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Abstract  

The availability of electronic medical records (EMR) data has advanced dramatically in recent years, and 

a growing number of studies apply algorithmic and machine learning methods to these data. A key 

method is clustering, used for a variety of purposes, including finding unknown subtypes of known 

diseases. The abundance and redundancy of information in EMR data raises the need to identify and 

rank the features that are most relevant for the clustering task. This is needed both for time and space 

efficiency reasons as well as for improving the interpretability of the results.  

Here we propose FRIGATE (Feature Ranking In clustering using GAme ThEory), an algorithm that ranks 

features by their importance to clustering, incorporating the concepts of Shapley value and 

Multiplicative Weights. FRIGATE is an ensemble feature ranking algorithm, which derives the importance 

of features from multiple clustering solutions on sub-groups of features. For each clustering solution a 

small group of features is ranked in a Shapley-like framework, and multiplicative weights are applied to 

limit the randomness of their choice. It can handle both categorical and continuous features, a common 

need in medical data. FRIGATE outperforms previously suggested ensemble ranking algorithms on 

simulated and real medical data, both in solution quality and in speed. 
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1. Introduction  

In the past decade and a half, medical systems around the world underwent a major digitization 

revolution [1]. As a result, most of the personal medical information is now stored electronically, 

transforming the way medical research is conducted. Today, it is possible to conduct research on the 

population level, on a large number of patients and using multiple types of medical features. It is also 

possible to follow a group of patients over time and learn from the changes in their medical conditions. 

Although medical data sharing has been slow [2], the number of clinical data sets available to 

researchers is growing [3]. Such resources include data sets that span a large range of clinical data types, 

such as MIMIC [4], [5], and some even offer a combination of genomic and medical information, e.g., 

the UK BioBank [6]. 

Medical data have some special characteristics that make them challenging to work with. Firstly, some 

of them are of great magnitude. For example, in MIMIC-III alone there is information of 46,520 patients, 

with 753 different lab tests and 14567 different ICD-9 codes [4]. Another challenge that is closely related 

to the large number of features is the data incompleteness. Medical data typically have high percentage 

of missing values even for frequently taken measurements [7].  

These challenges and the availability of the data create an opportunity for collaboration between 

clinicians and computer scientists in order to answer medical questions using computational tools. More 

specifically, we see a growing number of machine-learning applications on medical data [8] alongside 

development of computational tools dedicated to analyzing medical information [9], [10]. Some of the 

computational tools in use are from supervised machine-learning, where there are certain patient labels 

that the researchers want to learn (e.g., sick and healthy). A lot of the research in this direction is 

focused on building predictive models for early detection of diseases [11], while other creative uses 

include predicting the levels of infection in the population during the Covid-19 pandemic [12]. Another 

type of machine-learning models is unsupervised. In this case labels are not available, and the 

researchers are trying to find latent patient groups that are not yet known. These problems are usually 

referred to as clustering problems, and in the medical domain the clusters are used in discovery of new 

subgroups of known diseases [13]–[15] and in clinical image segmentation [16]. Our research is focused 

on this type of problems. 

In the generic clustering problem the input is a set of 𝑚 vectors in 𝑅𝑛. The vectors are called samples, 

and the coordinates are called features. The goal is to partition the samples into groups called clusters 
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so that the average intra-cluster distance between samples is as small as possible and the average inter-

cluster distance is as large as possible [17]–[19]. These two objectives pull solutions in different 

directions, since increasing the number of clusters would decrease both the first and the second 

objective. In some versions of the problem the number of clusters is given and then the first objective 

suffices. Most exact formulations of clustering are NP-hard, and heuristics are often used. In the analysis 

of electronic medical records (EMR), a sample corresponds to a patient or an inpatient's record, where 

features can be demographic information (age, gender, previous diseases, etc.), results of 

measurements (temperature, blood pressure, etc.) or lab results (white blood cells count, cholesterol 

level, etc.). There are multiple clustering algorithms that use different properties of the data to create 

the clusters. We will focus on a family of algorithms that is usually referred to as partitioning based or 

moving centers, which include the widely used k-means algorithm. These algorithms usually specify the 

initial number of clusters and iteratively reallocate samples among clusters until convergence based on a 

pre-defined criterion [20].  

One challenge in clustering problems is the choice of the number of clusters 𝑘. While some algorithms 

determine 𝑘 [21], others require 𝑘 as an input [22]. That means that the user needs to define in advance 

the number of latent groups that are to be found in the data. This is a hard task, as the properties of the 

data are often inherently unknown. Also, different values of 𝑘 can potentially result in significantly 

different cluster structures, or equivalently, different possibilities of partitioning the data, with no 

known absolute truth. For example, in the medical domain we can have a large data set of patients that 

when using 𝑘 = 2 the data will be partitioned in accordance with sex, but higher values of 𝑘 can 

partition the data into subsets corresponding to different medical conditions, which without additional 

knowledge will be hard to label.  

Another challenge is interpretability of the results, in particular in medical research. When finding new 

clusters in the data, we want to be able to understand the most important features that create them, in 

order to obtain clinical insights. When dealing with large data sets with possibly thousands of features, 

this is challenging. Also, running the algorithms on huge data sets is computationally expensive and not 

always feasible. For these reasons, feature selection algorithms were proposed [23]. Such algorithms 

seek the most important features for the clustering task. Our goal here is the development of such an 

algorithm that ranks all the features according to their importance to the clustering task, and is meant to 

specifically fit medical data.  
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Many medical databases, as well as genomic data and others, contain a large number of features. One 

way to deal with the high dimensional data is dimension reduction methods [24]. However, the effect of 

individual features, which is crucial for medical insights, will be obscured. Another option is to use 

feature selection algorithms, which choose a subset of features that will create a sub matrix with “good” 

clusters. There are several feature selection methods for clustering algorithms [23], [25]. Typically, they 

are divided into two main groups: filters and wrappers. The filter methods determine the importance of 

features based on internal properties of the data, without performing any clustering in the process. This 

makes them very efficient. The wrapper methods, on the other hand, use a specific clustering algorithm 

and iteratively produce a clustering solution using a subset of features that according to some 

evaluation criterion are the most relevant for the clustering task. They tend to be more accurate than 

the filter methods [23]. There are also some hybrid methods that combine the filter and the wrapper 

ideas [23].  

In recent years ensemble feature ranking algorithms were also suggested. These methods create an 

ensemble of clustering solutions on subsets of features and then use some metric to evaluate the 

contribution of each feature [26]. These methods were shown to perform better than filter and wrapper 

methods, including on medical data sets [26]–[28]. Ensemble methods can also be used for choosing a 

subset of important features, in contrast to ranking the full set of features [29]. However, here, as we 

aim to work with medical information, we prefer to lose as little information as possible and prefer to 

evaluate and rank the full set of features. For these reasons we chose to develop a new algorithm within 

the ensemble ranking framework. 

There are three ensemble ranking algorithms that we refer to in this paper: FRMV [27] is a relatively 

flexible framework that iteratively ranks the features according to a pre-defined relevance measure (e.g., 

linear correlation). FRCM [28], designed for genomic data, uses a consensus clustering solution before 

evaluating the features. FRSD [26] uses silhouette score [30], a known criterion of clusters quality, to 

rank the features. All of them will be described in detail below.  

Here we introduce a new algorithm called FRIGATE (feature ranking in clustering using game theory), 

which uses two concepts from game theory. The first is motivated by Shapley value, a measure of the 

contribution of every player to the group in a cooperative game [31], [32]. In our case the players are 

the features and the “game” is clustering. Shapley values are widely used for feature evaluation in 

classification models [32] and so far were not used in clustering for feature selection or ranking. The 

second is Multiplicative Weights (MW) [33], a framework to improve the selection of players in an 
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iterative process such that players are selected from a distribution based on their performance so far. In 

FRIGATE we use MW to guide the choice of features for each clustering solution and avoid the choice of 

features that proved to be insignificant. All previously presented ensemble algorithms choose subsets of 

features at random. To the best of our knowledge this is the first time that MW is adapted to feature 

selection for clustering.  

The thesis is organized as follows: We first present relevant background including clustering methods, 

extant algorithms of ensemble feature ranking for clustering and the game theory concepts that are 

incorporated in FRIGATE. Next, in the Methods section, we present in detail the FRIGATE algorithm and 

describe the construction of simulated data. In the Results section we demonstrate a run of FRIGATE, 

show the process of choosing the model hyper-parameters and measure the performance of FRIGATE 

and the extant algorithms, both on simulated and on real data. We conclude with a discussion of the 

results.  

2. Background  

In this chapter we describe algorithms and computational methods that will be used in the thesis.  

2.1 k-means 

k-means [22] is one of the most widely used clustering algorithms. It receives as an input the number 𝑘 

of clusters and the data matrix, and assumes features are continuous. The algorithm first chooses cluster 

centers (centroids) and assigns each sample to the cluster with the closest centroid using a distance 

metric. Then, the center of mass of each cluster is set as the new centroid, and the process is repeated 

until convergence. The initial centroids are either chosen at random or with k-means++ [34], which 

chooses samples from the cohort based on a probabilistic model of their contribution to the intra cluster 

distance and meant to speed up the convergence. The algorithm is heuristic, and returns a local 

optimum only. It is usually run several times and the solution with the smallest overall distance to 

centroids is chosen. Here we used the Euclidean distance metric: 

                                                          𝑑(𝑥, 𝑦) =  ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                                     (1) 

and k-means as implemented in Scikit learn [35] with 100 k-means++ initializations in each run.  
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2.2 k-modes 

k-modes [36] is a clustering algorithm for categorical data, namely, feature values are discrete (two or 

more) categories. Other than that, the algorithm is identical to k-means. The initial centroids are chosen 

with Cao method [37] which is similar to k-means++. The Hamming distance is used as the distance 

metric:  

                                                          𝑑(𝑥, 𝑦) =  ∑ 𝛿(𝑥𝑖, 𝑦𝑖)𝑛
𝑖=1                                                       (2) 

                                        𝑤ℎ𝑒𝑟𝑒     𝛿(𝑥𝑖, 𝑦𝑖) =  {
1    𝑖𝑓 𝑥𝑖 = 𝑦𝑖

0              𝑒𝑙𝑠𝑒
                                                   (3) 

Here we used the k-modes implementation in [38]. 

2.3 k-prototypes 

k-prototypes [39] is an algorithm that clusters mixed data, i.e. data with both continuous and categorical 

features. This is a common case in many applications, including the medical domain. For example, 

patient medical records typically contain continuous features, such as weight, height, age and lab tests 

like blood count, as well as some categorical features like sex, diagnosis, and past diseases. The iterative 

process of k-prototypes is identical to k-means, with an adjusted distance function (see below), and the 

initial centroids choice is based on the categorical features with Cao method [37] similarly to k-modes. k-

prototypes was reported as one of the best performers in a recent benchmark of mixed-data clustering 

algorithms [40]. The distance metric that we used is:  

                                        𝑑(𝑥, 𝑦) =  ∑ (𝑥𝑖 − 𝑦𝑖)2𝑝
𝑖=1 + 𝛾 ∑ 𝛿(𝑥𝑖, 𝑦𝑖)𝑚

𝑖=𝑝+1                                   (4) 

Where 𝑥1, … 𝑥𝑝  are numerical variables, 𝑥𝑝+1, … 𝑥𝑚 are categorical variables, and 𝛿 is the Hamming 

distance function. The 𝛾 factor determines the relative contribution of the categorical features in 

comparison to the continuous features, where 𝛾 = 1 means equal contribution, 𝛾 > 1 gives higher 

value to the categorical features and 𝛾 < 1 gives higher value to the continuous features. Here we used 

a k-prototype implementation in [38]. 

2.4 The silhouette score 

The silhouette score [30] is a common intrinsic measure for the quality of a clustering solution, often 

used when the real labels are unknown. The score is calculated separately for each sample and 
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measures how well a sample belongs to the cluster it is assigned to, versus the next nearest cluster. For 

some sample 𝑖, define:  

                                                                  𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max(𝑎(𝑖),𝑏(𝑖))
                                              (5) 

Where 𝑎(𝑖) is the average distance of 𝑖 to all other samples in its cluster, and 𝑏(𝑖) is the minimal 

average distance between 𝑖 to samples of another cluster. The total silhouette score of the clustering 

solution is ∑ 𝑠(𝑖)𝑖 , summed over all samples. Here we used silhouette as implemented in Scikit learn 

[35]. 

2.5 The Elbow method 

The Elbow method seeks to determine the optimal number of clusters in a dataset. It works by 

calculating the differences in some function 𝑣 for the quality of clusters as the number of clusters 

changes. For a solution with 𝑖 clusters, let 𝑣(𝑖) be the sum of total within-cluster sum of squares. As 

increasing the number of clusters decreases the value of 𝑣(𝑖), the optimal 𝑖 is chosen as the value at 

which a major change is observed, and for a larger 𝑖 the changes are minor. Visually, this is an “elbow” 

point in the graph of 𝑣(𝑖) vs. 𝑖. As suggested in [41] the value chosen is the one that brings to a 

maximum the function: 

                                 𝑣[𝑖 + 1] + 𝑣[𝑖 − 1] − 2𝑣[𝑖]                             (6) 

2.6 Adjusted Rand Index 

The Adjusted Rand Index (ARI) measures the similarity between two clustering solutions [42]. It is used, 

for example, to test for the similarity between a clustering solution and the true labels. ARI is based on 

Rand Index (RI) [43]. Given a clustering solution 𝐼 and true labels 𝐿 we define four relation types 

between a pair of samples:  

1. The two samples are in the same cluster in 𝐼 and in 𝐿. 

2. The two samples are in the different clusters in 𝐼 and in 𝐿. 

3. The two samples are in the same cluster in 𝐼 but in different clusters in 𝐿. 

4. The two samples are in different cluster in 𝐼 but in the same clusters in 𝐿. 

We define 𝑎 as the number of pairs of type 1, 𝑏 the number of pairs of type 2, 𝑐 the number of pairs of 

type 3, 𝑑 the number of pairs of type 4. Then RI is: 
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                      𝑅𝐼 =
𝑎+𝑏

𝑎+𝑏+𝑐+𝑑
                                                     (7) 

RI scores range between 0 and 1, where 𝑅𝐼 = 1 means a perfect match between 𝐼 and 𝐿. 

RI gets closer to 1 when the number of clusters increases [44], and does not consider the cluster sizes. 

For example, if 90% of samples have the same label in 𝐿, and in 𝐼 all the samples are in the same cluster, 

then the RI score will be 0.9, a seemingly very high score, although the clustering solution does not 

reflect the true labels. ARI tries to overcome these problems by adjusting RI for chance grouping of 

samples, by calculating the expected number of pairs appearing in the same cluster in 𝐿 and 𝐼 given the 

cluster sizes, under the hypergeometric assumption:  

                                                     𝐸 (Σ𝑖,𝑙(𝑛𝑖𝑙
2

)) = Σ𝑖(𝑛𝑖∙
2

)Σ𝑙(𝑛∙𝑙
2

)/(𝑛
2

)                               (8)  

where 𝑛𝑖𝑙  represents the number of samples that are in cluster 𝑖 in 𝐼 and in cluster 𝑙 in 𝐿, with a total of 

𝑛 samples. The ∙ stands for a row/column sum, which accounts for a cluster size. For example, 𝑛𝑖∙ is the 

size of cluster 𝑖 in 𝐼. Similarly, the expected values can be calculated for every entry in Table 1 (details 

are found in [42]).  

