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Abstract
Motivation: Polygenic risk scores (PRSs) predict individuals' genetic risk of developing complex diseases. They summarize 
the effect of many variants discovered in genome-wide association studies (GWASs). However, to date, large GWASs 
exist primarily for the European population and the quality of PRS prediction declines when applied to other ethnicities. 
Genetic profiling of individuals in the discovery set (on which the GWAS was performed) and target set (on which the PRS 
is applied) is typically done by SNP arrays that genotype a fraction of common SNPs. Therefore, a key step in GWAS 
analysis and PRS calculation is imputing un-typed SNPs using a panel of fully sequenced individuals. The imputation 
results depend on the ethnic composition of the imputation panel. Imputing genotypes with a panel of individuals of the 
same ethnicity as the genotyped individuals typically improves imputation accuracy. However, there has been no 
systematic investigation into the influence of the ethnic composition of imputation panels on the accuracy of PRS 
predictions when applied to ethnic groups that differ from the population used in the GWAS.
Results: we estimated the effect of imputation of the target set on prediction accuracy of PRS when the discovery and the 
target sets come from different ethnic groups. We analyzed binary phenotypes on ethnically distinct sets from the UK 
Biobank and other resources. We generated ethnically homogenous panels, imputed the target sets, and generated PRSs. 
Then, we assessed the prediction accuracy obtained from each imputation panel. Our analysis indicates that using an 
imputation panel matched to the ethnicity of the target population yields only a marginal improvement and only under 
specific conditions. 
Contact: rshamir@tau.ac.il or ranel@tauex.tau.ac.il
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Polygenic risk scores (PRSs) play a prominent role in the vision of 
precision medicine, offering significant potential for enhancing healthcare 
outcomes. They can predict individuals' risk of developing a certain 
disease based on summary statistics of genome-wide association 
studies (GWASs). As ethnic groups differ in genetic structure, the set of 
individuals included in a GWAS, also called the discovery set, are usually 
from the same ethnicity. The PRS constructed from GWAS can then be 
used to calculate risk scores for another group of individuals, also called 
the target set. Ideally, the discovery and the target sets should come from 
the same ethnic group. The prediction accuracy of PRS decreases as the 

genetic distance between the discovery and the target set increases (Martin 
et al., 2019). At present, most GWASs have been compiled from the 
European (EUR) population (Martin et al., 2019), and applying the PRSs 
generated from them to non-EUR individuals has lower accuracy. 
Therefore, the health benefits that can be achieved using current PRS 
models are still not effectively applicable to most of the world's 
population. 
Genetic profiling of individuals in the discovery and target sets is usually 
obtained by SNP arrays that genotype a predefined subset of several 
hundreds of thousands of SNPs per individual. Nevertheless, additional 
information is often contained in millions of other SNPs that were not 
genotyped. Furthermore, discovery and target sets are often genotyped by 
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different arrays. Computationally calling non-genotyped SNPs is done 
using imputation, a family of methods that infer untyped SNPs using a 
set of fully-sequenced individuals for whom several millions of SNPs are 
called (Yun et al., 2009; Chen et al., 2020). That set of individuals is called 
the imputation panel. Imputation methods rely on the fact that 
chromosome recombination during evolution has generated genomic 
intervals within the human genome where proximal SNPs tend to be 
inherited together, a phenomenon called Linkage disequilibrium (LD). 
Imputation methods use the panel to complete untyped SNPs by assuming 
common LD structure between the individuals in the target (genotyped) 
and the panel (fully sequenced) sets (Howie et al., 2009). 
Several studies investigated properties that affect the accuracy of the 
imputation process, including genotyping platform (Hanks et al., 2022; 
Nelson et al., 2013), imputation panels (Hanks et al., 2022), imputation 
methods (Stahl et al., 2021) and imputation servers (Sengupta et al., 2023). 
The panels tested in these studies typically consist of predominantly EUR 
individuals (e.g., HRC (McCarthy et al., 2016)) or EUR mixed with other 
populations (e.g., 1000 Genomes (Auton et al., 2015), HapMap (Rotimi et 
al., 2007) and TOPMed (Taliun et al., 2021)). Therefore, properties of the 
genetic structure (e.g., LD structure and minor allele frequency (MAF)) 
might differ between these panels and non-EUR populations. Indeed, such 
panels typically yield lower imputation accuracy on non-EUR population 
(Cahoon et al., 2023). Other studies showed that using an ethnic-matched 
imputation panel improves the accuracy of completing untyped SNPs in 
specific populations, including Ashkenazi Jews (Lencz et al., 2018), 
Africans (Sengupta et al., 2023), East Asians (Bai et al., 2020) and South 
Asians (Ahmad et al., 2017). Nevertheless, accurately completing untyped 
SNPs does not necessarily imply better risk prediction with PRS. 
Moreover, rare SNPs (<1% MAF) are more sensitive to the choice of the 
imputation panel (Lencz et al., 2018; Shi et al., 2019), but PRSs rely 
mainly on common SNPs. While some works examined factors in the 
imputation process that impact the quality of PRS, such as the genotyping 
platform, phasing, and imputation methods (Thanh Nguyen et al., 2022; 
Chen et al., 2020), there has been no systematic assessment of how 
different ethnic compositions of the imputation panel affect the accuracy 
of PRS risk prediction.
In this study, we estimated the effect of the ethnicities of the imputation 
panel and the target set on the prediction accuracy of PRS in cases where 
the discovery and the target sets come from different ethnic groups. We 
analyzed 12 binary phenotypes and three populations from the UK 
Biobank (UKB) (Europeans, South-Asian, and Africans). We generated 
imputation panels from several ethnic groups, imputed the target set 
according to each panel, used PRS to compute individuals’ risk scores, 
and compared the performance of risk prediction using each panel.

