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Abstract 

Microbial communities usually harbor a mix of bacteria, archaea, plasmids, viruses and microeukaryotes. Within these communities, viruses, 
plasmids, and microeukary otes coe xist in relativ ely lo w abundance, y et the y engage in intricate interactions with bacteria. Moreo v er, viruses 
and plasmids, as mobile genetic elements, play important roles in horizontal gene transfer and the de v elopment of antibiotic resistance within 
microbial populations. Ho w e v er, due to the difficulty of identifying viruses, plasmids, and microeukaryotes in microbial communities, our un- 
derstanding of these minor classes lags behind that of bacteria and archaea. R ecently, se v eral classifiers ha v e been de v eloped to separate 
one or more minor classes from bacteria and archaea in metagenome assemblies. Ho w e v er, these classifiers often o v erlook the issue of class 
imbalance, leading to low precision in identifying the minor classes. Here, we developed a classifier called 4CAC that is able to identify viruses, 
plasmids, microeukaryotes, and prokaryotes simultaneously from metagenome assemblies. 4CAC generates an initial f our-w a y classification 
using se v eral sequence length-adjusted XGB oost models and further impro v es the classification using the assembly graph. Ev aluation on simu- 
lated and real metagenome datasets demonstrates that 4CAC substantially outperforms existing classifiers and combinations thereof on short 
reads. On long reads, it also shows an advantage unless the abundance of the minor classes is v ery lo w . 4CAC runs 1 –2 orders of magnitude 
faster than the other classifiers. The 4CAC software is available at https:// github.com/ Shamir-Lab/ 4CAC . 
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icrobial communities in natural and host-associated envi-
onments are often dominated by bacteria and coinhabited by
rchaea, fungi, protozoa, plasmids and viruses ( 1 ). Changes in
icrobiome diversity, function and density have been linked
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to a variety of disorders in many organisms ( 2 ,3 ). As the domi-
nant group of species in microbial communities, bacteria have
been widely studied. Taxonomic classification tools ( 4 ,5 ) and
metagenome binning tools ( 6–9 ) were proposed to detect bac-
terial species present in a microbial community directly from
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reads or after assembling reads into contigs. It is known that
the specific composition and abundance of certain bacterial
species affect their host’s health and fitness ( 10–12 ). In con-
trast, our understanding of plasmids, viruses, and microbial
eukaryotes largely lags behind, due to their lower abundance
and the difficulty of detecting them in microbial communi-
ties ( 13 ,14 ). Recent studies revealed that viruses and plas-
mids play important roles in horizontal gene transfer events
and antibiotic resistance ( 15–18 ), and microbial eukaryotes
have complex interaction with their hosts in both plant- and
animal-associated microbiomes ( 14 ,19 ). To better understand
the species composition and the function of each species in
microbial communities, classifiers that can identify not only
bacteria but also the other members of a microbial commu-
nity are needed. 

Many binary and three-class classifiers have been devel-
oped in recent years for separating viruses and plasmids from
prokaryotes (bacteria and archaea) in microbial communi-
ties. V irSorter2 ( 20 ), DeepV irFinder ( 21 ), VIBRANT ( 22 ) and
many other classifiers ( 23 ,24 ) were designed to separate
viruses from prokaryotes. Plasmid classifiers, such as Plas-
Flow ( 25 ), PlasClass ( 26 ), Deeplasmid ( 27 ), PLASMe ( 28 )
and Platon ( 29 ) were developed to separate plasmids from
prokaryotes. As both viruses and plasmids are commonly
found in microbial communities, three-class classifiers, such
as PPR-Meta ( 30 ), viralVerify ( 31 ), 3CAC ( 32 ) and geNo-
mad ( 33 ) were proposed to simultaneously identify viruses,
plasmids and prokaryotes from metagenome assemblies. In
contrast, microbial eukaryotes, such as fungi and protozoa,
are integral components of natural microbial communities
but were commonly ignored or misclassified as prokaryotes
in most metagenome analyses. More recently, EukRep ( 34 ),
Tiara ( 35 ) and Whokaryote ( 36 ) were proposed to dis-
tinguish microeukaryotes from prokaryotes. However, even
though prokaryotes, microeukaryotes, viruses and plasmids
are present in most microbial communities, there is a lack of
four-class classifiers that can simultaneously identify and dis-
tinguish all of them. (DeepMicroClass ( 37 ), a five-way clas-
sifier, was published while this article was under review and
is included in our analysis.) Moreover, most classifiers over-
look the fact that microbial communities are dominated by
bacteria and thus classes are imbalanced in metagenome as-
semblies. Therefore, they have low precision in classifying
minor classes such as viruses, plasmids, and microeukary-
otes ( 21 ,32 ). Additionally, although short contigs usually ac-
count for a large proportion of short-read assemblies, ex-
isting classifiers exhibit poor performance on short con-
tigs by either misclassifying them or designating them as
uncertain. 

In this work, we present 4CAC (4-class adjacency-
based classifier), a fast algorithm to identify viruses, plas-
mids, microeukaryotes, and prokaryotes simultaneously from
metagenome assemblies. 4CAC generates an initial classifica-
tion using a set of XGBoost models trained on known refer-
ence genomes. The XGBoost classifier outputs four scores for
each contig to indicate its confidence of being classified as a
virus, plasmid, prokaryote, or microeukaryote. To assure high
precision in the classification of minor classes, we set higher
score thresholds for classifying minor classes compared to
prokaryotes. Subsequently, inspired by 3C AC, 4C AC utilizes
the adjacency information in the assembly graph to improve
the classification of short contigs and of contigs with lower
confidence in the initial classification. Evaluation of 4CAC 

against combinations of existing classifiers on simulated and 

real metagenome datasets demonstrates that 4CAC has sub- 
stantially better performance on short reads. On long reads, it 
also shows an advantage unless the abundance of the minor 
classes is very low. 

