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Abstract 
 

 We live in an exciting era where massive biological and biomedical datasets have been 

produced, allowing us to discover novel biological insights on genome regulation, which describes 

how the cell controls the amount and exact composition of proteins it produces from each gene in a 

given circumstances. A key element in this effort is the computational tasks of discovering noncoding 

regulatory elements and how they are spatially organized in a 3D genome structure to control 

transcription. Moreover, understanding how cells obtain specific 3D structures can provide valuable 

insights into the cell type-specific transcriptional events that ultimately dictate cell fate decisions. In 

this thesis, we studied the practical and statistical aspects of the regulatory elements and their spatial 

organization from a broad variety of data sources covering diverse cell types. By utilizing techniques 

from probabilistic modeling, and statistical and deep learning we were able to handle complex large 

scale data.  

In this work, we developed novel methods for inferring enhancer-promoter interactions. The 

first method, expanded from the MSc studies, infers interactions showing high correlation between the 

enhancer and promoter activity patterns across many cell types. The second method dissect which of 

those interactions are cell type-specific. We showed that both methods outperform existing methods 

and provide novel biological insights. Lastly, using deep learning techniques, we answered on various 

questions on how to properly predict functional silencers and what defines them epigenetically. 
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Overview of the projects included in 
this thesis 
 
 
1. Predicting global enhancer-promoter maps 

 
Recent sequencing technologies enable joint quantification of promoters and their 
enhancer regions, allowing inference of enhancer–promoter links. We show that 
current enhancer–promoter inference methods produce a high rate of false positive 
links. We introduce FOCS, a new inference method, and by benchmarking against 
ChIA-PET, HiChIP, and eQTL data show that it results in lower false discovery rates 
and at the same time higher inference power. By applying FOCS to 2630 samples taken 
from ENCODE, Roadmap Epigenomics, FANTOM5, and a new compendium of GRO-
seq samples, we provide extensive enhancer–promotor maps 
(http://acgt.cs.tau.ac.il/focs). We illustrate the usability of our maps for deriving 
biological hypotheses. 
 
This study was published as: 
FOCS: a novel method for analyzing enhancer and gene activity patterns infers an 
extensive enhancer-promoter map 
Tom Aharon Hait, Ron Shamir and Ran Elkon 
Genome Biol 2018, 19:56 
 

2. Predicting cell-type specific enhancer-promoter maps  
 
Spatiotemporal gene expression patterns are governed largely by the activity of 
enhancer elements, which engage in physical contacts with their target genes. 
Identification of enhancer–promoter links that are functional only in a specific subset 
of cell types is a key challenge in understanding gene regulation. We introduce CT-
FOCS (cell type FOCS), a statistical inference method that uses linear mixed 
effect models to infer EP links that show marked activity only in a single or a small 
subset of cell types out of a large panel of probed cell types. Analyzing 808 samples 
from FANTOM5, covering 472 cell lines, primary cells and tissues, CT-FOCS inferred 
such EP links more accurately than recent state-of-the-art methods. Furthermore, we 
show that strictly cell type-specific EP links are very uncommon in the human genome. 
 
This study was published as:  
CT-FOCS: a novel method for inferring cell type-specific enhancer–promoter maps 
Tom Aharon Hait, Ran Elkon and Ron Shamir 
Nucleic Acids Research, Volume 50, Issue 10, 10 June 2022, Page e55 
 

3. Inferring transcriptional activation and repression activity maps in single- 
nucleotide resolution using deep-learning  
 
Recent computational methods for inferring cell type-specific functional regulatory 
elements have used sequence and epigenetic data. Active regulatory elements are 
characterized by open-chromatin state, and the novel experimental technique ATAC-
STARR-seq couples ATAC-seq assays, which capture such genomic regions, with a 

http://acgt.cs.tau.ac.il/focs
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functional assay (STARR-seq) to selectively examine the regulatory activity of 
accessible DNA. ATAC-STARR-seq may thus provide data that could improve the 
quality of computational inference of active enhancers and silencers. Here, we propose 
a novel regression-based deep learning (DL) model that utilizes such data for predicting 
single nucleotide activation and repression maps. We found that while models using 
only sequence and epigenetics data predict active enhancers with high accuracy, they 
generally perform poorly in predicting active silencers. In contrast, models building 
also on data of experimentally identified enhancers and silencers do substantially better 
in the identification of active silencers. Our model predicts many novel enhancers and 
silencers in the model lymphoblastoid cell line GM12878. Epigenetic signatures of the 
novel regulatory elements detected by our model resemble the ones shown by the 
experimentally validated enhancers and silencers in this cell line. ChIP-seq enrichment 
analysis in predicted novel silencers identify a few significant enriched transcriptional 
repressors such as SUZ12 and EZH2, which compose the PRC2 repressive complex. 
Intersection with GWAS data found that the novel predicted enhancers are specifically 
enriched for risk SNPs of the Lupus autoimmune disease. Overall, while silencers are 
still poorly understood, our results show that our DL-model can be used to complement 
the experimental results on regulatory element discovery. 
 
A manuscript summarizing this study is available as: 
Inferring transcriptional activation and repression maps in single-nucleotide 
resolution using deep-learning 
Tom Aharon Hait, Ran Elkon and Ron Shamir 
Research Square, Preprint, 23 August 2023 

 

 

 

 

 
 

 

 

 
 

 



8 
 

1. Introduction 
 

1.1. Biological background 

This chapter introduces the biological concepts and definitions needed to understand 

the goals and computational problems addressed in this thesis. For more information on basic 

biology, please refer to Alberts et al. [1]. For gene regulation, enhancers, silencers, and 

epigenetics, please refer to Shlyueva et al. and Segert et al. [2,3]. We also discuss current 

experimental technologies that allow us to systematically identify genomic regions of interest 

and measure their signals for our computational analyses. 

 

1.1.1 Fundamentals of Cellular Biology 

Living organisms consist of cells, which serve as the fundamental units of life. The 

field of cell biology focuses on examining the structure, function, and behavior of cells. The 

regulation of cellular and organismal functions and development is governed by 

deoxyribonucleic acid (DNA). DNA is housed within the cell's nucleus and contains functional 

segments known as genes. Genes can be categorized into two main groups: coding genes and 

non-coding genes. Coding genes contain instructions for protein synthesis, whereas non-coding 

genes contain instructions for the production of non-coding ribonucleic acids (ncRNAs), which 

do not undergo protein translation but regulate various cellular functions. 

Non-coding regions proximal and upstream to genes are known as promoters. They 

encompass sequences capable of binding proteins and regulating gene transcription. Enhancers, 

another explored category of regulatory elements (REs), are distal regions from the genes that 

also bind activator proteins to stimulate gene transcription. Silencers, an understudied type of 

REs, are proximal and distal regions from the gene that bind repressor proteins to decrease gene 

transcription. 

Inter-individual differences in coding sequences, as well as in non-coding regulatory 

regions, such as enhancers and silencers, contribute to the genetic variation observed in human 

DNA sequences. Single nucleotide polymorphisms (SNPs) are variations occurring at a single 

nucleotide position. Non-coding regions exhibit a higher frequency of SNPs compared to 

coding regions [4]. These variations have the potential to impact an individual's susceptibility 

to diseases, their response to pathogens, chemicals, and other factors. 

By comprehending the mechanisms through which non-coding regulatory regions 

interact with genes and impact gene transcription in a cell type specific manner, we can 

establish cell type specific connections between variations in non-coding regions and the 

transcription levels of specific genes. This deeper understanding of genetic factors affecting 
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disease susceptibility can contribute to advancements in understanding disease-related genetic 

predispositions. 

 

1.1.2 Gene regulation 

Gene regulation is a fundamental process in which cells increase or decrease the 

amounts of gene products, RNAs, and proteins. This process is crucial for the adaptation and 

versatility of organisms in response to their environment, allowing cells to express specific 

RNAs and proteins when required. The lac operon, discovered by Jacques Monod in 1961, was 

the first studied instance of gene regulation. The expression of some enzymes involved in 

lactose metabolism in Escherichia coli bacteria is only triggered by the presence of lactose and 

the absence of glucose. In multicellular organisms, gene regulation drives cellular development 

and differentiation in embryos, resulting in different cell types that possess unique gene 

expression profiles originating from the same genome sequence. Variations in gene expression 

profiles can lead to differences in RNA/protein abundance and ultimately impact the phenotypic 

traits of the cells. 

The genetic information model, also known as the central dogma of molecular biology 

(see Figure 1a), explains the transfer of genetic information from DNA to RNA (through 

transcription) and from RNA to protein (through translation). This transfer of genetic 

information typically follows a unidirectional flow, although some information flow can occur 

from RNA to DNA. 

Transcriptional regulation of gene expression is controlled by sequence-specific 

proteins known as transcription factors (TFs), which bind to specific regulatory regions in the 

genome. The promoter region is a central regulatory element (RE) that initiates gene 

transcription and is located near the transcription start site (TSS) of the gene (see Figure 1b for 

gene structure). The initial product of gene transcription is a pre-mRNA consisting of 5' and 3' 

untranslated regions (UTRs), exons, and introns. The pre-mRNA is then spliced to generate 

mature RNA by removing introns and UTRs and joining exons together (see Figure 1a). The 

splicing process is also regulated by specific sequences within introns and exons and by 

sequence-specific proteins [5]. 

Enhancers are a type of REs that positively control transcription by forming a physical 

link with specific promoters, facilitated by co-factor proteins (as shown in Figure 2a). While 

the promoter sequence near the TSS can assemble the RNA-POL-II (hereafter referred to as 

POL2) machinery, transcription is usually low without enhancer-promoter  (EP) links that help 

to stabilize the POL2 machinery [2]. 

Silencers are REs that negatively control transcription, namely decrease their target 

gene expression levels. While REs such as enhancers, insulators, and promoters, have been 

studied extensively over the past decade, silencers received less attention, mainly because it has 
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been harder to validate them experimentally [3,6]. Distal silencers can form physical links with 

specific promoters as enhancers do [7]. Characterizing functional silencers is currently an area 

of great interest with potential impact on lineage development and disease studies  [3,8]. 

a 

 

b 

 

Figure 1. Gene structure and regulation. (a) The central dogma of molecular biology. The genetic 
information flow starts from the DNA and ends with the protein product. The gene regulation 
process controls the transcription step. (b) Gene structure. The promoter is bound by sequence 
specific TFs proximal to the gene. TSS – transcription start site, TTS – transcription termination 
site, CDS – coding DNA sequence, TF – transcription factor, 5UTR – 5 prime un-translated region, 
3UTR – 3 prime un-translated region. 

1.1.3 Chromatin organization 

Chromatin is a complex mixture of macromolecules that resides in the nuclei of cells. 

It is composed of DNA, RNA, and protein, and serves several essential functions, including 

compacting and condensing DNA, facilitating cell division, protecting DNA from damage, and 

regulating gene expression and DNA replication. The organization of chromatin is regulated by 

a variety of factors, and this organization is critical for the proper execution of these functions. 

In 1974, Don and Ada Olins discovered the nucleosomes, which play a crucial role in 

organizing the chromatin [9]. Nucleosomes consist of eight histone proteins that form an 

octameric core around which the DNA is wrapped twice, resulting in a unit of approximately 

147 base pairs in length [10]. Series of higher order structures eventually form a chromosome, 

providing an additional layer of regulation for gene expression [11,12]. The folding and 

unfolding of DNA around nucleosomes are regulated by chemical modifications to the 

nucleosomes and by nucleosome displacement, as shown in Figure 2b. 
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The nucleosome core is composed of eight histones, two copies each of the histones 

H2A, H2B, H3, and H4. The degree to which DNA wraps around nucleosomes is regulated by 

chemical modifications made to specific sites on the histone proteins. For example, the event 

of histone H3 acetylation at lysine site 27 is denoted by H3K27ac. A single H3 methylation at 

lysine 4 is denoted H3K4me1. The function, such as an enhancer or a promoter, of those histone 

post translational modifications (PTMs) is mediated by specific complexes, which can read 

them and their combinatorial action [13]. For example, histone PTMs occur often in 

nucleosomes located near active enhancer regions, as depicted in Figure 2b.b. Active 

promoters that are bound by POL2 are surrounded by nucleosomes that carry the H3K27ac and 

H3K4me3 modification, as shown in Figure 2b.c. These histone modifications can be 

quantified using high-throughput techniques like chromatin immunoprecipitation sequencing 

(ChIP-Seq). 

 

1.1.4 Enhancers 

Enhancers are short, 50-1500 base-pairs (bp), regions of DNA that when bound by TFs 

increase gene's transcription [14,15]. These TFs recruit co-factor proteins acting as activators 

or repressors. The combination of all of these TFs and co-factors determines the enhancer 

activity in regulating specific genes. Activity of enhancers has been shown to correlate with 

specific markers of the chromatin (see Fig. 2b), which control DNA packaging and accessibility 

for transcription.  

Enhancers were traditionally identified using enhancer trap techniques using reporter 

gene assays or by comparative sequence analysis between multiple species. For example, in 

flies, lacZ gene was used as a reporter and fused into the fly genome. If the reporter gene is 

fused near an enhancer then the lacZ expression reflects the expression pattern driven by that 

enhancer [16]. 

The emergence of more advanced genomic and epigenetic technologies allowed large-

scale identification of enhancers. Next generation sequencing (NGS) methods (see below) 

enable the large-scale identification of TF binding sites, characterization of extensive epigenetic 

profiles across many cell types, and detection of ncRNAs. Therefore, accurate computational 

regulatory region discovery and linking such regions to their target genes are now attainable 

goals. An example of NGS-based method is DNase I hypersensitive sites sequencing (DNase-

Seq), which enables identification of nucleosome-depleted, or open chromatin regions that can 

contain regulatory elements [17]. Computational methods for NGS data analysis include 

comparative genomics via sequence conservation of non-coding regions [18,19], clustering of 

known or predicted TF-binding sites [20], and supervised machine-learning approaches trained 

on known regulatory regions [21]. All of these methods have proven effective for regulatory 
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region discovery, but each has its own limitations, and each leads to some false-positive 

identifications [22]. 

Several consortia provided different high-throughput (HT) datasets covering hundreds 

of cell types and tissues for measuring enhancers and gene expression. The FANTOM5 

consortium provided data from cap analysis of gene expression (CAGE) deep-sequencing HT 

method [23]. CAGE is used for measuring enhancer and gene's TSS expression. The ENCODE 

and Roadmap consortia provided DNase-Seq and ChIP-Seq HT data for the detection of 

nucleosome depleted genomic regions (i.e., open chromatin regions) and measuring histone 

modifications in the flanking nucleosomes of these regions [24,25].  

FANTOM5 and ENCODE used their resources to predict functional interactions 

between enhancers and promoters of their target genes using pair-wise correlations. However, 

this method does not take into consideration the possibility that multiple enhancers contribute 

to enhancing the expression of the same gene [26]. In addition, this method is not capable of 

detecting cell type-specific EP links (i.e., EP links that are functional in few different cell types). 

Other projects seek EP links from contact interactions in the 3D genome architecture, which 

can be captured by Hi-C and ChIA-PET HT techniques [27–29]. However, currently a limited 

number profiles is available from Hi-C and ChIA-PET, and therefore, the confidence in the 

predicted EP links from these experiments is limited. It is important to note that functional 

association of an enhancer with a promoter (e.g., an EP link discovered using DHS-seq data) 

does not necessarily mean physical interaction (e.g., an EP interaction discovered using ChIA-

PET data), and vice versa. 

Elucidating cell type-specific EP links is a challenging task requiring more 

sophisticated methods that take advantage of multiple replicates per cell type instead of using 

naïve correlation-based methods. Detection of cell type-specific EP links can expand our 

understanding on gene regulation and may suggest different disease treatment approaches 

targeting enhancers in addition to the traditional gene-based therapies. 

1.1.5 Silencers 

Silencers are the repressive counterparts of enhancers. Silencers are DNA elements that 

when bound by repressive TFs reduce transcription from their target genes [3]. Although 

discovered more than 30 years ago [30,31], silencers have received less attention compared to 

enhancers, mainly because they were hard to identify experimentally [3,6]. 

 In 2020, two seminal studies have advanced the experimental discovery of silencers in 

human and mouse cells [32,33]. Pang and Snyder developed the repressive ability of silencer 

elements (ReSE) method. In ReSE, candidate open chromatin DNA elements are cloned 

upstream of a promoter driving expression of a pro-apoptotic protein, Caspase-9. With silencing 

activity of the cloned DNA element, the promoter will not be able to drive Caspase-9 

expression, not triggering apoptosis, and the cloned cell survives. Using this approach the 
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authors identified more than 2,500 and 1600 silencers in K562 myeloid and HepG2 hepatocyte 

cell lines, respectively. In a second study, Ngan et al. showed that target gene expression can 

be reduced as a result of chromatin interaction with distal silencers in mouse embryonic stem 

cells.  

 

a 

 

b 

 

Figure 2. Enhancers and chromatin accessibility controlled by histone marks.  (a) Enhancers located 
distal from gene X are linked with POL2 via co-factor TFs. Enhancers contain binding sites 
for sequence specific TFs. Nucleosomes are located in regions between enhancers and gene 
X. (b) Chromatin accessibility controlled by histone marks. These marks (H3K4me1/ 
H3K4me3/ H3K27ac/ H3K27me3) are found on the nucleosomes flanking open regulatory 
regions (enhancers or promoters). Open regions contain DNA binding sites for sequence 
specific TFs. Source: [2]. 
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To identify silencer-promoter (SP) links, the authors pulled down chromatin interactions 

mediated by the Polycomb repressive complex 2 (PRC2), a key inducer of gene silencing, using 

the ChIA-PET HT technology. Deletion of certain PRC2-mediated interactions resulted with 

transcriptional derepression of their interacting genes with noticeable phenotypes such as 

embryonic lethality. The authors also showed that some of the PRC2-bound silencer elements 

can transition into active enhancers in other tissues during development. Later on, additional 

studies published experimentally identified silencers using reporter assays [34,35]. Jayavelu et 

al. identified 3,001 K562 silencers using the massive parallel reporter assay (MPRA) method 

[34]. Hansen and Hodges identified 21,125 silencers in B cells by testing the repression activity 

of open chromatin regions using the self-transcribing active regulatory region sequencing 

(STARR-Seq) method [35]. 

In spite of the abovementioned studies on silencers, there is still no established 'silencer 

epigenetic signature' in the distribution of epigenetic marks and the binding of repressor 

proteins that is common to all silencers; instead they may fall into various subclasses, acting in 

distinct mechanisms [3]. Given the vast knowledge on enhancer and promoter chromatin 

signature, comparing them to those computationally found within putative silencers could 

expand our current knowledge on silencers. 

1.1.6 High-throughput omic technologies and the omics era 

With the completion of the human genome project (HGP) in April 2003, generating the 

first sequence of the human genome, a new era has emerged referred as "The omics era".  

Following the HGP, the realization that the DNA is not the sole component regulating complex 

biological processes led to the rapid development of multiple molecular techniques to analyze 

additional layers of genomics, epigenomics, transcriptomics, proteomics, and metabolomics, 

altogether referred to as "Omics" (Figure 3). These techniques allow scientists to investigate 

complex biological systems and improve our understandings of disease outcomes. 

Various HT technologies have been developed for investigating the information stored 

in biological molecules such as DNA, RNA and proteins. Each HT technology generates 

thousands to millions of values in a single experiment. Biological hypotheses can be drawn 

based on a single-omic analysis using a single HT technology, or based on a multi-omic analysis 

combining multiple HT technologies conducted at different cellular levels (Figure 3). Many 

datasets produced using HT technologies are freely available in public repositories, such as the 

ones provided by the National Center for Biotechnology and Information (NCBI). These 

datasets often require first extensive preprocessing to cope with high noise levels and then 

application of statistical and algorithmic methods to extract meaningful biological findings. 

Next Generation Sequencing (NGS) is a general name for a plethora of very deep HT 

sequencing technologies developed over the past two decades. NGS can provide millions of 

short sequences in a single run.  NGS has made genomic research several orders of magnitude 
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faster and cheaper than it was with Sanger sequencing [36], which was used in the human 

genome project. 

In the next sections we introduce the relevant high-throughput techniques used in this 

thesis. We also describe in general how NGS data is preprocessed and used for RE identification 

and quantification. 

 
Figure 3. Omics data. The diagram shows diverse omics, from the genome, epigenome, transcriptome, 
proteome and metabolome to the phenome. The main diagram shows a simplified information flow from 
the lowest genomic level to the highest metabolomics level in a cellular system. The top part lists the 
different data types that can be measured in each level. Red crosses indicate inactivation of transcription 
or translation. SNP, single-nucleotide polymorphism; CNV, copy number variation; LOH, loss of 
heterozygosity; TF, transcription factor; miRNA, microRNA, CSF, cerebrospinal fluid; ME, methylation; 
TFbs, transcription factor binding sites. Source: [37].  

 

1.1.6.1 Chromatin Immunoprecipitation sequencing (ChIP-Seq) 

ChIP-Seq is an NGS method that identifies single protein attachments along the DNA 

[38].  ChIP-Seq extracts DNA fragments attached to a certain protein using chromatin 

immunoprecipitation (ChIP) and then performs DNA deep sequencing to identify binding sites 

(BSs) of the DNA-associated protein (Figure 4). 

The detection of DNA-protein binding sites from ChIP-Seq read count data, commonly 

known as "peak calling", necessitates the development of computational tools. Among these 

tools, MACS stands out as a popular method [39]. MACS employs an empirical approach to 

model the shift size between two ChIP-Seq peaks flanking a given binding site on opposite 
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DNA strands. This modeling technique enhances the spatial resolution of predicted binding 

sites, as illustrated in Figure 5. 

ChIP-Seq is a valuable technique that can be employed to detect histone modification 

sites across the genome. For example, targeting histone marks such as H3K4me1 and H3K27ac 

for detecting active enhancers, or H3K4me3 and H3K27ac for detecting active promoters 

(Figure 2b). In addition, ChIP-Seq can be used to detect BSs of P300 and POL2 proteins within 

enhancers and promoters, respectively. ChIP-Seq is extensively utilized for comparative 

analyses between different cell types by dissecting BS preferences for one or more TFs. For 

instance, in a seminal study, nine chromatin marks were mapped across nine cell types to 

pinpoint REs and establish connections between enhancers and their target genes [40]. 

1.1.6.2 Chromatin accessibility assays 

Chromatin accessibility assays are methods for identifying nucleosome depleted 

genomic regions (also known as open chromatin regions). DNase-Seq, FAIRE-Seq and ATAC-

Seq are such assays [16] [40–41]. For example, the DNase-Seq technique is briefly described 

in Figure 6. The inferred locations (also called peaks) from these assays are widely used for 

enhancer and promoter identification since these regions are known to be open and bound with 

activator proteins. These methods were extensively used to computationally predict global 

maps of enhancer promoter (EP) interactions [43–46]. 

Unlike the ChIP-Seq technique that can identify direct BSs of a single known protein, 

chromatin accessibility techniques can identify short sequence segments that contain potential 

BSs (also known as footprints) of multiple unknown proteins [47–49]. For example, Vierstra et 

al. detected a total of 4.5 million footprints from chromatin accessibility across 243 human cell 

and tissue types [48]. These footprints can be further utilized to narrow down genomic intervals 

searched for enriched DNA sequences called motifs in a process called motif finding as done 

in Hait et al. [50].  
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Figure 4. ChIP-Seq workflow. First, the DNA is isolated from the nucleus and cross linked to the 
protein to prevent detaching during sonication process. Second, the DNA is sheared by sonication. 
Third, a protein-specific antibody is used to immunoprecipitate the target protein and to select 
only DNA fragments attached to the protein. In the final step, the proteins are separated from the 
DNA fragments, which are then subjected to sequencing and alignment against a reference 
genome. Source: https://en.wikipedia.org/wiki/ChIP_sequencing 
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Figure 5. ChIP-Seq peak calling. In a ChIP-Seq experiment, DNA fragments are sequenced from 
the 5' end and aligned to the genome, resulting in two tag distribution peaks (one on each strand) 
that flank the binding location of the protein or nucleosome of interest. This specific pattern, 
which is specific to each strand, enables the detection of regions enriched with the protein of 
interest. To approximate the overall distribution of all fragments, each tag location can be 
extended based on an estimated fragment size in the correct orientation. By counting the number 
of fragments at each position, a representation of the fragment distribution can be generated. 
Source: [51]. 
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Figure 6. DNase-Seq workflow. The nuclei are released from the cells and are digested with optimal 
concentrations of DNase I enzyme. The DNA is then blunt-ended, extracted, and ligated to 
biotinylated linker 1 (red bars). Biotinylated fragments (linker 1 plus 20 bases of genomic DNA) 
are digested with MmeI enzyme and captured by streptavidin-coated Dynal beads (brown balls). 
Linker 2 (blue bars) is ligated to the 2-base overhang generated by MmeI, and the ditagged 20-bp 
DNAs are amplified by PCR, sequenced and aligned to the reference genome. Source: [52].  
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1.1.6.3 Methylation assays 

Methylation assays quantify methylation levels at cytosine-guanine (CG) nucleotide 

sites (also known as CpG sites) within the genome. DNA methylation has a significant role in 

chromatin regulation and structure during development [53]. Changes in DNA methylation 

level have also been shown to contribute to cancer development and various diseases [54]. For 

example, a tumor suppressor gene silencing resulting from hypermethylation of CpG sites 

within its promoter is associated with tumorigenesis [54]. In addition, difference in methylation 

levels at enhancer elements between normal and tumor lung tissues has also been shown to 

contribute to tumorigenesis [55]. Methylation is also known to affect the DNA binding 

specificity of many TFs [56]. These changes and functions are governed by three classes of 

proteins that can write, erase, and read DNA methylation [57]. 

 There are two types of methylation assays: chip-based and NGS-based. The chip-based 

technique measures a fixed set of CpG site probes from the genome. The number of probes in 

a chip varies from 27K (e.g., Illumina Infinium HumanMethylation27 BeadChip) to more than 

850K (e.g., Illumina Infinium MethylationEPIC BeadChip). The whole genome bisulfite 

sequencing (WGBS) and the reduced-representation bisulfite sequencing (RRBS) are NGS-

based techniques. RRBS technique is more focused towards sequence regions of high CpG 

content while WGBS captures whole genome CpG sites. In these methods, sodium bisulfite is 

used convert unmethylated cytosines into uracil. This enables methylation detection by 

distinguishing the methylated cytosines, which resist bisulfite treatment, from uracils. During 

sequence amplification, uracils are converted to thymines and methylated cytosines are 

converted to cytosines. Software tools, such as the PASH [58], identify genomic locations of 

the sequence (or, read) by comparing the bisulfite treated and original sequence. From the 

number of converted and unconverted reads at each individual CpG site, the total coverage and 

fractional methylation are reported. 

1.1.6.4 Chromatin interaction capture methods 

Chromatin interaction capture (also known as chromosome conformation capture – 3C) 

methods identify three-dimensional DNA-DNA physical contacts (Figure 7). Using these 

techniques one can analyze the spatial organization of the chromatin in a cell. 

Among these techniques, the chromatin interaction analysis by paired-end tag (ChIA-

PET) identifies interactions mediated by a protein of interest [59]. This technique incorporates 

ChIP-based enrichment, chromatin proximity ligation, paired-end tags, and sequencing (Figure 

7). POL2 protein is often used in the ChIP step to identify enhancer-promoter interactions as it 

can indicate active gene expression. HiChIP is a similar method to ChIA-PET requiring 100-

fold less input material [60]. 
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ChIA-PET and HiChIP interaction data allow the study of gene regulation that depends 

on the 3D genome structure. Using such information one can validate EP links that were 

computationally predicted based on one dimensional HT technologies.  

 

Figure 7. Chromatin interaction capture methods. The top panel shows the experimental steps common 
to all 3C methods: cross-linking, digestion, and ligation steps. The vertical panels show the specific 
steps required in each technique. Source: [61] 

1.1.6.5 Limitations of the omics techniques used 

1. DHS-seq or ATAC-seq identify regions of open chromatin. These signals are used 

as proxies for active regions, but an open state is not enough to establish activity. 

Thus, computationally inferred EP links using these technologies are not 

necessarily active. 

2. TF ChIP-Seq profiles the binding of the TF to chromatin. It does not distinguish 

between functional and non-functional binding events. 

3. 3C-type methods based on restriction enzymes are often considered to perform 

poorly in detecting enhancer-promoter interaction as they suffer from low 

resolution (recent variations based on MNase are significantly better for this task) 

[62]. 
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1.2 Computational background 
 

This chapter provides the computational foundation for this thesis. Each section 

discusses a different computational aspect. More information on the computational problems 

addressed is provided in the references for each section. 

 

1.2.1 Data representation 
 

In this section we lay out the data structures used in this thesis. 

 
1.2.1.1 Signal data 

The signal data of genomic features (e.g., enhancers and promoters) is represented as a 

real matrix 𝐷 ∈ ℝ!	#	$, where n is the number of genomic features and m is the number of 

samples. The rows contain the signal pattern of the epigenomic features across the samples, and 

the columns contain the signal profile of the samples across the genomic features. Samples can 

represent different cell types, conditions, or individuals. 

Each entry, 𝐷%,', in the matrix represents counts or normalized values, depending on 

the computational method used. Normalized values are computed by dividing the 𝐷%,' count 

number by the genomic size of feature 𝑖 and by the library size (that is the total number of 

mapped reads) of sample 𝑗. Normalized values are usually measured in units of Read per 

Kilobase exon per Million mapped reads (RPKM). 

Samples in 𝐷 are sometimes annotated with auxiliary information containing one or 

more labels such as cell type, disease, or treatment. In our analysis, we map each sample to its 

cell type.  

 

1.2.1.2 Genomic position data 

Genomic positions of features are defined by three fields: chromosome, start position, 

and end position. By definition, start position is always smaller than the end position. The 

position can be positively or negatively stranded, or un-stranded. For example, if the genomic 

feature is a gene then in terms of gene transcription, a positive strand denotes transcription from 

the start to the end whereas the negative strand denotes the reverse. Regulatory elements such 

as enhancers are un-stranded since they do not show transcription preference to any direction. 

Genomic positions are usually stored in a Browser Extensible Data (BED) file format. 

A BED file contains, in addition to the mentioned three fields of genomic positions and the 

strand, other informative fields such as the feature name and the BS score (e.g., p-value or 

intensity computed using a peak caller tool), and other fields controlling the genomic feature 

visualization in UCSC genome browser.  
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1.2.2 Genomic data analysis 

In this section we lay out the common downstream analyses used in this thesis. 

