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Abstract 

Introduction: Recently, Narunsky-Haziza et. al. showed that fungi species identified in a 

variety of cancer types may have prognostic and diagnostic signficane. We used that data in 

order to better understand the effects of demographic factors (age, sex, BMI, and race) on the 

intratumor mycobiome composition.  

Materials and Methods: We first tested the data in view of recent critiques of microbiome 

data processing procedures, and concluded that the batch correction and transformation used 

on it may produce false signals. Instead, we explored 14 combinations of data transformation 

and batch correction methods on data of 224 fungal species across 13 cancer types. Propensity 

scores were utilized to adjust for potential confounders such as histological type and tumor 

stage. To minimize false outcomes, we identified as positive results only those fungi species 

that showed significant difference in abundance across a demographic factor within a particular 

cancer type, using data normalized according to all 14 combinations. 

Results and Discussion: We observed significant differences in fungal species abundance 

within tumors for certain demographic characteristics. Most differences were among races in 

specific cancers. The findings indicate that there are intricate interactions among the 

mycobiome, cancer types, and patient demographics. Our study highlights the need for 

accounting for potential confounders in order to further understanding of the mycobiome's role 

in cancer, and underscores the importance of data processing techniques.  

Introduction 

The role of the mycobiome, or fungal community, in cancer development and treatment has 

gained appreciation recently1. Fungi can influence tumor biology through various mechanisms, 

such as the secretion of bioactive metabolites and the modulation of host immunity.2 Several 

studies have shown the role of the mycobiome in oncogenesis and its effect on immunity in 

pancreatic cancer.3,4 Other studies identified that specific fungi, such as Malassezia, are 

associated with the onset and progression of certain tumors, including colorectal carcinoma 

and pancreatic ductal adenocarcinoma1,5. Furthermore, Aspergillus rambellii was associated 

with the promotion of cancer cell growth in colorectal cancer (CRC). 6 

Moreover, fungi show promise as a target for cancer treatment. Fungal dysbiosis has been 

linked to CRC, suggesting that modulating the fungal community could be an effective 

treatment strategy7. In addition, ablation of the mycobiome was reported to be protective 

against tumor growth in slowly progressive and invasive models of pancreatic ductal 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.01.596924doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.01.596924


adenocarcinoma4. These findings highlight the potential of the mycobiome as a therapeutic 

target in cancer. 

The impact of demographic and clinical factors on the bacterial and viral components of the 

tumor microbiome has been thoroughly investigated8–10, but little is known about their 

association with the cancer mycobiome. In a multicohort analysis it was shown that  enteric 

mycobiota was altered in CRC, and that variation of fungal communities among cohorts was 

significantly associated with disparities in population, such as continent, sex and disease stage6. 

However, to the best of our knowledge, the effect of demographic factors on the variability of 

fungal species in cancer was not analyzed systematically to date. Comprehending the 

ramifications of these factors can improve disease understanding and treatment. The majority 

of studies assessing the tumor mycobiome to date have been conducted on relatively small and 

homogenous sample populations.11,12 This underscores the need for a comprehensive 

exploration of the impact of various factors to ensure the validity of conclusions drawn from 

such analyses.11,12 

Recently, Narunsky-Haziza et al. characterized the tumor mycobiome in 17,401 tumor samples 

covering 35 cancer types 13. This work followed the extensive study of bacterial and viral 

microbiomes across various cancer types by Poore et al.14. We wished to study the demographic 

mycobiome variability using the data of ref13. However, that data was subject to some of data 

processing methods employed by Poore et al., which were subsequently criticized15. Briefly, 

three issues were identified: Insufficient filtering of human reads, identification as important 

of bacterial genera with no previous records of existence in human, and artificial signals 

resulting from improper data transformation and batch-correction process. 

In this study, we set out to study the association between fungi abundance and patient 

characteristics in tumors, using the mycobiome data of Narunsky-Haziza et al. We first 

reevaluated the data in view of the methodological critiques. We show that one of the three 

issues persists, and propose a methodology to rectify it. This is achieved by applying multiple 

batch correction and normalization procedures. Then, we identify associations between various 

clinical and demographic factors and the abundance of fungi within the tumor.  To mitigate 

potential confounding effects and enhance the robustness of our analyses, we employed both 

propensity scores and Inverse Probability of Treatment Weighting (IPTW) 16,17.. 