2 Results
We started by evaluating the quality of imputation as a function of the 
ethnic composition of the imputation panel and the imputed individuals. 
For a given imputation panel and a test set of fully sequenced individuals, 
we masked all SNPs in the test set except those included in the UKB 
genotyping chip (n=784,849) (Bahcall, 2018). Then, we imputed the 
masked SNPs using the imputation panel, and computed the fraction of 
the SNPs that were correctly imputed. We call that fraction the 
imputation accuracy.
To generate imputation panels for different ethnicities, we used the 1000 
Genomes Project dataset (Auton et al., 2015), which contains sequences 
of ~2500 individuals annotated by their country (subpopulation) and 
continent (super-population) of origin. For each super-population, we took 
five groups of 70 individuals from each of its five subpopulations to 

generate an imputation panel (n=350). Using these sets, we generated an 
imputation panel for each super-population: EUR, East Asians (EAS), 
Africans (AFR) and South Asians (SAS). 
Similarly, for each super-population, we generated a test set by collecting 
100 individuals from it, 20 from each subpopulation (Table S1). In 
addition, we generated another target set of two African subpopulations 
from the 1000 Genomes that do not appear in the African imputation panel 
(n=145; AFR2; Table S1). The target sets and the imputation panels were 
disjoint. After masking SNPs that do not appear on the UKB chip, we 
imputed each target set using the different imputation panels we 
generated, and calculated the imputation accuracy. This test was 
conducted for each autosomal chromosome separately.
Table 1 shows the average imputation accuracy on different populations 
when using imputation panels of different ethnicities. The imputation 
accuracy deteriorates as the genetic distance ( ; calculated using (Bhatia 𝐹𝑠𝑡

et al., 2013); Table 2) between the ethnic groups increases. The genetic 
distance can also be visualized using a PCA of the SNPs (Figure 1). For 
example, the closest super-population to EUR is SAS (  0.03), then 𝐹𝑠𝑡 =
EAS (0.1), and the farthest is AFR (0.12). Accordingly, imputation 
accuracy obtained on the EUR test set was 0.99, 0.982, 0.957 and 0.947 
using EUR, SAS, EAS, and AFR imputation panels, respectively. The 
agreement between distance and imputation accuracy also holds for other 
super-populations and on each chromosome individually (Table S2).

