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Abstract 

The availability of electronic medical records (EMR) data has grown dramatically in recent years, 

and clustering methods are often applied to them for a variety of purposes, including finding 

unknown subtypes of diseases. The abundance and redundancy of information in EMR data 

raises the need to identify and rank the features that are most relevant for clustering.  

Here we propose FRIGATE, an ensemble feature ranking algorithm for clustering, which uses the 

concepts of Shapley value and Multiplicative Weights. FRIGATE derives the importance of 

features from multiple clustering solutions on sub-groups of features. For each clustering solution 

a small group of features is ranked in a Shapley-like framework, and multiplicative weights are 

applied to limit the randomness of their choice. FRIGATE outperforms previously suggested 

ensemble ranking algorithms, both in solution quality and in speed.  
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1. Introduction  

In the past two decades, medical systems around the world underwent a major digitization 

revolution [1]. As a result, most of the personal medical information is now stored electronically, 

transforming the way medical research is conducted. Although medical data sharing has been 

slow [2], the number of clinical data sets available to researchers is growing [3]. Such resources 

include data sets that span a large range of clinical data types, such as MIMIC [4], [5], and some 

even offer a combination of genomic and medical information, e.g., the UK BioBank [6]. 

Medical data have some unique challenging characteristics. Firstly, some of them are of great 

magnitude. For example, in MIMIC-III alone there is information of 46,520 patients, with 753 

different lab tests and 14567 different ICD-9 codes [4] (each test or code is called a feature). 

Another challenge is the data incompleteness. Medical data typically have high percentage of 

missing values even for frequently taken measurements [7].  

A growing number of machine-learning studies attempted to respond to these challenges on 

medical data [8] and developed computational tools dedicated to analyzing them [9], [10]. One 

type of such machine-learning models is clustering, an unsupervised approach, that is used for 

the discovery of new subgroups of known diseases [11]–[13]. Here patients are partitioned into 

subgroups based on their feature similarity. Our research is focused on this type of problems. 

A key challenge in medical research is the interpretability of the results. When finding new clusters 

in the data, we want to understand the most important features that distinguish them, in order to 

assign a clinical meaning to each cluster and obtain clinical insights. When dealing with large data 

sets with possibly thousands of features, this is challenging. Also, running the algorithms on huge 

data sets is computationally expensive and even prohibitive. For these reasons, feature selection 

algorithms, which seek the most important features for the clustering task, were proposed [14]. 

Our goal here is the development of such an algorithm that ranks all the features according to 

their importance to the clustering task, in a way that specifically fits medical data.  
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Many medical databases contain a large number of features. One way to deal with the large 

number is dimension reduction [15], but such procedures obscure the effect of individual features, 

which is crucial for medical insights. Another option is to use feature selection algorithms, which 

choose a subset of features that will create a sub matrix with “good” clusters. There are several 

feature selection methods for clustering algorithms [14], [16]. In recent years several ensemble 

feature ranking algorithms were suggested, which create an ensemble of clustering solutions on 

subsets of features and then use some metric to evaluate the contribution of each feature 

[17].These include FRMV [18] , FRCM [19], and FRSD [17]. These methods were shown to 

perform better than the traditional filter and wrapper methods, including on medical data sets [17]–

[19]. Ensemble methods can also be used for choosing a subset of important features, in addition 

to ranking the full set of features [20]. Here we develop a new algorithm within the ensemble 

ranking framework. As we aim to work with medical information, we prefer to lose as little 

information as possible and thus rank the full set of features.  

We introduce a new algorithm called FRIGATE (Feature Ranking In clustering using GAme 

ThEory), which uses two concepts from game theory. The first is motivated by Shapley value, a 

measure of the contribution of every player to the group in a cooperative game [21], [22]. In our 

case the players are the features and the “game” is clustering. Shapley values are widely used 

for feature evaluation in classification models [22] and so far were not used in clustering for feature 

selection or ranking. The second is Multiplicative Weights (MW) [23], a framework to improve the 

selection of players by iteratively selecting the players from a distribution based on their 

performance so far. In FRIGATE we use MW to guide the choice of features for each clustering 

solution and thus reduce the chance to choose features that proved to be insignificant. All 

previously presented ensemble algorithms choose subsets of features at random. To the best of 

our knowledge this is the first time that MW is adapted to feature selection for clustering.  
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The paper is organized as follows: we first present relevant background on clustering methods, 

ensemble feature ranking for clustering and relevant game theory concepts. Next, in the Methods 

section, we present the FRIGATE algorithm, describe the construction of simulated data and 

demonstrate a run of FRIGATE. In the Results section we measure the performance of FRIGATE 

and the extant ensemble algorithms both on simulated and on 11 different real genomics and 

EMR datasets. We conclude with a discussion of the results.  

2. Background  

In this chapter we describe the computational methods that will be used in the paper. 

A fundamental, broadly used clustering algorithm for data with real-valued features is k-means 

[24]. Given the number of clusters 𝑘, it selects 𝑘 points in 𝑅𝑑 called centroids, assigns samples 

to the closest centroid and recomputes the new centroid of each resulting set. The process is 

iterated till convergence.   

k-modes [25] is a variant of k-means for categorical data, namely, where feature values are 

discrete (two or more) categories. The Hamming distance is used as the distance metric instead 

of Euclidean distance. Here we used the k-modes implementation in [26]. k-prototypes [27] is an 

algorithm that clusters mixed data, i.e. data with both continuous and categorical features. The 

distance metric is:  

                                        𝑑(𝑥, 𝑦) =  ∑ (𝑥𝑖 − 𝑦𝑖)2𝑝
𝑖=1 + 𝛾 ∑ 𝛿(𝑥𝑖, 𝑦𝑖)𝑚

𝑖=𝑝+1                                   (1) 