 

Methods 

Data: We acquired normalized and read raw counts of intratumor fungal abundance, 

categorized by species, from 14,495 individual samples originating from The Cancer Genome 

Atlas (TCGA)18. Samples were labeled by tumor type, sex, age at diagnosis, and race, 

encompassing a total of 32 distinct tumor types. The dataset was available from Narunsky-

Haziza at al. [NH22] (detailed information provided in Supplementary Information 1). We 

focused exclusively on 5,002 RNA-seq samples that were categorized as primary tumors 

(Figure 1). Additionally, Body-Mass Index (BMI) values were extracted for a subset of the 

samples from Hu et al.19. 

 

Data Processing: NH22 employed a multistep pipeline for the retrieval of raw counts of 

metagenomic data. Briefly, reads deemed human or viral, too short or of poor quality were 
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filtered out. The remaining were categorized by microbial species and underwent an additional 

decontamination step. Reads that mapped to a microbial reference genome were tabulated as 

hits. Results were summarized in a table where samples constituted the rows and microbial 

genome IDs the columns, containing the abundance of each species in each sample. This 

Decontaminated Fungal Raw Count (NH22-DFRC) table served as the basis for subsequent 

downstream analyses. Two additional processing steps were applied on that dataset : data 

transformation using voom20 (log-CPM and quantile normalization) and batch correction using 

snm21. This produced the Decontaminated Fungal Normalized data matrix (NH22-DFN, 

Supplementary Information 1).  

 

Critique of data processing techniques. NH22 used some of the same data processing 

methods previously employed by Poore et al. [P20], which were subsequently criticized by 

Gihawi et al. [G23]. Three main concerns were raised: (1) A considerable fraction of the 

genomic reads initially categorized as bacterial were, in fact, human. This occurred due to 

inaccuracies in the genomic database and the computational methodologies employed. (2) The 

data contained artificial signals, where bacterial genus with almost no reads in the data were 

deemed important for cancer classification. This happened due to the transformation methods, 

which were based on inappropriate statistical assumptions. (3) Some genus identified by the 

models as important had no previous records of existence within the human microbiome. The 

latter two issues were also highlighted in an earlier study22. In response, the authors of P20 

asserted that their analytical approach was refined in their subsequent study of NH22, and that 

the aforementioned concerns have been adequately addressed23,24. 

 

Cohort enhancement in NH22: Narunsky-Haziza et al. expanded and improved the dataset in 

multiple ways: They added data from 1,183 tumor and normal tissues, which underwent 

additional procedures for detection of fungal contamination (WIS dataset). The TCGA data 

was reprocessed for better alignment and computational decontamination, and fungi species 

found were filtered against those found in WIS, in the Human Microbiome Projects' gut 

mycobiome cohort (REF) and in a literature review of 100+ publications. Ultimately, this 

process led to the exclusion of 95 fungal species as potential contaminants, while retaining 224 

species as bona fide non-contaminants in the dataset. In particular, this process alleviated the 

third concern, as only fungi previously reported in human were included in the analysis. 

 

Testing the number of microbial reads: We wished to test if the critique on inflated number 

of microbial read was true on the NH22 data. Gihawi et al. studied in detail three TCGA cancer 

types: bladder urothelial carcinoma (BLCA, n=683), head and neck squamous cell carcinoma 

(HNSC, n=334), and breast invasive carcinoma (BRCA, n=238). They reanalyzed these 

datasets using a stricter pipeline, thus producing novel, and lower bacterial raw counts for these 

cancer types (referred to as G23-BRC). To test the critique, we compared bacterial raw counts 

from NH22, P20 and G23, see supplementary information 1. To ensure an equitable 

comparison, only those samples and bacterial genera common to G23-BRC, NH22-BRC, and 

P20-BRC were analyzed, yielding data from 716 samples (BRCA, n=232, HNSC, n=330, 

BLCA, n=154), spanning 155 genera. Results were compared by Pearson correlation and p-

values were derived by student’s t-test for correlation, and the Mann-Whitney (MW) test. 

Furthermore, to overcome possible sample size differences across samples, we computed the 

abundance ratio between pairs of genera within each sample and calculated the correlation of 
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these pairwise ratios between samples. To avoid dependency between different ratios, we 

randomly subsampled sets of 77 disjoint genus pairs (covering together 154 distinct genera) 

and computed the correlation of their ratios. This process was repeated 2,000 times, obtaining 

a distribution of correlation values for each dataset. 