 

Cluster in 𝐿 / 

Cluster in 𝐼 

𝐿1 𝐿2 … 𝐿𝑥 Sum  

𝐼1 𝑛11 𝑛12 … 𝑛1𝑥 𝑛1∙ 

𝐼2 𝑛21 𝑛22 … 𝑛2𝑥 𝑛2∙ 
.
.
.
 

.

.

.
 

.

.

.
 

 
.
.
.
 

.

.

.
 

𝐼𝑦 𝑛𝑦1 𝑛𝑦2 … 𝑛𝑦𝑥 𝑛𝑦∙ 

Sum  𝑛∙1 𝑛∙2 … 𝑛∙𝑥 𝑛 

Using a general formulation of:  

                       
𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐼𝑛𝑑𝑒𝑥
                              (9) 

 

Table 1. Illustration of the ARI setting. A value 𝑛𝑖𝑙  represents the numbers of samples that are in the 𝑖𝑡ℎ cluster in 𝐼 and 

the 𝑙𝑡ℎ cluster in 𝐿. The total number of samples in 𝑛. The ARI adjusts the RI for chance grouping of the samples given the 

sums 𝑛1∙, … , 𝑛𝑦∙ and 𝑛∙1, … , 𝑛∙𝑥  . 
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ARI is defined to be:  

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑙
2

)−
[∑ (

𝑛𝑖∙
2

)𝑖 ∑ (
𝑛∙𝑙
2

)𝑙 ]

(𝑛
2)

 𝑖,𝑙

1

2
[∑ (

𝑛𝑖∙
2

)𝑖 +∑ (
𝑛∙𝑙
2

)𝑙 ]−
[∑ (

𝑛𝑖∙
2

)𝑖 ∑ (
𝑛∙𝑙
2

)𝑙 ]

(𝑛
2)

                      (10) 

The maximum ARI is 1, which means a perfect match, but unlike 𝑅𝐼, 𝐴𝑅𝐼 can also take negative values 

with the bound of -1, where 0 means random clusters ("expected"), and negative values means less 

accurate than random assignment. Here we used ARI as implemented in Scikit learn [35] with a lower 

bound of -0.5. 

2.7 FRMV 

Feature ranking from multiple views (FRMV) [27] is an ensemble feature ranking algorithm that ranks 

the features according to their relevance to a clustering solution. The algorithm is presented formally 

below (Algorithm 1). It performs 𝑇 iteration, where in each iteration a subset of 𝑞 features is selected 

with replacement, a clustering solution is obtained for it, a relevance score is computed for each feature, 

and the participating features are ranked according to their score. The final feature ranking is done 

according to the average rank. It was not specified in [27] how to rank repeating features and no 

implementation was provided. The relevance measure is a function 𝑔: ℝ𝑚xℕ𝑚 → ℝ where 𝑚 is the 

number of samples in the cohort. It receives a vector 𝑑𝑟 of values of some feature 𝑑 and a vector of 

cluster membership 𝐼, corresponding to a clustering solution, and returns a numeric score that reflects 

how well feature 𝑣 fits solution 𝐼. The framework allows the use of any clustering algorithm and any 

relevance measure. In [27], Hong et al. used k-means as the clustering algorithm and tested two 

relevance measures: the linear correlation coefficient and symmetrical uncertainty. As the authors 

reported that the results of the two measures were comparable, we used the linear correlation 

coefficient: 

                                                                     𝜌(𝑓𝑟, 𝐼) =
𝑐𝑜𝑣(𝑑𝑟,𝐼)

𝜎(𝑑𝑟)𝜎(𝐼)
                                                                  (11) 

The fraction of features 𝑓 that were chosen per iteration was 
1

2
 and the number of iterations performed 

was 𝑇 = 100. 
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Algorithm 1: FRMV – with k-means 

 Input: 𝑨 – 𝑚x𝑛  matrix of 𝑚 samples and 𝑛 features; 𝒈 - relevance measure; 

                           𝒌 - number of clusters; 𝑻 - number of iterations; 𝒇 - fraction of the features         

                           to use in each iteration                  

 Output: 𝑹 – list of the features ordered by importance for clustering 

1 for 𝑡 ←1 to 𝑇 

2  𝑆 ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ features randomly chosen with replacement  

3  𝐴(𝑡) ← a matrix derived from 𝐴 of size 𝑚x𝑞 with columns corresponding to 𝑆  

4  Perform k-means on 𝐴(𝑡) 

5  𝐼(𝑡)←labels of the clustering solution  

6  For each feature in 𝑆 compute its relevance to 𝐼(𝑡) according to relevance measure g 

7  𝑟(𝑡)←ranks of features in 𝑆 according to their relevance 

8 end     

9 𝑅← array of length 𝑛 with the average rank of each feature 

10 Return an order of the features sorted in decreasing order according to 𝑅  

 

Some parts of the algorithm are not clear. Sampling features with replacement raises two major issues: 

first, features that are chosen several times in an iteration gain excessive influence on the clustering 

solution. This can affect the clustering solutions and may potentially create a large variation in the final 

ranking of the results (see Results). This issue may be fixed by a large number of iterations, such that the 

excessive influence will average over all features, but there is no clear suggestion how to pick the 

number of iterations. Another issue is the calculation of the linear correlation coefficient. 𝐼 in Equation 9 

represents a categorical vector of cluster membership, i.e., the clusters are numbered 1, … , 𝑘 and 𝐼𝑗 = 𝑙 

if sample 𝑗 belongs to cluster 𝑙. Therefore, calculating its standard deviation and covariate with a 

continuous vector depends on the numbering of the clusters. No implementation of FRMV was provided 

in [27]. We implemented it as described in [27] and tested by other publications [26], [28]. In our 

implantation of it we calculated the correlation using the arbitrary numbering of the clusters, which 

affects the results. Also, in each iteration we ran the clustering algorithm on the full subset of features, 

including repeating features. However, the ranking was performed on set of unique features with no 

repetition, and therefore the number of ranked features and the highest rank might vary among 

iterations.  
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2.8 FRCM 

Feature ranking based on the consensus matrix (FRCM) [28] is an ensemble feature ranking algorithm 

that was originally designed for genomic data. It is described in Algorithm 2. Unlike FRMV, in FRCM the 

production of clustering solution and the evaluation of features are separated. The algorithm performs 

𝑇 iterations, where in each a subset of 𝑞 features is selected and a clustering solution is obtained for 

them, using k-means. The number of clusters 𝑘 is selected in each iteration uniformly at random from 

the range {2, 𝐾max} where 𝐾𝑚𝑎𝑥 = min(⌈√𝑚⌉, 𝐾𝑣), where 𝑚  is the number of samples and 𝐾𝑣  is 

provided as input. For each solution an 𝑚X𝑚 co-association matrix 𝑀(𝑡) is computed, where 𝑀𝑖,𝑗 = 1 if 

the two samples are in the same cluster and 0 otherwise. In their paper [28] Zhang et al. used 𝑇 = 200, 

𝑞 = ⌈
𝑛

2
⌉ and 𝐾𝑣 = 20.  

After 𝑇 co-association matrices 𝑀(1), … , 𝑀(𝑇) were generated, a consensus matrix 𝑀 is created as an 

average of all the co-association matrices:  

                                                                                        𝑀 =
1

𝑇
∑ 𝑀(𝑡)

𝑡                                                        (12) 

In addition, for each feature 𝑑, an affinity matrix is calculated as:  

                                                                        𝐴𝑖,𝑗
(𝑑)

= √(1 −
(𝑥𝑖,𝑑−𝑥𝑗,𝑑)

2

‖𝒙𝒊−𝒙𝒋‖
2 )                                                  (13)  

Where 𝑥𝑖 and 𝑥𝑗 are vectors of samples. 𝐴𝑖,𝑗
(𝑑)

 measures how influential feature 𝑑 is on the distance 

between two samples: the larger the influence, the smaller 𝐴𝑖,𝑗
(𝑑)

 is. So, it can be viewed as the distance 

between the two samples in terms of the feature 𝑑.  

Lastly, the score of each feature is calculated as:  

                                                            𝑧𝑑 = 𝐴𝑅𝐼𝑚𝑚(𝑀, 𝐴(𝑑)) =
(𝑠0−𝑠3)

0.5(𝑠1+𝑠2)−𝑠3
                                           (14)      

Where 𝑠0 =  ∑
𝑀𝑖𝑗𝐴𝑖𝑗

2𝑖,𝑗,𝑖≠𝑗 , 𝑠1 =  ∑
𝑀𝑖𝑗

2𝑖,𝑗,𝑖≠𝑗 , 𝑠2 =  ∑
𝐴𝑖𝑗

2𝑖,𝑗,𝑖≠𝑗 , 𝑠3 =  ∑
2𝑠1𝑠2𝑀𝑖𝑗

𝑚(𝑚−1)𝑖,𝑗,𝑖≠𝑗  

𝐴𝑅𝐼𝑚𝑚 is a measure for real-valued matrix similarity inspired by the Adjusted Rand Index, which 

measures similarity between clustering solutions. 𝐴𝑅𝐼𝑚𝑚 has similar properties to ARI (described above) 

with higher values indicating higher similarity. Hence, for two samples 𝑖, 𝑗 in the same cluster, if feature 
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𝑑 is important we expect 𝐴𝑖,𝑗
(𝑑)

 to be high, since the relative difference between 𝑥𝑖,𝑑 and 𝑥𝑗,𝑑 is expected 

to be small. Finally, features are ranked according to 𝑧. No implementation of FRCM was provided in 

[28]. We implemented it as described in [28] and tested by another publication [26]. 

Algorithm 2: FRCM 

 Input: 𝑨 - 𝑚x𝑛  matrix of 𝑚 samples and 𝑛 features; 𝑲𝒗 - maximum number of clusters;                  

𝑻 - number of iterations; q – number of features selected per iteration  

 Output: 𝑹 – list of the 𝑛 features ordered by importance for clustering  

1 𝐾𝑚𝑎𝑥   ← min(√𝑚, 𝐾𝑣)  

2 for 𝑡 ←1 to 𝑇 

3  𝑆 ← a set of randomly chosen 𝑞 features  

4  𝐴(𝑡) ← the sub matrix of size 𝑚x𝑞 of 𝐴 induced by 𝑆  

5  𝑘𝑡 ← number of clusters randomly chosen from {2,…, 𝐾𝑚𝑎𝑥} 

6  Perform k-means on 𝐴(𝑡) 

7  𝐼(𝑡)←labels of the clustering solution  

8  𝑀(𝑡)←co-association matrix corresponding to the clustering solution 

9 end     

10 
𝑀 ← 

1

𝑇
∑ 𝑀(𝑡)

𝑡  

11 𝑧 ← 𝑛 long list of scores, initialized to 0 

12 For each feature 𝑑  

13  𝐴(𝑑) ← affinity matrix of size 𝑚x𝑚. See Equation 13. 

14  𝑧(𝑑)← 𝐴𝑅𝐼𝑚𝑚(𝑀, 𝐴(𝑑)). See Equation 14. 

15 end  

16 Return an order of the features sorted in decreasing order of 𝑧(𝑑).  

 

2.9 FRSD 

The FRSD algorithm (Feature ranking based on silhouette decomposition) [26], has a similar flow to 

FRMV and FRCM. In each iteration the algorithm randomly chooses a subset of the features, produces a 

clustering solution using k-means and ranks the selected features based on a specific criterion. k-means 

is run for all possible values of 𝑘 between 2 and 𝐾𝑚𝑎𝑥 = min(⌈√𝑚⌉, 𝐾𝑣). FRSD performs  𝑇 iterations for 

each possible 𝑘. Hence, the overall number of k-means runs is (𝐾𝑚𝑎𝑥 − 1) ∙ 𝑇. In [26] Yu et al. used 𝑇 =

200, subsampled 𝑓 = 0.06 of the features for each clustering solution and set 𝐾𝑣 = 20.  

As the name suggests, FRSD uses silhouette score to rank the features. Let 𝑆 be the silhouette score for 

a clustering solution 𝐶. Let 𝑞 = 𝑓 ∙ 𝑛 be the number of features in the solutions. Given a participating 
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feature 𝑗 its values are shuffled, and the silhouette of the solution 𝐶 is recomputed and denoted by 

𝑆𝑗.  Let 𝛿𝑗 = 𝑆 − 𝑆𝑗. The higher 𝛿𝑗  is, the more important feature 𝑗 was to the solution. Let 𝑟𝑗 be the 

ranking of the features, 𝑟𝑗 ∈ {1,2, … , 𝑞} according to 𝛿𝑗  in ascending order, where the feature 𝑗 with 

highest value of 𝛿𝑗  is ranked 𝑞, and the lowest ranked 1. The final score of feature 𝑗 is:  

                                                                                           𝑠𝑗 =
𝑟𝑗

𝑞
𝑤                                                                 (15) 

where 𝑤 =
1+𝑆

2
 is a weight meant to increase the importance of solutions with high value of 𝑆. That way 

clustering solutions with low silhouette score, obtained when many non-informative features are 

selected, will have a weaker effect on the final result. The final rank is based on the average score of 

each feature over all iterations for all values of 𝑘. The complete procedure is shown in Algorithm 3, 

which returns an array of features in decreasing order of importance.  

Algorithm 3: FRSD 

 Input: 𝑨 - 𝑚x𝑛 matrix of 𝑚 samples and 𝑛 features; 𝑲𝒗– maximum number of clusters;                                         

𝑻 – number of iterations; 𝒇  – fraction of 𝑛 to use in each iteration  

 Output: 𝑹 – list of the 𝑛 features ranked in decreasing order of importance for clustering  

1 𝑠𝑐𝑜𝑟𝑒𝑠← array of length 𝑛 for keeping score of each feature, initialized to 0s 

2 𝐾𝑚𝑎𝑥   ← min(√𝑚, 𝐾𝑣)  

3 for 𝑘 in {2, … , 𝐾𝑚𝑎𝑥} 

4  𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)← array of length 𝑛 for keeping score of each feature, initialized to 0s 

5  𝑐𝑜𝑢𝑛𝑡𝑠(𝑘)← array of length 𝑛 for counting the times each feature is selected, initialized to 0s 

6  for 𝑡 ←1 to 𝑇 

7   ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ randomly chosen features  

8   𝐴(𝑡) ← the sub matrix of size 𝑚x𝑞 of 𝐴 with columns corresponding to ℎ 

9   Perform k-means on 𝐴(𝑡) 

10   𝐼(𝑡)←labels of the k-means solution 

11   𝑆(𝑡)← silhouette score of the solution on 𝐴(𝑡) and 𝐼(𝑡) 

12   𝑤(𝑡)← 
1+𝑆(𝑡)

2
 

13   𝛿 ← list of length 𝑞 initialized to 0s 

14   for 𝑣 in ℎ 

15    𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]+= 1  

16    �̂� ← Shuffled version of 𝑣 

17    𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) with �̂� instead of 𝑣 

18    𝑆v
(𝑡)

← the silhouette score for 𝐴𝑣
(𝑡)

 and 𝐼(𝑡)    

19    𝛿[𝑣]← 𝑆(𝑡) − 𝑆𝑣
(𝑡)

 

20   End   
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21   𝑟 ← a list of the ranks of ℎ according to 𝛿, where higher 𝛿 accounts for higher 𝑟. 