Where 𝑥1, … 𝑥𝑝  are numerical variables, 𝑥𝑝+1, … 𝑥𝑚  are categorical variables, and 𝛿  is the 

Hamming distance function. The 𝛾 factor determines the relative contribution of the categorical 

features in comparison to the continuous features. k-prototypes was reported as one of the best 

performers in a recent benchmark of mixed-data clustering algorithms [28].  Here we used a k-

prototype implementation in [26]. 
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We now briefly describe extant ensemble feature ranking algorithms for clustering. In the FRMV 

algorithm [18], in each iteration of the algorithm a clustering solution is obtained for a subset of 

features, which are ranked based on some relevance measure (e.g. linear correlation). The final 

feature ranking is done according to the average rank. FRCM [19] was originally designed for 

genomic data. It does not require 𝑘 as an input. For each run of k-means on a subset of features, 

𝑘 is selected uniformly at random from a prescribed range. Features are ranked based on a 

measure similar to Adjusted Rand Index [29] which measures the similarity between a consensus 

matrix for the clustering solutions, and a matrix for each feature, representing distances between 

pairs of samples for that feature. Finally, in the FRSD algorithm [17], in each iteration the algorithm 

randomly chooses a subset of the features, produces a clustering solution using k-means and 

ranks the selected features based on the change in the silhouette score [30] after shuffling the 

values of the feature. A prescribed range of 𝑘 values is tested and the final score is based on the 

average rank of the iterations per 𝑘 and over all values of 𝑘. Since no implementations were 

provided for the three algorithms, we implemented them as described in [17]–[19]. For FRMV we 

used the linear correlation as the relevance measure. For FRSD we used silhouette as 

implemented in Scikit learn [31]. In all cases we used k-means for clustering.  

Shapley Values - In cooperative game theory, a set 𝑁 of players can form coalitions. Each 

coalition 𝑆 ⊂ 𝑁 has a value 𝑔(𝑆). According to the Shapley theory [21] the contribution of player 

𝑖 to group 𝑆 ∪ {𝑖} is defined as:   

                                                            𝑔(𝑆 ∪ {𝑖}) − 𝑔(𝑆)                                                         (2) 

and the Shapley value of player 𝑖 is a weighted average of its contributions over all possible 𝑆s, 

i.e.: 

                                                   ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!𝑆⊆𝑁\{𝑖} [𝑔(𝑆 ∪ {𝑖}) − 𝑔(𝑆)]                                   (3)  
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This value is widely used in supervised learning to measure the contribution of a feature to a 

prediction model, where for efficiency reasons it is usually evaluated using random permutations 

instead of enumerating all possible groups 𝑆 [22]. To the best of our knowledge, Shapley values 

were not used to date in feature selection for clustering.  

Multiplicative Weights - Multiplicative Weights (MW) is an algorithmic update method used in 

game theory and algorithm design. The motivation of MW [23] is to iteratively improve the 

decisions one makes by gradually favoring decisions that were proven to be right so far. In our 

case the decisions are the features selected and we use the Hedge update rule that was 

suggested by Arora et al. [23]: 

                                                       𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

∙ 𝑒𝑥𝑝(−𝜂𝑚𝑖
𝑡)                                                (4) 

Where 𝑤𝑖
𝑡 is the weight of feature 𝑖 at the 𝑡-th iteration, 𝜂 ≤ 1 is a constant parameter and 𝑚𝑖

𝑡 is 

the cost of feature 𝑖 at iteration 𝑡. 𝑚𝑖
𝑡 is a value in the range [−1,1] that reflects how good decision 

𝑖 was in iteration 𝑡, where higher positive values correspond to worse decisions and negative 

values correspond to good decisions that warrant an award instead of a cost. A common practice, 

also used in our implementation, is to use non-negative values only.  

3. Methods 

3.1 The FRIGATE algorithm 

FRIGATE is a new ensemble feature ranking algorithm, which uses the Shapley value concept to 

find the most valuable features for clustering based on multiple runs of k-means (or k-

prototypes/k-modes) algorithm.  
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To use the Shapley values in our context, the players are the features. We assume the number 

of clusters 𝑘 is given, and use the total distance of samples to their cluster centroids as the 

objective function 𝑔: 

                                                            𝑔(𝑆) =  ∑ ∑ 𝑑𝑆 (𝑥, 𝑦𝑗)𝑥𝜖𝐶𝑗

𝑘
𝑗=1                                         (5)  

Here 𝑆 is a set of features, 𝑘 is the number of clusters, 𝐶𝑗 is the set of samples included in cluster 

𝑗 and 𝑦𝑗 is the centroid of cluster 𝑗. 𝑑𝑆 is the distance function on the sample vectors restricted to 

the coordinates in 𝑆. We call 𝑔(𝑆) the solution score.  

𝑑𝑆 and the clustering algorithm that we use will depend on the data types in 𝑆. If all the features 

are continuous then we use k-means for clustering and the Euclidean distance. When we have a 

mixture of categorical and continuous features, we will use k-prototype for clustering, and the 

corresponding distance function (Equation 1). If we have only categorical features, k-modes is 

used for clustering with 𝑑 as the Hamming distance. We used k-means as implemented in Scikit 

learn [31] with 100 k-means++ initializations in each run.  

Algorithm 1 presents the procedure for continuous features. In iteration 𝑡, the algorithm selects at 

random a subset of features and performs k-means on the corresponding submatrix 𝐴(𝑡). Once a 

solution has been obtained, we calculate the contribution of feature 𝑖 as the difference between 

that solution’s score and the score obtained by the same clustering on the submatrix 𝐴(𝑡) in which 

the values of feature 𝑖  were randomly shuffled among the samples, keeping the rest unchanged. 