 

 

Testing the effect of normalization. G23 argued that the data transformation and batch-

correction procedures applied in P20 (voom-SNM) generated the reported artificial signals. 

Since NH22 employed the same normalization methods, we wished to assess whether a similar 

artificial signal was present in that dataset. We focused on fungi species that were among the 

10 most important features in the classifiers built in NH22 for distinguishing between tumor 

and normal samples in cancer types showing good classification (AUPR>0.8 and AUROC>0.9) 

(Supplementary Information 1). We sought such species with raw count of zero for more 

than 95% of the samples, reasoning that their contribution to the classification task should be 

negligible. We also compared the values of these species between the raw counts (NH22-

DFRC) and the normalized dataset (NH22-DFN). 

 

Alternative normalizations. We used several batch-correction and transformation methods on 

the NH22 data instead of the voom-SNM normalization. Methods for data transformation 

included: Centered-Log Ratio25 [CLR] (with zero values  offset to 1), CLR_C26, a variant of 

CLR that imputes zero counts, Relative abundance, and voom20. voom was utilized after log-

CPM transformation and quantile normalization as in NH22 and P20. For batch correction we 

tested ComBat27, Batch Mean Centering28 [BMC], MMUPHin29 and PLSDA30. RBE31 

produced equivalent results to BMC in our tests, so we did not include it. To avoid any potential 

data leakage, we selected only unsupervised batch correction methods. In our analysis, we 

tested all combinations of transformation and batch correction methods listed above. It is 

noteworthy that MMUPHin specifically accepts raw counts or relative abundance counts as 

input and produces the same types of data as output. Therefore, we first applied MMUPHin to 

our data and then the data transformation. In all other cases the transformation preceded batch 

correction. Additionally, since PLSDA can be used only after CLR transformation, we used it 

only with CLR and CLR_C. In total, we applied 14 combinations. 

 

Fungal differential abundance: We gathered tumor and patient characteristics from the 

TCGA dataset. Tumor factors included tumor stage and histological type, and patient attributes 

included age at diagnosis, sex, and race. Five independent variables were evaluated: Sex, age, 

(i.e., old (age≥70) vs. young (age < 70)), and pairwise race comparisons: European vs. Asian, 

European vs. African, and Asian vs. African. Our dependent variables were the fungal species.  

 

To mitigate potential confounding effects, we employed a two-step approach. First, we 

computed propensity scores using logistic regression based on the independent variables. 

Subsequently, we applied the Inverse Probability of Treatment Weighting (IPTW) scheme as 

performed in 16,17. Categorical variables were subjected to one-hot encoding, and tumor stage 

was categorized into four levels (1, 2, 3, 4) to facilitate the analysis (for example 3A, 3B and 

3C were considered as 3). This procedure was instrumental in correcting confounding bias. We 

ensured that all the potential confounders were well-balanced between the groups, with 

standardized differences of less than 10%, in line with previous research17,32. For each 
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transformed and batch-corrected fungal specie, we fitted a linear regression model with the 

IPTW weights and computed the model’s p-value. Correction for multiple hypotheses was done 

by Bonferroni’s method. Species with P-value<0.05 were deemed statistically significant. 

Notably, when evaluating the effect of a patient characteristic on fungal species, we excluded 

it from the IPTW calculation. Thus, we repeated the IPTW procedure for each independent 

variable and for each cancer type with 20 or more samples in each of two groups.  

 

Body mass index (BMI) was available for a subset of the samples. We examined its influence 

(binarized into obese [BMI≥30] vs. non-obese [BMI<30] categories), considering all other 

patient characteristics (age at diagnosis, sex, race) as potential confounders in IPTW. All data 

processing and statistical analyses were carried out using R statistical software version 4.2.0 

and the Python programming language 3.4. 

 

Results 

We obtained data of 14,495 samples from the TCGA and following the application of exclusion 

criteria (Methods) were left with 5,002 samples of tumors that had RNA-Seq data, information 

on the sequencing center and patient characteristics (Figure 1A). The number of samples per 

cancer type varied between 916 in Kidney Renal Clear Cell Carcinoma (KIRC) and 64 in 

Kidney Chromophobe (KICH) (Figure 1B). The distribution of demographic characteristics 

varied across cancer types. For example, 99% of BRCA samples were of females vs. 54% in 

Lung Adenocarcinoma (LUAD). In all cancer types the most prevalent race was Europeans. 