Materials and methods 

4CAC accepts as input a set of contigs and the associated as- 
sembly graph, and aims to classify each contig in the input 
as virus, plasmid, prokaryote, microeukaryote, or uncertain.
4CAC generates four-class classifications with high precision 

by combining machine learning methods with graph informa- 
tion. The details of the algorithm are explained below. 

Design and implementation of the XGBoost 
classifier 

Training, validation and testing datasets 
To train and test our classifier, we downloaded all complete 
assemblies of viruses, plasmids, prokaryotes (bacteria and ar- 
chaea), and microeukaryotes (fungi and protozoa) from the 
National Center for Biotechnology Information (NCBI) Gen- 
Bank database (download date 22 April 2023). After filter- 
ing out duplicate sequences, this database contained 31 129 

prokaryotes, 69 882 viruses, 28 702 plasmids and 2486 mi- 
croeukaryotes, which were further divided into three parts 
based on the release dates of the genomes. Genomes released 

before December 2021 were used for training , those released 

between December 2021 and April 2022 were used for valida- 
tion , and those released after April 2022 were used for testing .
In this way, the sets of genomes for training, validation, and 

testing are disjoint. Statistics from the training set were used to 

construct the XGBoost classifier. The validation set was used 

to tune the threshold of each class. The test genomes were 
used to construct simulated metagenomes that were used to 

benchmark all algorithms. 
Note that splitting the data based on release date does not 

completely prevent high similarity between the datasets, as the 
identification of novel species relies heavily on known refer- 
ence genomes. Supplementary Figure S1 summarizes the sim- 
ilarity distribution between the testing and training datasets.
Reassuringly, for prokaryotes, eukaryotes, viruses, and plas- 
mids, only 3.7%, 9.5%, 15.4% and 18.2% of the testing 
genomes, respectively, had similarity > 85% to the training 
genomes. We believe this constitutes a realistic scenario, as 
some sequences encountered in new samples are likely to have 
highly similar counterparts in the database. 

Training the XGBoost classifier 
Inspired by previous studies ( 26 , 30 , 38 ), we trained several 
XGBoost models for different sequence lengths to assure the 
best performance. Specifically, five groups of fragments with 

lengths 0.5 kb, 1 kb, 5 kb, 10 kb and 50 kb were sampled from 

the training genomes as artificial contigs. The composition in- 
formation of each fragment is summarized by concatenating 
the canonical k -mer frequencies for k from 3 to 7, which re- 
sults in a feature vector of length 10 952. We sampled 180k,
180k, 90k, 90k and 50k fragments from each class to train 

the XGBoost models for sequence lengths 0.5 kb, 1 kb, 5 kb,
10 kb and 50 kb, respectively. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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ength-specific classification 

o assure the best classification for sequences of different
engths, we classify a sequence using the XGBoost model that
s trained on fragments with the most similar length. Namely,
he five XGBoost models we trained above are used to clas-
ify sequences in the respective length ranges (0, 0.75 kb],
0.75 kb, 3 kb], (3 kb, 7.5 kb], (7.5 kb, 30 kb], and (30 kb,
 ]. Given a sequence, we calculate its canonical k -mer fre-

uency vector and use it as the feature vector to classify the
equence with the model that matches its length. The calcu-
ation of k -mer frequency vector can be performed in parallel
or different sequences to achieve faster runtime. 

For each sequence in the input, the XGBoost classifier
utputs four scores between 0 and 1 indicating its confi-
ence of being classified as a virus, plasmid, prokaryote or
icroeukaryote. Existing algorithms ( 26 , 30 , 38 ) usually clas-

ify a sequence into the class with the highest score by de-
ault. To improve precision, a threshold can be specified and
equences whose highest score is lower than the threshold
ill be classified as ‘uncertain’. However, due to the over-
helming abundance of prokaryotes in the metagenome as-

emblies (usually ≥70%), a high threshold results in low re-
all in the classification of prokaryotes, while a low thresh-
ld results in low precision in the classification of the mi-
or classes (virus, plasmid, and microeukaryote). Taking into
onsideration the class imbalance in metagenome assemblies,
e chose to set different thresholds for classifying different

lasses. Tests on simulated metagenomes assembled from the
alidation dataset show that increasing score thresholds for
rokaryotes and eukaryotes had little effect on the precision
ut decreased the recall a lot ( Supplementary Figures S2 and
3 ). Thus we did not set specific score thresholds for prokary-
tes and eukaryotes. In other words, a sequence was classi-
ed as prokaryote or eukaryote if that class had the highest
core, irrespective of its value. For viruses and plasmids, we
ested several score thresholds (0.8, 0.85, 0.9, 0.95) and sim-
lar results were observed, while increasing the score thresh-
ld slightly improved the result in both precision and recall
see Supplementary Table S1 and Figure S4 ). Note that in-
reasing the score threshold did not decrease the recall of
CAC, because the graph refinement step implemented later
an significantly improve the recall over the initial classifi-
ation. Therefore, in the 4CAC algorithm, we set the default
core threshold of 0.95 for classifying contigs as viruses and
lasmids. 

efining the classification using the assembly 

raph 

o understand the species present in a microbial community,
he common practice is to first assemble the sequencing reads
nto longer sequences called contigs , and then classify these
ontigs into classes. Broadly used metagenome assemblers,
uch as metaSPAdes ( 39 ) and metaFlye ( 40 ), use assembly
raphs to combine overlapped reads (or k -mers) into contigs.
odes in an assembly graph represent contigs and edges rep-

esent sequence overlaps between the corresponding contigs.
n our description below, the neighbors of a contig are its ad-
acent nodes in the undirected assembly graph. Most exist-
ng classifiers take contigs as input and classify each of them
ndependently based on their sequence. Our recent work on
hree-class classification demonstrated that neighboring con-
igs in an assembly graph are more likely to come from the
same class and thus the adjacency information in the graph
can assist the classification ( 32 ). Therefore, here too we ex-
ploit the assembly graph to improve the initial classification
by the following two steps. 