For the final ranking we use the average scores of the features.  
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Algorithm 1: FRIGATE 

 Input: 𝑨 - 𝑚x𝑛  matrix of 𝑚 samples and 𝑛 features; 𝒌 - number of clusters; 𝑻 - 

number of iterations; 𝒇 - fraction of features to use in each iteration  

 Output: 𝑹 – list of the 𝑚 features ordered by importance for clustering  

1 𝑠𝑐𝑜𝑟𝑒𝑠← array of length 𝑛 for keeping score of each feature, initialized to 0s 

2 𝑐𝑜𝑢𝑛𝑡𝑠← array of length 𝑛 for counting the times each feature is selected, initialized 

to 0s 

3 for 𝑡 ←1 to 𝑇 

4  ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ randomly chosen features 

5  𝐴(𝑡) ← a matrix of size 𝑚x𝑞 with columns corresponding to ℎ 

6  Perform k-means on 𝐴(𝑡)  

7  𝐼 ← labels of the clustering solution 

8  𝑔(ℎ)←solution score of 𝐴(𝑡) and 𝐼 

9  for 𝑣 in ℎ 

10   𝑣̂ ← Shuffled version of 𝑣  

11   𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) except having 𝑣̂ instead of 𝑣 

12   𝑔𝑣← solution score of 𝐴𝑣
(𝑡)

  and 𝐼 

13   𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  ←  𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  + (𝑔𝑣 − 𝑔(ℎ))   

14   𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  ←  𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  + 1   

15  end    

16 end     

17 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑠𝑐𝑜𝑟𝑒𝑠/𝑐𝑜𝑢𝑛𝑡𝑠 

18 return the features sorted in decreasing order of scores   

 

Note that FRSD can also be seen as a type of a Shapley-like algorithm with a function 𝑔 that uses 

the silhouette. However, a main difference is that FRIGATE does not rank the features on every 

iteration and accumulates the ranks for the final score, as in FRSD and FRMV, but instead 

summarizes the raw scores. That way poor clustering solutions that are based on non-informative 

features will have large 𝑔(ℎ) values (line 8 in Algorithm 1) as well as large 𝑔𝑣 values (line 12). 

This will limit the ability of these features to receive high scores, as they are calculated by 

subtracting the distance after shuffling the values of a feature from the original distance (line 13 

in Algorithm 1). Thanks to these properties of 𝑔(ℎ) and 𝑔𝑣, we do not need to use an additional 

factor, as FRSD does with silhouette, to assess the quality of the clusters. It also reduces the 

number of calculations and improves the efficiency of the algorithm. 
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We now discuss runtime complexity, referring only to k-means for simplicity. The runtime of k-

means is 𝑂(𝑚 ∙ 𝑞 ∙ 𝑘 ∙ 𝑐) for 𝑚 samples, 𝑞 features, 𝑘 clusters and up to 𝑐 iterations. We sample 

in each FRIGATE iteration 𝑞 = 𝑓 ∙ 𝑛 features. For each k-means run we perform 𝑖 initializations. 

Therefore, the runtime of the k-means executions in each iteration of FRIGATE is 𝑂(𝑚𝑞𝑘𝑐𝑖). 

Other than k-means runs, in each iteration we shuffle the values of 𝑞 features over the full cohort 

in 𝑂(𝑚) for each feature and recalculate the solution score 𝑑𝑣 in 𝑂(𝑚). The overall runtime of an 

iteration is 𝑂(𝑚𝑞𝑘𝑐𝑖 + 𝑚𝑞) = 𝑂(𝑚𝑞𝑘𝑐𝑖). Hence, the additional actions to test the contribution of 

each feature do not increase the asymptotic runtime. We perform 𝑇 iterations, so the overall 

runtime is 𝑂(𝑚𝑇𝑞𝑘𝑐𝑖). As 𝑞 = 𝑓 ∙ 𝑛 with constant 𝑓 we can write the runtime as: 𝑂(𝑚𝑇𝑛𝑘𝑐𝑖). 

3.2 The FRIGATE-MW algorithm 

MW offers a smarter way to choose the features in FRIGATE for each clustering solution instead 

of choosing them randomly. Algorithm 2 shows the version of FRIGATE that uses MW for 

continuous features, which we call FRIGATE-MW.  

We define an 𝑛-long array 𝐿 so that 𝐿(𝑖) =
𝑖−1

𝑛−1
. At each iteration we rank the features by their 

scores so far and use the ranks and 𝐿 to determine 𝑚𝑖
(𝑡)

 (see chapter 2). If the rank of feature 𝑖 

at iteration 𝑡 is 𝑟 then 𝑚𝑖
(𝑡)

= 𝐿[𝑟]. The weights of features that were not selected in the iteration 

remain unchanged. For the next iteration we select features from distribution 𝒑(𝒕) =

{𝑤1
(𝑡)

/Φ(t) , … , 𝑤𝑁
(𝑡)

/Φ(t)} where Φ(t) = ∑ 𝑤𝑖
(𝑡)

𝑖  is the sum of weights at the 𝑡-th iteration. To the 

best of our knowledge, this is the first use of MW in feature selection for clustering.  
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Algorithm 2: FRIGATE-MW 

 Input: 𝑨 - 𝑚x𝑛  matrix of 𝑚 samples and 𝑛 features; 𝒌 - number of clusters; 𝑻 - 

number of iterations; 𝒇 - fraction of features to use in each iteration; 𝜼 – a 

Multiplicative Weights parameter   

 Output: 𝑹 – list of the 𝑚 features ordered by importance for clustering  

1 𝑠𝑐𝑜𝑟𝑒𝑠 ← array of length 𝑛 for keeping score of each feature, initialized to 0s 