The distribution of the age, BMI, tumor stage and histological type also varied between cancer 

types (Supplementary Table 1). 

Recently, Gihawy et al. (G23) raised concerns regarding the validity of the analysis of 

microbiome data in the TCGA by Poore et. al (Nature, 2020) (P20). As NH22 used some of the 

same preprocessing methods, we first wished to ensure the validity of the NH22 data, by 

checking these concerns on it (see Methods for further details). One concern was an inflated 

microbial read counts. To check this, we compared the data of NH22, P20 and the subset of 

data of three cancer types that was re-analyzed in G23. To ensure an equitable comparison, 

only samples and bacterial genera common to G23, NH22, and P20 were analyzed, yielding 

716 samples (BRCA, n=232, HNSC, n=330, BLCA, n=154) spanning 155 genera. The total 

number of bacterial reads in NH22 was 2-3 magnitudes of order lower than in P20, and 1-2 

magnitude of order higher than in G23 (Figure 2A). Similar ratios were noted in the 

distributions of the bacterial read counts per sample (Figure 2B). Thus, the differences between 

NH22 and G23 are indeed less significant than between P20 and G23. Furthermore, the read 

count per sample of G23 showed stronger correlation with NH22 than with P20 (𝑟 = 0.54 vs. 

𝑟 = 0.02, Figure 3A, 3B). Similar trends were observed when each cancer type was evaluated 

separately (Figure 3C, 3D). 

 

Next, we compared the bacterial data of NH22 and G23 at the genus level. The total number 

of reads per genus were correlated (𝑟 = 0.67, p=4.17E-21, Figure 4A), and this correlation 

persisted in two of three cancer types when analyzed separately (BRCA: 𝑟 = 0.323, p=4.01E-

05,  HNSC: 𝑟 = 0.757, p=2.83E-30, BLCA: 𝑟 = 0.025, p=0.075, Figure 4C). P20 was far 

less correlated to G23 in this analysis (Figure 4B, 4D). 
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As an additional test that avoids potential differences in the total read counts among the 

datasets, we computed the ratios between read counts of different genera within each dataset 

(pairwise ratios) and then calculated the correlation between these ratios in NH22 and G23, 

and in P20 and G23 (taking steps to avoid dependency, see Methods).  The correlation of NH22 

to G23 was significantly higher than that of P20 to P23 (p=5.59E-132, Supplementary Figure 

1). Similar results were observed per cancer type (results not shown). 

 

Next, for each bacterial genus and cohort, we computed the correlation between the genus’ read 

counts across samples, and plotted the distribution of the correlation values across the genera.  

The correlations between NH22 and G23 were significantly higher than between P20 and G23 

(Figure 5, Supplementary Table 2). Analyzing separately each of the five genera with the 

highest number of samples with no zero read counts in G23 were (Supplementary Figure 2) 

Pseudomonas (NH22 vs. G23; 𝑟 = 0.684, p=1.2E-99, P20 vs. G23; 𝑟 = 0.02, p=0.6), 

Staphylococcus (NH22 vs. G23; 𝑟 = 0.565, p=2.7E-50, P20 vs. G23; 𝑟 = −0.155, p=3.3E-

05), Acinetobacter (NH2 vs. G23; 𝑟 = 0.197, p=1.1E-06, P20 vs. G23; 𝑟 = −0.02, p=0.6), ), 

Corynebacterium (NH22 vs. G23; 𝑟 = 0.959, p=8.8E-306, P20 vs. G23; 𝑟 = 0.957, p=3.3E-

313) and Klebsiella (NH22 vs. G23; 𝑟 = 0.944, p=1.4E-171, P20 vs. G23; 𝑟 = 0.017, p=0.7).  

Similar results were obtained when repeating this analysis per cancer type (Supplementary 

Figure 3,4,5 and Supplementary Table 2).  Overall, the analysis results showed that the issue 

of inflated bacterial read count in P20 raised by G23 was addressed to a large extent in NH22, 

and that many characteristics of the NH22 data were similar to that in G23. 

Another important issue raised by G23 in P20 was the procedure used to remove batch effects 

and convert the raw counts to normalized values. P20 used for that purpose Voom-SNM20,21. 