22   for 𝑣 in ℎ: 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)[𝑣]+=
𝑟[𝑣]

𝑞
𝑤(𝑡)  

23  end     

24  𝑠𝑐𝑜𝑟𝑒𝑠+= 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)/𝑐𝑜𝑢𝑛𝑡𝑠(𝑘)  

25 end 

26 𝑠𝑐𝑜𝑟𝑒𝑠 ←
𝑠𝑐𝑜𝑟𝑒𝑠

𝐾𝑚𝑎𝑥−1
  

27 Return an order of the features sorted in decreasing order of 𝑠𝑐𝑜𝑟𝑒𝑠. 

 

No implementation of FRSD was provided in [26]. We implemented it as described in [26] and used 

silhouette as implemented in Scikit learn [35].  

2.10 Shapley values  

In the theory of cooperative games in game theory, there is a set 𝑁 of players who can form coalitions. 

Each coalition 𝑆 ⊂ 𝑁 has a value 𝑔(𝑆). According to the Shapley theory [31] the contribution of player 𝑖 

to group 𝑆 ∪ {𝑖} is defined as:   

                                                            𝑔(𝑆 ∪ {𝑖}) − 𝑔(𝑆)                                                         (16) 

and the Shapley value of player 𝑖 is a weighted average of its contributions over all possible 𝑆s, i.e.: 

                                                         ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!𝑆⊆𝑁\{𝑖} [𝑔(𝑆 ∪ {𝑖}) − 𝑔(𝑆)]                               (17)  

It is widely used in supervised learning to measure the contribution of a feature to a prediction model, 

where for efficiency reasons it is usually evaluated using random permutations instead of enumerating 

all possible groups 𝑆 [32]. To the best of our knowledge, Shapley values were not used to date in feature 

selection for clustering.  

2.11 Multiplicative Weights  

Multiplicative Weights (MW) is an algorithmic update method used in game theory and algorithm design. 

The motivation of MW [33] is to improve the decisions we make along the iterations by gradually 

favoring decisions that were proven to be right so far. In our case the decisions are the features selected 

and we use the Hedge update rule that was suggested by Arora et al. [33]: 

                                                                         𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

∙ 𝑒𝑥𝑝(−𝜂𝑚𝑖
𝑡)                                                (18) 
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Where 𝑤𝑖
𝑡 is the weight of feature 𝑖 at the 𝑡-th iteration, 𝜂 ≤ 1 is a constant parameter and 𝑚𝑖

𝑡 is the 

cost of feature 𝑖 at iteration 𝑡. 𝑚𝑖
𝑡 is a value in the range [−1,1] that reflects how good decision 𝑖 was in 

iteration 𝑡, where higher positive values correspond to worse decisions and negative values correspond 

to good decisions that warrant an award instead of a cost. A common practice, also used in our 

implementation, is to use non-negative values only. The choice of values for 𝑚𝑖
𝑡 depends on the 

implementation.  

3. Methods 

3.1 The FRIGATE algorithm 

FRIGATE is a new ensemble feature ranking algorithm, which uses the Shapley value concept to find the 

most valuable features for clustering based on multiple runs of k-means (or k-prototypes/k-modes) 

algorithm.  

To use the Shapley values in our context, the players are the features. We assume the number of 

clusters 𝑘 is given, and use the total distance of samples to their cluster centroids as the objective 

function 𝑔: 

                                                            𝑔(𝑆) =  ∑ ∑ 𝑑𝑆 (𝑥, 𝑦𝑗)𝑥𝜖𝐶𝑗

𝑘
𝑗=1                                          (19)  

Here 𝑆 is a set of features, 𝑘 is the number of clusters, 𝐶𝑗 is the set of samples included in cluster 𝑗 and 

𝑦𝑗  is the centroid of cluster 𝑗. 𝑑𝑆 is the distance function on the sample vectors restricted to the 

coordinates in 𝑆. We call 𝑔(𝑆) the solution score.  

𝑑𝑆 and the clustering algorithm that we use will depend on the data types in 𝑆. If all the features are 

continuous then we use k-means for clustering and the Euclidean distance. When we have a mixture of 

categorical and continuous features, we will use k-prototype for clustering, and the corresponding 

distance function (Equation 4). If we have only categorical features, k-modes is used for clustering with 

𝑑 as the Hamming distance. We used k-means as implemented in Scikit learn [35] with 100 k-means++ 

initializations in each run.  

Algorithm 4 presents the procedure for continuous features. In iteration 𝑡, the algorithm selects at 

random a subset of features and performs k-means on the corresponding submatrix 𝐴(𝑡). Once a 

solution has been obtained, we calculate the contribution of feature 𝑖 as the difference between that 
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solution’s score and the score obtained by the same clustering on the submatrix 𝐴(𝑡) in which the values 

of feature 𝑖  were randomly shuffled among the samples, keeping the rest unchanged. For the final 

ranking we use the average scores of the features.  

Algorithm 4: FRIGATE 

 Input: 𝑨 - 𝑚x𝑛  matrix of 𝑚 samples and 𝑛 features; 𝒌 - number of clusters; 𝑻 - number of 

iterations; 𝒇 - fraction of features to use in each iteration  

 Output: 𝑹 – list of the 𝑚 features ordered by importance for clustering  

1 𝑠𝑐𝑜𝑟𝑒𝑠← array of length 𝑛 for keeping score of each feature, initialized to 0s 

2 𝑐𝑜𝑢𝑛𝑡𝑠← array of length 𝑛 for counting the times each feature is selected, initialized to 0s 

3 for 𝑡 ←1 to 𝑇 

4  ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ randomly chosen features 

5  𝐴(𝑡) ← a matrix of size 𝑚x𝑞 with columns corresponding to ℎ 

6  Perform k-means on 𝐴(𝑡)  

7  𝐼 ← labels of the clustering solution 

8  𝑔(ℎ)←solution score of 𝐴(𝑡) and 𝐼 

9  for 𝑣 in ℎ 

10   �̂� ← Shuffled version of 𝑣  

11   𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) except having �̂� instead of 𝑣 

12   𝑔𝑣← solution score of 𝐴𝑣
(𝑡)

  and 𝐼 

13   𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  ←  𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  + (𝑔𝑣 − 𝑔(ℎ))   

14   𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  ←  𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  + 1   

15  end    

16 end     

17 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑠𝑐𝑜𝑟𝑒𝑠/𝑐𝑜𝑢𝑛𝑡𝑠 

18 return the features sorted in decreasing order of 𝑠𝑐𝑜𝑟𝑒𝑠   

 

Note that FRSD can also be seen as a type of a Shapley-like algorithm with a function 𝑔 that uses the 

silhouette. However, a main difference is that FRIGATE does not rank the features on every iteration and 

accumulates the ranks for the final score, as in FRSD and FRMV, but instead summarizes the raw scores. 

That way poor clustering solutions that are based on non-informative features will have large 𝑔(ℎ) 

values (line 8 in Algorithm 4) as well as large 𝑔𝑣 values (line 12). This will limit the ability of these 

features to receive high scores, as they are calculated by subtracting the distance after shuffling the 

values of a feature from the original distance (line 13 in Algorithm 4). Thanks to these properties of 𝑔(ℎ) 

and 𝑔𝑣, we do not need to use an additional factor, as FRSD does with silhouette, to assess the quality of 

the clusters. It also reduces the number of calculations and improves the efficiency of the algorithm. 
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We now discuss runtime complexity, referring only to k-means for simplicity. The runtime of k-means is 

𝑂(𝑚 ∙ 𝑞 ∙ 𝑘 ∙ 𝑐) for 𝑚 samples, 𝑞 features, 𝑘 clusters and up to 𝑐 iterations. We sample in each FRIGATE 

iteration 𝑞 = 𝑓 ∙ 𝑛 features. For each k-means run we perform 𝑖 initializations. Therefore, the runtime of 

the k-means executions in each iteration of FRIGATE is 𝑂(𝑚𝑞𝑘𝑐𝑖). Other than k-means runs, in each 

iteration we shuffle the values of 𝑞  features over the full cohort in 𝑂(𝑚) for each feature and 

recalculate the solution score 𝑑𝑣 in 𝑂(𝑚). The overall runtime of an iteration is 𝑂(𝑚𝑞𝑘𝑐𝑖 + 𝑚𝑞) =

𝑂(𝑚𝑞𝑘𝑐𝑖). Hence, the additional actions to test the contribution of each feature do not increase the 

asymptotic runtime. We perform 𝑇 iterations, so the overall runtime is 𝑂(𝑚𝑇𝑞𝑘𝑐𝑖). As 𝑞 = 𝑓 ∙ 𝑛 with 

constant 𝑓 we can write the runtime as: 𝑂(𝑚𝑇𝑛𝑘𝑐𝑖). 

3.2 The FRIGATE-MW algorithm 

MW offers a smarter way to choose the features in FRIGATE for each clustering solution instead of 

choosing them randomly. Algorithm 5 shows the version of FRIGATE that uses MW for continuous 

features, which we call FRIGATE-MW.  

We define an 𝑛-long array 𝐿 so that 𝐿(𝑖) =
𝑖−1

𝑛−1
. At each iteration we rank the features by their scores so 

far and use the ranks and 𝐿 to determine 𝑚𝑖
(𝑡)

 (see chapter 2.11). If the rank of feature 𝑖 at iteration 𝑡 is 

𝑟 then 𝑚𝑖
(𝑡)

= 𝐿[𝑟]. The weights of features that were not selected in the iteration remain unchanged. 

For the next iteration we select features from distribution 𝒑(𝒕) = {𝑤1
(𝑡)

/Φ(t) , … , 𝑤𝑁
(𝑡)

/Φ(t)} where 

Φ(t) = ∑ 𝑤𝑖
(𝑡)

𝑖  is the sum of weights at the 𝑡-th iteration. To the best of our knowledge, this is the first 

use of MW in feature selection for clustering.  

Algorithm 5: FRIGATE-MW 

 Input: 𝑨 - 𝑚x𝑛  matrix of 𝑚 samples and 𝑛 features; 𝒌 - number of clusters; 𝑻 - number of 

iterations; 𝒇 - fraction of features to use in each iteration; 𝜼 – a Multiplicative Weights 

parameter   

 Output: 𝑹 – list of the 𝑚 features ordered by importance for clustering  

1 𝑠𝑐𝑜𝑟𝑒𝑠 ← array of length 𝑛 for keeping score of each feature, initialized to 0s 

2 𝑐𝑜𝑢𝑛𝑡𝑠 ← array of length 𝑛 for counting the times each feature is selected, initialized to 0s 

3 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← array of length 𝑛 for keeping the weight of each feature, initialized to 1s 

4 𝐿 ← a static array of length 𝑛 for the costs used in Multiplicative Weights. 𝐿 = [0,
1

𝑛−1
,

2

𝑛−1
… ,

(𝑛−2)

𝑛−1
, 1] 

5 for 𝑡 ← 1 to 𝑇 

6  𝑃  ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠/𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)   

7  ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ features chosen from the distribution 𝑃 
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8  𝐴(𝑡) ← a sub matrix of size 𝑚x𝑞 of 𝐴 with columns corresponding to ℎ 

9  Perform k-means on 𝐴(𝑡)  

10  𝐼 ← labels of the clustering solution 

11  𝑔(ℎ)←the solution score of 𝐴(𝑡) and 𝐼  

12  for 𝑣 in ℎ 

13   �̂� ← Shuffled version of 𝑣 

14   𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) except having �̂� instead of 𝑣 

15   𝑔𝑣←the solution score of 𝐴𝑣
(𝑡)

 and 𝐼 

16   𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  ←  𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  + (𝑔𝑣 − 𝑔(ℎ))  

17   𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  ←  𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  + 1  

18  end    

19  𝑟𝑎𝑛𝑘𝑠 ← 𝑠𝑜𝑟𝑡(𝑠𝑐𝑜𝑟𝑒𝑠/ 𝑐𝑜𝑢𝑛𝑡𝑠)  // rank the features based on the scores so far  

20  for 𝑣 in ℎ  

21   𝑟 ← rank of 𝑣 in 𝑟𝑎𝑛𝑘𝑠   

22   𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑣]  =  𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑣] ∙ exp(−𝜂 ∙ 𝐿[𝑟]) // update the weight of 𝑣 according to eq. 14   

23 end     

24 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑠𝑐𝑜𝑟𝑒𝑠/𝑐𝑜𝑢𝑛𝑡𝑠 

25 return the features sorted in decreasing order of 𝑠𝑐𝑜𝑟𝑒𝑠 

 

In each iteration we update the weights of the 𝑞 participating features in constant time for each feature 

and sort the array of weights in 𝑂(𝑛 ∙ log(𝑛)). The overhead of MW for each iteration is thus 

𝑂(𝑛 ∙ log(𝑛) + 𝑞) = 𝑂(𝑛 ∙ log(𝑛)), since 𝑞 < 𝑛. The total runtime of each iteration in FRIGATE-MW is: 

𝑂(𝑚𝑞𝑘𝑐𝑖 + 𝑛 ∙ log(𝑛)). Therefore, the total runtime is: 𝑂(𝑚𝑇𝑞𝑘𝑐𝑖 + 𝑇𝑛 ∙ log(𝑛)) = 𝑂(𝑇𝑛(𝑚𝑘𝑐𝑖 +

log(𝑛))).  Altogether, the increase in the runtime over FRIGATE is not major. However, note that in 

FRIGATE-MW the iterations cannot be programmed to run in parallel, in contrast to FRIGATE.  

For both variations of the algorithm we used 𝑇 = 2𝑛 and 𝑓 = 0.1, and for FRIGATE-MW we used 𝜂 =

0.5. For a detailed description of the parameter choice see Supplementary 1. 

3.3 Simulation 

We performed simulations in order to test the algorithms in situations where the true clustering and the 

informative features are known. The simulations were along the same lines of those described in [26]. 

The parameters of the simulation are:  

• 𝑘 – number of clusters 
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• 𝑐 – number of samples in each cluster 

• 𝛼 – number of informative features 

• 𝛽 – number of non-informative features 

• 𝜇 – distribution parameter 

• 𝜎 – correlation coefficient between features   

Simulating continuous data: For each cluster 𝑗 , we construct 𝑐  vectors of length 𝑛 = 𝛼 + 𝛽  from 

multivariate normal distribution, where 𝛼 features are sampled from a normal distribution with mean of 

𝑗 ∙ 𝜇 for 𝑗𝜖[0, … , 𝑘 − 1]. The other 𝛽 features are sampled from a normal distribution with mean 0 for all 

clusters and therefore represent the non-informative features. Thus, the mean vector of a sample in the 

𝑗𝑡ℎ cluster is: 𝜇𝑗 = [(𝑗 ∙ 𝜇)𝛼x1, 0𝛽x1]. 