2 𝑐𝑜𝑢𝑛𝑡𝑠 ← array of length 𝑛 for counting the times each feature is selected, initialized 

to 0s 

3 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← array of length 𝑛 for keeping the weight of each feature, initialized to 1s 

4 𝐿 ← a static array of length 𝑛 for the costs used in Multiplicative Weights. 𝐿 =

[0,
1

𝑛−1
,

2

𝑛−1
… ,

(𝑛−2)

𝑛−1
, 1] 

5 for 𝑡 ← 1 to 𝑇 

6  𝑃  ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠/𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)   

7  ℎ ← a set of 𝑞 = ⌈𝑓 ∙ 𝑛⌉ features chosen from the distribution 𝑃 

8  𝐴(𝑡) ← a sub matrix of size 𝑚x𝑞 of 𝐴 with columns corresponding to ℎ 

9  Perform k-means on 𝐴(𝑡)  

10  𝐼 ← labels of the clustering solution 

11  𝑔(ℎ)←the solution score of 𝐴(𝑡) and 𝐼  

12  for 𝑣 in ℎ 

13   𝑣̂ ← Shuffled version of 𝑣 

14   𝐴𝑣
(𝑡)

← a matrix identical to 𝐴(𝑡) except having 𝑣̂ instead of 𝑣 

15   𝑔𝑣←the solution score of 𝐴𝑣
(𝑡)

 and 𝐼 

16   𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  ←  𝑠𝑐𝑜𝑟𝑒𝑠[𝑣]  + (𝑔𝑣 − 𝑔(ℎ))  

17   𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  ←  𝑐𝑜𝑢𝑛𝑡𝑠[𝑣]  + 1  

18  end    

19  𝑟𝑎𝑛𝑘𝑠 ← 𝑠𝑜𝑟𝑡(𝑠𝑐𝑜𝑟𝑒𝑠/ 𝑐𝑜𝑢𝑛𝑡𝑠)  // rank the features based on the scores so far  

20  for 𝑣 in ℎ  

21   𝑟 ← rank of 𝑣 in 𝑟𝑎𝑛𝑘𝑠   

22   𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑣]  =  𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑣] ∙ exp(−𝜂 ∙ 𝐿[𝑟]) // update the weight of 𝑣 according to eq. 14   

23 end     

24 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑠𝑐𝑜𝑟𝑒𝑠/𝑐𝑜𝑢𝑛𝑡𝑠 

25 return the features sorted in decreasing order of scores 

 

In each iteration we update the weights of the 𝑞 participating features in constant time for each 

feature and sort the array of weights in 𝑂(𝑛 ∙ log(𝑛)). The overhead of MW for each iteration is 

thus 𝑂(𝑛 ∙ log(𝑛) + 𝑞) = 𝑂(𝑛 ∙ log(𝑛)) , since 𝑞 < 𝑛 . The total runtime of each iteration in 

FRIGATE-MW is: 𝑂(𝑚𝑞𝑘𝑐𝑖 + 𝑛 ∙ log(𝑛)) . Therefore, the total runtime is: 𝑂(𝑚𝑇𝑞𝑘𝑐𝑖 + 𝑇𝑛 ∙
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log(𝑛)) = 𝑂(𝑇𝑛(𝑚𝑘𝑐𝑖 + log(𝑛))).  Altogether, the increase in the runtime over FRIGATE is not 

major. However, note that in FRIGATE-MW the iterations cannot be programmed to run in parallel, 

in contrast to FRIGATE.  

For both variations of the algorithm we used 𝑇 = 2𝑛 and 𝑓 = 0.1, and for FRIGATE-MW we used 

𝜂 = 0.5. For a detailed description of the parameter choice see Supplementary 2. 

3.3 Simulation 

We performed simulations in order to test the algorithms in situations where the true clustering 

and the informative features are known. The simulations were along the same lines of those 

described in [17]. The parameters of the simulation are:  

• 𝑘 – number of clusters 

• 𝑐 – number of samples in each cluster 

• 𝛼 – number of informative features 

• 𝛽 – number of non-informative features 

• 𝜇 – distribution parameter 

• 𝜎 – correlation coefficient between features   

Simulating continuous data: For each cluster 𝑗, we construct 𝑐 vectors of length 𝑛 = 𝛼 + 𝛽 from 

multivariate normal distribution, where 𝛼 features are sampled from a normal distribution with 

mean of 𝑗 ∙ 𝜇 for 𝑗𝜖[0, … , 𝑘 − 1]. The other 𝛽 features are sampled from a normal distribution with 

mean 0 for all clusters and therefore represent the non-informative features. Thus, the mean 

vector of a sample in the 𝑗𝑡ℎ cluster is: 𝜇𝑗 = [(𝑗 ∙ 𝜇)𝛼x1, 0𝛽x1]. 

Next, we define a covariance matrix, parameterized by 𝜎, used to create correlations between the 

different features. The covariance matrix Σ is identical for all clusters:  
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                                                  Σ = (1 − 𝜎) ∙ 𝐼𝑛x𝑛 + 𝜎 ∙ 1𝑛x1 ∙ 1𝑛x1
𝑇                                               (6)          

The 𝑛x(𝑘 ∙ 𝑐) data matrix 𝐴 then undergoes z-score normalization for each feature. This step is 

needed when working with many data types, especially in the medical domain as the values of 

different features can be of different magnitude.  

