation value 
as a test statistic. We repeated this process after permuting the label 
vector 10,000× and used the test statistics from the permutations to 
derive a P value.

CD34+ cell frequency in the OneK1K dataset
We built a metacell model for the cells from Yazar et al.25. We labeled 
all cells in metacells with high CD34 expression (log2(fraction of 
UMIs > −14.3)) as CD34+ cells. We then selected individuals with at 
least 800 cells in the model and randomly sampled 800 cells from 
each (Supplementary Table 14). To produce Fig. 3d, we pooled these 
sampled cells by the decade of their individuals’ age and calculated the 
fraction of CD34+ cells in each decade. The 95% confidence intervals 
shown in the figure assume a binomial distribution, given the very 
sparse nature of the data.

Variably expressed gene modules
We detected gene modules with high variance across individuals while 
controlling for compositional variation. This was performed separately 
for myeloid and lymphoid states, in the following manner:

(1)	 For each individual, we calculated the 5th percentile of their 
number of UMIs across all MPP metacell cells and downsam-
pled all cells to this number. We then pooled all downsampled 
cells, normalized to sum to 1 and took the log2(value). This 
gave us the observed expression profile of each individual.

(2)	 We then created the expected expression profile for each 
individual as follows: we partitioned all MPP metacells into 30 
equal size bins based on their AVP expression, and downsam-
pled metacells to 90,000 UMIs. We then took the average 
expression of each gene across downsampled metacells in 
each bin. This defined an expression profile for each of the 
30 bins. To obtain an individual’s expected expression, we 
calculated the weighted average expression profile of bins, 
where the weight of each bin is proportional to the fraction 
of the individual’s cells from that bin, normalized to sum to 
1 and took the log2(value). We then calculated the difference 
between the observed and expected expression profiles.

(3)	 Our data showed some batch effect distinguishing sam-
ples collected in two calendric periods. As this effect could 
introduce co-variation between genes across individuals, we 
applied a correction controlling for it. This was performed 
using a linear model fitting each gene to the sample collection 
period. We then subtracted the inferred period factor from 
the samples that were collected in the second period. We 
found that this approach substantially reduced emergence of 
gene clusters linked with sample collection date bias.

(4)	 We screened for genes with high variance that were unlikely 
to be affected residually by the main manifold differentia-
tion process. We removed genes with high batch effects, 
genes with high AVP correlation (absolute value Pearson’s 
correlation >0.65), and genes highly correlated (absolute 
value Pearson’s correlation >0.5) with a module of differen-
tially expressed genes between the first and second collec-
tion periods. We then calculated each gene’s variance in 
the difference between observed and expected expression 
across individuals. As some of this variance can be explained 
by sampling noise, we plotted each gene’s variance across 
individuals against its mean expression across individuals. We 
sorted genes by this expression value and subtracted from the 
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variance of each gene a rolling mean of the variances of 100 
neighboring genes in that ordering. We chose genes with vari-
ance at least 0.08 higher than the rolling mean variance.

(5)	 We calculated a gene–gene Spearman’s correlation matrix for 
the high variance genes and clustered correlation profiles us-
ing hierarchical clustering. We removed genes with low mean 
correlation (<0.2) to their cluster and then removed gene 
clusters with low mean correlation between their genes  
(≤0.25 mean correlation for all gene pairs). We further 
computed gene–gene correlations using only samples from 
our first library collection period and required gene clusters 
to have a high mean correlation (>0.25) between their genes 
when using only these samples. We removed additional gene 
modules arising from this analysis resulting from batch effects 
or traces of MEBEMP differentiation not normalized by this 
approach. This resulted in Fig. 3f.

We performed a similar analysis for CLPs, with few differences. 
The analysis included all cells from CLP-M metacells. The cells were 
partitioned into six equal size bins and partitioning was based on the 
average of their DNTT and VPREB1 expression. Genes with high absolute 
correlation to the average DNTT and VPREB1 expression were excluded. 
This was followed by hierarchical clustering of the gene–gene correla-
tion profiles and removal of genes as described for MPPs.