1.2.2.1 Enrichment analysis 

Enrichment analyses were originally developed to detect over-represented classes of 

genes within a set of genes produced by a certain analysis [63,64]. In this thesis, we used the 

same concept to detect over-represented classes of protein BSs or SNPs overlapping a set of 

genomic regions. The classes reflect biological knowledge or experimental results, e.g., a set 

of SNPs associated with a disease from Genome Wide Association Studies (GWAS) [65], or a 

set of whole genome BSs of a protein produced by a ChIP-Seq experiment. 

 The hypergeometric statistical test is used for enrichment analysis. For convenience, 

we assume that we have classes of genes, and we would like to find whether one or more of 

these classes is over-represented in our target set of genes.  

Let 𝐺 be the set of all genes (the background gene set), 𝑇 be a set of genes of interest 

(the target set), and 𝐴 be a set of genes that are known to be involved in a particular biological 

process (the class). We can test the significance of the intersection 𝐼 = 𝑇	 ∩ 𝐴	by comparing |𝐼| 

to the number of genes that are expected to be in the intersection by chance. 

The null hypothesis of the test is that the genes in 𝑇 were randomly selected without 

replacement from 𝐺. Under the null hypothesis, the size of the intersection |𝑇 ∩ 𝐴| follows a 

hypergeometric (HG) distribution. The probability that exactly 𝑥 selected genes belong to 𝐴 is: 

𝑃()(|𝐺|, |𝐴|, |𝑇|, 𝑥) =
3|𝐴|𝑥 4 5

|𝐺| − |𝐴|
|𝑇| − 𝑥 7

5
|𝐺|
|𝑇|7

 

 Thus, the p-Value is: 

Pr(𝑋 ≥ |𝑇 ∩ 𝐴|) = < 𝑃()(|𝐺|, |𝐴|, |𝑇|, 𝑥)
$*!(|-|,|.|)

#0|-∩.|

 

If there are 𝑁 gene groups and 𝑀 a priori gene sets, then there will be 𝑁 ∗ 𝑀 statistical 

tests. This means that there is a high chance of false positives (FPs), therefore it is important to 

use multiple testing correction methods (such as Bonferroni [66] or FDR [67]) to control the 

number of FPs. 

1.2.2.2 Motif finding 

Motif finding tools aim to identify short DNA sequences (usually of 6-20 bp in size; 

also known as motifs) that are enriched within a set of genomic regions. Such tools can identify 

motifs de-novo, e.g., AMADEUS and MEME [68,69], or by scanning for occurrences of known 

TFBSs motifs, e.g., FIMO [70]. 
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Scanning the genomic regions for known TFBSs motifs requires a database of position 

weight matrices (PWMs), each representing a TFBS preference (Figure 8). Popular databases 

of PWMs are HOCOMOCO and JASPAR [71,72].  HOCOMOCO, for example, assembled its 

database by inferring TFBSs from ChIP-Seq experiments. 

  A typical motif finding analysis is usually done on a small set of genes' promoters. 

However, in this thesis, finding all TF motif occurrences in a large set of enhancers that were 

computationally linked to promoters, each hundred of bases long, is prone to high false-positive 

rate. Therefore, to limit the search space, one can restrict the motif finding to digital genomic 

footprints (DGF) regions [48], which are very short segments that are more likely to contain 

true TFBSs, found within enhancers.  

 
Figure 8. A PWM example with its logo illustration. The matrix shows the TF binding site preference 

to different nucleotides in each position in terms of the probability of occurrence of each 

nucleotide in each position. The logo is a visualization of the matrix. 

 

1.2.3 Linear mixed effect models (LMMs) 

Computationally linking enhancers to their target promoters is usually done using 

correlation based methods. For example, ENCODE and Roadmap Epigenomics predicted the 

mapping of enhancers to their target promoters using pairwise correlations across many samples 

[25,43]. FANTOM5 expanded the pairwise correlation methodology to map 𝑘 nearest 

enhancers to each promoter by using a linear regression [23]. These methods tried to map 

enhancers to their target promoters in a non-cell-type specific manner. To infer cell-type 

specificity of EP links, one could simply add additional parameters to the linear regression 

model (in addition to the 𝑘 nearest enhancers) such as the sample’s cell type label. However, 

adding hundreds of different cell types to the model will make the model poor and hard to 

interpret since the number of parameters would be close to the number of samples. In addition, 

when applying standard linear regression, it is assumed that the samples are independent. 

However, this is not true when multiple samples belong to the same cell type. To cope with 

these problems, linear mixed effects models can be used. 
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A linear mixed model (LMM) is a type of statistical model that can be used to analyze 

data that has a hierarchical structure. This means that the data can be grouped into nested levels, 

such as students within classrooms or patients of specific doctors. In this thesis, samples are 

grouped into 𝐶 different cell types. In addition to the variability between samples, mixed effect 

models allow taking into account also the variability between groups of samples.  

A LMM is defined as 𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖 where 𝑋 is an 𝑛 × 𝑝 matrix of the predictor 

variables, 𝛽 is the	𝑝 × 1	 fixed-effect regression coefficient, 𝑍𝛾 is the random effect and 𝜖 is a 

random error. 𝛾 is a C-long vector of random effects to be predicted, and 𝑍 is a 𝑛𝑥𝐶 design 

matrix that groups the samples by their cell types. We assume that 𝛾 and 𝜖 are normally 

distributed. When the data is zero-inflated, one could use the generalized linear mixed effect 

models (GLMMs) assuming the random parameters are zero inflated negative-binomial 

distributed. Fitting LMMs is done using various approaches such as the Expectation-

Maximization (EM) and the Newton-Raphson algorithms [73].  

While most of the 𝐶 predicted values in a random effect vector are expected to be close 

to zero since 𝛾 is normally distributed with mean zero, values that deviate from zero (known as 

outliers) are the interesting ones and one could use them to detect cell type-specific 

characteristics of the fitted LMM model. This intuition is extensively used in the second paper 

of this thesis. 

1.2.4 Deep learning 

 Deep learning (DL) has become a dominant paradigm in science, industry and 

technology in recent years, spanning numerous applications in diverse domains. Here we give 

only a very short introduction. For more on the topic see, e.g.,  the book of Goodfellow, Bengio 

and Courville [74] on mathematical and conceptual background, and Keras [75] or PyTorch 

[76] for hands-on practice on DL. 

DL is a class of machine learning algorithms that allows computers to learn and process 

datasets in a way that is inspired by the human brain anatomy. DL models are used to recognize 

complex patterns in pictures, text, videos, sounds, and other data and to infer accurate 

predictions. DL models contain multiple interconnected layers of nodes (called neurons) and 

apply repeated exchange of signals among them to progressively extract meaningful 

representations of the raw input (Figure 9). The word "deep" in "deep learning" refers to the 

number of layers through which the raw data is transformed and processed.  
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Figure 9. Deep learning diagram. Left: a neural network defined by one red hidden layer. Right: a 

deep learning network defined by multiple consecutive red hidden layers. Each circle is a neuron. 

Source: [77]. 

DL has many applications. Self-driving cars use DL to detect road signs and pedestrians 

[78]; defense and urban systems use DL to flag areas of interest in satellites images [79]; 

medical image screens use DL to detect patients with cancer [80]; DL is extensively used to 

analyze electronic health records (EHRs) in order to predict future disorders (e.g., medGPT 

[81]),  and many more. These use cases can be broadly grouped into four categories: computer 

vision, speech recognition, natural language processing (NLP), and recommendation engines. 

Computer vision aims to derive computationally meaningful information from images and 

videos. Speech recognition analyzes human and other species speech to infer different patterns, 

tone, language, and accent. NLP gathers insights and meaning from text data and documents. 

Recommendation engines track user activity and develop personalized recommendations.  

DL networks typically have three basic components (Figure 9): an input layer 

composed of neurons that accept the raw data. The hidden layers receive processed data from 

the input layer and further process the information at different levels. The output layer provides 

the prediction. A DL model has numerous different parameters to be learned while training. For 

example, edges connecting the neuros between layers can have different weights as parameters. 

DL models that output "yes" or "no" answers have only one neuron in the output layer. Those 

that output a wider range of answers have more output neurons.  

As in many ML techniques, hyperparameter tunning (e.g., number of neurons in each 

layer) involves identifying the most effective hyperparameter values for a learning algorithm 

and utilizing the optimized algorithm on diverse datasets. This set of hyperparameters aims to 

enhance the model's performance by minimizing a predetermined loss function, leading to 

improved outcomes with reduced errors. A common technique to find the best possible 

configuration of hyperparameters is grid search: We select a set of concrete values in the range 

of each hyperparameter, and the set of these values across the parameters constitutes a grid. 

Subsequently, we systematically explore all possible combinations of grid values, and identify 

the set that results in the minimum loss function. 
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There are three common families of architectures that are used to connect neuronal 

layers in DL (Figure 10): feed-forward (FF), convolutional and recurrent [82]. FF is the 

simplest architecture, where every neuron of layer 𝑖 is connected to some or all neurons in layer 

𝑖 + 1, and edges connecting between two layers have different weights, which are the model's 

scalar parameters to be learned (Figure 10a). For each neuron, the sum of the products of the 

incoming edge weights and their inputs is calculated and is the output propagated on each 

outgoing edge from the neuron. FF is used for generic prediction when there is no special 

relationship between different parts of the input data. In a convolutional neural network (CNN), 

the neurons in one or more hidden layers perform convolutions. For example, for 2D matrix of 

an image that serves as input the neurons scan each position of the input matrix computes a 

local weighted sum of its neighborhood and output a value [83] (Figure 10b). Here, the weights 

on the edges connecting the convolutional layers are convolution kernels (or, filters) to be 

learned. CNNs are useful in tasks where the input data has some spatially invariant patterns, 

i.e., they are not sensitive to the object's position in the matrix (e.g., a CNN will recognize a cat 

face in any position in a picture). In Recurrent neural networks (RNNs), derived from FF 

networks, connections between neurons can create a cycle, allowing the output of some neurons 

to affect subsequent input to the same neurons. RNNs are designed for sequential or time series 

data. The hidden layers of the RNN can be thought of as memory states that retain information 

from the input sequence that has been observed so far (Figure 10c). These memory states are 

updated at each time step. RNNs are useful for learning relationships between different parts of 

the input data (examples are shown in the next section). A DL model architecture can be a 

combination of one or more the three families.  

a 
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b 

 
c 

 
Figure 10. Common deep learning families. (a) Feed-Forward (FF) deep neural network. The 

information moves in one direction from the input layer (yellow circles) through one or more hidden 

layers (blue circles), to the output layer (red circles). (b) Convolutional neural network (CNN).  A 

CNN typically consists of three types of layers contained between the input (e.g., a neuroimage 

input) and output layers. The convolutional layer generates feature maps by moving convolutional 

kernels across the preceding layer. The pooling layer serves to reduce the dimensionality of the 

prior convolutional layer. Lastly, the fully connected layer is responsible for making predictions 

based on the processed data. (c) A recurrent neural network (RNN) is designed to handle sequential 

data. Each recurrent neuron (green circles) in the network is tasked with encoding historical data 

by accepting both the current input element and the state vector from the preceding neuron. This 

produces a hidden state which is then passed on to the succeeding neuron. The RNN architecture, 

therefore, encodes not just individual information but also the dependency between the elements of 

a sequence like x1 → x2 → x3 → x4 → x5. Source: [84]. 

 

Training a DL for a prediction task is done using as input a labeled dataset in the form 

of (𝑋% , 𝑌%) where each 𝑋% is the 𝑖th input and 𝑌% is the output label. Each training point 𝑋% is fed 

to the network, the output label 𝑌%2 is computed by the network, evaluated against the true label 

𝑌%, and a loss function 𝐿(𝑌%2, 𝑌%), quantifying the cost of error is computed. The network's 

parameters are trained by calculating the gradient of the loss function with respect to the 

parameters, and the parameters are slightly adjusted in the direction of the gradient in a process 

called back-propagation, which minimizes the loss function. After a sufficient number of 
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iterations, the network is expected to converge to a minimum loss function, producing the final 

trained DL model.   

Successful use of DL raises several challenges. First, DL algorithms tend to give better 

results when they are trained on large amounts of high-quality data. Incorrect or irrelevant data 

can have a negative impact on DL models. For example, if non-animal images were accidentally 

added to a dataset of animal images, a deep learning model might classify an airplane as a bird. 

To avoid inaccurate results, one must perform data preprocessing, cleaning and processing large 

amount of data, before training a DL model. This process requires a large amount of work and 

data storage capacity. In addition, DL algorithms require large processing power since they are 

computationally intensive. 

1.2.4.1 Deep learning in genomics 

Classical Machine learning (ML) algorithms, e.g., support vector machines and logistic 

regression, have been extensively used in genomics research for decades [85]. The difference 

between DL and the standard ML methods used in genomics, is that DL models are much more 

flexible and capable to extract non-linear relationships between different features in the input 

data. DL requires great care to train on and to interpret the underlying biology in genomics [82]. 

Input data to DL model should first be transformed to a matrix of real values. In 

genomics, one input is usually a DNA sequence, in which the nucleotides A, C, G, and T are 

encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1] [82]. Neurons that are the first to read 

the input constitute the input layer. Subsequent hidden layers further process the transformed 

input. The output layer of the DL is the prediction of interest (e.g., the probability that the input 

DNA sequence is a promoter).  

Accuracy of the prediction is usually measured by calculating the precision, recall, F1 

and the area under precision-recall curve (AUPRC). AUPRC values are preferable to the area 

under the ROC curve, since genomic datasets are often highly imbalanced (e.g., there are many 

more SNPs that are not disease causing than SNPs that are disease causing). In some computer 

vision tasks, DL models with more than 100 layers have been proven useful. However, in 

genomics applications, fewer than five layers is usually sufficient [82]. The most important 

factor for a successful DL model is the number of labeled examples, which should be at least 

several thousands [82]. 

Here are some examples of using DL in genomics. Luo et al. built a DL model to predict 

N6-methyladenosine (m6A) sites, used in silico mutagenesis and discovered that cis-element 

motifs that govern the m6A deposition are located largely within the 50 nt downstream of the 

m6A sites [86]. Fudenberg et al.  built a CNN model to predict 3D genome structure, and used 

in silico mutagenesis to reveal that the CCCTC-binding factor (CTCF) BSs are the most 

important elements for 3D structure establishment [87]. Routhier et al. built a CNN model to 

predict nucleosome positioning in Saccharomyces cerevisiae directly from the DNA, and used 
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in silico mutagenesis to evaluate the effect of every single mutation in the genome on the 

nucleosome positioning [88]. 

A hard task in DL is model interpretation. Genomic researchers are usually more 

interested in the underlying biological mechanisms discovered by the trained DL model rather 

than prediction accuracy itself. For example, when one wishes to build a DL model that predicts 

EP links based on chromatin data, then the hope is to discover a novel gene-regulation grammar 

encoded in the trained model. DL models can achieve state-of-the-art predication accuracy, but, 

it is more challenging to interpret them compared to standard machine learning models. 

There are a few methods that allow DL model interpretation in genomics. The simplest 

one is similar to in silico mutagenesis. Given a particular data point, each feature of the data 

point can be systematically varied while the rest of the features are held fixed (e.g., changing a 

nucleotide from A to C in one position in the input DNA sequence). Precomputing the DL 

model for each such variation allows us to track how the network's output changes in response 

to changes in the data point. This approach is easy to implement, but it can be computationally 

expensive, as the network must be re-evaluated for every mutation of the data point.  A 

computationally tractable approximation to this approach is to take the derivative of the 

network's output with respect to each feature of the data point. This can be done using back-

propagation, and it conveys the sensitivity of the output to small perturbations in the input 

features. Features with large positive or negative derivatives may have more influence on the 

outcome. Several variations of the derivative-based interpretation are available such as the 

integrated gradients [89] and DeepLift [90]. DL interpretation in genomics is currently an active 

area of research.  

In the last few years there is a growing number of studies utilizing DL in genomics. 

The use of DL for regulatory genomics tasks, such as modeling TFBSs, has been particularly 

popular [91]. Examples in this field include tools predicting sequence specificity of DNA- and 

RNA-binding proteins and of enhancer and cis regulatory elements, gene expression, 

methylation and alternative splicing. These tools usually use DNase-Seq, ATAC-Seq, ChIP-

Seq and more as input [92–95]. Enhancers were identified based on epigenetic profiles available 

from the ENCODE consortium [96–98]. DNA methylation state influencing gene expression 

has been inferred by using data from 3D DNA-DNA contacts [99]. Most of these tools used 

CNN or RNN for their tasks, which are well suited for modeling regulatory elements. Overall, 

using DL in genomics holds great promise to achieve more accurate predictions than standard 

ML methods and to decipher the gene-regulatory grammar. 
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2. Predicting global enhancer-promoter maps 
 

Spatiotemporal gene expression patterns are governed to a large extent by the activity of 

enhancer elements, which engage in physical contacts with their target genes. Chromatin 

conformation capture assays, from which enhancer-promoter (EP) links can be derived, are still 

not available for many cell types and tissues. In contrast, large consortia, such as ENCODE, 

Roadmap Epigenomics and FANTOM5 [23–25], have produced numerous epigenetic datasets 

(e.g., open chromatin assays such as DNase-seq) covering hundreds of cell types. These 

datasets can be used to develop computational methods for linking enhancers to their target 

genes. 

This study started during my MSc and was continued in the first year of my PhD 

research. In my MSc thesis we developed FOCS (FDR-corrected OLS with Cross-validation 

and Shrinkage) [100], a computational method for predicting EP links based on correlated 

activity patterns across many samples covering hundreds of different cell types. FOCS infers 

global EP links, i.e., EP links with significant high correlation between enhancer and promoter 

activity patterns across many samples. We applied the method on a small set of 246 samples 

(covering 23 cell types) from Global-Run-On sequencing (GRO-seq) data, which 

experimentally identifies functional enhancers and promoters.  

During my PhD studies we expanded the scope and the validation of FOCS 

dramatically by using 10-fold more experimental data to train it. We applied the method and 

compared it to extant methods on 2,384 additional DNase-seq and CAGE samples collected 

from ENCODE, Roadmap Epigenomics, and FANTOM5 consortia [23–25].  In ENCODE 

dataset, analysis was not restricted to protein-coding genes. We also added HiChIP chromatin 

interaction data (in addition to ChIA-PET and eQTL data from the MSc studies) as an external 

source for evaluating the performance of our method.  

In the following chapter we describe both the original FOCS algorithm that was part of 

the MSc thesis and the extended analysis and validation that were part of the PhD study. The 

complete project was published in Genome Biology in 2018 [101]. Some large supplementary 

files that were part of the analysis are available on the journal’s website and links are provided 

in the chapter. 

 

 

 

 

http://acgt.cs.tau.ac.il/focs/
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2.1. Results 
The FOCS procedure for predicting enhancer-promoter links 

We set out to develop an improved statistical framework for prediction of EP links 

based on their correlated activity patterns measured over many cell types. As a test case, we 

first focused on ENCODE's DHS profiles [43], which constitute 208 samples measured in 106 

different cell lines (Methods). This rich resource was previously used to infer EP links based 

on pairwise correlation between DHS patterns of promoters and enhancers located within a 

distance of ±500 kbp. Out of ~42M pairwise comparisons, ~1.6M pairs showed Pearson's 

correlation>0.7 and were regarded as putatively functional EP links [43]. However, Pearson's 

correlation is sensitive to outliers and thus may be prone to high rate of false positive 

predictions. This is especially exacerbated in cases of sparse data (zero inflation), which are 

prevalent in enhancer activity patterns, as many of the enhancers are active only in a limited set 

of conditions. In addition, the combinatorial nature of transcriptional regulation in which a 

promoter is regulated by multiple enhancers is not considered by such pairwise approach. 

To address these points we developed a novel statistically-controlled regression 

analysis scheme for EP mapping, that we dubbed FOCS. Specifically, FOCS uses regression 

analysis to learn predictive models for promoter's activity from the activity levels of its 𝑘 closest 

enhancers, located within a window of ±500 kb around the gene’s TSS. (Throughout our 

analyses we used 𝑘 = 10). Importantly, to avoid overfitting of the regression models to the 

training samples, FOCS implements a leave-cell-type-out cross validation (LCTO CV) 

procedure, as follows. In a dataset that contains samples from C different cell-types, for each 

promoter, FOCS performs C iterations of model learning. In each iteration, all samples 

belonging to one cell-type are left out and the model is trained on the remaining samples. The 

trained model is then used to predict promoter activity in the left-out samples (Fig. 2.1).  

We implemented and evaluated three alternative regression methods: ordinary least 

squares (OLS), generalized linear model with the negative binomial distribution (GLM.NB) 

[102] and zero-inflated negative binomial (ZINB) [103]. GLM.NB accounts for unequal mean-

variance relationship within subpopulations of replicates. ZINB is similar to GLM-NB but also 

accounts for excess of samples with zero entries (Methods). For each promoter and regression 

method, the learning phase yields an activity vector, containing the promoter's activity in each 

sample as predicted when it was left out. FOCS applies two non-parametric tests, tailored for 

zero-inflated data, to evaluate the ability of the inferred models (consisting of the k nearest 

enhancers) to predict the activity of the target promoter in the left-out samples. The first test is 

a "binary test" in which samples are divided into two sets, positive and negative, containing the 

samples in which the promoter was active or not, respectively, based on their measured signal 
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(We used a signal threshold of 1.0 RPKM for this classification). Then, Wilcoxon signed-rank 

test is used to compare the predicted promoter activities between these two sets (Fig. 2.1). The 

second test is an "activity level test", which examines the agreement between the predicted and 

observed promoter's activities using Spearman's correlation. In this test, only the positive 

samples (that is, samples in which the measured promoter signal is ≥1.0 RPKM) are considered. 

Gene models with good predictive power should discriminate well between positive and 

negative samples (the binary test) and preserve the original activity ranks of the positive 

samples (the activity level test), and models that pass these tests are regarded as statistically 

cross-validated. Of note, these two validation tests evaluate each promoter model non-

parametrically without assuming any underlying distribution on the data when inferring 

significance. Next, FOCS corrects the p-values obtained by these tests for multiple testing using 

the Benjamini and Yekutieli (BY) FDR procedure [104] with q-value<0.1. The BY FDR 

procedure takes into account possible positive dependencies between tests while the more 

frequently used Benjamini and Hochberg (BH) FDR procedure [67] assumes the tests are 

independent. 
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Figure 2.1.  FOCS statistical procedure for inference of EP links. In a dataset with samples 
from N different cell types, FOCS starts by performing N cycles of leave-cell-type out cross-
validation (LCTO CV). In cycle 𝑗, the set of samples from cell-type 𝐶' is left out as a test set, 
and a regression model is trained, based on the remaining samples, to estimate the level of the 
promoter P (the independent variable) from the levels of its k closest enhancers (the dependent 
variables). The model is then used to predict promoter activity in the test set samples. After 
the N cycles, FOCS tests the agreement between the predicted (Pmodel) and observed (Pobs) 
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promoter activities using two non-parametric tests. In the binary test, samples are divided into 
positive (Pobs ≥1RPKM) and negative (Pobs <1RPKM) sets, and the ability of the inferred 
models to separate between the sets is examined using Wilcoxon rank-sum test. In the activity 
level test, the consistency between predicted and observed activities in the positive set of 
samples is tested using Spearman correlation. P-values are corrected using the BY-FDR 
procedure, and promoters that passed the validation tests (FDR≤0.1) are considered validated, 
and full regression models, this time based on all samples, are calculated for them. In the last 
step, FOCS shrinks each promoter model using elastic net to select its most important 
enhancers. 

 

FOCS results for ENCODE DHS epigenomic data 

Applying FOCS to the ENCODE DHS dataset, we only considered promoters and 

enhancers that were active (that is, with signal > 1.0 RPKM) in at least 30 out of the 208 samples 

(This preprocessing step filtered out from the analysis 828 genes whose expression was most 

cell-type specific). Overall, this dataset contained 92,909 and 408,802 active promoters and 

enhancers, respectively (Methods). We first evaluated the performance of the three alternative 

regression methods in terms of the number of validated models each of them yielded. We found 

that the OLS method consistently produced more validated models that passed both the binary 

and activity level tests (Fig. 2.2A-B; Supplemental Table S2.1). Using OLS, out of the 92,909 

analyzed promoters, 52,658 had models that passed both tests (q-value≤0.1), while for 7,007 

promoters models passed none of these two tests (Fig. 2.2C). As expected, promoters with 

models that passed only the activity level test were active in a very high number of samples 

while those with models that passed only the binary test were active in much lower number of 

samples (Fig. 2.2D) (see Supplemental Fig. S2.1 for examples of promoters in different 

validation categories). To examine the effect of the leave-cell-type-out cross validation (CV) 

procedure we compared R2 values obtained by OLS models generated without CV to the values 

obtained when CV was applied (Fig. 2.2E). The results indicate that without CV, many models 

are over-fitted to the training samples and have low predictive power on new ones. This 

problem is more severe in other datasets that we analyzed, as shown in subsequent section. Fig. 

2.2F shows an example of promoter model with low predictive power on new samples, and 

demonstrates the high sensitivity of Pearson's correlation (or equivalently, of R2) to outliers. 

Such promoter models do not pass our CV tests and are considered to have low confidence. 
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Figure 2.2.  Performance of three alternative regression methods for inferring EP 
models. (a) Performance of ordinary least squares (OLS), generalized linear model with 
negative binomial distribution (GLM.NB) and zero-inflated negative binomial (ZINB) 
regression using the binary test.  Point (x,y) on a plot indicates that a fraction x of the models 
had  –log10[q-values] < y computed by Wilcoxon rank sum test. OLS yields a higher fraction 
of validated models at any q-value cutoff. (b) Same as (a) but using the activity level validation 
test, with p-values computed by the Spearman correlation test. Here too, OLS yields a higher 
fraction of validated models than the other methods. (c) Number of promoters whose OLS 
models passed (at q<0.1) each of the tests (or none). (d) The distribution of the number of 
positive samples (samples in which the promoter is active, i.e., has RPKM	≥ 1) for promoters 
in each category. (e) Comparison between the 𝑅3 values with/without cross-validation (CV). 
Each dot is a promoter model. Blue dots denote models with 𝑅3 ≥ 0.5 and 𝑅453 ≥ 0.25. Red 
dots denote models with and 𝑅3 > 0.5 and 𝑅453 < 0.25 corresponding to over-fitted models 
with low predictive power on novel samples. (f) A promoter whose model as computed 
without CV gets very high 𝑅3  (left plot) but when CV is applied a low 𝑅453  is obtained (right 
plot). This example demonstrates the sensitivity of 𝑅3 (and Pearson correlation) to outliers. 
𝜌6: Spearman correlation, Q-value: FDR corrected P-value. 

The configuration of promoter regulation by enhancers 

Next, we sought to characterize the configuration of promoter regulation by its 

enhancers, in terms of the number of regulating enhancers and their relative contribution. For 

each promoter that passed the validation tests, we now calculated a final model, this time 

considering all samples (Fig. 2.1), and estimated the relative contribution of each of its k 
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enhancers to this full model. As in [23], per model, we measured the proportional contribution 

of each enhancer by calculating the ratio 𝑟3/𝑅3 where 𝑟 is the pairwise Pearson correlation 

between the enhancer and promoter activity patterns and 𝑅3 is the coefficient of determination 

of the entire promoter's model. In the analysis of the ENCODE DHS data, we included in this 

step the 70,465 promoters that passed the activity level test (or both tests). In agreement with 

previous observation [23], the closest enhancers have significantly higher contribution than the 

distal ones (Fig. 2.3A). However, the proportional contribution quickly reaches a plateau, 

indicating that above a certain threshold, distance to promoter is no longer an important factor, 

and enhancers #6-#10 (ordered according to their distance from the promoter) contribute 

similarly to promoter activity (Fig. 2.3A). Second, we examined the distribution of 𝑅3 values 

of these statistically validated models. 54% of the models (37,716 out of 70,465) had 𝑅3 ≥ 0.5 

(Fig. 2.3B). 61% of the 52,658 models that passed both tests had 𝑅3 ≥ 0.5, compared to 32% 

of the 17,807 models that passed only the activity level test (In contrast, only 13% of 15,437 

models that passed only the binary test had 𝑅3 ≥ 0.5). We note that models that passed the CV 

tests but have low 𝑅3 do contain confident and predictive information on EP links, though the 

low 𝑅3	suggests that there are additional missing regulatory elements that play important roles 

in the regulation of the target promoter.  

A promoter's model produced by OLS regression contains all k variables (i.e., 

enhancers), where each variable is assigned a significance level (p-value) reflecting its 

statistical strength. Next, to focus on the most informative EP interactions, FOCS seeks the 

strongest enhancers in each model. To this end, FOCS derives, per promoter, an optimally 

reduced model by applying model shrinkage (Methods). Lasso-based shrinkage was previously 

used for such task [23]. Here, we chose elastic-net (enet) approach, which combines Lasso and 

Ridge regularizations, since in cases of highly correlated variables (i.e., the enhancers), Lasso 

tends to select a single variable while Ridge gives them more equal coefficients (Methods). In 

this analysis too, we included the 70,465 models that passed the activity level test. Fig. 2.3C 

shows the distribution of the number of enhancers that were included in the enet-reduced 

models. On average, each promoter was linked to 2.4 enhancers. Inclusion frequency decreased 

with EP distance: the most proximal enhancer was included in 63% of the models while the 

10th enhancer was included in only 16% of them (Fig. 2.3D). Here too, the graph reaches a 

plateau and enhancers #6-#10 show very similar inclusion frequencies. Supplemental Figures 

S2.2A-B show the distribution of the actual EP distance for the enhancers considered by FOCS 

and Supplemental Figure S2.2C shows the inclusion frequency as a function of this distance. 

Regulatory elements located less than 5kb from their target promoter have markedly higher 

inclusion frequency. To estimate false positive rate among enhancers included in our final enet-

reduced models, we randomly selected 10k promoter models from the 70,465 models that 
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passed the CV step, and added to each one of them an additional 11th enhancer randomly 

selected from a different chromosome. We then applied enet on these 10k models.  Notably, 

the random enhancer was retained in only seven out of 10k models, which is significantly lower 

than inclusion frequency we observed for any EP distance bin (Supplemental Fig. S2.2C), 

indicating a low false positive rate also among the long distance EP links inferred by FOCS.   

 

Figure 2.3.  Configuration of promoter regulation by enhancers. (a) The proportional 
contribution of the 10 most proximal enhancers (within ±500kb of the target promoter) to 
models predicting promoter activity. The X axis indicates the order of the enhancers by their 
relative distance from the promoter, with 1 being the closest. (b) 𝑅3 values of the models that 
passed one or both CV tests. (c) Distribution of the number of enhancers included in the 
validated, optimally reduced models (i.e. after elastic net shrinkage). Most shrunken models 
contain 1-3 enhancers. (d) Inclusion frequency of enhancers in the shrunken models as a 
function of their relative proximity to the target promoter. 