Cancer type classifiers built in P20 using the processed data included as important features 

bacterial genera that were in fact absent in most or all samples. Since Voom-SNM was also 

used in NH22, we wished to test if fungi-based classifiers built by NH22 also suffered from the 

same problem. We examined the ten genera with the highest feature importance used in the 

classifier of primary tumor vs. normal tissue, and found some examples of this phenomenon: 

 

Parastagonospora was the 3rd most important feature for the classifier in prostate 

adenocarcinoma (PRAD). Out of 666 PRAD samples of primary tumor and normal tissue (of 

both RNA-seq and WGS), 665 had zero Parastagonospora  reads and only one had one read. 

As illustrated in Figure 6, the extremely non-random and right skewed distribution of the 

primary tumor normalized values–all of which except of one started as raw values of zero–

makes it easy for a machine learning classifier to separate the PRAD primary tumor samples 

from normal solid tissue samples. Based on that distribution a model that splits the samples 

using the threshold 12.457 labels 332/351 of the positive samples correctly (PPV=94.6%), with 

relatively high sensitivity of 55.33%.  Ramularia was the 6th most important feature for the 

classifier in KIRP. Out of 345 KIRP samples, 344 had zero Ramularia reads and one had one 

read. The distributions of the normalized values are extremely different (Supplementary 

Figure 6). A threshold of 17.36 obtains PPV=95.6% with sensitivity of 49.84%. We conclude 

that following Voom-SNM normalization, false signals persist in the NH22 processed data. 

Our main question in this study was whether fungi species abundance varies in cancer patients 

with different demographic characteristics. Batch correction and data normalization are key for 
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the answer, so instead of Voom-SNM, we used 14 combinations of normalization and batch 

correction approaches  (Figure 7 and Methods). NH22 used SNM to correct two types of batch 

errors: specimen type (RNA-seq or DNA) and the sequencing center of origin. Since most 

current batch correction methods were designed to correct one type of error, we decided to use 

only the RNA-Seq samples, since they cover most of the cohort (8,992/10,997 tumor samples). 

We used propensity score and IPTW for correction of potential confounders: age, sex, race, 

tumor stage, and histological type (Methods). IPTW was applied to each demographic factor 

separately. Then, for each fungal species, a linear regression was fitted to the IPTW weights, 

and p-values were Bonferroni corrected. To err on the side of caution, we sought species that 

were significant in all 14 combinations. Twenty-four species showed consistent statistically 

significant differences between race groups (Table 1).  In the comparison between European 

vs. African there were five significant fungal species in colon adenocarcinoma (COAD):  

Candida orthopsilosis, Penicillium expansum, Diutina rugosa, Aspergillus alliaceus, 

Aspergillus pseudonomius, two species in LUAD: Diutina rugosa, Aspergillus pseudotamarii, 

and two species in Lung Squamous Cell Carcinoma (LUSC): Candida orthopsilosis, 

Aspergillus welwitschiae. In the comparison between European vs. Asian there were nine 

significant fungal species in Stomach Adenocarcinoma (STAD): Aspergillus clavatus, 

Aspergillus terreus, Aspergillus aculeatus, Penicillium digitatum, Pestalotiopsis fici, 

Penicillium expansum, Aspergillus novofumigatus, Aspergillus campestris ,Ramularia collo-

cygni and one species, Metarhizium robertsii, in Liver Hepatocellular Carcinoma (LIHC). In 

the comparison of Asian vs. African populations, one species, Candida auris, was found in the 

Thyroid Cancer (THCA). In comparison of Males vs. Females, one species, Purpureocillium 

lilacinum, was found in STAD. In comparison of BMI≥30 vs. BMI<30,  one specie, Diutina 

rugose, was found in LIHC. In comparison of old (Age >70) vs. young (≤70) one species, 

Hyphopichia burtonii, was found in LIHC  and one species, Aspergillus oryzae, was found in 

BRCA.  As an additional test, we also compared the raw count distributions of these significant 

fungi. Remarkably, 21 out of 22 species demonstrated statistically significant associations for 

the corresponding cancer type and characteristic, even without undergoing normalization, 

batch correction, or adjustment for confounders (Supplementary Table 3). 

 

Discussion 

We aimed to investigate the effect of different demographic factors on the abundance of 

different fungal species within cancer tumors. By analyzing a dataset comprising over 5,000 

tumor samples from the TCGA, we revealed distinct patterns of fungal abundance associated 

with race, gender, age, and obesity, highlighting the complex interplay between demographic 

factors and the tumor microenvironment. Differences across races were mostly observed. These 

findings underscore the importance of considering demographic diversity in cancer research, 

particularly in the context of the intratumor mycobiome. By accounting for such factors, can 

help researchers to understand the underlying cancer mechanisms better.  