Age regression
We developed age-regression models for MPP and CLP expression 
separately. To predict age, we used the difference between an indi-
vidual’s observed and expected gene expression as described above 
(‘Variably expressed gene modules’). We used genes with minimal 
expression ≥2−14.5 for MPPs and ≥2−15.5 for CLPs across individuals. We 
trained a LASSO (least absolute shrinkage and selection operator) 
model using nested leave-one-out cross-validation. For each left-out 
sample, we performed cross-validation on the remaining samples to 
select LASSO’s λ parameter, trained a model using the selected λ and 
made a prediction on the left-out sample.

The LMNA signature
We used the difference between an individual’s observed and expected 
gene expression and correlated this difference to the difference in 
LMNA expression separately for MPPs and CLPs. We then summed 
the MPP and CLP correlation values and kept genes with summed cor-
relation >0.7. We further removed genes with high technical variance, 
retaining 17 genes in the LMNA signature. To calculate individual LMNA 
signatures, we took the average value of these 17 genes in the observed–
expected matrix of each individual for MPPs and CLPs separately. To 
plot Extended Data Fig. 6g, we calculated the geometric mean of LMNA 
signature gene expression for each individual in each one of the ten 
MPP or MEBEMP bins described earlier in Fig. 2d.

GoT analysis
GoT21 performed on sample N122 allowed us to mark this individu-
al’s cells as wild-type or mutated. As a result of the low VAF of N122’s 
DNMT3A mutation, and to increase power, we marked cells with a 
DNMT3A mutation status that could not be determined by GoT as 
wild-type cells. For Extended Data Fig. 6b, we examined sample N122’s 
cell distribution across cell states.

Sync-score
We defined the AVP signature to include genes with high correlation 
(>0.6) to AVP across HSC, MPP and MEBEMP metacells and the GATA1 
signature to include those with high correlation (>0.7) to GATA1. 
We filtered out genes with mean relative expression >2−10 in these 
metacells, to preclude a small number of genes from dominating the 
signatures. We then scored all HSC, MPP, MEBEMP-E and MEBEMP-L 

cells by their fraction of UMIs from the AVP and GATA1 signatures and 
partitioned them into 20 equal size bins of AVP signature expression 
and 20 equal size bins of GATA1 signature expression. The sync-score 
is then defined as the fraction of cells in GATA1 bins 13 and above 
(upper two quintiles of GATA1) that are in AVP bins 9 and above (upper 
three quintiles of AVP expression). To visualize sync-scores (Fig. 3i), 
we normalized this 20 × 20 bin matrix to sum to 1, smoothed the 
obtained matrix by averaging cells using a running window of length 
3 and took the log2(value).

Differential gene expression with respect to age and CBC
DE was performed separately for MPP and CLP cells as well as for men 
and women. The MPP and CLP-M matrices previously used to detect 
variant gene modules were used here as well. Individual gene expres-
sion levels were correlated with age, maximal VAF of CH mutations 
and 20 CBC indices using Spearman’s correlation; the correlation was 
then tested for significance. The P values were false discovery rate 
(FDR)-corrected (Benjamini–Hochberg) for each label separately. For 
maximal VAF we additionally performed a Mann–Whitney U-test com-
paring individuals with and without detected mutations. DE between 
men and women was performed using a Mann–Whitney U-test on the 
same expression matrices.