Table 1. Accuracy of imputing different populations using panels from different 
ethnicities. Columns: The imputed population. Rows: The ethnicity of the imputation 
panel. The numbers are the accuracy averaged across chromosomes. (Best 
performing panel for each test set is in bold)

EUR EAS SAS AFR AFR2
EUR 0.989 0.960 0.969 0.817 0.822

EAS 0.955 0.987 0.960 0.808 0.813

SAS 0.981 0.971 0.984 0.809 0.815

AFR 0.946 0.920 0.926 0.940 0.930

Table 2. Genetic distance (Hudson's ) between ethnic groups. 𝐹𝑆𝑇

AFR SAS EAS EUR AJ
AFR - 0.12 0.15 0.12 0.12

SAS - - 0.06 0.03 0.04

EAS - - - 0.1 0.11

EUR - - - - 0.01

AJ - - - - -

Figure 1.  Principal Component Analysis on genotypes of four super-populations 
from the 1000 Genomes project (n=2157, Bergström et al., 2020) and Ashkenazi Jews 
(n=128 (Carmi et al., 2014)), demonstrating genetic distances between populations 
(EUR: European; EAS: East Asians; SAS: South Asians; AFR: Africans; AJ: 
Ashkenazi Jews)  
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Two additional observations emerged from this analysis: (1) The highest 
accuracy in African individuals - obtained using the AFR imputation panel 
- was substantially lower than the accuracy in other ethnic groups. For 
example, the accuracy obtained in the AFR and AFR2 sets was 0.94 and 
0.93, respectively, whereas for the EUR, EAS, and SAS sets, when using 
ethnically matched imputation panels, the accuracy was 0.989, 0.987 and 
0.984, respectively. (2) An AFR imputation panel can be used for 
imputing EUR genotypes with a limited decrease in accuracy (0.989 vs. 
0.946). However, the decrease in the other direction is much larger: using 
a non-AFR panel for imputing AFR individuals causes a large drop in the 
imputation accuracy (e.g., 0.94 using the AFR panel vs. 0.817 using the 
EUR panel). Similar results have been reported in previous studies (Zhang 
et al., 2011). These findings reflect the more complex genetic structure of 
the AFR population compared to non-AFR populations.
Next, to include in our analyses a population that is more closely related 
to EUR, we added a cohort of fully sequenced Ashkenazi Jewish (AJ) 
individuals from (Carmi et al., 2014), and conducted a similar analysis on 
this ethnic group. We generated an AJ imputation panel from 100 
individuals and tested the imputation accuracy on a disjoint set of 27 
individuals from the same study. In addition, we generated three 
imputation panels, each comprising 100 individuals from each of the EUR, 
EAS AFR super-populations from the 1000 Genomes and used them to 
impute the same 27 AJ genotypes. Generally, the results of this analysis 
(Tables 3, S3) were consistent with those presented above. The only 
exception was that the AFR imputation panel did slightly better than the 
EAS imputation panel. Notably, both populations are very far from the AJ 
(  and  for EAS and AFR, respectively). 𝐹𝑠𝑡 = 0.11  0.12
The analyses above suggest that imputing genotypes using an ethnic-
matched panel is more accurate. Next, we sought to examine the effect of 
the imputation panel on the performance of PRS prediction when applied 
to target sets of different ethnicities than the discovery (GWAS) 
population. The outline of the evaluation pipeline is depicted in Figure 2. 

We used UKB data and focused on EUR (n=472,694) as a discovery set, 
with SAS and AFR as target sets (n=9,881, n=8,060, respectively). Twelve 
diseases that had sufficient representation of SAS and AFR cases were 
included in our analysis (Table S4; Methods). For each disease, we 
generated GWAS from the discovery set, created a PRS and tested its 
prediction quality on the target sets imputed using three imputation panels. 
Here and throughout the rest of our study, each imputation panel was 
generated using all the available samples from the relevant super-
population in the 1000 Genomes project (Figure 2A; Methods).

Table 3. Imputation accuracy on an Ashkenazi Jewish (AJ) test set using panels from 
different ethnicities, and the genetic distance (Hudson's ) between AJ to the other 𝐹𝑆𝑇

ethnic groups. 
Imputation accuracy Genetic distance

AJ 0.956 -

EUR 0.951 0.01

EAS 0.917 0.11

AFR 0.928 0.12

We applied four methods for PRS construction - P+T with discovery-set 
LD, P+T with target-set LD, Lassosum, and LDpred2 (Methods) - and 
evaluated PRS performance using a nested cross-validation scheme 
(Figure 2B-C). Since LDpred2 is computationally intensive, we executed 
it with a lighter version of our pipeline (Methods). We calculated the odds 
ratio per 1 unit of standard deviation (OR per 1SD) to measure the quality 
of the PRS prediction. We also evaluated the performance of PRSs that 
were built only on SNPs directly typed by the SNP array (i.e., without 
imputed SNPs). Lassosum and LDpred2 obtained the highest results, 
although some of LDpred2 executions did not terminate successfully 
(Methods). Therefore, below we mainly focus on results obtained using 
Lassosum.

