
1

Tel-Aviv University

Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

A feature ranking algorithm for

clustering medical data

Thesis submitted in partial fulfillment of graduate requirements for

The degree "Master of Sciences" in Tel-Aviv University

School of Computer Science

By

Eran Shpigelman

Under the supervision of

Prof. Ron Shamir

February 2024

2

Acknowledgement

I would like to express my sincere appreciation to the people who accompanied and supported me

during this period and helped me accomplish this milestone.

Foremost, I wish to extend my deep thanks to my outstanding supervisor Prof. Ron Shamir. I am

honored to have been advised by a world-renowned scientist like Ron, who walked me through my first

steps in scientific research, with great patience and understanding on the one hand, and

uncompromising professionalism on the other hand. I also thank Ron for pushing me to present my

work in domestic and international conferences and to publish it in scientific journals.

Besides the scientific work, Ron's support, both on a personal and professional level, has made it

possible for me to reach this milestone while being recruited for reserve duty. Ron served as an example

for the responsibility the academia has for the greater good of the people of Israel, and I’m grateful for

having such a role model.

Secondly, I want to thank my lab members that helped me and contributed to this work, especially to

Nimrod Rappoport, Omer Noy and Hagai Levi whose advice inspired different parts of this research. I

would also like to thank my collaborators in a previous research project from the Tel Aviv Sourasky

Medical Center, especially Dr. Aviram Hochstadt and Pros. Yan Topilsky. Our joint work ultimately led to

the research presented here.

I wish to thank all my lab mates – Dan C., Lianrong, David, Tom, Hagai, Hadar, Dan F., Naama, Ron Sa.,

Maya, Tal, Assaf, Tammy and Yahely, for being part of this journey through fascinating discussion and

great friendship. I would also like to thank the amazing Gilit Zohar-Oren and Shlomit Hillel for their

administrative help.

I would like to express my gratitude for the financial support I have received during my studies: the

Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Israel Science Foundation (Grant No.

3165/19), within the Israel Precision Medicine Partnership program, and a grant from the Tel Aviv

University Center for AI and Data Science (TAD).

Lastly, I thank my family who inspired me to follow my interests and have always been supportive of my

choices. My mother Mazal, my brothers Aviv and Baruch and my love and fiancé Ran.

3

Abstract

The availability of electronic medical records (EMR) data has advanced dramatically in recent years, and

a growing number of studies apply algorithmic and machine learning methods to these data. A key

method is clustering, used for a variety of purposes, including finding unknown subtypes of known

diseases. The abundance and redundancy of information in EMR data raises the need to identify and

rank the features that are most relevant for the clustering task. This is needed both for time and space

efficiency reasons as well as for improving the interpretability of the results.

Here we propose FRIGATE (Feature Ranking In clustering using GAme ThEory), an algorithm that ranks

features by their importance to clustering, incorporating the concepts of Shapley value and

Multiplicative Weights. FRIGATE is an ensemble feature ranking algorithm, which derives the importance

of features from multiple clustering solutions on sub-groups of features. For each clustering solution a

small group of features is ranked in a Shapley-like framework, and multiplicative weights are applied to

limit the randomness of their choice. It can handle both categorical and continuous features, a common

need in medical data. FRIGATE outperforms previously suggested ensemble ranking algorithms on

simulated and real medical data, both in solution quality and in speed.

4

Table of Contents

1. Introduction .. 6

2. Background ... 9

2.1 k-means ... 9

2.2 k-modes... 10

2.3 k-prototypes .. 10

2.4 The silhouette score .. 10

2.5 The Elbow method .. 11

2.6 Adjusted Rand Index ... 11

2.7 FRMV ... 13

2.8 FRCM ... 15

2.9 FRSD .. 16

2.10 Shapley values ... 18

2.11 Multiplicative Weights .. 18

3. Methods .. 19

3.1 The FRIGATE algorithm ... 19

3.2 The FRIGATE-MW algorithm ... 21

3.3 Simulation ... 22

3.4 Demonstration of FRIGATE ... 24

3.5 Evaluation measures ... 25

4. Results ... 27

4.1 Algorithms Performance ... 27

4.1.1 Simulated Data .. 27

4.1.2 Real Data ... 28

4.2 Clinical Significance – Test Case .. 35

4.3 Runtime comparison ... 36

5. Discussion .. 37

6. References .. 43

7. Supplementary 1 – Parameter choice... 47

7.1 Parameter choice for FRIGATE-MW .. 47

7.2 Parameter choice for FRIGATE .. 49

8. Supplementary 2 - Illustration of a FRIGATE iteration .. 52

9. Supplementary 3 - Choosing the value of 𝜎 ... 53

5

10. Supplementary 4 – simulation results .. 54

11. Supplementary 5 – Significance levels .. 56

12. Supplementary 6 - Clinical significance ... 58

13. Supplementary 7 – The effect of 𝑘 in each algorithm .. 59

6

1. Introduction

In the past decade and a half, medical systems around the world underwent a major digitization

revolution [1]. As a result, most of the personal medical information is now stored electronically,

transforming the way medical research is conducted. Today, it is possible to conduct research on the

population level, on a large number of patients and using multiple types of medical features. It is also

possible to follow a group of patients over time and learn from the changes in their medical conditions.

Although medical data sharing has been slow [2], the number of clinical data sets available to

researchers is growing [3]. Such resources include data sets that span a large range of clinical data types,

such as MIMIC [4], [5], and some even offer a combination of genomic and medical information, e.g.,

the UK BioBank [6].

Medical data have some special characteristics that make them challenging to work with. Firstly, some

of them are of great magnitude. For example, in MIMIC-III alone there is information of 46,520 patients,

with 753 different lab tests and 14567 different ICD-9 codes [4]. Another challenge that is closely related

to the large number of features is the data incompleteness. Medical data typically have high percentage

of missing values even for frequently taken measurements [7].

These challenges and the availability of the data create an opportunity for collaboration between

clinicians and computer scientists in order to answer medical questions using computational tools. More

specifically, we see a growing number of machine-learning applications on medical data [8] alongside

development of computational tools dedicated to analyzing medical information [9], [10]. Some of the

computational tools in use are from supervised machine-learning, where there are certain patient labels

that the researchers want to learn (e.g., sick and healthy). A lot of the research in this direction is

focused on building predictive models for early detection of diseases [11], while other creative uses

include predicting the levels of infection in the population during the Covid-19 pandemic [12]. Another

type of machine-learning models is unsupervised. In this case labels are not available, and the

researchers are trying to find latent patient groups that are not yet known. These problems are usually

referred to as clustering problems, and in the medical domain the clusters are used in discovery of new

subgroups of known diseases [13]–[15] and in clinical image segmentation [16]. Our research is focused

on this type of problems.

In the generic clustering problem the input is a set of 𝑚 vectors in 𝑅𝑛. The vectors are called samples,

and the coordinates are called features. The goal is to partition the samples into groups called clusters

7

so that the average intra-cluster distance between samples is as small as possible and the average inter-

cluster distance is as large as possible [17]–[19]. These two objectives pull solutions in different

directions, since increasing the number of clusters would decrease both the first and the second

objective. In some versions of the problem the number of clusters is given and then the first objective

suffices. Most exact formulations of clustering are NP-hard, and heuristics are often used. In the analysis

of electronic medical records (EMR), a sample corresponds to a patient or an inpatient's record, where

features can be demographic information (age, gender, previous diseases, etc.), results of

measurements (temperature, blood pressure, etc.) or lab results (white blood cells count, cholesterol

level, etc.). There are multiple clustering algorithms that use different properties of the data to create

the clusters. We will focus on a family of algorithms that is usually referred to as partitioning based or

moving centers, which include the widely used k-means algorithm. These algorithms usually specify the

initial number of clusters and iteratively reallocate samples among clusters until convergence based on a

pre-defined criterion [20].

One challenge in clustering problems is the choice of the number of clusters 𝑘. While some algorithms

determine 𝑘 [21], others require 𝑘 as an input [22]. That means that the user needs to define in advance

the number of latent groups that are to be found in the data. This is a hard task, as the properties of the

data are often inherently unknown. Also, different values of 𝑘 can potentially result in significantly

different cluster structures, or equivalently, different possibilities of partitioning the data, with no

known absolute truth. For example, in the medical domain we can have a large data set of patients that

when using 𝑘 = 2 the data will be partitioned in accordance with sex, but higher values of 𝑘 can

partition the data into subsets corresponding to different medical conditions, which without additional

knowledge will be hard to label.

Another challenge is interpretability of the results, in particular in medical research. When finding new

clusters in the data, we want to be able to understand the most important features that create them, in

order to obtain clinical insights. When dealing with large data sets with possibly thousands of features,

this is challenging. Also, running the algorithms on huge data sets is computationally expensive and not

always feasible. For these reasons, feature selection algorithms were proposed [23]. Such algorithms

seek the most important features for the clustering task. Our goal here is the development of such an

algorithm that ranks all the features according to their importance to the clustering task, and is meant to

specifically fit medical data.

8

Many medical databases, as well as genomic data and others, contain a large number of features. One

way to deal with the high dimensional data is dimension reduction methods [24]. However, the effect of

individual features, which is crucial for medical insights, will be obscured. Another option is to use

feature selection algorithms, which choose a subset of features that will create a sub matrix with “good”

clusters. There are several feature selection methods for clustering algorithms [23], [25]. Typically, they

are divided into two main groups: filters and wrappers. The filter methods determine the importance of

features based on internal properties of the data, without performing any clustering in the process. This

makes them very efficient. The wrapper methods, on the other hand, use a specific clustering algorithm

and iteratively produce a clustering solution using a subset of features that according to some

evaluation criterion are the most relevant for the clustering task. They tend to be more accurate than

the filter methods [23]. There are also some hybrid methods that combine the filter and the wrapper

ideas [23].

In recent years ensemble feature ranking algorithms were also suggested. These methods create an

ensemble of clustering solutions on subsets of features and then use some metric to evaluate the

contribution of each feature [26]. These methods were shown to perform better than filter and wrapper

methods, including on medical data sets [26]–[28]. Ensemble methods can also be used for choosing a

subset of important features, in contrast to ranking the full set of features [29]. However, here, as we

aim to work with medical information, we prefer to lose as little information as possible and prefer to

evaluate and rank the full set of features. For these reasons we chose to develop a new algorithm within

the ensemble ranking framework.

There are three ensemble ranking algorithms that we refer to in this paper: FRMV [27] is a relatively

flexible framework that iteratively ranks the features according to a pre-defined relevance measure (e.g.,

linear correlation). FRCM [28], designed for genomic data, uses a consensus clustering solution before

evaluating the features. FRSD [26] uses silhouette score [30], a known criterion of clusters quality, to

rank the features. All of them will be described in detail below.

Here we introduce a new algorithm called FRIGATE (feature ranking in clustering using game theory),

which uses two concepts from game theory. The first is motivated by Shapley value, a measure of the

contribution of every player to the group in a cooperative game [31], [32]. In our case the players are

the features and the “game” is clustering. Shapley values are widely used for feature evaluation in

classification models [32] and so far were not used in clustering for feature selection or ranking. The

second is Multiplicative Weights (MW) [33], a framework to improve the selection of players in an

9

iterative process such that players are selected from a distribution based on their performance so far. In

FRIGATE we use MW to guide the choice of features for each clustering solution and avoid the choice of

features that proved to be insignificant. All previously presented ensemble algorithms choose subsets of

features at random. To the best of our knowledge this is the first time that MW is adapted to feature

selection for clustering.

The thesis is organized as follows: We first present relevant background including clustering methods,

extant algorithms of ensemble feature ranking for clustering and the game theory concepts that are

incorporated in FRIGATE. Next, in the Methods section, we present in detail the FRIGATE algorithm and

describe the construction of simulated data. In the Results section we demonstrate a run of FRIGATE,

show the process of choosing the model hyper-parameters and measure the performance of FRIGATE

and the extant algorithms, both on simulated and on real data. We conclude with a discussion of the

results.

2. Background

In this chapter we describe algorithms and computational methods that will be used in the thesis.

2.1 k-means

k-means [22] is one of the most widely used clustering algorithms. It receives as an input the number 𝑘

of clusters and the data matrix, and assumes features are continuous. The algorithm first chooses cluster

centers (centroids) and assigns each sample to the cluster with the closest centroid using a distance

metric. Then, the center of mass of each cluster is set as the new centroid, and the process is repeated

until convergence. The initial centroids are either chosen at random or with k-means++ [34], which

chooses samples from the cohort based on a probabilistic model of their contribution to the intra cluster

distance and meant to speed up the convergence. The algorithm is heuristic, and returns a local

optimum only. It is usually run several times and the solution with the smallest overall distance to

centroids is chosen. Here we used the Euclidean distance metric:

 𝑑(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 (1)

and k-means as implemented in Scikit learn [35] with 100 k-means++ initializations in each run.

10

2.2 k-modes

k-modes [36] is a clustering algorithm for categorical data, namely, feature values are discrete (two or

more) categories. Other than that, the algorithm is identical to k-means. The initial centroids are chosen

with Cao method [37] which is similar to k-means++. The Hamming distance is used as the distance

metric:

 𝑑(𝑥, 𝑦) = ∑ 𝛿(𝑥𝑖, 𝑦𝑖)𝑛
𝑖=1 (2)

 𝑤ℎ𝑒𝑟𝑒 𝛿(𝑥𝑖, 𝑦𝑖) = {
1 𝑖𝑓 𝑥𝑖 = 𝑦𝑖

0 𝑒𝑙𝑠𝑒
 (3)

Here we used the k-modes implementation in [38].

2.3 k-prototypes

k-prototypes [39] is an algorithm that clusters mixed data, i.e. data with both continuous and categorical

features. This is a common case in many applications, including the medical domain. For example,

patient medical records typically contain continuous features, such as weight, height, age and lab tests

like blood count, as well as some categorical features like sex, diagnosis, and past diseases. The iterative

process of k-prototypes is identical to k-means, with an adjusted distance function (see below), and the

initial centroids choice is based on the categorical features with Cao method [37] similarly to k-modes. k-

prototypes was reported as one of the best performers in a recent benchmark of mixed-data clustering

algorithms [40]. The distance metric that we used is:

 𝑑(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖)2𝑝
𝑖=1 + 𝛾 ∑ 𝛿(𝑥𝑖, 𝑦𝑖)𝑚

𝑖=𝑝+1 (4)

Where 𝑥1, … 𝑥𝑝 are numerical variables, 𝑥𝑝+1, … 𝑥𝑚 are categorical variables, and 𝛿 is the Hamming

distance function. The 𝛾 factor determines the relative contribution of the categorical features in

comparison to the continuous features, where 𝛾 = 1 means equal contribution, 𝛾 > 1 gives higher

value to the categorical features and 𝛾 < 1 gives higher value to the continuous features. Here we used

a k-prototype implementation in [38].

2.4 The silhouette score

The silhouette score [30] is a common intrinsic measure for the quality of a clustering solution, often

used when the real labels are unknown. The score is calculated separately for each sample and

11

measures how well a sample belongs to the cluster it is assigned to, versus the next nearest cluster. For

some sample 𝑖, define:

 𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max(𝑎(𝑖),𝑏(𝑖))
 (5)

Where 𝑎(𝑖) is the average distance of 𝑖 to all other samples in its cluster, and 𝑏(𝑖) is the minimal

average distance between 𝑖 to samples of another cluster. The total silhouette score of the clustering

solution is ∑ 𝑠(𝑖)𝑖 , summed over all samples. Here we used silhouette as implemented in Scikit learn

[35].

2.5 The Elbow method

The Elbow method seeks to determine the optimal number of clusters in a dataset. It works by

calculating the differences in some function 𝑣 for the quality of clusters as the number of clusters

changes. For a solution with 𝑖 clusters, let 𝑣(𝑖) be the sum of total within-cluster sum of squares. As

increasing the number of clusters decreases the value of 𝑣(𝑖), the optimal 𝑖 is chosen as the value at

which a major change is observed, and for a larger 𝑖 the changes are minor. Visually, this is an “elbow”

point in the graph of 𝑣(𝑖) vs. 𝑖. As suggested in [41] the value chosen is the one that brings to a

maximum the function:

 𝑣[𝑖 + 1] + 𝑣[𝑖 − 1] − 2𝑣[𝑖] (6)

2.6 Adjusted Rand Index

The Adjusted Rand Index (ARI) measures the similarity between two clustering solutions [42]. It is used,

for example, to test for the similarity between a clustering solution and the true labels. ARI is based on

Rand Index (RI) [43]. Given a clustering solution 𝐼 and true labels 𝐿 we define four relation types

between a pair of samples:

1. The two samples are in the same cluster in 𝐼 and in 𝐿.

2. The two samples are in the different clusters in 𝐼 and in 𝐿.

3. The two samples are in the same cluster in 𝐼 but in different clusters in 𝐿.

4. The two samples are in different cluster in 𝐼 but in the same clusters in 𝐿.

We define 𝑎 as the number of pairs of type 1, 𝑏 the number of pairs of type 2, 𝑐 the number of pairs of

type 3, 𝑑 the number of pairs of type 4. Then RI is:

12

 𝑅𝐼 =
𝑎+𝑏

𝑎+𝑏+𝑐+𝑑
 (7)

RI scores range between 0 and 1, where 𝑅𝐼 = 1 means a perfect match between 𝐼 and 𝐿.