Next, we define a covariance matrix, parameterized by 𝜎, used to create correlations between the 

different features. The covariance matrix Σ is identical for all clusters:  

                                                  Σ = (1 − 𝜎) ∙ 𝐼𝑛x𝑛 + 𝜎 ∙ 1𝑛x1 ∙ 1𝑛x1
𝑇                                                (20)          

The 𝑛x(𝑘 ∙ 𝑐) data matrix 𝐴 then undergoes z-score normalization for each feature. This step is needed 

when working with many data types, especially in the medical domain as the values of different features 

can be of different magnitude.  

Simulating mixed data: To build a simulation of mixed data we add three more parameters:  

• 𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙  – number of informative categorical features 

• 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 – number of non-informative categorical features 

• 𝑝 – probability of choosing the right category 

We assume that the categorical features have 𝑘 categories, labeled {0,1, … , 𝑘 − 1}. For the informative 

features of a sample in the 𝑗𝑡ℎ cluster, we choose the value 𝑗 with probability 𝑝 and a value from 

{0, … , 𝑘 − 1}\{𝑗} with probability 1 − 𝑝 where the value is chosen uniformly at random. For the non-

informative features we choose a random value uniformly from {0, … , 𝑘 − 1}. The simulation of the 

continuous features is done as described before, and we concatenate the two matrixes into a single 

input matrix. In our simulation we used 𝑝 = 0.95. 
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3.4 Demonstration of FRIGATE 

For better understanding of the FRIGATE process, we demonstrate it graphically. We simulated data as 

described in section 3.3, with two continuous features, two clusters (𝑘 = 2), and 100 samples in each 

cluster, and simulation parameters 𝜇 = 4, 𝜎 = 0. Figure 1 shows the data, where each axis is a feature 

and the samples are colored by cluster membership. We simulated three scenarios:  

A. Both features are informative for the clustering solution (Figure 1A). 

B. Only one feature is informative (Figure 1B) 

C. Both features are not informative (Figure 1C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we performed an iteration of the FRIGATE algorithm, using the centroids obtained from the 

clustering solution on the two features, to show the differences in scores in each scenario (Figure 1D): 

A. When the two features were informative, the solution score (line 8 in Algorithm 4) was 81.76, 

and the scores of the features (line 13 in Algorithm 4) were 313.48 and 286.33. Both feature 

scores are high, and the difference can result from the randomness in shuffling the values (line 

Figure 1. Illustrations of simulations with two clusters. In the simulation, there are 100 samples in each cluster, 𝜇 = 4, 𝜎 = 0, and two features. 

A-C: features are represented by the axes. Each color represents a different cluster. A: both features are informative for clustering, B: only the 

feature represented by the 𝑦 axis is informative, C: both features are not informative. D: Demonstration of FRIGATE iteration on the data of A-C. 

Solution score refers to line 8 in Algorithm 4, feature's score refers to line 13 in Algorithm 4. F1 is represented by the x-axis in Figure1 A-C and 

F2 is represented by the y-axis. We can see that the informative features received higher scores than the non-informative ones.   
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10 in Algorithm 4) or from the simulation that might have produced one feature that is more 

informative than the other.   

B. When only one feature was informative, the solution score was 237.28, and the feature scores 

were 0.51 for the non-informative features and 304.05 for the informative feature.  

C. When the two features were non-informative, the solution score was 256.48, and the feature 

scores were 117.59 and 150.57.  

In Figure 2 we demonstrate graphically the iteration for scenario B. Figure 2A shows the results of k-

means clustering of the data (line 6 in Algorithm 4), with a solution score of 237.28. Figure 2B shows the 

data after shuffling the values of the non-informative feature (line 10 in Algorithm 4). The shuffled data 

has an almost identical solution score of 237.79 (line 12 in Algorithm 4) and a feature score of 0.51. 

Figure 2C shows the sample locations after shuffling the values of the informative feature, which gives a 

new solution score of 541.33 and a feature score of 304.05. 

 

 

 

 

 

 

 

The illustrations of scenarios A and C are given in Supplementary 2. In all scenarios the informative 

features scored much higher than the non-informative ones. Notice that the differences in scores are 

due to the initial solution score of each scenario – the poor results of scenario 3 already produced a 

relatively high solution score, so the ability of any feature to score high is limited. 

3.5 Evaluation measures 

When applied to a real dataset, each algorithm produces a ranking of the features. In our tests the truly 

informative features were unknown but the “true” clustering is known. We therefore applied the 

following procedure from [26]–[28] to evaluate the results. We ran k-means on the subset of the data 

Figure 2. Illustrations of the different steps of FRIGATE for scenario B that is shown in Figure 1B, where one feature is informative (y axis) and 

one is non-informative (x axis). A – a clustering solution of the data (line 6 in Algorithm 4) colored by clusters labels. The solution score is 237.28 

(line 8 in Algorithm 4). B- Results of shuffling the x coordinates, representing the non-informative feature (lines 10-13 in Algorithm 4). The 

solution score is similar to A and the feature’s score is 0.51. C- Results of shuffling the y coordinates, representing the informative feature. An 

increase in the solution score led to a feature’s score of 304.5. 
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containing only the 𝑗 top ranked features. The clustering produced was compared to the true labels 

available for the dataset using the Adjusted Rand Index (ARI) [42]. The process was repeated with 

increasing values of 𝑗, for 𝑗𝜖[1, 𝑁] for 𝑁 number of features. The rationale was that a better feature 

ranking will manifest a high ARI for smaller values of 𝑗, as it puts the most informative features at the 

top. The process was repeated ten times per algorithm.  

The above measure gives a value for the top 𝑗 features, and a separate value for each 𝑗. We developed 

two new scores that summarize the measure across all values of 𝑗, while giving higher weight to the 

features that rank higher. 

Suppose 𝑀 feature ranking algorithms are compared on the same dataset. For each 𝑗, we compute the 

ARI of each algorithm on the top 𝑗 features that it selected, and rank the algorithms based on their 

scores, from 1 for the top performer to 𝑀. For simplicity of the description, we assume there are no ties. 

The weighted rank of algorithm 𝑎 is defined as:  

                                        𝑊𝑅(𝑎) =
2

𝑁(𝑁+1)
∑ (𝑁 − 𝑗 + 1)𝑗 ∗ (

𝑀−𝑟𝑎𝑛𝑘(𝑎,𝑗)+1

𝑀
)                         (21)                     

Here 𝑟𝑎𝑛𝑘(𝑎, 𝑗) is the rank of algorithm 𝑎 on the top 𝑗 features. Hence, the second factor in the sum 

ranges from 1 for the top ranked algorithm to 1/𝑀 for the worst ranked, and the first factor gives a 

different weight to each 𝑗, from 𝑁 for the first feature to 1 for the last ranked. The factor 
2

𝑁(𝑁+1)
 rescales 

the total sum to [0,1].  

The 𝑊𝑅 measure is relative and depends on the set of algorithms tested. We introduce a second 

measure for a single algorithm. The algorithm's ARI score is computed for each top 𝑗 features and 

weighted as above. The weighted ARI of algorithm 𝑎 is defined as:  

                                        𝑊𝐴𝑅𝐼(𝑎) =
2

𝑁(𝑁+1)
∑ (𝑁 − 𝑗 + 1)𝑗 ∗ 𝐴𝑅𝐼(𝑎, 𝑗)                              (22) 

where 𝐴𝑅𝐼(𝑎, 𝑗) is the ARI of algorithm 𝑎 on the top 𝑗 features. Hence, the range of the score is [-1,1] 

and higher scores are better. 

Both scores can be generalized to handle ties and also situations where not all values of 𝑗 are tested, e.g., 

when there are too many features.  
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4. Results  

4.1 Algorithms Performance  

We measured the performance of FRMV, FRSD, FRCM, FRIGATE and FRIGATE-MW on simulated and real 

data, including four genomic and seven EMR datasets. The number of clusters 𝑘 in FRIGATE and for 

FRMV was chosen with the elbow method that we implemented as suggested in [41].  

4.1.1 Simulated Data 

We simulated data with 200 samples and 100 features of which 20 are informative, divided into two or 

four equal-sized clusters (𝑘 = {2,4}), mean distances 𝜇 = {0.5,1,2,4} and feature correlation levels 𝜎 =

{0,0.05,0.2, 0.5}. We ran the algorithms on data with and without z-score normalization. The accurate 

recognition rate is defined as the fraction of informative features in the top 20 ranked features. Results 

for 𝑘 = 4 with 𝜇 = {0.5,1} are shown in Table 2, and the other cases are found in Supplementary 4. In 

all cases, the elbow method chose 𝑘 = 2. On normalized data FRCM performed best, and FRIGATE-MW 

second. On non-normalized data FRIGATE-MW was best. FRMV scored poorly in all cases. FRSD scored 

poorly in most normalized scenarios, while in most non-normalized scenarios it scored high. We can also 

see that in general smaller values of 𝜇 and 𝑘 account for harder cases, and normalized data is more 

challenging than non-normalized data. The FRIGATE variations and FRCM are affected by the correlation 

levels, where high levels of correlation cause a drop in performance. We can see the major drop in 

performance of these algorithms for 𝜎 ≥ 0.2. FRSD and to some extant FRMV show opposite behavior, 

where extreme levels of correlation lead to improved results. This is counter-intuitive, as high 

correlation levels are expected to cause higher similarities between all features, including pairs of 

informative and non-informative ones. FRSD and FRMV are also more affected by the structure of the 

data (𝑘, 𝜇, normalized. See Supplementary 4) in comparison to FRIGATE and FRCM (see Discussion).   

It is worth mentioning that as 20% of the features were informative, a score below 0.2 accounts for 

performance worse than random ordering of features. FRMV repeatedly scored below 0.2, FRSD scored 

low for most of the normalized cases with low correlation levels, and FRIGATE scored below random 

levels in the extreme correlation setting. FRCM is the only algorithm that rarely dropped significantly 

below random levels (Supplementary 4).  
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parameters 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟏 

𝝈 = 𝟎 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟓 

normalized 

FRIGATE 0.98 ± 0.03 0.91 ± 0.07 0.46 ± 0.17 0.09 ± 0.08 𝟏 ± 𝟎 𝟏 ± 𝟎 0.97 ± 0.05 0.09 ± 0.08 

FRIGATE-MW 𝟏 ± 𝟎 𝟏 ± 𝟎 0.62 ± 0.33 0.19 ± 0.15 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 0.01 ± 0.02 

FRCM 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟎. 𝟕𝟐 ± 𝟎. 𝟏𝟓 0.35 ± 0.18 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟎. 𝟗𝟗 ± 𝟎. 𝟎𝟑 

FRSD  0.06 ± 0.04 0.06 ± 0.04 0.11 ± 0.06 𝟎. 𝟑𝟖 ± 𝟎. 𝟏𝟕 0.01 ± 0.02 0 ± 0 0.04 ± 0.05 0.32 ± 0.08 

FRMV 0.13 ± 0.16 0.13 ± 0.13 0.25 ± 0.16 0.16 ± 0.12 0.05 ± 0.1 0.03 ± 0.03 0.09 ± 0.12 0.06 ± 0.16 

non-normalized 

FRIGATE 0.99 ± 0.02 0.98 ± 0.03 0.76 ± 0.12 0.7 ± 0.15 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRIGATE-MW 𝟏 ± 𝟎 𝟏 ± 𝟎. 𝟎𝟐 𝟎. 𝟗𝟒 ± 𝟎. 𝟎𝟖 0.31 ± 0.14 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRCM 𝟏 ± 𝟎 0.99 ± 0.02 0.82 ± 0.1 0.45 ± 0.2 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRSD  0.79 ± 0.06 0.74 ± 0.11 0.77 ± 0.07 𝟎. 𝟖𝟗 ± 𝟎. 𝟎𝟔 𝟏 ± 𝟎. 𝟎𝟐 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRMV 0.2 ± 0.19 0.12 ± 0.2 0.23 ± 0.2 0.11 ± 0.08 0.02 ± 0.06 0.02 ± 0.04 0.13 ± 0.2 0.1 ± 0.15 

 

4.1.2  Real Data 

We tested the five algorithms on 11 real genomic and EMR datasets from different sources for which a 

known clustering was available or created by us. The datasets are described in Table 3.  

Figure 3 shows the performance of the algorithms on four genomic databases [45]–[48] (datasets 1-4 in 

Table 3). These datasets were used in a benchmark of clustering [49]. They have a large number of 

features and a modest number of samples (about two orders of magnitude lower). Note that here we do 

know the true clustering but we do not know which and how many features are informative, but it is 

expected that many features do not carry information relevant to the clustering. In all cases the value 

chosen by the elbow method for FRIGATE and FRMV was 𝑘 = 2.  

The performance of both variations of FRIGATE and FRSD was comparable and generally good, reaching 

maximum ARI of 0.35-0.7 already with less than 100 features in most cases. FRSD performed markedly 

better than the other methods on dataset 3 (Figure 3C). FRCM performed poorly in most cases, with 

slow gradual increase in ARI. FRMV performed better than the others on dataset 2 (Figure 3B), and its 

results had a wide variance across repetitions in most cases. It is worth mentioning that the description 

of the FRMV algorithm in [27] was not clear, especially calculating linear correlation between continuous 

Table 2. Performance on simulated data, with 𝑘 = 4. In bold are the top performers. 
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Table 3. Details of the real data sets used for the performance benchmark. The numbers in parentheses in column “# of samples” 

are the sizes of the clusters, and in the column “# of features” are the number of continuous and categorical features, respectively.  

features and categorical cluster membership. This, as well as sampling features with replacement, can 

potentially create major variability between different runs of the algorithm.  