Simulating mixed data: To build a simulation of mixed data we add three more parameters:  

• 𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙  – number of informative categorical features 

• 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 – number of non-informative categorical features 

• 𝑝 – probability of choosing the right category 

We assume that the categorical features have 𝑘  categories, labeled {0,1, … , 𝑘 − 1} . For the 

informative features of a sample in the 𝑗𝑡ℎ cluster, we choose the value 𝑗 with probability 𝑝 and a 

value from {0, … , 𝑘 − 1}\{𝑗} with probability 1 − 𝑝 where the value is chosen uniformly at random. 

For the non-informative features we choose a random value uniformly from {0, … , 𝑘 − 1}. The 

simulation of the continuous features is done as described before, and we concatenate the two 

matrixes into a single input matrix. In our simulation we used 𝑝 = 0.95. 

3.4 Demonstration of FRIGATE 

For better understanding of the FRIGATE process, we demonstrate it graphically. We simulated 

data as described in section 3.3, with two continuous features, two clusters (𝑘 = 2), and 100 

samples in each cluster, and simulation parameters 𝜇 = 4, 𝜎 = 0. Figure 1 shows the data, where 

each axis is a feature and the samples are colored by cluster membership. We simulated three 

scenarios:  

A. Both features are informative for the clustering solution (Figure 1A). 

B. Only one feature is informative (Figure 1B) 

C. Both features are not informative (Figure 1C).  
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Next, we performed an iteration of the FRIGATE algorithm, using the centroids obtained from the 

clustering solution on the two features, to show the differences in scores in each scenario (Figure 

1D): 

A. When the two features were informative, the solution score (line 8 in Algorithm 1) was 

81.76, and the scores of the features (line 13 in Algorithm 1) were 313.48 and 286.33. 

Both feature scores are high, and the difference can result from the randomness in 

shuffling the values (line 10 in Algorithm 1) or from the simulation that might have produced 

one feature that is more informative than the other.   

B. When only one feature was informative, the solution score was 237.28, and the feature 

scores were 0.51 for the non-informative features and 304.05 for the informative feature.  

C. When the two features were non-informative, the solution score was 256.48, and the 

feature scores were 117.59 and 150.57.  

Figure 1. Illustrations of simulations with two clusters. In the simulation, there are 100 samples in each cluster, 𝜇 = 4, 𝜎 = 0, and two features. 

A-C: features are represented by the axes. Each color represents a different cluster. A: both features are informative for clustering, B: only the 

feature represented by the 𝑦 axis is informative, C: both features are not informative. D: Demonstration of FRIGATE iteration on the data of A-C. 

Solution score refers to line 8 in Algorithm 1, feature's score refers to line 13 in Algorithm 1. F1 is represented by the x-axis in Figure1 A-C and 

F2 is represented by the y-axis. We can see that the informative features received higher scores than the non-informative ones.   
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In Figure 2 we demonstrate graphically the iteration for scenario 2 (line 2 in Table 2). Figure 2A 

shows the results of k-means clustering of the data (line 6 in Algorithm 1), with a solution score 

of 237.28. Figure 2B shows the data after shuffling the values of the non-informative feature (line 

10 in Algorithm 1). The shuffled data has an almost identical solution score of 237.79 (line 12 in 

Algorithm 1) and a feature score of 0.51. Figure 2C shows the sample locations after shuffling the 

values of the informative feature, which gives a new solution score of 541.33 and a feature score 

of 304.05. 

 

 

 

 

 

 

 

The illustrations of scenarios A and C are given in Supplementary 3. In all scenarios the 

informative features scored much higher than the non-informative ones. Notice that the 

differences in scores are due to the initial solution score of each scenario – the poor results of 

scenario 3 already produced a relatively high solution score, so the ability of any feature to score 

high is limited. 

3.5 Evaluation measures 

When applied to a real dataset, each algorithm produces a ranking of the features. In our tests 

the truly informative features were unknown but the “true” clustering is known. We therefore 

applied the following procedure from [17]–[19] to evaluate the results. We ran k-means on the 

Figure 2. Illustrations of the different steps of FRIGATE for scenario 2 that is shown in Figure 1B, where one feature is informative (y axis) and 

one is non-informative (x axis). A – a clustering solution of the data (line 6 in Algorithm 1) colored by clusters labels. The solution score is 237.28 

(line 8 in Algorithm 1). B- Results of shuffling the x coordinates, representing the non-informative feature (lines 10-13 in Algorithm 1). The 

solution score is similar to A and the feature’s score is 0.51. C- Results of shuffling the y coordinates, representing the informative feature. An 

increase in the solution score led to a feature’s score of 304.5. 
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subset of the data containing only the 𝑗  top ranked features. The clustering produced was 

compared to the true labels available for the dataset using the Adjusted Rand Index (ARI) [29]. 

The process was repeated with increasing values of 𝑗, for 𝑗𝜖[1, 𝑁] for 𝑁 number of features. The 

rationale was that a better feature ranking will manifest a high ARI for smaller values of 𝑗, as it 

puts the most informative features at the top. The process was repeated ten times per algorithm.  

The above measure gives a value for the top 𝑗 features, and a separate value for each 𝑗. We 

developed two new scores that summarize the measure across all values of 𝑗, while giving higher 

weight to the features that rank higher. 

Suppose 𝑀  feature ranking algorithms are compared on the same dataset. For each 𝑗 , we 

compute the ARI of each algorithm on the top 𝑗 features that it selected, and rank the algorithms 

based on their scores, from 1 for the top performer to 𝑀. For simplicity of the description, we 

assume there are no ties. The weighted rank of algorithm 𝑎 is defined as:  

                                        𝑊𝑅(𝑎) =
2

𝑁(𝑁+1)
∑ (𝑁 − 𝑗 + 1)𝑗 ∗ (

𝑀−𝑟𝑎𝑛𝑘(𝑎,𝑗)+1

𝑀
)                         (7)                     

Here 𝑟𝑎𝑛𝑘(𝑎, 𝑗) is the rank of algorithm 𝑎 on the top 𝑗 features. Hence, the second factor in the 

sum ranges from 1 for the top ranked algorithm to 1/𝑀 for the worst ranked, and the first factor 

gives a different weight to each 𝑗, from 𝑁 for the first feature to 1 for the last ranked. The factor 

2

𝑁(𝑁+1)
 rescales the total sum to [0,1].  