(1) Correction of classified contigs. All classified contigs are
scanned in decreasing order of the number of their clas-
sified neighbors. For a classified contig c , if it has at least
two classified neighbors and all of them belong to the
same class while c belongs to a different class, 4CAC cor-
rects the classification of c to be the same as its classified
neighbors. Note that once a contig was corrected, the
class of this contig and its classified neighbors will not
be corrected anymore. 

(2) Propagation to unclassified contigs. For an unclassified
contig c , if all of its classified neighbors belong to the
same class, 4CAC assigns c to that class. Unclassified con-
tigs are scanned and classified in decreasing order of the
number of their classified neighbors. We repeat this step
until no propagation is possible. 

Since each contig can be corrected at most once, the cor-
rection step is run only once. After the correction step, the
propagation step is applied iteratively until no more uncertain
contigs can be classified. 

Simulated metagenomes 

To evaluate the performance of 4CAC and existing classifiers,
we simulated two short-read and two long-read metagenome
test datasets as follows. 100 prokaryotes, 461 co-existing plas-
mids, 500 viruses and 6 microeukaryotes were randomly se-
lected from the NCBI GenBank Database to mimic species in
a microbial community. All the genomes were selected from
the test set, and thus they were not included in the training
and validation sets of the classifier. As a generic metagenome
scenario, we simulated reads in proportions that mimic typical
metagenomic environments. Specifically, reads from prokary-
otes, eukaryotes, viruses and plasmids were simulated in a ra-
tio of 56:24:10:10. As a filtered metagenome scenario, where
reads from host genomes are filtered out and thus plasmids
and viruses are enriched, we simulated reads from prokary-
otes, eukaryotes, viruses and plasmids in a ratio of 14:6:40:40.
To achieve the desired proportions after the filtering step,
we randomly removed 93.8% of host reads from the generic
metagenome scenario while keeping the reads from viruses
and plasmids unchanged. The relative abundance of genomes
within each class was set as in ( 26 ). The abundance profiles of
prokaryotes, eukaryotes, and viruses were modeled by the log-
normal distribution. The copy numbers of co-existing plas-
mids were simulated by the geometric distribution with pa-
rameter p = min(1, log 10 ( L ) / 7), where L is the plasmid length
as in ( 26 ). The abundance profile of plasmid genomes was cal-
culated from their host abundance profile and the copy num-
bers of plasmids. 150 bp short reads were simulated from the
genome sequences using InSilicoSeq ( 41 ) and assembled by
metaSPAdes. Long reads were simulated from the genome se-
quences using NanoSim ( 42 ) and assembled by metaFlye. The
error rate of long reads was 9.8% and their average length was
14.9 kb. For each assembly, contigs were mapped to the refer-
ence genomes by metaQUAST ( 43 ) to define the ground truth.
To ensure confident assignment of contigs, contigs with am-
biguous alignment results by metaQUAST and contigs shorter
than 500 bp were excluded from our analysis. We denote by

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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Sim_AN the simulation with A = S for short reads and A = L
for long reads, N = G for the generic scenario and N = F for the
filtered scenario. For example, Sim_SF is the short read filtered
scenario. 

To determine the best score thresholds of classifying con-
tigs by XGBoost classifier, we generated four additional val-
idation datasets analogously to those described above, by
selecting 100 prokaryotes, 424 co-existing plasmids, 500
viruses and 6 microeukaryotes from the validation genomes.
We call them Sim_SG_valid, Sim_SF_valid, Sim_LG_valid and
Sim_LF_valid, respectively. 

Finally, since the newly released species used in the test
and validation sets may contain species similar to those used
for training the classifier, we simulated additional datasets
wherein all species in the test set are guaranteed to be suf-
ficiently different from the training species. We selected 100
prokaryotes, 419 co-existing plasmids, 500 viruses and 6 mi-
croeukaryotes from the test set that have similarities less
than 85% to any of the species in the training and valida-
tion set. The other steps of generating reads and assembling
reads into contigs were the same as above. We call these sets
Sim_SG_lowANI, Sim_SF_lowANI, Sim_LG_lowANI and
Sim_LF_lowANI, respectively. Table 1 summarizes the prop-
erties of the datasets and the assemblies. 

Evaluation criteria 

All the classifiers were evaluated based on precision, recall and
F1 scores calculated as follows. 

• Precision: the fraction of correctly classified contigs
among all classified contigs. Note that uncertain contigs
were not included in this calculation. 

• Recall: the fraction of correctly classified contigs among
all contigs. 

• F1 score: the harmonic mean of the preci-
sion and recall, or equivalently: F1 score =
(2*precision*recall) / (precision + recall). 

Following ( 26 ,30 ), the precision, recall, and F1 scores here
were calculated by counting the number of contigs and did
not take into account their length. The precision and recall
were also calculated separately for virus, plasmid, prokary-
ote and eukaryote classification. For example, the precision of
virus classification was the fraction of correctly classified virus
contigs among all contigs classified as viruses, and the recall
of virus classification was the fraction of correctly classified
virus contigs among all virus contigs. 