RI gets closer to 1 when the number of clusters increases [44], and does not consider the cluster sizes.

For example, if 90% of samples have the same label in 𝐿, and in 𝐼 all the samples are in the same cluster,

then the RI score will be 0.9, a seemingly very high score, although the clustering solution does not

reflect the true labels. ARI tries to overcome these problems by adjusting RI for chance grouping of

samples, by calculating the expected number of pairs appearing in the same cluster in 𝐿 and 𝐼 given the

cluster sizes, under the hypergeometric assumption:

 𝐸 (Σ𝑖,𝑙(𝑛𝑖𝑙
2

)) = Σ𝑖(𝑛𝑖∙
2

)Σ𝑙(𝑛∙𝑙
2

)/(𝑛
2

) (8)

where 𝑛𝑖𝑙 represents the number of samples that are in cluster 𝑖 in 𝐼 and in cluster 𝑙 in 𝐿, with a total of

𝑛 samples. The ∙ stands for a row/column sum, which accounts for a cluster size. For example, 𝑛𝑖∙ is the

size of cluster 𝑖 in 𝐼. Similarly, the expected values can be calculated for every entry in Table 1 (details

are found in [42]).

Cluster in 𝐿 /

Cluster in 𝐼

𝐿1 𝐿2 … 𝐿𝑥 Sum

𝐼1 𝑛11 𝑛12 … 𝑛1𝑥 𝑛1∙

𝐼2 𝑛21 𝑛22 … 𝑛2𝑥 𝑛2∙
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

𝐼𝑦 𝑛𝑦1 𝑛𝑦2 … 𝑛𝑦𝑥 𝑛𝑦∙

Sum 𝑛∙1 𝑛∙2 … 𝑛∙𝑥 𝑛

Using a general formulation of:

𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐼𝑛𝑑𝑒𝑥
 (9)

Table 1. Illustration of the ARI setting. A value 𝑛𝑖𝑙 represents the numbers of samples that are in the 𝑖𝑡ℎ cluster in 𝐼 and

the 𝑙𝑡ℎ cluster in 𝐿. The total number of samples in 𝑛. The ARI adjusts the RI for chance grouping of the samples given the

sums 𝑛1∙, … , 𝑛𝑦∙ and 𝑛∙1, … , 𝑛∙𝑥 .

13

ARI is defined to be:

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑙
2

)−
[∑ (

𝑛𝑖∙
2

)𝑖 ∑ (
𝑛∙𝑙
2

)𝑙]

(𝑛
2)

 𝑖,𝑙

1

2
[∑ (

𝑛𝑖∙
2

)𝑖 +∑ (
𝑛∙𝑙
2

)𝑙]−
[∑ (

𝑛𝑖∙
2

)𝑖 ∑ (
𝑛∙𝑙
2

)𝑙]

(𝑛
2)

 (10)

The maximum ARI is 1, which means a perfect match, but unlike 𝑅𝐼, 𝐴𝑅𝐼 can also take negative values

with the bound of -1, where 0 means random clusters ("expected"), and negative values means less

accurate than random assignment. Here we used ARI as implemented in Scikit learn [35] with a lower

bound of -0.5.

2.7 FRMV

Feature ranking from multiple views (FRMV) [27] is an ensemble feature ranking algorithm that ranks

the features according to their relevance to a clustering solution. The algorithm is presented formally

below (Algorithm 1). It performs 𝑇 iteration, where in each iteration a subset of 𝑞 features is selected

with replacement, a clustering solution is obtained for it, a relevance score is computed for each feature,

and the participating features are ranked according to their score. The final feature ranking is done

according to the average rank. It was not specified in [27] how to rank repeating features and no

implementation was provided. The relevance measure is a function 𝑔: ℝ𝑚xℕ𝑚 → ℝ where 𝑚 is the

number of samples in the cohort. It receives a vector 𝑑𝑟 of values of some feature 𝑑 and a vector of

cluster membership 𝐼, corresponding to a clustering solution, and returns a numeric score that reflects

how well feature 𝑣 fits solution 𝐼. The framework allows the use of any clustering algorithm and any

relevance measure. In [27], Hong et al. used k-means as the clustering algorithm and tested two

relevance measures: the linear correlation coefficient and symmetrical uncertainty. As the authors

reported that the results of the two measures were comparable, we used the linear correlation

coefficient:

 𝜌(𝑓𝑟, 𝐼) =
𝑐𝑜𝑣(𝑑𝑟,𝐼)

𝜎(𝑑𝑟)𝜎(𝐼)
 (11)

The fraction of features 𝑓 that were chosen per iteration was
1

2
 and the number of iterations performed

was 𝑇 = 100.

14

Algorithm 1: FRMV – with k-means

 Input: 𝑨 – 𝑚x𝑛 matrix of 𝑚 samples and 𝑛 features; 𝒈 - relevance measure;

 𝒌 - number of clusters; 𝑻 - number of iterations; 𝒇 - fraction of the features

 to use in each iteration

 Output: 𝑹 – list of the features ordered by importance for clustering

1 for 𝑡 ←1 to 𝑇

2 𝑆 ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ features randomly chosen with replacement

3 𝐴(𝑡) ← a matrix derived from 𝐴 of size 𝑚x𝑞 with columns corresponding to 𝑆

4 Perform k-means on 𝐴(𝑡)

5 𝐼(𝑡)←labels of the clustering solution

6 For each feature in 𝑆 compute its relevance to 𝐼(𝑡) according to relevance measure g

7 𝑟(𝑡)←ranks of features in 𝑆 according to their relevance

8 end

9 𝑅← array of length 𝑛 with the average rank of each feature

10 Return an order of the features sorted in decreasing order according to 𝑅

Some parts of the algorithm are not clear. Sampling features with replacement raises two major issues:

first, features that are chosen several times in an iteration gain excessive influence on the clustering

solution. This can affect the clustering solutions and may potentially create a large variation in the final

ranking of the results (see Results). This issue may be fixed by a large number of iterations, such that the

excessive influence will average over all features, but there is no clear suggestion how to pick the

number of iterations. Another issue is the calculation of the linear correlation coefficient. 𝐼 in Equation 9

represents a categorical vector of cluster membership, i.e., the clusters are numbered 1, … , 𝑘 and 𝐼𝑗 = 𝑙

if sample 𝑗 belongs to cluster 𝑙. Therefore, calculating its standard deviation and covariate with a

continuous vector depends on the numbering of the clusters. No implementation of FRMV was provided

in [27]. We implemented it as described in [27] and tested by other publications [26], [28]. In our

implantation of it we calculated the correlation using the arbitrary numbering of the clusters, which

affects the results. Also, in each iteration we ran the clustering algorithm on the full subset of features,

including repeating features. However, the ranking was performed on set of unique features with no

repetition, and therefore the number of ranked features and the highest rank might vary among

iterations.

15

2.8 FRCM

Feature ranking based on the consensus matrix (FRCM) [28] is an ensemble feature ranking algorithm

that was originally designed for genomic data. It is described in Algorithm 2. Unlike FRMV, in FRCM the

production of clustering solution and the evaluation of features are separated. The algorithm performs

𝑇 iterations, where in each a subset of 𝑞 features is selected and a clustering solution is obtained for

them, using k-means. The number of clusters 𝑘 is selected in each iteration uniformly at random from

the range {2, 𝐾max} where 𝐾𝑚𝑎𝑥 = min(⌈√𝑚⌉, 𝐾𝑣), where 𝑚 is the number of samples and 𝐾𝑣 is

provided as input. For each solution an 𝑚X𝑚 co-association matrix 𝑀(𝑡) is computed, where 𝑀𝑖,𝑗 = 1 if

the two samples are in the same cluster and 0 otherwise. In their paper [28] Zhang et al. used 𝑇 = 200,

𝑞 = ⌈
𝑛

2
⌉ and 𝐾𝑣 = 20.

After 𝑇 co-association matrices 𝑀(1), … , 𝑀(𝑇) were generated, a consensus matrix 𝑀 is created as an

average of all the co-association matrices:

 𝑀 =
1

𝑇
∑ 𝑀(𝑡)

𝑡 (12)

In addition, for each feature 𝑑, an affinity matrix is calculated as:

 𝐴𝑖,𝑗
(𝑑)

= √(1 −
(𝑥𝑖,𝑑−𝑥𝑗,𝑑)

2

‖𝒙𝒊−𝒙𝒋‖
2) (13)

Where 𝑥𝑖 and 𝑥𝑗 are vectors of samples. 𝐴𝑖,𝑗
(𝑑)

 measures how influential feature 𝑑 is on the distance

between two samples: the larger the influence, the smaller 𝐴𝑖,𝑗
(𝑑)

 is. So, it can be viewed as the distance

between the two samples in terms of the feature 𝑑.

Lastly, the score of each feature is calculated as:

 𝑧𝑑 = 𝐴𝑅𝐼𝑚𝑚(𝑀, 𝐴(𝑑)) =
(𝑠0−𝑠3)

0.5(𝑠1+𝑠2)−𝑠3
 (14)

Where 𝑠0 = ∑
𝑀𝑖𝑗𝐴𝑖𝑗

2𝑖,𝑗,𝑖≠𝑗 , 𝑠1 = ∑
𝑀𝑖𝑗

2𝑖,𝑗,𝑖≠𝑗 , 𝑠2 = ∑
𝐴𝑖𝑗

2𝑖,𝑗,𝑖≠𝑗 , 𝑠3 = ∑
2𝑠1𝑠2𝑀𝑖𝑗

𝑚(𝑚−1)𝑖,𝑗,𝑖≠𝑗

𝐴𝑅𝐼𝑚𝑚 is a measure for real-valued matrix similarity inspired by the Adjusted Rand Index, which

measures similarity between clustering solutions. 𝐴𝑅𝐼𝑚𝑚 has similar properties to ARI (described above)

with higher values indicating higher similarity. Hence, for two samples 𝑖, 𝑗 in the same cluster, if feature

16

𝑑 is important we expect 𝐴𝑖,𝑗
(𝑑)

 to be high, since the relative difference between 𝑥𝑖,𝑑 and 𝑥𝑗,𝑑 is expected

to be small. Finally, features are ranked according to 𝑧. No implementation of FRCM was provided in

[28]. We implemented it as described in [28] and tested by another publication [26].

Algorithm 2: FRCM

 Input: 𝑨 - 𝑚x𝑛 matrix of 𝑚 samples and 𝑛 features; 𝑲𝒗 - maximum number of clusters;

𝑻 - number of iterations; q – number of features selected per iteration

 Output: 𝑹 – list of the 𝑛 features ordered by importance for clustering

1 𝐾𝑚𝑎𝑥 ← min(√𝑚, 𝐾𝑣)

2 for 𝑡 ←1 to 𝑇

3 𝑆 ← a set of randomly chosen 𝑞 features

4 𝐴(𝑡) ← the sub matrix of size 𝑚x𝑞 of 𝐴 induced by 𝑆

5 𝑘𝑡 ← number of clusters randomly chosen from {2,…, 𝐾𝑚𝑎𝑥}

6 Perform k-means on 𝐴(𝑡)

7 𝐼(𝑡)←labels of the clustering solution

8 𝑀(𝑡)←co-association matrix corresponding to the clustering solution

9 end

10
𝑀 ←

1

𝑇
∑ 𝑀(𝑡)

𝑡

11 𝑧 ← 𝑛 long list of scores, initialized to 0

12 For each feature 𝑑

13 𝐴(𝑑) ← affinity matrix of size 𝑚x𝑚. See Equation 13.

14 𝑧(𝑑)← 𝐴𝑅𝐼𝑚𝑚(𝑀, 𝐴(𝑑)). See Equation 14.

15 end

16 Return an order of the features sorted in decreasing order of 𝑧(𝑑).

2.9 FRSD

The FRSD algorithm (Feature ranking based on silhouette decomposition) [26], has a similar flow to

FRMV and FRCM. In each iteration the algorithm randomly chooses a subset of the features, produces a

clustering solution using k-means and ranks the selected features based on a specific criterion. k-means

is run for all possible values of 𝑘 between 2 and 𝐾𝑚𝑎𝑥 = min(⌈√𝑚⌉, 𝐾𝑣). FRSD performs 𝑇 iterations for

each possible 𝑘. Hence, the overall number of k-means runs is (𝐾𝑚𝑎𝑥 − 1) ∙ 𝑇. In [26] Yu et al. used 𝑇 =

200, subsampled 𝑓 = 0.06 of the features for each clustering solution and set 𝐾𝑣 = 20.

As the name suggests, FRSD uses silhouette score to rank the features. Let 𝑆 be the silhouette score for

a clustering solution 𝐶. Let 𝑞 = 𝑓 ∙ 𝑛 be the number of features in the solutions. Given a participating

17

feature 𝑗 its values are shuffled, and the silhouette of the solution 𝐶 is recomputed and denoted by

𝑆𝑗. Let 𝛿𝑗 = 𝑆 − 𝑆𝑗. The higher 𝛿𝑗 is, the more important feature 𝑗 was to the solution. Let 𝑟𝑗 be the

ranking of the features, 𝑟𝑗 ∈ {1,2, … , 𝑞} according to 𝛿𝑗 in ascending order, where the feature 𝑗 with

highest value of 𝛿𝑗 is ranked 𝑞, and the lowest ranked 1. The final score of feature 𝑗 is:

 𝑠𝑗 =
𝑟𝑗

𝑞
𝑤 (15)

where 𝑤 =
1+𝑆

2
 is a weight meant to increase the importance of solutions with high value of 𝑆. That way

clustering solutions with low silhouette score, obtained when many non-informative features are

selected, will have a weaker effect on the final result. The final rank is based on the average score of

each feature over all iterations for all values of 𝑘. The complete procedure is shown in Algorithm 3,

which returns an array of features in decreasing order of importance.

Algorithm 3: FRSD

 Input: 𝑨 - 𝑚x𝑛 matrix of 𝑚 samples and 𝑛 features; 𝑲𝒗– maximum number of clusters;

𝑻 – number of iterations; 𝒇 – fraction of 𝑛 to use in each iteration

 Output: 𝑹 – list of the 𝑛 features ranked in decreasing order of importance for clustering

1 𝑠𝑐𝑜𝑟𝑒𝑠← array of length 𝑛 for keeping score of each feature, initialized to 0s

2 𝐾𝑚𝑎𝑥 ← min(√𝑚, 𝐾𝑣)

3 for 𝑘 in {2, … , 𝐾𝑚𝑎𝑥}

4 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)← array of length 𝑛 for keeping score of each feature, initialized to 0s

5 𝑐𝑜𝑢𝑛𝑡𝑠(𝑘)← array of length 𝑛 for counting the times each feature is selected, initialized to 0s

6 for 𝑡 ←1 to 𝑇

7 ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ randomly chosen features

8 𝐴(𝑡) ← the sub matrix of size 𝑚x𝑞 of 𝐴 with columns corresponding to ℎ

9 Perform k-means on 𝐴(𝑡)

10 𝐼(𝑡)←labels of the k-means solution

11 𝑆(𝑡)← silhouette score of the solution on 𝐴(𝑡) and 𝐼(𝑡)

12 𝑤(𝑡)←
1+𝑆(𝑡)

2

13 𝛿 ← list of length 𝑞 initialized to 0s

14 for 𝑣 in ℎ

15 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]+= 1

16 �̂� ← Shuffled version of 𝑣

17 𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) with �̂� instead of 𝑣

18 𝑆v
(𝑡)

← the silhouette score for 𝐴𝑣
(𝑡)

 and 𝐼(𝑡)

19 𝛿[𝑣]← 𝑆(𝑡) − 𝑆𝑣
(𝑡)

20 End

18

21 𝑟 ← a list of the ranks of ℎ according to 𝛿, where higher 𝛿 accounts for higher 𝑟.

22 for 𝑣 in ℎ: 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)[𝑣]+=
𝑟[𝑣]

𝑞
𝑤(𝑡)

23 end

24 𝑠𝑐𝑜𝑟𝑒𝑠+= 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)/𝑐𝑜𝑢𝑛𝑡𝑠(𝑘)

25 end

26 𝑠𝑐𝑜𝑟𝑒𝑠 ←
𝑠𝑐𝑜𝑟𝑒𝑠

𝐾𝑚𝑎𝑥−1

27 Return an order of the features sorted in decreasing order of 𝑠𝑐𝑜𝑟𝑒𝑠.

No implementation of FRSD was provided in [26]. We implemented it as described in [26] and used

silhouette as implemented in Scikit learn [35].

2.10 Shapley values

In the theory of cooperative games in game theory, there is a set 𝑁 of players who can form coalitions.