The 𝑊𝑅 measure is relative and depends on the set of algorithms tested. We introduce a second 

measure for a single algorithm. The algorithm's ARI score is computed for each top 𝑗 features and 

weighted as above. The weighted ARI of algorithm 𝑎 is defined as:  

                                        𝑊𝐴𝑅𝐼(𝑎) =
2

𝑁(𝑁+1)
∑ (𝑁 − 𝑗 + 1)𝑗 ∗ 𝐴𝑅𝐼(𝑎, 𝑗)                              (8) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.09.30.23296349doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.30.23296349
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

where 𝐴𝑅𝐼(𝑎, 𝑗) is the ARI of algorithm 𝑎 on the top 𝑗 features.  Hence, the range of the score is 

[-1,1] and higher scores are better. 

Both scores can be generalized to handle ties and also situations where not all values of 𝑗 are 

tested, e.g., when there are too many features.  

4. Results  

4.1 Algorithms Performance  

We measured the performance of FRMV, FRSD, FRCM, FRIGATE and FRIGATE-MW on 

simulated and real data, including four genomic and seven EMR datasets. The number of clusters 

𝑘  in FRIGATE and for FRMV was chosen with the elbow method that we implemented as 

suggested in [32].  

4.1.1 Simulated Data 

We simulated data with 200 samples and 100 features of which 20 are informative, divided into 

two or four equal-sized clusters (𝑘 = {2,4}), mean distances 𝜇 = {0.5,1,2,4} and feature correlation 

levels 𝜎 = {0,0.05,0.2, 0.5}. We ran the algorithms on data with and without z-score normalization. 

The accurate recognition rate is defined as the fraction of informative features in the top 20 ranked 

features. Results for 𝑘 = 4 with 𝜇 = {0.5,1} are shown in Tables 1, and the other cases are found 

in Supplementary 5. In all cases, the elbow method chose 𝑘 = 2. On normalized data FRCM 

performed best, and FRIGATE-MW second. On non-normalized data FRIGATE-MW was best. 

FRMV scored poorly in all cases. FRSD scored poorly in most normalized scenarios, while in 

most non-normalized scenarios it scored high. We can also see that in general smaller values of 

𝜇 and 𝑘 account for harder cases, and normalized data is more challenging than non-normalized 

data. The FRIGATE variations and FRCM are affected by the correlation levels, where high levels 
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of correlation cause a drop in performance. We can see the major drop in performance of these 

algorithms for 𝜎 ≥ 0.2. FRSD and to some extant FRMV show opposite behavior, where extreme 

levels of correlation lead to improved results. This is counter-intuitive, as high correlation levels 

are expected to cause higher similarities between all features, including pairs of informative and 

non-informative ones. FRSD and FRMV are also more affected by the structure of the data (𝑘, 𝜇, 

normalized. See Supplementary 5) in comparison to FRIGATE and FRCM (see Discussion).   

It is worth mentioning that as 20% of the features were informative, a score below 0.2 accounts 

for performance worse than random ordering of features. FRMV repeatedly scored below 0.2, 

FRSD scored low for most of the normalized cases with low correlation levels, and FRIGATE 

scored below random levels in the extreme correlation setting. FRCM is the only algorithm that 

rarely dropped significantly below random levels (Supplementary 5).  

parameters 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟎. 𝟓 

𝝈 = 𝟎. 𝟓 

𝝁 = 𝟏 

𝝈 = 𝟎 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟎𝟓 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟏 

𝝈 = 𝟎. 𝟓 

normalized 

FRIGATE 0.98 ± 0.03 0.91 ± 0.07 0.46 ± 0.17 0.09 ± 0.08 𝟏 ± 𝟎 𝟏 ± 𝟎 0.97 ± 0.05 0.09 ± 0.08 

FRIGATE-MW 𝟏 ± 𝟎 𝟏 ± 𝟎 0.62 ± 0.33 0.19 ± 0.15 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 0.01 ± 0.02 

FRCM 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟎. 𝟕𝟐 ± 𝟎. 𝟏𝟓 0.35 ± 0.18 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟎. 𝟗𝟗 ± 𝟎. 𝟎𝟑 

FRSD  0.06 ± 0.04 0.06 ± 0.04 0.11 ± 0.06 𝟎. 𝟑𝟖 ± 𝟎. 𝟏𝟕 0.01 ± 0.02 0 ± 0 0.04 ± 0.05 0.32 ± 0.08 

FRMV 0.13 ± 0.16 0.13 ± 0.13 0.25 ± 0.16 0.16 ± 0.12 0.05 ± 0.1 0.03 ± 0.03 0.09 ± 0.12 0.06 ± 0.16 

non-normalized 

FRIGATE 0.99 ± 0.02 0.98 ± 0.03 0.76 ± 0.12 0.7 ± 0.15 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRIGATE-MW 𝟏 ± 𝟎 𝟏 ± 𝟎. 𝟎𝟐 𝟎. 𝟗𝟒 ± 𝟎. 𝟎𝟖 0.31 ± 0.14 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRCM 𝟏 ± 𝟎 0.99 ± 0.02 0.82 ± 0.1 0.45 ± 0.2 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRSD  0.79 ± 0.06 0.74 ± 0.11 0.77 ± 0.07 𝟎. 𝟖𝟗 ± 𝟎. 𝟎𝟔 𝟏 ± 𝟎. 𝟎𝟐 𝟏 ± 𝟎 𝟏 ± 𝟎 𝟏 ± 𝟎 

FRMV 0.2 ± 0.19 0.12 ± 0.2 0.23 ± 0.2 0.11 ± 0.08 0.02 ± 0.06 0.02 ± 0.04 0.13 ± 0.2 0.1 ± 0.15 

 
Table 1. Performance on simulated data, with 𝑘 = 4. In bold are the top performers. 
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4.1.2  Real Data 

We tested the five algorithms on 11 real genomic and EMR datasets from different sources for 

which a known clustering was available or created by us. The datasets are described in Table 2.  