Comparison of FOCS and extant methods performance using external validation 

resources 

After optimally reducing the promoter models FOCS predicted in the ENCODE DHS 

dataset a total of 167,988 EP links covering 70,465 promoters and 92,603 distinct enhancers 

(http://acgt.cs.tau.ac.il/focs/data/encode_interactions.txt). Next, we compared the performance 

of FOCS and three alternative methods for EP mapping: (1) Pairwise: pairwise Pearson 

BA
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correlation > 0.7 between EP pairs located within ±500 kbp, and accounting for multiple testing 

using BH (FDR <1078) (this was the main method used in [23], and also in [43] without 

multiple testing correction) (2) OLS+LASSO: Models are derived by OLS analysis using all 

samples without CV, selected based on 𝑅3 ≥ 0.5  and reduced using LASSO shrinkage 

(Methods) (this method was also applied in [23]). (3) OLS+enet: Same as (2) but with enet 

shrinkage in place of LASSO. Table 1 summarizes the number of EP links obtained by each 

method. FOCS yielded ~75% more models than the other methods.  

Table 1. Number of inferred promoter models obtained by four alternative methods on the 
ENCODE DHS dataset  
Method type #promoter models #EP links #Unique enhancers 
Pairwise (𝒓 ≥ 𝟎. 𝟕)+ FDR 39,372 139,170 53,950 
OLS-LASSO (𝑹𝟐 ≥ 𝟎. 𝟓  )* 39,368 122,064 74,104 
OLS-enet  (𝑹𝟐 ≥ 𝟎. 𝟓  )* 39,407 150,158 85,926 
FOCS 70,465 167,988 92,603 
(*) The number of OLS models (𝐑𝟐 ≥ 𝟎. 𝟓) was 39,892 before LASSO / enet shrinkage. These 
methods eliminate models in which no enhancer passed the shrinkage.  

 

To evaluate the validity of EP mappings predicted by each method, we used three 

external omics resources: physical EP interactions derived from RNAPII ChIA-PET data, 

physical EP interactions derived from YY1 HiChIP experiments, and functional EP links 

indicated by eQTL analysis (Methods). For physical EP interactions derived from RNAPII 

ChIA-PET we used data recorded in MCF7, HCT-116, K562 and HelaS3 cell lines (a total of 

922,997 interactions). Physical EP interactions inferred from HiChIP for YY1 (recently 

suggested to act as a general structural regulator of EP links) were downloaded from [105] 

(911,190 interactions, measured in HCT-116, Jurkat and K562 cell lines). While 3C-based 

methods are generally not well equipped to identify DNA loops below 25Kb, we intersected 

our results with the best available loop calls for these data ranges. eQTL data was downloaded 

from the GTEx project (2,283,827 unique significant eQTL-gene pairs) [106]. We defined a 1 

kbp interval for each promoter and enhancer and calculated the fraction of EP links that was 

supported by either ChIA-PET, HiChIP or eQTL data (Methods). Notably,  FOCS not only 

yielded many more EP links (15,000-40,000 more), but also outperformed the alternative 

methods in terms of the fraction of predictions supported by either RNAPII ChIA-PET (Fig. 

2.4A), YY1 HiChIP (Fig. 2.4B) or eQTL data (Fig. 2.4C). Figure 2.5 shows two FOCS-derived 

promoter models that are supported by ChIA-PET and eQTLs. Note that for the promoter model 

of CD4 (Fig. 2.5B) the 𝑅453  value was low (~0.1) while the Spearman correlation (𝜌6) was 0.53 

after CV. This demonstrates that FOCS can capture promoter models that exhibit non-linear 

relationship between the promoter and enhancer activities. 
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Figure 2.4.  Comparison of the performance of different methods for predicting EP links 
using ChIA-PET and eQTL data as external validation. Y-axis shows the total number of 
predicted E-P links. X-axis shows the percentage supported by the external source: (A) Pol-II 
ChIA-PET. (B) YY1 HiChIP and (C) GTEX eQTLs. In (C) the y-axis shows the total number 
of predicted E-P links where the promoter is annotated with a known gene. FOCS (green 
triangle) makes more predictions and also manifests highest support rate by all methods: 
RNPII ChIA-PET (59%), YY1 HiChIP (37%) and eQTL (38%). In all methods, empirical p-
value by random permutation test was < 0.01 (Methods). 

 

FOCS performance on additional large-scale datasets 

 Having demonstrated FOCS proficiency in predicting EP links on the ENCODE DHS 

data, we next wished to expand the scope of our EP mapping. We therefore applied FOCS to 

three additional large-scale genomic datasets: (1) DHS profiles measured by the Roadmap 

Epigenomics project, consisting of 350 samples from 73 different cell types and tissues; and (2) 

FANTOM5 CAGE data that measured expression profiles in 1,827 samples from 600 human 

cell lines and primary cells. The analysis of FANTOM5 data uses eRNA and TSS expression 

levels for estimating the activity of enhancers and promoters, respectively (Methods). (3) A 

GRO-seq compendium that we compiled. Building on eRNAs as quantitative markers of 

enhancer activity and the effectiveness of the GRO-seq technique in detecting eRNA expression 

[21], we compiled a large compendium of eRNA and gene expression profiles from publicly 

available GRO-seq datasets, spanning a total of 245 samples measured on 23 different human 

cell lines (Methods).  

A B C
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Figure 2.5.  Examples of FOCS predicted EP links supported by ChIA-PET/eQTL data. (A-B) CD4. (C-D) ESRP1. TSS location is highlighted in light 
blue. (B,D) Heatmaps (log2[RPKM Signal]) for the activity patterns of CD4/ESRP1 promoters and their 10 nearest enhancers. Enhancers included in the 
shrunken model are denoted by ‘ep’ and those that are not are denoted by ‘e’. For each enhancer, its Pearson and Spearman correlations with the promoter 
are reported (left and right values in the parentheses). For each model, the 𝑅3, 𝑅453 , and the Spearman correlation after CV (𝜌6) are listed. 
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We applied to these datasets the same procedure that we applied above to the ENCODE data. 

In the analysis of these datasets, OLS yielded more validated models than the other regression 

methods on the Roadmap Epigenomics and GRO-seq datasets (as was the case in the ENCODE 

DHS data (Fig. 2.2A-B)), while GLM.NB and ZINB produced more models on FANTOM5 

(Supplemental Fig. S2.3A-C and Table S2.1). The performance of GLM.NB and ZINB on 

the FANTOM5 dataset is probably due to the high fraction of zeros entries in the count matrix 

of this dataset (~54%) compared to ENCODE, Roadmap, and GRO-seq data matrices (8%, 4%, 

and 19%, respectively). As OLS performed better on most datasets, all the results reported 

below are based on OLS. The number of promoter models that passed each validation test in 

each dataset is provided in Supplemental Fig. S2.4A-C. The effect of CV is presented in 

Supplemental Fig. S2.5A-C. In these datasets too, many of the models with high coefficient 

of determination (𝑅3 ≥ 0.5) when trained on all samples, had low predictive power on novel 

samples (𝑅453 < 0.25) (Empirical FDR 16%, 20%, and 22% in Roadmap, FANTOM5, and 

GRO-seq, respectively; Supplemental Fig. S2.5), demonstrating the utility of CV in alleviating 

overfitting and thus reducing false positive models.   

  We next examined the relative contribution of each of the 10 participating enhancers 

to the validated models, and in these datasets too, the most proximal enhancers had the highest 

role, but more distal ones had very similar contribution (Supplemental Fig. S2.6A). In terms 

of explained fraction of the observed variability in promoter activity, 41% and 84% of the 

models that passed both tests in the Roadmap Epigenomics and GRO-seq datasets, respectively, 

had 𝑅3 ≥ 0.5, but only 11% of the validated models reached this performance in the 

FANTOM5 dataset (Supplemental Fig. S2.6B), probably due to its exceptionally sparse data 

matrix. Last, FOCS applied enet model shrinkage to the models that passed the validation tests 

(The number of validated models and EP links derived by FOCS on each dataset is summarized 

in Supplemental Table S2.2). In the optimally-reduced models, each promoter was linked, on 

average, to 3.2, 2.8 and 3.6 enhancers, in the Roadmap, FANTOM5 and GRO-seq datasets, 

respectively (Supplemental Fig. S2.7A), and inclusion frequency decreased with EP distance 

(Supplemental Fig. S2.7B and Fig. S2.8). Finally, benchmarking against RNAPII ChIA-PET, 

YY1 HiChIP and eQTL data, for most comparisons, FOCS outperformed the alternative 

methods for EP mapping, by yielding many more EP predictions at similar external validation 

rates (Supplemental Fig. S2.9 and Table S2.3). Collectively, we provide a rich resource of 

predicted EP mapping that covers 16,349 known genes, 113,653 promoters, 181,236 enhancers, 

and 302,050 cross-validated EP links. 
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2.2. Methods 
ENCODE DHS data preprocessing 

DHS peak locations of enhancers and promoters were taken from a master list of 2,890,742 

unique, non-overlapping DHS segments [43]: 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/open

chrom/jan2011/combined_peaks/multi-tissue.master.ntypes.simple.hg19.bed 

We extracted from the master list the set of known (n=68,762) and novel (n=44,853) promoter-

DHS peaks taken from: 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/open

chrom/jan2011/promoter_predictions  

The remaining (n=2,777,127) non-promoter-DHS peaks in the master list were considered as 

putative regulatory elements, collectively referred here as enhancer elements. To create 

enhancer/promoter signal matrices, we used the BAM files of 208 UW DNase-seq samples 

(106 cell types) from GSE29692 GEO dataset [43,107,108]. The number of reads mapped 

within each DHS peak was counted using BEDTools utilities [109].  To reduce our FOCS 

running time we focused only on promoters/enhancers with signal ≥1RPKM in at least 30 

samples, resulting in 92,909 promoters and 408,802 putative enhancers. 

We defined for each promoter the set of k=10 candidate enhancers located within a window of 

1Mb (±500Kb upstream/downstream from the promoter’s center position). We mapped 

promoters to annotated genes using GencodeV10 TSS annotations 

(ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz). 

54,650 promoters (out of 92,909) were linked to annotated TSSs. 

Roadmap epigenomic DHS data preprocessing 

DHS peak positions for 474,004 putative enhancer and 33,086 promoter non-overlapping DHS 

segments [110] were taken from:  

• https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/prom/25/state_calls.RData 

• https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/enh/25/state_calls.RData 

To create enhancer/promoter signal matrices, we used the aligned reads (BED files) of 350 UW 

DNase-seq samples (73 cell types) from GSE18927 GEO dataset [107,108,111–113]. The 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/combined_peaks/multi-tissue.master.ntypes.simple.hg19.bed
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/combined_peaks/multi-tissue.master.ntypes.simple.hg19.bed
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/promoter_predictions
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/promoter_predictions
ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/prom/25/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/prom/25/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/enh/25/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/enh/25/state_calls.RData
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number of reads mapped within each DHS peak was counted using the BEDTools utilities 

[109].  We focused only on promoters/enhancers with signal ≥1RPKM in at least one sample, 

resulting in 32,629 promoters and 470,549 putative enhancers. 

We defined for each promoter the set of k=10 candidate enhancers located within a window of 

±500Kb. We mapped promoters to annotated genes using GencodeV10 TSS annotations 

(ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz) 

[114]. 17,941 (out of 32,629) promoters were linked to annotated TSSs. 

FANTOM5 data preprocessing 

Promoter (CAGE tags peak phase 1 and 2) and enhancer (human permissive enhancers phase 

1 and 2; n=65,423) expression matrices (counts and normalized) covering 1,827 samples (600 

cell types) were downloaded from FANTOM5 DB (http://fantom.gsc.riken.jp/). As in 

FANTOM5 paper [23] we focused on promoters with expression ≥1 TPM (Tags Per Million) 

in at least one sample, resulting in 56,290 promoters annotated with 26,489 RefSeq TSSs within 

±500 bp. We defined for each promoter the set of k=10 candidate enhancers located within a 

window of ±250Kb from the promoter’s TSS. The choice of smaller window here was done for 

consistency with the FANTOM5 choices. 

GRO-seq data preprocessing 

We downloaded raw sequence data of 245 GRO-seq samples from the Gene Expression 

Omnibus (GEO) database (Additional file 3: Table S5). See Supplemental Methods for 

further processing details. We defined for each gene the set of k=10 candidate enhancers located 

within a window of ±500Kb from its TSS.  

FOCS Model Implementation 

The input to FOCS is two activity matrices, one for enhancers (𝑀:) and the other for promoters 

(𝑀;), measured across the same samples. Activity is measured by DHS signal in ENCODE and 

Roadmap data, and by expression level in FANTOM5 and GRO-seq data. Samples were labeled 

with a cell-type label out of 𝐶 cell-types. The output of FOCS is predicted E-P links.  

First, FOCS builds for each promoter an OLS regression model based on the k 

enhancers whose center positions are closest to the promoter’s center position (in ENCODE, 

Roadmap, and FANTOM5) or TSS (in GRO-seq). Formally, let 𝑦; be the promoter 𝑝 

normalized activity pattern (measured in CPM - counts per million; 𝑦; is a row from 𝑀;) and 

let 𝑋; be the normalized activity matrix of the corresponding k enhancers (CPM; k rows from 

ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz
http://fantom.gsc.riken.jp/
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1432-2#Sec20
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𝑀:). We build an OLS linear regression model y< = X<β< + ε<, where ε< is a vector that 

denotes the errors of the model and β< is the (𝑘 + 1)	𝑥	1 vector of coefficients (including the 

intercept) to be estimated.  

Second, FOCS performs leave-cell-type-out cross validation (LCTO CV) by training 

the promoter model based on samples from 𝐶 − 1 cell types and testing the predicted promoter 

activity of the samples from the left out cell type. This step is repeated 𝐶 times. The result is a 

vector of predicted activity values 𝑦;=>?:@ for all samples. 

FOCS tests the predicted activity values using two validation tests: (1) The binary test.  

This test examines whether 𝑦;=>?:@ discriminates between the samples in which 𝑝 was active 

(observed activity 𝑦; ≥ 1 RPKM) and the samples in which 𝑝 was inactive (𝑦; < 1 RPKM). 

(2) The activity level test. This test calculates, for the active samples, the significance of the 

Spearman correlation between 𝑦;=>?:@ and 𝑦;. Spearman correlation compares the ranks of the 

original and predicted activities. We obtain two vectors of p-values, one for each test, of length 

𝑛 (the number of promoter models).  

Third, to correct for multiple testing, FOCS applies on each p-value vector the 

Benjamini - Yekutieli (BY) FDR procedure [104]. Promoter models with q-value≤ 0.1 in either 

both tests or in the activity level test were included in further analyses. In GRO-seq analysis, 

we also included models that passed only the binary test (m=2,580) since 57% of them had 

𝑅3 ≥ 0.5 (Supplemental Fig. S2.6B). For promoters that passed these CV tests final models 

are trained again using all samples.  

FOCS next selects informative enhancers for each final promoter model. The enhancer 

selection step is described in the Supplemental Methods. 

Alternative regression methods 

We compared the performance of OLS method with GLM.NB and ZINB regression methods. 

We repeated the FOCS steps but in the first step, instead of OLS we applied the GLM.NB or 

the ZINB methods (see Supplemental Methods for details). 

 FANTOM5 E-P linking using OLS regression was followed by Lasso shrinkage 

(defined as OLS-LASSO) as described in [23] (see Supplemental Methods for details). 
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GO enrichment analysis 

GO enrichments were calculated using topGO R package [115] (algorithm=”classic”, 

statistic=”fisher”, minimum GO set size=10). We split the genes into target and background 

sets using their enhancer bin sets. Genes belonging to bins with 1-3/1-4/4-10/5-10 enhancers 

were considered as target set and compared to all genes from all bins as background set.  

Correction for multiple testing was performed using BH procedure [67]. 

External validation of predicted EP links 

We used three external data resources for validating FOCS E-P link predictions: (1) RNAPII 

ChIA–PET interactions, (2) YY1-HiChIP interactions, and (3) eQTL SNPs.  

We downloaded 922,997 ChIA-PET interactions (assayed with RNAPІІ, on four cell lines: 

MCF7, HCT-116, K562 and HelaS3) from the chromatin–chromatin spatial interaction (CCSI) 

database [116] (GEO accession numbers of the original ChIA-PET samples are provided in 

Additional file 3: Table S6). We used the liftOver tool (from Kent utils package provided by 

UCSC) to transform the genomic coordinates of the interactions from hg38 to hg19. HiChIP 

interactions mediated by YY1 TF (cell types: HCT116, Jurkat, and K562) were taken from 

[105] (GEO accession id: GSE99521). As done in [105], we retained 911,190 YY1-HiChIP 

high confident interactions (Origami probability>0.9). For eQTL SNPs, we used the significant 

SNP-gene pairs from GTEx analysis V6 and V6p builds. 2,283,827 unique eQTL SNPs 

covering 44 different tissues were downloaded from GTEx portal [106]. 

  

We used 1Kbp intervals (±500 bp upstream/downstream) for the promoters (relative to the 

center position in ENCODE/Roadmap/FNATOM5 or to the TSS position in GRO-seq) and the 

enhancers (±500 bp from the enhancer center). An E-P pair is considered supported by a 

particular capture interaction if both the promoter and enhancer intervals overlap different 

anchors of an interaction. An E-P pair is considered supported by eQTL SNP if the SNP is 

located within the enhancer’s interval and is associated with the expression of the promoter’s 

gene. For each predicted E-P pair we checked if the promoter and enhancer intervals are 

supported by capture interactions and eQTL data. We then measured the fraction of E-P pairs 

supported by these data resources. See Supplemental Methods for the significance calculation 

of the empirical P-value. 

 

 

 

 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1432-2#Sec20
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Statistical tests, visualization and tools used 

All computational analyses and visualizations were done in the R statistical language 

environment [117]. We used the two-sided Wilcoxon rank-sum test implemented in 

wilcox.test() function to compute the significance of the binary test. We used the cor.test() 

function to compute the significance of the Spearman correlation in the activity level test. 

Spearman/Pearson correlations were computed using the cor() function. To correct for multiple 

testing we used the p.adjust() function (method=’BY’). We used ‘GenomicRanges’ package 

[118] for finding overlaps between genomic positions. We used ‘rtracklayer’ [119] and 

‘GenomicInteractions’ [120] packages to import/export genomic positions. Counting reads in 

genomic positions was calculated using BEDTools [109]. OLS models were created using lm() 

function in ‘stat’ package [117]. GLM.NB models were created using glm.nb() function in 

‘MASS’ package [121]. ZINB models were created using zeroinfl() function in ‘pscl’ package 

[122]. Graphs were made using graphics[117], ggplot2 [123], gplots [124], and the UCSC 

genome browser (https://genome.ucsc.edu/). 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://genome.ucsc.edu/
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3. Predicting cell-type specific enhancer-
promoter maps 
 

The FOCS algorithm described in the previous chapter predicts global EP links based on 

correlated activity patterns across many samples covering hundreds of different cell types. 

However, the predicted EP links are global and may not reflect links that are specific to a few 

cell types. A key challenge is to identify which of these predicted EP links are actually 

functional and in which specific cell types. To this end, in the study described in this chapter, 

we developed CT-FOCS (cell-type-FOCS), a linear mixed effect model (LMM) that estimates 

the cell type activity of an EP link based on multiple samples available for each cell type. We 

applied CT-FOCS on the FANTOM5 CAGE, Roadmap Epigenomics and ENCODE DHS 

datasets, and predicted a total of 229,518 cell type-specific EP links (termed as ct-links) across 

651 cell types.  

We compared CT-FOCS with extant methods in terms of concordance with 

experimentally derived chromatin interactions (from 3C-based genomic assays) and cell type 

gene expression specificity of linked genes. The direct way to validate predicted ct-links against 

experimental loops is to check whether the enhancer and promoter overlap the two anchors of 

the same loop. However, chromatin can be organized in intricate nested structures, reflected by 

overlapping anchors of different chromatin loops that should be considered when using 3D data 

for validation of predicted EP interactions. Moreover, predicted ct-links covering a linear 

distance of less than 20 kb, an area where ChIA-PET loops tend not to perform well as shown 

by previous studies [125], might not receive direct validation from that test. To this end, we 

devised a "two-step connected loop set" (TLSs) approach to broaden the set of anchors that are 

considered proximal for validating ct-links. A limitation of this approach is that it assumes a 

form of transitivity, which does not necessarily have to hold in a cell population. We show that 

transitivity is not common on real data. 

Lastly, we asked whether predicted ct-links drive cell type-specific gene expression. 

To this end, we measured the specificity of 402 known TFs within the enhancers and promoters 

of the inferred links. We show that ct-links predicted by CT-FOCS drive highly cell type-

specific TFs and are superior to extant methods, thus demonstrating CT-FOCS's capability to 

infer biologically relevant cell type-specific gene regulation.   

The study was published in Nucleic Acids Research in 2022 [50]. Some large 

supplementary files are available from the journal’s website through the links provided in the 

thesis. 

http://acgt.cs.tau.ac.il/ct-focs/
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3.1. Results 
 

The CT-FOCS algorithm 

We developed a novel method called CT-FOCS (Cell Type FOCS) for inferring cell type 

specific EP links (ct-links). The method utilizes a single type of omics data (e.g., CAGE or 

DHS) from large-scale datasets.  

The input to CT-FOCS is enhancer and promoter activity profiles for a set of cell types. The 

output is the set of ct-links called for each cell type. Note that the enhancers or promoters 

involved in ct-links can be broadly active separately. In contrast to methods that seek global 

correlations between the activity profiles of enhancers and promoters, the aspect emphasized 

and detected by CT-FOCS is the specificity of the link between the two elements: that is, links 

reported by CT-FOCS highlight the few cell types in which the enhancer and promoter are 

predicted to functionally interact.  

CT-FOCS builds on FOCS [101], which discovers global EP links showing correlated enhancer 

and promoter activity patterns across many samples. FOCS performs linear regression on the 

levels of the 10 enhancers that are closest to the target promoter, followed by two non-

parametric statistical tests for producing initial promoter models, and regularization to retrieve 

the most informative enhancers per promoter model. CT-FOCS starts with the full (non-

regularized) FOCS promoter model (Methods), and uses a linear mixed effect model  (LMM), 

utilizing groups of replicates available for each cell type to adjust a distinct regression curve 

per cell-type group in one promoter model (Figure 3.1; Methods). We call a ct-link in a certain 

cell type if it meets the following criteria: (1) both the enhancer (E) and the promoter (P) show 

markedly positive activity levels in that cell type compared to other cell types, and (2) both P 

and E have significantly high random effect coefficients, reflecting an advantage of the LMM 

over the global FOCS model (Methods). The second criterion increases our confidence that the 

high activity detected by the first is specific to this cell type.  
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Figure 3.1.  Outline of the CT-FOCS algorithm. Let 𝑦; denote the observed activity of 
promoter p, and 𝑋: be the activity matrix of the 𝑘 = 10 closest enhancers to 𝑝. If 𝑙 ∈
{1, … , 𝑘 + 1} is one of the variables (enhancer or promoter, i.e. the intercept), then 𝑍@[𝑖, 𝑗] 
equals to 𝑋:[𝑖, 𝑙] if sample 𝑖 belongs to cell type 𝑗 and 0 otherwise (see Methods). First, a 
robust global promoter model is inferred by applying the leave-cell-type-out cross validation 
step in FOCS (see Hait et al. 2018 for details).  Second, a linear mixed effects model (LMM) 
is built on all samples using 𝑦;, 	𝑋: , and 𝑍@. The LMM includes the component 𝑍@𝛾@ where 𝛾@ 
is a vector of the predicted random effect values for each variable (i.e., enhancer or promoter) 
per cell type. Then, the algorithm performs two tests for every 𝑙: (1) log-likelihood ratio test 
(LRT) to compare the simple linear regression and the LMM model. The test is carried out 
eleven times (testing the 10 enhancers and the intercept).  The p-values for these LRTs are 
adjusted for multiple testing (q-values). (2) The 𝛾@ values produced by the LMM are 
standardized using the Median Absolute Deviation (MAD) technique and positive outliers (red 
dots) are identified. A cell type-specific EP link (ct-link) is called if: (1) both enhancer and 
promoter (i.e., the intercept) have q-value <0.1 (marked in red), and (2) the enhancer and the 
promoter are found as positive outliers in the same cell type. In the FCRLA gene given as an 
example, the promoter 𝑝 and enhancers 𝑒A, 𝑒AB are significant and are commonly found as 
positive outliers in B-cells. Therefore, E1p and E10p are called by CT-FOCS as B-cell-specific 
EP links. 
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To demonstrate the difference between the linear and LMM predictions, Supplementary 

Figure S3.1 shows, for the same promoter (P), two links involving distinct enhancers (E1 and 

E2), one predicted by CT-FOCS (E1P) and the other (E2P) by FOCS. The link between E1 and 

P is active only in neurons, while the link between E2 and P is active over a wider range of cell 

types of distinct lineages (amniotic membrane cells, whole blood cells, fibroblasts, endothelial 

cells and preadipocytes).  

Note that choosing links by setting a threshold only on the 𝑙𝑜𝑔𝐸𝑃 value would produce many 

false-positive calls, as the signals in promoters tend to be higher than those in enhancers [23] 

(see the examples in Supplemental Fig S3.1A and Supplemental Fig S3.1B). 

We applied CT-FOCS on FANTOM5 cap analysis of gene expression (CAGE) profiles, which 

include 808 samples from 225 cell lines, 157 primary cells, and 90 tissues [23] (Methods). 

CAGE quantifies the activity of both enhancers and promoters, and overall this dataset covers 

42,656 enhancers and 24,048 promoters (mapped to 20,597 Ensembl protein-coding genes). 

For some analyses, we also applied CT-FOCS to ENCODE's DNase Hypersensitive Site (DHS) 

profiles [43,126], which cover 106 cell types, each with typically 2 replicates. This dataset 

includes measurements for 36,056 promoters (mapped to 13,464 Ensembl protein-coding 

genes) and 658,231 putative enhancers (Methods). Unlike the FANTOM5 dataset, which 

builds on the expression of enhancer-RNAs (eRNAs) as a robust readout for enhancer activity, 

open genomic regions identified by DHS do not necessarily mark functionally active enhancers 

and promoters. Thus, EP maps inferred using the ENCODE dataset may be less reliable, and 

we focus our analyses mainly on the FANTOM5 dataset. 

Overall, CT-FOCS identified 195,232 ct-links in FANTOM5 dataset (Table 3.1), with an 

average of 414 ct-links per cell type (median 594, Table 3.1; Supplementary Figure S3.2A). 

These results are in line with the low number of ct-links observed experimentally by the 

abovementioned studies, including for NPC and neurons [127,128], and further indicate that 

the EP links specific to a cell type constitute only a small portion of the EP links that are active 

in it. The EP links called by CT-FOCS were on average shared across 2.5 cell types 

(Supplementary Figure S3.2B). CT-FOCS predicted both proximal and distal interactions, 

with an average EP distance of ~160kb (median ~110kb; Supplementary Figure S3.2C).  The 

complete set of predicted ct-links for each cell type is available at http://acgt.cs.tau.ac.il/ct-focs. 

http://acgt.cs.tau.ac.il/ct-focs
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Since EP links are expected to function mostly within topologically associated domains (TADs) 

[129,130], we next tested if ct-links detected by CT-FOCS are enriched for intra-TAD genomic 

intervals. As TADS are largely cell-type invariant [131], we used for these tests the 9,274 TADs 

reported by Rao et al. in GM12878 [131]. Indeed, comparison with randomly matched EP links 

demonstrated that predicted ct-links tend to lie within TADs (Supplementary Figure S3.3).  

Inferred ct-links correlate with cell type-specific gene expression 

To evaluate the specificity of the CT-FOCS predictions, we compared the activity of the set of 

ct-links inferred for a particular cell type with their activity in all other cell types. We defined 

the activity of an EP link in a cell type as the logarithm of the product of the enhancer and 

promoter activities in that cell type. We used these measures to compute the cell-type specificity 

for the set of ct-links detected in each cell type, using a score akin to [132] (Methods). As an 

example, CT-FOCS called 340 ct-links on the GM12878 lymphoblastoid cell line. We scored 

the cell-type specificity of these 340 ct-links for each cell type. Reassuringly, GM12878 was 

the top scoring cell type, and other high scoring cell types were enriched for related lymphocyte 

cells (other B-cells and T-cells; Figure 3.2A, C). GM12878 was also ranked first in cell type-

specificity scores calculated separately for the promoters and enhancers of these 340 ct-links 

(Supplementary Figure S3.4).  

Next, we examined how the effect of ct-links is reflected by cell-type specific expression of the 

linked genes (Methods). The 340 ct-links called by CT-FOCS in GM12878 involve 197 genes. 

We examined their expression profiles over 112 cell types using an independent gene 

expression (GE) dataset [44]. In this analysis, we now scored each of the 112 cell types for the 

specificity in the expression of these 197 genes. Notably, here too, the lymphocyte group (B- 

and T-cells) showed the highest expression levels (Figure 3.2B) with GM12878 ranking first 

by GE specificity (Figure 3.2D). Overall, these results show that for GM12878, the ct-links 

predicted by CT-FOCS based on CAGE data are correlated with lymphocyte-specific GE 

programs. Supplementary Figure S3.5 shows similar results for neurons cells.  
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Figure 3.2. Specificity of ct-links predicted for GM12878 cell line. (A) Heatmap of EP 
signals for 340 ct-links predicted on GM12878 cells. Rows – EP links, columns – cell types, 
color – z-score of EP signal. Cell types related to lymphocytes (B/T-cells) are highlighted in 
color. (B) Heatmap of gene expression (GE) for 197 genes involved in the predicted ct-links. 
Rows – genes, columns – cell types, color – z-score of GE. (C) Cell type specificity scores 
based on the EP signals. (D) Cell type specificity scores based on expression for the gene set 
in B (Methods). In A and C, 109 cell types with at least 3 replicates are included in the analysis; 
in B and D, 112 cell types with ENCODE GE data are included [44]. 

 

Comparison of CT-FOCS to other methods 

We compared CT-FOCS predictions on the FANTOM5 dataset with those made by four 

alternative methods: (1) JEME [133], which predicts EP links that are active in a particular cell 

type but are not necessarily cell type-specific. (2) A naive variant of FOCS, which takes the 

shrunken promoter models from FOCS, and predicts ct-links by detecting cell types in which 

the promoter and any of the model’s enhancers show exceptionally high activity, based on the 

median absolute deviation (MAD) index. We call this variant MAD-FOCS (Methods). (3-4) 

To overcome large differences among methods in the numbers of predicted links, we created 
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subsets of the solutions of JEME and MAD-FOCS by filtering of their reported links to produce 

sets of links of the same size as the ones detected by CT-FOCS (Methods). We call these 

subsets cell-type-JEME (CT-JEME) and cell-type-MAD-FOCS (CT-MAD-FOCS), 

respectively. 