Figure 2. The procedure for evaluating the effect of the imputation panel on PRS prediction performance. (A) High-level of the PRS generation process. The red box shows the possible 
options of the imputation panel. (B) Detailed description of our PRS pipeline. Parts in green are fixed throughout the analysis, while those in red are affected by the choice of the imputation 
panel. (C) The nested cross-validation (CV) process. Briefly, the imputed target set is split randomly into six equal sized sets. One set is held out (yellow) and the other five (red) are used 
to perform a standard 5-fold CV, in which four out of five parts are used to derive PRS models with different predefined sets of hyper-parameters (light red), and then the resulting models 
are applied on the 5th part. After iterating over the five combinations of training and test sets, the best performing hyper-parameter set is chosen. The resulting PRS model is used on the 
held-out set. The entire process is repeated six times, with the different held-out sets, and the average performance is computed (yellow).
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In the first test, we imputed each individual from the SAS and AFR 
populations with a target-matched imputation panel, that is, SAS (AFR) 
individuals were imputed using the SAS (AFR) imputation panel.  Overall, 
significantly higher OR per 1SD values were obtained with Lassosum in 
target-matched imputed sets compared to the EUR imputed set and the non-
imputed set (Figure 3A). Next, we looked at the same results when the 
individuals are split into separate target sets according to their ethnicity. 
Here too, a higher average OR per 1SD was observed on both SAS and AFR 
target sets, but only the effect observed for the SAS population reached 
statistical significance (Figure 3B, C). Most of the results obtained using 
other PRS methods did not consistently show improvement for the target-
matched imputation panel (Figures S1, S2). 
To reaffirm these results, we used publicly available EUR-predominant 
GWASs that were not constructed using the UKB data to generate PRS 
models. We chose five traits that had a sufficient number of cases in the 
UKB SAS and AFR cohorts (see Methods). Using the same pipeline as 
above, we generated PRS models from these public GWASs and calculated 
their performance on the SAS and AFR target sets from the UKB, imputed 
with different ethnic panels. The results are summarized in Table 4. For 
SAS, only one PRS method obtained higher OR per 1SD using the target-
matched imputation panel than those obtained using the EUR imputation 
panel. Surprisingly, for AFR target sets, the PRSs calculated using P+T 
(with both LD options) were the highest in non-imputed genotypes. Overall, 
the differences between the imputation panel alternatives were marginal. As 
in our previous analysis, the results for AFR population are more complex.
Next, we examined the performance of PRS for Schizophrenia (SCZ), built 
from EUR SCZ GWAS, in two non-UKB target sets: Ashkenazi Jews and 
Africans (see Methods; Table S5). We imputed these target sets using three 
imputation panels from different ethnic groups: EUR, EAS, and AFR.  Here 
too, we ran the nested cross-validation scheme to calculate OR per 1SD for 
each PRS model (see Methods). The results are shown in Table 5. In five 
out of six cases, using target-matched imputation panels yielded the highest 
or second best PRS performance, with a marginal gap of  0.02. Here too, ≤
the differences in PRS performance were not statistically significant. 
Next, we tested the effect of imputation panel using non-EUR PRSs. We 
ran our evaluation pipeline with nine EAS GWASs from (Sakaue et al., 
2021), each matching one of the 12 traits we investigated in the UKB target 
sets (Figure S3, Table S4). In addition, we performed a similar test with 
EAS SCZ GWAS (Lam et al., 2019) on the two non-UKB SCZ target sets 
described above (AJ and AFR) (Table S6). In all the analyses made using 
EAS GWASs, we could not identify an imputation panel that systematically 
yields better PRS performance. Notably, the PRS performance obtained 

with EAS-GWAS were generally lower compared to those of the UKB 
GWASs. This is probably due to the larger genetic distance between the 
discovery and the target sets (Table 2), and to the smaller EAS discovery 
set. This supports our expectation that the potential advantage of the target-
matched imputation panel is undermined when the PRS performance is 
poor.