Reconstruction of MDS classification models using improved 
cell mapping and filtering
For analyzing MDS classification we re-analyzed sequenced libraries 
of all disease cases and healthy individuals in two groups, separated 
by sequencing platform (Illumina and Ultima). Cell filtering was then 
applied for each of the two datasets using the process described above 
with the following minor modifications:

	– Re-mapping all cells using cell-ranger v.7.0.1
	– Both Vireo and Souporcell were limited to 7.4 M SNPs with minor 

allele frequency >0.05 according to the 1,000 Genome project, 
rather than SNPs from our genotyping panel

	– Refined filter for cell exclusion, excluding 10× particles (cells) 
with high mitochondrial content (>20%), platelet signature 
(PPBP > 0.2%), neutrophil signature (LCN2, CAMP and LTF) or 
erythrocyte signature (HBB, HBA1 and HBA2), and also excluding 
cells with low signature of nuclear RNAs (Supplementary Table 9 
includes number of excluded cells)

	– Adjusting the doublet detection algorithm described above with 
an additional filter involving clustering cells and removal of cells 
with UMI count that is higher than 2.5-fold of their computed clus-
ter median (thereby compensating for variable cell sizes across 
types). In addition, cells with high expression of both monocyte 
and MEBEMP markers were filtered out. Such extra steps were 
needed because, in some disease batches, highly specific cell 
states could contaminate other samples more than in standard 
reference batches.

In silico sorting for inferring sample cHSPC compositions
To estimate cHSPC state for a given single-cell transcriptional profile, 
an in silico sorting scheme was developed (Extended Data Fig. 7a). First, 
our original reference model was used to compile gene signatures. 
Each signature was based on genes differentially expressed in a given 
cell type, such that the total number of UMIs for the signature is suf-
ficiently high to allow classification at single-cell resolution (selected 
gene sets in Supplementary Table 13). Extended Data Fig. 7a shows the 
gating strategy used for classification using signature scores (log2(total 
signature UMI in cell) − log2(total cell UMI)). Cells with ambiguous gat-
ing were defined as unassigned. We confirmed that the gating strategy 
yields classification that is consistent with the annotation derived by 
applying metacell analysis to the new Fig. 4 reference model (see below) 
by projecting inferred classes on the metacell model UMAP projection 
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(Extended Data Fig. 7b). We noted that sorting may reduce the manifold 
resolution compared with metacell analysis, but it provides robust 
results for downstream MDS classification purposes.

Healthy donor reference model for MDS analysis
Samples from 79 individuals who were sequenced on the Illumina 
platform and showed no evidence for disease were considered as the 
reference model for MDS classification (Fig. 4). This cohort was used for 
defining the normal distribution of cHSPC composition. It was also the 
basis for constructing a reference metacell model used for projecting 
patient data. This model includes 287,000 cells and 2,090 metacells, 
constructed using metacell2 with a target metacell size of 140 cells 
and other parameters similar to the original normal reference model.

Grouping MDS and cytopenia patients by composition
We used the inferred cHSPC compositions of 70 donors in the Fig. 4 
reference model to score each composition abnormality of patients 
with MDS and cytopenia. Composition vectors p over cell types were 
log-transformed first as lp = log2(ϵ + p) where ϵ = 0.02. The distance 
between two samples was then defined using a Euclidean distance 
between their lp vectors. The abnormality score of a new sample was 
defined as the average distance for the four nearest neighbors in the 
reference model. The 0.98 quantile of the abnormality score of healthy 
donors (excluding reference donors) was used as a threshold (Extended 
Data Fig. 8a) for classifying patient compositions (excluding four 
patients exhibiting complex karyotypes) as normal or abnormal 
(Fig. 4b; GRP1 or GRP2-4, respectively). Patients with abnormal com-
positions were further grouped using hierarchical clustering of their 
lp vectors. Patients with normal compositions were ordered along a 
CLP frequency gradient in Fig. 4b (left), in analogy with Fig. 2d.