Supplementary Figure S3.2 shows basic properties of the solutions provided by the five 

methods. EP links predicted by JEME and MAD-FOCS were, on average, shared across 11 and 

12 cell types (median=3 and 13 respectively; Supplementary Figure S3.2B). In contrast, the 

CT-FOCS, CT-MAD-FOCS and CT-JEME EP links were, on average, shared across <4 cell 

types (Median=2, 2 and 1, respectively), demonstrating that they identified EP links that are 

more specific. The same number of predicted links allows fair comparison between CT-FOCS, 

CT-MAD-FOCS and CT-JEME.   

Next, we calculated cell-type specificity scores for the EP links called by CT-FOCS, CT-MAD-

FOCS and CT-JEME on the 276 FANTOM5 cell types. For each cell type, we used the ct-links 

called on it to calculate its specificity score on all cell types, and ranked the cell types by their 

scores. We expect the given cell type to score the top. In this analysis, CT-MAD-FOCS and 

CT-FOCS performed similarly, and significantly better than CT-JEME (Supplementary 

Figure S3.6A). In terms of GE of the genes associated with the EP links, examining the four 

cell types (GM12878, K562, HepG2 and MCF-7) that were present in both FANTOM5 and the 

independent GE dataset of Sheffield et al. [43], CT-FOCS was the only method that ranked 1st 

all the four cell types (Supplementary Figure S3.6B). Overall, these three methods seem to 

capture ct-links with highly specific EP and GE signals.  

Next we ranked the cell types according to cell-type specificity scores obtained when 

considering separately the signals of the linked enhancers and promoters. Using ct-link 

enhancers signals, the median rank of the ‘root’ cell type (the cell type in which the link was 

found) was 1st by all methods, possibly because enhancers tend to be cell type specific. 

However, when using ct-link promoter signals, the median rank of the root cell type obtained 

by CT-JEME was only 23rd, while reassuringly, it was 1st for CT-FOCS and CT-MAD-FOCS. 

The low ranks of CT-JEME's linked promoters can explain why its predicted ct-links ranked 

lower compared to CT-FOCS and CT-MAD-FOCS. 

Last, we compared the CT-FOCS predictions on ENCODE's DHS dataset with those obtained 

by six other methods: (1-2) CT-MAD-FOCS and MAD-FOCS; (3) TargetFinder [134], which 

predicts EP links based on features in enhancer, promoter and the window between them using 

GradientBoosting trees; (4) ABC score model [135,136], which inferred cell type-specific 
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functional EP links in 131 human biosamples; and (5-6) Subsets of TargetFinder and ABC 

model solutions having, for each cell type, a similar number of predictions as CT-FOCS 

(Methods). We call these subsets CT-TargetFinder and CT-ABC, respectively. Note that while 

our evaluation of the different methods using the FANTOM5 data was done on 276 cell types 

(that had at least 50 predicted EP links in all methods), the evaluation using the ENCODE 

dataset is done only on 5-10 cell types (see Methods). Overall, considering the specificity 

scores of the ct-links calculated based on DHS signals, CT-FOCS, CT-MAD-FOCS and ABC 

ranked the root cell type first for most cell types, better than the other three methods. On the 

basis of GE specificity, CT-FOCS, ABC and CT-ABC ranked the root cell type first for most 

cell types, performing better than the other three methods (Supplementary Table 1B). 

Introducing ‘two-step connected loop sets’ in 3C assays to improve the evaluation of ct-

links  

We validated the ct-links predicted on GM12878 using empirical loops that were detected in 

this cell type by both POLR2A ChIA-PET and promoter-capture (PC) Hi-C [137,138]. The 

direct way to validate a predicted ct-link is to check whether the E and P regions overlap the 

two anchors of the same loop. However, as loops indicate 3D proximity of their anchors, 

overlapping anchors of different loops indicate proximity of their other anchors as well 

[139,140]. Furthermore, predicted ct-links that span a linear distance of < 20kb, a range where 

ChIA-PET loops perform poorly [141], may not be directly supported by that assay. Thus, for 

the validation of ct-links, we broadened the set of anchors that are considered to be proximal as 

follows: We define the ‘two-step connected loop set’ (TLS) of a loop as the set of anchors of 

all loops that overlap with at least one of its anchors (Figure 3.3A). We consider a predicted 

ct-link as validated if its enhancer and promoter regions overlap different anchors from the 

same TLS (Figure 3.3B; see Supplementary Figure S3.7 for an additional example; 

Methods). To increase our confidence that TLSs indeed represent genuine chromatin 

interactions, we checked for each TLS if there is a loop from the same assay that is not part of 

the TLS but has both anchors overlapping TLS anchors (for example, in Figure 3.3A - loop E 

and the TLS of loop y). In the POLR2A ChIA-PET (from GM12878) and YY1 HiChIP (from 

K562), 54% and 64% of the TLSs were supported by such loops, respectively.  

Out of the 340 ct-links inferred by CT-FOCS in GM12878, 10% were supported by ChIA-PET 

single loops, and 33% were supported by TLSs. Using loops from PCHi-C in GM12878, 

validation rates were 7.6% and 15%, respectively (Although these rates might seem low, in the 

next section we show that most methods predicting EP links have a low support from 3D 

conformation data). To test the significance of the observed validation rate, we generated 

https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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random sets of 340 intra-TAD links having the same linear distances between E and P regions 

as the ct-links predicted by CT-FOCS (Methods). In 1,000 random sets, TLSs supported, on 

average, 9.4% (32 out of 340) and at most 14% (46 out of 340) (Supplementary Figure 

S3.8A), and the number of predicted ct-links supported by ChIA-PET data was significant with 

P<0.001. Similar significance was achieved when validating the predicted ct-links directly 

against single loops (Supplementary Figure S3.8C).  The same tests for PCHi-C loops gave 

an average overlap of matched random loops with PCHi-C TLSs of 8.5% (29 out of 340) and 

at most 12.4% (42 out of 340), with P=0.003 for TLS (Supplementary Figure S3.8B) and 

P=0.048 for single loops; Supplementary Figure S3.8D). 

 
Figure 3.3. ChIA-PET TLSs support predicted ct-links. The two-step connected loop set 
(TLS) of a reference loop x is defined as the set of all loops that have an anchor overlapping 
one of x’s anchors including loop x. (A) Examples of TLSs. Loop x’s anchors overlap with 
at least one of the anchors of loops A, B, C, and E, and, therefore, the TLS of x is composed 
of loops x, A, B, C, E. Similarly, the TLS of y is composed of loops B, y, and D. Loop E 
overlaps anchors of both B and D but is not part of TLS(y) as it does not overlap y’s anchors.  
(B) (1) A 70kb region of Chromosome 1 showing ChIA-PET loops detected in GM12878. 
(4) A ct-link predicted by CT-FOCS. (2) The same region showing only loops that have 
anchors overlapping the anchors of the ct-link. Pink: loops overlapping the enhancer; blue: 
loops overlapping the promoter. (3) A TLS that supports the predicted ct-link. The ct-link in 
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(4) is validated by the TLS, but not by any single ChIA-PET loop. (5) Gene annotations. (6) 
Gene expression (RNA-seq) and epigenetics signals (DHS-seq and selected histone 
modifications) for the region. Tracks are shown using UCSC Genome Browser for data from 
GM12878 and K562 cell lines. The data indicates that this link is active in GM12878 but not 
in K562. 

 

Validating predicted links by 3D conformation data 

We compared the links predicted by CT-FOCS, CT-JEME and CT-MAD-FOCS to 

experimentally measured 3D chromatin loops, defined as the positive set. We chose the CT 

versions of these algorithms, which make the same number of calls, in order to allow fair 

comparison. In GM12878, using POLR2A ChIA-PET, CT-JEME achieved the best precision 

(21%) followed by CT-MAD-FOCS (19%) and CT-FOCS (10%). In K562, using YY1 HiChIP, 

CT-FOCS achieved the best precision (17.5%) followed by CT-MAD-FOCS (14%) and CT-

JEME (3.45%). The low precision shows that single loops do not support the majority of the 

links predicted by any method. 

Repeating the comparison using TLSs instead of single loops resulted in 2-3 fold increase in 

precision compared to single loop validation in all methods. On GM12878 loops, precision was 

54%, 50% and 30% in CT-JEME, CT-MAD-FOCS and CT-FOCS, respectively.  On K562 

loops, precision was 33%, 28% and 22% in CT-FOCS, CT-MAD-FOCS and CT-JEME, 

respectively. Again, the precision obtained by TLS validation for all methods was still low. 

We repeated the same analysis on the ENCODE DHS dataset, comparing CT-FOCS to CT-

TargetFinder and CT-ABC. Here, CT-FOCS performed markedly better in validation based on 

both single loops and TLSs. For example, on GM12878 with single-loop validation, CT-FOCS 

achieved 31% precision while CT-TargetFinder and CT-ABC model achieved 10% and 13%, 

respectively. With TLS validation, CT-FOCS had 66% precision while CT-TargetFinder and 

CT-ABC model achieved 30% and 47%, respectively. Similarly, on K562 with single loop 

validation, CT-FOCS had 54% precision, CT-ABC 30% and CT-TargetFinder 1.4 %. With TLS 

validation, CT-FOCS had 74% precision, CT-ABC 43% and CT-TargetFinder 3.7%.  

Overall, ct-links predicted by all methods had relatively low support from 3D chromatin loops. 

CT-FOCS tended to achieve higher precision than the other tested methods.  

Assessing cell type-specificity via 3D experimental loops 

As an additional test, we checked to what extent ct-links called on different cell types are 

supported by TLS loops that are called from GM12878's POLR2A ChIA-PET data. If ct-links 

called by a certain prediction method on GM12878 are indeed highly specific, we expect 
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GM12878 to show the highest support rate in this analysis. To quantify this, we defined for 

each cell type, the logarithm of the ratio between the validation rate observed in GM12878 and 

the validation rate observed for that cell type. For most cell types we expect to obtain values>0. 

Indeed, CT-FOCS ct-links predicted for GM12878 showed significantly higher support rate 

compared to the ct-links that were predicted in most other cell types (median log2(ratio) ~1.7; 

Figure 3.4A). Moreover, the six cell types that showed higher validation rate than GM12878 

(that is, had log2(ratio)<0; Figure 3.4A: CT-FOCS boxplot) were all biologically related to 

GM12878 (e.g., B cell line and Burkitt's lymphoma cell line). CT-MAD-FOCS and MAD-

FOCS performance was significantly lower (median log2(ratio) ~1.1), followed by CT-JEME 

(~0.7) and JEME (~0.6). Note that in this analysis too, the comparisons between CT-FOCS, 

CT-MAD-FOCS and CT-JEME are more proper, since these methods have a similar number 

of predictions per cell type (and thus, comparable recall). The results for MAD-FOCS and 

JEME are added only for reference. The results were more significant in favor of CT-FOCS 

when considering only TLS anchors overlapping GM12878 H3K27ac peaks downloaded from 

ENCODE (Supplementary Table 2A). We obtained similar results when validating against 

ChIA-PET single loops (Figure 3.4B), and when using HiChIP from K562 (Figure 3.4C). 

When using PCHi-C, HiChIP and ChIA-PET for eight individual tissues, CT-FOCS performed 

best overall (Figure 3.4D and Supplementary Table 2A). 

We repeated the analysis of CT-FOCS, CT-MAD-FOCS, CT-TargetFinder and CT-ABC, now 

using ct-link predictions derived from the ENCODE dataset (Supplementary Table 2B. 

Interestingly, CT-MAD-FOCS obtained the highest precision and TLS support on GM12878. 

On K562, all methods had rather low performance (log3(𝑟𝑎𝑡𝑖𝑜) ≃ 0). Note, however, that the 

number of cell types compared was very low (5-10 cell types, compared to 276 for FANTOM5), 

so these results are anecdotal. 

Overall, on FANTOM5 dataset, the particularity of the links of CT-FOCS was higher than those 

of CT-MAD-FOCS and CT-JEME. 

 

https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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Figure 3.4. The particularity of each algorithm's predictions as measured by ChIA-
PET, HiChIP, and PCHi-C assays.  (A-B) Each algorithm was applied to each cell type, 
and the predicted links were benchmarked against GM12878 ChIA-PET loops and TLSs. 
Comparison included 276 FANTOM5 cell types that had at least 50 predicted EP links in 
CT-FOCS, MAD-FOCS, CT-MAD-FOCS, JEME and CT-JEME. The plots show, for the 
indicated cell type, the distribution of the ratios between the percentage of predicted EP links 
on GM12878 that had GM12878 ChIA-PET support and the percentage of predicted links in 
that cell type that had GM12878 ChIA-PET support (Methods). (A) ChIA-PET TLS support. 
(B) ChIA-PET single loop support. (C) The same analysis as in (A) for K562 cell line 
compared to TLSs derived from K562 HiChIP assay. (D) The same analysis as in (A) but 
here using TLSs derived from PCHi-C in four additional cell types and tissues. All 
comparisons are summarized in Supplementary Table 2. p-values are based on one sided 
Wilcoxon paired test. 

 

Predicted ct-links drive cell type-specific gene regulation 

We next asked whether the enhancers and promoters in the ct-links inferred by CT-FOCS 

demonstrate signals of cell type-specific transcriptional regulation, as shown previously for 

lineage-determining TFs [142] and in K562 [128]. To this end, we searched for occurrence of 

402 known TF motifs (position weight matrices; PWMs) within the enhancers and promoters 

of the inferred links. To lessen false discoveries, we restricted our search to digital genomic 

footprints (DGFs; Methods), which are short genomic regions (~20 bp on average) identified 

by DHS that tend to be stably bound by TFs [143].  We used ~8.4M reported DGFs in the 

human genome, covering 41 diverse cell and tissue types derived from ENCODE DHS data 
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[112]. For each TF and cell type, we calculated the overrepresentation factor of the TF motif in 

the target set (enhancers or promoters of the inferred ct-links) compared to a matched control 

set harboring a similar nucleotide distribution (Methods).  

We first applied this test to the ct-links predicted on GM12878 using the ENCODE DHS 

dataset. 13 overrepresented TFs were identified in promoters, and a different set of 13 TFs was 

identified in enhancers. These TFs showed on average higher overrepresentation in both 

enhancers and promoters compared to their occurrence in the ct-links inferred for other cell 

types (Figure 3.5A-B). In terms of the specificity score of the TF overrepresentation factors, 

GM12878 ranked first in both enhancers and promoters (Figure 3.5C-D).  

Many of the TFs whose motifs were detected as overrepresented on GM12878 ct-links have 

known roles in regulation of B cell lineage commitment [144,145].  Among them are the EBF 

TF 1 (EBF1) and the interferon regulatory factor 4 (IRF4) (which had, respectively, the 2nd and 

8th highest overrepresentation factors in GTM12878 ct-link promoters), and the paired box 5 

(PAX5) and the interferon regulatory factor 8 (IRF8) (ranked 7th and 11th in enhancers, 

respectively). Furthermore, EBF1, SPI1, BATF, RUNX3, IRF4, and PAX5, detected by our 

analysis, were shown to cooperate with the STAT5A-CEBPB-PML complex, predicted to be 

involved in chromatin looping. Since these cofactors exhibit GM12878-specific expression 

(Supplementary Figure S3.9), they define highly specific chromatin binding profile for the 

STAT5A-CEBPB-PML complex in GM12878, which does not appear in the related K562 cell 

line [146]. Note that while Zhang et al. 2016 [146] used ChIP-seq data from multiple TFs as 

well as Hi-C data to identify TF complexes involved in chromatin looping in GM12878 and 

K562 cell lines, our method requires data generated by only a single omics technique to pinpoint 

putative TF complexes that mediate EP chromatin looping for hundreds of cell types. 

Next, we applied this TF motif overrepresentation analysis and specificity ranking on the ct-

links inferred from ENCODE DHS data for 68 cell types that had at least 50 predicted EP links. 

The analysis identified an average of 12 overrepresented TF motifs in enhancers and 19 in 

promoters, per cell type (Supplementary Table S3). Calculating cell-type specificity scores 

based on the set of overrepresented TFs detected on the ct-link’s enhancers in each cell type, 

ranked the studied cell type as the top one in 57 out of the 68 cell types.  Similarly, using the 

set of overrepresented TFs detected on the ct-link’s promoters, ranked the studied cell type as 

the top one in 58 out of 68 cell types.  

Last, we applied this analysis on 276 FANTOM5 cell types that had at least 50 predicted EP 

links in all methods. CT-FOCS analysis identified an average of 16 TFs in enhancers and 25 

https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data


61 
 
 

 

in promoters per cell type (Supplementary Table S4). JEME identified 33 and 69, CT-JEME 

identified 17 and 35, MAD-FOCS identified 9 and 20, and CT-MAD-FOCS identified 9 and 

5, respectively. CT-FOCS ranked the studied cell types first in ~57% and ~61% of the cases 

for enhancers and promoters, respectively, while the other methods ranked first ~1-37% in 

enhancers and 2-53% in promoters, with CT-MAD-FOCS showing the lowest numbers. 

Overall, CT-FOCS tended to find TFs that are more cell type-specific. 

 
Figure 3.5. Overrepresented transcription factor motifs in enhancers and promoters of 
GM12878 ct-links. (A,B) Heatmaps of TF motif overrepresentation factor (after Z-score 
transformation) in promoters (A) and enhancers (B) of GM12878-specific EP links identified 
by CT-FOCS on ENCODE DHS data. TFs shown had q-value < 0.1 (Hyper Geometric test). 
(C-D) Cell type specificity score ranks based on GM12878-specific TF overrepresentation 
factors in promoters (C) and enhancers (D) compared to other cell types. 
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FANTOM5 and ENCODE data preprocessing 

Details on data preprocessing are provided in the Supplementary Methods sections: 

‘FANTOM5 CAGE data preprocessing’ and ‘ENCODE DHS data preprocessing’. 

CT-FOCS model Implementation 

Our model for promoter 𝑝 (Figure 3.1) includes its 𝑘 closest enhancers. The activity of the 

promoter across the 𝑛 samples is denoted by the 𝑛-long vector 𝑦;, and the activity level of the 

enhancers across the samples is summarized in the matrix 𝑋: of dimensions 𝑛 × (𝑘 + 1), with 

the first column of ones for the intercept and the next k columns corresponding to the candidate 

enhancers. There are 𝐶 < 𝑛 cell types and each sample is labeled with a cell type.	𝑘 = 10 was 

used. 

To find ct-links based on the global links identified by FOCS, CT-FOCS starts with the full 

(that is, non-regularized) promoter model. We use the non-regularized promoter model as 

regularization reduces the overall model variance needed for making inferences. In principle, 

one could apply ordinary least squares regression with the cell types as additional coefficients 

to estimate cell type specificity. However, such models will perform poorly when the sample 

size is not much larger than the number of coefficients (e.g., in FANTOM5 we have 808 

samples and a total of 483 coefficients: 472 cell types + k=10 enhancers + intercept). By using 

LMM, we can treat the cell type group level as a random effect coefficient, splitting the samples 

(replicates) based on their cell type of origin, at the cost of assuming a random effect 

distribution. 

The application of an appropriate mixed effects model to the data depends on the distribution 

of the promoter and enhancer activities. We observed that FANTOM5 data have normal-like 

distribution and ENCODE data have zero-inflated negative binomial (ZINB) distribution 

(Supplementary Figure S3.10). For FANTOM5, we applied regular linear mixed effect 

regression.  For ENCODE, we applied generalized linear mixed effect regression (GLMM).   

For each promoter, we defined a null model and 𝑘 + 1 alternative models, each corresponding 

to a single random effect (i.e., random slope for enhancer or random intercept for the promoter). 

We defined the null model as the simple linear regression 𝑦; = 𝑋:𝛽 + 𝜖, and each of the 

alternative models as the LMM model 𝑦; = 𝑋:𝛽 + 𝑍@𝛾@ + 𝜖, where 𝑋:𝛽 is the fixed effect,  

𝑍@𝛾@ is the random effect, and 𝜖 is a random error. 𝑙 ∈ {1, … , 𝑘 + 1} is one of the variables 

(enhancer or the intercept). 𝛾@ is a 𝐶-long vector of random effects to be predicted. 𝑍@ is a 𝑛 × 𝐶 

design matrix that groups the samples by their cell types, namely: 
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𝑍@[𝑖, 𝑗] = s𝑋:[𝑖, 𝑙] 𝑠𝑎𝑚𝑝𝑙𝑒	𝑖	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒	𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We applied	a likelihood ratio test between the residuals of the 𝑘 + 1 alternative models and  the 

null model, and got 𝑘 + 1 p-values. Such p-values were calculated for each of the |𝑃| 

promoters, and corrected together for multiple testing using FDR [104], with the number of 

tests performed  |𝑃| ∙ (𝑘 + 1).  

Each predicted random effect vector 𝛾@ = {𝛾A@ , … , 𝛾C@ |	 of the alternative models was normalized 

using the median absolute deviation (MAD), i.e., 𝛾′%@ 	= 	 |	𝛾%@ 	− 	𝑚𝑒𝑑𝑖𝑎𝑛(	𝛾@)	|/𝑚𝑎𝑑{	𝛾@|,	 

where 𝑚𝑎𝑑{𝛾@| = 𝑚𝑒𝑑𝑖𝑎𝑛{�𝛾@ −𝑚𝑒𝑑𝑖𝑎𝑛{𝛾@|�| is calculated over all cell types together. If 

𝛾′%@ > 2.5  then enhancer 𝑙 (or the promoter, if 𝑙 = 1) was regarded as having an outlier activity 

in cell type 𝑖. We chose a moderately conservative MAD threshold, 2.5, as suggested in [147]. 

We chose to use the MAD statistic since the mean and the standard deviation are known to be 

sensitive to outliers [147].  

Finally, we defined cell type-specific EP links (abbreviated ct-links) as those that had: (1) 

significant random effect intercept of the promoter (P), (2) significant random effect slope of 

the enhancer (E), both with q-value < 0.1, and (3) E and P random effect values were identified 

as outliers in the same cell type according to the MAD criterion. 

MAD-FOCS model 

MAD-FOCS takes the global EP links predicted by FOCS [101]. Then, for every global EP 

link, MAD-FOCS calculates the E and P median activity values across the multiple replicates 

per cell type. Last, it normalizes the median activities across cell types using the MAD method. 

EP links are identified as ct-links in a certain cell type if both E and P activities are positive 

outliers in that cell type using MAD cutoff > 2.5. 

Filtered EP links sets 

To validate the cell type-specificity of predicted EP links we use experimental 3D loops as a 

benchmark (see next section). The very small number of cell types assayed does not allow us 

to identify true cell type-specific loops and exclude those common to many cell types. 

Therefore, the benchmark does not provide a gold standard of positive and negative ct-links. 

(validations against all experimentally detected loops without considering the cell type-

specificity of predicted EP links are available in Supplementary Results and Supplementary 

Figures S3.11-3.12). To allow a fair comparison between the performance of prediction 

methods that produce very different numbers of links, for each method and cell type, if CT-
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FOCS gave 𝑛 links, then we took the subset of 𝑛 top scored links predicted by that method. We 

call these subsets CT-X where X is the method’s name. 

1. CT-JEME  

JEME reports a classification score (between 0.3 to 1) for every EP link representing how active 

the EP link is in each cell type. We created a subset of the original JEME EP links called CT-

JEME. For cell type j in FANTOM5 with 𝑛 CT-FOCS ct-links, we chose the top 𝑛 scoring EP 

links of JEME as the CT-JEME subset for that cell type. For cell types in which JEME had a 

lower number of EP-links than CT-FOCS, we included all JEME’s EP links for that cell type 

in CT-JEME. Supplementary Figure S3.2A shows that the number of EP links per cell type 

is similar between CT-FOCS and CT-JEME. In addition, the average number of cell types 

sharing an EP link is 2.9 in CT-JEME compared to 11 in JEME (Supplementary Figure 

S3.2B).  

2. CT-MAD-FOCS  

To allow a fair comparison between the predictions of CT-FOCS and MAD-FOCS, we created 

a subset of MAD-FOCS EP links called CT-MAD-FOCS, as described for CT-JEME above. 

We sorted the EP links by their 𝑙𝑜𝑔𝐸𝑃 signal. 

3. CT-TargetFinder and CT-ABC  

Data for ABC model was taken from 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus

150.ForABCPaperV3.txt.gz. Among the 131 biosamples analyzed in ABC, 75 were taken from 

ENCODE and Roadmap epigenomics consortia [25,126] and 8 of them were also present in the 

CT-FOCS database and used for comparison (GM12878, HeLa-S3, K562, HCT-116, HepG2, 

A549 and H1-hESC). As for TargetFinder, we applied the program 

(https://github.com/shwhalen/targetfinder) on five cell types from ENCODE (GM12878, 

HeLa-S3, HUVEC, NHEK and K562) for which preprocessed multi omics data was available 

on the TargetFinder website, using as input candidate DHS sites representing enhancers and 

promoters from ENCODE  DHS data. For each cell type in ENCODE with 𝑛 CT-FOCS ct-

links, we chose the top 𝑛 scoring EP links of TargetFinder (by classification score) and of the 

ABC model (by ABC score) as the predicted ct-links for that cell type for the two models, and 

called these subsets CT-TargetFinder and CT-ABC, respectively. Statistics on the analyzed data 

are summarized in Supplementary Table 1A. 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
https://github.com/shwhalen/targetfinder
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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External validation of predicted EP links using ChIA-PET, HiChIP and PCHi-C loops 

We used 3C loops to evaluate the performance of CT-FOCS and of other methods for EP 

linking. We downloaded ChIA-PET data of GM12878 cell line (GEO accession: GSE72816; 

~100 bp resolution) assayed with POLR2A [137], HiChIP data of Jurkat, HCT-116, and K562 

cell lines (GEO accession: GSE99519; 5 kb resolution) assayed with YY1 [105], and PCHi-C 

data across 27 tissues (GEO accession: GSE86189; 5 kb resolution) [138]. Each loop identifies 

an interaction between two genomic intervals called its anchors. In ChIA-PET data, to focus 

on high confidence interactions, we filtered out loops with anchors' width >5kb or overlapping 

anchors.  Loop anchors were resized to 1kb (5kb in HiChIP and PCHi-C) intervals around the 

anchor's center position. We filtered out loops crossing topologically associated domain (TAD) 

boundaries, as functional links are usually confined to TADs [148–151]. For this task, we 

downloaded 3,019 GM12878 TADs [152], which are largely conserved across cell types [131], 

and used them for filtering ChIA-PET and PCHi-C loops from all cell types. 

To overcome the sparseness of the ChIA-PET loops, and the 8kb minimum distance between 

loop anchors [137,153], we combined loops into two-step loop sets (TLSs) as follows: for every 

reference loop, x, its TLS is defined as the set of anchors of all loops that overlap with at least 

one of x's anchors by at least 250 bp (Figure 3.3A). We used the igraph R package [154] for 

this analysis.  

To evaluate if a ct-link is confirmed by the ChIA-PET data, we checked if both the enhancer 

and the promoter fall in the same TLS. Specifically, we defined 1kb genomic intervals (±500 

bp upstream/downstream; 5kb genomic intervals: ±2.5kb upstream/downstream in HiChIP and 

PCHi-C) for the promoters (relative to the center position; relative to the TSS in FANTOM5 

dataset) and the enhancers (relative to the enhancer's center position) as their genomic positions. 

Both inter- and intra- TAD predicted EP-links were included in the validation. An EP link was 

considered supported by a TLS if the genomic intervals of both its promoter and enhancer 

overlapped different anchors from the same TLS (Figure 3.3B and Supplementary Figure 

S3.7).  

We used randomization in order to test the significance of the total number of EP links 

supported by ChIA-PET single loops. We denoted that number by 𝑁D. We performed the test 

as follows: (1) For each predicted EP link, we randomly matched a control EP link, taken from 

the set of all possible EP pairs that lie within 9,274 GM12878 TADs from Rao et al. [131],  

with similar linear distance between E and P center positions. We restricted the matching to the 

same chromosome in order to account for chromosome-specific epigenetic state [155]. The 
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matching was done using MatchIt R package (method='nearest', distance='logit', 

replace='FALSE') [156]. This way, the final set of matched control EP links had the same set 

of linear interaction distances as the original EP links. (2) We counted 𝑁E, the number of control 

EP links that were supported by ChIA-PET single loops. We repeated this procedure for 1,000 

times. The empirical p-value was 𝑃 = #(G!0G")
ABBB

	, or 𝑃<0.001 if the numerator was zero. A 

similar empirical p-value was computed for the validation rate obtained by using single loops 

and TLSs. 

We used the following formula to calculate the GM12878 ChIA-PET TLS support ratio: 

𝑟𝑎𝑡𝑖𝑜 5
𝐺𝑀12878
𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒 7

=
%𝐺𝑀12878	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝐸𝑃𝑠	𝑖𝑛	𝐺𝑀12878	𝑇𝐿𝑆
%𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝐸𝑃𝑠	𝑖𝑛	𝐺𝑀12878	𝑇𝐿𝑆

 

Calling cell-type specific active EP loops reported in a capture Hi-C study  

We wished to identify cell-type specific EP links reported in capture Hi-C data [138]. We 

downloaded 906,721 promoter-other (PO) capture Hi-C loops generated across 27 tissues (GEO 

accession: GSE86189) [138]. These loops involve a known gene's promoter and a non-promoter 

region, which may be an enhancer. To define a set of strictly ct-specific loops, we retained PO 

loops that were detected in exactly one cell type.  We set the PO anchors to 1kb intervals around 

their center positions. This analysis detected a median of 630 EP loops that were unique to a 

specific cell type.  

To call promoter and enhancer regions, we downloaded 474,004 enhancer and 33,086 promoter 

regions predicted by a 15-state ChromHMM model on Roadmap epigenetic data across 127 

tissues (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/enh/15/state_calls.RData; 

https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/prom/15/state_calls.RData) [25]. We kept the enhancers of state 

Enh or EnhG (genic enhancers) in any of 127 Roadmap tissues. Similarly, we kept the 

promoters of state TssA (active TSS) or TssAFlnk (Flanking Active TSS). Then, we resized 

each region to a 1kb interval around its center position. We called the resulting sets active 

promoters and enhancers. A retained PO loop whose P and O anchors had at least 250 bp 

overlap with active ChromHMM promoter and enhancer, respectively, was considered as cell 

type-specific active EP loop.  