Each coalition 𝑆 ⊂ 𝑁 has a value 𝑔(𝑆). According to the Shapley theory [31] the contribution of player 𝑖

to group 𝑆 ∪ {𝑖} is defined as:

 𝑔(𝑆 ∪ {𝑖}) − 𝑔(𝑆) (16)

and the Shapley value of player 𝑖 is a weighted average of its contributions over all possible 𝑆s, i.e.:

 ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!𝑆⊆𝑁\{𝑖} [𝑔(𝑆 ∪ {𝑖}) − 𝑔(𝑆)] (17)

It is widely used in supervised learning to measure the contribution of a feature to a prediction model,

where for efficiency reasons it is usually evaluated using random permutations instead of enumerating

all possible groups 𝑆 [32]. To the best of our knowledge, Shapley values were not used to date in feature

selection for clustering.

2.11 Multiplicative Weights

Multiplicative Weights (MW) is an algorithmic update method used in game theory and algorithm design.

The motivation of MW [33] is to improve the decisions we make along the iterations by gradually

favoring decisions that were proven to be right so far. In our case the decisions are the features selected

and we use the Hedge update rule that was suggested by Arora et al. [33]:

 𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

∙ 𝑒𝑥𝑝(−𝜂𝑚𝑖
𝑡) (18)

19

Where 𝑤𝑖
𝑡 is the weight of feature 𝑖 at the 𝑡-th iteration, 𝜂 ≤ 1 is a constant parameter and 𝑚𝑖

𝑡 is the

cost of feature 𝑖 at iteration 𝑡. 𝑚𝑖
𝑡 is a value in the range [−1,1] that reflects how good decision 𝑖 was in

iteration 𝑡, where higher positive values correspond to worse decisions and negative values correspond

to good decisions that warrant an award instead of a cost. A common practice, also used in our

implementation, is to use non-negative values only. The choice of values for 𝑚𝑖
𝑡 depends on the

implementation.

3. Methods

3.1 The FRIGATE algorithm

FRIGATE is a new ensemble feature ranking algorithm, which uses the Shapley value concept to find the

most valuable features for clustering based on multiple runs of k-means (or k-prototypes/k-modes)

algorithm.

To use the Shapley values in our context, the players are the features. We assume the number of

clusters 𝑘 is given, and use the total distance of samples to their cluster centroids as the objective

function 𝑔:

 𝑔(𝑆) = ∑ ∑ 𝑑𝑆 (𝑥, 𝑦𝑗)𝑥𝜖𝐶𝑗

𝑘
𝑗=1 (19)

Here 𝑆 is a set of features, 𝑘 is the number of clusters, 𝐶𝑗 is the set of samples included in cluster 𝑗 and

𝑦𝑗 is the centroid of cluster 𝑗. 𝑑𝑆 is the distance function on the sample vectors restricted to the

coordinates in 𝑆. We call 𝑔(𝑆) the solution score.

𝑑𝑆 and the clustering algorithm that we use will depend on the data types in 𝑆. If all the features are

continuous then we use k-means for clustering and the Euclidean distance. When we have a mixture of

categorical and continuous features, we will use k-prototype for clustering, and the corresponding

distance function (Equation 4). If we have only categorical features, k-modes is used for clustering with

𝑑 as the Hamming distance. We used k-means as implemented in Scikit learn [35] with 100 k-means++

initializations in each run.

Algorithm 4 presents the procedure for continuous features. In iteration 𝑡, the algorithm selects at

random a subset of features and performs k-means on the corresponding submatrix 𝐴(𝑡). Once a

solution has been obtained, we calculate the contribution of feature 𝑖 as the difference between that

20

solution’s score and the score obtained by the same clustering on the submatrix 𝐴(𝑡) in which the values

of feature 𝑖 were randomly shuffled among the samples, keeping the rest unchanged. For the final

ranking we use the average scores of the features.

Algorithm 4: FRIGATE

 Input: 𝑨 - 𝑚x𝑛 matrix of 𝑚 samples and 𝑛 features; 𝒌 - number of clusters; 𝑻 - number of

iterations; 𝒇 - fraction of features to use in each iteration

 Output: 𝑹 – list of the 𝑚 features ordered by importance for clustering

1 𝑠𝑐𝑜𝑟𝑒𝑠← array of length 𝑛 for keeping score of each feature, initialized to 0s

2 𝑐𝑜𝑢𝑛𝑡𝑠← array of length 𝑛 for counting the times each feature is selected, initialized to 0s

3 for 𝑡 ←1 to 𝑇

4 ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ randomly chosen features

5 𝐴(𝑡) ← a matrix of size 𝑚x𝑞 with columns corresponding to ℎ

6 Perform k-means on 𝐴(𝑡)

7 𝐼 ← labels of the clustering solution

8 𝑔(ℎ)←solution score of 𝐴(𝑡) and 𝐼

9 for 𝑣 in ℎ

10 �̂� ← Shuffled version of 𝑣

11 𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) except having �̂� instead of 𝑣

12 𝑔𝑣← solution score of 𝐴𝑣
(𝑡)

 and 𝐼

13 𝑠𝑐𝑜𝑟𝑒𝑠[𝑣] ← 𝑠𝑐𝑜𝑟𝑒𝑠[𝑣] + (𝑔𝑣 − 𝑔(ℎ))

14 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣] ← 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣] + 1

15 end

16 end

17 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑠𝑐𝑜𝑟𝑒𝑠/𝑐𝑜𝑢𝑛𝑡𝑠

18 return the features sorted in decreasing order of 𝑠𝑐𝑜𝑟𝑒𝑠

Note that FRSD can also be seen as a type of a Shapley-like algorithm with a function 𝑔 that uses the

silhouette. However, a main difference is that FRIGATE does not rank the features on every iteration and

accumulates the ranks for the final score, as in FRSD and FRMV, but instead summarizes the raw scores.

That way poor clustering solutions that are based on non-informative features will have large 𝑔(ℎ)

values (line 8 in Algorithm 4) as well as large 𝑔𝑣 values (line 12). This will limit the ability of these

features to receive high scores, as they are calculated by subtracting the distance after shuffling the

values of a feature from the original distance (line 13 in Algorithm 4). Thanks to these properties of 𝑔(ℎ)

and 𝑔𝑣, we do not need to use an additional factor, as FRSD does with silhouette, to assess the quality of

the clusters. It also reduces the number of calculations and improves the efficiency of the algorithm.

21

We now discuss runtime complexity, referring only to k-means for simplicity. The runtime of k-means is

𝑂(𝑚 ∙ 𝑞 ∙ 𝑘 ∙ 𝑐) for 𝑚 samples, 𝑞 features, 𝑘 clusters and up to 𝑐 iterations. We sample in each FRIGATE

iteration 𝑞 = 𝑓 ∙ 𝑛 features. For each k-means run we perform 𝑖 initializations. Therefore, the runtime of

the k-means executions in each iteration of FRIGATE is 𝑂(𝑚𝑞𝑘𝑐𝑖). Other than k-means runs, in each

iteration we shuffle the values of 𝑞 features over the full cohort in 𝑂(𝑚) for each feature and

recalculate the solution score 𝑑𝑣 in 𝑂(𝑚). The overall runtime of an iteration is 𝑂(𝑚𝑞𝑘𝑐𝑖 + 𝑚𝑞) =

𝑂(𝑚𝑞𝑘𝑐𝑖). Hence, the additional actions to test the contribution of each feature do not increase the

asymptotic runtime. We perform 𝑇 iterations, so the overall runtime is 𝑂(𝑚𝑇𝑞𝑘𝑐𝑖). As 𝑞 = 𝑓 ∙ 𝑛 with

constant 𝑓 we can write the runtime as: 𝑂(𝑚𝑇𝑛𝑘𝑐𝑖).

3.2 The FRIGATE-MW algorithm

MW offers a smarter way to choose the features in FRIGATE for each clustering solution instead of

choosing them randomly. Algorithm 5 shows the version of FRIGATE that uses MW for continuous

features, which we call FRIGATE-MW.

We define an 𝑛-long array 𝐿 so that 𝐿(𝑖) =
𝑖−1

𝑛−1
. At each iteration we rank the features by their scores so

far and use the ranks and 𝐿 to determine 𝑚𝑖
(𝑡)

 (see chapter 2.11). If the rank of feature 𝑖 at iteration 𝑡 is

𝑟 then 𝑚𝑖
(𝑡)

= 𝐿[𝑟]. The weights of features that were not selected in the iteration remain unchanged.

For the next iteration we select features from distribution 𝒑(𝒕) = {𝑤1
(𝑡)

/Φ(t) , … , 𝑤𝑁
(𝑡)

/Φ(t)} where

Φ(t) = ∑ 𝑤𝑖
(𝑡)

𝑖 is the sum of weights at the 𝑡-th iteration. To the best of our knowledge, this is the first

use of MW in feature selection for clustering.

Algorithm 5: FRIGATE-MW

 Input: 𝑨 - 𝑚x𝑛 matrix of 𝑚 samples and 𝑛 features; 𝒌 - number of clusters; 𝑻 - number of

iterations; 𝒇 - fraction of features to use in each iteration; 𝜼 – a Multiplicative Weights

parameter

 Output: 𝑹 – list of the 𝑚 features ordered by importance for clustering

1 𝑠𝑐𝑜𝑟𝑒𝑠 ← array of length 𝑛 for keeping score of each feature, initialized to 0s

2 𝑐𝑜𝑢𝑛𝑡𝑠 ← array of length 𝑛 for counting the times each feature is selected, initialized to 0s

3 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← array of length 𝑛 for keeping the weight of each feature, initialized to 1s

4 𝐿 ← a static array of length 𝑛 for the costs used in Multiplicative Weights. 𝐿 = [0,
1

𝑛−1
,

2

𝑛−1
… ,

(𝑛−2)

𝑛−1
, 1]

5 for 𝑡 ← 1 to 𝑇

6 𝑃 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠/𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

7 ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ features chosen from the distribution 𝑃

22

8 𝐴(𝑡) ← a sub matrix of size 𝑚x𝑞 of 𝐴 with columns corresponding to ℎ

9 Perform k-means on 𝐴(𝑡)

10 𝐼 ← labels of the clustering solution

11 𝑔(ℎ)←the solution score of 𝐴(𝑡) and 𝐼

12 for 𝑣 in ℎ

13 �̂� ← Shuffled version of 𝑣

14 𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) except having �̂� instead of 𝑣

15 𝑔𝑣←the solution score of 𝐴𝑣
(𝑡)

 and 𝐼

16 𝑠𝑐𝑜𝑟𝑒𝑠[𝑣] ← 𝑠𝑐𝑜𝑟𝑒𝑠[𝑣] + (𝑔𝑣 − 𝑔(ℎ))

17 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣] ← 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣] + 1

18 end

19 𝑟𝑎𝑛𝑘𝑠 ← 𝑠𝑜𝑟𝑡(𝑠𝑐𝑜𝑟𝑒𝑠/ 𝑐𝑜𝑢𝑛𝑡𝑠) // rank the features based on the scores so far

20 for 𝑣 in ℎ

21 𝑟 ← rank of 𝑣 in 𝑟𝑎𝑛𝑘𝑠

22 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑣] = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑣] ∙ exp(−𝜂 ∙ 𝐿[𝑟]) // update the weight of 𝑣 according to eq. 14

23 end

24 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑠𝑐𝑜𝑟𝑒𝑠/𝑐𝑜𝑢𝑛𝑡𝑠

25 return the features sorted in decreasing order of 𝑠𝑐𝑜𝑟𝑒𝑠

In each iteration we update the weights of the 𝑞 participating features in constant time for each feature

and sort the array of weights in 𝑂(𝑛 ∙ log(𝑛)). The overhead of MW for each iteration is thus

𝑂(𝑛 ∙ log(𝑛) + 𝑞) = 𝑂(𝑛 ∙ log(𝑛)), since 𝑞 < 𝑛. The total runtime of each iteration in FRIGATE-MW is:

𝑂(𝑚𝑞𝑘𝑐𝑖 + 𝑛 ∙ log(𝑛)). Therefore, the total runtime is: 𝑂(𝑚𝑇𝑞𝑘𝑐𝑖 + 𝑇𝑛 ∙ log(𝑛)) = 𝑂(𝑇𝑛(𝑚𝑘𝑐𝑖 +

log(𝑛))). Altogether, the increase in the runtime over FRIGATE is not major. However, note that in

FRIGATE-MW the iterations cannot be programmed to run in parallel, in contrast to FRIGATE.

For both variations of the algorithm we used 𝑇 = 2𝑛 and 𝑓 = 0.1, and for FRIGATE-MW we used 𝜂 =

0.5. For a detailed description of the parameter choice see Supplementary 1.

3.3 Simulation

We performed simulations in order to test the algorithms in situations where the true clustering and the

informative features are known. The simulations were along the same lines of those described in [26].

The parameters of the simulation are:

• 𝑘 – number of clusters

23

• 𝑐 – number of samples in each cluster

• 𝛼 – number of informative features

• 𝛽 – number of non-informative features

• 𝜇 – distribution parameter

• 𝜎 – correlation coefficient between features

Simulating continuous data: For each cluster 𝑗 , we construct 𝑐 vectors of length 𝑛 = 𝛼 + 𝛽 from

multivariate normal distribution, where 𝛼 features are sampled from a normal distribution with mean of

𝑗 ∙ 𝜇 for 𝑗𝜖[0, … , 𝑘 − 1]. The other 𝛽 features are sampled from a normal distribution with mean 0 for all

clusters and therefore represent the non-informative features. Thus, the mean vector of a sample in the

𝑗𝑡ℎ cluster is: 𝜇𝑗 = [(𝑗 ∙ 𝜇)𝛼x1, 0𝛽x1].

Next, we define a covariance matrix, parameterized by 𝜎, used to create correlations between the

different features. The covariance matrix Σ is identical for all clusters:

 Σ = (1 − 𝜎) ∙ 𝐼𝑛x𝑛 + 𝜎 ∙ 1𝑛x1 ∙ 1𝑛x1
𝑇 (20)

The 𝑛x(𝑘 ∙ 𝑐) data matrix 𝐴 then undergoes z-score normalization for each feature. This step is needed

when working with many data types, especially in the medical domain as the values of different features

can be of different magnitude.

Simulating mixed data: To build a simulation of mixed data we add three more parameters:

• 𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 – number of informative categorical features

• 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 – number of non-informative categorical features

• 𝑝 – probability of choosing the right category

We assume that the categorical features have 𝑘 categories, labeled {0,1, … , 𝑘 − 1}. For the informative

features of a sample in the 𝑗𝑡ℎ cluster, we choose the value 𝑗 with probability 𝑝 and a value from

{0, … , 𝑘 − 1}\{𝑗} with probability 1 − 𝑝 where the value is chosen uniformly at random. For the non-

informative features we choose a random value uniformly from {0, … , 𝑘 − 1}. The simulation of the

continuous features is done as described before, and we concatenate the two matrixes into a single

input matrix. In our simulation we used 𝑝 = 0.95.

24

3.4 Demonstration of FRIGATE

For better understanding of the FRIGATE process, we demonstrate it graphically. We simulated data as

described in section 3.3, with two continuous features, two clusters (𝑘 = 2), and 100 samples in each

cluster, and simulation parameters 𝜇 = 4, 𝜎 = 0. Figure 1 shows the data, where each axis is a feature

and the samples are colored by cluster membership. We simulated three scenarios:

A. Both features are informative for the clustering solution (Figure 1A).

B. Only one feature is informative (Figure 1B)

C. Both features are not informative (Figure 1C).

Next, we performed an iteration of the FRIGATE algorithm, using the centroids obtained from the

clustering solution on the two features, to show the differences in scores in each scenario (Figure 1D):

A. When the two features were informative, the solution score (line 8 in Algorithm 4) was 81.76,

and the scores of the features (line 13 in Algorithm 4) were 313.48 and 286.33. Both feature

scores are high, and the difference can result from the randomness in shuffling the values (line

Figure 1. Illustrations of simulations with two clusters. In the simulation, there are 100 samples in each cluster, 𝜇 = 4, 𝜎 = 0, and two features.

A-C: features are represented by the axes. Each color represents a different cluster. A: both features are informative for clustering, B: only the

feature represented by the 𝑦 axis is informative, C: both features are not informative. D: Demonstration of FRIGATE iteration on the data of A-C.

Solution score refers to line 8 in Algorithm 4, feature's score refers to line 13 in Algorithm 4. F1 is represented by the x-axis in Figure1 A-C and

F2 is represented by the y-axis. We can see that the informative features received higher scores than the non-informative ones.

25

10 in Algorithm 4) or from the simulation that might have produced one feature that is more

informative than the other.

B. When only one feature was informative, the solution score was 237.28, and the feature scores

were 0.51 for the non-informative features and 304.05 for the informative feature.

C. When the two features were non-informative, the solution score was 256.48, and the feature

scores were 117.59 and 150.57.

In Figure 2 we demonstrate graphically the iteration for scenario B. Figure 2A shows the results of k-

means clustering of the data (line 6 in Algorithm 4), with a solution score of 237.28. Figure 2B shows the

data after shuffling the values of the non-informative feature (line 10 in Algorithm 4). The shuffled data

has an almost identical solution score of 237.79 (line 12 in Algorithm 4) and a feature score of 0.51.