No. Source  Domain  Data Name # of 

clusters  

# of samples  # of features Data type 

1 [46], [49] Genomic Bredel-2005 3 50 (31,14,5) 1739 Continuous 

2 [45], [49] Genomic  Armstrong-2002-

v2 

3 72 (24,20,28) 2194 Continuous 

3 [47], [49] Genomic Tomlins-2006 5 50 (27,20,32,13,12) 2315 Continuous 

4 [48], [49] Genomic Nutt-2003-v1 4 50 (14,7,14,15) 1377 Continuous 

5 MIMIC-III [4], [5] EMR Young cancer 

patients  

2 161 (122,39) 70 Continuous 

6 MIMIC-III [4], [5] EMR Young healthy 

patients  

2 110 (84,26) 47 Continuous 

7 MIMIC-III [4], [5] EMR Newborns 2 5286 (1534,3752) 29 Continuous 

8 [50], [51] EMR Heart failure  2 169 (68,101) 77 Continuous 

9 eICU [52], [53] EMR Intubated 

patients  

2 441 (136, 305) 157 (87, 70) Mixed 

10 eICU [52], [53] EMR Short stay at ICU 2 570 (487, 83) 79 (59, 20) Mixed 

11 eICU [52], [53] EMR Young patients 2 232 (138, 94) 86 (72, 14) Mixed 

 

 

 

 

 

 

 

 

 

 

 



30 
 

Figure 3. Performance of the tested algorithms on genomic datasets. The ranking produced by each algorithm was used to cluster 

the data with a growing number of features. The Y axis is the ARI score compared to the known clustering. The results are average 

of ten runs. The light-colored sleeve around each plot is ±1 std. A-D for datasets 1-4 in Table 3, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

We created three EMR datasets from the MIMIC-III repository [4], [5] and three from the eICU 

repository [52], [53], both downloaded from PhysioNet [3] (datasets 5-7, 9-11 in Table 3). The input 

features used were continuous, containing lab tests (“labs”), age and length of stay in the hospital (days 

in MIMIC and minutes in eICU) and Apache score in eICU. For each lab, we included only the first 

measurement that was available for the patient during the ICU stay. For each patient we included data 

from a single ICU stay. For the MIMIC datasets ICD-9 diagnosis codes were extracted per ICU stay and 

used for labeling the patients. For the eICU datasets, diagnoses and Apache score parameters were used 

as categorical variables and for labeling. Labs that were missing in >70% of the cohort were removed. To 

remove potential outliers, we z-scored each continuous measurement across the cohort, and removed 

patients that had any lab with  |𝑧 − 𝑠𝑐𝑜𝑟𝑒| ≥ 3. We then applied the Iterative Imputer as implemented 
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in [35] to the raw data to complete missing data and performed z-score normalization. The MIMIC 

cohorts that we constructed were: 

1. Dataset 5 – patients that had a cancer ICD-9 diagnosis, aged 18-40. The data were divided into 

two clusters by length of stay: 122 patients who were discharged alive and spent less than 18 

days in ICU, and 39 patients who either died during the ICU stay or stayed 18 days or more at 

the ICU. 70 features were recorded. 

2. Dataset 6 – “healthy” patients: individuals aged 20-30 who did not have ICD-9 diagnosis of 

cancer, benign tumors, hypertension, cardiac disease, endocrine related disease, or hepatitis 

and stayed up to one day at ICU. They were divided into two clusters by sex: 84 males and 26 

females. Here 47 features were recorded.  

3. Datasets 7 – Newborns divided into two clusters: 1534 with jaundice and 3752 without jaundice, 

with 29 features. 

The results on these datasets are shown in Figure 4A-C and summarized in Table 4. For Dataset 5 (Figure 

4A), when using up to 50% of the ranked features FRIGATE performance was best. With over 50% of 

features FRCM results were comparable. For Dataset 6 (Figure 4B) FRCM was best followed by FRIGATE. 

FRMV performed comparably to FRIGATE and FRSD performed worst. For Dataset 7 (Figure 4C) with up 

to 50% of features FRCM performed best. With 50% or more of the ranked features the results of 

FRIGATE and FRMV were comparable to FRCM or better. FRSD was the worst performer.  

Dataset 8 consists of heart failure patients from Zigong Fourth People’s Hospital [50], [51], also 

extracted from PhysioNet. This cohort was divided into two age groups: 68 patients of ages 29-49 and 

101 patients of ages 89-100.  We had 77 features in this cohort after removing features with >30% 

missing data, and used the Iterative Imputer for missing data. The results are shown in Figure 4D and 

Table 4. Here FRSD performed comparably to FRIGATE and even slightly better in some thresholds, 

where FRMV and FRCM performed much worse, with especially poor results in the first 40% of features. 

A full comparison among the results is found in Supplementary 5.  
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Figure 4. A-D: Performance on datasets 5-8 respectively. See Figure 3 for caption details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm  Dataset 5 Dataset 6 Dataset 7 Dataset 8 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 
features 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 
features 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 

features 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 

features 

FRIGATE 0.328 ± 0.105 0.372 ± 0.029 0.182 ± 0.149 0.237 ± 0.092 0.409 ± 0.146 𝟎. 𝟒𝟑𝟓 ± 𝟎. 𝟎𝟏𝟒 0.547 ± 0.045 𝟎. 𝟔𝟐𝟕 ± 𝟎. 𝟎𝟒𝟐 

FRIGATE-MW 𝟎. 𝟑𝟕 ± 𝟎. 𝟎𝟒𝟐 𝟎. 𝟑𝟕𝟖 ± 𝟎. 𝟎𝟑𝟏 𝟎. 𝟐𝟏 ± 𝟎. 𝟏𝟏𝟗 0.198 ± 0.038 0.427 ± 0.042 0.417 ± 0.038 0.524 ± 0.103 0.601 ± 0.035 

FRMV 0.053 ± 0.082∗☩ 0.053 ± 0.053∗☩ 0.181 ± 0.116 0.214 ± 0.104 0.401 ± 0.047 0.41 ± 0.027∗ 0.116 ± 0.154∗☩ 0.221 ± 0.233∗☩ 

FRSD 0.058 ± 0.013∗☩ 0.107 ± 0.049∗☩ 0.006 ± 0.022∗☩ 0.097 ± 0.149∗ 0.129 ± 0.053∗☩ 0.115 ± 0.0∗☩ 𝟎. 𝟓𝟕𝟑 ± 𝟎. 𝟎𝟐𝟗 0.625 ± 0.025 

FRCM 0.026 ± 0.0∗☩ 0.35 ± 0.027☩ 𝟎. 𝟐𝟏 ± 𝟎. 𝟎𝟔𝟖 𝟎. 𝟐𝟗𝟏 ± 𝟎. 𝟎𝟓𝟒☩ 𝟎. 𝟒𝟔𝟓 ± 𝟎. 𝟎𝟎𝟕 0.422 ± 0.034 0.012 ± 0.004∗☩ 0.559 ± 0.024∗☩ 

 

 

The eICU cohorts that we constructed included Caucasian patients admitted directly to ICU with sex 

labels:  

1. Dataset 9 – intubated patients aged 70 and above were divided according to status at discharge 

of “Alive”, 305 patients, and “Expired”, 136 patients. 87 continuous and 70 categorical features 

that had a value in at least 1% of the cohort were used. 

Table 4. Performance on Dataset 5-8. In bold are the top performers.  

* - significant difference from FRIGATE, ☩ - significant difference from FRIGATE-MW  
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2.  Dataset 10 – patients who stayed up to one day in ICU, separated by age groups: 487 patients 

aged 18 to 80, and 83 patients aged 80 or older. 59 continuous and 20 categorical features that 

had a value in at least 5% of the cohort were used. 

3. Dataset 11 – patients aged 18-30 separated by length of stay: 138 who stayed over 4.5 days 

(>6500 minutes) or expired, and 94 who stayed 4.5 days or less and were discharged alive. 72 

continuous and 14 categorical features that had a value in at least 5% of the cohort were used. 

The results for the eICU datasets are shown in Figure 5. Figures 5A, 5C, 5E compare all algorithms using 

the continuous features only. The same trends are observed – both versions of FRIAGTE and FRCM 

perform best, FRMV has a large variance in results and FRSD performs poorly.  

We next used these datasets to test the ability to improve the results by adding categorical features. We 

tested different values of 𝛾 and looked for a change in the ARI of the full set of features in comparison to 

only using the continuous features (results not shown). A change in ARI means a different composition 

of the clusters caused by the categorical features. For 𝛾 < 5 in most cases there was no change in the 

composition of the clusters, and 𝛾 > 6 lead to a major decrease in ARI. We therefore chose 𝛾 = 6 in all 

cases. In most datasets we do not see an improvement, and in some cases more features were needed 

to reach high values of ARI. Overall, the categorical features did not improve the solution. Interestingly, 

in dataset 10 (Figure 5D) adding the categorical variables harmed the performance of FRIGATE-MW 

more than that of FRIAGATE. 
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In Table 5 we show the weighted rank (𝑊𝑅) and weighted ARI (𝑊𝐴𝑅𝐼) scores of all algorithms for 

datasets 1-11. Apart from dataset 7 with the WARI, a variant of FRIGTAE is among the top two 

algorithms in all cases. In terms of WR, FRIGATE was best in the 4 cases and second in 4, and FRIGATE-

MW was best in 1 and second in 6. In terms of WARI, FRIGATE was best in 4, second in 2, FRIGATE-MW 

best in 2 and second in 5 cases. FRCM was best in 3 and second in one case for both measures.  

 

 

Figure 5. Performance on datasets 9-12 from the eICU repository. See Figure 3 captions for details. A-B: dataset 9, C-D: dataset 

10, E-F: dataset 11. A, C, E show results when using only the continuous features of the datasets, and B, D, F show results for 

the mixed data.  
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Dataset 1 2 3 4* 5 6* 7* 8 9 10 11 

Weighted rank 

FRIGATE 0.727 0.662 0.678 0.748 0.881 0.613 0.657 0.649 0.668 0.667 0.933 

FRIGATE-MW 0.699 0.582 0.565 0.735 0.807 0.606 0.522 0.682 0.794 0.751 0.752 

FRMV 0.430 0.951 0.345 0.245 0.334 0.527 0.596 0.411 0.301 0.517 0.383 

FRCM 0.514 0.195 0.468 0.429 0.519 0.854 0.825 0.358 0.789 0.782 0.625 

FRSD 0.544 0.541 0.879 0.721 0.405 0.255 0.297 0.800 0.414 0.226 0.266 

Weighted ARI 

FRIGATE 0.347 0.659 0.268 0.312 0.314 0.175 0.287 0.411 0.214 0.103 0.327 

FRIGATE-MW 0.347 0.646 0.255 0.307 0.277 0.178 0.296 0.424 0.223 0.106 0.308 

FRMV 0.321 0.737 0.236 0.179 0.085 0.166 0.367 0.185 0.161 0.089 0.152 

FRCM 0.346 0.529 0.245 0.227 0.201 0.236 0.412 0.218 0.216 0.108 0.279 

FRSD 0.339 0.641 0.334 0.311 0.105 0.058 0.143 0.432 0.126 0.058 0.128 

 

 

4.2 Clinical Significance – Test Case     

We wished to evaluate the clinical relevance of the leading chosen features to the target labels. We 

chose to focus on Dataset 6 as there is evidence for sex-based differences in lab tests [54]. We chose the 

twelve features that were available in both cohorts and according to [54] fulfil:       

           
𝑎𝑏𝑠(𝑥𝑚𝑎𝑙𝑒−𝑥𝑓𝑒𝑚𝑎𝑙𝑒)

max (𝑥𝑚𝑎𝑙𝑒,𝑥𝑓𝑒𝑚𝑎𝑙𝑒)
≥ 0.1           (23) 

where 𝑥𝑖 is the mean value of feature 𝑥 for sex 𝑖 [54]. We call these the top features. A ranked list of all 

features according to FRIGATE and FRIGATE-MW and the top features are in Supplementary 6.  

We performed a hypergeometric test between the 12 top ranked features according to FRIGATE and the 

top features from [54], and similarly for FRIGATE-MW. For FRIGATE-MW, six of the top ranked features 

were also top features in [54] giving a significant p-value of 0.034. For FRIGATE, five of the top twelve 

features were common with the top features of [54], which accounts to a non-significant p-value of 

0.136.  

We also calculated the p-value of the minimum hypergeometric score (mHG), as used in the DRIM 

algorithm [55], for calculating the significance without determining in advance the threshold for the 

hypergeometric test and accounting for multiple testing. For FRIGATE the mHG was obtained for 13 

features, with p-value of 0.07. For FRIGATE-MW the threshold was 10 features with p-value of 0.01. 

Figure 5. Weighted rank and weighted ARI for the tested algorithms in datasets 1-11. In bold is the top performer for the dataset, 

underlined is the second best. * - Datasets where the top two performing algorithms were different for the two evaluation metrics.    
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It is important to remember that [54] refers to seemingly healthy individuals, while Dataset 6 comprised 

of patients who were in the ICU for up to one day, and some stayed overnight. That means that 

although the patients were young and did not require a major intervention, they still suffered from 

some medical condition. Indeed, the top feature in both versions of FRIGATE was “days in hospital” 

(more females stayed overnight, details not shown), which might suggest some correlation between the 

clusters and the medical condition, together with the correlation with sex. 

4.3 Runtime comparison  

Table 6 shows the runtimes on Databases 1-8 for the tested algorithms. The FRIGATE variants are slower 

on the genomic Datasets 1-4, which have many features and a few samples, but fast on the EMR 

datasets, which have less features. FRCM runs faster on Datasets 1-4, but when the number of samples 

grows its runtime increases sharply (Database 7).  

The behavior of FRIGATE can be explained by the choice to set the number iterations depending on the 

number of features. However, this is a tunable parameter with a trade off with 𝑓, the number of 

features included per iteration (see Supplementary 1). FRCM, on the other hand, has a set number of 

iterations, and produces an 𝑚x𝑚 matrix for each feature, which is expensive both in runtime and in 

space. Note also the slowdown of FRSD on Dataset 7, which has thousands of patients. 

 

 

Dataset no. 

/Algorithm  

1 2 3 4 5 6 7 8 

FRIGATE 1967.9 ± 28.2 4739.7 ± 80.2 5309.5 ± 136.3 1336.7 ± 21.4 49.8 ± 0.2 32.5 ± 0.1 286.8 ± 2.7 132.9 ± 1.1 

FRIGATE-MW 2854.0 ± 11.9 4903.2 ± 45.6 5736.0 ± 35.084 1898.3 ± 6.4 40.9 ± 0.8 29.2 ± 1.2 296.3 ± 10.5 118.8 ± 1.3 

FRCM 500.2 ± 6.2 1188.9 ± 14.3 2457.3 ± 31.4 411.7.2 ± 3.7 229.6 ± 2.5 111.2 ± 1.3 74215.4 ± 938.4 268.6 ± 1.8 

FRSD 1159.6 ± 6.0 1898.3 ± 8.2 2808.4 ± 6.2 998.2 ± 11.1 1450.9 ± 12.3 922.8 ± 30.9 39716.9 ± 256.0 1484.0 ± 15.9 

FRMV 101.0 ± 0.6 123.7 ± 0.6 133.6 ± 1.2 82.8 ± 0.7 21.6 ± 0.2 19.8 ± 0.3 653.9 ± 3.3 47.3 ± 1.0 

Table 6. Runtime in seconds for Datasets 1-8. Results are mean±STD of five runs for Datasets 1-4 and of three runs for Datasets 5-8 (the 

number of repetitions was reduced as the total runtime was large).  
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5. Discussion  

We presented here FRIGATE, a new ensemble feature ranking algorithm for clustering, focusing on 

clustering of medical data. The need for such an algorithm arises from the growing volume of EMR data 

available to researchers [1]–[6], [52], [53]. Clustering, an unsupervised learning, is highly relevant for 

medical research, especially in recognition of disease subtypes [13]–[15].   