Cell type specificity score 

https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/enh/15/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/enh/15/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/prom/15/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/prom/15/state_calls.RData
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We quantified the intensity of an EP link in a given sample by log3 𝑎 + log3 𝑏	where 𝑎 and 𝑏 

are the enhancer and promoter activities in that sample. The EP signal of the link for a particular 

cell type is the average of the signal across the samples from that cell type. Define 𝑥H =

(𝑥HA, … , 𝑥HI) as the vector of signals in cell type 𝑐, where 𝑛 is the total number of EP links 

discovered in cell type 𝑐, and define 𝑑H,% as the Euclidean distance between the vectors of cell 

types 𝑐 and 𝑖, both with the same EP links from cell type 𝑐. Following the definition of [132], 

the specificity score of EP links predicted in cell type 𝑐 is: 

𝑆H =
1

∑ 𝑑H,%%JH
<𝑑H,%<{𝑥H,K − 𝑥%,K|

I

KLA%JH

 

Similarly, cell-type specificity can be computed for the expression values of the genes 

annotated with EP links, or on the overrepresentation factors of TFs found at enhancers and 

promoters. 

Motif finding on ct-links 

We examined the occurrence of transcription factor (TF) binding site motifs in sequences of ct-

links’ promoters and enhancers. Finding all TF motif occurrences (hits) in a large set of 

promoter and enhancer sequences, each hundreds of bases long, is prone to high false positive 

rate. We therefore limited the search for hits to digital genomic footprint (DGF) regions, very 

short segments that are more likely to contain genuine TF binding sites. We downloaded ~8.4M 

DGF sequences inferred from DNase-seq in ENCODE [112]. The mean DGF length was 𝐿 ≈

20 bp, with a maximum length of 68 bp. 

We intersected the DGFs with enhancer and promoter regions of predicted ct-links. We call the 

resulting set of sequences the target set. We looked for hits of 402 HOCOMOCO V11 [71] TF 

core motifs (taken from MEME suite database [66]; http://meme-suite.org/meme-

software/Databases/motifs/motif_databases.12.18.tgz) in the target sets. Hits were found using 

FIMO [70] with 0-order Markov model as background created using fasta-get-markov 

command from MEME suite [69]. For each TF, matches with FIMO q-value<0.1 were 

considered hits. To evaluate the statistical significance of the findings we repeated the search 

on a control set from matched regions (one per target region) having similar distribution of 

single nucleotides and dinucleotides. Matching was done using MatchIt R package [156] 

(method='nearest', distance='mahalanobis'). For each TF we used a one sided Hyper-Geometric 

(HG) test to compare between the prevalence of its hits in the target and background 

(target+control) sets. Motifs having q-value < 0.1 were selected.  

http://meme-suite.org/meme-software/Databases/motifs/motif_databases.12.18.tgz
http://meme-suite.org/meme-software/Databases/motifs/motif_databases.12.18.tgz
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If a 𝑘-long TF motif had 𝑙D hits on a target set containing 𝑚D	possible k-mers in total (in both 

strands)  and the same motif had 𝑙M	hits in the background set containing 𝑚M possible k-mers, 

then the overrepresentation factor of the TF is defined as (𝑙D/𝑚D)/(𝑙M/𝑚M). To avoid division 

by zero we used the Laplace correction (adding +1 to all four terms). If 𝑙D was zero then we set 

the overrepresentation factor as 1. 

Statistical methods, visualization and tools  

All computational analyses and visualizations were done using the R statistical language 

environment [157]. To correct for multiple testing we used the p.adjust() function 

(method=’BY’). We used ‘GenomicRanges’ package [118] for finding overlaps between 

genomic intervals. We used ‘rtracklayer’ [119] and ‘GenomicInteractions’ [120] packages to 

import/export genomic positions. Linear mixed effect regression models were created using 

lme R function from nlme package [158]. Generalized linear mixed effect with zero inflated 

negative binomial models were created using glmmTMB R function from glmmTMB package 

[159]. Counting reads in genomic intervals was done using BEDTools [109]. Graphs were 

created using graphics [157], ggplot2 [123], gplots [124], ComplexHeatmap [160], and the 

UCSC Genome Browser (https://genome.ucsc.edu/). 

 

 

 

 

 

 

 

 

 

 

 

 

https://genome.ucsc.edu/
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4. Inferring transcriptional activation and 
repression activity maps in single-nucleotide 
resolution using deep-learning 

 

Regulatory elements that control transcription such as enhancers and promoters have been 

studied extensively over the past two decades [2]. In contrast, silencers, which turn-off or 

reduce the transcription of their target genes, have received less attention, mainly because they 

are harder to verify experimentally. 

Classification methods aiming at predicting cell type-specific functional enhancers and 

promoters have used sequence and epigenetic data. Positive enhancers and promoters used as 

training, validation and test sets were mainly labeled using epigenetic data. For example, 

functional enhancers are known to be marked by the H3K4me1 and H3K27ac histone 

modifications within their genomic context. In contrast, it is not clear which epigenetic marks 

define functional silencers. 

Recently, an ATAC-STARR-Seq study experimentally identified many enhancer and 

silencer elements in GM12878 cell line [35], each with per-nucleotide contribution scores to 

activation or repression of the target gene’s expression. Using these data, we aimed to develop 

a more robust method for enhancer and silencer classification. Feature importance techniques 

applied on the trained model were used to pinpoint the precise epigenetic combination defining 

functional silencers. We compared three published DL models; each implemented a different 

architecture from one or both CNN and RNN families. The first is a CNN-based model 

composed with five convolutional layers [161]. The second, deepTACT, is composed with one 

convolution layer and additional RNN layers to study relationships between adjacent positions 

in the input sequence [45]. The third, ResNet, is a combination of convolution layers and 

residual network blocks composed of RNN layers to avoid the vanishing gradient problem [86]. 

The last two were originally designed for a different classification task and we modified them 

for our task.   

 In this study we investigated the following question: will a deep learning (DL) model 

trained on DNA sequences labeled as enhancers and silencers using experimental identified 

elements be less or more accurate compared to the same DL model trained on REs labeled using 

epigenetic data? 

In addition, previous methods that predicted silencers have used the DNA sequence only 

as an input. Our second question was whether incorporating epigenetic data alongside the 

sequence in the input will improve prediction performance. 
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Lastly, we hypothesized that the abovementioned ATAC-STARR-Seq study might miss 

true enhancers and silencers. To this end, we trained a DL model on experimentally identified 

enhancers and silencers and predicted 3,752 novel enhancers and 518 novel silencers on a set 

of genomic sequences without overlapping experimentally identified elements. Downstream 

analyses such as TF and GWAS enrichments within these novel enhancers and silencers were 

used to provide support for these novel REs being genuine ones.  

    

4.1. Results 
Training on experimentally identified regulatory elements improves predictive accuracy 

of silencers models 

Due to lack of broad sets of experimentally identified silencers, the computational models for 

silencers developed by Huang and Ovcharenko [161] were trained on sets of putative silencers 

that were defined based on their epigenomic profile rather than on experimentally detected 

silencer elements. The recent ATAC-STARR-Seq study by Hansen et al. provides extensive 

sets of identified enhancer and silencer elements in the lymphoblastoid cell line GM12878 [35]. 

Therefore, first, we wished to compare the performance of silencer models trained on putative 

silencers that were defined based on epigenomic marks to the performance of models trained 

on experimentally identified silencers.  

Following the epigenetic criteria used by Huang and Ovcharenko, we defined as the set of 

putative silencers in GM12878 all H3K27me3 peaks not overlapping either H3K27ac, 

H3K4me1 or H3K4me3 peaks in this cell line. In parallel, we defined a set of putative enhancers 

that are active in GM12878 as the regions of ATAC-seq peaks overlapping H3K27ac, but not 

H3K27me3 peaks in this cell line. We also defined a background set of regulatory elements 

that are non-functional in GM12878 as regions of ATAC-seq and H3K27me3 peaks randomly 

chosen from five other cell types that were not detected in GM12878. Overall, this epigenetic 

approach defined 41,548 enhancers, 24,554 silencers and 396,612 nonfunctional peaks. We 

applied the Convolutional Neural Network (CNN) method introduced by Huang and 

Ovcharenko on the GM12878 training set using 1kb sequence as the only feature, and evaluated 

how accurately it classified the experimentally identified elements detected by ATAC-STARR-

Seq in this cell line (22,336 enhancers, 19,289 silencers and 175,088 nonfunctional ATAC-seq 

peaks; Methods). The CNN model achieved for enhancers 0.3 AUPRC, and for silencers 0.06 

AUPRC (Supplementary Fig. 4.1). 
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Next, we applied the same CNN method, but now trained the model using the sequences 

identified experimentally as regulatory elements by ATAC-STARR-Seq (Hansen et al.)  

Chromosomes 1-5, 9-22 and X constituted the training set. Chromosome 6 was used as a 

validation set for tuning the model's hyper-parameters. The test set used for evaluation of the 

model’s performance included chromosomes 7 and 8.   

The predictive performance of enhancer models trained on the experimentally identified 

enhancers was 0.37 AUPRC, a bit higher than the performance obtained by the enhancer models 

trained on putative enhancers defined based on epigenomic marks (0.3 AUPRC). In contrast, 

for silencers, the performance of the models trained on experimentally identified silencers was 

0.77 AUPRC, dramatically higher than that obtained by the silencer model trained on REs 

defined by epigenomic marks (0.06 AUPRC) (Supplementary Fig. 4.1). This result reflects 

the much better knowledge we currently have on epigenomic marks defining active enhancers 

compared to those that mark active silencers. Furthermore, as extensive sets of experimentally 

identified enhancers and silencers are available for only a limited number of cell lines, our result 

indicates that the availability of epigenomic profiles for canonical marks in various cell lines is 

sufficient for reasonable prediction of enhancers in these cells, but it does not allow accurate 

prediction of the landscape of active silencers. 

Improved deep-learning model for prediction of enhancer and silencer elements 

Next, we aimed to build a DL model for regulatory elements with improved accuracy. We 

reasoned that a DL model can utilize the quantitative output measured by STARR-Seq for the 

effect of the probed genomic intervals on transcriptional activity, rather than using discrete 

classes (Enhancer/Silencer/Non-functional categories) in the model learning phase. Therefore, 

we implemented a two-steps model as follows: Step 1 implements a regression model that 

predicts, in a single-nucleotide resolution, activation and repression effects in the trained cell 

type. Step 2 is a 3-class classification model built upon the trained regression model (Fig. 4.1a). 

The input to our model are 1kb sequences of ATAC-seq peaks together with epigenetic signals 

of DNA methylation, H3K27ac, and H3K4me1 in that interval (Fig. 4.1b; see next section for 

how we selected the epigenetic marks).  

The regression model was built using activation and repression profiles measured for GM12878 

ATAC-Seq peaks by STARR-Seq in 50-bp windows  [35] (Methods). These windows were 

computationally merged to 21,125 silencers and 30,078 enhancers. We also generated an 

exploratory set composed of 70,937 GM12878 ATAC-seq peaks that did not overlap any 

silencer or enhancer identified by ATAC-STARR-Seq in this cell line. These peaks were 
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excluded from the training phase and used in downstream analyses. We tested three different 

DL architectures previously used in genomic analyses: deepTACT [45], CNN [161] and ResNet 

[86]. We also tested a simple linear regression as a baseline model. In each DL architecture, we 

replaced the last layer by a new dense layer that outputs 1,000 regression scores, one per 

position in the input sequence (Fig. 4.1a; Methods). Models were compared based on their 

classification performance in the second step. 

In Step 2 we implemented a 3-category classification model by appending two dense layers to 

the regression network, to account for dependency between adjacent nucleotides' activation and 

repression levels. The first layer consists of 300 outputs, and the second, final layer, has three 

outputs, corresponding to the classes to be predicted: enhancer, silencer and nonfunctional. The 

predicted class is the one receiving the highest probability.  

For the classification task, input 1kb sequences were labeled using the following scheme: (1) 

we scored each sequence by summing over the activation and repression levels at every 

nucleotide, (2) we divided the sequences into two sets: those with positive and negative sums, 

(3) in the positive set, the top 25th percentile were labeled as enhancers, (4) in the negative set, 

sequences at the bottom 25th percentile were labeled as a silencer, (5) all other sequences were 

labeled as nonfunctional. Overall, the 85% and 76% of the silencers and enhancers called by 

the original ATAC-STARR-Seq matched the labels they got by this scheme.  

We again used enhancers and silencers from chromosomes 1-5, 9-22 and X for the training 

set. Elements from chromosome 6 were used as a validation set, and the test set included he 

elements from chromosomes 7 and 8. The three DL architectures had similar performance (Fig. 

4.1c), and all performed better than the simple linear regression model. All DL models 

performed quite well in predicting silencers (AUPRC 0.81-0.86), and much better than the 

sequence based model of Huang and Ovcharenko [161] (AUPRC 0.77; Supplementary Fig. 

4.1). Performance of the DL models in predicting enhancers were much lower (AUPRC 0.51-

0.55). This might be attributed to the fact that the observed activation levels of enhancers are 

not clearly distinguishable from the nonfunctional levels (Fig. 4.2). Overall, the deepTACT 

model performed best in predicting both enhancers and silencers. Thus, we used this model in 

downstream analyses. 
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Figure 4.1. Model implementation and comparison. (a) Model architecture. (b) 

Schematic figure of the input and output structure. (c) Performance of the models 

(Methods). 
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Epigenetic markers improve prediction performance 

The silencers prediction models developed by Huang and Ovcharenko used only sequence 

information as input. Our DL model utilizes also epigenetic data.  Therefore, next, we examined 

whether the addition of epigenetic information improves the prediction performance. To this 

end, we trained the deepTACT model on sequences alone or on sequences together with 

combinations of additional epigenetic markers. Indeed, our result shows that adding the 

epigenetic data, and specifically H3K27ac and H3K4me1 signals, improved the prediction 

performance of our model, with more prominent improvement obtained for enhancers (AUPRC 

improves from 0.29 to 0.54 for enhancers and from 0.76 to 0.85 for silences) (Supplementary 

Table 4.1). 

When plotting the average signal across sequences of predicted classes, we found that our 

model captures epigenetic signals that were not part of the input training data and are relevant 

to the activity of enhancers and silencers (Fig. 4.2). For example, high signal for the 

transcriptional co-activator P300 (EP300), a histone acetyltransferase known to bind active 

enhancers, was obtained within predicted enhancers but was markedly depleted within 

silencers. On the other hand, in flanking nucleosomes of predicted silencers we observed high 

signals for the enhancer of zeste homolog 2 (EZH2), which is part of the PRC2 complex, and 

for H3K27me3. In addition, predicted silencers seem to be more methylated compared to the 

other two classes. EZH2 can also serve as an activator [162], which could explain the high 

signals it obtained at the center of the predicted enhancers in the test set (Fig. 4.2). 

Overall, silencers predicted by our model tend to be more methylated and more strongly marked 

by H3K27me3 than enhancers (Fig. 4.2). On the other hand, as expected, predicted enhancers 

tend to be marked by H3K27ac and H3K4me1 and bound by EP300. 
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Figure 4.2. Summary of epigenetic markers in the test set. Top to bottom: observed scores 
(as measured by STARR-Seq), predicted scores (output of Step1 – the regression model), 
H3K27ac, H3K27me3, H3K27me1, Methylation, EP300 and EZH2. Predicted enhancers, 
silencers and nonfunctional are marked by red, blue and grey colors, respectively. In each 
predicted class and each track, the average signal per position in the 1kb sequences is shown. 
In b, the grey curve overlaps the blue curve for H3K27ac and the red curve for the EZH2. 

 

Next, we set to determine which features contributed the most to the classification. For this 

task, we used the integrated gradients (IG) approach [89] (Methods), which calculates feature 

importance scores per input sample given their labels. The sign of these scores indicate a 

positive or negative correlation between the feature signal and the classification score. The 

magnitude of these scores indicates the contribution of the feature to the classification score. 

We applied this approach to input sequences in the test set given their labels. We found that 

enhancer classification scores were most positively correlated with H3K4me1 and H3K27ac 

levels followed by the DNA bases C and G, and DNA methylation features (Fig. 4.3a). The 

contribution of both H3K27ac and methylation is in agreement with previous findings of their 

bivalent role in enhancers [163]. In addition, methylation is associated with GC-rich regions, 

and, as expected enhancers tend to be GC-rich. Interestingly, the G and C features were the 

only major contributors to silencer classification, with little contribution from the epigenetic 

marks. This could be attributed to the fact that silencers tend to be closer to TSSs compared to 

enhancers (mean distance: 18,782 bp vs. 52,324 bp; Supplementary Fig. 4.2). Regions closer 

to TSSs, e.g., promoters, are highly GC-rich [164]. Both enhancer and silencer classification 

scores were negatively correlated with A and T features. In contrary to enhancer and silencer 

classifications, classification scores for nonfunctional elements were most positively correlated 
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with A and T features. Chromatin in AT-rich regions is more compacted than in GC-rich 

regions [165], which could explain why nonfunctional regions are AT-rich. Nonfunctional 

classification scores were strongly negatively correlated with H3K4me1 levels, as this marker 

is mostly associated with enhancer regions. 

Next, we used the feature importance scores to find enriched motifs in the sequences using TF-

MoDISco [166] (Methods). We identified one motif within silencers in the test set. This motif 

matched the binding motif of SP2 and SP3 TFs (using TomTom [167]) (Fig. 4.3b), which bind 

GC-rich elements. A richer set of 8 motifs was found within enhancers in the test set. Among 

the motifs, one matched Myocyte enhancer factor (MEF) TFs (Fig. 4.3c), and others matched 

known B-cell TFs such as: PRDM6, BCL11A, and IRF3 (Supplementary Table 4.2). 
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https://github.com/Shamir-Lab/EnhancerSilencerDL/blob/main/data/Table_S2.xlsx
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Figure 4.3. Feature importance scores computed for each class on the test set. (a) We 
used the integrated gradients approach to assign feature importance scores to the sequences 
per class: enhancer (top), silencer (middle) and nonfunctional (bottom). Positive or negative 
importance scores reflect a positive or negative correlation between the feature and the 
classification score, respectively. The magnitude of these scores measures the contribution 
of the feature to the classification score. (b) The top enriched motif in silencers as computed 
by TF-MoDISco and the corresponding known TF matched by TomTom. (c) Same as (b) for 
enhancers. 

 

deepTACT predicts novel enhancers and silencers in GM12878 

We applied the trained deepTACT model on the ATAC-seq peaks in the exploratory set 

(containing the set of 70,937 ATAC-seq peaks in GM12878 that were not detected by the 

ATAC-STARR-Seq assay as having an effect on transcription) in order to find novel enhancers 

and silencers in GM12878 which were missed by the ATAC-STARR-seq experiment 

(Methods). The model predicted 3,752 novel enhancers and 518 novel silencers. The epigenetic 

marks on these predicted elements are similar to those obtained on the experimentally identified 

enhancers and silencers (Fig. 2; Supplementary Figure 4.3).   

To provide further support for the functionality of these novel predictions, we examined their 

enrichment for eQTLs and GWAS variants. We used eQTL data from Lymphoblastoid cell 

lines downloaded from the GEUVADIS database 

(http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GEUVADIS/ge/; Methods). Using 

logistic regression and accounting for the potential confounding effect of distance to nearest 

TSS (Methods), we found that the set of novel enhancers predicted by our model is 

significantly enriched for eQTLs (P<3.1E-24; compared to ATAC-seq peaks not predicted as 

enhancers/silencers). We observed no eQTL enrichment in the set of predicted silencers, 

possibly due to their low number (n=518). On the other hand, the sets of experimentally 

identified enhancers and silencers were both enriched for eQTL signal (P<8.0E-27 and P<6.7E-

45, respectively).    

Next, we used GWAS summary statistics for 50 diseases and traits from Groenewoud et al. 

[168]. In each one, we kept the SNPs with p-value < 10-7. When performing enrichment analysis 
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of the SNPs in each predicted class, we found that the set of experimentally identified enhancers 

was enriched for systemic lupus erythematosus (SLE)  risk SNPs (Q<5.2E-5;  Supplementary 

Fig. 4.4a), an autoimmune disease involving B-cells, as well as for schizophrenia (SCZ) risk 

SNPs (Q<5.4E-7), in line with a study that implicated increased levels of B-cell cytokines and 

autoantibodies in SCZ [169]. The silencers were also enriched for some diseases albeit at lower 

statistical significance (Supplementary Fig. 4.4b). Reassuringly, the set of novel enhancers 

predicted by our model was also enriched for SLE (Fig. 4.4a; Q<1.5E-5) and schizophrenia 

risk SNPs (Q<1.2E-3). No enrichment for GWAS risk SNPs was found within the set of 

predicted silencers.  

Among the SLE risk SNPs in the novel enhancers is rs8052690, located within an enhancer that 

interacts, according to C-HiC analysis, with the promoter of the IRF8 gene [170] (Fig. 4.4b). 

As an another example, the SLE risk SNP rs13240595, which has ~2.5-fold enhancing effect 

as measured using MPRA [171], is located within a novel enhancer, which is predicted (by 

FOCS [101] and GeneHancer [170] enhancer-promoter maps) to interact with the promoter of 

the TNPO3 gene. TNPO3 was previously shown to be associated with SLE (Supplementary 

Fig. 4.5) [172]. 

a 
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Figure 4.4. Enrichment of GWAS risk SNPs within predicted enhancers. (a) Enrichment 
for GWAS SNPs. Traits with at least one risk SNP overlapping an element in the exploratory 
set are shown. q-values are FDR-corrected Hypergeometic test p-values. (b) UCSC genome 
browser tracks of SLE risk SNP, rs8052690 (marked in arrow), falling within a predicted 
active enhancer that physically interacts with the promoter of IRF8. 

 

Predicted novel enhancers and silencers are enriched for binding motifs of known 

transcriptional activators and repressors  

To further support the functionality of the novel enhancers and silencers predicted by our model 

for GM12878 in the exploratory set, we performed motif enrichment analyses (Methods). 

Using very stringent cutoffs of q-value=1E-40 and 1.5 fold-enrichment, 54 motifs were found 

within the novel enhancers, including some well-established B-cell TFs: PAX5, IRF8, BCL11A 

and SPIB (Supplementary Fig. 4.6a). 42 (78%) of these motifs were also found among the 93 

enriched TFs detected in the set of experimentally identified enhancers. Within the novel 

predicted silencers, we detected four enriched TFs (Supplementary Fig. 4.6b). Among them, 

ZBTB17 and PATZ1 were implicated as transcriptional repressors [173]. These four enriched 

TFs were also found among the 146 enriched TF motifs detected in the set of experimentally 

identified silencers.  

In addition to motif analysis, we also examined enrichment for physical TF binding sites in 

GM12878. To this goal, we downloaded all 154 available GM12878 ChIP-seq experiments 

from ENCODE project and analyzed their enrichment within the predicted and experimentally 

identified sets of enhancers and silencers. For the novel silencers, using stringent cutoffs of q-

value=1E-20 and at least 10 fold-enrichment, we found four enriched proteins (Fig. 4.5a), 

SUZ12, HDAC6, EZH2 and NRF1. Notably, SUZ12 and EZH2 are members of the PRC2 

complex, which represses transcription [174]. HDAC6 is a histone deacetylate and marks 

epigenetic repression [175]. The experimentally identified silencers were enriched for binding 

of 35 proteins (Supplementary Fig. 4.7a)    

The predicted enhancers were enriched for 26 proteins (Fig. 4.5b), including MAX and MYC, 

which when in complex act as activators in B-cells [176], and IRF3, which is known to be 
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involved in B-cell functions [177]. 18 out of 26 enriched proteins (~69%) were also enriched 

within the experimentally identified enhancers (Supplementary Fig. 4.7b). 

a 

 
b 

 
Figure 4.5. ChIP-seq enrichment analysis in predicted enhancers and silencers detected 
in the exploratory set. (a) Silencers. (b) Enhancers. 

 

4.2. Methods 
GM12878 data preparation 

101,896 GM12878 ATAC-STARR-seq peaks were obtained from [35] (GEO dataset 

GSE181317) and resized to 1kb around their central positions. Experimentally identified 

silencer (n=21,125) and enhancer (n=30,078) regions and their repression or activation signals, 

as measured by STARR-Seq in GM12878, were also taken from the same dataset. 

Transcriptional repression and activation signals were measured at resolution of 50 bp. ATAC-

seq, H3K4me1, H3K27ac, H3K27me3 and WGBS DNA methylation signal datasets in 

GM12878 were downloaded from the ENCODE project (https://www.encodeproject.org/). 

44,494,433 CpG sites with at least 4 mapped reads were kept. The methylation level in each 

CpG site is the fraction of methylated reads that cover it. CpGs with insufficient coverage were 

given a methylation level of -1.  

https://www.encodeproject.org/
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The input data to our model is a 1000x7 matrix. For each of the 1000 bases, the first four 

features are one-hot encoding of the DNA sequence of the ATAC-STARR-seq peak, followed 

by nucleotide-resolution signals for DNA methylation, H3K27ac and H3K4me1. We 

normalized the features to mean 0 and std 1. The 1k target vector is a per-position value with a 

positive activation signal for enhancers, negative repression signal for silencers, and 0 

otherwise.  

The model was trained on data from chromosomes 1-5, 9-23. Data from chromosome 6 were 

used for validation of the model while tuning the hyper-parameter (the number of training 

epochs). Data from chromosomes 7 and 8 were held out as a test set to assess the model's 

performance.  

For model training and testing, positive cases were ATAC-seq peaks overlapping 

experimentally identified enhancers or silencers. Following the approach of Huang and 

Ovcharenko [161], we used as negative cases ATAC-seq peaks that were detected in other five 

cell types, but not in GM12878. For each positive peak, six negative ones were randomly 

sampled from the same chromosome. Overall, our dataset contained 216,713 cases: 30,959 

positive peaks and 185,754 negatives. GM12878 ATAC-seq that were not detected by the 

ATAC-STARR-Seq assay as having an effect on transcription were left out from the phase of 

model training and testing, and were used as an exploratory set in downstream analyses. 

Model implementation 

Our model implementation is divided into two steps: In step 1, we implemented a deepTACT 

model as follows: (A) we used model architecture and hyper-parameters similar to those 

implemented in Li et al [45]. (B) The last dense layer outputs 1,000 scores, one for each position 

in the input sequence, aiming to predict the activation or repression scores measured by 

STARR-Seq for this genomic interval. Intermediate batch normalization and Dropout layers 

were used to prevent overfitting. Model training was performed with the mean squared error 

(MSE) loss function using the 'rmsprop' optimizer. We found the number of epochs required 

for training the model using the MSE on the validation set. In step 2, the 1000-scores output of 

the last dense layer of the model in step 1 is fed into a dense layer of 300 outputs scores followed 

by a dense layer that outputs three scores – for predicting Enhancer, Silencer or Non-functional 

elements -  with the softmax activation function. 

Inferring enhancer and silencer intervals 

Given a sequence, 𝑥, and its epigenetic signals, Step 1 of our model outputs for each position 𝑗 

a transcriptional activity score. The score can be positive, indicating that position 𝑗 is involved 
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in transcriptional activation (in GM12878 cell line), negative, indicating that position 𝑗 is 

involved in transcriptional repression, or 0 (i.e., suggesting position 𝑗 is non-functional). To 

summarize the output, we applied a 50bp sliding window with step size of 10 on the 1,000 

scores the model outputs. We define a window as an Enhancer if all scores within that window 

are above a certain threshold (𝑡:). Similarly, we define a window as a Silencer if all scores 

within that window are below a certain threshold (𝑡6). We merged overlapping windows that 

had the same label. We selected the 𝑡: and 𝑡6 thresholds as those yielding the maximum 𝐹1 

score on the test set. For enhancers, the F1 score was computed by considering as positives the 

true activating positions in the test set, and considering as negatives - all other positions in the 

test set. Predicted activating positions that matched true activating positions were considered 

as true positives whereas unmatched predicted activating positions were considered as false 

positives. The same principle was applied for silencers.  

The novel enhancer and silencer windows predicted (for GM12878) in the exploratory set are 

provided in Supplementary Table 3. 

Alternative models 

We implemented three alternative models: (1) a simple linear regression implemented as a 

single dense layer in a DL model, (2) the CNN model of Huang and Ovcharenko [161], and (3) 

the ResNet-based model from Luo et al [86].  

 

Comparison of models trained on either experimentally identified or on epigenetically 

called enhancers and silencers 

We took the CNN architecture as implemented by Huang and Ovcharenko [161] and used it to 

compare models trained either on  (A) regulatory elements called based on epigenomic markers 

as done by Huang and Ovcharenko:  (1) silencers: H3K27me3 ChIP-seq peaks not overlapping 

either H3K27ac, H3k4me1 or H3k4me4 ChIP-seq peaks, (2) enhancers: ATAC-seq peaks 

overlapping H3K27ac ChIP-seq peaks, and (3) nonfunctional: ATAC-seq peaks from five other 

cell types not detected in GM12878; or (B) regulatory elements experimentally identified by 

the ATAC-STARR-Seq assay (as described above). We measured the performance of the two 

models in terms of AUPRC of detection experimentally identified elements. In both 

approaches, only sequences (without any epigenetic signal) were provided to the CNN model 

as input (as done in Huang and Ovcharenko). 

Feature importance scores using integrated gradients 

https://github.com/Shamir-Lab/EnhancerSilencerDL/blob/main/data/Table_S3.xlsx
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To determine which features contribute the most  to correct classification we used the integrated 

gradients (IG) approach [89]. The main idea behind this approach is to find the contribution of 

input features to the prediction by calculating the integral of the model's output gradients over 

a straight path between a chosen ‘proper baseline’ input and the actual input. To do so, 50 points 

are sampled along the path and the output gradients are calculated for each point. Accumulating 

the gradients from all points defines the integrated gradients, which are used as the feature 

importance score. We chose a proper baseline input as follows: 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒%,' =	 �
0 𝑗 ≠ 𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛
−1 𝑗 = 𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 

Where 1 ≤ 𝑖 ≤ 1000 and 𝑗 is the feature type: A, C, G, T, Methylation, H3K27ac or H3K4me1. 

This baseline corresponds to a sequence with 0 (or NA) signal for all seven features. After 

computing the integrated gradients per position 𝑖 and feature 𝑗, we summed them up across all 

positions to represent the integrated gradients of feature 𝑗. The feature importance score of each 

feature is the average of the integrated gradients across all inputs per class. 

Identification of motifs within importance scores 

We used TF-MoDISco to find recurrent motifs within subsequences with highly positive or 

negative importance scores [166]. The tool first finds subsequences of high importance scores, 

aligns and clusters them, and then finds a set of recurring motif patterns. We computed the IG 

of the enhancer and silencer sequences in the test set. To account only for changes in the 

nucleotide composition we kept the epigenetic features fixed along the path between the 

baseline and the input. The null IG distribution used in TF-MoDISco was generated by 

dinucleotide shuffling the original sequences and computing their IG.  