Figure 2C shows the sample locations after shuffling the values of the informative feature, which gives a

new solution score of 541.33 and a feature score of 304.05.

The illustrations of scenarios A and C are given in Supplementary 2. In all scenarios the informative

features scored much higher than the non-informative ones. Notice that the differences in scores are

due to the initial solution score of each scenario – the poor results of scenario 3 already produced a

relatively high solution score, so the ability of any feature to score high is limited.

3.5 Evaluation measures

When applied to a real dataset, each algorithm produces a ranking of the features. In our tests the truly

informative features were unknown but the “true” clustering is known. We therefore applied the

following procedure from [26]–[28] to evaluate the results. We ran k-means on the subset of the data

Figure 2. Illustrations of the different steps of FRIGATE for scenario B that is shown in Figure 1B, where one feature is informative (y axis) and

one is non-informative (x axis). A – a clustering solution of the data (line 6 in Algorithm 4) colored by clusters labels. The solution score is 237.28

(line 8 in Algorithm 4). B- Results of shuffling the x coordinates, representing the non-informative feature (lines 10-13 in Algorithm 4). The

solution score is similar to A and the feature’s score is 0.51. C- Results of shuffling the y coordinates, representing the informative feature. An

increase in the solution score led to a feature’s score of 304.5.

26

containing only the 𝑗 top ranked features. The clustering produced was compared to the true labels

available for the dataset using the Adjusted Rand Index (ARI) [42]. The process was repeated with

increasing values of 𝑗, for 𝑗𝜖[1, 𝑁] for 𝑁 number of features. The rationale was that a better feature

ranking will manifest a high ARI for smaller values of 𝑗, as it puts the most informative features at the

top. The process was repeated ten times per algorithm.

The above measure gives a value for the top 𝑗 features, and a separate value for each 𝑗. We developed

two new scores that summarize the measure across all values of 𝑗, while giving higher weight to the

features that rank higher.

Suppose 𝑀 feature ranking algorithms are compared on the same dataset. For each 𝑗, we compute the

ARI of each algorithm on the top 𝑗 features that it selected, and rank the algorithms based on their

scores, from 1 for the top performer to 𝑀. For simplicity of the description, we assume there are no ties.

The weighted rank of algorithm 𝑎 is defined as:

 𝑊𝑅(𝑎) =
2

𝑁(𝑁+1)
∑ (𝑁 − 𝑗 + 1)𝑗 ∗ (

𝑀−𝑟𝑎𝑛𝑘(𝑎,𝑗)+1

𝑀
) (21)

Here 𝑟𝑎𝑛𝑘(𝑎, 𝑗) is the rank of algorithm 𝑎 on the top 𝑗 features. Hence, the second factor in the sum

ranges from 1 for the top ranked algorithm to 1/𝑀 for the worst ranked, and the first factor gives a

different weight to each 𝑗, from 𝑁 for the first feature to 1 for the last ranked. The factor
2

𝑁(𝑁+1)
 rescales

the total sum to [0,1].

The 𝑊𝑅 measure is relative and depends on the set of algorithms tested. We introduce a second

measure for a single algorithm. The algorithm's ARI score is computed for each top 𝑗 features and

weighted as above. The weighted ARI of algorithm 𝑎 is defined as:

 𝑊𝐴𝑅𝐼(𝑎) =
2

𝑁(𝑁+1)
∑ (𝑁 − 𝑗 + 1)𝑗 ∗ 𝐴𝑅𝐼(𝑎, 𝑗) (22)

where 𝐴𝑅𝐼(𝑎, 𝑗) is the ARI of algorithm 𝑎 on the top 𝑗 features. Hence, the range of the score is [-1,1]

and higher scores are better.

Both scores can be generalized to handle ties and also situations where not all values of 𝑗 are tested, e.g.,

when there are too many features.

27

4. Results

4.1 Algorithms Performance

We measured the performance of FRMV, FRSD, FRCM, FRIGATE and FRIGATE-MW on simulated and real

data, including four genomic and seven EMR datasets. The number of clusters 𝑘 in FRIGATE and for

FRMV was chosen with the elbow method that we implemented as suggested in [41].

4.1.1 Simulated Data

We simulated data with 200 samples and 100 features of which 20 are informative, divided into two or

four equal-sized clusters (𝑘 = {2,4}), mean distances 𝜇 = {0.5,1,2,4} and feature correlation levels 𝜎 =

{0,0.05,0.2, 0.5}. We ran the algorithms on data with and without z-score normalization. The accurate

recognition rate is defined as the fraction of informative features in the top 20 ranked features. Results

for 𝑘 = 4 with 𝜇 = {0.5,1} are shown in Table 2, and the other cases are found in Supplementary 4. In

all cases, the elbow method chose 𝑘 = 2. On normalized data FRCM performed best, and FRIGATE-MW

second. On non-normalized data FRIGATE-MW was best. FRMV scored poorly in all cases. FRSD scored

poorly in most normalized scenarios, while in most non-normalized scenarios it scored high. We can also

see that in general smaller values of 𝜇 and 𝑘 account for harder cases, and normalized data is more

challenging than non-normalized data. The FRIGATE variations and FRCM are affected by the correlation

levels, where high levels of correlation cause a drop in performance. We can see the major drop in

performance of these algorithms for 𝜎 ≥ 0.2. FRSD and to some extant FRMV show opposite behavior,

where extreme levels of correlation lead to improved results. This is counter-intuitive, as high

correlation levels are expected to cause higher similarities between all features, including pairs of

informative and non-informative ones. FRSD and FRMV are also more affected by the structure of the

data (𝑘, 𝜇, normalized. See Supplementary 4) in comparison to FRIGATE and FRCM (see Discussion).

It is worth mentioning that as 20% of the features were informative, a score below 0.2 accounts for

performance worse than random ordering of features. FRMV repeatedly scored below 0.2, FRSD scored

low for most of the normalized cases with low correlation levels, and FRIGATE scored below random

levels in the extreme correlation setting. FRCM is the only algorithm that rarely dropped significantly

below random levels (Supplementary 4).

28

parameters

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟐

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟓

𝝁 = 𝟏

𝝈 = 𝟎

𝝁 = 𝟏

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟏

𝝈 = 𝟎. 𝟐

𝝁 = 𝟏

𝝈 = 𝟎. 𝟓

normalized

FRIGATE 0.98 ± 0.03 0.91 ± 0.07 0.46 ± 0.17 0.09 ± 0.08 𝟏 ± 𝟎 𝟏 ± 𝟎 0.97 ± 0.05 0.09 ± 0.08

FRIGATE-MW 𝟏 ± 𝟎 𝟏 ± 𝟎 0.62 ± 0.33 0.19 ± 0.15 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 0.01 ± 0.02

FRCM 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟎. 𝟕𝟐 ± 𝟎. 𝟏𝟓 0.35 ± 0.18 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟎. 𝟗𝟗 ± 𝟎. 𝟎𝟑

FRSD 0.06 ± 0.04 0.06 ± 0.04 0.11 ± 0.06 𝟎. 𝟑𝟖 ± 𝟎. 𝟏𝟕 0.01 ± 0.02 0 ± 0 0.04 ± 0.05 0.32 ± 0.08

FRMV 0.13 ± 0.16 0.13 ± 0.13 0.25 ± 0.16 0.16 ± 0.12 0.05 ± 0.1 0.03 ± 0.03 0.09 ± 0.12 0.06 ± 0.16

non-normalized

FRIGATE 0.99 ± 0.02 0.98 ± 0.03 0.76 ± 0.12 0.7 ± 0.15 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎

FRIGATE-MW 𝟏 ± 𝟎 𝟏 ± 𝟎. 𝟎𝟐 𝟎. 𝟗𝟒 ± 𝟎. 𝟎𝟖 0.31 ± 0.14 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎

FRCM 𝟏 ± 𝟎 0.99 ± 0.02 0.82 ± 0.1 0.45 ± 0.2 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎

FRSD 0.79 ± 0.06 0.74 ± 0.11 0.77 ± 0.07 𝟎. 𝟖𝟗 ± 𝟎. 𝟎𝟔 𝟏 ± 𝟎. 𝟎𝟐 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎

FRMV 0.2 ± 0.19 0.12 ± 0.2 0.23 ± 0.2 0.11 ± 0.08 0.02 ± 0.06 0.02 ± 0.04 0.13 ± 0.2 0.1 ± 0.15

4.1.2 Real Data

We tested the five algorithms on 11 real genomic and EMR datasets from different sources for which a

known clustering was available or created by us. The datasets are described in Table 3.

Figure 3 shows the performance of the algorithms on four genomic databases [45]–[48] (datasets 1-4 in

Table 3). These datasets were used in a benchmark of clustering [49]. They have a large number of

features and a modest number of samples (about two orders of magnitude lower). Note that here we do

know the true clustering but we do not know which and how many features are informative, but it is

expected that many features do not carry information relevant to the clustering. In all cases the value

chosen by the elbow method for FRIGATE and FRMV was 𝑘 = 2.

The performance of both variations of FRIGATE and FRSD was comparable and generally good, reaching

maximum ARI of 0.35-0.7 already with less than 100 features in most cases. FRSD performed markedly

better than the other methods on dataset 3 (Figure 3C). FRCM performed poorly in most cases, with

slow gradual increase in ARI. FRMV performed better than the others on dataset 2 (Figure 3B), and its

results had a wide variance across repetitions in most cases. It is worth mentioning that the description

of the FRMV algorithm in [27] was not clear, especially calculating linear correlation between continuous

Table 2. Performance on simulated data, with 𝑘 = 4. In bold are the top performers.

29

Table 3. Details of the real data sets used for the performance benchmark. The numbers in parentheses in column “# of samples”

are the sizes of the clusters, and in the column “# of features” are the number of continuous and categorical features, respectively.

features and categorical cluster membership. This, as well as sampling features with replacement, can

potentially create major variability between different runs of the algorithm.

No. Source Domain Data Name # of

clusters

of samples # of features Data type

1 [46], [49] Genomic Bredel-2005 3 50 (31,14,5) 1739 Continuous

2 [45], [49] Genomic Armstrong-2002-

v2

3 72 (24,20,28) 2194 Continuous

3 [47], [49] Genomic Tomlins-2006 5 50 (27,20,32,13,12) 2315 Continuous

4 [48], [49] Genomic Nutt-2003-v1 4 50 (14,7,14,15) 1377 Continuous

5 MIMIC-III [4], [5] EMR Young cancer

patients

2 161 (122,39) 70 Continuous

6 MIMIC-III [4], [5] EMR Young healthy

patients

2 110 (84,26) 47 Continuous

7 MIMIC-III [4], [5] EMR Newborns 2 5286 (1534,3752) 29 Continuous

8 [50], [51] EMR Heart failure 2 169 (68,101) 77 Continuous

9 eICU [52], [53] EMR Intubated

patients

2 441 (136, 305) 157 (87, 70) Mixed

10 eICU [52], [53] EMR Short stay at ICU 2 570 (487, 83) 79 (59, 20) Mixed

11 eICU [52], [53] EMR Young patients 2 232 (138, 94) 86 (72, 14) Mixed

30

Figure 3. Performance of the tested algorithms on genomic datasets. The ranking produced by each algorithm was used to cluster

the data with a growing number of features. The Y axis is the ARI score compared to the known clustering. The results are average

of ten runs. The light-colored sleeve around each plot is ±1 std. A-D for datasets 1-4 in Table 3, respectively.

We created three EMR datasets from the MIMIC-III repository [4], [5] and three from the eICU

repository [52], [53], both downloaded from PhysioNet [3] (datasets 5-7, 9-11 in Table 3). The input

features used were continuous, containing lab tests (“labs”), age and length of stay in the hospital (days

in MIMIC and minutes in eICU) and Apache score in eICU. For each lab, we included only the first

measurement that was available for the patient during the ICU stay. For each patient we included data

from a single ICU stay. For the MIMIC datasets ICD-9 diagnosis codes were extracted per ICU stay and

used for labeling the patients. For the eICU datasets, diagnoses and Apache score parameters were used

as categorical variables and for labeling. Labs that were missing in >70% of the cohort were removed. To

remove potential outliers, we z-scored each continuous measurement across the cohort, and removed

patients that had any lab with |𝑧 − 𝑠𝑐𝑜𝑟𝑒| ≥ 3. We then applied the Iterative Imputer as implemented

31

in [35] to the raw data to complete missing data and performed z-score normalization. The MIMIC

cohorts that we constructed were:

1. Dataset 5 – patients that had a cancer ICD-9 diagnosis, aged 18-40. The data were divided into

two clusters by length of stay: 122 patients who were discharged alive and spent less than 18

days in ICU, and 39 patients who either died during the ICU stay or stayed 18 days or more at

the ICU. 70 features were recorded.

2. Dataset 6 – “healthy” patients: individuals aged 20-30 who did not have ICD-9 diagnosis of

cancer, benign tumors, hypertension, cardiac disease, endocrine related disease, or hepatitis

and stayed up to one day at ICU. They were divided into two clusters by sex: 84 males and 26

females. Here 47 features were recorded.

3. Datasets 7 – Newborns divided into two clusters: 1534 with jaundice and 3752 without jaundice,

with 29 features.

The results on these datasets are shown in Figure 4A-C and summarized in Table 4. For Dataset 5 (Figure

4A), when using up to 50% of the ranked features FRIGATE performance was best. With over 50% of

features FRCM results were comparable. For Dataset 6 (Figure 4B) FRCM was best followed by FRIGATE.

FRMV performed comparably to FRIGATE and FRSD performed worst. For Dataset 7 (Figure 4C) with up

to 50% of features FRCM performed best. With 50% or more of the ranked features the results of

FRIGATE and FRMV were comparable to FRCM or better. FRSD was the worst performer.

Dataset 8 consists of heart failure patients from Zigong Fourth People’s Hospital [50], [51], also

extracted from PhysioNet. This cohort was divided into two age groups: 68 patients of ages 29-49 and

101 patients of ages 89-100. We had 77 features in this cohort after removing features with >30%

missing data, and used the Iterative Imputer for missing data. The results are shown in Figure 4D and

Table 4. Here FRSD performed comparably to FRIGATE and even slightly better in some thresholds,

where FRMV and FRCM performed much worse, with especially poor results in the first 40% of features.

A full comparison among the results is found in Supplementary 5.

32

Figure 4. A-D: Performance on datasets 5-8 respectively. See Figure 3 for caption details.

Algorithm Dataset 5 Dataset 6 Dataset 7 Dataset 8

ARI of top ⌈𝟐𝟓%⌉

features

ARI of top ⌈𝟓𝟎%⌉
features

ARI of top ⌈𝟐𝟓%⌉

features

ARI of top ⌈𝟓𝟎%⌉
features

ARI of top ⌈𝟐𝟓%⌉

features

ARI of top ⌈𝟓𝟎%⌉

features

ARI of top ⌈𝟐𝟓%⌉

features

ARI of top ⌈𝟓𝟎%⌉

features

FRIGATE 0.328 ± 0.105 0.372 ± 0.029 0.182 ± 0.149 0.237 ± 0.092 0.409 ± 0.146 𝟎. 𝟒𝟑𝟓 ± 𝟎. 𝟎𝟏𝟒 0.547 ± 0.045 𝟎. 𝟔𝟐𝟕 ± 𝟎. 𝟎𝟒𝟐

FRIGATE-MW 𝟎. 𝟑𝟕 ± 𝟎. 𝟎𝟒𝟐 𝟎. 𝟑𝟕𝟖 ± 𝟎. 𝟎𝟑𝟏 𝟎. 𝟐𝟏 ± 𝟎. 𝟏𝟏𝟗 0.198 ± 0.038 0.427 ± 0.042 0.417 ± 0.038 0.524 ± 0.103 0.601 ± 0.035

FRMV 0.053 ± 0.082∗☩ 0.053 ± 0.053∗☩ 0.181 ± 0.116 0.214 ± 0.104 0.401 ± 0.047 0.41 ± 0.027∗ 0.116 ± 0.154∗☩ 0.221 ± 0.233∗☩

FRSD 0.058 ± 0.013∗☩ 0.107 ± 0.049∗☩ 0.006 ± 0.022∗☩ 0.097 ± 0.149∗ 0.129 ± 0.053∗☩ 0.115 ± 0.0∗☩ 𝟎. 𝟓𝟕𝟑 ± 𝟎. 𝟎𝟐𝟗 0.625 ± 0.025

FRCM 0.026 ± 0.0∗☩ 0.35 ± 0.027☩ 𝟎. 𝟐𝟏 ± 𝟎. 𝟎𝟔𝟖 𝟎. 𝟐𝟗𝟏 ± 𝟎. 𝟎𝟓𝟒☩ 𝟎. 𝟒𝟔𝟓 ± 𝟎. 𝟎𝟎𝟕 0.422 ± 0.034 0.012 ± 0.004∗☩ 0.559 ± 0.024∗☩

The eICU cohorts that we constructed included Caucasian patients admitted directly to ICU with sex

labels:

1. Dataset 9 – intubated patients aged 70 and above were divided according to status at discharge

of “Alive”, 305 patients, and “Expired”, 136 patients. 87 continuous and 70 categorical features

that had a value in at least 1% of the cohort were used.