We took several steps to check recent concerns raised about microbial analyses in cancer. In 

particular, we developed a pipeline that utilizes a consensus of multiple methods for batch 

correction and data normalization and also utilized propensity scores when calling association 

between a particular fungus and a particular demographic factor in a certain cancer. This 
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strategy increases robustness and reliability of the results and reduces the risk of spurious 

associations. 

Distinct differences in Candida orthopsilosis abundance were noted between European and 

African populations within samples of COAD and LUSC. Additionally, variations in Candida 

auris abundance were observed between African and Asian populations within samples of 

THCA. Previous research has shown a close relationship between Candida species and tumors 

of the colon and stomach33. Specifically, intestinal Candida has been associated with the 

development of hepatic and gastric carcinogenesis34,35.  

Significant variations in the abundance of various Aspergillus species were observed between 

European and African populations in samples of COAD, LUSC, and LUAD. Furthermore, 

differences were noted between European and Asian populations in samples of STAD. A 

previous study has indicated an association between Aspergillus rambellii in the gut 

mycobiome and CRC. 6 The study accounted for several potential confounding factors such as 

age, sex, BMI, and tumor location, but it did not assess the potential impact of race.  

Our study contributes to our understanding of the intricate relationships between demographic 

factors and the intratumor mycobiome. It also emphasizes the importance of incorporating 

demographic diversity into cancer research and clinical practice. By accounting for the 

influence of race and other demographic variables on the tumor microenvironment, future 

studies may develop more personalized and effective strategies for cancer prevention, 

diagnosis, and treatment, and to proposing novel therapeutic interventions targeting the tumor 

mycobiome. Such advances have the potential to ultimately improve patient outcomes and 

enhancing precision cancer medicine. 

 

Code Availability 

The open-source Python and R code for the computational analysis in this paper will be made 

available upon publication. 
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Figure 1: (A) Study Design. (B) The number of analyzed samples of each cancer type. 
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Figure 2: Statistics on the count of bacterial reads after filtering in the P20, NH22 and G23 

datasets.  (A) Total count. (B) Boxplots depicting the distribution of the counts per sample.  

 

 

 

 

Figure 3: Correlation plots of the total bacterial read count per sample. (A) G23 vs. NH22. 

(B) G23 vs P20. (C) G23 vs. NH22, analyzed separately for each cancer type. (D) G23 vs 

P20, analyzed separately for each cancer type. Each point corresponds to a sample. 
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Figure 4: Correlation plots of bacterial read count per genus. (A) Total count, G23 vs. NH22 

(B) Total count, G23 vs. P20. (C) Correlation analyzed by cancer type, G23 vs. NH22. (D) 

Correlation analyzed by cancer type, G23 vs. P20. Each point corresponds to a genus. 
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Figure 5: Distribution of the correlation between genera read counts across samples. The 

distribution includes the values for all genera. Each figure shows the correlations for NH22 

vs. G23 and P20 vs. G23. (A) all cancers. (B) HNSC. (C) BLCA. (D) BRCA. 
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Figure 6: The effect of Voom-SNM normalization. Distribution of normalized counts of 

Parastagonospora for Prostate Adenocarcinoma primary tumor samples (PRAD, blue) vs. 

normal tissue samples (orange). Before the normalization, out of 666 samples, 665 had zero 

count and one had a count of 1. 

 

Figure 7: The pipeline used to clean and normalize the fungi data. The central part shows the 

combinations of transformation and batch correction used. 
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Tables 

Cancer 

Type 

Asian vs. 

European 

Black vs. 

European 

Black vs. 

European 

Male vs. 

Female 
Age > 70 BMI > 30 

COAD - 5 - 0 0 - 

LIHC 1 - - 0 1 1 

LUAD - 2 - 0 0 - 

LUSC - 2 - 0 0 - 

STAD 9 - - 1 0 - 

THCA 0 0 1 0 0 - 

PAAD - - - 0 0 - 

BRCA 0 0 0 - 1 - 

KIRP - 0 - 0 0 0 

BLCA 0 0 0 0 0 0 

READ - - - - 0 - 

KIRC - 0 - 0 - - 

KICH - - - 0 - - 

 

Table 1: The number of fungal species that were identified as statistically significant across 

all 14 combinations of normalization and batch correction per each comparison. 
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