Results 

We benchmarked the performance of 4CAC against exist-
ing classifiers using both simulated and real metagenome as-
semblies of long and short reads. For comparison, we se-
lected eight binary classifiers and four three-way classifiers.
Our analysis revealed that 4CAC outperforms existing clas-
sifiers across almost all the tested datasets. Furthermore, we
combined existing binary and three-way classifiers to gener-
ate four-way classifications and evaluated their effectiveness.
Additionally, a five-way classifier, DeepMicroClass ( 37 ), was
published while this article was under review and is included
in our analysis. 
4CAC outperforms existing classifiers on simulated 

metagenomes 

To evaluate 4CAC in classifying viruses, plasmids, and eu- 
karyotes from metagenome assemblies, we conducted a 
comprehensive comparison against the start-of-the-art bi- 
nary classifiers, including the viral classifiers DeepVirFinder 
and VIBRANT, the plasmid classifiers PlasClass, Platon and 

PLASMe, and the eukaryote classifiers EukRep, Whokary- 
ote, and Tiara. Figure 1 summarizes the results. 4CAC out- 
performs almost all binary classifiers in each class classifica- 
tion, except in the classification of eukaryotes, where Tiara 
achieves a slightly higher F1 score on the Sim_LF dataset 
(here and throughout, results were evaluated by their F1 score.
See Methods for details). In classifying viruses, the XGBoost 
classifier designed in this study, without using the graph in- 
formation, outperforms the start-of-the-art viral classifiers.
In plasmid classification, the XGBoost classifier achieves the 
second-best performance in long-read assemblies, while Pla- 
ton and PLASMe are the second-best in short-read assem- 
blies. In classifying eukaryotes, all classifiers have good perfor- 
mance in long-read assemblies with Tiara and 4CAC achieving 
the best result. However, in short-read assemblies, 4CAC and 

the XGBoost classifier maintain consistently high F1 scores 
while the performance of the other eukaryote classifiers is 
markedly lower. Not surprisingly, by utilizing the graph in- 
formation, 4CAC improved the XGBoost classification results 
in 11 out of 12 classifications across all datasets, and the im- 
provement is dramatic in classifying plasmids from short-read 

assemblies. 
Supplementary Figure S5 summarizes the precision and re- 

call of 4CAC and the binary classifiers. In classifying viruses 
and eukaryotes, 4CAC achieves the best precision and compa- 
rable recall in all the simulated datasets. In the classification of 
plasmids, Platon achieves the highest precision but low recall,
while PLASMe achieves the highest recall but low precision 

across all four simulated datasets. 4CAC attains the second- 
best precision and recall, resulting in the best F1 scores in all 
the simulated datasets. Compared to the initial classification 

generated by XGBoost classifier, the graph refinement step of 
4CAC dramatically improves the recall in classifying viruses 
and plasmids from short-read assemblies. 

Note that these binary classifiers were developed to iden- 
tify viruses, plasmids, and microeukaryotes from metagenome 
assemblies respectively, and classify the remaining contigs as 
prokaryotes. There are currently no tools specifically designed 

for prokaryote classification. Supplementary Figure S6 illus- 
trates the performance of binary classifiers and 4CAC in clas- 
sifying prokaryotes. As anticipated, 4CAC achieves the best 
performance. 

In addition, we conducted a comprehensive comparison be- 
tween 4CAC and a set of three-way classifiers specifically de- 
signed to classify viruses and plasmids simultaneously from 

metagenome assemblies. The evaluated classifiers included 

PPR-Meta, viralVerify, geNomad, and 3CAC. Figure 2 sum- 
marizes the results. Note that 3CAC utilizes either PPR-Meta 
or viralVerify to generate its classification. Therefore, we refer 
to the execution of 3CAC using viralVerify as 3CAC(vV) and 

using PPR-Meta as 3CAC(PM). Across the various datasets,
4CAC consistently achieved the highest F1 scores in classify- 
ing both viruses and plasmids, outperforming the other classi- 
fiers. The only exception was observed in the Sim_LF dataset,
where 3CAC(vV)) exhibited a slightly higher F1 score than 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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Table 1. Properties of the simulated and the real metagenomic datasets 

Number of read (M) Number of assembled contigs Short contigs 

Dataset Read type Prokaryote Eukaryote Plasmid Virus Prokaryote Eukaryote Plasmid Virus ( < 1 kb) 

Sim_SG MiSeq 56 24 10 10 15 460 8112 1725 1275 5095 
Sim_SF MiSeq 3.5 1.5 10 10 50 546 44 378 1650 1256 56 735 
Sim_LG Nanopore 0.56 0.24 0.1 0.1 1575 148 193 202 125 
Sim_LF Nanopore 0.035 0.015 0.1 0.1 922 343 207 193 33 
Sim_SG_lowANI MiSeq 56 24 10 10 16 157 608 2476 870 3691 
Sim_SF_lowANI MiSeq 3.5 1.5 10 10 49 700 14 369 2422 853 36 658 
Sim_LG_lowANI Nanopore 0.56 0.24 0.1 0.1 879 32 200 118 36 
Sim_LF_lowANI Nanopore 0.035 0.015 0.1 0.1 640 158 178 125 4 
Sim_SG_valid MiSeq 56 24 10 10 12 378 880 2369 1480 3630 
Sim_SF_valid MiSeq 3.5 1.5 10 10 50 809 16 488 2316 1449 42 736 
Sim_LG_valid Nanopore 0.56 0.24 0.1 0.1 1392 74 256 170 104 
Sim_LF_valid Nanopore 0.035 0.015 0.1 0.1 1120 173 270 161 47 
Sharon HiSeq 106.3 in total 3097 533 87 21 1169 
Tara HiSeq 190.7 in total 16 156 31 153 1270 11 643 
Oral_Nano Nanopore 5.6 in total 9112 50 11 23 1888 
Gut_HiFi Pacbio HiFi 1.9 in total 4958 0 27 30 203 

Figure 1. Performance of binary classifiers and 4CAC on simulated metagenomes. XGBoost represents the XGBoost classifier designed in this study 
without using graph information. 
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C AC. 3C AC(vV) has better performance than 3CAC(PM)
nd performed as the second-best classifier in most tests as
t also utilizes graph information to improve its classification.
mong the stand-alone three-way classifiers, geNomad and
PR-meta had the highest F1 score in classifying viruses while
iralVerify was the best in classifying plasmids in most tests.
upplementary Figure S7 summarizes the precision and re-
all of 4CAC and the comparing three-way classifiers. 4CAC
chieves the best precision and recall comparable to the best
cross all the simulated datasets. 