Table 4. Performance on Dataset 5-8. In bold are the top performers.

* - significant difference from FRIGATE, ☩ - significant difference from FRIGATE-MW

33

2. Dataset 10 – patients who stayed up to one day in ICU, separated by age groups: 487 patients

aged 18 to 80, and 83 patients aged 80 or older. 59 continuous and 20 categorical features that

had a value in at least 5% of the cohort were used.

3. Dataset 11 – patients aged 18-30 separated by length of stay: 138 who stayed over 4.5 days

(>6500 minutes) or expired, and 94 who stayed 4.5 days or less and were discharged alive. 72

continuous and 14 categorical features that had a value in at least 5% of the cohort were used.

The results for the eICU datasets are shown in Figure 5. Figures 5A, 5C, 5E compare all algorithms using

the continuous features only. The same trends are observed – both versions of FRIAGTE and FRCM

perform best, FRMV has a large variance in results and FRSD performs poorly.

We next used these datasets to test the ability to improve the results by adding categorical features. We

tested different values of 𝛾 and looked for a change in the ARI of the full set of features in comparison to

only using the continuous features (results not shown). A change in ARI means a different composition

of the clusters caused by the categorical features. For 𝛾 < 5 in most cases there was no change in the

composition of the clusters, and 𝛾 > 6 lead to a major decrease in ARI. We therefore chose 𝛾 = 6 in all

cases. In most datasets we do not see an improvement, and in some cases more features were needed

to reach high values of ARI. Overall, the categorical features did not improve the solution. Interestingly,

in dataset 10 (Figure 5D) adding the categorical variables harmed the performance of FRIGATE-MW

more than that of FRIAGATE.

34

In Table 5 we show the weighted rank (𝑊𝑅) and weighted ARI (𝑊𝐴𝑅𝐼) scores of all algorithms for

datasets 1-11. Apart from dataset 7 with the WARI, a variant of FRIGTAE is among the top two

algorithms in all cases. In terms of WR, FRIGATE was best in the 4 cases and second in 4, and FRIGATE-

MW was best in 1 and second in 6. In terms of WARI, FRIGATE was best in 4, second in 2, FRIGATE-MW

best in 2 and second in 5 cases. FRCM was best in 3 and second in one case for both measures.

Figure 5. Performance on datasets 9-12 from the eICU repository. See Figure 3 captions for details. A-B: dataset 9, C-D: dataset

10, E-F: dataset 11. A, C, E show results when using only the continuous features of the datasets, and B, D, F show results for

the mixed data.

35

Dataset 1 2 3 4* 5 6* 7* 8 9 10 11

Weighted rank

FRIGATE 0.727 0.662 0.678 0.748 0.881 0.613 0.657 0.649 0.668 0.667 0.933

FRIGATE-MW 0.699 0.582 0.565 0.735 0.807 0.606 0.522 0.682 0.794 0.751 0.752

FRMV 0.430 0.951 0.345 0.245 0.334 0.527 0.596 0.411 0.301 0.517 0.383

FRCM 0.514 0.195 0.468 0.429 0.519 0.854 0.825 0.358 0.789 0.782 0.625

FRSD 0.544 0.541 0.879 0.721 0.405 0.255 0.297 0.800 0.414 0.226 0.266

Weighted ARI

FRIGATE 0.347 0.659 0.268 0.312 0.314 0.175 0.287 0.411 0.214 0.103 0.327

FRIGATE-MW 0.347 0.646 0.255 0.307 0.277 0.178 0.296 0.424 0.223 0.106 0.308

FRMV 0.321 0.737 0.236 0.179 0.085 0.166 0.367 0.185 0.161 0.089 0.152

FRCM 0.346 0.529 0.245 0.227 0.201 0.236 0.412 0.218 0.216 0.108 0.279

FRSD 0.339 0.641 0.334 0.311 0.105 0.058 0.143 0.432 0.126 0.058 0.128

4.2 Clinical Significance – Test Case

We wished to evaluate the clinical relevance of the leading chosen features to the target labels. We

chose to focus on Dataset 6 as there is evidence for sex-based differences in lab tests [54]. We chose the

twelve features that were available in both cohorts and according to [54] fulfil:

𝑎𝑏𝑠(𝑥𝑚𝑎𝑙𝑒−𝑥𝑓𝑒𝑚𝑎𝑙𝑒)

max (𝑥𝑚𝑎𝑙𝑒,𝑥𝑓𝑒𝑚𝑎𝑙𝑒)
≥ 0.1 (23)

where 𝑥𝑖 is the mean value of feature 𝑥 for sex 𝑖 [54]. We call these the top features. A ranked list of all

features according to FRIGATE and FRIGATE-MW and the top features are in Supplementary 6.

We performed a hypergeometric test between the 12 top ranked features according to FRIGATE and the

top features from [54], and similarly for FRIGATE-MW. For FRIGATE-MW, six of the top ranked features

were also top features in [54] giving a significant p-value of 0.034. For FRIGATE, five of the top twelve

features were common with the top features of [54], which accounts to a non-significant p-value of

0.136.

We also calculated the p-value of the minimum hypergeometric score (mHG), as used in the DRIM

algorithm [55], for calculating the significance without determining in advance the threshold for the

hypergeometric test and accounting for multiple testing. For FRIGATE the mHG was obtained for 13

features, with p-value of 0.07. For FRIGATE-MW the threshold was 10 features with p-value of 0.01.

Figure 5. Weighted rank and weighted ARI for the tested algorithms in datasets 1-11. In bold is the top performer for the dataset,

underlined is the second best. * - Datasets where the top two performing algorithms were different for the two evaluation metrics.

36

It is important to remember that [54] refers to seemingly healthy individuals, while Dataset 6 comprised

of patients who were in the ICU for up to one day, and some stayed overnight. That means that

although the patients were young and did not require a major intervention, they still suffered from

some medical condition. Indeed, the top feature in both versions of FRIGATE was “days in hospital”

(more females stayed overnight, details not shown), which might suggest some correlation between the

clusters and the medical condition, together with the correlation with sex.

4.3 Runtime comparison

Table 6 shows the runtimes on Databases 1-8 for the tested algorithms. The FRIGATE variants are slower

on the genomic Datasets 1-4, which have many features and a few samples, but fast on the EMR

datasets, which have less features. FRCM runs faster on Datasets 1-4, but when the number of samples

grows its runtime increases sharply (Database 7).

The behavior of FRIGATE can be explained by the choice to set the number iterations depending on the

number of features. However, this is a tunable parameter with a trade off with 𝑓, the number of

features included per iteration (see Supplementary 1). FRCM, on the other hand, has a set number of

iterations, and produces an 𝑚x𝑚 matrix for each feature, which is expensive both in runtime and in

space. Note also the slowdown of FRSD on Dataset 7, which has thousands of patients.

Dataset no.

/Algorithm

1 2 3 4 5 6 7 8

FRIGATE 1967.9 ± 28.2 4739.7 ± 80.2 5309.5 ± 136.3 1336.7 ± 21.4 49.8 ± 0.2 32.5 ± 0.1 286.8 ± 2.7 132.9 ± 1.1

FRIGATE-MW 2854.0 ± 11.9 4903.2 ± 45.6 5736.0 ± 35.084 1898.3 ± 6.4 40.9 ± 0.8 29.2 ± 1.2 296.3 ± 10.5 118.8 ± 1.3

FRCM 500.2 ± 6.2 1188.9 ± 14.3 2457.3 ± 31.4 411.7.2 ± 3.7 229.6 ± 2.5 111.2 ± 1.3 74215.4 ± 938.4 268.6 ± 1.8

FRSD 1159.6 ± 6.0 1898.3 ± 8.2 2808.4 ± 6.2 998.2 ± 11.1 1450.9 ± 12.3 922.8 ± 30.9 39716.9 ± 256.0 1484.0 ± 15.9

FRMV 101.0 ± 0.6 123.7 ± 0.6 133.6 ± 1.2 82.8 ± 0.7 21.6 ± 0.2 19.8 ± 0.3 653.9 ± 3.3 47.3 ± 1.0

Table 6. Runtime in seconds for Datasets 1-8. Results are mean±STD of five runs for Datasets 1-4 and of three runs for Datasets 5-8 (the

number of repetitions was reduced as the total runtime was large).

37

5. Discussion

We presented here FRIGATE, a new ensemble feature ranking algorithm for clustering, focusing on

clustering of medical data. The need for such an algorithm arises from the growing volume of EMR data

available to researchers [1]–[6], [52], [53]. Clustering, an unsupervised learning, is highly relevant for

medical research, especially in recognition of disease subtypes [13]–[15].

When dealing with medical records researchers are facing two main challenges. The first challenge is the

large number of features in patients’ medical files. That includes lab tests, imaging results, diagnosis

codes, past diseases etc. The second challenge is the need to be able to explain analysis results, which is

of major importance in medical research as the ultimate goal is to derive clinically meaningful insights.

These two challenges affect the ability to produce meaningful clusters: too many features will

potentially mask the truly relevant ones, and in extreme cases require dimensionality reduction that will

harm the explainability. Another issue that these challenges bring is computing power – while we do not

want to lose information, running machine-learning algorithms on huge datasets can be expensive in

runtime and space complexity.

The need for producing explainable clusters of patients and the challenges that it brings were our

motivation for creating a new feature selection algorithm for clustering. FRIGATE is a feature ranking

algorithm that uses the Shapley value concept to evaluate the importance of features, unattached to a

specific clustering solution. In FRIGATE we perform iterations, in each we randomly choose a subset of

features and produce a clustering solution on it, using k-means or a similar clustering algorithm. We use

the objective function of the algorithm, which is the total distance to cluster centroids, as our solution

score. Then, in a Shapley-like manner we eliminate the contribution of each feature separately by

shuffling its values across all samples, and recalculate the solution score. The difference between the

original solution score and the one obtained after shuffling is the feature score for the iteration. The

total score of each feature is the average feature score, and is used to rank the full set of features. As

FRIGATE uses the solution score for evaluating the features, using the clustering algorithms k-modes for

categorical data and k-prototypes for mixed data allows FRIGATE to handle different data types, which is

highly relevant in the medical domain.

In another variation of FRIGATE, that we call FRIGATE-MW, we use the MW reweighting method for

choosing the features for each iteration – instead of at random. With MW, we update weights for the

features in each iteration, where badly performing features will be less likely to be chosen. The idea is

38

that features that were proven non-informative are less relevant for the process, and focusing on

evaluating the more important features will make the algorithm more efficient.

The process we used in FRIGATE, of producing multiple clustering solutions on subsets of features, is

called ensemble feature ranking. Three other algorithms that follow such process were proposed in the

past: FRMV, FRCM and FRSD [26]–[28]. All of them are based on multiple clustering solutions obtained

with k-means. The code for the three algorithms was not provided by their authors, and we publish here

our implementation to their codes, as well as for the two variations of FRIGATE, in the FRIGATE github

repository: https://github.com/Shamir-Lab/FRIGATE.

Compared to the other algorithms, FRIGATE is the only one that incorporates categorical and mixed data

features. This is also the first use of MW within the feature ranking for clustering framework and the

first explicit use of Shapley values for unsupervised feature selection (although FRSD can also be seen as

Shapley-like algorithm, see Background and Methods).

For choosing the hyper-parameters of FRIGATE and comparing the performance of the different

algorithms we created simulated data built as presented in [26]. In the simulated data the informative

features are known and we can measure the fraction of informative features among the top ranked

features, a metric we call accurate recognition rate.

One parameter we compared between the algorithms is 𝑘, the number of clusters provided for the

algorithms for producing the multiple clustering solutions. While FRCM and FRSD do not require 𝑘 as an

input and they average their results over multiple values of 𝑘, FRMV and FRIGATE require 𝑘 as an input.

Setting 𝑘 is a challenging task, as in real data this parameter is inherently unknown by the nature of

unsupervised learning. For FRIGATE and FRMV we used the elbow method, as described by [41], to set 𝑘.

FRCM and FRIGATE seem unaffected by the value of 𝑘, and were able to achieve high accurate

recognition rates on a wide range of 𝑘, some over four times larger than the real 𝑘. FRMV performed

poorly constantly. FRSD seems highly affected by different values of 𝑘. As mentioned, FRSD does not

receive 𝑘 as an input, but including high values of 𝑘 harms its performance. More interestingly, the best

performance was obtained for 𝑘 = {2,3} when the real 𝑘 was four. We cannot fully explain this

phenomenon, but we can assume that FRSD is more affected by the data structure than the other

algorithms and its behavior is not stable. This is also supported by the simulation results and its

performance on real data that will be discussed shortly. On the other hand, FRIGATE and FRCM seem to

be able to recognize features that create a separation in the data, even when a wrong 𝑘 is provided.

https://github.com/Shamir-Lab/FRIGATE

39

Intuitively, a feature that separates the data into 𝑥 clusters, can divide the data to any 𝑘 < 𝑥 by union of

clusters. Similarly, when 𝑘 > 𝑥, redundant clusters can be formed, but if samples that came from

different distributions fall into different clusters, the algorithm may be able to recognize the informative

features. Given the robustness of FRIGATE, we would like to test in future research the ability to waive

the required input 𝑘. FRSD and FRCM are averaging their results over different values of 𝑘, but this

method is currently not relevant for FRIGATE, as the solution score is affected by to the number of

clusters and averaging over different values of 𝑘 will probably be biased. Therefore, a new method is

needed.

In section 2.7 we mentioned some unclear parts of the FRMV algorithm, in particular the calculation of

linear correlation coefficient between a continuous features’ vector and the cluster membership vector,

which depends on the arbitrary numbering of the clusters. When testing its performance, FRMV

performed the worst in most cases with constantly high variation between different runs on the same

data. For these reasons we will not discuss its results deeply.

The simulation results helped understanding the differences between the algorithms. We tested a

variety of simulation parameters that created a wide range of complexities of the data. In all simulations

20% of the features were informative. That means that random arrangement of the features should

result in an accurate recognition rate of 0.2. Generally, the performance on 𝑘 = 4 was better than 𝑘 =

2. It can be explained by the simulation setup, which affects the distance between clusters in space,

especially in the non-normalized case. The distance between the centroids of two adjacent clusters is

constant, so for 𝑘=4 there is a pair of clusters for which the distance between their centroids is twice

that of the two clusters when 𝑘=2, and it is easier to recognize important features when the centroids

are farther apart. As expected, performance improved for larger values of 𝜇, which account for better

separated clusters. The 𝜎 parameter reflects the level of correlations between features. As expected,

higher correlation levels usually accounted for worse results. The best performer on the simulation data

was FRCM, where its lowest accurate recognition rate was 0.14 for normalized data, with 𝑘 = 2, 𝜇 =

0.5 and 𝜎 = 0.5, an unrealistically high correlation level (see Supplementary 3). Its second worst value

was 0.19 for the same parameters on non-normalized data, a comparable value to random assignment,

and the rest of the results were significantly above random. In comparison, FRIGATE rates < 0.2 several

times when 𝜎 = 0.5, and it seems to be more affected by the correlation levels than the other

algorithms. For FRSD performance was sharply lower on normalized data in comparison to non-

normalized. That was observed even in cases where FRIGATE and FRCM performed perfectly, while FRSD

40

had accurate recognition rate of 0 (e.g., 𝑘 = 2, 𝜇 = 2, 𝜎 = 0). However, FRSD seems unaffected by the

correlation levels, and in some cases even significantly improved its performance on high levels of

correlations (e.g., for 𝑘 = 2, 𝜇 = 2, 𝜎 = 0.5 the rate was 0.55). FRMV presented similar trends to FRSD.

It is again an unexpected behavior by FRMV and FRSD with no clear explanation. Generally, higher

correlation levels in our simulation framework means that the informative and non-informative features

behave more similarly. So intuitively, it should be harder to set them apart. As mentioned, FRSD was

more affected by the data structure than by the correlation levels. Our hypothesis is that enforcing such

high levels of correlation between all features shaped the data so that the differences between features

are better captured by the changes in the silhouette score, which is incorporated in FRSD. This should be

further addressed in future research, both for understanding the behavior of FRSD as well as for

understanding the effect of high levels of correlation on the structure of the simulated data.

In all cases where the algorithms had extremely low accurate recognition rates, below 0.2, that means

that the informative features were notably absent from the top of the list - meaning that they were

especially recognized as non-informative. When testing it and looking at the bottom 20 features of

FRIGATE on 10 simulation runs with: 𝑘 = 4, 𝜇 = 2, 𝜎 = 0.05 and normalized data, 68 ± 24% of the

informative features were in the bottom 20%. This suggests that not only that FRIGATE did not recognize

the informative features, but high levels of correlation make the algorithm recognize the informative

features as the most non-informative. Although these levels of correlation are unrealistic, the behavior

of the algorithm is interesting and not understood at this point. Further research is needed to

understand why the distance to centroids, which is objective function used by FRIGATE, was affected

more dramatically for non-informative features when the correlation levels between all features were

high.