Table 4. Quality of PRS models on the UKB SAS and AFR cohorts, computed using 
different imputation panels and PRS methods. PRSs were built using EUR-
predominant GWASs (n=5) that were not computed with UKB data. P+T: Pruning and 
thresholding. For P+T, we tested the performance using both EUR LD and the target 
set LD.

Target set PRS method Imputation panel OR per 1SD

European 1.41±0.272

No imputation 1.38±0.258Lassosum

South-Asian 1.41±0.275

European 1.38±0.219

No imputation 1.39±0.265P+T (target set LD)

South-Asian 1.4±0.283

European 1.31±0.164

No imputation 1.27±0.145

South-Asian

P+T (EUR LD)

South-Asian 1.31±0.149

African 1.27±0.15

European 1.25±0.132Lassosum

No imputation 1.26±0.117

African 1.25±0.192

European 1.2±0.121P+T (target set LD)

No imputation 1.25±0.177

African 1.17±0.137

European 1.17±0.1

African

P+T (EUR LD)

No imputation 1.18±0.097

Last, we explored the effect of imputation panels that contain homogenous 
subpopulations. We imputed the SCZ AJ target set from (Lencz et al., 
2013) using five imputation panels, each compiled from a different EUR 
subpopulation from the 1000 Genomes project (Italy, Spain, Finland, UK, 
and the US), and another imputation panel generated from 100 AJ 
individuals. As before, ORs per 1SD were calculated according to our 
nested cross-validation scheme. Here too, PRS performance with different 
imputation panels was comparable (Figure 4), likely since the genetic 
distance between the subpopulations is low. 

Figure 3. The effect of ethnic composition of the imputation panel on the performance of PRS constructed by the Lassosum method when applied to a target set of a different ethnicity than 
the GWAS. The graphs show OR per 1SD of 12 traits. PRSs were built from GWASs computed on UKB EUR individuals. Results are shown for (A) both SAS and AFR (B) SAS only (C) 
AFR only. The p-values above each boxplot compare the results with the imputation panel listed below it to the results with the imputation panel that matches the population of the target set. 
P-values were calculated using one-tailed Wilcoxon test. Red triangles are the averages.
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3 Discussion
In the emerging era of precision medicine, health disparity has become a 
major concern. As most available genotypes are predominantly from 
European population, clinically relevant PRS models are available mainly 
for that population. Often, many SNPs pertinent to the PRS are missing 
from the target genotypes. Hence, the imputation process, in which 
untyped SNPs are completed, could potentially affect the PRS prediction 
performance. 
In this study, we first reconfirmed that imputing genotypes using an 
ethnic-matched panel is more accurate. However, more accurate SNP 
imputation does not necessarily imply better risk prediction with PRS. 
PRS performance deteriorates as the genetic distance between the 
discovery and the target sets increases (Martin et al., 2019). Therefore, the 
optimal imputation panel for accurately completing missing SNPs may not 
necessarily give superior PRS performance when the discovery and the 
target sets come from different populations. 
When utilizing European GWASs derived from UKB data, we observed 
improved PRS performance primarily when the target set was imputed 
using a panel from the same ethnic background. This general trend reached 
statistical significance when tested using Lassosum on AFR and SAS 
target sets combined, as well as on the SAS target set separately (Figure 
3). 
While matching the imputation panel to the target population tended to 
boost PRS performance, the improvement was limited. The statistically 
significant increase in the OR per 1SD in Lassosum was less than 0.1 on 
average, suggesting that even when a target-matched imputation panel 
significantly improves the PRS performance, the magnitude of this effect 
is moderate. Moreover, when P+T PRS methods were tested, the effect 
vanished (Figure S1). Notably, the P+T methods were consistently inferior 
to Lassosum, suggesting that the benefit of using a target-matched 
imputation panel is apparent when using more advanced PRS methods. 
The improvement obtained by using target-matched imputation panel was 
more noticeable on the SAS population than the AFR one. We suspect that 
the substantial genetic distance between the EUR population, from which 
the GWAS was constructed, and the AFR population is the reason why 
accurately completing missing SNPs did not lead to a significant 
improvement in EUR-based PRS performance on AFR population. 
Nevertheless, the superiority of target-matched imputation panel 
diminished in EUR-predominant non-UKB GWASs (Table 4) and non-
UKB target sets (Table 5), and dissipated completely in EAS GWASs 
(Figure S3, Table S6) and subpopulation-specific imputation panels 
(Figure 4). These results suggest that the potential of target matched 
imputation panel to improve PRS performance might be hindered by many 
factors, such as the genetic distance between the discovery and the target 
sets, different genotyping platforms, low-powered GWAS, and modest 
genetic variation among the alternative imputation panels. As was 