Estimating patients’ CNAs using scRNA projection on the 
reference
We constructed a metacell model from the filtered cells of each patient 
separately. This model was projected over the Fig. 4 reference model, 
using MCProj38. The result was a set of metacells for the patient, such 
that each metacell m was defined by its observed gene expression eobsgm  
and projected gene expression eprojgm , as determined by MCProj using 
best matching reference behavior. Expression values were calculated 
using the geometric mean. Genes were filtered to remove sex-specific 
and sequencing-platform-specific genes (559 genes overall; Supple-
mentary Table 15). Further filtering was done for 107 genes showing a 
consistent difference between observed and projected values over all 
individuals, as well as 27,317 lowly expressed genes (Supplementary 
Table 15).

To correct for batch effects leading to small GC content preference 
per library, we grouped genes into ten equal size bins according to 
the average GC content of 3′-scRNA-sequenced tags in representative 
sequenced libraries. For each gene g, we computed total observed and 
expected UMI counts, given the model’s projection on the reference:

nobs
g = ∑

c

nc × eobsgm(c)

nproj
g = ∑

c

nc × eprojgm(c)

where nc is the total number of UMIs for the cell c and m(c) is its metacell. 
The bias per GC bin biasGCbin  is now approximately defined as the  
median of n

obs
g

nproj
g

 across genes in the GC bin. In practice, we calculated  

the ratio nobs
g

nproj
g

 after normalizing nobs
g  and nproj

g  by ∑g′n
obs
g′  and  

∑g′n
proj
g′ , respectively, and adding a regularization term of 10−5.  

We corrected each observed gene expression value eobsgm  by dividing by  

the appropriate biasGCbin value, generating eobs′gm , which is used to obtain 
a per-gene and metacell observed:expected expression log(ratio) 
δgm = log2 (ϵ + eobs

′
gm ) − log2 (ϵ + eprojgm ), whereas ϵ = 10−5.

We split each chromosome to contiguous bins encompassing 
20 genes (ignoring filtered genes). For each chromosome bin 
bchrom and each metacell m, the median log ratio was computed: 
δm,bchrom = Medg∈bchrom(δgm).

The matrix δm,bchrom  of metacells and 20-gene bins describing 
estimated DE was then normalized by subtracting the median of each 
row (metacell) and visualized in a heatmap, where metacells were 
re-ordered using hierarchical clustering. Heatmaps of the derived 
matrices (see, for example, Extended Data Fig. 10a,b) were examined 
manually to identify CNAs (Extended Data Fig. 7c and Supplementary 
Table 12).

Within-state gene signatures
Within-state correlated gene sets were inferred from the reference 
metacell model by clustering the gene–metacell expression matrix of 
each annotated cell type, while considering only highly variable genes 
within the cell type. Clusters were evaluated and selected manually 
and expanded by adding correlated genes, resulting in the final gene 
sets (Supplementary Table 13). An MHC-II gene set was added after 
observation of MDS DE compared with the reference. The signature 
score per cell was estimated as the log-transformed normalized total 
UMI count for each gene set.

Signature scores per patient were extracted using the median 
signature of cells within a respective cell type (following the in silico 
sorting process described above). In the case of too few such cells, the 
signature score was considered missing (NA).

After classification of patients with cytopenia and MDS into groups 
1–4 (Fig. 4b), we performed, for each within-state gene signature (and 
each relevant state), a Kruskal–Wallis test comparing signature expres-
sion levels between groups 1–4 and healthy donors. The signatures 
with the lowest P values were the MEBEMP-L MHC-II, S-phase and BEMP 
early signatures, which were accordingly shown in Fig. 4e and Extended 
Data Fig. 8d.

Features for MDS classification
The following features were collected to facilitate MDS classification:

	– CBC values: we used the values with minimal time gap from the 
cHSPC sampling date

	– Maximal CH VAF across mutations detected in the same blood 
sample that was used for scRNA-seq

	– The cHSPC compositions as inferred through in silico sorting
	– Twenty-one signature scores
	– Composition abnormality score (ʽGrouping MDS and cytopenia 

patients by compositionʼ)
	– Number of CNAs.