We also compared the performance of the algorithms on genomic and EMR real data. While genomic

data for clustering was available and used by another publication [28], quality EMR data for clustering

was harder to obtain. Most of the EMR data we used was based on the publicly available MIMIC-III [4],

[5] and eICU [52], [53], two very large datasets from American ICU facilities. The composition of patients

in these data is highly heterogenic and deriving from them a cohort with coherent clusters was a

challenging task. We based the clusters and their labels on demographics like age and gender, past

diseases like cancer, and outcomes like length of stay in the ICU and mortality. On the real datasets,

where no truly informative features were known, we used an alternative evaluation method where we

measured the ARI levels for increasing number of ranked features, starting with a single feature, the top

41

ranked, and finishing with the full set of features. For a more rigorous comparison of the algorithms’

performances, we developed two new evaluation matrices: weighted rank, which scores the algorithms

based on their relative performance compared to the other tested algorithms; and weighted ARI, which

scores an algorithm based on its ARI scores, irrespective of other algorithms.

The performance of the algorithms on the real data was different than on the simulated data. Generally,

the FRIGATE variations performed best or comparable to the best performer in the majority of cases. On

the genomic data FRSD performed better than FRCM, and FRMV was inferior, with the exception of one

case where it was the best performer. On the medical data FRCM performed better than FRSD. This

leads to several important conclusions. First, FRIGATE performs constantly well on real data. Secondly,

although FRSD and FRMV performed relatively poorly on the simulated data, they can perform well in

some real cases. Therefore, we conclude that the simulation is limited in its ability to represent real data.

Our runtime tests showed that FRIGATE is overall preferable. It is slower on datasets with large number

of features and small number of samples, but for datasets with a large number of samples, FRIGATE is

much faster than FRSD and FRCM, with a prohibitively high runtime by FRCM. In conclusion, FRIGATE is

the only algorithm that performed constantly well, and had an acceptable runtime in all cases.

When comparing the performance of FRIGATE and FRIGATE-MW, we see different behaviors on

simulated and real data. On simulated data, the two algorithms performed comparably, but when a

difference was observed it was usually in favor of FRIGATE-MW. This suggests that MW has the potential

to improve random selection of features in unsupervised tasks. On real data the difference between the

variants was observed mostly on mixed data, where FRIGATE performed better than FRIGATE-MW.

However, although the algorithm was designed to work with mixed data, including categorical features

did not improve the results in comparison to using only the continuous features.

Currently, we cannot conclude if MW can significantly improve the feature selection process on real

data, and which FRIGATE variation is preferable. Future work should evaluate the possible contribution

of MW to the ensemble framework, and more specifically, broaden the options for cost functions, which

are a key factor in MW. Also, more research is needed to understand the reasons that lead FRIGATE-MW

to perform worse than FRIGATE, especially on mixed data cases.

We showed on a test case that the selected features by the FRIGATE algorithms are clinically relevant.

This suggests that FRIGATE can be utilized not only as a feature selection algorithm, but also for

assessing the importance of features in the data even on relatively small cohorts. This should be tested

42

in future research, and potentially compared to other feature importance methods like AMSD [40], [56],

which can analyze feature importance for a given clustering result.

Our study has several limitations. We compared FRIGATE to three other algorithms whose code was not

available. That means that their reported performance here is based solely on our implementation. This

is mostly relevant to the runtime comparison. Other implementations might be able to achieve

improved runtime to some of the tested algorithms.

Another limitation is FRIGATE’s sub optimal results on mixed data. One issue is the choice of 𝛾, the

weight parameter for categorical features in the k-prototype clustering algorithm that we used. It was

shown in the past [15], including in the original paper presenting k-prototype [39], that is not clear how

to choose 𝛾. Here we tried to evaluate 𝛾 in simulated datasets, with different ratios of continuous and

categorical features. 𝛾 = 1 was consistently preferred, but in our tests on real data the best

performance was achieved for 𝛾=6, and other values were preferred in different publications [15], [36].

A proper choice of 𝛾 should be a main focus for future research.

A key limitation in the evaluation of EMR data was the validity of the clusters that we produced.

Heterogenous cohorts like these of MIMIC and eICU may contain multiple overlapping subgroups, which

may confound clustering attempts and their evaluation. Including mixed data where both the categorical

and continuous features are relevant, was another challenging task. In our tests, the categorical features

did not have a significant effect on the results, and in some cases their inclusion harmed the results. Also,

all the datasets that we generated were partitioned into two clusters. More work is needed to create

medical datasets appropriate for clustering from publicly available sources, that will include mixed data

and account for more complicated cases with a larger number of clusters.

As discussed above, we used the elbow method for choosing 𝑘, the number of clusters. In all runs of

both simulated and real data, the choice was 𝑘 = 2 even when the real number of clusters was higher.

This is aligned with a previous publication [15]. Although we showed on simulated data that FRIGATE is

unaffected by using 𝑘 that is different than the actual number of clusters, there is a need for a reliable

method to choose 𝑘. This is also relevant to another limitation that was mentioned before: the

simulated data are not fully representative of real data. It suggests that on real, more complex data than

what we used here, using a suboptimal 𝑘 will harm the performance of the algorithm. This should be

investigated in future research.

43

6. References

[1] H. Atasoy, B. N. Greenwood, and J. S. Mccullough, “The digitization of patient care: a review of

the effects of electronic health records on health care quality and utilization,” Annual Review of

Public Health Annu. Rev. Public Health, vol. 13, no. 1, pp. 487–500, 2019, doi: 10.1146/annurev-

publhealth.

[2] B. Fecher, S. Friesike, and M. Hebing, “What drives academic data sharing?,” PLoS One, vol. 10,

no. 2, Feb. 2015, doi: 10.1371/journal.pone.0118053.

[3] A. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research

resource for complex physiologic signals,” Circulation [Online], vol. 101, no. 23, pp. e215–e220,

2000.

[4] A. Johnson, T. Pollard, and R. Mark, “ MIMIC-III Clinical Database (version 1.4),” PhysioNet.

[5] A. E. W. Johnson et al., “MIMIC-III, a freely accessible critical care database,” Sci Data, vol. 3, May

2016, doi: 10.1038/sdata.2016.35.

[6] C. Sudlow et al., “UK Biobank: an open access resource for identifying the causes of a wide range

of complex diseases of middle and old age,” PLoS Med, vol. 12, no. 3, Mar. 2015, doi:

10.1371/journal.pmed.1001779.

[7] Y. Luo, “Evaluating the state of the art in missing data imputation for clinical data,” Brief

Bioinform, vol. 23, no. 1, Jan. 2022, doi: 10.1093/bib/bbab489.

[8] A. Garg and V. Mago, “Role of machine learning in medical research: A survey,” Computer Science

Review, vol. 40. Elsevier Ireland Ltd, May 01, 2021. doi: 10.1016/j.cosrev.2021.100370.

[9] M. M. Papathanasiou, M. Onel, I. Nascu, and E. N. Pistikopoulos, “Chapter 6 - Computational

tools in the assistance of personalized healthcare,” Computer Aided Chemical Engineering, vol. 42,

pp. 139–206, 2018.

[10] S. Khanmohammadi, N. Adibeig, and S. Shanehbandy, “An improved overlapping k-means

clustering method for medical applications,” Expert Syst Appl, vol. 67, pp. 12–18, Jan. 2017, doi:

10.1016/j.eswa.2016.09.025.

[11] G. Battineni, G. G. Sagaro, N. Chinatalapudi, and F. Amenta, “Applications of machine learning

predictive models in the chronic disease diagnosis,” Journal of Personalized Medicine, vol. 10, no.

2. MDPI AG, Jun. 01, 2020. doi: 10.3390/jpm10020021.

[12] P. Wang, X. Zheng, J. Li, and B. Zhu, “Prediction of epidemic trends in COVID-19 with logistic

model and machine learning technics,” Chaos Solitons Fractals, vol. 139, Oct. 2020, doi:

10.1016/j.chaos.2020.110058.

[13] Y. Wang et al., “Unsupervised machine learning for the discovery of latent disease clusters and

patient subgroups using electronic health records,” J Biomed Inform, vol. 102, Feb. 2020, doi:

10.1016/j.jbi.2019.103364.

44

[14] G. Tosto, S. E. Monsell, S. E. Hawes, G. Bruno, and R. Mayeux, “Progression of extrapyramidal

signs in Alzheimer’s disease: clinical and neuropathological correlates,” Journal of Alzheimer’s

Disease, vol. 49, no. 4, pp. 1085–1093, Jan. 2016, doi: 10.3233/JAD-150244.

[15] E. Shpigelman et al., “Clustering of clinical and echocardiographic phenotypes of covid-19

patients,” Sci Rep, vol. 13, no. 1, p. 8832, Dec. 2023, doi: 10.1038/s41598-023-35449-1.

[16] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski, “Medical image segmentation

using k-means clustering and improved watershed algorithm,” in Proceedings of the IEEE

Southwest Symposium on Image Analysis and Interpretation, 2006, pp. 61–65. doi:

10.1109/ssiai.2006.1633722.

[17] M. R. Anderberg, Cluster analysis for applications: probability and mathematical statistics: a

series of monographs and textbooks, vol. 19. Academic press, 2014.

[18] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall Inc., 1988.

[19] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis. John

Wiley & Sons, 2009.

[20] T. S. Madhulatha, “An overview on clustering methods,” arXiv preprint arXiv:1205.1117, May

2012.

[21] M. J. Li, M. K. Ng, Y. M. Cheung, and J. Z. Huang, “Agglomerative fuzzy K-Means clustering

algorithm with selection of number of clusters,” IEEE Trans Knowl Data Eng, vol. 20, no. 11, pp.

1519–1534, Nov. 2008, doi: 10.1109/TKDE.2008.88.

[22] J. McQueen, “Some methods for classification and analysis of multivariate observations,” Proc.

5th Berkeley Symp. Math. Statist. Prob., vol. 1, pp. 281–297, 1967.

[23] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, “A review of unsupervised

feature selection methods,” Artif Intell Rev, vol. 53, no. 2, pp. 907–948, Feb. 2020, doi:

10.1007/s10462-019-09682-y.

[24] K. Y. Yeung and W. L. Ruzzo, “Principal component analysis for clustering gene expression data,”

Bioinformatics, vol. 17, no. 9, pp. 763–774, 2001.

[25] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning,” Journal of Machine

Learning Research, vol. 5, pp. 845–889, 2004.

[26] J. Yu, H. Zhong, and S. B. Kim, “An ensemble feature ranking algorithm for clustering analysis,” J

Classif, vol. 37, no. 2, pp. 462–489, Jul. 2020, doi: 10.1007/s00357-019-09330-8.

[27] Y. Hong, S. Kwong, Y. Chang, and Q. Ren, “Consensus unsupervised feature ranking from multiple

views,” Pattern Recognit Lett, vol. 29, no. 5, pp. 595–602, Apr. 2008, doi:

10.1016/j.patrec.2007.11.012.

[28] S. Zhang, H. S. Wong, Y. Shen, and D. Xie, “A new unsupervised feature ranking method for gene

expression data based on consensus affinity,” IEEE/ACM Trans Comput Biol Bioinform, vol. 9, no.

4, pp. 1257–1263, 2012, doi: 10.1109/TCBB.2012.34.

45

[29] D. Guan, W. Yuan, Y. K. Lee, K. Najeebullah, and M. K. Rasel, “A review of ensemble learning

based feature selection,” IETE Technical Review (Institution of Electronics and Telecommunication

Engineers, India), vol. 31, no. 3. Medknow Publications, pp. 190–198, 2014. doi:

10.1080/02564602.2014.906859.

[30] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis,” J Comput Appl Math, vol. 20, pp. 53–65, 1987.

[31] Shapley Loid S., “A value for n-person games,” Contributions to the Theory of Games, pp. 307–

317, 1953.

[32] S. Mukund and A. Najmi, “The many Shapley values for model explanation,” International

conference on machine learning, 2020.

[33] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update method: a meta-algorithm and

applications,” Theory of Computing, vol. 8, no. 1, pp. 121–164, 2012, doi:

10.4086/toc.2012.v008a006.

[34] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful seeding,” in SODA ’07:

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007, pp.

1027–1035.

[35] F. Pedregosa, V. Michel, and O. Grisel, “Scikit-learn: machine learning in python,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[36] Z. Huang, “A fast clustering algorithm to cluster very large categorical data sets in data mining,”

Dmdk, vol. 3, no. 8, pp. 34–39, May 1997.

[37] F. Cao, J. Liang, and L. Bai, “A new initialization method for categorical data clustering,” Expert

Syst Appl, vol. 36, no. 7, pp. 10223–10228, Sep. 2009, doi: 10.1016/j.eswa.2009.01.060.

[38] N. J. de Vos, “kmodes categorical clustering library.” Accessed: Jul. 10, 2023. [Online]. Available:

https://github.com/nicodv/kmodes

[39] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical

values,” Data Min Knowl Discov, vol. 12, pp. 283–304, 1998, doi:

https://doi.org/10.1023/A:1009769707641.

[40] G. Preud’homme et al., “Head-to-head comparison of clustering methods for heterogeneous data:

a simulation-driven benchmark,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-

83340-8.

[41] N. Rappoport and R. Shamir, “Multi-omic and multi-view clustering algorithms: review and cancer

benchmark,” Nucleic Acids Res, vol. 46, no. 20, pp. 10546–10562, Nov. 2018, doi:

10.1093/nar/gky889.

[42] L. Hubert and P. Arabie, “Comparing Partitions,” Journal of Classification 2, 193–218 ()., vol. 2, pp.

193–218, Dec. 1985.

[43] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” J Am Stat Assoc, vol. 66,

no. 336, pp. 846–850, 1971.

46

[44] S. Douglas, “Properties of the Hubert-Arable adjusted Rand index,” Psychological Methods , vol. 9,

no. 3, pp. 386–396, 2004.

[45] S. A. Armstrong et al., “MLL translocations specify a distinct gene expression profile that

distinguishes a unique leukemia,” Nat Genet, vol. 30, no. 1, pp. 41–47, 2002, doi: 10.1038/ng765.

[46] M. Bredel et al., “Functional network analysis reveals extended gliomagenesis pathway maps and

three novel MYC-interacting genes in human gliomas,” Cancer Res, vol. 65, no. 19, pp. 8679–8689,

Oct. 2005, doi: 10.1158/0008-5472.CAN-05-1204.

[47] S. A. Tomlins et al., “Integrative molecular concept modeling of prostate cancer progression,” Nat

Genet, vol. 39, no. 1, pp. 41–51, Jan. 2007, doi: 10.1038/ng1935.

[48] C. L. Nutt et al., “Gene expression-based classification of malignant gliomas correlates better with

survival than histological classification,” Cancer Res, vol. 63, no. 7, pp. 1602–1607, 2003.

[49] M. C. P. de Souto, I. G. Costa, D. S. A. de Araujo, T. B. Ludermir, and A. Schliep, “Clustering cancer

gene expression data: A comparative study,” BMC Bioinformatics, vol. 9, Nov. 2008, doi:

10.1186/1471-2105-9-497.

[50] Z. Zhang et al., “Hospitalized patients with heart failure: integrating electronic healthcare records

and external outcome data (version 1.3),” PhysioNet.

[51] Z. Zhang et al., “Electronic healthcare records and external outcome data for hospitalized

patients with heart failure,” Sci Data, vol. 8, no. 1, Dec. 2021, doi: 10.1038/s41597-021-00835-9.

[52] T. Pollard, A. Johnson, J. Raffa, L. A. Celi, O. Badawi, and R. Mark, “eICU collaborative research

database (version 2.0),” PhysioNet, 2019, doi: https://doi.org/10.13026/C2WM1R.

[53] T. J. Pollard, A. E. W. Johnson, J. D. Raffa, L. A. Celi, R. G. Mark, and O. Badawi, “The eICU

collaborative research database, a freely available multi-center database for critical care

research,” Sci Data, vol. 5, Sep. 2018, doi: 10.1038/sdata.2018.178.

[54] N. M. Cohen et al., “Personalized lab test models to quantify disease potentials in healthy

individuals,” Nat Med, vol. 27, no. 9, pp. 1582–1591, Sep. 2021, doi: 10.1038/s41591-021-01468-

6.

[55] E. Eden, D. Lipson, S. Yogev, and Z. Yakhini, “Discovering motifs in ranked lists of DNA sequences,”

PLoS Comput Biol, vol. 3, no. 3, pp. 0508–0522, 2007, doi: 10.1371/journal.pcbi.0030039.

[56] P. C. Austin, “An introduction to propensity score methods for reducing the effects of

confounding in observational studies,” Multivariate Behav Res, vol. 46, no. 3, pp. 399–424, May

2011, doi: 10.1080/00273171.2011.568786.

47

7. Supplementary 1 – Parameter choice

7.1 Parameter choice for FRIGATE-MW

FRIGATE-MW has three parameters: 𝑻, the number of iterations, 𝒇, the fraction of the features used in

each iteration, and 𝜼, the MW parameter. If the input is mixed data there is also 𝜸, the K-prototypes

parameter. We seek values of 𝑇 and 𝑓 that are small in order to increase the efficiency of the algorithm,

but still produce good results.