When dealing with medical records researchers are facing two main challenges. The first challenge is the 

large number of features in patients’ medical files. That includes lab tests, imaging results, diagnosis 

codes, past diseases etc. The second challenge is the need to be able to explain analysis results, which is 

of major importance in medical research as the ultimate goal is to derive clinically meaningful insights. 

These two challenges affect the ability to produce meaningful clusters: too many features will 

potentially mask the truly relevant ones, and in extreme cases require dimensionality reduction that will 

harm the explainability. Another issue that these challenges bring is computing power – while we do not 

want to lose information, running machine-learning algorithms on huge datasets can be expensive in 

runtime and space complexity. 

The need for producing explainable clusters of patients and the challenges that it brings were our 

motivation for creating a new feature selection algorithm for clustering. FRIGATE is a feature ranking 

algorithm that uses the Shapley value concept to evaluate the importance of features, unattached to a 

specific clustering solution. In FRIGATE we perform iterations, in each we randomly choose a subset of 

features and produce a clustering solution on it, using k-means or a similar clustering algorithm. We use 

the objective function of the algorithm, which is the total distance to cluster centroids, as our solution 

score. Then, in a Shapley-like manner we eliminate the contribution of each feature separately by 

shuffling its values across all samples, and recalculate the solution score. The difference between the 

original solution score and the one obtained after shuffling is the feature score for the iteration. The 

total score of each feature is the average feature score, and is used to rank the full set of features. As 

FRIGATE uses the solution score for evaluating the features, using the clustering algorithms k-modes for 

categorical data and k-prototypes for mixed data allows FRIGATE to handle different data types, which is 

highly relevant in the medical domain.  

In another variation of FRIGATE, that we call FRIGATE-MW, we use the MW reweighting method for 

choosing the features for each iteration – instead of at random. With MW, we update weights for the 

features in each iteration, where badly performing features will be less likely to be chosen. The idea is 
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that features that were proven non-informative are less relevant for the process, and focusing on 

evaluating the more important features will make the algorithm more efficient.  

The process we used in FRIGATE, of producing multiple clustering solutions on subsets of features, is 

called ensemble feature ranking. Three other algorithms that follow such process were proposed in the 

past: FRMV, FRCM and FRSD [26]–[28]. All of them are based on multiple clustering solutions obtained 

with k-means. The code for the three algorithms was not provided by their authors, and we publish here 

our implementation to their codes, as well as for the two variations of FRIGATE, in the FRIGATE github 

repository: https://github.com/Shamir-Lab/FRIGATE.  

Compared to the other algorithms, FRIGATE is the only one that incorporates categorical and mixed data 

features. This is also the first use of MW within the feature ranking for clustering framework and the 

first explicit use of Shapley values for unsupervised feature selection (although FRSD can also be seen as 

Shapley-like algorithm, see Background and Methods).  

For choosing the hyper-parameters of FRIGATE and comparing the performance of the different 

algorithms we created simulated data built as presented in [26]. In the simulated data the informative 

features are known and we can measure the fraction of informative features among the top ranked 

features, a metric we call accurate recognition rate.  

One parameter we compared between the algorithms is 𝑘, the number of clusters provided for the 

algorithms for producing the multiple clustering solutions. While FRCM and FRSD do not require 𝑘 as an 

input and they average their results over multiple values of 𝑘, FRMV and FRIGATE require 𝑘 as an input. 

Setting 𝑘 is a challenging task, as in real data this parameter is inherently unknown by the nature of 

unsupervised learning. For FRIGATE and FRMV we used the elbow method, as described by [41], to set 𝑘. 

FRCM and FRIGATE seem unaffected by the value of 𝑘, and were able to achieve high accurate 

recognition rates on a wide range of 𝑘, some over four times larger than the real 𝑘. FRMV performed 

poorly constantly. FRSD seems highly affected by different values of 𝑘. As mentioned, FRSD does not 

receive 𝑘 as an input, but including high values of 𝑘 harms its performance. More interestingly, the best 

performance was obtained for 𝑘 = {2,3} when the real 𝑘 was four. We cannot fully explain this 

phenomenon, but we can assume that FRSD is more affected by the data structure than the other 

algorithms and its behavior is not stable. This is also supported by the simulation results and its 

performance on real data that will be discussed shortly. On the other hand, FRIGATE and FRCM seem to 

be able to recognize features that create a separation in the data, even when a wrong 𝑘 is provided. 

https://github.com/Shamir-Lab/FRIGATE
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Intuitively, a feature that separates the data into 𝑥 clusters, can divide the data to any 𝑘 < 𝑥 by union of 

clusters. Similarly, when 𝑘 > 𝑥, redundant clusters can be formed, but if samples that came from 

different distributions fall into different clusters, the algorithm may be able to recognize the informative 

features. Given the robustness of FRIGATE, we would like to test in future research the ability to waive 

the required input 𝑘. FRSD and FRCM are averaging their results over different values of 𝑘, but this 

method is currently not relevant for FRIGATE, as the solution score is affected by to the number of 

clusters and averaging over different values of 𝑘 will probably be biased. Therefore, a new method is 

needed.  

In section 2.7 we mentioned some unclear parts of the FRMV algorithm, in particular the calculation of 

linear correlation coefficient between a continuous features’ vector and the cluster membership vector, 

which depends on the arbitrary numbering of the clusters. When testing its performance, FRMV 

performed the worst in most cases with constantly high variation between different runs on the same 

data. For these reasons we will not discuss its results deeply.   

The simulation results helped understanding the differences between the algorithms. We tested a 

variety of simulation parameters that created a wide range of complexities of the data. In all simulations 

20% of the features were informative. That means that random arrangement of the features should 

result in an accurate recognition rate of 0.2. Generally, the performance on 𝑘 = 4 was better than 𝑘 =

2. It can be explained by the simulation setup, which affects the distance between clusters in space, 

especially in the non-normalized case. The distance between the centroids of two adjacent clusters is 

constant, so for 𝑘=4 there is a pair of clusters for which the distance between their centroids is twice 

that of the two clusters when 𝑘=2, and it is easier to recognize important features when the centroids 

are farther apart. As expected, performance improved for larger values of 𝜇, which account for better 

separated clusters. The 𝜎 parameter reflects the level of correlations between features. As expected, 

higher correlation levels usually accounted for worse results. The best performer on the simulation data 

was FRCM, where its lowest accurate recognition rate was 0.14 for normalized data, with 𝑘 = 2, 𝜇 =

0.5 and 𝜎 = 0.5, an unrealistically high correlation level (see Supplementary 3). Its second worst value 

was 0.19 for the same parameters on non-normalized data, a comparable value to random assignment, 

and the rest of the results were significantly above random. In comparison, FRIGATE rates < 0.2 several 

times when 𝜎 = 0.5, and it seems to be more affected by the correlation levels than the other 

algorithms. For FRSD performance was sharply lower on normalized data in comparison to non-

normalized. That was observed even in cases where FRIGATE and FRCM performed perfectly, while FRSD 
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had accurate recognition rate of 0 (e.g., 𝑘 = 2, 𝜇 = 2, 𝜎 = 0). However, FRSD seems unaffected by the 

correlation levels, and in some cases even significantly improved its performance on high levels of 

correlations (e.g., for 𝑘 = 2, 𝜇 = 2, 𝜎 = 0.5 the rate was 0.55). FRMV presented similar trends to FRSD. 

It is again an unexpected behavior by FRMV and FRSD with no clear explanation. Generally, higher 

correlation levels in our simulation framework means that the informative and non-informative features 

behave more similarly. So intuitively, it should be harder to set them apart. As mentioned, FRSD was 

more affected by the data structure than by the correlation levels. Our hypothesis is that enforcing such 

high levels of correlation between all features shaped the data so that the differences between features 

are better captured by the changes in the silhouette score, which is incorporated in FRSD. This should be 

further addressed in future research, both for understanding the behavior of FRSD as well as for 

understanding the effect of high levels of correlation on the structure of the simulated data.   

In all cases where the algorithms had extremely low accurate recognition rates, below 0.2, that means 

that the informative features were notably absent from the top of the list - meaning that they were 

especially recognized as non-informative. When testing it and looking at the bottom 20 features of 

FRIGATE on 10 simulation runs with: 𝑘 = 4, 𝜇 = 2, 𝜎 = 0.05 and normalized data, 68 ± 24% of the 

informative features were in the bottom 20%. This suggests that not only that FRIGATE did not recognize 

the informative features, but high levels of correlation make the algorithm recognize the informative 

features as the most non-informative. Although these levels of correlation are unrealistic, the behavior 

of the algorithm is interesting and not understood at this point. Further research is needed to 

understand why the distance to centroids, which is objective function used by FRIGATE, was affected 

more dramatically for non-informative features when the correlation levels between all features were 

high. 

We also compared the performance of the algorithms on genomic and EMR real data. While genomic 

data for clustering was available and used by another publication [28], quality EMR data for clustering 

was harder to obtain. Most of the EMR data we used was based on the publicly available MIMIC-III [4], 

[5] and eICU [52], [53], two very large datasets from American ICU facilities. The composition of patients 

in these data is highly heterogenic and deriving from them a cohort with coherent clusters was a 

challenging task. We based the clusters and their labels on demographics like age and gender, past 

diseases like cancer, and outcomes like length of stay in the ICU and mortality. On the real datasets, 

where no truly informative features were known, we used an alternative evaluation method where we 

measured the ARI levels for increasing number of ranked features, starting with a single feature, the top 
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ranked, and finishing with the full set of features. For a more rigorous comparison of the algorithms’ 

performances, we developed two new evaluation matrices: weighted rank, which scores the algorithms 

based on their relative performance compared to the other tested algorithms; and weighted ARI, which 

scores an algorithm based on its ARI scores, irrespective of other algorithms.  

The performance of the algorithms on the real data was different than on the simulated data. Generally, 

the FRIGATE variations performed best or comparable to the best performer in the majority of cases. On 

the genomic data FRSD performed better than FRCM, and FRMV was inferior, with the exception of one 

case where it was the best performer. On the medical data FRCM performed better than FRSD. This 

leads to several important conclusions. First, FRIGATE performs constantly well on real data. Secondly, 

although FRSD and FRMV performed relatively poorly on the simulated data, they can perform well in 

some real cases. Therefore, we conclude that the simulation is limited in its ability to represent real data. 

Our runtime tests showed that FRIGATE is overall preferable. It is slower on datasets with large number 

of features and small number of samples, but for datasets with a large number of samples, FRIGATE is 

much faster than FRSD and FRCM, with a prohibitively high runtime by FRCM. In conclusion, FRIGATE is 

the only algorithm that performed constantly well, and had an acceptable runtime in all cases.  

When comparing the performance of FRIGATE and FRIGATE-MW, we see different behaviors on 

simulated and real data. On simulated data, the two algorithms performed comparably, but when a 

difference was observed it was usually in favor of FRIGATE-MW. This suggests that MW has the potential 

to improve random selection of features in unsupervised tasks. On real data the difference between the 

variants was observed mostly on mixed data, where FRIGATE performed better than FRIGATE-MW. 

However, although the algorithm was designed to work with mixed data, including categorical features 

did not improve the results in comparison to using only the continuous features.  

Currently, we cannot conclude if MW can significantly improve the feature selection process on real 

data, and which FRIGATE variation is preferable. Future work should evaluate the possible contribution 

of MW to the ensemble framework, and more specifically, broaden the options for cost functions, which 

are a key factor in MW. Also, more research is needed to understand the reasons that lead FRIGATE-MW 

to perform worse than FRIGATE, especially on mixed data cases. 

We showed on a test case that the selected features by the FRIGATE algorithms are clinically relevant. 

This suggests that FRIGATE can be utilized not only as a feature selection algorithm, but also for 

assessing the importance of features in the data even on relatively small cohorts. This should be tested 
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in future research, and potentially compared to other feature importance methods like AMSD [40], [56], 

which can analyze feature importance for a given clustering result.  

Our study has several limitations. We compared FRIGATE to three other algorithms whose code was not 

available. That means that their reported performance here is based solely on our implementation. This 

is mostly relevant to the runtime comparison. Other implementations might be able to achieve 

improved runtime to some of the tested algorithms.  

Another limitation is FRIGATE’s sub optimal results on mixed data. One issue is the choice of 𝛾, the 

weight parameter for categorical features in the k-prototype clustering algorithm that we used. It was 

shown in the past [15], including in the original paper presenting k-prototype [39], that is not clear how 

to choose 𝛾. Here we tried to evaluate 𝛾 in simulated datasets, with different ratios of continuous and 

categorical features. 𝛾 = 1  was consistently preferred, but in our tests on real data the best 

performance was achieved for 𝛾=6, and other values were preferred in different publications [15], [36]. 

A proper choice of 𝛾 should be a main focus for future research.  

A key limitation in the evaluation of EMR data was the validity of the clusters that we produced. 

Heterogenous cohorts like these of MIMIC and eICU may contain multiple overlapping subgroups, which 

may confound clustering attempts and their evaluation. Including mixed data where both the categorical 

and continuous features are relevant, was another challenging task. In our tests, the categorical features 

did not have a significant effect on the results, and in some cases their inclusion harmed the results. Also, 

all the datasets that we generated were partitioned into two clusters. More work is needed to create 

medical datasets appropriate for clustering from publicly available sources, that will include mixed data 

and account for more complicated cases with a larger number of clusters.  

As discussed above, we used the elbow method for choosing 𝑘, the number of clusters. In all runs of 

both simulated and real data, the choice was 𝑘 = 2 even when the real number of clusters was higher. 

This is aligned with a previous publication [15]. Although we showed on simulated data that FRIGATE is 

unaffected by using 𝑘 that is different than the actual number of clusters, there is a need for a reliable 

method to choose 𝑘. This is also relevant to another limitation that was mentioned before: the 

simulated data are not fully representative of real data. It suggests that on real, more complex data than 

what we used here, using a suboptimal 𝑘 will harm the performance of the algorithm. This should be 

investigated in future research. 
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7. Supplementary 1 – Parameter choice  

7.1 Parameter choice for FRIGATE-MW 

FRIGATE-MW has three parameters: 𝑻, the number of iterations, 𝒇, the fraction of the features used in 

each iteration, and 𝜼, the MW parameter. If the input is mixed data there is also 𝜸, the K-prototypes 

parameter. We seek values of 𝑇 and 𝑓 that are small in order to increase the efficiency of the algorithm, 

but still produce good results.  

For testing the performance of FRIGATE-MW with different hyper-parameters, we built a simulation as 

described in chapter 3.3, with the following parameters: 𝑘 = 4 clusters of size 𝑐 = 50 each, 𝛼 = 20 

informative features and 𝛽 = 80 non-informative ones. The statistical parameters were 𝜇 = 1 and     

𝜎 = 0.05. The value of 𝜎 was chosen to produce similar correlations to those observed in real data (see 

details in Supplementary 3).  