Figure 3 shows the performance of the algorithms on four genomic databases [33]–[36] (datasets 

1-4 in Table 2). These datasets were used in a benchmark of clustering [37]. They have a large 

number of features and a modest number of samples (about two orders of magnitude lower). Note 

that here we do know the true clustering but we do not know which and how many features are 

informative, but it is expected that many features do not carry information relevant to the clustering. 

In all cases the value chosen by the elbow method for FRIGATE and FRMV was 𝑘 = 2.  

The performance of both variations of FRIGATE and FRSD was comparable and generally good, 

reaching maximum ARI of 0.35-0.7 already with less than 100 features in most cases. FRSD 

performed markedly better than the other methods on dataset 3 (Figure 3C). FRCM performed 

poorly in most cases, with slow gradual increase in ARI. FRMV performed better than the others 

on dataset 2 (Figure 3B), and its results had a wide variance across repetitions in most cases. It 

is worth mentioning that the description of the FRMV algorithm in [18] was not clear, especially 

calculating linear correlation between continuous features and categorical cluster membership. 

This, as well as sampling features with replacement, can potentially create major variability 

between different runs of the algorithm.  

No. Source  Domain  Data Name # of 

clusters  

# of samples  # of features Data type 

1 [34], [37] Genomic Bredel-2005 3 50 (31,14,5) 1739 Continuous 

2 [33], [37] Genomic  Armstrong-2002-

v2 

3 72 (24,20,28) 2194 Continuous 

3 [35], [37] Genomic Tomlins-2006 5 50 (27,20,32,13,12) 2315 Continuous 

4 [36], [37] Genomic Nutt-2003-v1 4 50 (14,7,14,15) 1377 Continuous 

5 MIMIC-III [4], [5] EMR Young cancer 

patients  

2 161 (122,39) 70 Continuous 
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Table 2. Details of the real data sets used for the performance benchmark. The numbers in parentheses in column “# of samples” 

are the sizes of the clusters, and in the column “# of features” are the number of continuous and categorical features, respectively.  

Figure 3. Performance of the tested algorithms on genomic datasets. The ranking produced by each algorithm was used to cluster 

the data with a growing number of features. The Y axis is the ARI score compared to the known clustering. The results are average 

of ten runs. The light-colored sleeve around each plot is ±1 std. A-D for datasets 1-4 in Table 2, respectively.  

 

6 MIMIC-III [4], [5] EMR Young healthy 

patients  

2 110 (84,26) 47 Continuous 

7 MIMIC-III [4], [5] EMR Newborns 2 5286 (1534,3752) 29 Continuous 

8 [38], [39] EMR Heart failure  2 169 (68,101) 77 Continuous 

9 eICU [40], [41] EMR Intubated 

patients  

2 441 (136, 305) 157 (87, 70) Mixed 

10 eICU [40], [41] EMR Short stay at ICU 2 570 (487, 83) 79 (59, 20) Mixed 

11 eICU [40], [41] EMR Young patients 2 232 (138, 94) 86 (72, 14) Mixed 
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We created three EMR datasets from the MIMIC-III repository [4], [5] and three from the eICU 

repository [40], [41], both downloaded from PhysioNet [3] (datasets 5-7, 9-11 in Table 2). The 

input features used were continuous, containing lab tests (“labs”), age and length of stay in the 

hospital (days in MIMIC and minutes in eICU) and Apache score in eICU. For each lab, we 

included only the first measurement that was available for the patient during the ICU stay. For 

each patient we included data from a single ICU stay. For the MIMIC datasets ICD-9 diagnosis 

codes were extracted per ICU stay and used for labeling the patients. For the eICU datasets, 

diagnoses and Apache score parameters were used as categorical variables and for labeling. 

Labs that were missing in >70% of the cohort were removed. To remove potential outliers, we z-

scored each continuous measurement across the cohort, and removed patients that had any lab 

with  |𝑧 − 𝑠𝑐𝑜𝑟𝑒| ≥ 3. We then applied the Iterative Imputer as implemented in [31] to the raw data 

to complete missing data and performed z-score normalization. The MIMIC cohorts that we 

constructed were: 

1. Dataset 5 – patients that had a cancer ICD-9 diagnosis, aged 18-40. The data were divided 

into two clusters by length of stay: 122 patients who were discharged alive and spent less 

than 18 days in ICU, and 39 patients who either died during the ICU stay or stayed 18 

days or more at the ICU. 70 features were recorded. 

2. Dataset 6 – “healthy” patients: individuals aged 20-30 who did not have ICD-9 diagnosis 

of cancer, benign tumors, hypertension, cardiac disease, endocrine related disease, or 

hepatitis and stayed up to one day at ICU. They were divided into two clusters by sex: 84 

males and 26 females. Here 47 features were recorded.  

3. Datasets 7 – Newborns divided into two clusters: 1534 with jaundice and 3752 without 

jaundice, with 29 features. 

The results on these datasets are shown in Figure 4A-C and summarized in Table 3. For Dataset 

5 (Figure 4A), when using up to 50% of the ranked features FRIGATE performance was best. 
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Figure 4. A-D: Performance on datasets 5-8 respectively. See Figure 3 for caption details. 