For testing the performance of FRIGATE-MW with different hyper-parameters, we built a simulation as

described in chapter 3.3, with the following parameters: 𝑘 = 4 clusters of size 𝑐 = 50 each, 𝛼 = 20

informative features and 𝛽 = 80 non-informative ones. The statistical parameters were 𝜇 = 1 and

𝜎 = 0.05. The value of 𝜎 was chosen to produce similar correlations to those observed in real data (see

details in Supplementary 3).

Figure S1 shows the average accurate recognition rate results of 10 simulations for different values of 𝑓,

𝑇 and 𝜂. As expected, more iterations and larger 𝑓 produce better results. We can see that for 200

iterations the results are perfect for all values of 𝜂 with 𝑓 ≥ 0.1, and the results for 100 iterations are a

close second (perfect results for 𝜂=0.25 and 0.5, and 0.995 for 1). Increasing 𝜂 from 0.25 to 1 improves

the results. For the same parameters of the simulation but 𝜇 = 4 (which causes the clusters to be more

distinct) we observed similar results (Figure S2).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜂=1

50 100 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜂=0.25

50 100 200

0

0.2

0.4

0.6

0.8

1

0.01 0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜂=0.5

50 100 200

Figure S1. Performance of FRIGATE-MW on simulated data for different hyper-parameters. The simulation had 4 clusters, 50 samples in each

cluster, and 100 features of which 20 were informative. The differences between the clusters were set by 𝜇 = 1, 𝜎 = 0.05. The graphs show the

accurate recognition rate of the algorithm, averaged over 10 runs. Plot color: number of iterations. X axis: fractions of features participating in

each iteration. A, B and C present results for values of 𝜂 = 0.25, 0.5 and 1 respectively.

A B C

of iterations # of iterations # of iterations

48

We also tested the scenario of two clusters with 100 samples in each cluster (𝑘 = 2, 𝑐 = 100) and kept

the rest of the parameters unchanged (Figure S3). The trends are similar to Figure S1, but we can see

that the overall scores are slightly worse. Still, the combination with 𝑓 = 0.2, 𝜂 ≥ 0.5 and 𝑇 = 200

achieved perfect results. A similar simulation with 𝜇 = 4 achived high results in all scenarios (Figure S4).

In another simulation that used values similar to [26]: 𝑘 = 4, 𝑐 = 50 𝑎𝑛𝑑 𝑛 = 950 the results were

perfect for all parameters tested. We therefore chose to fix the hyper-parameters to 𝑓 = 0.1, and 𝑇 =

2 ∙ |𝑉|.

0.5

0.6

0.7

0.8

0.9

1

0.06 0.1 0.2

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜼=0.25

50 100 200

A

Figure S2. Performance of FRIGATE-MW with different hyper-parameters. The simulation setup and presented results are as in Figure S1, but

here we used 𝜇 = 4.

of iterations # of iterations # of iterations

𝜂=0.25

𝜂=0.5

B 𝜂=1

C

Fraction of features

Fraction of features

Fraction of features

0.5

0.6

0.7

0.8

0.9

1

0.06 0.1 0.2

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜼=1

50 100 200

0.5

0.6

0.7

0.8

0.9

1

0.06 0.1 0.2

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜼=0.5

50 100 200

B C

Figure S3. Performance of FRIGATE-MW on simulated data for different hyper-parameters. The simulation setup and presented results are as in

Figure S1, but here there were 2 clusters and 100 samples in each cluster.

of iterations

A

𝜂=0.25

49

7.2 Parameter choice for FRIGATE

The results of FRIAGTE in the same simulations are shown in Figure S5 for 𝑘 = 2, 4 and 𝜇 = 1,4. We can

see that the algorithm without MW improves more slowly with the number of iterations and is in

general inferior. This can be seen especially in the hardest case of 𝜇 = 1; 𝑘 = 2. Based on these results

we chose as default values 𝑓 = 0.1, 𝑇 = 2 ∙ |𝑉| for the non-MW algorithm as well.

Figure S4. Performance of FRIGATE-MW on simulated data for different hyper-parameters. The simulation setup and presented results are as in

Figure S3, but here we used 𝜇 = 4..

of iterations # of iterations

0.9

0.92

0.94

0.96

0.98

1

0.06 0.1 0.2

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜂=1

50 100 200# of iterations

0.9

0.92

0.94

0.96

0.98

1

0.06 0.1 0.2

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜂=0.5

50 100 200

0.9

0.92

0.94

0.96

0.98

1

0.06 0.1 0.2

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of features

𝜂=0.25

50 100 200

50

Next, we wanted to determine the value of the weight parameter 𝛾 in the k-prototypes algorithm, when

using mixed data. We performed simulations with 100 continuous features of which 20 are informative

(𝛼 = 20, 𝛽 = 80), 𝜎 = 0.05 and 200 samples equally divided between clusters. The other parameters

were tested in multiple options: 𝑘 = {2,4} (accounted for 𝑐 = 100 and 𝑐 = 50 respectively), 𝜇 = {1,4},

{100 categorical features of them 20 informative (𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 20, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 80), 50 categorical

features of them 10 informative (𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 10, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 40)}. We ran each scenario 10 times

and for each type of features calculated the accurate recognition rate in the top thirty or forty features,

depending on the total number of informative features.

The average results of FRIGATE and FRIGATE-MW for 𝜇 = 1 and 𝑘 = 2 are shown in Tables S2-S5. We

can see that in all cases 𝛾 = 1 performed perfectly and 𝛾 = 2 near perfectly in both scenarios, unrelated

to the proportion of continuous and categorical features. As expected, extreme values of 𝛾, which favor

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of total number of features to use in each iteration

𝜇=1, k=2

50 100 200 300

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of total number of features to use in each iteration

𝜇=4, k=2

50 100 200 300

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of total number of features to use in each iteration

𝜇=1, k=4

50 100 200 300

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.06 0.1 0.2 0.25 0.5

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Fraction of total number of features to use in each iteration

𝜇=4, k=4

50 100 200 300

of iterations # of iterations

of iterations # of iterations

A B

C D

Figure S5. Performance of FRIGATE on simulated data for different hyper-parameters. Simulation parameters: 𝜎=0.05, total number of

samples=200, 100 feature of which 20 are informative. A: 𝜇 = 1, 𝑘 = 2. B: 𝜇 = 4, 𝑘 = 2. C: 𝜇 = 1, 𝑘 = 4. D: 𝜇 = 4, 𝑘 = 4.

51

one type of features over the other, were detrimental. For 𝑘 = 4 and 𝜇 = 4 the results were nearly

perfect in all scenarios and thus not informative (results not shown).

The results of this simulation suggest that 𝛾 = 1 is the favorable value. However, this may not hold for

all cases. We can see that for 𝛾 > 2 the results are poor, regardless of the proportion between

continuous and categorical features, in contradiction with pervious publications [15]. More research is

needed regarding the choice of 𝛾.

Table S2-

FRIGATE-MW

𝜸

0.5 1 2 4

Continuous

Features

1 1 0.99 0.845

Categorical

Features

1 1 1 1

Table S3-

FRIGATE-WW

𝜸

0.5 1 2 4

Continuous

Features

1 1 0.975 0.38

Categorical

Features

0.82 1 1 1

Table S4-

FRIGATE

𝜸

0.5 1 2 4

Continuous

Features

1 1 0.96 0.595

Categorical

Features

0.99 1 1 1

Table S5-

FRIGATE

𝜸

0.5 1 2 4

Continuous

Features

1 1 1 0.93

Categorical

Features

0.97 1 1 1

Tables S2-S5. Average accurate recognition rates in 10 simulation runs, for mixed data by FRIGATE and FRIGATE-MW for different values of the

weight parameter 𝛾 in the k-prototypes algorithm. Simulation parameters: 𝜎 = 0.05, 𝑐𝑗 = 100, 𝛼 = 20, 𝛽 = 80, 𝜇 = 1, 𝑘 = 2. Tables 3,5:

𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 20, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 80. Tables 4,6: 𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 10, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 40.

52

8. Supplementary 2 - Illustration of a FRIGATE iteration

Scenario 1 – two informative features

Figure S6A shows the results of k-means clustering of the simulated data with two informative

features (line 6 in Algorithm 4), with a solution score of 81.76. Figure S6B shows the data after

shuffling the values of the x-coordinate feature (line 10 in Algorithm 4). The new solution score is

395.24 (line 12 in Algorithm 4) and a feature score of 313.48. Figure S6C shows the data after

shuffling the values of the y-coordinate feature, which led to a new solution score of 368.09 and a

feature score of 286.33.

Scenario 3 – two non-informative features

 Figure S7A shows the results of k-means clustering of the data where both features are non-

informative. The solution score is 256.48. Figure S7B shows the data after shuffling the values of y-

coordinate feature. The new solution score is 374.07 (line 12 in Algorithm 4) and a feature score of

114.59. Figure S7C shows the data after shuffling the values of the x-coordinate feature, which led

to a solution score of 407.04 and feature score of 150.56.

A B C

Figure S6. Illustration of the different steps of FRIGATE for scenario 1 of two informative features. A – A clustering solution of the data (line 6 in

Algorithm 4) colored by clusters labels. The solution score is 81.76 (line 8 in Algorithm 4). B- Results of shuffling the x-coordinate (lines 10-13 in

Algorithm 4). The solution score increased dramatically to 286.33. C- Results of shuffling the y-coordinate feature. We see again a great change

from S1A with a solution score of 313.48.

A B

Figure S7. Illustration of the different steps of FRIGATE for scenario 3 of two non-informative features. A – A clustering solution of the data (line

6 in Algorithm 4) colored by clusters labels. The solution score is 256.48 (line 8 in Algorithm 4). B- Results of shuffling the x-coordinate feature

(lines 10-13 in Algorithm 4). The solution score changed to 150.56. C- Results of shuffling the y-coordinate feature. The solution score is similar

to Figure S2B, 114.59.

C

53

9. Supplementary 3 - Choosing the value of 𝜎

We tested the average Pearson correlation between the different features when constructing the

simulation using different values of 𝜎. We tested three scenarios and the average results of 10 runs for

𝜇 = 2 are presented in Figure S8:

• Scenario 1 - 200 samples divided into 4 clusters (𝑘 = 4) with 20 informative features and 80

non-informative.

• Scenario 2 – same as scenario 1 with 2 clusters (𝑘 = 2).

• Scenario 3 – the simulation suggested in [26]: 200 samples, 4 clusters (𝑘 = 4), 50

informative features, 950 non informative features.

For 𝜇 = {1,4} we received nearly identical results (not shown).

Next, we tested the average Pearson correlation in real data sets. The four genomic cancer datasets as

used in [49] and presented in the Results section (Datasets 1-4) have an average Pearson correlation of

0.07 with STD of 0.03. The value of 𝜎 that achieved similar correlation in the data is 0.05, so other than

the simple case of 𝜎 = 0 we desided to test also 𝜎 = 0.05, and 𝜎 = 0.2 as a case of extreme correlation.

We also tested the highly unrealistic 𝜎 = 0.5 since it was used in [26].

0.03

0.04

0.07

0.12

0.16

0.02

0.03

0.06

0.11

0.15

0.001
0.01

0.05

0.1

0.15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.01 0.05 0.1 0.15

M
ea

n
 C

o
rr

el
at

io
n

Sigma

Mean Correlation in Simulation Data

scenario 1 scenario 2 scenario 3

Figure S8. Testing the average Pearson correlation (X axis) in the data in different simulation scenarios, with different

values of 𝜎 (Y axis). Description of the scenarios is found above.

54

10. Supplementary 4 – simulation results

Simulated data with 200 samples and 100 features of which 20 are informative, divided into two or four

equal-sized clusters, and tested 𝜇 = {0.5,1,2,4} and 𝜎 = {0,0.05,0.2, 0.5}, with and without z-score

normalization. Results of the accurate recognition rate, supplement to Table 2.

𝒌 = 𝟒,

 normalized

𝝁 = 𝟐

 𝝈 = 𝟎

𝝁 = 𝟐

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟐

𝝈 = 𝟎. 𝟐

𝝁 = 𝟐

𝝈 = 𝟎. 𝟓

𝝁 = 𝟒

 𝝈 = 𝟎

𝝁 = 𝟒

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟒

𝝈 = 𝟎. 𝟐

𝝁 = 𝟒

𝝈 = 𝟎. 𝟓

FRIGATE 1 ± 0 1 ± 0 1 ± 0.02 0.06 ± 0.1 1 ± 0 1 ± 0 1 ± 0 0.1 ± 0.12

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 0 ± 0 1 ± 0 1 ± 0 1 ± 0 0.3 ± 0.46

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRSD 0 ± 0 0 ± 0 0.14 ± 0.1 0.66 ± 0.12 0.05 ± 0.06 0.05 ± 0.04 0.25 ± 0.1 0.66 ± 0.11

FRMV 0 ± 0 0 ± 0 0.04 ± 0.11 0.43 ± 0.3 0 ± 0 0 ± 0 0 ± 0 0.24 ± 0.31

𝒌 = 𝟒,

 Non-normalized

𝝁 = 𝟐

 𝝈 = 𝟎

𝝁 = 𝟐

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟐

𝝈 = 𝟎. 𝟐

𝝁 = 𝟐

𝝈 = 𝟎. 𝟓

𝝁 = 𝟒

 𝝈 = 𝟎

𝝁 = 𝟒

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟒

𝝈 = 𝟎. 𝟐

𝝁 = 𝟒

𝝈 = 𝟎. 𝟓

FRIGATE 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRSD 1 ± 0 1 ± 0.02 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRMV 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝒌 = 𝟐,

 normalized

𝝁 = 𝟎. 𝟓

 𝝈 = 𝟎

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟐

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟓

𝝁 = 𝟏

 𝝈 = 𝟎

𝝁 = 𝟏

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟏

𝝈 = 𝟎. 𝟐

𝝁 = 𝟏

𝝈 = 𝟎. 𝟓

FRIGATE 0.34 ± 0.09 0.39 ± 0.11 0.29 ± 0.09 0.15 ± 0.07 0.96 ± 0.04 0.89 ± 0.06 0.46 ± 0.11 0.16 ± 0.11

FRIGATE-MW 0.38 ± 0.11 0.37 ± 0.18 0.22 ± 0.1 0.14 ± 0.1 1 ± 0.02 1 ± 0 0.56 ± 0.22 0.15 ± 0.2

FRCM 0.49 ± 0.08 0.42 ± 0.11 0.23 ± 0.08 0.14 ± 0.08 1 ± 0.02 0.98 ± 0.02 0.66 ± 0.11 0.29 ± 0.16

FRSD 0.17 ± 0.07 0.15 ± 0.05 0.23 ± 0.08 0.26 ± 0.08 0.09 ± 0.05 0.12 ± 0.07 0.15 ± 0.08 0.37 ± 0.1

FRMV 0.19 ± 0.11 0.19 ± 0.07 0.18 ± 0.07 0.22 ± 0.12 0.1 ± 0.12 0.14 ± 0.13 0.12 ± 0.09 0.26 ± 0.19

𝒌 = 𝟐,

 normalized

𝝁 = 𝟐

 𝝈 = 𝟎

𝝁 = 𝟐

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟐

𝝈 = 𝟎. 𝟐

𝝁 = 𝟐

𝝈 = 𝟎. 𝟓

𝝁 = 𝟒

 𝝈 = 𝟎

𝝁 = 𝟒

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟒

𝝈 = 𝟎. 𝟐

𝝁 = 𝟒

𝝈 = 𝟎. 𝟓

FRIGATE 1 ± 0 1 ± 0 0.94 ± 0.07 0.11 ± 0.14 1 ± 0 1 ± 0 1 ± 0 0.21 ± 0.17

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 0.24 ± 0.39 1 ± 0 1 ± 0 1 ± 0 0.1 ± 0.3

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRSD 0 ± 0 0 ± 0 0.07 ± 0.07 0.55 ± 0.1 0.26 ± 0.07 0.28 ± 0.07 0.35 ± 0.11 0.37 ± 0.08

FRMV 0.25 ± 0.27 0.19 ± 0.25 0.06 ± 0.15 0.17 ± 0.16 0.21 ± 0.27 0.09 ± 0.15 0.01 ± 0.02 0.24 ± 0.32

Table 6. Performance on simulated data, with 𝑘 = 4 and z-score normalized data.

Table 7. Performance on simulated data, with 𝑘 = 4 and non-normalized data.

Table 9. Performance on simulated data, with 𝑘 = 2 and z-score normalized data.

Table 8. Performance on simulated data, with 𝑘 = 2 and z-score normalized data.