It is important to note that, in order to ensure a fair com-
arison, eukaryotic contigs were excluded from our bench-
ark of three-way classifiers. Similarly, only two classes of

ontigs were considered when benchmarking binary classi-
ers. Supplementary Figures S8 and S9 provide a comprehen-
ive overview of the results when all contigs were included.
s expected, the inclusion of all contigs led to a decline in the
erformance of both binary and three-way classifiers, as they
end to misclassify contigs that are not modeled. For example,
ukaryotic contigs and plasmid contigs can be misclassified as
iruses by viral classifiers, and eukaryotic contigs can be mis-
lassified as plasmids or viruses by three-way classifiers, etc.
his highlights the need for a four-way classifier that is able
to identify viruses, plasmids, eukaryotes, and prokaryotes si-
multaneously from metagenome assemblies. 

The tools benchmarked in this paper were run with their
default training models. Each tool was trained using dif-
ferent features and potentially different training datasets. It
is challenging, if not impossible, to ensure the same train-
ing dataset for tools trained on different features. To as-
sess whether the use of different training datasets affects the
performance of the benchmarked tools, we retrained Plas-
Class and DeepVirFinder using the same training dataset as
4CAC, as all three use k -mer composition as training features.
Supplementary Figure S10 demonstrates that the retrained
classifiers exhibit similar or slightly poorer performance than
their default models, which were used throughout this study. 

Utilizing existing algorithms to generate four-way 

classifications 

We tested how effective existing binary and three-way clas-
sifiers are for four-way classification. Toward that goal, we
combined existing classifiers to generate a four-way classifi-
cation as follows. (i) The most straightforward idea is using
VIBRANT and Platon to identify viruses and plasmids from

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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Figure 2. Performance of three-way classifiers and 4CAC on simulated metagenomes. XGBoost represents the XGBoost classifier designed in this study 
without using graph information. 
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metagenome assemblies. The remaining contigs are further
classified as eukaryotes, prokaryotes, or uncertain by Tiara.
We ran either VIBRANT or Platon first and selected the solu-
tion with a higher F1 score. This result is denoted by Binary+ .
Here, VIBRANT, Platon, and Tiara were selected because they
performed best in binary classifications of viruses, plasmids,
and eukaryotes from metagenome assemblies (shown in Fig-
ure 1 ). (ii) Comparing three-way classifiers to binary classifiers
demonstrated that 3CAC(vV) outperformed all binary classi-
fiers in classifying viruses and plasmids from metagenome as-
semblies (Figures 1 and 2 ). Therefore, we further combined
3CA C(vV) with T iara in the following way. We first classified
contigs by 3CAC(vV) and set aside these classified as plasmids
and viruses, then used Tiara to classify the rest into eukary-
otes, prokaryotes, or uncertain. We also repeated the process
in the reverse order, running first Tiara and then 3CAC(vV).
We then selected the solution with a higher F1 score. This re-
sult is denoted by 3C A C(vV)+Tiara . DeepMicroClass, a five-
way classifier, was published while this article was under re-
view, and we included it in our benchmark as well. DeepMi-
croClass classifies contigs into prokaryotes, eukaryotes, plas-
mids, viruses infecting prokaryotic hosts and viruses infecting
eukaryotic hosts. To facilitate comparison with 4CAC, the two
latter classes were mapped to the single class of viruses. 

We also wished to evaluate alignment-based methods,
which match the contigs to a database of known genomes.
For this purpose, we included Minimap2 ( 44 ) in our bench-
mark. Minimap2 aligns contigs to all genomes in the training
dataset and classifies them by the best match. Contigs with
good matches ( > 80% match along > 80% of the contig) to
multiple classes were classified as uncertain. To ensure fair-
ness, reference genomes used for simulation were kept blind
to Minimap2. 

Figure 3 demonstrates that 4CAC outperformed DeepMi-
croClass and the combined classifiers in each classification
across almost all datasets. In the long-read assembly Sim_LF,
3CA C(vV)+T iara had a slightly higher F1 score than 4CAC
in classifying plasmids and eukaryotes. Compared to the ini-
tial XGBoost classification, 4CAC consistently improved the
F1 score across all tests, and the improvement was more sub-
stantial in classifying viruses and plasmids from short-read 

assemblies. Further analysis revealed that 19% and 58% of 
contigs in Sim_SG and Sim_SF respectively are shorter than 

1kb (Table 1 ). These short contigs are often classified as un- 
certain in the initial classification. However, when consider- 
ing the classification in the assembly graph, neighboring con- 
tigs that are long and confidently classified help in classify- 
ing these short contigs. Supplementary Figure S11 demon- 
strates that the graph refinement step of 4CAC dramatically 
improved recall while sacrificing a little bit of precision in clas- 
sifying viruses and plasmids from short-read assemblies. Fur- 
thermore, DeepMicroClass achieved the highest recall but the 
lowest precision, resulting in very low F1 Scores. A possible 
reason is that DeepMicroClass tends to classify all contigs,
whereas other classifiers designate a contig as uncertain when 

there is insufficient evidence for classification. 
The performance of combined classifiers exhibits greater 

variability across diverse datasets. Not surprisingly,
3CA C(vV)+T iara outperformed Binary+ in almost all the 
tests. Compared to combined classifiers, 4CAC improved the 
F1 score remarkably in classifying eukaryotes and prokary- 
otes from short-read assembly Sim_SF. This may be caused 

by a larger proportion of short contigs in Sim_SF (58% in 

Sim_SF versus 19% in Sim_SG. See Table 1 ). Short contigs 
are commonly unclassified by existing classifiers while 4CAC 

is able to classify most of them according to their neighboring 
long contigs in the assembly graph. 