previously described (Zhang et al., 2011; Shi et al., 2019), increasing the 
size of the imputation panel beyond 100-200 also did not lead to improved 
PRS performance (Figure S4). 
The UKB contains approximately 8,000 and 10,000 AFR and SAS 
participants, respectively. We analyzed only twelve diseases that had at 
least 200 cases in either the AFR or SAS cohorts. This limited our ability 
to reach statistical significance in that analysis. Future studies can focus 
on continuous traits and thus alleviate this problem.
To date, reliable PRSs have been developed mostly for EUR individuals. 
A major effort is currently made to conduct GWASs for non-EUR 
populations in order to produce clinically relevant PRSs for those 
ethnicities. This requires collecting large cohorts of cases and controls for 
each phenotype and each non-EUR population, which is expensive, 
logistically complex, and sometimes not feasible for small minorities. Our 
findings point out that when the target population is moderately close to 
the EUR population, using an ethnically matched imputation panel has the 
potential to enhance the prediction performance of European-based PRSs.

Table 5. OR per 1SD of European Schizophrenia PRS methods with three imputation 
panels on non-UKB target sets. Note that for AJ, the EUR imputation panel is the 
one considered ‘target-matched’.  

Imputation panel Method AFR target set AJ SCZ target set

AFR 1.28±0.048 2.09±0.06

EAS 1.46±0.108 2.06±0.086

EUR

P+T (EUR LD)

1.5±0.114 2.07±0.074

AFR 1.6±0.143 2.11±0.088

EAS 1.54±0.129 2.05±0.06

EUR

P+T (Target LD)

1.34±0.097 2.2±0.093

AFR 1.6±0.126 2.51±0.086

EAS 1.50±0.163 2.47±0.089

EUR

Lassosum

1.46±0.119 2.50±0.072

4 Methods
Target sets
We generated two non-EUR super-population target sets from the UKB: 
For Africans and South-Asians. 12 traits were tested on those target sets 
(Table S4). In addition, we used two non-UKB SCZ target sets obtained 
from dbGaP: (1) SCZ Ashkenazi Jews from (Lencz et al., 2013). (2) SCZ 
Africans from GAIN (Shi et al., 2009) (Table S5).  
Building imputation panels for UKB and GAIN genotypes 
We used SHAPEIT2 (Delaneau et al., 2011) to generate imputation panels 
for four super-populations: EUR (n=503), SAS (n=489), EAS (n=504), 
and AFR (n=661). Each panel comprised all the individuals from its 
population in the 1000 Genomes project. 