Motif finding 

We applied the simple enrichment analysis (SEA) tool from the MEME suite (https://meme-

suite.org/meme/tools/sea) on the inferred sequences with Human HOCOMOCO v11 PWMs 

[178]. A Markov model of order of 1 was chosen to model the background distribution. 

ChIP-seq enrichment 

We downloaded all 158 ENCODE ChIP-seq narrowpeak bed files of GM12878 cell type. For 

each peak file, we represented each peak by the single nucleotide position that had maximum 

ChIP-seq signal. Then, we computed the number of these positions that overlapped with 1kb 

predicted enhancers, silencers and nonfunctional sequences from the exploratory dataset. We 

computed the enrichment fold-change as follows: 
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𝐹𝐶(𝑝𝑟𝑜𝑡𝑒𝑖𝑛) =

#𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠	𝑖𝑛	𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑒𝑡
|𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑒𝑡|

#𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠	𝑖𝑛	𝑏𝑔	𝑠𝑒𝑡
|𝑏𝑔	𝑠𝑒𝑡|

 

Where the target set is either the enhancers or silencers. The bg set included all sequences in 

the exploratory set. We used the Hypergeometric test (python 'scipy.stats.hypergeom') to 

evaluate the significance of the enrichment. Benjamini-Hochberg multiple testing correction 

was used to correct the p-values [67]. 

eQTL and GWAS risk SNPs enrichment 

GWAS summary statistics of 50 traits were downloaded from the GWAS catalog 

(https://www.ebi.ac.uk/gwas/) and preprocessed as described in Groenewoud et al. [168]. For 

each trait, we retained associated variants with p-value < 1E-7. Then, similar to ChIP-seq 

enrichment above, we computed the overlap of the risk SNPs with the predicted enhancers and 

silencers from the exploratory dataset and computed the significance of the enrichment using 

HG test.  

As for eQTL enrichment analysis, we downloaded the lymphoblastoid cell line (LCL) 

GEUVADIS eQTL dataset 

(http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GEUVADIS/ge/) and computed the 

overlap of the eQTLs with the predicted enhancers, silencers and nonfunctional sequences in 

the exploratory dataset. To find whether eQTLs tend to overlap enhancers more than the 

nonfunctional sequences we implemented a logistic regression test: ln 𝑌 = 𝛽B + 𝛽A𝑋A + 𝛽3𝑋3 

where: 𝑌% denotes whether sequence 𝑖 has an eQTL or not, 𝑋A%  denotes whether sequence 𝑖 is an 

enhancer or a nonfunctional sequence, and 𝑋3%  is the distance from region 𝑖 mid-position to the 

nearest gene TSS. We added the distances to the nearest gene as this distance may confound 

the association between eQTLs and genomic intervals. We used the python 

statsmodels.sd.Logit function to implement logistic regression and to infer significance of the 

coefficients. If 𝛽A is positive and significant then we concluded that the eQTLs are significantly 

enriched within the set of enhancers. Similar analysis was done for silencers versus the 

nonfunctional sequences. 

 

 

 

https://www.ebi.ac.uk/gwas/
http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GEUVADIS/ge/
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5. Discussion 
 

In this thesis we described our contributions to inference of regulatory elements and 

their linked target genes using thousands of samples covering hundreds of cell types and tissues. 

We introduced two algorithms for discovery of enhancer-promoter (EP) links. Development of 

the first algorithm, FOCS, started during my MSc and was continued in my PhD. This tool 

detects global EP links with significant correlation between enhancer and promoter activity 

patterns across many samples. In the first stage of my PhD, I significantly expanded FOCS’s 

scope and validation by using 10-fold more experimental data to train on. The second algorithm, 

CT-FOCS, detects which of the global EP links predicted by FOCS are specific to a few cell 

types. In both cases, we compared the algorithms to the state of the art and showed a very 

significant improvement. In addition, we showed how the predicted EP links can be used in 

downstream applications such as enrichments for GWAS signals and TF motifs.  

In the last part of my PhD I turned to an understudied class of regulatory elements, 

silencers, which reduce the transcription of their target genes. Using DL models and a recently 

published experimentally identified set of enhancers and silencers in GM12878 cell line, we 

answered various questions on how to properly predict functional silencers and what defines 

them epigenetically.  

All algorithms and analyses in this thesis were implemented (in R or Python) and are 

freely available for the community. All analyzed datasets, including the FOCS and CT-FOCS 

databases, are made available by us as well. 

Below we discuss each study separately and suggest future research directions. 

 

5.1. Global and cell type-specific enhancer-promoter inference 

5.1.1 The FOCS algorithm 
 In the last two decades a major challenge has been to detect the target genes of each 

enhancer. This task is crucial as this allows researchers to study diseases that are a result of 

irregular gene expression levels caused by perturbations of their enhancers. Such perturbation 

could be a result of genetic variants altering the enhancer sequences, thus altering their effect 

on their target genes. While several experimental techniques for identifying physical EP links 

have emerged (e.g., HiChIP and ChIA-PET described in Chapter 1), these techniques were 

applied only on a few cell types and tissues. In contrast, NGS techniques for identifying open 

chromatin regions such as enhancers and promoters (.e.g., DNase-seq and ATAC-seq described 

in Chapter 1) were applied to thousands of samples covering hundreds of cell types and tissues. 
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The datasets that summarize these experiments are publicly available and can be leveraged to 

identify EP links computationally on a very large scale. Using such datasets, the FOCS 

algorithm, described in Chapter 2, aims for predicting global EP links. These links show 

significant and high correlation between the enhancer and promoter activity patterns across 

many samples.  

The FOCS link inference is achieved by training for each promoter a regression model 

where we predict the promoter activity based on the activity of its 10 closest enhancers (Figure 

2.1). To avoid over-fitting of the regression models to the training samples, FOCS performs a 

leave-one-cell-type-out cross validation scheme where given C cell types, the regression model 

is trained on samples belonging to C-1 cell types. The trained model is then used to predict the 

promoter activity in samples belonging to the left out cell type. This procedure is repeated C 

times, one for each cell type, resulting with a predicted promoter activity vector. This vector is 

compared to the observed promoter activity vector by performing two non-parametric statistical 

tests for testing: (1) how well the model discriminates between samples in which the promoter 

is active and samples in which it is inactive, and (2) how well the model preserves the original 

activity ranks in samples whose promoter is active. Using the Spearman correlation test in the 

second nonparametric test in FOCS can also account for promoter models where the 

relationship between the enhancer and promoter activity patterns is not linear (as speculated in 

the majority of FANTOM5 and Roadmap models showing 𝑅3 < 0.5; Supplementary Fig. 

2.6B). Models that passed these tests were regarded as statistically cross-validated. These 

models then underwent model shrinkage (using elastic net) to select the subset of enhancers 

that are most informative to the promoter's model. The selected informative enhancers comprise 

the final global EP maps.  

We applied FOCS on four different genomic data sources: one resource of 246 samples 

generated during my MSc studies, and three additional resources comprising a total of 2,384 

samples analyzed during my first year PhD studies. We derived an extensive resource of 

statistically cross-validated EP links. Our EP mapping resource illuminates different facets of 

transcriptional regulation. First, we found that ~26% of the enhancers in FOCS EP links were 

mapped to a promoter that is not the closest one (Supplemental Fig. 2.10). This is in contrast 

to the common naïve approach that maps enhancers to their nearest promoter. Second, we found 

that 70% of the linked enhancers are located within intronic regions (Supplemental Table 

S2.2). Third, we found that promoters were linked to ~3 enhancers on average, with many of 

them linked to a single dominant enhancer or to a large number of enhancers (8-10). 

Next, we set to explore the relationship between the inferred EP links and housekeeping 

genes taken from [179]. Housekeeping genes are ubiquitously expressed across different cell 
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types, and, thus are likely to have a simple regulation logic. Indeed, these genes had a lower 

number of linked enhancers compared to all other genes (P<0.001 in all data types; 

Supplementary Fig. 2.11). We also calculated the Shannon entropy of each gene promoter 

activity across cell types (where higher entropy indicates larger activity breadth) to explore a 

possible relationship the activity breadth and the complexity of transcriptional regulation. We 

observed a strong negative relationship where promoters with more restricted activity profiles 

(i.e., lower entropy) are associated with a larger number of linked enhancers (Supplementary 

Fig. 2.12).  

  Furthermore, our observations indicate that although a significant proportion of 

enhancers (~90%) in FOCS's models had positive Pearson and Spearman correlation 

coefficients with their target promoter activity patterns, some of these models also included 

cases of negative correlation, suggesting that the same regulatory elements sometimes also 

function as silencers (see two examples in Supplementary Fig. 2.13).  

 Lastly, in this study we implicitly assumed that transcription rate at promoters is 

positively related with promoter DHS signal (ENCODE and Roadmap Epigenomics datasets). 

We examined the DHS-expression correlations in 17 cell lines for which both DHS and RNA-

seq data were in hand in the ENCODE project. In all cases, we observed high Spearman but 

low Pearson correlations (Supplementary Fig. 2.14), indicating a strong monotonic nonlinear 

relationship.  

 We compared the performance of FOCS and three alternative methods for predicting 

EP links. (1) Pairwise: pairwise Pearson correlation > 0.7 between EP pairs under FDR < 1078. 

(2) OLS+LASSO: models derived by ordinary least squares (OLS) using all samples with cross 

validation (CV) followed by LASSO shrinkage. (3) OLS+enet: same as (2) but with elastic-net 

shrinkage in place of LASSO. FOCS derived 75% more promoter models than the other 

methods (Table 2.1). In addition, for most comparisons, FOCS outperformed the other methods 

in terms of fraction of predicted EP links supported by ChIA-PET and HiChIP interactions, and 

eQTL data (Fig. 2.4; Supplementary Fig. 2.9). 

 The FOCS algorithm has several limitations. First, while the leave-cell-type-out CV 

scheme is conservative and ensures that the inferred models have predictive power in diverse 

cellular contexts, it will not infer models for genes whose expression is strictly cell type-

specific. However, when analyzing many diverse cell types that contain also related cell types, 

we expect a low chance of missing gene models that are cell type-specific. Second, the FOCS 

gene models are limited to the ten closest enhancers, as done in previous analysis [23]. Such 

limitation might miss true linked enhancers located further away from the genes. On the other 

hand, as most EP links are confined to chromosomal territories called topologically associated 
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domains (TADs) of 185 kb median length [131], limiting the gene models to the ten closest 

enhancers might reduce the number of false-positive EP links. 

 The FOCS broad compendium of predicted EP links can greatly aid the functional 

interpretation of genetic variants that are associated with disease susceptibility since the 

majority of the variants (~90%) identified by GWAS are within noncoding regions [107]. 

Similarly, the compendium can also assist in interpreting somatic mutations (SM) in cancer 

genomes. The rapid accumulation of whole-genome sequencing (WGS) of tumor samples has 

already led to swift identification of SM hotspots in regulatory regions [180,181]. In addition, 

our compendium can also be integrated into bioinformatics tools for identifying DNA motifs 

in regulatory elements that putatively regulate co-expressed gene clusters. 

 Overall, we found that FOCS predicts ~1.5-fold more EP links (𝑛 = 302,050) 

compared to the standard pairwise method. FOCS EP links show a higher support rate by 

external validation resources compared to the pairwise method, demonstrating an improved 

prediction power and control of false positive rate. FOCS employs two non-parametric tests for 

model robustness. These tests enable us to correct for multiple promoter models and to use 

them in cases where the relationship between the EP activity patterns is not linear. This is in 

contrast to the Pearson correlation used in the pairwise method that assumes a linear 

relationship.     

5.1.2 The CT-FOCS algorithm 
 In Chapter 3 we described CT-FOCS, an algorithm for detecting cell type-specific EP 

links. It builds on the FOCS algorithm described above, designed for predicting global EP links 

that are not necessarily cell type-specific. CT-FOCS uses the FOCS EP links and performs 

additional analyses to infer which of these links are active in only very few cell types among 

the hundreds of cell types, by utilizing linear mixed effect models (LMMs). We applied CT-

FOCS on CAGE and DHS profiles from FANTOM5, ENCODE, and Roadmap Epigenomics 

consortia [23–25]. The resulting compendium consists of 229,518 cell type-specific EP links 

(ct-links) covering 651 cell types. 

 The CT-FOCS algorithm uses LMMs to account for two effects. The first one is the 

joint contribution of multiple enhancers to the promoter activity, as previously shown for 

predicting GE more accurately than the simple pairwise enhancer-gene correlations [133]. The 

second one is the contribution of distinct cell type groups of samples to the promoter activity. 

By taking into account the influence of each cell type group, we were able to predict promoter 

activity independently for each cell type group. This way, the calculated regression coefficients 

are not the same for all samples but are adjusted for the cell type. Using the difference between 

cell types in the predicted regression coefficients we were able to infer ct-links. 
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 The leave-cell-type-out CV limitation described in the previous section, where FOCS 

cannot infer models that are strictly cell type specific, i.e., functional in exactly one cell type, 

is also true for CT-FOCS, as it is built upon FOCS predictions. However, we found that cases 

in which an enhancer is active in only one cell type are very rare (see Supplementary Results 

in section 5.2 – 'Loops involving enhancers active in a single cell type' and Supplementary 

Table S5). In addition, the CT-FOCS ct-links demonstrated high cell type specificity: the ct-

links were shared, on average, by approximately three cell types (Supplementary Fig. 3.2B) 

with ~44% of them called in a single cell type. Thus, the predicted ct-links correspond to cases 

in which an enhancer shows activity in several highly related cell types, but, its impact on the 

target promoter activity is limited to very few of them. 

 Another limitation of CT-FOCS is the requirement that there will be at least two 

replicates per cell type in order to allow prediction of their random effect variance in the LMM 

model. Cell types with a single replicate are also included in our models, as they contribute to 

estimating the fixed effect coefficients. In FANTOM5 dataset, 179 out of 472 cell types had at 

least two replicates. When we applied CT-FOCS only on these 179 cell types, the TLS ratio 

performance improved (see Supplementary Results in section 5.2; Supplementary Fig. 3.13). 

Thus, we recommended to use these predictions in case their cell type of interest is among the 

179 cell types analyzed. 

 We compared CT-FOCS with two alternative prediction methods, CT-MAD-FOCS 

and CT-JEME (Section 3.1 'Methods'), based on a cell type specificity score computed either 

on the EP signals or on the target GE levels (see Supplementary Fig. 3.6 on FANTOM5 

dataset; Supplementary Table 1B on ENCODE dataset; Section 3.1 'Methods'). On the 

FANTOM5 dataset, CT-FOCS achieved slightly better cell type specificity ranks compared to 

other methods on both EP signals and target GE (Supplementary Fig. 3.6). In addition, we 

introduced the notion of two step connected loop set (TLS) support ratio for benchmarking 

predicted ct-links against chromatin interaction datasets (Figure 3.4; Supplementary Table 2; 

Section 3.1 'Methods'). By using this measure, we found that the cell type particularity of the 

CT-FOCS ct-links was significantly higher than those of the other methods in five to six out of 

eight examined cell types for which chromatin interaction data was available. 

  CT-FOCS holds the potential to address downstream genomic analyses. It can be used 

to improve our understanding of the cell type-specific transcriptional cascades that determine 

cell fate decisions. For example, identification of known and novel cell type-specific TFs that 

mediate ct-links can expand our current biological knowledge on cell type-specific gene 

regulatory programs (as shown in Fig. 3.5 and Supplementary Fig. 3.9). Integration of protein-

protein interactions (PPIs) with TF identification in ct-links may help identify cell type-specific 

https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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PPI modules [182]. Such PPI modules may contain new proteins (e.g., cofactors and proteins 

that are part of the mediator complex) that establish the cell type-specific 3D chromatin 

structure. 

 Overall, CT-FOCS identified ct-links for 651 cell types inferred from ENCODE, 

Roadmap Epigenomics, and FANTOM5 data. On average, ~354 ct-links were discovered per 

cell type. The inferred ct-links showed substantially higher cell type-specificity compared to 

previous methods. The inferred ct-links correlate with cell type-specific gene expression and 

regulation. We validated predicted ct-links with experimental 3D chromatin interactions by 

using the notion of connected loops. 

5.2. Silencer inference 
 In Chapter 4 we described our study for the inference of an understudied class of 

regulatory elements, silencers, which decrease the transcription of their target genes. In contrast 

to enhancers, silencers are harder to validate experimentally. There is still no consensus on how 

to identify silencers. For example, two recent studies applied different genomic screening 

techniques and identified 2,664 and 3,001 silencers in K562 cell line [34,183]. Strikingly, there 

is no overlap between these two sets. Furthermore, these candidate regions may contain sub-

regions that are interchangeably activating and repressing [35], making their detection even 

harder. Thus, a robust characterization and annotation of functional silencers is a major 

genomic challenge. 

   Our first goal in this study was to test if a DL model trained on putative silencers 

labeled using epigenomic data can accurately detect experimentally identified silencers. To this 

end, we compared two class labeling approaches: the epigenetic approach, in which putative 

enhancers and silencers are labeled using epigenetic data, and the experimentally identified 

approach, in which enhancers and silencers are labeled using elements experimentally 

identified by ATAC-STARR-Seq assay [35]. We trained a CNN model proposed by Huang and 

Ovcharenko [161] on each dataset and tested the performance of the models on experimentally 

identified test set. While both trained CNN models performed similarly on predicting true 

enhancers (0.3 and 0.37 AUPRC for the models trained using the epigenetic and the 

experimental approaches, respectively), the silencer prediction performance of the model 

trained on the experimental dataset was dramatically higher than that obtained by the model 

trained on the epigenetic dataset (0.77 vs. 0.06 AUPRC, respectively; Supplementary Fig. 

4.1). These results reflect the much better knowledge that we currently have on epigenomic 

marks defining active enhancers compared to those defining active silencers. 

 Our second goal was to build a computational model that predicts activation and 

repression transcriptional activities at single nucleotide resolution within regulatory elements. 
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To this end, we used the ATAC-STARR-Seq experimental results to train a regression-based 

DL model combined with a classification model to classify sequences into enhancer, silencer 

or nonfunctional elements. We compared several published DL architectures and found that the 

deepTACT model [45] performed best in terms of AUROC and AUPRC (Fig. 4.1c). Predicted 

silencers harbored high levels of the H3K27me3 repressive mark, whereas predicted enhancers 

harbored high levels of H3K27ac and H3K4me1 activation marks (Fig. 4.2; Supplementary 

Fig. 4.3). 

 We applied the trained deepTACT model on an exploratory dataset, which included 

ATAC-seq peaks in GM12878 that were not detected by the ATAC-STARR-Seq assay as 

having an effect on transcription. Within this set, the model identified 3,752 novel putative 

enhancers and 518 novel putative silencers, which were possibly missed by the experiment. 

Reassuringly, 18 of the predicted novel enhancers overlapped 42 Lupus risk SNPs, including 

rs13240595 Lupus risk-SNP, which was shown to have 2.5-fold enhancing effect by MPRA 

analysis [171]. We showed that predicted enhancer sequences contain significantly more 

eQTLs than predicted nonfunctional sequences. ChIP-seq enrichment analysis within predicted 

novel silencers identified that they are enriched for the binding sites of four major 

transcriptional regulators: SUZ12, HDAC6, EZH2 and NRF1. SUZ12 and EZH2 form the 

PRC2 repressive complex known to bind silencers (Fig. 4.5a). Predicted enhancers, on the other 

hand, were enriched for many proteins, the majority of which are known to induce transcription 

(Fig. 4.5b). 

 Our study is limited by the fact that it was performed on a single cell type for which 

genome-wide experimentally identified enhancers and silencers are available. Additional 

validation would necessitate experiments in more cell types. A major future challenge is to 

transfer the model trained on GM12878 cell type to other cell types in which activation and 

repression levels are not in hand (see Future Research section below for a proof of concept). 

 Overall, in this study we presented how a regression-based DL model can predict per-

nucleotide activation and repression activities within candidate sequences. Using this model we 

predicted many additional enhancers and silencers possibly missed by the ATAC-STARR-seq 

experiment, and expanded the current biological knowledge of what defines functional 

silencers. In addition, we found that computational models trained on enhancers and silencer 

sequences labeled using epigenetic data generally perform poorly in predicting silencers. 

Leveraging data from experimentally identified enhancers and silencers substantially improved 

silencer prediction accuracy.  
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5.3. Future Research 
The studies in this thesis can be used as a basis for additional research directions. Above, we 

already outlined some improvements such as downstream analyses that can be applied on the 

data produced by our models. Below we list additional research directions. 

5.3.1. Enhancer-Promoter inference 
Application to single cell ATAC-seq data  

The bulk NGS datasets processed and analyzed in FOCS and CT-FOCS algorithms 

contains average signals from a population of cells. These datasets do not provide 

measurements at the single cell level. In the last decade, single cell (sc) NGS technologies have 

become an exciting area of research as they provide a higher resolution of cellular differences 

between individual cells [184]. Single-cell RNA or epigenetics techniques can reveal cell-to-

cell variabilities and shed light on how closely related cells differ from each other [185]. We 

expect that as the technology prices decrease, single cell open chromatin datasets, e.g.,  

scATAC-seq [186], which allow the identification of enhancer and promoter regions at the 

single cell level, will become more prominent and allow more accurate identification of cell 

type-specific EP links. 

 Data from a single-cell experiment is usually presented as a count matrix where rows 

are individual cells and columns are genomic features. For example, in a scATAC-seq 

experiment, the count matrix contains number of reads per individual cell per open chromatin 

regions. In a 10x Genomics scATAC-seq experiment it is possible to target up to 10,000 

individual cells. These cells, dissociated from a tissue, are slightly different from each other, 

and predicting global and cell type-specific EP links for them, in order to study their lineage 

specification, is still an open biological challenge.  

Pliner et al. developed the Cicero algorithm to predict global EP links from a scATAC-

seq data [187]. Cicero calculates pairwise correlations between all pairs of sites within 500 kb. 

However, we have seen in our FOCS study that pairwise correlations are prone to high false-

positive rate, due to outliers and the combinatorial nature of transcriptional regulation in which 

a promoter is regulated by multiple enhancers. Such situations are not addressed by the pairwise 

approach. As an alternative, one could apply the FOCS algorithm on scATAC-seq data to derive 

global EP links and then compare the predication performance against Cicero. 

 Another future direction of research is to study how EP link signals change between 

the cells in a scATAC-seq experiment. Using these signals, one can reconstruct trajectories of 

the cells to reveal their lineage specification that are affected by cell-specific 3D structure 

changes, e.g., by using the STREAM method [188]. To this end, applying the CT-FOCS 
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algorithm on scATAC-seq data can predict cell type-specific EP links. By using the random 

effect component from our CT-FOCS LMM models, one might be able to infer cell type-

specific EP signals to be used in trajectory reconstruction.  

5.3.2. Silencer inference 

In our third study we used a DL method built on data of thousands of experimentally 

identified enhancers and silencers in the GM12878 cell line to predict novel REs. However, 

this study is limited as it cannot infer REs for other cell types where experimentally identified 

REs are not in hand.  

Transfer learning refers to a machine learning approach where knowledge acquired 

from one task is repurposed to enhance the performance on a closely related task [189]. Finding 

a way to transfer a model learnt on GM12878 cell line to other cell lines is a desirable future 

research direction. As proof of concept, we retrained only the last two dense layers in the 

classification step of the deepTACT model on HepG2 and K562 cancer cell lines (Fig. 4.1a). 

We constructed training and test sets for these cell lines using (a) enhancers detected by 

STARR-seq experiments done by ENCODE in these cell lines, and (b) ATAC-seq regions 

overlapping H3K27me3 ChIP-seq peaks as putative silencers. Our results on the test sets from 

HepG2 and K562 achieved high AUROC and moderate AUPR scores for enhancer and silencer 

classifications (Supplementary Fig. 4.8). This analysis indicates a great promise (and a 

nontrivial challenge) in the application of transfer learning techniques for predicting REs in 

many cell types. 
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6. Appendix 
6.1. Supplement 1: Predicting global enhancer-promoter maps 
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Supplemental Figures 
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Figure S2.1. Examples of cross-validated promoter models. Examples of promoter models that passed one or both cross-validation tests: (A-B) passed both 
binary and level tests (C-D) passed only the activity level test and (E-F) passed only the binary test. For each promoter, the left panel shows the correlation 
between observed and predicted promoter activities using OLS without cross-validation; the middle panel shows the results of the activity level validation test. 
Namely, the correlation between observed activities and activities that were predicted on left-out samples (LCTO CV procedure). In this test, correlation is 
calculated only over positive samples. The right panel shows the results of the binary test. Note in E and F left panel, the sensitivity of R2 (and, equally, of 
Pearson correlation) to outliers.      
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Figure S2.2. EP distance distribution. EP distance distribution for: (A). All 10 enhancers in the models that passed cross validation. (B). The 10th enhancer 
(ranked by distance to promoter) in the models that passed cross validation. (C). Enhancer inclusion frequency in the optimally reduced models. Blue dots 
denote the total number of enhancers (right y-axis) in each distance bin before the shrinkage step. 

A

C
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Figure S2.3. Performance of three alternative regression methods for inferring EP models. Same as Figure 2A-B, but here analysis was applied to Roadmap 
Epigenomics (A), FANTOM5 (B) and the GRO-seq (C) datasets. Results of the binary (left panel) and activity level (right panel) validation tests are shown. 
OLS performed better on the Roadmap Epigenomics and GRO-seq datasets (in addition to the ENCODE data (Fig. 2A-B)), while GLM.NB and ZINB performed 
better on the FANTOM5 dataset.  
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Figure S2.4. Number of validated promoter models. Number of promoters whose OLS models passed (at q-value<0.1) each of the validation tests (right 
panel) and the distribution of the number of positive samples in each category. (A). Roadmap Epigenomics; (B) FANTOM5 and (C) GRO-seq datasets.  
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Figure S2.5. Comparison between the 𝑹𝟐 values with and without cross-validation (CV). (A). Roadmap Epigenomics; (B) FANTOM5 and (C) GRO-seq 
datasets. Each dot is a promoter model. Blue dots denote models with 𝑅3 ≥ 0.5 and 𝑅453 ≥ 0.25. Red dots denote models with and 𝑅3 > 0.5 and 𝑅453 < 0.25. 
The high rate of red dots (Roadmap (16%), FANTOM5 (20%) and GRO-seq (22%)) indicates that training the models on all samples suffer from overfitting. 
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Figure S2.6. Configuration of promoter regulation by enhancers. (A). The proportional contribution of the 10 most proximal enhancers (within a distance 
of ±500kb from the target promoter; for FANTOM5 the distance was ±250kb from the target promoter) to the regression model, in each dataset (Roadmap 
Epigenomics, FANTOM5 and GRO-seq). The X axis indicates the order of the enhancers by their relative distance from the promoter, with 1 being the closest. 
(B) 𝑅3 values of the models that passed one or both CV tests, in each dataset.  
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Figure S2.7. Configuration of shrunken promoter models. (A) Distribution of the number of enhancers included in the validated, optimally-reduced models 
(i.e. after elastic net shrinkage). (B) Inclusion frequency of enhancers in the reduced models as a function of their proximity ranking to the target promoter. 
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Figure S2.8. Inclusion frequency of enhancers as function of EP distance. Inclusion frequency of enhancers in the reduced models as a function of their 
distance from the target promoter for (A) Roadmap Epigenomics, (B) FANTOM5 and (C) GRO-seq datasets. Blue dots denote the number of enhancers (right 
y-axis) in each bin before the shrinkage step. 
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Figure S2.9. Comparison of the performance of different methods for predicting EP links using ChIA-PET, YY1-HiChIP and eQTL data as external 
validation. As in Fig. 2.4, but for Roadmap Epigenomics (A), FANTOM5 (B) and GRO-seq (C) datasets.   
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Figure S2.10. Enhancers are frequently linked to genes more distal to the nearest one. The number (A) and proportion (B) of enhancers that are linked to 
nearest/more distal promoter as a function of their distance to the nearest promoter.   
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Figure S2.11. Housekeeping genes show simpler pattern of EP interactions. (A). Ubiquitous vs. cell-type specific expression pattern is quantified by 
Shannon Entropy. In all datasets, housekeeping (HK) genes show significantly higher Shannon Entropy than the rest of genes, reflecting their more uniform 
activity pattern over the examined cell panel. (B). Promoters of HK genes are involved in significantly lower number of EP interactions than other genes (in all 
cases, p-value << 0.001; calculated by one-sided Wilcoxon rank-sum test). 