We noted that signature scores might be missing (as a result of 
insufficient number of cells). In addition, a few individuals were miss-
ing CBC values.

All feature values per scRNA sample are included in Supplemen-
tary Table 9.

MDS classifier training and testing
XGBoost (xgboost Python package, v.2.0.3) training was performed on 
cohort 1 including 89 samples (41 normal, 20 cytopenia and 28 MDS). 
All of the samples in cohort 1 were sequenced on the Ultima platform. 
MDS (including MDS or myeloproliferative neoplasms) samples were 
considered positive, whereas cytopenia and normal samples were 
considered negative.

We applied feature selection separately in each leave-one-out 
fold, selecting a subset of the features for which the FDR-corrected 
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Mann–Whitney P value for MDS or cytopenia separation was <0.1. We 
then inferred a classifier using the binary:logistic objective and default 
hyperparameters, except for tree_method = hist. Model performance 
was evaluated by pooling accuracy on the left-out samples of their 
respective folds.

Further evaluation of the approach was done by classifying cohort 
2 (16 MDS and 9 cytopenia cases, all sequenced on the Illumina plat-
form) using the classifier trained on cohort 1.

Blasts versus CLP-E analysis
We compared blast fraction from BM samples acquired at most 1 year 
before or after cHSPC sampling. Comparison was also restricted to 
cHSPC samples with >500 HSPCs (scRNA samples used in this analysis 
are specified in Supplementary Table 9). CLP-E-like frequency estima-
tion was as described in Extended Data Fig. 9d.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All scRNA-seq data generated in the present study is available in the 
Gene Expression Omnibus under accession no. GSE285943, in CELLx-
GENE (https://cellxgene.cziscience.com/collections/5542eeb0-96ef- 
4ab9-95ea-eb6abc178461) and as metacells at https://apps.tanay-
lab.com/MCV/blood_aging. Targeted DNA sequencing data of clonal 
hematopoiesis mutations by MIP is available in the European Nucle-
otide Archive under accession no. PRJEB85241. All of this data was 
uploaded in accordance with donor written informed consent.

Code availability
Code to reproduce the figures is available at https://github.com/ 
tanaylab/blood_aging. The Metacell package is available at https:// 
github.com/tanaylab/metacells.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Cell state annotation, major markers and regulators 
of HSC differentiation and sub-population branching. 1A – age distribution 
(decimals) of studied population by sex. 1B – 2D UMAP projection of our metacell 
model prior to CD34 metacell filtering. 1C - relative expression heatmap of cell 
states (columns) and gene markers used for cell state annotation (rows).  
1D – Metacell filtration on CD34 expression. 1E - expression plot of MPO and 

GATA1/VPREB1 showing all 3 differentiation trajectories (GMPs, CLPs, MEBEMPs) 
from HSCs. 1F - gene-gene expression plot of DNTT and RUNX3, showing early 
CLP differentiation and their bifurcation into late CLPs and NKTDPs. All gene 
expression values are obtained by normalizing gene expression to sum to 1 and 
taking log2.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | BM comparisons I. 2A – 2D UMAP projection of a non-
CD34-enriched BM metacell model from the Human Cell Atlas14, colored by  
a BM-specific cell state annotation. 2B - projection of our PB CD34+ derived 
metacells on the non-CD34 enriched BM metacell model. 2C – projection of our 
BM CD34+ derived metacells on the non-CD34 enriched BM metacell model.  
2D - projection of BM CD34+ derived metacells from Setty et al.12 on the  
non-CD34 enriched BM metacell model. 2E - gene-gene expression plots 