Figure 4 summarizes the total precision, recall, and F1 score 
of four-class classifiers. Consistent with the 3CAC algorithm,
we observed that the graph refinement step improved the re- 
call with little or no loss of precision in all the tests. 4CAC 

outperformed DeepMicroClass and the combined classifiers 
in both precision and recall in all the simulated assemblies,
while XGBoost was the second-best. 4CAC improved the re- 
call remarkably in Sim_SF, due to a larger proportion of short 
contigs in it. Surprisingly, the XGBoost classifier itself, without 
using the graph information, had comparable or even better 
precision and recall than combined classifiers. Note that Deep- 
MicroClass achieves the same precision and recall because it 
classifies all contigs. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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Figure 3. Performance of four-class classifiers on each class of simulated metagenomes. XGBoost represents the XGBoost classifier designed in this 
study without using graph information. 

 

s  

i  

t  

t  

a  

a  

r
 

u  

g  

g  

f

P

W  

r  

i  

c  

S  

O  

T  

o  

o  

w  

N  

p  

r  

o  

b  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae799/7759139 by guest on 20 Septem

ber 2024
The alignment-based method Minimap2 had lower F1
cores than the machine learning-based methods, especially
n classifying eukaryotes (Figure 3 ). A possible reason is
hat > 50% of the test eukaryotes have little similarity to
he training dataset ( Supplementary Figure S1 ). Figure 4
nd Supplementary Figure S11 reveal that while Minimap2
chieves the highest precision, it suffers from very low recall,
esulting in poor F1 scores across all the simulated datasets. 

To test the classifiers in identifying novel species, we
sed the four simulated datasets Sim_*_lowANI, where only
enomes in the test set with low similarity to the training set of
enomes were included. Here too, 4CAC consistently outper-
ormed the combined classifiers ( Supplementary Figure S12 ). 

erformance on real metagenome samples 

e additionally tested the performance of classifiers on four
eal complex metagenomic datasets: (i) short-read sequenc-
ng of 18 preterm infant fecal microbiome samples (NCBI ac-
ession number SRA052203), referred to as Sharon ( 45 ). (ii)
hort-read sequencing of a microbiome sample from the Tara
ceans (NCBI accession number ERR868402), referred to as
 ara ( 35 ). Currently , there is no study exploring microeukary-
tes in long-read sequencing of microbiome samples. To test
ur method on long-read sequencing metagenomic datasets,
e selected two publicly available datasets: (iii) Oxford
anopore sequencing of two human saliva microbiome sam-
les (NCBI accession number DRR214963 and DRR214965),
eferred to as Oral_Nano ( 46 ). (iv) Pacbio HiFi sequencing
f a human gut microbiome sample (NCBI accession num-
er SRR15275211), referred to as Gut_HiFi . Datasets with
short reads and long reads were assembled by metaSPAdes
and metaFlye, respectively. In Sharon and Oral_Nano, the
multiple samples in each dataset were co-assembled. To iden-
tify the class of contigs in these real metagenome assem-
blies, we used all the complete assemblies of bacteria, archaea,
viruses, plasmids, and microeukaryotes from the NCBI Gen-
Bank database as reference genomes and mapped contigs to
these reference genomes using Minimap2 ( 44 ). A contig was
considered matched to a reference sequence if it had ≥80%
mapping identity along ≥ 80% of the contig length. Contigs
that matched to reference genomes of two or more classes
were excluded to avoid ambiguity. In all assemblies, contigs
shorter than 500 bp were not classified and excluded from the
performance evaluation. Table 1 summarizes the properties of
the datasets and the assemblies. 

Since 3CA C(vV)+T iara consistently outperformed the com-
bination of binary classifiers (Figure 4 ), here we only
compared 4CAC and its initial XGBoost classification to
3CA C(vV)+T iara and DeepMicroClass. Similar to the result
in simulated assemblies, Figure 5 shows that the graph re-
finement step improved both the precision and recall of the
XGBoost classification and led to significant improvement in
the F1 score in most tests. In the Gut_HiFi dataset, 4CAC
slightly improved the recall of XGBoost classification while
sacrificing a little bit of precision, and resulted in a similar F1
score. On the short read datasets Sharon and Tara, in which
microeukaryotes were previously identified ( 34 , 35 ), 4CA C
achieved moderately better precision than 3CA C(vV)+T iara
but dramatically improved the recall. For example, 4CAC
improved the recall from 0.54 to 0.87 in the Tara dataset.
As a result, 4CAC had a substantially higher F1 score than

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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Figure 4. Performance of four-class classifiers on simulated metagenomes. 

Figure 5. Performance of four-class classifiers on the real datasets. ( a ) Sharon and ( b ) Tara were assembled from short reads, ( c ) Oral_Nano and ( d ) 
Gut_HiFi were assembled from long reads. 
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CA C(vV)+T iara. DeepMicroClass performed the worst on
hese two datasets due to its very low precision. 