Figure 4. Performance of the EUR-SCZ PRS on the AJ target set imputed using imputation panels derived from different EUR subpopulations. OR per 1SD was computed by several PRS methods 
using different imputation panels. Dots represent the average value obtained using nested CV, and error bars indicate ±1 sem.
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Building imputation panels for analyses involving AJ genotypes
To build an imputation panel for AJ, we used WGS data of 100 AJ 
individuals from (Carmi et al., 2014). In analyses that compared the 
performance of AJ imputation panel to other panels (Figure 4, Tables 5, 
S6), we generated imputation panels comprising only SNPs that were 
found in both the AJ dataset and 1000 Genomes. To do so, we used 
BCFTOOLS (Danecek et al., 2021) to annotate the SNP in the AJ dataset 
with SNP ids (rsid) from the 1000 Genomes dataset. In this process, 
8,637,756 SNPs in the AJ dataset were assigned with rsid. In all 
imputation panels used for imputing the AJ target set, we kept only SNPs 
were shared between the AJ and 1000 Genomes datasets. Then, we used 
SHAPEIT2 (Delaneau et al., 2011) to phase the remaining SNPs in the AJ 
dataset.  Finally, we used SHAPEIT2 to generate imputation panels. 
Genotype imputation
Using the imputation panels we generated (see above), we imputed 
genotypes from the UKB, GAIN (O’Donovan et al., 2008), and the SCZ-
AJ datasets (Lencz et al., 2013). Imputation was done using IMPUTE2 
(Howie et al., 2011). 
Nested CV scheme
We applied a variant of the nested 6X5 CV scheme described in (Levi et 
al., 2023).  Briefly, we split each target set cohort into six sets. Next, we 
held out one set and used the other five sets to perform a standard 5-fold 
CV, in which four out of five parts are used to derive PRS models with 
different predefined sets of hyper-parameters, and then the resulting 
models are applied on the 5th part. After iterating over the five 
combinations of training and test sets, we chose the best performing hyper-
parameter set (see below). Finally, we applied the resulting PRS model on 
the held-out set. We repeated this entire process six times, each with a 
different held out set and took the average. Due to its computational 
demands, LDpred2 was assessed in the UKB analysis using a 3X2 nested 
cross-validation. 
Criteria for choosing an optimal PRS model
For each PRS method, we tested the performance with a predefined set of 
hyper-parameters (see below). We used the same criteria as in (Levi et al., 
2023). Briefly, we ranked runs with different hyper-parameters using two 
metrics: (1) OR per 1SD. Here, the scores were standardized w.r.t. the 
controls in the target set. (2) top-10% OR relative to the middle quintile. 
We combined these rankings by taking their sum and broke ties using OR 
per 1SD, our main metric. 
PRS methods
We used four PRS methods: (1) P+T (EUR LD): Using PLINK, we 
clumped the GWAS results according to LD in the EUR population, and 
then we filtered the remaining SNPs based on a significance threshold. (2) 
P+T (Target LD): Here, when applying LD clumping in PLINK, we used 
LD inferred from the training set. The rest is similar to the previous 
method. (3) Lassosum: we generated a PRS model using a reference panel 
calculated from genotype data (i.e., the training set). (4) LDPred2 (grid 
mode). We supplied LDpred2 with a training set that comes from the same 
population as the target set. As LDPred2 is computationally intensive, we 
executed LDpred2 only the evaluation in EUR UKB (Figure S2) and the 
subpopulation imputation panel analysis (Figure 4). The EUR UKB 
evaluation was executed with a less computationally intensive version of 
our pipeline (see above). Since not all LDpred2 executions completed 
successfully, we included only traits for which we were able to infer 
LDpreds2 performance in the three imputation panel alternatives (SAS 
(n=6); Table S4).
Generating GWAS summary statistics from the UKB
We kept only SNPs with MAF≥1%, HWE P-value ≤ 1e-6 and missing rate 
≤10%. In addition, we kept only samples where less than 10% of SNPs 

present in the set were missing. We filtered out ambiguous and duplicated 
alleles. We built EUR GWAS for each binary phenotype encoded in data-
field 20002 (non-cancer illness code). To guarantee the GWASs are well-
powered, we considered only phenotypes with >7500 cases (Table S3). In 
addition, to avoid high error estimates in our performance evaluations, we 
filtered out GWASs where the number of cases did not exceed 200 in 
neither AFR nor SAS target sets (Table S3). A total of 12 phenotypes met 
these conditions. For each phenotype, we generated GWAS summary 
statistics by applying PLINK's --assoc command to the imputed genotypes 
of the EUR population provided by the UKB. 
GWAS summary statistics from public datasets
For the analysis of non-UKB EUR GWAS (Table 4), we used publicly 
available EUR-predominant GWAS for five traits that have at least 200 
AFR and SAS cases in UKB: Systolic Blood Pressure (BP) (Evangelou et 
al., 2018), Cholesterol levels (LDL) (Willer et al., 2013) , Type 2 Diabetes 
(Mahajan et al., 2018), Gastric Reflux (An et al., 2019), and Major 
Depression (Howard et al., 2019). For the analysis of SCZ PRS on non-
UKB target sets (Table 5, Figure 3), we used a leave-one-out version of 
the SCZ GWAS from (Ripke et al., 2014), where individuals presented in 
the AJ target set were excluded. For every public GWAS, we kept only 
SNPs with MAF≥1%.
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