Figure S1 shows the average accurate recognition rate results of 10 simulations for different values of 𝑓, 

𝑇 and 𝜂. As expected, more iterations and larger 𝑓 produce better results. We can see that for 200 

iterations the results are perfect for all values of 𝜂 with 𝑓 ≥ 0.1, and the results for 100 iterations are a 

close second (perfect results for 𝜂=0.25 and 0.5, and 0.995 for 1). Increasing 𝜂 from 0.25 to 1 improves 

the results. For the same parameters of the simulation but 𝜇 = 4 (which causes the clusters to be more 

distinct) we observed similar results (Figure S2).  
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Figure S1. Performance of FRIGATE-MW on simulated data for different hyper-parameters. The simulation had 4 clusters, 50 samples in each 

cluster, and 100 features of which 20 were informative. The differences between the clusters were set by 𝜇 = 1, 𝜎 = 0.05. The graphs show the 

accurate recognition rate of the algorithm, averaged over 10 runs. Plot color: number of iterations. X axis: fractions of features participating in 

each iteration. A, B and C present results for values of 𝜂 = 0.25, 0.5 and 1 respectively.  
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We also tested the scenario of two clusters with 100 samples in each cluster (𝑘 = 2, 𝑐 = 100) and kept 

the rest of the parameters unchanged (Figure S3).  The trends are similar to Figure S1, but we can see 

that the overall scores are slightly worse. Still, the combination with 𝑓 = 0.2, 𝜂 ≥ 0.5 and 𝑇 = 200 

achieved perfect results. A similar simulation with 𝜇 = 4 achived high results in all scenarios (Figure S4). 

In another simulation that used values similar to [26]: 𝑘 = 4, 𝑐 = 50 𝑎𝑛𝑑 𝑛 = 950 the results were 

perfect for all parameters tested. We therefore chose to fix the hyper-parameters to 𝑓 = 0.1, and 𝑇 =

2 ∙ |𝑉|. 
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Figure S2. Performance of FRIGATE-MW with different hyper-parameters. The simulation setup and presented results are as in Figure S1, but 

here we used 𝜇 = 4. 
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Figure S3. Performance of FRIGATE-MW on simulated data for different hyper-parameters. The simulation setup and presented results are as in 

Figure S1, but here there were 2 clusters and 100 samples in each cluster.  
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7.2 Parameter choice for FRIGATE  

The results of FRIAGTE in the same simulations are shown in Figure S5 for 𝑘 = 2, 4 and 𝜇 = 1,4. We can 

see that the algorithm without MW improves more slowly with the number of iterations and is in 

general inferior. This can be seen especially in the hardest case of 𝜇 = 1; 𝑘 = 2. Based on these results 

we chose as default values 𝑓 = 0.1, 𝑇 = 2 ∙ |𝑉| for the non-MW algorithm as well.   

 

 

 

 

 

 

 

 

 

 

Figure S4. Performance of FRIGATE-MW on simulated data for different hyper-parameters. The simulation setup and presented results are as in 

Figure S3, but here we used 𝜇 = 4.. 
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Next, we wanted to determine the value of the weight parameter 𝛾 in the k-prototypes algorithm, when 

using mixed data. We performed simulations with 100 continuous features of which 20 are informative 

(𝛼 = 20, 𝛽 = 80), 𝜎 = 0.05 and 200 samples equally divided between clusters. The other parameters 

were tested in multiple options:  𝑘 = {2,4} (accounted for 𝑐 = 100 and 𝑐 = 50 respectively), 𝜇 = {1,4}, 

{100 categorical features of them 20 informative (𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 20, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 80), 50 categorical 

features of them 10 informative (𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 10, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 40)}. We ran each scenario 10 times 

and for each type of features calculated the accurate recognition rate in the top thirty or forty features, 

depending on the total number of informative features.  

The average results of FRIGATE and FRIGATE-MW for 𝜇 = 1 and 𝑘 = 2 are shown in Tables S2-S5. We 

can see that in all cases 𝛾 = 1 performed perfectly and 𝛾 = 2 near perfectly in both scenarios, unrelated 

to the proportion of continuous and categorical features. As expected, extreme values of 𝛾, which favor 
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Figure S5. Performance of FRIGATE on simulated data for different hyper-parameters. Simulation parameters: 𝜎=0.05, total number of 

samples=200, 100 feature of which 20 are informative. A: 𝜇 = 1, 𝑘 = 2. B: 𝜇 = 4, 𝑘 = 2. C: 𝜇 = 1, 𝑘 = 4. D: 𝜇 = 4, 𝑘 = 4. 
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one type of features over the other, were detrimental. For 𝑘 = 4 and 𝜇 = 4 the results were nearly 

perfect in all scenarios and thus not informative (results not shown). 

  

 

 

 

 

 

 

 

 

 

 

The results of this simulation suggest that 𝛾 = 1 is the favorable value. However, this may not hold for 

all cases. We can see that for 𝛾 > 2 the results are poor, regardless of the proportion between 

continuous and categorical features, in contradiction with pervious publications [15]. More research is 

needed regarding the choice of 𝛾.   

 

 

 

 

 

 

 

 

 

Table S2- 

FRIGATE-MW 

𝜸 

0.5 1 2 4 

Continuous 

Features 

1 1 0.99 0.845 

Categorical 

Features 

1 1 1 1 

Table S3- 

FRIGATE-WW 

𝜸 

0.5 1 2 4 

Continuous 

Features 

1 1 0.975 0.38 

Categorical 

Features 

0.82 1 1 1 

Table S4- 

FRIGATE 

𝜸 

0.5 1 2 4 

Continuous 

Features 

1 1 0.96 0.595 

Categorical 

Features 

0.99 1 1 1 

Table S5- 

FRIGATE 

𝜸 

0.5 1 2 4 

Continuous 

Features 

1 1 1 0.93 

Categorical 

Features 

0.97 1 1 1 

Tables S2-S5. Average accurate recognition rates in 10 simulation runs, for mixed data by FRIGATE and FRIGATE-MW for different values of the 

weight parameter 𝛾 in the k-prototypes algorithm. Simulation parameters: 𝜎 = 0.05, 𝑐𝑗  = 100, 𝛼 = 20, 𝛽 = 80,  𝜇 = 1, 𝑘 = 2. Tables 3,5: 

𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 20, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 80. Tables 4,6: 𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 10, 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 = 40.  
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8. Supplementary 2 - Illustration of a FRIGATE iteration 

Scenario 1 – two informative features 

Figure S6A shows the results of k-means clustering of the simulated data with two informative 

features (line 6 in Algorithm 4), with a solution score of 81.76. Figure S6B shows the data after 

shuffling the values of the x-coordinate feature (line 10 in Algorithm 4). The new solution score is 

395.24 (line 12 in Algorithm 4) and a feature score of 313.48. Figure S6C shows the data after 

shuffling the values of the y-coordinate feature, which led to a new solution score of 368.09 and a 

feature score of 286.33.  

 

 

 

 

 

 

 

Scenario 3 – two non-informative features 

 Figure S7A shows the results of k-means clustering of the data where both features are non-

informative. The solution score is 256.48. Figure S7B shows the data after shuffling the values of y-

coordinate feature. The new solution score is 374.07 (line 12 in Algorithm 4) and a feature score of 

114.59. Figure S7C shows the data after shuffling the values of the x-coordinate feature, which led 

to a solution score of 407.04 and feature score of 150.56.  

 

 

  

A B C 

Figure S6. Illustration of the different steps of FRIGATE for scenario 1 of two informative features. A – A clustering solution of the data (line 6 in 

Algorithm 4) colored by clusters labels. The solution score is 81.76 (line 8 in Algorithm 4). B- Results of shuffling the x-coordinate (lines 10-13 in 

Algorithm 4). The solution score increased dramatically to 286.33. C- Results of shuffling the y-coordinate feature. We see again a great change 

from S1A with a solution score of 313.48. 

A B 

Figure S7. Illustration of the different steps of FRIGATE for scenario 3 of two non-informative features. A – A clustering solution of the data (line 

6 in Algorithm 4) colored by clusters labels. The solution score is 256.48 (line 8 in Algorithm 4). B- Results of shuffling the x-coordinate feature 

(lines 10-13 in Algorithm 4). The solution score changed to 150.56. C- Results of shuffling the y-coordinate feature. The solution score is similar 

to Figure S2B, 114.59. 

C 
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9. Supplementary 3 - Choosing the value of 𝜎 

We tested the average Pearson correlation between the different features when constructing the 

simulation using different values of 𝜎. We tested three scenarios and the average results of 10 runs for 

𝜇 = 2 are presented in Figure S8:  

• Scenario 1 - 200 samples divided into 4 clusters (𝑘 = 4) with 20 informative features and 80 

non-informative.  

• Scenario 2 – same as scenario 1 with 2 clusters (𝑘 = 2). 

• Scenario 3 – the simulation suggested in [26]: 200 samples, 4 clusters (𝑘 = 4), 50 

informative features, 950 non informative features.  

 

 

 

 

 

 

 

 

 

 

For 𝜇 = {1,4} we received nearly identical results (not shown). 

Next, we tested the average Pearson correlation in real data sets. The four genomic cancer datasets as 

used in [49] and presented in the Results section (Datasets 1-4) have an average Pearson correlation of 

0.07 with STD of 0.03. The value of 𝜎 that achieved similar correlation in the data is 0.05, so other than 

the simple case of 𝜎 = 0 we desided to test also 𝜎 = 0.05, and 𝜎 = 0.2 as a case of extreme correlation. 

We also tested the highly unrealistic 𝜎 =  0.5 since it was used in [26]. 
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Figure S8. Testing the average Pearson correlation (X axis) in the data in different simulation scenarios, with different 

values of 𝜎 (Y axis). Description of the scenarios is found above.  
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10. Supplementary 4 – simulation results  

Simulated data with 200 samples and 100 features of which 20 are informative, divided into two or four 

equal-sized clusters, and tested 𝜇 = {0.5,1,2,4} and 𝜎 = {0,0.05,0.2, 0.5}, with and without z-score 

normalization. Results of the accurate recognition rate, supplement to Table 2. 

 

 

 

 

 

 

𝒌 = 𝟒,  

 normalized 

𝝁 = 𝟐 

 𝝈 = 𝟎 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟒 

 𝝈 = 𝟎 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟓 

FRIGATE 1 ± 0 1 ± 0 1 ± 0.02 0.06 ± 0.1 1 ± 0 1 ± 0 1 ± 0 0.1 ± 0.12 

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 0 ± 0 1 ± 0 1 ± 0 1 ± 0 0.3 ± 0.46 

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRSD  0 ± 0 0 ± 0 0.14 ± 0.1 0.66 ± 0.12 0.05 ± 0.06 0.05 ± 0.04 0.25 ± 0.1 0.66 ± 0.11 

FRMV 0 ± 0 0 ± 0 0.04 ± 0.11 0.43 ± 0.3 0 ± 0 0 ± 0 0 ± 0 0.24 ± 0.31 

𝒌 = 𝟒,  

 Non-normalized 

𝝁 = 𝟐 

 𝝈 = 𝟎 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟒 

 𝝈 = 𝟎 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟓 

FRIGATE 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRSD  1 ± 0 1 ± 0.02 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRMV 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

𝒌 = 𝟐,  

 normalized 

𝝁 = 𝟎. 𝟓 

 𝝈 = 𝟎 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟏 

 𝝈 = 𝟎 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟓 

FRIGATE 0.34 ± 0.09 0.39 ± 0.11 0.29 ± 0.09 0.15 ± 0.07 0.96 ± 0.04 0.89 ± 0.06 0.46 ± 0.11 0.16 ± 0.11 

FRIGATE-MW 0.38 ± 0.11 0.37 ± 0.18 0.22 ± 0.1 0.14 ± 0.1 1 ± 0.02 1 ± 0 0.56 ± 0.22 0.15 ± 0.2 

FRCM 0.49 ± 0.08 0.42 ± 0.11 0.23 ± 0.08 0.14 ± 0.08 1 ± 0.02 0.98 ± 0.02 0.66 ± 0.11 0.29 ± 0.16 

FRSD  0.17 ± 0.07 0.15 ± 0.05 0.23 ± 0.08 0.26 ± 0.08 0.09 ± 0.05 0.12 ± 0.07 0.15 ± 0.08 0.37 ± 0.1 

FRMV 0.19 ± 0.11 0.19 ± 0.07 0.18 ± 0.07 0.22 ± 0.12 0.1 ± 0.12 0.14 ± 0.13 0.12 ± 0.09 0.26 ± 0.19 

𝒌 = 𝟐,  

 normalized 

𝝁 = 𝟐 

 𝝈 = 𝟎 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟒 

 𝝈 = 𝟎 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟓 

FRIGATE 1 ± 0 1 ± 0 0.94 ± 0.07 0.11 ± 0.14 1 ± 0 1 ± 0 1 ± 0 0.21 ± 0.17 

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 0.24 ± 0.39 1 ± 0 1 ± 0 1 ± 0 0.1 ± 0.3 

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRSD  0 ± 0 0 ± 0 0.07 ± 0.07 0.55 ± 0.1 0.26 ± 0.07 0.28 ± 0.07 0.35 ± 0.11 0.37 ± 0.08 

FRMV 0.25 ± 0.27 0.19 ± 0.25 0.06 ± 0.15 0.17 ± 0.16 0.21 ± 0.27 0.09 ± 0.15 0.01 ± 0.02 0.24 ± 0.32 

Table 6. Performance on simulated data, with 𝑘 = 4 and z-score normalized data. 

Table 7. Performance on simulated data, with 𝑘 = 4 and non-normalized data. 

Table 9. Performance on simulated data, with 𝑘 = 2 and z-score normalized data. 

Table 8. Performance on simulated data, with 𝑘 = 2 and z-score normalized data. 
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𝒌 = 𝟐,  

 Non-normalized 

𝝁 = 𝟎. 𝟓 

 𝝈 = 𝟎 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟏 

 𝝈 = 𝟎 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟓 

FRIGATE 0.41 ± 0.1 0.37 ± 0.1 0.27 ± 0.11 0.3 ± 0.12 0.96 ± 0.04 0.93 ± 0.04 0.82 ± 0.09 0.54 ± 0.14 

FRIGATE-MW 0.45 ± 0.12 0.43 ± 0.13 0.33 ± 0.11 0.32 ± 0.11 0.99 ± 0.02 1 ± 0.02 0.89 ± 0.18 0.79 ± 0.13 

FRCM 0.51 ± 0.15 0.38 ± 0.11 0.25 ± 0.07 0.19 ± 0.06 1 ± 0 0.99 ± 0.02 0.75 ± 0.14 0.42 ± 0.1 

FRSD  0.32 ± 0.06 0.36 ± 0.08 0.32 ± 0.1 0.37 ± 0.1 0.74 ± 0.08 0.72 ± 0.09 0.73 ± 0.04 0.8 ± 0.07 

FRMV 0.18 ± 0.09 0.22 ± 0.12 0.21 ± 0.09 0.2 ± 0.09 0.14 ± 0.17 0.18 ± 0.25 0.28 ± 0.2 0.23 ± 0.17 

𝒌 = 𝟐,  

 Non-normalized 

𝝁 = 𝟐 

 𝝈 = 𝟎 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟐 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟒 

 𝝈 = 𝟎 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟒 

𝝈 = 𝟎. 𝟓 

FRIGATE 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRIGATE-MW 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRCM 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRSD  0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 1 ± 0.02 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

FRMV 0.12 ± 0.21 0.33 ± 0.32 0.05 ± 0.1 0.19 ± 0.27 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Table 11. Performance on simulated data, with 𝑘 = 2 and non-normalized data. 