Further analysis of the performance on the Sharon dataset
eveals that the graph refinement step of 4CAC improved
oth the precision and recall of the XGBoost in each class
lassification (Figure 6 ). The improvement is more signifi-
ant in the classification of plasmids, which is consistent with
he observation on simulated assemblies ( 30 ). Compared to
CA C(vV)+T iara, 4CA C had higher F1 scores in the classifi-
ation of prokaryotes and eukaryotes, but a lower F1 score
n viruses (Figure 6 ). A possible reason is that the propor-
ion of viral contigs in the Sharon dataset is very small (0.6%
ersus ≥1.3% in simulated assemblies. See Table 1 ). In this ex-
reme case, viralVerify, which is used in 3CAC(vV) and classi-
es contigs based on their gene content, achieved higher pre-
ision than the machine learning-based methods trained on
omposition information, such as PPR-Meta and the XGBoost
lassifier. DeepMicroClass attained comparable precision but
ower recall in the classification of prokaryotes, leading to a
ower F1 score. For viruses and eukaryotes, DeepMicroClass
howed comparable recall, and for plasmids it had the highest
ecall but very low precision. Overall, it had lower F1 scores
han the other classifiers. 

On the two long-read datasets of human saliva and gut mi-
robiome, 3CA C(vV)+T iara outperformed 4CA C (Figures 5
c) and (d)). Here too this is likely because each of the minor
lasses accounts for less than 0.6% of the contigs (Table 1 ). 

We checked the real human metagenome datasets for pos-
ible host contamination. Although DNA was expected to
e filtered out by sample preprocessing before sequencing
hese samples, it is possible that some human DNA remained.
o address this concern, we mapped all reads in the three
atasets originating from humans to the latest human refer-
nce genome (T2T-CHM13). 1.7% of reads in the Oral_Nano
ataset had matches ( > 0.8 identities and > 0.8 coverage) to
he human genome, while no matching reads were found in
haron and Gut_HiFi datasets. Furthermore, we mapped con-
igs classified as eukaryotes in the Oral_Nano dataset to the
uman genome. Four contigs classified as eukaryotes by 4CAC
nd 17 contigs classified as eukaryotes by Tiara had matches
n the human genome. Hence, 4CAC appears more robust to
uman genome contamination. 

oftware and resource usage 

able 2 presents the runtime of the classifiers. All classifiers
ere run on contigs at least 500 bp in each dataset since con-

igs shorter than 500 bp were excluded from our evaluation.
o run DeepVirFinder, we also excluded contigs longer than
 Mb because DeepVirFinder failed on these long contigs. For
CAC we report the runtime of viralVerify and PPR-Meta,
ince they required the lion’s share of the time, with the rest
f 3CAC always taking less than 3 min. Due to the large run-
ime of viralVerify, geNomad, Platon, and VIBRANT, 4CAC
s much faster than those other classifiers, which often require
–2 orders of magnitudes more time. DeepMicroClass was on
verage a bit faster than 4CAC. Supplementary Table S2 sum-
arizes the memory usage of the classifiers. Memory usage
as the highest for geNomad in all the tests. All runs were per-

ormed on a 44-core, 2.2 GHz server with 792 GB of RAM.
CAC is freely available via https:// github.com/ Shamir-Lab/

CAC . 

 

Discussion and conclusion 

We presented 4CAC, a classification algorithm for simulta-
neously identifying viruses, plasmids, prokaryotes, and mi-
croeukaryotes in metagenome assemblies. Evaluation on sim-
ulated and real metagenomic datasets demonstrated that
4CAC substantially outperformed existing classifiers in most
tests. 4CAC also has a large speed advantage over the com-
bined classifiers, running usually 1–2 orders of magnitude
faster. DeepMicroClass had a slightly faster runtime than
4CAC but poorer performance on both simulated and real
datasets. 

In contrast to 3CAC, which necessitates the execution of vi-
ralVerify, PPR -meta, DeepV irFinder and PlasClass, 4CA C is a
stand-alone algorithm, making it more user -friendly. To gener -
ate an initial classification with high precision, 3CAC reduces
false positives from viralVerify and PPR-Meta by running
DeepVirFinder and PlasClass on contigs classified as viruses
and plasmids. In contrast, 4CAC generates an initial classifi-
cation using its own XGBoost classifier and reduces false pos-
itives in minor classes by setting higher score thresholds. 

Sequence classification methods fall into two main cat-
egories: reference-based and reference-free. Reference-based
methods classify contigs by mapping them to a database of
known genomes. This approach has several limitations: (a)
short contigs are harder to classify as they may map to mul-
tiple references, leading to ambiguous or uncertain classifica-
tions; (b) reliance on a database of known genomes hinders
the identification of novel species; (c) this strategy becomes
resource-intensive as the reference database grows. 4CAC is
a reference-free method, and it uses information on neighbor-
ing contigs in the assembly graph to assist the classification
of short contigs. Evaluation on simulated datasets demon-
strates that while the reference-based method Minimap2 has
slightly better precision than 4C AC, 4C AC nearly doubles the
recall of Minimap2, resulting in a much higher F1 score than
Minimap2 (Figure 4 and Supplementary Figure S11 ). More-
over, Minimap2 is much slower than 4CAC. For the simulated
dataset Sim_SG, 4CAC took 6.9 min, whereas Minimap2 took
310 min. 