55

𝒌 = 𝟐,

 Non-normalized

𝝁 = 𝟎. 𝟓

 𝝈 = 𝟎

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟐

𝝁 = 𝟎. 𝟓

𝝈 = 𝟎. 𝟓

𝝁 = 𝟏

 𝝈 = 𝟎

𝝁 = 𝟏

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟏

𝝈 = 𝟎. 𝟐

𝝁 = 𝟏

𝝈 = 𝟎. 𝟓

FRIGATE 0.41 ± 0.1 0.37 ± 0.1 0.27 ± 0.11 0.3 ± 0.12 0.96 ± 0.04 0.93 ± 0.04 0.82 ± 0.09 0.54 ± 0.14

FRIGATE-MW 0.45 ± 0.12 0.43 ± 0.13 0.33 ± 0.11 0.32 ± 0.11 0.99 ± 0.02 1 ± 0.02 0.89 ± 0.18 0.79 ± 0.13

FRCM 0.51 ± 0.15 0.38 ± 0.11 0.25 ± 0.07 0.19 ± 0.06 1 ± 0 0.99 ± 0.02 0.75 ± 0.14 0.42 ± 0.1

FRSD 0.32 ± 0.06 0.36 ± 0.08 0.32 ± 0.1 0.37 ± 0.1 0.74 ± 0.08 0.72 ± 0.09 0.73 ± 0.04 0.8 ± 0.07

FRMV 0.18 ± 0.09 0.22 ± 0.12 0.21 ± 0.09 0.2 ± 0.09 0.14 ± 0.17 0.18 ± 0.25 0.28 ± 0.2 0.23 ± 0.17

𝒌 = 𝟐,

 Non-normalized

𝝁 = 𝟐

 𝝈 = 𝟎

𝝁 = 𝟐

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟐

𝝈 = 𝟎. 𝟐

𝝁 = 𝟐

𝝈 = 𝟎. 𝟓

𝝁 = 𝟒

 𝝈 = 𝟎

𝝁 = 𝟒

𝝈 = 𝟎. 𝟎𝟓

𝝁 = 𝟒

𝝈 = 𝟎. 𝟐

𝝁 = 𝟒

𝝈 = 𝟎. 𝟓

FRIGATE 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRSD 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 1 ± 0.02 1 ± 0 1 ± 0 1 ± 0 1 ± 0

FRMV 0.12 ± 0.21 0.33 ± 0.32 0.05 ± 0.1 0.19 ± 0.27 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Table 11. Performance on simulated data, with 𝑘 = 2 and non-normalized data.

Table 10. Performance on simulated data, with 𝑘 = 2 and non-normalized data.

56

11. Supplementary 5 – Significance levels

P-values for the differences in performances of FRIGATE, FRIGATE-MW, FRMV, FRCM and FRSD of

Datasets 5-7 in Table 3. The # column shows the ranking of ARI scores where 1 is best. See Table 4 for

the scores. In case of ties in the ARI we used the STD as a tiebreaker, where lower STD accounts for a

better rank.

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 2 0.256 4.66e-06 2.164e-07 3.764e-08

FRIGATE-

MW

1 - 3.763e-09 1.308e-14 1.066e-15

FRMV 4 - - 0.856 0.328

FRSD 3 - - - 3.611e-07

FRCM 5 - - - -

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 2 0.66 2.117e-12 1.771e-11 0.0961

FRIGATE-

MW

1 - 2.031e-12 1.65e-11 0.0451

FRMV 5 - - 0.029 5.446e-12

FRSD 4 - - - 5.575e-11

FRCM 3 - - - -

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 2 0.231 0.607 0.021 0.127

FRIGATE-

MW

4 - 0.653 0.052 3.07e-04

FRMV 3 - - 0.057 0.052

FRSD 5 - - - 0.001

FRCM 1 - - - -

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 3 0.648 0.987 0.002 0.595

FRIGATE-

MW

2 - 0.588 4.564e-05 1

FRMV 4 - - 1.836e-04 0.504

FRSD 5 - - - 4.218e-08

FRCM 1 - - - -

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 1 0.177 0.018 1.232e-23 0.278

FRIGATE-

MW

3 - 0.641 1.809e-15 0.76

FRMV 4 - - 6.575e-18 0.394

FRSD 5 - - - 1.918e-16

FRCM 2 - - - -

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 3 0.712 0.871 2.09e-05 0.241

FRIGATE-

MW

2 - 0.209 4.39e-11 0.011

FRMV 4 - - 4.173e-10 4.72e-04

FRSD 5 - - - 1.073e-13

FRCM 1 - - - -

Table S12. T-test p-values of ARI scores

for ⌈25%⌉ features of Dataset 5.

Table S13. T-test p-values of ARI scores

for ⌈50%⌉ features of Dataset 5.

Table S14. T-test p-values of ARI scores

for ⌈25%⌉ features of Dataset 6.

Table S15. T-test p-values of ARI scores

for ⌈50%⌉ features of Dataset 6.

Table S16. T-test p-values of ARI scores

for ⌈25%⌉ features of Dataset 7.

Table S17. T-test p-values of ARI scores

for ⌈50%⌉ features of Dataset 7.

57

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 1 0.15 3.753e-05 0.898 3.125e-04

FRIGATE-

MW

3 - 7.479e-05 0.095 0.006

FRMV 5 - - 3.53e-05 2.41e-04

FRSD 2 - - - 1.076e-05

FRCM 4 - - - -

 # FRIGATE-

MW

FRMV FRSD FRCM

FRIGATE 2 0.526 1.031e-07 0.142 1.572e-18

FRIGATE-

MW

3 - 1.66e-06 0.165 5.947e-12

FRMV 4 - - 3.059e-08 0.468

FRSD 1 - - - 2.904e-22

FRCM 5 - - - -

Table S18. T-test p-values of ARI scores

for ⌈25%⌉ features of Dataset 8.

Table S19. T-test p-values of ARI scores

for ⌈50%⌉ features of Dataset 8.

58

12. Supplementary 6 - Clinical significance

Full results of the ranked features by FRIGATE and FRIGATE-MW that were also top features found in

[54]. See chapter 4.2 for details.

Rank Feature Mendelson Cohen et al.

1 days in hospital ☒

2 Calculated Bicarbonate, Whole Blood ☒

3 Hemoglobin ☑

4 Hematocrit ☑

5 Platelet Count ☑

6 MCH ☒

7 Alanine Aminotransferase (ALT) ☑

8 Asparate Aminotransferase (AST) ☒

9 Bilirubin, Total ☑

10 Red Blood Cells ☑

11 Fibrinogen, Functional ☒

12 MCHC ☒

13 Calculated Total CO2 ☒

14 Anion Gap ☒

15 MCV ☒

16 Bicarbonate ☒

17 Alkaline Phosphatase ☑

18 Age ☒

19 pCO2 ☒

20 Neutrophils ☒

21 Lymphocytes ☒

22 pH ☒

23 Base Excess ☒

24 PT ☒

25 Glucose ☒

26 INR(PT) ☒

27 Chloride ☒

28 pO2 ☒

29 RDW ☒

30 Sodium, Whole Blood ☒

31 pH ☒

32 Ethanol ☒

33 Specific Gravity ☒

34 Creatinine ☑

35 Phosphate ☒

36 White Blood Cells ☒

37 Basophils ☑

38 Potassium, Whole Blood ☒

39 Urea Nitrogen ☑

40 Monocytes ☑

41 Calcium, Total ☒

42 Lactate ☒

43 Eosinophils ☑

44 PTT ☒

45 Magnesium ☒

46 Amylase ☒

47 Lipase ☒

Rank Feature Mendelson Cohen et al.

1 days in hospital ☒

2 Platelet Count ☑

3 Calculated Bicarbonate, Whole Blood ☒

4 Hematocrit ☑

5 pH ☒

6 MCH ☒

7 Age ☒

8 Hemoglobin ☑

9 Neutrophils ☒

10 Red Blood Cells ☑

11 INR(PT) ☒

12 Bilirubin, Total ☑

13 Alanine Aminotransferase (ALT) ☑

14 Asparate Aminotransferase (AST) ☒

15 pH ☒

16 Lymphocytes ☒

17 Fibrinogen, Functional ☒

18 MCHC ☒

19 MCV ☒

20 Anion Gap ☒

21 Calculated Total CO2 ☒

22 Alkaline Phosphatase ☑

23 RDW ☒

24 PT ☒

25 Glucose ☒

26 Specific Gravity ☒

27 Urea Nitrogen ☑

28 Bicarbonate ☒

29 pCO2 ☒

30 Basophils ☑

31 Base Excess ☒

32 Ethanol ☒

33 White Blood Cells ☒

34 Chloride ☒

35 Creatinine ☑

36 pO2 ☒

37 Sodium, Whole Blood ☒

38 Potassium, Whole Blood ☒

39 Monocytes ☑

40 Eosinophils ☑

41 Phosphate ☒

42 PTT ☒

43 Calcium, Total ☒

44 Magnesium ☒

45 Lactate ☒

46 Amylase ☒

47 Lipase ☒

Table S20. Average ranks of FRIGATE-MW for Dataset

6. The bold line represents ⌈25%⌉ of features cutoff.

☑: Top features in [54], ☒: The rest.

Table S21. Average ranks of FRIGATE for Dataset

6. The bold line represents ⌈25%⌉ of features

cutoff. ☑: Top features in [54], ☒: The rest.

59

13. Supplementary 7 – The effect of 𝑘 in each algorithm

FRIGATE requires determining the number of clusters 𝑘 in advance, unlike FRCM and FRSD, which test a

prescribed range of 𝑘. Generally, it is preferred not to determine the number of clusters in advance.

However, all the previously suggested ensemble algorithms are based on k-means, which requires 𝑘 as

an input. As it is commonly done, we suggest trying different 𝑘 values and choosing the value using

some criterion, e.g., the “elbow” method [41]. This is the approach we use for FRIGATE.

To test the effect of 𝑘 in prior algorithms, we simulated data with four clusters (𝑘 = 4), fifty samples in

each cluster (𝑐 = 50), and 100 features, of which 20 are informative (𝛼 = 20, 𝛽 = 80), when the data is

z-score normalized, and measures the accurate recognition rate. We repeated the run 10 times for each

case and present in Figure S9 the mean results. We ran FRCM and FRSD with a range [𝑚𝑖𝑛_𝑘, 𝑚𝑎𝑥_𝑘]

where 𝑚𝑖𝑛_𝑘 of {2,3,4}, and 𝑚𝑎𝑥_𝑘 = {4,8,12,15}, (recall that for FRCM and FRSD the default range is

[2:15] as 𝑘_𝑚𝑎𝑥 = min(⌈√200⌉, 20) = 15). We can see that generally an increase of 𝑚𝑎𝑥_𝑘 results in a

sharp decrease in the results of FRSD. Interestingly, using 𝑚𝑖𝑛_𝑘 < 𝑘 had a positive effect: using a range

of [2:4], when 𝑘 = 4, produced better results than using [3,4] or [4,4]. Similar results were obtained for

simulation with 𝜇 = 4 (Figure S11).

It is worth mentioning that in FRSD the larger the range - the more iterations the algorithm performs in

total (𝑇 = 200 for each tested value of 𝑘). To see if the total number of iterations has a major effect on

the results, we also tested the performance of FRSD when the range [𝑘, 𝑘] was given as input for

different 𝑘 values, and the total number of iterations per 𝑘 was set to 2800 (the number of iterations for

the full default range of 𝑘), and the results are shown in Figure S10 for 𝜇 = 2 (see Figure S12 for 𝜇 = 4).

We can see that FRSD performs best for k=3 and k=2, although the real number of clusters is four.

Higher values of 𝑘 harm the ability of the algorithm to find any relevant features. This helps explaining

the results in Figure S9, where we see a drop in performance when large values of 𝑘 are included and

affecting the results.

FRCM, on the other hand, has a fixed number of iterations and samples a value of 𝑘 for each iteration

from the same range as FRSD. Interestingly, when performing the same analyses for FRCM, the

algorithm produced perfect results for all cases (results not shown).

Unlike FRSD and FRCM, FRIGATE and FRMV require 𝑘 as an input. Hence, we tested how different values

of input 𝑘 affect the results of FRIGATE and FRMV on simulated data with the same parameters used for

FRSD and FRCM. We tested the algorithms in the same simulation, using as input values of 𝑘 {2, 3, 4, 8,

60

0

0.2

0.4

0.6

0.8

1

2 3 4

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Minimum k

μ=2, 𝜎=0

4 8 12 15 (default)

0

0.2

0.4

0.6

0.8

1

2 3 4

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Minimum k

μ=2, 𝜎=0.05

4 8 12 15 (default)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 8 12 15

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Input k

μ=2, 𝜎=0

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 8 12 15

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Input k

μ=2, 𝜎=0.05

12, 15}. The results of FRIAGTE were perfect in all scenarios, which means it was unaffected by the input

𝑘. FRMV had poor results in all scenarios (results not shown).

Figure S9. Performance of FRSD with different ranges for [𝑘_𝑚𝑖𝑛, 𝑘_𝑚𝑎𝑥]. The simulation parameters are 4 clusters, 50 samples in each cluster, 100

features - of which 20 are informative, 𝜇 = 2. The results show accurate recognition rate of FRSD over 10 runs. A: 𝜎 = 0, B: 𝜎 = 0.05.

K_max K_max

A B

Figure S10. Performance of FRSD when a single number of clusters is tested, the true number is 4, and 2800 iterations are performed per each

number of clusters tested. The rest of the simulation parameters are as in Figure 7. A: 𝜎 = 0, B: 𝜎 = 0.05.

A B

61

0

0.2

0.4

0.6

0.8

1

2 3 4

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Minimum k

𝜇=4, 𝜎=0

4 8 12 15 (default)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 8 12 15

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

input k

𝜇=4, 𝜎=0.05

0

0.2

0.4

0.6

0.8

1

2 3 4

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

Minimum k

𝜇=4, 𝜎=0.05

4 8 12 15 (default)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 8 12 15

A
cc

u
ra

te
 r

ec
o

gn
it

io
n

 r
at

e

input k

𝜇=4, 𝜎=0

Figure S11. Performance of FRSD with different values used as 𝑚𝑎𝑥_𝑥. The simulation has 4 clusters, 50 samples in each cluster, 100 features - 20

of which are informative for clustering, 𝜇 = 4 and 𝜎 = 0 or 𝜎 = 0.05 for A and B respectively. We measured the accurate recognition rate and

we present here the mean of 10 runs of FRSD on the range [𝑚𝑖𝑛_𝑘, 𝑚𝑎𝑥_𝑘] for different values of min_x and max_x.

A B

Figure S12. Performance of FRSD with a single value of 𝑘 and 2800 iterations. The simulation parameters are as in Figure S6. A: 𝜎 = 0, B: 𝜎 = 0.05.

K_max K_max

62

 תקציר

הזמינות של נתוני רשומות רפואיות ממוחשבות השתפרה באופן ניכר בשנים האחרונות, ומספר הולך וגדל של מחקרים

(, בה clustering)קיבוץ שיטה מרכזית בתחום זה היא סוג זה.מעושים שימוש באלגוריתמיקה ולמידת מכונה על נתונים

שימוש שונותנעשה זיהוי , למטרות הקיים כולל המידע של והיתירות השפע מוכרות. מחלות של חדשים סוגים תתי

. זיהוי המשתנים ולדרגם לפעולת הקיבוץברשומות הרפואיות מעלה את הצורך לזהות את המשתנים המשמעותיים ביותר

 ההבנה ופירוש התוצאות. יכולת החשובים ביותר משמעותי גם משיקולי זמן ריצה וחיסכון בזיכרון, וגם לשם שיפור

, אלגוריתם אשר מדרג את FRIGATE (Feature Ranking In clustering using GAme ThEory)אנחנו מציגים כאן את

לחשיבתם בהתאם ערכילקיבוץהמשתנים המשחקים: מתורת מושגים ומשלב כפלייםו (Shapley) שפלי , משקולות

(Multiplicative Weights ,MW .)FRIGATE משתנים דירוג אלגוריתם המכלולהוא ensemble feature) בשיטת

ranking algorithmעל תתי רבים קיבוץ על בסיס פתרונות קובע את חשיבות המשתנים קבוצות של משתנים. -(אשר

ערכי לחישוב דומה קיבוץ, קבוצה מצומצמת של משתנים מדורגת באופן כל פתרון ונעשה שימוש בשפליעבור ,-MW

תתבמטרה של הבחירה את המשתנים-לייעל של הבאה הראשון הקבוצה המשתנים דירוג אלגוריתם שזהו נראה .

הראה ביצועים טובים FRIGATEא צורך ממשי בניתוח מידע רפואי. ונתונים רציפים ובדידים יחד, שה שמאפשר ניתוח של

על הן מכלול שהוצגו בעבר, ה בשיטתוריתמי דירוג בהשוואה לאלג ,מבחינת זמן ריצהוהן איכות התוצאותהן מבחינת יותר

 נתוני אמת רפואיים.סימולציה והן על קלטים של נתוני

63

 אוניבריסטת תל אביב

 הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

 בית הספר למדעי המחשב ע"ש בלווטניק

אלגוריתם דירוג משתנים עבור קיבוץ

 נתונים רפואיים של

 חיבור זה הוגש כעבודת גמר לתואר 'מוסמך אוניברסיטה' באוניברסיטת תל אביב

 בבית הספר למדעי המחשב

 על ידי

 ערן שפיגלמן

 בהנחיית

 פרופסור רון שמיר

2024 פברואר