B

A



108 
 
 

 

a 

 



109 
 
 

 

b 

 
Figure S2.12. Opposite relationship between breadth of promoter activity over cell types and complexity of transcriptional regulation. We quantified 
the breadth of promoter activity over different cell types by Shannon entropy. Promoters were divided into bins according to the number of enhancers included 
in their optimally reduced models and the distribution of Shannon entropy was calculated for each bin (the number of promoters assigned to each bin is 
indicated in parentheses). A marked inverse relationship is observed. (a) ENCODE DHS data. (b) FANTOM5 CAGE data.  
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Figure S2.13. Examples for promoter models that include negatively correlated enhancers. (see legend of Fig. 2.5). In the heatmap, negatively correlated 
enhancers (indication of a repressor function) are indicated by an arrow.  
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Figure S2.14. Correlation between promoter DHS signal and gene expression. We examined the correlation between DHS signal at promoters and gene 
expression levels using ENCODE cell lines for which both DHS and RNA-seq dataset were available (this included 11 cell-lines with polyA RNA-seq and 6 
cell lines with total RNA-seq). In all cases, we observed high Spearman but low Pearson correlation indicating strong monotonic, non-linear relationship.  
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Supplementary Tables 

Table S2.1. Number of promoter models in each regression method 
Method Data Both Activity 

level only 
Binary only None 

OLS (FDR≤0.1) ENCODE 52,658 17,807 15,437 7,007 
GLM.NB(FDR≤0.1) ENCODE 33,286 20,233 17,950 21,440 
ZINB(FDR≤0.1) ENCODE 41,336 19,919 12,672 18,982 
OLS (FDR≤0.2) ENCODE 55,975 17,083 14,036 5,815 
GLM.NB(FDR≤0.2) ENCODE 37,094 19,879 17,549 18,387 
ZINB(FDR≤0.2) ENCODE 44,240 19,742 12,384 16,543 
OLS (FDR≤0.1) Roadmap 12,315 9,526 5,242 5,546 
GLM.NB(FDR≤0.1) Roadmap 6,752 7,493 5,369 13,045 
ZINB(FDR≤0.1) Roadmap 8,728 7,646 4,550 11,705 
OLS (FDR≤0.2) Roadmap 13,124 9,530 5,053 4,922 
GLM.NB(FDR≤0.2) Roadmap 7,570 7,929 5,428 11,702 
ZINB(FDR≤0.2) Roadmap 9,520 8,064 4,566 10,479 
OLS (FDR≤0.1) FANTOM5 9,943 5,081 11,043 30,223 
GLM.NB(FDR≤0.1) FANTOM5 14,197 3,221 13,758 25,114 
ZINB(FDR≤0.1) FANTOM5 13,640 3,377 13,461 25,812 
OLS (FDR≤0.2) FANTOM5 11,072 5,127 11,503 28,588 
GLM.NB(FDR≤0.2) FANTOM5 15,396 3,210 13,530 24,154 
ZINB(FDR≤0.2) FANTOM5 14,719 3,308 13,429 24,834 

OLS (FDR≤0.1) GRO-seq 3,507 236 2,580 2,037 
GLM.NB(FDR≤0.1) GRO-seq 606 377 2,659 4,718 
ZINB(FDR≤0.1) GRO-seq 1,334 657 2,844 3,525 
OLS (FDR≤0.2) GRO-seq 3,745 249 2,509 1,857 
GLM.NB(FDR≤0.2) GRO-seq 798 453 2,830 4,279 
ZINB(FDR≤0.2) GRO-seq 1,566 681 2,907 3,206 
Each promoter model contained 10 enhancers as features. The number of EP links is 𝒚 ∙ 𝟏𝟎 
links where 𝒚 is the number of promoter models in each category 
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Table S2.2. Number of statistically validated promoter models and EP links predicted 
by FOCS on four genomic resources 
Data type #promoter 

models 
#E-P links #Unique 

enhancers 
% intronic E-
P links * 

# known 
genes **  

ENCODE - 
DHS 

70,465 167,988 92,603 74 12,256 

Roadmap - 
DHS 

21,841 69,619 49,327 67 10,668 

FANTOM5 - 
eRNA  

15,024 41,836 18,656 55 8,666 

GRO-seq - 
eRNA  

6,323 22,607 20,650 79 6,323 

(*) E-P links whose E is located within an intron of a gene (not necessarily the target gene) 
(**) Number of Entrez genes associated with promoters 

 

Table S2.3. Summary of inferred EP links 
Method type Data # promoter models #Links to enhancers #Unique enhancers 
Pair-wise ENCODE 92,080 2,396,287 326,184 
Pair-wise-𝒓 = 𝟎. 𝟕 ENCODE 39,372 139,170 53,950 
OLS-LASSO1 ENCODE 39,368 122,064 74,104 
OLS-enet1 ENCODE 39,407 150,158 85,926 
FOCS* ENCODE 70,465 167,988 92,603 
Pair-wise Roadmap 32,000 1,023,409 106,231 
Pair-wise-𝒓 = 𝟎. 𝟕 Roadmap 8,606 33,598 24,657 
OLS-LASSO2 Roadmap 6,783 27,414 21,062 
OLS-enet2 Roadmap 6,788 31,923 24,167 
FOCS* Roadmap 21,841 69,619 49,327 
Pair-wise FANTOM5 42,234 228,908 45,936 
Pair-wise-𝒓 = 𝟎. 𝟕 FANTOM5 2,224 4,681 2,449 
OLS-LASSO3 FANTOM5 1,680 3,970 2,219 
OLS-enet3 FANTOM5 1,684 5,239 2,771 
FOCS* FANTOM5 15,024 41,836 18,656 
Pair-wise GRO-seq 7,825 113,817 81,040 
Pair-wise-𝒓 = 𝟎. 𝟕 GRO-seq 4,347 26,827 24,247 
OLS-LASSO4 GRO-seq 4,570 17,141 16,121 
OLS-enet4 GRO-seq 4,580 21,379 19,796 
FOCS** GRO-seq 6,323 22,607 20,650 
FOCS-randCV GRO-seq 7,004 23,960 21,679 
(1) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 39,892 before model selection 
(2) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 6,807 before model selection 
(3) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 1,951 before model selection 
(4) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 4,851 before model selection 
(*) Selected promoter models passed either both validation tests or the activity level test only 
(**) Selected promoter models passed either binary test and/or the activity level test 
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Supplemental Methods 

GRO-seq data preprocessing 

We downloaded raw sequence data of 245 GRO-seq samples from the Gene Expression 
Omnibus (GEO) database (Additional file 3: Table S5). First, we applied read quality control 
on each profile using the Trimmomatic tool (default parameters) [190]. From each read we 
trimmed (1) bases from Illumina Tru-seq adapters, and (2) bases with low base quality scores 
from both ends. We excluded reads with net length <30 bases. Finally, we cropped each read 
to the first 30 bases from the 5’ end.   Second, we aligned the trimmed read to a set of known 
ribosomal RNA (rRNA) genes (FASTA sequences taken from NCBI: RN18S1, RN28S1, RN5, 
and RN5S17) using bowtie2 [191] (default parameters), and discarded reads aligned to rRNA 
genes. Third, we aligned the rest of the reads to hg19 reference genome using bowtie2 (default 
parameters). For subsequent analyses we used only reads that had a MAPQ score greater than 
10. Fourth, we merged aligned reads from multiple profiles with the same sample id (via GEO 
GSM id) into a single sample. In total, our collected GRO-Seq database covered 40 studies 
encompassing 245 samples from 23 cell lines, each assayed under control and stress conditions 
(Additional file 3: Table S5).  

We quantified gene transcription activity by counting the number of reads mapped 
within each (unspliced) gene. As gene models we used a single transcript per gene, constructed 
using groHMM's makeConsensusAnnotations function [192] and hg19 UCSC refGene table, 
producing 22,891 consensus genes. We only used reads mapped to the gene's transcript body 
in the range 0.5kb to 20kb downstream of the TSS. If the transcript's length was less than 20kb 
then we used only the region up to the transcript termination site (TTS). 

 To identify active enhancers in each sample, we applied dREG [21] on the aligned 
reads. dREG detects "transcriptional regulation elements" (TREs) based on symmetric forward 
and reverse read coverage relative to their center position. This symmetry is a known mark of 
short putative enhancers [193]. We merged overlapping TREs (taking the union of their 
locations) detected in different samples to create merged TREs (mTREs). We defined as 
enhancers mTREs that are either: (1) intergenic: mTREs whose center is located at least 5kb 
from the closest gene's TSS and does not overlap any gene's transcript body, or (2) intronic: 
mTREs that are not exonic and have overlap with an intron of a gene. We counted the number 
of reads in each intergenic enhancer (in both strands) and intronic enhancer (only in antisense 
strand) in each sample using BEDTools [109]. 

 The gene and enhancer expression matrices were further filtered to include only 
genes/enhancers (rows) with at least one sample (columns) with RPKM ≥ 1, in order to 
preserve only expressed genes/enhancers. Next, to focus of the analysis on differential genes, 
we calculated for each the coefficient of variation (CoV) (the ratio between the gene’s standard 
deviation 𝜎 to the mean 𝜇), and selected the most variable ones as follows: (1) we partitioned 
the genes according to their mean RPKM expression into 20 bins. (2) In each bin we retained 
the genes with CoV above the bin's median level. These two steps also reduce preference to 
highly or lowly expressed genes. The final gene matrix contained 8,360 genes, and the final 
enhancer matrix contained 255,925 enhancers. 

We defined for each gene the set of k=10 candidate enhancers located within a window 
of ±500Kb from its TSS.  

FOCS Model Implementation 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1432-2#Sec20
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1432-2#Sec20
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The input to FOCS is two activity matrices, one for enhancers (𝑀:) and the other for promoters 
(𝑀;), measured across the same samples. Activity is measured by DHS signal in ENCODE and 
Roadmap data, and by expression level in FANTOM5 and GRO-seq data. Samples were labeled 
with a cell-type label out of 𝐶 cell-types. The output of FOCS is predicted E-P links.  

First, FOCS builds for each promoter an OLS regression model based on the k 
enhancers whose center positions are closest to the promoter’s center position (in ENCODE, 
Roadmap, and FANTOM5) or TSS (in GRO-seq). Formally, let 𝑦; be the promoter 𝑝 
normalized activity pattern (measured in CPM - counts per million; 𝑦; is a row from 𝑀;) and 
let 𝑋; be the normalized activity matrix of the corresponding k enhancers (CPM; k rows from 
𝑀:). We build an OLS linear regression model y< = X<β< + ε<, where ε< is a vector that 
denotes the errors of the model and β< is the (𝑘 + 1)	𝑥	1 vector of coefficients (including the 
intercept) to be estimated.  

Second, FOCS performs leave-cell-type-out cross validation (LCTO CV) by training 
the promoter model based on samples from 𝐶 − 1 cell types and testing the predicted promoter 
activity of the samples from the left out cell type. This step is repeated 𝐶 times. The result is a 
vector of predicted activity values 𝑦;=>?:@ for all samples. 

FOCS tests the predicted activity values using two validation tests: (1) The binary test.  
This test examines whether 𝑦;=>?:@ discriminates between the samples in which 𝑝 was active 
(observed activity 𝑦; ≥ 1 RPKM) and the samples in which 𝑝 was inactive (𝑦; < 1 RPKM). 
(2) The activity level test. This test calculates, for the active samples, the significance of the 
Spearman correlation between 𝑦;=>?:@ and 𝑦;. Spearman correlation compares the ranks of the 
original and predicted activities. We obtain two vectors of p-values, one for each test, of length 
𝑛 (the number of promoter models).  

Third, to correct for multiple testing, FOCS applies on each p-value vector the 
Benjamini - Yekutieli (BY) FDR procedure [104]. Promoter models with q-value≤ 0.1 in either 
both tests or in the activity level test were included in further analyses. In GRO-seq analysis, 
we also included models that passed only the binary test (m=2,580) since 57% of them had 
𝑅3 ≥ 0.5 (Fig. S2.6B). For promoters that passed these CV tests final models are trained again 
using all samples.  

FOCS next selects informative enhancers for each final promoter model. First, to 
control the FDR due to multiple hypotheses we used the BY correction. We call this process 
enhancer BY FDR filtering (eBY). The OLS results provide for each model P-values for the 
coefficients of its 10 closest enhancers. FOCS applies BY correction on the P-values produced 
by all models together and selects enhancers with q-value ≤ 0.01. To identify the most 
important ones out of the selected (≤ 10) enhancers for each promoter model, FOCS applies 
elastic-net model shrinkage (enet) with a regularization parameter 𝜆, using the glmnet R 
function [194] with mixing parameter 𝛼=0.5, giving equal weights for Lasso and Ridge 
regularizations. We require that all the enhancers that survived eBY filtering will be included 
in the shrunken model. To achieve this we take the maximum 𝜆 satisfying this property. For 
models in which no enhancer survived the eBY filtering, we took the maximum 𝜆 yielding a 
shrunken model with at least one enhancer. This ensures that every promoter that passes the 
CV tests also has a model following the enet step. 
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Alternative regression methods 

We compared the performance of OLS method with GLM.NB and ZINB regression methods. 
We repeated the FOCS steps but in the first step, instead of OLS we applied the GLM.NB or 
the ZINB methods. In GLM.NB/ZINB we used for 𝑦; and 𝑋; the raw count values instead of 
CPM. To correct the model according to differences in samples library sizes, we provided these 
sizes as an offset vector to GLM.NB and ZINB methods. 

 FANTOM5 E-P linking using OLS regression was followed by Lasso shrinkage 
(defined as OLS-LASSO) as described in [23]. Briefly, promoter models were created using 
OLS and models with 𝑅3 ≥ 0.5 were accepted for further analyses. Next, penalized Lasso 
regression was used to reduce the number of enhancers in the models. Optimal models were 
selected using 100-fold cross validation and the largest value of lambda such that the mean 
square error was within one standard error of the minimum, using the cv.glmnet() function in 
R glmnet package [194].  OLS followed by enet (called OLS-enet) was run with mixing 
parameter 𝛼 = 0.5 in the cv.glmnet() function.  OLS followed by LASSO (OLS-LASSO) was 
run with 𝛼 = 1. 

GO enrichment analysis 

GO enrichments were calculated using topGO R package [115] (algorithm=”classic”, 
statistic=”fisher”, minimum GO set size=10). We split the genes into target and background 
sets using their enhancer bin sets. Genes belonging to bins with 1-3/1-4/4-10/5-10 enhancers 
were considered as target set and compared to all genes from all bins as background set.  
Correction for multiple testing was performed using BH procedure [67]. 

External validation of predicted EP links 

We used three external data resources for validating FOCS E-P link predictions: (1) RNAPII 
ChIA–PET interactions, (2) YY1-HiChIP interactions, and (3) eQTL SNPs.  
 

We downloaded 922,997 ChIA-PET interactions (assayed with RNAPІІ, on four cell lines: 
MCF7, HCT-116, K562 and HelaS3) from the chromatin–chromatin spatial interaction (CCSI) 
database [116] (GEO accession numbers of the ChIA-PET samples are provided in 
supplementary table S6). We used the liftOver tool (from Kent utils package provided by 
UCSC) to transform the genomic coordinates of the interactions from hg38 to hg19. HiChIP 
interactions mediated by YY1 TF (cell types: HCT116, Jurkat, and K562) were taken from 
[105] (GEO accession id: GSE99521). As done in [105], we retained 911,190 YY1-HiChIP 
interactions with origami probability>0.9. Origami is a method that aims to find high confident 
interactions. For eQTL SNPs, we used the significant SNP-gene pairs from GTEx analysis V6 
and V6p builds. 2,283,827 unique eQTL SNPs covering 44 different tissues were downloaded 
from GTEx portal [106]. 

  
We used 1Kbp intervals (±500 bp upstream/downstream) for the promoters (relative to the 

center position in ENCODE/Roadmap/FNATOM5 or to the TSS position in GRO-seq) and the 
enhancers (±500 bp from the enhancer center). An E-P pair is considered supported by a 
particular capture interaction if both the promoter and enhancer intervals overlap different 
anchors of an interaction. An E-P pair is considered supported by eQTL SNP if the SNP is 
located within the enhancer’s interval and is associated with the expression of the promoter’s 
gene. For each predicted E-P pair we checked if the promoter and enhancer intervals are 
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supported by capture interactions and eQTL data. We then measured the fraction of E-P pairs 
supported by these data resources.  

 
To get an empirical P-value for the significance of the fraction, we performed 100 

permutations on the data (100 permutations were sufficient as in all methods we got empirical 
P-value<0.01). In each permutation, for each promoter independently, if it had 𝑙 E-P links, then 
𝑙 enhancers on the same chromosome with similar distances from the gene’s TSS as the 𝑙 linked 
enhancers were selected randomly. For this purpose we used the R ‘Matching’ package [195]. 
The fraction of overlap with the external data was computed on each permuted data. 
 

Statistical tests, visualization and tools used 

All computational analyses and visualizations were done in the R statistical language 
environment [117]. We used the two-sided Wilcoxon rank-sum test implemented in 
wilcox.test() function to compute the significance of the binary test. We used the cor.test() 
function to compute the significance of the Spearman correlation in the activity level test. 
Spearman/Pearson correlations were computed using the cor() function. To correct for multiple 
testing we used the p.adjust() function (method=’BY’). We used ‘GenomicRanges’ package 
[118] for finding overlaps between genomic positions. We used ‘rtracklayer’ [119] and 
‘GenomicInteractions’ [120] packages to import/export genomic positions. Counting reads in 
genomic positions was calculated using BEDTools [109]. OLS models were created using lm() 
function in ‘stat’ package[117]. GLM.NB models were created using glm.nb() function in 
‘MASS’ package [121]. ZINB models were created using zeroinfl() function in ‘pscl’ package 
[122]. Graphs were made using graphics[117], ggplot2 [123], gplots [124], and the UCSC 
genome browser (https://genome.ucsc.edu/). 
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6.2. Supplement 2: Predicting cell-type specific enhancer-promoter 
maps 
 

Supplementary Results 

Validations against experimentally detected chromatin loops 
 
GM12878 and K562 predicted ct-links on FANTOM5 and ENCODE data were benchmarked 
against experimental 3D loops in terms of precision-recall curves. We compared CT-FOCS 
with MAD-FOCS and JEME [133] on FANTOM5 data (Methods; Supplementary Figure 
S3.11) and with the ABC model [135,136] and TargetFinder [134] on ENCODE data (Methods; 
Supplementary Figure S3.12). Note that the very small number of cell types assayed for 3D 
chromatin loops does not allow us to identify true cell type-specific loops and exclude those 
common to many cell types. Therefore, the benchmark does not provide a gold standard of 
positive and negative ct-links. Thus, the validations answer only on whether predicted the ct-
links are supported by experimental loops or not, but not on their cell type-specificity (that is, 
tend to occur in one or a few cell types compared to other cell types). 
To this end, the results in Supplementary Figures S3.11-3.12 show: (1) validations against 
two-step loop sets (TLSs; Methods) had 2-3 fold increase in precision compared to validations 
against single loops in all methods. (2) ct-links predicted by all methods had a relatively low 
support from 3D chromatin loops with CT-FOCS achieving higher precision on K562 
(FANTOM5 and ENCODE) and GM12878 (ENCODE) than the other tested methods. 
  
Loops involving enhancers active in a single cell type  
 
We wished to evaluate the prevalence of experimentally detected EP links that involve 
enhancers that are active only in one single cell type. We performed the following analysis: 
 

(1) We identified FANTOM5 enhancers present only in a single cell type as follows: first, 
each enhancer, x, (out of n≈43k enhancers) is sorted by its signals across the cell types 
from highest to lowest. Second, a fold-change, FC(x), is computed between the first 
ranked cell type T1 and second ranked cell type T2. Lastly, given a threshold y, if FC(x) 
is above the y percentile of all n FCs, then enhancer x is considered as uniquely active 
(ua) in cell type T1 (termed ua-enhancer). We varied y between 40% and 95%. The 
higher the y threshold is - the more likely the enhancer that passed this criterion to be 
really active in a single cell type.   
Notably, even for the y=95 percentile, the fold-change was a mere 2.3, very far from 
what could be considered a strictly unique cell-type enhancer. Moreover, with that 
threshold, only 12 enhancers were identified as uniquely active in GM12878. 

(2) We took GM12878 POL2 ChIA-PET loops (m=95,269 loops) from [137] and resized 
the loop anchors to 5kb around their center position. We searched for loops whose 
anchors overlap with GM12878-ua enhancers. We counted how many ua-enhancers 
had an overlap with a loop anchor, and how many loops had anchors overlapping a ua-
enhancer. We termed these loops as GM12878 specific E-loops (termed sE-loops).  
For y=95, only 9 enhancers met this criterion, and they involved 45 sE-loops. So the 
vast majority of the experimentally obtained GM12878 loops (95,224/95,269 or 
0.9995) did not involve a ua-enhancer, suggesting that this is a very rare case. 
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(3) Finally, we counted how many of the sE-loops involve anchors annotated as promoters 
(termed sEP-loops). 
For y=95, only four loops met this criterion. 

 
Even with the lowest tested threshold (y=40%, corresponding to a mere 1.0 fold-change), only 
64 GM12878-ua enhancers were found. Out of them, 46 overlapped with 316 experimentally 
validated loops, and 70 loops involved an anchor annotated as promoter. So a truly unique 
enhancer is very uncommon. 
 
We repeated the analysis for the cell type K562 using m=41,452 K562 ChIA-PET loops, and 
the numbers were even lower.  
 
All the results are summarized in Supplementary Table S5.  
 
Our analysis suggests that truly uniquely active enhancers are very rare. Therefore, we argue 
that it will be hard for any computational method to identify ct-links involving enhancers active 
in a single cell type. 
 
We also tested a relaxed version of CT-FOCS that skips the leave-cell type-out cross validation 
step of FOCS and applies CT-FOCS to all 24,048 available promoters with their ten closest 
enhancers in FANTOM5. The latter method is termed 'CT-FOCS no filtering'. The reasoning 
was to allows a potential unique cell type not to be excluded in the cross validation. The results 
are shown in the table below. While CT-FOCS linked fewer promoters (~14K) than 'CT-FOCS 
no filtering' (~21K), both methods linked a similar number of enhancers (~27K). Also, both 
methods linked ~5K enhancers whose region appear in a single cell type (row 5 in the table – 
set A). Out of set A (row 6 in the table – set B), only ~200 enhancers (~4%) were ranked first 
by their signal in the same cell type compared to other cell types. The average and median FC 
(described in point 1 above) of the enhancers in set B was similar in both methods.  
 
This analysis suggests that it is unlikely to observe enhancers that are strictly active in a single 
cell type. This may be because similar cell types from the same tissue have the same active 
enhancer. The more cell types are used in the analysis - the less likely we are to observe an 
enhancer active in a single tissue. Thus, the leave-cell-type-out-cross-validation step in FOCS 
has a minor effect on the identification of EP links that are strictly unique and active in a single 
cell type.     
 
 CT-FOCS CT-FOCS no filtering 
#candidate promoter models 21,468 24,048 
#candidate enhancers 36,244 37,193 
#linked promoters 13,873 21,068 
#linked enhancers 27,463 27,062 
A - #linked enhancers in a single cell 
type 

4,933 (18%) 5,557 (20.5%) 

B - #enhancers from A that were ranked 
first by signal in the same single cell type 
vs. other cell types 

196 (4%) 175 (3.1%) 

Avg/Median enhancer FC b/w first and 
second ranked cell types by enhancer 
signal (on the enhancers in B) 

1.5/1.3 1.8/1.2 

https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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The effect of sample size on the quality of predictions 

CT-FOCS requires multiple replicates per cell types. Cell types with a single replicate are also 
included in our linear mixed effect model as they can contribute to estimating the fixed effect 
coefficients (β values). Cell types with at least two replicates can help improve variance 
estimate for the random effect, which is the cell type group level.  Using this estimate one can 
predict a random slope and intercept for each cell type (Methods). 

In FANTOM5 dataset, 179, 110, and 20 out of 472 cell types had at least 2, 3, and 4 replicates, 
respectively. In ENCODE, 88 out 106 cell types had at least 2 replicates. 

To analyze the sample effect size on the quality of the predictions we applied CT-FOCS only 
on 179 FANTOM5 cell types that had at least two replicates. We name the resulting solutions 
as CT-FOCS-2rep. We also analyzed the properties of the original CT-FOCS solutions when 
restricted to the same set of 179 cell types. Properties of these solutions are summarized in 
Supplementary Figure S3.13. Focusing on these 179 cell types, the original CT-FOCS 
resulted, on average per cell type, with more significant ct-links, linked enhancers and 
promoters compared to CT-FOCS-2rep (Table A below). 

Table A. Average number of ct-links, linked enhancers and promoters on FANTOM5 dataset 
Method # cell types Avg. ct-links 

(Median) 
Avg. Enhancers 
(Median) 

Avg. Promoters 
(Median) 

CT-FOCS 472 414 (94) 318 (72) 146 (73) 
CT-FOCS 179 600 (122) 451 (90) 200 (87) 
CT-FOCS-2rep 179 269 (115) 216 (96) 131 (58) 

 

Next, we compared the two solutions using TLS support ratio as done in Figure 4. To this end, 
we focused on 100 cell types that had at least 50 ct-links in both approaches. Also, as previously 
done, we restricted the number of predictions on these cell types to be the same between CT-
FOCS and CT-FOCS-2rep in order to control sensitivity (top EP links selected using 𝑙𝑜𝑔𝐸𝑃 
value). CT-FOCS-2rep results had better median support ratios on 4 out of 5 cell types 
compared to the original CT-FOCS (Table B below). CT-FOCS was better only on K562 cell 
line.  

Table B. The particularity of each algorithm's predictions as measured by ChIA-PET, HiChIP 
and PCHi-C assays 
 K562 

(HiChIP) 
GM12878 
(ChIA-PET) 

Hippocampus 
(pcHiC) 

Liver 
(pcHiC) 

Thymus 
(pcHiC) 

CT-FOCS 0.9 1.2 0 0.7 0.6 
CT-
FOCS-
2rep 

0.5 2.0 0.3 1.1 1.2 

p-Value* <6.5E-13 <1.9E-13 <4.2E-4 <2.6E-6 <2.0E-13 
Values in the first two rows are the median log2(ratio) values.  
*One-sided Wilcoxon rank-sum test. Marked in red is the best performing method. 

 

We report also the CT-FOCS-2rep predictions and recommend the readers to use them instead 
those of CT-FOCS when selecting one of the 179 cell types included in the analysis. 
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Supplementary Methods 

ENCODE DHS data preprocessing 

ENCODE DNase-seq samples (106 cell types) were downloaded from GEO dataset GSE29692 
[43,107,108]. ENCODE DHS peaks of enhancers and promoters [24] were processed as in 
FOCS [101] with the following changes: (1) we analyzed only promoters of annotated protein-
coding genes according to GencodeV10 TSS annotations 
(ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz).  (2) 
We applied a relative-log-expression (RLE) normalization [196], as implemented in edgeR 
[197,198].  (3) We retained promoters and enhancers that showed robust activity in at least one 
cell type: signal ≥ 5 RPKM in all samples of at least one cell type. Overall, we analyzed 208 
samples from 106 cell types. Our preprocessing resulted with 36,056 promoters (mapped to 
13,105, 13,464, and 13,197 protein-coding genes according to HGNC_symbols, Ensembl, and 
Entrez, respectively) and 658,231 putative enhancers.  

Enhancers closer than 10kb to the nearest promoter were discarded since we wanted to reduce 
false positive links due to the high signal correlation at short distances, and to predict distal 
interactions as suggested by Whalen et al. 2016. The candidate enhancers for each promoter 
were defined as the 10 closest enhancers located within a window of 1Mb (±500kb 
upstream/downstream) from the promoter’s center position. 

We first applied the FOCS pipeline, including leave-cell-type-out cross validation (LCTO CV) 
on the promoters and their candidate enhancers, and accepted promoter models with q-value≤
0.1 in the activity level test (see Hait et al. 2018 for details). Unlike FOCS, we did not apply 
here regularization on the predicted EP links. Overall, the procedure resulted with 17,832 
promoter models (mapped to 9,090, 9,320, and 9,160 HGNC_symbols, Ensembl, and Entrez 
protein-coding genes, respectively). 

FANTOM5 CAGE data preprocessing 

We downloaded the FANTOM5 CAGE data from JEME [133] repository 
(https://www.dropbox.com/sh/wjyqyog3p5d33kh/AACx5qgwRPIij44ImnzvpFxUa/Input%20
files/FANTOM5/1_first_step_modeling?dl=0&subfolder_nav_tracking=1). Overall, the data 
contained 24,048 promoters (mapped to 18,986, 20,597 and 18,912 protein-coding genes 
according to HGNC_symbols, Ensembl and Entrez, respectively) and 42,656 enhancers, 
covering 808 samples. Enhancer and promoter expression matrices were RLE normalized. We 
used the RLE normalized data from [133]. We manually annotated the 808 samples with 472 
cell types (Supplementary Table S6) using Table S1 from FANTOM5 [23].  

For each promoter, the candidate enhancers were defined as the 10 closest enhancers located 
within ±1Mb from the promoter’s TSS as performed in JEME [133]. Unlike ENCODE, we did 
not enforce a lower bound on the distance here. We applied the same pipeline on the promoters 
and their candidate enhancers as described above for the ENCODE data. This resulted with 
21,468 promoter models for further analysis. 

 

 

 

 

ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz
https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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Supplementary Tables 

The supplemental tables are included in the online Supplemental Material in spreadsheet 
format. The 'Description' tab of each supplemental table file includes a table legend. Below are 
the titles of the tables: 

Supplementary Table S1:  Comparison between CT-FOCS, TargetFinder and ABC on 

ENCODE DHS data across 5-10 cell types 

Supplementary Table S2:  The particularity of each algorithm's predictions as measured by 

ChIA-PET, HiChIP and PCHi-C assays 

Supplementary Table S3:  TF overrepresentation q-values and overrepresentation factors in 

promoters and enhancers involved in ct-links identified by CT-FOCS on ENCODE data  

Supplementary Table S4: TF overrepresentation q-values and overrepresentation factors in 

promoters and enhancers involved in ct-links identified by CT-FOCS on FANTOM5 data  

Supplementary Table S5:  The number of ChIA-PET loops supported by enhancers with 

signal ranked above the yth percentile, for different y values 

Supplementary Table S6: FANTOM5 sample annotation. The annotation maps between 808 

sample IDs, 472 cell types, and three cell type categories (cell line, primary cell, or tissue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://academic.oup.com/nar/article/50/10/e55/6517947#supplementary-data
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Supplementary Figures 

 

 
Figure S3.1. The difference between CT-FOCS and FOCS in predicting EP links. (A-B) Heatmaps of two EP links 
predicted by CT-FOCS and FOCS for the same promoter on FANTOM5 dataset. The links involve different enhancers, 
E1 and E2. (A) E1P link, predicted by CT-FOCS as specific for neurons primary cell. (B) E2P link predicted by FOCS. 
Cell type names marked in red have both enhancer and promoter signals above the 75% percentile across cell types. 
Only primary cells (n=94) with at least 3 replicates are presented. Values are in log2 median of the replicates per cell 
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type. LogEP is the sum of logE and logP. For visibility, values in each row were transformed to the range -4 to 4. 
Samples were ordered by hierarchical clustering. 
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Figure S3.2. Properties of the ct-links predicted by CT-FOCS and by four other algorithms. (A)  Number of links 
predicted per cell type. (B) Sharing of ct-links among cell types. (C) Enhancer-Promoter distances in predicted ct-links. 
Distances were collapsed from all cell types, i.e., repeated EP links are counted multiple times. Predictions are on 472 
cell types of the FANTOM5 data. 
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Figure S3.3. Proportion of predicted ct-links that lie within TADs. For each ct-link predicted 
by CT-FOCS, we randomly selected a promoter in the same chromosome and one of its 10 
closest enhancers, and checked if they reside in the same TAD. The process were repeated 1,000 
times, and the distribution of the fraction of links that fell within TADs is shown in black. The 
red line is the fraction obtained on the real data. The empirical p-value is the percentage of cases 
in which the fraction was higher than that observed on the real data (<0.001 here, as that 
percentage was zero).  The 9,274 TADs reported in [199] were used. 
 