Machine learning-based classifiers often assign scores to
predictions, indicating their confidence. However, these scores
do not reflect the true probabilities of the predictions. Indeed,
when we attempted training XGBoost classifiers on class-
imbalanced datasets using a default score threshold of 0.5
for all classes, results were unsatisfactory. By setting differ-
ent probability thresholds for different classes, we obtained a
good trade-off between precision and recall. We set the thresh-
old at 0.95 for viral and plasmid classification based on the ob-
servation of class imbalance in metagenome assemblies. Note,
however, that when applying the same classifier to samples
with varying class compositions, the results may exhibit signif-
icantly different false positive rates, and this is true for 4CAC
as well. 4CAC is specifically designed for metagenome assem-
blies, where the proportion of viral and plasmid contigs is typ-
ically low compared to prokaryotic contigs. 

On two real datasets assembled from long reads, where
the relative abundance of viruses, plasmids and eukaryotes
was extremely low ( < 0.6% compared to over 1.3% in other
assemblies), the combined classifier 3CA C(vV)+T iara outper-
formed 4CAC. This difference in performance could poten-
tially be attributed to the tendency of classifiers trained on
k -mer compositions to yield a higher false positive rate com-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
https://github.com/Shamir-Lab/4CAC
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae799#supplementary-data
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Figure 6. Performance on each class for real short read dataset Sharon. 

Table 2. Runtime of the tested classifiers 

4C A C DeepMC viralV PPR-M geNomad Tiara PlasClass Platon DeepVF VIBRANT 

Sim_SG 6 .9 4 .2 322 60 .4 106 .9 2 .9 4 .2 241 .5 91 .2 185 .2 
Sim_SF 4 .8 5 .1 175 25 .1 154 .8 2 .8 3 .9 643 .1 62 .1 82 .1 
Sim_LG 3 .7 1 .3 185 .4 33 .4 92 .8 1 .3 2 .3 22 33 .2 139 .8 
Sim_LF 1 .4 0 .8 77 .5 14 .9 27 .1 0 .7 1 .2 22 14 .7 53 .1 
Sharon 1 .4 3 29 .9 7 .3 16 .4 0 .5 1 .2 49 .4 16 .3 25 .3 
Tara 14 .3 11 .8 221 .1 94 .7 155 .8 4 .4 11 .2 638 .9 92 .3 50 .6 
Oral_Nano 8 .2 3 .1 452 .5 84 .4 140 .1 3 .5 5 .6 301 .1 88 .6 201 .1 
Gut_HiFi 9 .3 4 .9 677 .8 124 252 .7 4 .8 8 .1 444 .6 109 .8 426 .1 

Runtime is measured by wall clock time in minutes. DeepMC, V iralV, PPR -M, and DeepVF represent classifiers DeepMicroClass, viralVerify, PPR-Meta, and 
DeepVirFinder respectively. The binary classifier PLASMe was only run on the four simulated datasets, with an average runtime of 2.6 min for short-read 
assemblies and 15 min for long-read assemblies. 
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pared to classifiers trained on the gene content of contigs. It
is important to mention that these results may be biased by
the underrepresentation of these classes in genomic databases.
Given the current knowledge about species in metagenomes,
we recommend using 4CAC on short reads and on host-
filtered long read samples. For generic long read samples,
where prokaryotes constitute the majority, we suggest utiliz-
ing 3CAC(vV) followed by Tiara for optimal results. 

The implementation of the correction and propagation
steps on the assembly graph yielded substantial improvements
in the classification of short contigs. As anticipated, the com-
bined classifier 3CA C(vV)+T iara demonstrated the second-
best performance across all tests since 3CAC utilizes similar
refinement procedures. 

Our study has several limitations. First, as mentioned
above, performance is affected by the relative abundance of
the different classes in the input data. Second, the refine-
ment step in 4CAC may misclassify some sequences, espe-
cially those that underwent horizontal gene transfer across 
classes, e.g. proviruses and integrated plasmids. However,
as we have shown, that step improves overall performance.
Furthermore, to detect prophages from metagenome assem- 
blies, tools designed specifically for this purpose, such as 
Prophage Hunter ( 47 ), and PHASTEST ( 48 ), would be better 
choices. In future work, we aim to incorporate factors such 

as contig coverage and length to enhance the identification of 
proviruses. Third, 4CAC does not categorize contigs at vari- 
ous taxonomic levels such as genus and species. Taxonomic 
classification requires different tools and approaches that are 
specifically designed for that goal, such as Kraken2 ( 5 ) and 

MetaPhlAn4 ( 49 ). 
Finally, there is a chance of leakage between the training 

and test sets in case very similar sequences reside in both.
Our additional tests on simulated datasets that included only 
species with low similarity to the training set species con- 
firmed the advantage of 4CAC. The partition into training 
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nd test sets by GenBank release date is a common practice,
hich was also adopted in most of the classifiers that we eval-
ated [e.g. ( 21 , 26 , 30 )]. Furthermore, it also gives a realistic
erformance estimate, since when a method is applied to a
ew sample, some of the sequences encountered are likely to
ave highly similar counterparts in the database. Still, the eval-
ation of classifiers on real metagenome assemblies remains
hallenging due to the lack of ground truth. The database of
nown reference genomes for bacteria is much larger than that
f phages, plasmids, and microeukaryotes, which may lead to
ias in evaluating the results. The performance of 4CAC and
ther classifiers may be underestimated due to the presence
f novel species and of contigs that are too short to match
onfidently to the reference genomes. 

ata availability 

CAC is implemented in Python and is available on
itHub ( https:// github.com/ Shamir-Lab/ 4CAC ) and Zenodo.
OI: 10.5281 / zenodo.13383932. All sequencing datasets

nalyzed in this study are available in National Center
or Biotechnology Information (NCBI), accession numbers:
RA052203 for the Sharon dataset, ERR868402 for the
ara Ocean dataset, DRR214963 and DRR214965 for the
ral_Nano dataset, and SRR15275211 for the Gut_HiFi
ataset. 

upplementary data 

upplementary Data are available at NAR Online. 
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