comparing PB CD34+ derived metacells with their BM CD34+ counterparts  
from our study and from Setty et al. for all differentiation trajectories.  
Panels (top to bottom) represent CLP differentiation, MEBEMP differentiation, 
GMP differentiation, BEMP differentiation, DC differentiation, and GMP/CLP/
MEBEMP trifurcation from HSCs. PB and BM metacells are colored by PB and BM 
specific annotations.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | BM comparisons, Individual-specific state-controlled 
differential gene expression, megakaryocytic contamination and circulating 
HSCs. 3A – gene-gene expression plots comparing PB CD34+ derived metacells 
with their BM CD34+ counterparts from our study and from Setty et al.12 for 
markers and regulators of CLP differentiation and bifurcation. 3B – cell state 
specific comparison of S-phase signatures in circulating (left) and. BM14, right) 
HSPCs. Boxplot centers, hinges and whiskers represent median, first and 
third quartiles and 1.5× interquartile range, respectively. Outliers are marked 
by circles. Number of metacells per box (left to right): 89, 124, 261, 1178, 116, 
668, 69, 88, 378, 88, 127; 5, 194, 62, 82, 87, 43, 35, 3. 3C,D – Individual-specific 
differential gene expression after controlling for distribution across the CD34+ 
PB manifold in MEBEMPs (C) and CLPs (D). 3E - relative expression heatmap of 
the megakaryocytic markers PF4 and PPBP and cell-state-specific markers, across 
metacells with high megakaryocytic signature, showing an abnormally high 

doublet rate involving megakaryocytes. Cells contained in such metacells were 
accordingly excluded from the final metacell model. 3F - gene-gene expression 
plots comparing the PB high AVP and HLF HSC population (left) with that found 
in two BM metacell models12,14 and in our CD34+ BM data. PB and BM metacells 
are colored by PB and BM specific annotations. 3G – map of transcriptionally 
activated genes upon exit from the HSC state and differentiation toward 
lymphoid (CLP) and non-lymphoid (MEBEMP) fates. Dots represent genes.  
HSC/CLP and HSC/MEBEMP gene expression ratios are depicted on the y and 
x axis, respectively. Class I genes are representative of the HSC state; Class II 
genes exhibit symmetric transcriptional activation upon exit from the HSC state 
towards CLP and MEBEMP fates, whereas Class III, IV, V, VI exhibit asymmetrical 
transcriptional activation upon exit from the HSC state towards CLP (class III, V) 
and MEBEMP (Class IV, VI) fates. n is the number of genes in each class.
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Extended Data Fig. 4 | Factors involved in BEMP and NKTDP differentiation. 
4A - factors positively and negatively regulated in the early stages of BEMP 
specification. 4B – gene-gene expression plots of DNTT and ACY3 comparing 
CD34-enriched12 and non-enriched14 BM to our CD34+ BM model (top), as well 
as non-enriched25 and partially CD34-enriched PB39 to our CD34+ PB model 

(bottom). Metacells are color-coded by SYT2 expression. The SYT2 high, ACY3 
high, DNTT intermediate population clearly seen in our cHSPC data is completely 
lacking from the BM datasets. 4C – anti-correlation of the DC IRF8-MHC-II 
coupled dynamics and the T cell regulator TCF7, involved in the bifurcation of the 
NKTDP state to its sub-populations.
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Extended Data Fig. 5 | Stability of cell state compositions across technical 
and biological replicates. 5A – comparison of Illumina and Ultima Genomics 
sequenced data. Each panel represents one library that was sequenced using 
both technologies. Points represent genes, and each gene’s expression level 
across all cells in the library as determined by Illumina (x) and Ultima Genomics 
(y) is shown. 5B – Cell state frequency comparisons between 39 technical & 19 
biological replicates and their original samples. Each pair of panels represents 