Frequency #ct-links within TADs

Proportion of ct-links within TADs

FANTOM5
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Figure S3.4. Specificity of enhancers and promoters in ct-links predicted for GM12878. 
(A-B) Heatmaps of linked promoter (A) and enhancer signals (B) for 340 ct-links predicted on 
GM12878. Columns – cell types, color – z-score of promoter and enhancer signal. B and T cell 
types related to GM12878 are highlighted in green and blue respectively. (C-D) Cell type 
specificity scores based on promoter (C) and enhancer signals (D). 109 cell types with at least 3 
replicates each were included in the analysis (Methods). 
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Figure S3.5. Specificity of ct-links predicted for Neurons. (A) Heatmap of EP signals for 968 
ct-links predicted on Neurons based on FANTOM5 data. Rows – EP links, columns – cell types, 
color – z-score of EP signal. Brain cell types related to Neurons are highlighted in blue. (B) 
Heatmap of gene expression (GE) for 120 genes involved in the predicted ct-links. Rows – 
genes, columns – cell types, color – z-score of GE. (C) Cell type specificity scores based on the 
EP signals in A. (D) Cell type specificity scores based on expression for the gene set in B. (E-
F) Heatmaps of linked promoter (E) and enhancer signals (F) for 968 ct-links predicted on 
Neurons. Columns – cell types, color – z-score of promoter and enhancer signal. (G-H) Cell 
type specificity scores based on promoter (G) and enhancer signals (H). In A, C and E-H, 109 
cell types with at least 3 replicates each were included in the analysis; in B and D, 112 cell types 
with ENCODE gene expression are included (Methods). 

 

 
Figure S3.6. Specificity scores of EP links predicted by CT-FOCS, CT-MAD-FOCS and CT-
JEME. (A) Density plots cell type specificity scores based on EP signals on 276 FANTOM cell 
types. Dashed lines denote the mean rank for each method. P-values were computed using one sided 
Kolmogorove-Smirnov test. (B) Ranking of the correct cell type in terms of specificity scores of the 
linked genes’ expression in four cell types for which expression data was available in ENCODE. 
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Figure S3.7. ChIA-PET TLSs support ct-links. TLS support for an EP link predicted in 
GM12878. From the top: (1) A track showing all ChIA-PET loops, highlighting those 
overlapping an enhancer (red) or a promoter (blue) in a segment of 60 kb of Chromosome 1. 
(2) All loops that have an anchor in common with loop x. All the anchors in the blue box 
have nonempty overlap.  (3) The EP link predicted by CT-FOCS. That link is validated by 
TLS(x). (4) Gene annotation.  (5) DHS signals of GM12878 and K562 (two replicates each). 
(6) RNA-seq levels of GM12878 and K562 (two replicates each). (7) Epigenetic marks of 
enhancer activity (H3K4me1+H3K27ac) and promoter activity (H3K4me3+H3K27ac). The 
TLS in the second track supports the single GM12878-specific EP link of TNFRSF14 gene. 
This link is not supported by a single ChIA-PET loop. Tracks are shown using the UCSC 
genome browser.  
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Figure S3.8. Significance of the overlaps between predicted ct-links and experimental 3D 
contact data. (A-B) Top – overlaps with GM12878 POL2 ChIA-PET (A) and pcHiC (B) TLSs. 
(C-D) Bottom - overlaps with GM12878 ChIA-PET (C) and pc-HiC (D) single loops. Random 
sets of EP links of the same number and linear distance as the true ct-links were generated. In 
each set, the number of random EP links that overlapped with the TLSs or single loops in 3D 
data was counted. The black distribution shows the counts for 1000 random sets, and the red line 
shows the number obtained for the links inferred by CT-FOCS. Except (D), in all cases the 
number of random sets with higher counts than the true set was zero. 

P<0.001

#EP-links supported by ChIA-PET

#EP-links supported by GM12878 ChIA-PET TLSs

#EP-links supported by pcHiC

P<0.003

#EP-links supported by GM12878 pc-HiC TLSs

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

#EP-links supported by GM12878 single loops #EP-links supported by GM12878 single loops

A

C

B

D

P<0.001 P<0.048



132 
 
 

 

 
Figure S3.9. Gene expression of TFs whose motif is enriched in ct-links. (A,B) Heatmaps of 
the expression (after Z-score transformation)  of genes encoding the TFs  whose motifs were 
found to be enriched in promoters (A) and enhancers (B) of GM12878-specific EP links 
identified by CT-FOCS on ENCODE data. TFs shown had q-value < 0.1 (Hypergeometric test). 
(C-D) Cell type specificity score ranks based on GM12878-specific TF GE levels in promoters 
(C) and enhancers (D) compared to other cell types. 112 ENCODE cell types with ENCODE 
gene expression are included [44]. 

 

 
Figure S3.10. Distribution of enhancer and promoter activity signals in FANTOM5 and 
ENCODE data. (A) FANTOM5 (808 profiles) CAGE signal. The normalization of CAGE 
signals in CT-FOCS takes into account the library sizes. The activity of each enhancer or 
promoter was normalized using the RLE function [196] and log2 transformed. (B) ENCODE 
DHS signals (208 profiles). The sharp peaks in both promoter and enhancer indicate zero-
inflated data.  
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Figure S3.11. Validation of predicted EP-links against 3D chromatin loops on 
FANTOM5 dataset. Precision-recall curves of CT-FOCS, MAD-FOCS and JEME. Positive 
set included all GM12878 ChIA-PET loops (A; 92,307 loops) or K562 HiChIP loops (B; 
352,359 loops). Black line denotes the JEME’s curve on decreasing classification scores 
from the lowest to the highest recall. Left plots show the validation against single loops. 
Right plots show the validation against two-step connected loop sets (TLSs).  
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Figure S3.12. Validation of predicted EP-links against 3D chromatin loops on 
ENCODE dataset. Precision-recall curves of CT-FOCS, TargetFinder and ABC model. 
Positive set included all GM12878 ChIA-PET loops (A; 92,307 loops) or K562 HiChIP loops 
(B; 352,359 loops). Black line denotes the ABC model’s curve on decreasing ABC scores 
from the lowest to the highest recall. Left plots show the validation against single loops. 
Right plots show the validation against two-step connected loop sets (TLSs). 
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Figure S3.13. Properties of the ct-links obtained when CT-FOCS is applied on 179 
FANTOM5 cell types with at least two replicates (solution sets CT-FOCS-2rep). (A)  
Number of predicted EP links per cell type (n=179). (B) Sharing of ct-links among cell types. 
(C) Enhancer-Promoter distances in predicted ct-links. EP distances were collapsed from all 
cell types, i.e., repeated EP links may be included. 
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6.3. Supplement 3: Enhancer and silencer inference 
 

Selection of epigenetic datasets 

To find the epigenetic features to be used in our model, we implemented a DeepTACT 

classification model with different inputs. Each input was composed of the sequence alone or 

the sequence with additional epigenetic signals (Supplementary Table 4.1). We analyzed the 

same GM12878 dataset described in the Methods section and measured the classification 

accuracies for silencers and enhancers. We evaluated the classification quality using the 

AUROC and AUPRC indexes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4.1. Summary of accuracies for different combinations of epigenetic datasets 
Combination AUROC 

enhancer 
AUPRC 
enhancer 

AUROC 
silencer 

AUPRC 
silencer 

Sequence (Seq.) 0.76 0.29 0.94 0.76 
Seq. + Methylation (Meth.) 0.81 0.40 0.94 0.83 
Seq. + H3K27ac 0.87 0.49 0.95 0.81 
Seq. + H3K27me3 0.81 0.37 0.95 0.84 
Seq. + H3K4me1 0.90 0.47 0.96 0.82 
Seq. + Meth. + H3K27ac 0.90 0.54 0.96 0.85 
Seq. + Meth. + H3K27me3 0.85 0.46 0.96 0.84 
Seq. + Meth. + H3K4me1 0.91 0.52 0.96 0.83 
Seq. + H3K27ac + H3K27me3 0.89 0.52 0.95 0.84 
Seq. + H3K27ac + H3K4me1 0.90 0.52 0.96 0.84 
Seq. + H3K27me3 + H3K4me1 0.90 0.49 0.96 0.84 
Seq. + Meth. + H3K27ac + H3K4me1 0.92 0.54 0.96 0.85 
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Supplemental Figures 

 
Figure S4.1. Performance of CNN models in predicting experimentally identified regulatory 
elements in GM12878. We trained the CNN models twice: first using putative enhancers and 
silencers defined based on epigenetic marks, and second, using the elements experimentally 
identified by ATAC-STARR-Seq in this cell line. Both approaches were tested for their 
ability to correctly detect experimentally identified elements. 
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Figure S4.2. Distance to nearest TSS. Enhancers, silencers and non-functional distances to 
the TSS of their nearest gene. Vertical red line denotes the mean distance. 
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Figure S4.3. Summary of epigenetic markers in the exploratory set. Top to bottom: 
predicted scores (output of Step1 – the regression model), H3K27ac, H3K27me3, 
H3K27me1, Methylation, EP300 and EZH2. Predicted enhancers, silencers and 
nonfunctional are marked by red, blue and grey colors, respectively. In each predicted class 
and each track, the average signal per position in the 1kb sequences is shown. In b, the grey 
curve overlaps the blue curve for H3K27ac and the red curve for the EZH2. 
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Figure S4.4. GWAS enrichment in the experimentally identified (a) enhancers and (b) 
silencers. 

 

 

 
Figure S4.5. UCSC genome browser tracks of SLE risk SNP, rs13240595 (marked in 
arrow), falling within a predicted active enhancer linked to TNPO3 gene. 
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Figure S4.6. Motif enrichment. Enriched motifs within predicted (a) enhancers and (b) 
silencers. 

 

 

 

 

 

 

 

 

 

 

 



142 
 
 

 

 

a 

 
b 

 
Figure S4.7. ChIP-seq enrichment in the experimentally identified sets of (a) Silencers and 
(b) Enhancers. 
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Figure S4.8. Performance of transfer learning of GM12878 model to K562 and HepG2 cell 
lines. Original GM18278 performances are in blue curves. 
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 יאתב םיקיתשמו םימצעמ יפלא תורשע תייוסינ הרוצב ATAC-STARR-seq גוסמ יוסינ ההיז הנורחאל

B )גוסמ םיאת GM12878(. תילילש וא תיבויח המורת ןויצ בשוח ולגתנש םיפצרב סיסב לכב ,יוסינה ךמס לע 

 םימצעמ יובינל רתוי הנימא גוויס תטיש ל"נה עדימה תועצמאב חתפל התייה ונתרטמ .םהלש הרטמה ןג קותעישל

 תובושח תונוכת יוהיזל תוטיש ונלעפה םיילאנויצקנופ םיקיתשמ תיטנגיפא הניחבמ רידגמ המ תוהזל ידכ .םיקיתשמו

)Feature importance( ןמואמה לדומה לע. 

 םימצעמכ ונמוסש א"נד יפצר לע ןמואש הקומע הדימל לדומ םאה ,האבה הלאשה תא ונרקח ,תישאר

 הקומע הדימל לדומ ותוא תמועל תוחפ וא רתוי קייודמ היהי תייוסינ ותמואש םיקיתשמו םימצעמ תועצמאב םיקיתשמו

 הבושתה ?)ינויסנ שושיא אלל( דבלב יטנגיפא עדימ תועצמאב םיקיתשמכו םימצעמכ ונמוסש א"נד יפצר לע ןמואש

 .םיקיתשמ יוהיזל ATAC-STARR-seq גוסמ ייוסינה עדימב שומישל רורב ןורתי התארה ונלש

 וז הדובעב היינשה ונתלאש .טלקכ א"נדה ףצרב קר ושמתשה םיקיתשמ ואבינש תומדוק תוטיש ,ףסונב

 התייה הבושתה ןאכ םג ?יובינה יעוציב תא רפשת א"נדה ףצרל ףסונב טלקכ יטנגיפאה עדימה תפסוה םאה התייה

 .תיבויח

 םייתימא םיקיתשמו םימצעמ ץימחה ליעל ראותש ATAC-STARR-seq-ה יוסינ םאה ונקדב ,ףוסבל

 וניזחו תייוסינ ולגתנש םיקיתשמו םימצעמ לע הקומע הדימל לדומ ונמיא ,ךכ ךרוצל .ונחבנש B-ה יאתב םימייוסמ

 ולגתנש קיתשמ וא םצעמ םוש ופפח אלש םיימונג םיפצר לש הצובק ךותמ םישדח םיקיתשמ 518-ו םימצעמ 3,752

 לשו TFs לש תויגולויב תורשעה תועצמאב ולגתנש םישדחה םיפצרה תונמיהמב הכימת ונלביק .ולא םיאתב תייוסינ

 .)GWAS( תולחמל םירושקה םונגב םיטנאירוו

 תרוקיבב תעכ הדובעה .Lab/EnhancerSilencerDL-https://github.com/Shamir :ב ןימז ילכה 

 :רותב preprint-כ המסרופו םיתימע

Hait TA, Elkon R, Shamir R. Inferring single nucleotide activation and repression maps 
using deep-learning. Research Square. 23 August 2023, https://doi.org/10.21203/rs.3.rs-
3270775/v1 
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 .םיאת יגוס לש ןטק רפסמל תויפיצפסה םדקמ-םצעמ תויצקארטניא תאיצמל ונתטיש תא גיצמ ינא 3 קרפב

 לע תוליעפה תוינבת תייצלרוק סיסב לע תוילבולג םדקמ-םצעמ תויצקארטניא הזוח 2 קרפב הגצוהש FOCS תטיש

 תויפיצפס חרכהב ןניאו תוילבולג ןה וזחנש תויצקארטניאה ,ךכל יא .םינוש םיאת גוס תואמ תוסכמה תובר תומיגד ינפ

 תמאב ןה וזחנש תוילבולגה תויצקארטניאה ןיבמ ימ תוהזל אוה יזכרמ רגתא .םיאת יגוס לש ןטק רפסמל

 תא ונחתיפ ,ךכ ךרוצל .)ct-links ונארק ולאכ תויצקארטניאל( םיאת לש ןטק רפסמל תויפיצפסו תוילאנויצקנופ

 הזוחש linear mixed effect model (LMM) לע תססובמה הטיש ,)CT-FOCS )cell-type-FOCS תטיש

 לכל תומיגד לש תורזח רפסמ סיסב לע םייפיצפס םיאת יגוס לש ןטק רפסמב תומייקתמה םדקמ-םצעמ תייצקארטניא

 םירגאמהמ DNase-seq גוסמו FANTOM5 רגאמהמ CAGE גוסמ םינותנ לע CT-FOCS תא ונמשיי .את גוס

ENCODE ו-Roadmap Epigenomics, 229,518 לש ללוכ רפסמ וניזחו ct-links םינוש םיאת 651-ל. 

 תויצקארטניא לומ לא ct-links-ה תקידב ידי לע תומייק תוטיש תמועל CT-FOCS יעוציב תא וניוושה 

 תקידבל הרישיה ךרדה .םימצעמה לש הרטמה ינג יוטיב לש תיאת תויפיצפס תקידב ידי לעו תייוסינ הרוצב ואצמנש

 םיפפוח םדקמהו םצעמה םאה קודבל איה )תואלול וא Loops( תוינויסינ תויצקארטניא תועצמאב ct-links-ה תונוכנ

 ,ןהינגוע לש תיבחרמ הברק לע תודיעמ תואלולש ןתניהב ,תאז םע דחי .האלול התוא לש )anchors( םינגועה ינש תא

 םתוא לש ןובשחב החיקל .םינגוע םתוא לש תיבחרמ הברק לע ןכ םג דיעהל םייושע תונוש תואלולמ םיפפוח םינגוע

 רתוי אל לש יראניל קחרמב תושרפנה ct-links לש ןתונוכנ תומיאב רוזעל היושע תונוש תואלולמ םיפפוח םינגוע

 תופפוחה תואלולה טס תא ונרדגה ,ךכ ךרוצל .ChIA-PET תיגולונכטמ תואלול אוצמל ריבס אל וב קחרמ ,20kb-מ

)Two-step connected loop set – TLS( תומיאל תיבחרמ םיבורק םיבשחנש םינגועה טס תא ביחרהל ידכ ct-

links. 

 ךרוצל .םינג לע תיפיצפס תיאת הרקב םירידגמ וזחנשct-links -ה םאה ונלאש וז הדובע לש ןורחאה קלחב 

 םימצעמה ךותב םיעודי )Transcription Factors – TFs( קותעיש ירוטקפ 402 לש תויפיצפסה תא ונדדמ ,ךכ

 םיאתל םייפיצפס דואמ םהש TFs םיבינמ CT-FOCS ידי לע וזחנש ct-links-ש וניארה .ct-links לש םימדקמהו

 תועמשמ ילעב ct-links תוזחל תלגוסמ CT-FOCS-ש וניארה ,ךכיפל .תומייק תוטיש תמועל תקהבומ הרוצבו

 .םינג לש תיפיצפס תיאת הרקבל תיטנוולר תיגולויב

 :רותב המסרופ הדובעה .focs/-http://acgt.cs.tau.ac.il/ct :ב ןימז ילכה 

Hait TA, Elkon R, Shamir R. CT-FOCS: a novel method for inferring cell type-specific 
enhancer–promoter maps. Nucleic Acids Research, Volume 50, Issue 10, 10 June 2022, 
Page e55, https://doi.org/10.1093/nar/gkac048. 

 ירוזא .םיקיתשמ לש יובינל טרפבו םונגב םידדוקמ אל הרקב ירוזא יובינל ונתטיש תא גיצמ ינא 4 קרפב

 תמועל .םינורחאה םירושעה ינש ךרואל הקימעמ הרוצב ורקחנ  םימדקמו םימצעמ ןוגכ םינג קותעיש םירקבמה הרקב

 ללגב רקיעב הטעומ בל תמושת ולביק ,םהלש הרטמה ןג לש קותעיש םיקיתשמ וא םידירומ רשא ,םיקיתשמ ,תאז

  .תייוסינ םתוהזל השקש

 עדימו א"נדה ףצר לע רקיעב ונמוא םיאתל םייפיצפסה םימדקמו םימצעמ אבנל ןתרטמש גוויס תוטיש

 עדימ תועצמאב רקיעב ונמוס ןחבמהו תומיאה ,ןומיאה רובע תיבויחה הצובקכ ורדגוהש םימדקמו םימצעמ .יטנגיפא

 ,םינוטסיה לש תויצקיפידומה תועצמאב םונגב םרוזאב םינמוסמכ םיעודי םיילאנויצקנופ םימצעמ ,אמגודל .יטנגיפא

H3K4me1 ו- H3K27ac. םיילאנויצקנופ םיקיתשמ תיטנגיפא הניחבמ רידגמ המ רורב אל ןיידע ,םתמועל. 

http://acgt.cs.tau.ac.il/ct-focs/
https://doi.org/10.1093/nar/gkac048


 
 

 

 בכרומ ךילהת וניה ולא תויגולונכטמ רתוי וא תחאמ םינוש םיאת יגוס לש תומיגד יפלא הסכמה עדימ ףוסיא

 הריתס תמייק םימעפל ,ףסונב .םייוסינה תואצות שוריפ לע השקמו ,יטסיטטס שער לש תוהובג תומר ליכמה דואמ

 אלש את גוס ותואב םיקיתשמ יוליגל םינוש םייוסינ ןוגכ ,המוד תיגולויב הרעשה וקדבש םינוש םייוסינמ תואצות ןיב

 וז הזתב שגדה ,ליעל תורכזומה תויעבב לפטל ידכ .[200] םינושה םייוסינב ואצמנש םיקיתשמה ןיב הפיפח וארה

 תיעדמה הליהקל קפסל איה ונתרטמ .דחי םייוסינ הברהמ םינותנ לש בלושמ חותינל תויבושיח תוטיש חותיפ אוה

 .תונוש תויגולונכטמ םייוסינ לש בחר ןווגמב שומיש ךות םהיניב תויצקארטניאהו הרקב יפצר יוהיזל םישדח םילכ

 תא םיגיצמ ונא הטיש לש םושיי לכב .תורחאו תומייק תוטיש ינפ לע תופידעכ וחכוהו ונחבנ וז הזתב ונחבנש תוטישה

  .תורפסהמ יגולויב עדיב שומיש ידכ ךות םינותנה לש ףיקמ חותינ תרזעב חותינה לש ףסומה יגולויבה ךרעה

 

 תואצות
 םינג יוטיב יסופד .םדקמ-םצעמ תויצקארטניא יוזיחב תקסועש הנושארה ונתדובע תא גיצמ ינא 2 קרפב

 אוצמל ןתינש דועב .םהלש הרטמה ןג םע םייזיפ םירשק םירצוי רשא םימצעמ לש תוליעפ ידי לע רקיעב םירקובמ

 ,תאז םע דחי .טעומ אוה הז םוחתב ושענש םייוסינה רפסמ ,את לכב תייוסינ הרוצב םדקמ-םצעמ תויצקארטניא

 בחרנ יטנגיפא עדימ רוקמ םיקפסמ FANTOM5 -ו ENCODE, Roadmap Epigenomics ןוגכ םילודג םירגאמ

 םילוכי ולא םירגאמ .)DNase-seq ןוגכ םונגב םיחותפ םירוזא םידדומה םייוסינ ,אמגודל( םיאת יגוס תואמ הסכמה

  .םהלש הרטמה ןגל םימצעמ יופימל תויבושיח תוטיש חותיפ ךרוצל שמשל

 ידומילב .טרוטקודה ידומילב הנושארה יתנש ךותל הכשמנו ילש ינשה ראותה ידומילב הלחה וז הדובע

 FOCS )FDR-Corrected OLS with Cross-validation and תארקנה תיבושיח הטיש ונחתיפ ,ינשה ראותה

Shrinkage(. םדקמהו םצעמה לש תוליעפה תוינבת ןיב היצלרוק סיסב לע םדקמ-םצעמ תויצקארטניא הזוח וז הטיש 

 תויצקארטניא רמולכ ,תוילבולג םדקמ-םצעמ תויצקארטניא הזוח FOCS .םיאת יגוס תואממ ןרוקמש תומיגד ךרואל

 ליכמה ןטק עדימ רגאמ לע הטישה תא ונמשיי ךמסומה תדובעב .םדקמה ןיבו םצעמה ןיב תקהבומו הלודג היצלרוק םע

 םימדקמו םימצעמ תייוסינ הרוצב ההזמש GRO-seq תיגולונכטמ םיאת יגוס 23 תוסכמה תומיגד 246

  .םיילאנויצקנופ

 תמועל עדימ הרשע יפ( תומיגד 2,384 דוע לע FOCS תטיש יעוציבו תוליעי תא יתרקח ,טרוטקודה ךלהמב

 ENCODE, Roadmap-מ ופסאנש CAGE-ו DNase-seq ייוסינמ )ינשה ראותה ידומילב קדבנש עדימה

Epigenomics ו-FNATOM5. תוינויסינ תויצקארטניא סיסב לע וזחנש תויצקארטניאה ביט תא ונקדב ,ףסונב 

 FOCS יעוציבש וניארה .)ינשה ראותה ידומילמ eQTL-ו ChIA-PET לומ תומיאל ףסונב( HiChIP תיגולונכטמ

 תויגולויב תונבות תוארהל ידכ וזחנש תויצקארטניאה לע תופסונ תוזילנא ונעציבו תומייק תוטיש תמועל רתוי םיבוט

  .תויטנוולר

 :רותב המסרופ הדובעה .http://acgt.cs.tau.ac.il/focs :ב ןימז ילכה

Hait TA, Amar D, Shamir R, Elkon R. FOCS: a novel method for analyzing enhancer and 
gene activity patterns infers an extensive enhancer-promoter map. Genome Biol 2018, 
19:56. https://pubmed.ncbi.nlm.nih.gov/29716618/ 
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 ריצקת
 יללכ עקר

 תיאתה היגולויבה םוחת .םייחה לש תויסיסבה תודיחיכ םישמשמה םיאתמ םיבכרומ םייחה םימזינגרואה

 ידי לע תטלשנ תיאת היצקנופו תוחתפתה לע הרקבה .םיאתה לש תוגהנתההו היצקנופה ,הנבמה חונעיפב דקמתמ

 םיפצר .םינובלחל םימגרותמה םיפצרכ רדגומ דדוקמ א"נד .דדוקמ אל א"נדו דדוקמ א"נדל קלחתמ א"נדה .א"נדה

 םיפצרכ רדגומ )םונגה ללכמ 98%-כ( דדוקמ אלה א"נדה .םונגה ללכמ 2%-מ תוחפ םיווהמ םהו םינג םיארקנ ולא

 .םינג לש קותעישה תומר לע הרקב אוה םדיקפתש הרקב יפצר םנשי דדוקמ אלה א"נדב .םינובלחל םידדוקמ םניאש

 קותעישה תליחת תדוקנ תברקב םימקוממה ,)promoters( םימדקמה םה ולא םיפצרבש רתויב םירקחנהו םיחיכשה

 םה םתוא םינגהמ קחרה ,א"נדה לש יראנילה ףצרה לע ,םבורב םימקוממה ,)enhancers( םימצעמהו ,םינגה לש

 תרקב יפצר לש תרקחנו הצופנ תוחפ הצובק .םינג לש קותעיש ריבגהלו םדקל איה ולא םיגוס ינש תרטמ .םירקבמ

 םיקיתשמו םימצעמ ,םימדקמ .םינג קותעיש לש הקספה ףאו התחפה הדיקפתש )silencers( םיקיתשמ הניה םינג

 יגוס ןיב תונוש תויהל תולוכי ולא תויצקארטניא .םינג קותעיש רקבל תנמ לע םונגב תויבחרמ תויצקארטניא םירצוי

 .םיאתל תויפיצפס תונוכת רידגהלו ונפוגב  םינוש םיאת

 םימצעמ ןוגכ ,םידדוקמ אלהו םידדוקמה א"נדה ירוזאב םישנא לש תונוש תויסולכוא ןיב האוושה

 יוליגל הנתינ תדחוימ בל תמושת .הרקבה לע םיעיפשמש א"נדה ףצר תמרב םייוניש יוליגל םורתל הלוכי ,םיקיתשמו

 אלה םירוזאב רתוי םיצופנ ולא םייוניש .הייסולכואב )SNPs( ףצרב דדובה סיסבה תמרב םייתשרות םייוניש

 הייסולכואב טרפ לש תודעומה לע עיפשהל לאיצנטופ שי ולא םייטנג םייונישל .[4] םידדוקמב רשאמ םידדוקמ

 םינגב טולשל הרקב יפצרל םימרוגה םיכילהתה לש הנבה ידי לע .דועו תוימיכ תובוכרת ,םינגותפל ותבוגתו תולחמל

 תמר ןיבו הרקבה ירוזאב םייטנגה םייונישה ןיב םייטסיטטס םירשק אוצמל לכונ ,םיאתל יפיצפס ןפואב םהיתומרבו

 רבגומ ןוכיסל םימרוגה םייטנגה םימרוגה לש רתוי הקימעמ הנבהל ליבוהל הנלכות ולא תונבות .םינג לש קותעישה

  .תולחמל

 תויצקארטניא אוצמלו םינג תרקב יפצר רתאל רקוחל רוזעל תנמ לע וחתופ תובר תוינויסינ תויגולונכט

 יפצר ןיב תויבחרמ תויצקארטניא רתאל תנמ לע ועצובש םייוסינה רפסמ טועימ ,תאז םע דחי .םהיניב תויבחרמ

 יוהיז ,ןכ ומכ .תויבחרמ אל תויגולונכטמ עדימ סיסב לע תיבושיח הרוצב ןרתאל תנמ לע תוטיש חותיפ שרוד הרקבה

 תומייק .םימצעמו םימדקמל האוושהב תייוסינ הרוצב יוהיזל השק וז הצובקש םושמ השק המישמ אוה םיקיתשמ

 לש הרישק ירתא ,היצליתמ תומר ןוגכ םונגה לש םינוש םייטנגיפא םינייפאמ תודדומה תונווגמו תובר תויגולונכט

 םירוזאב הרקב יפצר תאיצמ ,הרקבה יפצר ביבס םימוזואלקונ יבג לע תויצקיפידומ תדידמ ,הרקבה יפצרל םינובלח

 ושענש םייוסינה רפסמ ,םייוסינה יריחמב הדיריל תודוה .דועו םימוזואלקונ ידי לע םיסלכואמ אלש םונגב םיחותפ

 ןוגכ םייקנע עדימ ירגאמ תריציל ליבוהש רבד ,םינוש םיאנת תחת םינוש םיאת יגוס תואמ הסכמ תונוש תויגולונכטמ

ENCODE, Roadmap Epigenomics ו-FANTOM5. 

 

 



 
 

 

 תיצמת
 

 הרקב לע תושדח תויגולויב תונבות יוליגל רקחמל ןימז יאופרויבו יגולויב קתע עדימ הב תשגרמ הפוקתב םייח ונא

 םיאנת תחת ןג לכמ םירצונה םינובלחה לש קייודמה בכרהבו תומכב םיטלוש ונפוג יאת דציכ תעבוק וז הרקב .תימונג

 הנבהלו םידדוקמ אל םיימונג הרקב ירוזא יוליגל תויבושיח תוטיש חותיפל ןווכמ הז רקחמב ירקיע ץמאמ .םימייוסמ

 הנבמ םירצוי םיאת דציכ הנבהה ,ןכ לע רתי .םינג קותעיש רקבל תנמ לע םונגב תיבחרמ הניחבמ םינגרואמ םה דציכ

 רוביחב .םלרוג תא םיעבוקה ולא םיאתל םיידוחייה םיעוריאה לע תובושח תונבות קפסל היושע םייוסמ יבחרמ ימונג

 םיאתמ םיבחרנ עדימ תורוקמב שומיש ךות ,םונגב יבחרמה םמוקימו הרקב ירוזא לש םינוש םיטקפסא ונרקח הז

  .)deep learning( הקומע הדימלו תיטסיטטס הדימל ,יתורבתסה לודימ ןוגכ תוקינכטב שומיש ידי לע ,םינושו םיבר

 הטישה .)enhancer-promoter interactions( םדקמ-םצעמ ירשק תקסהל תושדח תויבושיח תוטיש רפסמ ונחתיפ

 ןיב תיביטקאה תוליעפב ההובג היצלרוק םיארמה םדקמ-םצעמ ירשק הזוח ,ינשה ראותה תזיתמ הבחרוהש ,הנושארה

 הנושארה הטישב וזחנש םירשקהמ ימ הזוח היינשה הטישה .םינוש םיאת לש לודג רפסמ ינפ לע םדקמה ןיבו םצעמה

 תוקפסמו תומדוק תוטישמ רתוי םיבוט םיעוציב תולעב תוטישה יתשש וניארה .םימייוסמ םיאת יגוסל םייפיצפס םניה

 תוזחל ןוכנ דציכ יבגל תונווגמ תולאש לע ונינע ,הקומע הדימלב תוקינכט תועצמאב ,ףוסבל .תושדח תויגולויב תונבות

 .תיטנגיפא הניחבמ םתוא רידגמ המו םיילאנויצקנופ )silencers( םיקיתשמ

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

רלקאס ילרבבו דנומייר ש"ע םיקייודמ םיעדמל הטלוקפה  
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