Table 10. Performance on simulated data, with 𝑘 = 2 and non-normalized data. 
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11. Supplementary 5 – Significance levels 

P-values for the differences in performances of FRIGATE, FRIGATE-MW, FRMV, FRCM and FRSD of 

Datasets 5-7 in Table 3. The # column shows the ranking of ARI scores where 1 is best. See Table 4 for 

the scores. In case of ties in the ARI we used the STD as a tiebreaker, where lower STD accounts for a 

better rank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 2 0.256 4.66e-06 2.164e-07 3.764e-08 

FRIGATE-

MW 

1 - 3.763e-09 1.308e-14 1.066e-15 

FRMV 4 - - 0.856 0.328 

FRSD 3 - - - 3.611e-07 

FRCM 5 - - - - 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 2 0.66 2.117e-12 1.771e-11 0.0961 

FRIGATE-

MW 

1 - 2.031e-12 1.65e-11 0.0451 

FRMV 5 - - 0.029 5.446e-12 

FRSD 4 - - - 5.575e-11 

FRCM 3 - - - - 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 2 0.231 0.607 0.021 0.127 

FRIGATE-

MW 

4 - 0.653 0.052 3.07e-04 

FRMV 3 - - 0.057 0.052 

FRSD 5 - - - 0.001 

FRCM 1 - - - - 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 3 0.648 0.987 0.002 0.595 

FRIGATE-

MW 

2 - 0.588 4.564e-05 1 

FRMV 4 - - 1.836e-04 0.504 

FRSD 5 - - - 4.218e-08 

FRCM 1 - - - - 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 1 0.177 0.018 1.232e-23 0.278 

FRIGATE-

MW 

3 - 0.641 1.809e-15 0.76 

FRMV 4 - - 6.575e-18 0.394 

FRSD 5 - - - 1.918e-16 

FRCM 2 - - - - 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 3 0.712 0.871 2.09e-05 0.241 

FRIGATE-

MW 

2 - 0.209 4.39e-11 0.011 

FRMV 4 - - 4.173e-10 4.72e-04 

FRSD 5 - - - 1.073e-13 

FRCM 1 - - - - 

Table S12. T-test p-values of ARI scores 

for ⌈25%⌉ features of Dataset 5. 

 

Table S13. T-test p-values of ARI scores 

for ⌈50%⌉ features of Dataset 5. 

Table S14. T-test p-values of ARI scores 

for ⌈25%⌉ features of Dataset 6. 

Table S15. T-test p-values of ARI scores 

for ⌈50%⌉ features of Dataset 6. 

Table S16. T-test p-values of ARI scores 

for ⌈25%⌉ features of Dataset 7. 

Table S17. T-test p-values of ARI scores 

for ⌈50%⌉ features of Dataset 7. 
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 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 1 0.15 3.753e-05 0.898 3.125e-04 

FRIGATE-

MW 

3 - 7.479e-05 0.095 0.006 

FRMV 5 - - 3.53e-05 2.41e-04 

FRSD 2 - - - 1.076e-05 

FRCM 4 - - - - 

 # FRIGATE-

MW 

FRMV FRSD FRCM 

FRIGATE 2 0.526 1.031e-07 0.142 1.572e-18 

FRIGATE-

MW 

3 - 1.66e-06 0.165 5.947e-12 

FRMV 4 - - 3.059e-08 0.468 

FRSD 1 - - - 2.904e-22 

FRCM 5 - - - - 

Table S18. T-test p-values of ARI scores 

for ⌈25%⌉ features of Dataset 8. 

 

Table S19. T-test p-values of ARI scores 

for ⌈50%⌉ features of Dataset 8. 
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12. Supplementary 6 - Clinical significance  

Full results of the ranked features by FRIGATE and FRIGATE-MW that were also top features found in 

[54]. See chapter 4.2 for details. 

 

 

 

Rank Feature  Mendelson Cohen et al. 

1 days in hospital ☒ 

2 Calculated Bicarbonate, Whole Blood ☒ 

3 Hemoglobin ☑ 

4 Hematocrit ☑ 

5 Platelet Count ☑ 

6 MCH ☒ 

7 Alanine Aminotransferase (ALT) ☑ 

8 Asparate Aminotransferase (AST) ☒ 

9 Bilirubin, Total ☑ 

10 Red Blood Cells ☑ 

11 Fibrinogen, Functional ☒ 

12 MCHC ☒ 

13 Calculated Total CO2 ☒ 

14 Anion Gap ☒ 

15 MCV ☒ 

16 Bicarbonate ☒ 

17 Alkaline Phosphatase ☑ 

18 Age ☒ 

19 pCO2 ☒ 

20 Neutrophils ☒ 

21 Lymphocytes ☒ 

22 pH ☒ 

23 Base Excess ☒ 

24 PT ☒ 

25 Glucose ☒ 

26 INR(PT) ☒ 

27 Chloride ☒ 

28 pO2 ☒ 

29 RDW ☒ 

30 Sodium, Whole Blood ☒ 

31 pH ☒ 

32 Ethanol ☒ 

33 Specific Gravity ☒ 

34 Creatinine ☑ 

35 Phosphate ☒ 

36 White Blood Cells ☒ 

37 Basophils ☑ 

38 Potassium, Whole Blood ☒ 

39 Urea Nitrogen ☑ 

40 Monocytes ☑ 

41 Calcium, Total ☒ 

42 Lactate ☒ 

43 Eosinophils ☑ 

44 PTT ☒ 

45 Magnesium ☒ 

46 Amylase ☒ 

47 Lipase ☒ 

Rank Feature  Mendelson Cohen et al. 

1 days in hospital ☒ 

2 Platelet Count ☑ 

3 Calculated Bicarbonate, Whole Blood ☒ 

4 Hematocrit ☑ 

5 pH ☒ 

6 MCH ☒ 

7 Age ☒ 

8 Hemoglobin ☑ 

9 Neutrophils ☒ 

10 Red Blood Cells ☑ 

11 INR(PT) ☒ 

12 Bilirubin, Total ☑ 

13 Alanine Aminotransferase (ALT) ☑ 

14 Asparate Aminotransferase (AST) ☒ 

15 pH ☒ 

16 Lymphocytes ☒ 

17 Fibrinogen, Functional ☒ 

18 MCHC ☒ 

19 MCV ☒ 

20 Anion Gap ☒ 

21 Calculated Total CO2 ☒ 

22 Alkaline Phosphatase ☑ 

23 RDW ☒ 

24 PT ☒ 

25 Glucose ☒ 

26 Specific Gravity ☒ 

27 Urea Nitrogen ☑ 

28 Bicarbonate ☒ 

29 pCO2 ☒ 

30 Basophils ☑ 

31 Base Excess ☒ 

32 Ethanol ☒ 

33 White Blood Cells ☒ 

34 Chloride ☒ 

35 Creatinine ☑ 

36 pO2 ☒ 

37 Sodium, Whole Blood ☒ 

38 Potassium, Whole Blood ☒ 

39 Monocytes ☑ 

40 Eosinophils ☑ 

41 Phosphate ☒ 

42 PTT ☒ 

43 Calcium, Total ☒ 

44 Magnesium ☒ 

45 Lactate ☒ 

46 Amylase ☒ 

47 Lipase ☒ 

Table S20. Average ranks of FRIGATE-MW for Dataset 

6. The bold line represents ⌈25%⌉ of features cutoff. 

☑: Top features in [54], ☒: The rest. 

Table S21. Average ranks of FRIGATE for Dataset 

6. The bold line represents ⌈25%⌉ of features 

cutoff. ☑: Top features in [54], ☒: The rest. 
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13. Supplementary 7 – The effect of 𝑘 in each algorithm 

FRIGATE requires determining the number of clusters 𝑘 in advance, unlike FRCM and FRSD, which test a 

prescribed range of 𝑘. Generally, it is preferred not to determine the number of clusters in advance. 

However, all the previously suggested ensemble algorithms are based on k-means, which requires 𝑘 as 

an input. As it is commonly done, we suggest trying different 𝑘 values and choosing the value using 

some criterion, e.g., the “elbow” method [41]. This is the approach we use for FRIGATE.  

To test the effect of 𝑘 in prior algorithms, we simulated data with four clusters (𝑘 = 4), fifty samples in 

each cluster (𝑐 = 50), and 100 features, of which 20 are informative (𝛼 = 20, 𝛽 = 80), when the data is 

z-score normalized, and measures the accurate recognition rate. We repeated the run 10 times for each 

case and present in Figure S9 the mean results. We ran FRCM and FRSD with a range [𝑚𝑖𝑛_𝑘, 𝑚𝑎𝑥_𝑘] 

where 𝑚𝑖𝑛_𝑘 of {2,3,4}, and 𝑚𝑎𝑥_𝑘 = {4,8,12,15}, (recall that for FRCM and FRSD the default range is 

[2:15] as 𝑘_𝑚𝑎𝑥 = min(⌈√200⌉, 20) = 15). We can see that generally an increase of 𝑚𝑎𝑥_𝑘 results in a 

sharp decrease in the results of FRSD. Interestingly, using 𝑚𝑖𝑛_𝑘 < 𝑘 had a positive effect: using a range 

of [2:4], when 𝑘 = 4, produced better results than using [3,4] or [4,4]. Similar results were obtained for 

simulation with 𝜇 = 4 (Figure S11).  

It is worth mentioning that in FRSD the larger the range - the more iterations the algorithm performs in 

total (𝑇 = 200 for each tested value of 𝑘). To see if the total number of iterations has a major effect on 

the results, we also tested the performance of FRSD when the range [𝑘, 𝑘] was given as input for 

different 𝑘 values, and the total number of iterations per 𝑘 was set to 2800 (the number of iterations for 

the full default range of 𝑘), and the results are shown in Figure S10 for 𝜇 = 2 (see Figure S12 for 𝜇 = 4). 

We can see that FRSD performs best for k=3 and k=2, although the real number of clusters is four. 

Higher values of 𝑘 harm the ability of the algorithm to find any relevant features. This helps explaining 

the results in Figure S9, where we see a drop in performance when large values of 𝑘 are included and 

affecting the results.  

FRCM, on the other hand, has a fixed number of iterations and samples a value of 𝑘 for each iteration 

from the same range as FRSD. Interestingly, when performing the same analyses for FRCM, the 

algorithm produced perfect results for all cases (results not shown).   

Unlike FRSD and FRCM, FRIGATE and FRMV require 𝑘 as an input. Hence, we tested how different values 

of input 𝑘 affect the results of FRIGATE and FRMV on simulated data with the same parameters used for 

FRSD and FRCM. We tested the algorithms in the same simulation, using as input values of 𝑘  {2, 3, 4, 8, 
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12, 15}. The results of FRIAGTE were perfect in all scenarios, which means it was unaffected by the input 

𝑘. FRMV had poor results in all scenarios (results not shown).   

   

 

 

  

 

 

 

 

 

   

 

 

  

 

 

 

 

 

  

Figure S9. Performance of FRSD with different ranges for [𝑘_𝑚𝑖𝑛, 𝑘_𝑚𝑎𝑥]. The simulation parameters are 4 clusters, 50 samples in each cluster, 100 

features - of which 20 are informative, 𝜇 = 2. The results show accurate recognition rate of FRSD over 10 runs. A: 𝜎 = 0, B: 𝜎 = 0.05. 

K_max K_max 

A B 

Figure S10. Performance of FRSD when a single number of clusters is tested, the true number is 4, and 2800 iterations are performed per each 

number of clusters tested. The rest of the simulation parameters are as in Figure 7. A: 𝜎 = 0, B: 𝜎 = 0.05. 

A B 
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Figure S11. Performance of FRSD with different values used as 𝑚𝑎𝑥_𝑥. The simulation has 4 clusters, 50 samples in each cluster, 100 features - 20 

of which are informative for clustering, 𝜇 = 4 and 𝜎 = 0 or 𝜎 = 0.05 for A and B respectively. We measured the accurate recognition rate and 

we present here the mean of 10 runs of FRSD on the range [𝑚𝑖𝑛_𝑘, 𝑚𝑎𝑥_𝑘] for different values of min_x and max_x.  

A B 

Figure S12. Performance of FRSD with a single value of 𝑘 and 2800 iterations. The simulation parameters are as in Figure S6. A: 𝜎 = 0, B: 𝜎 = 0.05. 
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 תקציר 

הזמינות של נתוני רשומות רפואיות ממוחשבות השתפרה באופן ניכר בשנים האחרונות, ומספר הולך וגדל של מחקרים  

(, בה clustering)קיבוץ  שיטה מרכזית בתחום זה היא    סוג זה.מעושים שימוש באלגוריתמיקה ולמידת מכונה על נתונים  

שימוש   שונותנעשה  זיהוי  ,  למטרות  הקיים כולל  המידע  של  והיתירות  השפע  מוכרות.  מחלות  של  חדשים  סוגים  תתי 

. זיהוי המשתנים  ולדרגם  לפעולת הקיבוץברשומות הרפואיות מעלה את הצורך לזהות את המשתנים המשמעותיים ביותר  

 ההבנה ופירוש התוצאות.  יכולת החשובים ביותר משמעותי גם משיקולי זמן ריצה וחיסכון בזיכרון, וגם לשם שיפור

, אלגוריתם אשר מדרג את  FRIGATE  (Feature Ranking In clustering using GAme ThEory)אנחנו מציגים כאן את  

לחשיבתם   בהתאם  ערכילקיבוץהמשתנים  המשחקים:  מתורת  מושגים  ומשלב  כפלייםו  (Shapley)  שפלי  ,   משקולות 

(Multiplicative Weights  ,MW  .)FRIGATE    משתנים דירוג  אלגוריתם  המכלולהוא   ensemble feature)  בשיטת 

ranking algorithmעל תתי רבים  קיבוץ  על בסיס פתרונות  קובע את חשיבות המשתנים  קבוצות של משתנים.  -( אשר 

ערכי   לחישוב  דומה  קיבוץ, קבוצה מצומצמת של משתנים מדורגת באופן  כל פתרון  ונעשה שימוש בשפליעבור   ,-MW  

תתבמטרה   של  הבחירה  את  המשתנים-לייעל  של  הבאה  הראשון  הקבוצה  המשתנים  דירוג  אלגוריתם  שזהו  נראה   .

הראה ביצועים טובים    FRIGATEא צורך ממשי בניתוח מידע רפואי.  ונתונים רציפים ובדידים יחד, שה  שמאפשר ניתוח של

על  הן  מכלול שהוצגו בעבר,  ה   בשיטתוריתמי דירוג  בהשוואה לאלג  ,מבחינת זמן ריצהוהן    איכות התוצאותהן מבחינת  יותר  

 נתוני אמת רפואיים.סימולציה והן על  קלטים של נתוני
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