one cell state, denoted on top. Panels on the left of each pair compare the cell 
state frequency in the original sample, sequenced by Illumina (x), to its technical 
replicate frequency, sequenced by Ultima Genomics (y). Panels on the right 
of each pair compare the cell state frequency in the original sample (x) to its 
frequency in the biological replicate (y). All biological replicates were sampled  
1 year following original blood sampling. The diagonal y = x is shown in red.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Composition-controlled transcriptional variation: 
the LMNA signature and sync score. 6A – boxplots showing CLP frequency 
distributions in individuals with (right) and without (left) clonal hematopoiesis. 
Boxplot centers, hinges and whiskers represent median, first and third quartiles 
and 1.5× interquartile range, respectively. Outliers are marked by circles. Two-
sided Mann-Whitney U p-value is indicated. 6B - Relative cell state frequencies 
in mutant (right) and non-mutant (left) cells following GoT of sample N122 
(DNMT3A R882H mutated, VAF = 0.07). P-values were calculated using two-sided 
Fisher’s exact tests. 6C – Similar data as in Fig. 3a, showing each individual’s 
age and MEBEMP (left) or CLP (right) cell-state frequency. Each dot represents 
an individual. Males are color-coded in blue and females in red. P-values for 
Spearman test of independence are indicated for males and females. 6D – Same 
data as in Fig. 3d, showing individual age distributions (y axis) stratified by the 
(down-sampled) number of CD34+ single cells. Boxes represent median, first 
and third quartiles. Stars denote significant difference from the age distribution 

of individuals with 0 observed down-sampled CD34+ cells, as determined by 
two-sided Mann-Whitney U test. 6E – True age (x) versus age predicted based 
on composition-controlled CLP expression (y). The diagonal y = x is shown in 
red. 6F – the LMNA signature – co-variation of LMNA expression with ANXA1, 
TAGLN2, AHNAK, MYADM, TSPAN2 and VIM. 6G – heatmap of individual LMNA 
signature expression across the MEBEMP trajectory. Individual age and sex are 
color-coded on top. 6H – LMNA signature vs AVP expression in HSCs (denoted 
by high AVP, center) and throughout MPP / MEBEMP (left) and lymphoid (right) 
differentiation. 6I - LMNA signature expression correlations between 39 technical 
& 17 biological replicates and their original samples, calculated across MEBEMPs 
(top) and CLPs (bottom). The diagonal y = x is shown in red. 6J - sync score 
correlations between 39 technical & 20 biological replicates and their original 
samples. All biological replicates were sampled 1 year following original blood 
sampling. The diagonal y = x is shown in red.

http://www.nature.com/naturemedicine


Nature Medicine

Resource https://doi.org/10.1038/s41591-025-03716-5

Extended Data Fig. 7 | In-silico sorting scheme and copy number alterations. 
7A – In-silico sorting scheme for a CD34-enriched PB scRNA sample. Each scatter 
plot demonstrates one or two virtual gates, based on total expression of gene 
signatures that were compiled using our cHSPC reference model. Representative 
cells shown belong to the 79 healthy donors comprising our Fig. 4 reference 
model (see Methods). Colors denote sorted cell states. 7B – Validation of in-
silico sorting by annotated metacells. UMAP projection of the metacell model 
comprised of cells in A is shown, colored according to metacell annotation by 

marker genes (top), as in Extended Data Fig. 1C, and according to in-silico sorted 
state frequency, for each common cHSPC state (bottom). 7C – Distribution of 
copy number alterations (CNAs) identified by abnormal RNA expression over 
chromosomes (rows) and individuals (columns). Duplications and deletions 
are shown in red and blue, respectively. None of the individuals exhibited both 
duplication and deletion in the same chromosome. Individuals w/o CNAs are  
not shown.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | MDS cHSPC composition groups. 8A – Distribution of 
composition abnormality scores across clinical diagnoses. The vertical grey 
line marks the 98th percentile score of healthy donors, defining the normal-like 
composition (group 1) and abnormal composition (groups 2-4) shown in Fig. 
4b. 8B – In-silico sorted CLP frequencies across clinical diagnoses. Individuals 
are further separated by sex (male – left, female – right). Colors denote clinical 
diagnoses. Stars denote BH-adjusted significant difference from healthy donors 
of the same sex, determined by two-sided Mann-Whitney U test. 8C – Age and 

CBC indices values across healthy donors and cytopenia/MDS groups as in 
Fig. 4e. 8D – For each signature shown in Fig. 4e, biological replicate data is 
shown, comparing signature expression between the first and second sample. 
Individuals with insufficient cell counts for the population of interest were 
excluded. Linear fit across all individuals (n = 28 – MEBEMP-L MHC-II and S-phase 
signatures, n = 25 – BEMP early signature) is shown (dashed line), as well as the 
corresponding r- and (non-adjusted, two-sided) p-values.
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Extended Data Fig. 9 | MDS classification model, CLP-E-like state. 9A – Features 
used by the MDS classification model whose performance is shown in Fig. 4f. 
For each feature used by the model, SHAP analysis shows the estimated impact 
of the feature on classification for each individual. Colors denote individual 
feature values. 9B – same as A, but for an MDS classification model that does 
not use maximal CH VAF as a feature. 9C – ROC curve as in Fig. 4f, but for an 

MDS classification model that does not use maximal CH VAF as a feature. 9D 
– Definition of the CLP-E-like state. Distribution of the CLP signature is shown 
across all HSC/MPP and CLP cells (as defined using our in-silico sorting) in the 
Fig. 4 reference model, along with thresholds (red) defining an intermediate 
expression level (shaded grey). HSC/MPP and CLP cells exhibiting these 
intermediate CLP expression levels are considered to be in a CLP-E-like state.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Progression and remission case studies, abnormal 
composition reproducibility and stability of cytopenia patients after cHSPC 
sampling. 10A – Case study of disease progression. scRNA cHSPC samples 
were obtained for MDS patient N180 in 2021 (at which time he was diagnosed 
as cytopenic), 2022 and 2023, and a metacell model was constructed for each. 
Copy number variation (CNV) analysis is shown for each of these samples (top). 
Normalized gene expression (by the Fig. 4 reference model) for each metacell 
(row) and chromosomal region (column) is shown. This analysis revealed a small 
clone with trisomy 8 (red), and deletions in chromosomes 3 and 5 (del(5q)) 
(blue). Estimated clone size, as a percentage of total cHSPCs, is specified 
for each sample. Cell-state frequencies for cells with and without identified 
CNVs are shown on the right of each CNV analysis. The number of cells in each 
group is indicated. Longitudinal hemoglobin counts (bottom) are also shown, 
with grey vertical lines denoting dates of scRNA sampling. 10B – Case study 
of remission. Same as A, but for MDS del5q patient N211, sampled before and 
after lenalidomide treatment (bottom, shaded grey). Initial CNV analysis of her 
scRNA data revealed a very large clone with del(5q), which could not be detected 

following treatment with lenalidomide. 10C – Recurring abnormal cell state 
frequencies. For each of 6 individuals, cHSPC compositions (obtained by in-silico 
sorting) are shown for two different scRNA samples, demonstrating recurrence 
of abnormal cHSPC state frequencies (N192 – high BEMP, N235 and N281 – high 
GMP-L, N204 and N165 – high CLP, N78 – low CLP). 10D – Distribution of follow-
up intervals, between cHSPC sampling and most recent available CBC results, 
across 29 (out of 33) patients with cytopenia. Boxplot indicates first, second and 
third quartiles. 10E – As a positive control for CBC instability in MDS, earlier CBC 
results were retrieved for MDS patients, targeting an interval of approximately 
600 days between 1st and 2nd CBC measurements, to reflect the follow-up 
duration observed in patients with cytopenia. Shown here is the distribution of 
these simulated follow-up intervals for patients with MDS (similar to D). Treated 
patients and those with follow-up intervals <200 days were excluded from this 
analysis. 10F – Change in RDW values over follow-up intervals shown in D and 
E, used as a proxy for disease progression. Colors denote clinical diagnosis at 
cHSPC sampling.
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