 

 

With over 50% of features FRCM results were comparable. For Dataset 6 (Figure 4B) FRCM was 

best followed by FRIGATE. FRMV performed comparably to FRIGATE and FRSD performed 

worst. For Dataset 7 (Figure 4C) with up to 50% of features FRCM performed best. With 50% or 

more of the ranked features the results of FRIGATE and FRMV were comparable to FRCM or 

better. FRSD was the worst performer.  

Dataset 8 consists of heart failure patients from Zigong Fourth People’s Hospital [38], [39], also 

extracted from PhysioNet. This cohort was divided into two age groups: 68 patients of ages 29-

49 and 101 patients of ages 89-100.  We had 77 features in this cohort after removing features 

with >30% missing data, and used the Iterative Imputer for missing data. The results are shown 

in Figure 4D and Table 3. Here FRSD performed comparably to FRIGATE and even slightly better 

in some thresholds, with FRMV and FRCM performed much worse, with especially poor results 

in the first 40% of features. A full comparison among the results is found in Supplementary 6.  
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Algorithm  Dataset 5 Dataset 6 Dataset 7 Dataset 8 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 
features 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 
features 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 

features 

ARI of top ⌈𝟐𝟓%⌉ 

features 

ARI of top ⌈𝟓𝟎%⌉ 

features 

FRIGATE 0.328 ± 0.105 0.372 ± 0.029 0.182 ± 0.149 0.237 ± 0.092 0.409 ± 0.146 𝟎. 𝟒𝟑𝟓 ± 𝟎. 𝟎𝟏𝟒 0.547 ± 0.045 𝟎. 𝟔𝟐𝟕 ± 𝟎. 𝟎𝟒𝟐 

FRIGATE-MW 𝟎. 𝟑𝟕 ± 𝟎. 𝟎𝟒𝟐 𝟎. 𝟑𝟕𝟖 ± 𝟎. 𝟎𝟑𝟏 𝟎. 𝟐𝟏 ± 𝟎. 𝟏𝟏𝟗 0.198 ± 0.038 0.427 ± 0.042 0.417 ± 0.038 0.524 ± 0.103 0.601 ± 0.035 

FRMV 0.053 ± 0.082∗☩ 0.053 ± 0.053∗☩ 0.181 ± 0.116 0.214 ± 0.104 0.401 ± 0.047 0.41 ± 0.027∗ 0.116 ± 0.154∗☩ 0.221 ± 0.233∗☩ 

FRSD 0.058 ± 0.013∗☩ 0.107 ± 0.049∗☩ 0.006 ± 0.022∗☩ 0.097 ± 0.149∗ 0.129 ± 0.053∗☩ 0.115 ± 0.0∗☩ 𝟎. 𝟓𝟕𝟑 ± 𝟎. 𝟎𝟐𝟗 0.625 ± 0.025 

FRCM 0.026 ± 0.0∗☩ 0.35 ± 0.027☩ 𝟎. 𝟐𝟏 ± 𝟎. 𝟎𝟔𝟖 𝟎. 𝟐𝟗𝟏 ± 𝟎. 𝟎𝟓𝟒☩ 𝟎. 𝟒𝟔𝟓 ± 𝟎. 𝟎𝟎𝟕 0.422 ± 0.034 0.012 ± 0.004∗☩ 0.559 ± 0.024∗☩ 

 

 

The eICU cohorts that we constructed included Caucasian patients admitted directly to ICU with 

sex labels:  

1. Dataset 9 – intubated patients aged 70 and above were divided according to status at 

discharge of “Alive”, 305 patients, and “Expired”, 136 patients. 87 continuous and 70 

categorical features that had a value in at least 1% of the cohort were used. 

2.  Dataset 10 – patients who stayed up to one day in ICU, separated by age groups: 487 

patients aged 18 to 80, and 83 patients aged 80 or older. 59 continuous and 20 categorical 

features that had a value in at least 5% of the cohort were used. 

3. Dataset 11 – patients aged 18-30 separated by length of stay: 138 who stayed over 4.5 

days (>6500 minutes) or expired, and 94 who stayed 4.5 days or less and were discharged 

alive. 72 continuous and 14 categorical features that had a value in at least 5% of the 

cohort were used. 

The results for the eICU datasets are shown in Figure 5. Figures 5A, 5C, 5E compare all 

algorithms using the continuous features only. The same trends are observed – both versions of 

FRIAGTE and FRCM perform best, FRMV has a large variance in results and FRSD performs 

poorly.  

We next used these datasets to test the ability to improve the results by adding categorical 

features. We tested different values of 𝛾 and looked for a change in the ARI of the full set of 

features in comparison to only using the continuous features (results not shown). A change in ARI 

Table 3. Performance on Dataset 5-8. In bold are the top performers.  

* - significant difference from FRIGATE, ☩ - significant difference from FRIGATE-MW  
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means a different composition of the clusters caused by the categorical features. For 𝛾 < 5 in 

most cases there was no change in the composition of the clusters, and 𝛾 > 6 lead to a major 

decrease in ARI. We therefore chose 𝛾 = 6 in all cases. In most datasets we do not see an 

improvement, and in some cases more features were needed to reach high values of ARI. Overall, 

the categorical features did not improve the solution. Interestingly, in dataset 10 (Figure 5D) 

adding the categorical variables harmed the performance of FRIGATE-MW more than that of 

FRIAGATE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Performance on datasets 9-12 from the eICU repository. See Figure 3 captions for details. A-B: dataset 9, C-D: dataset 

10, E-F: dataset 11. A, C, E show results when using only the continuous features of the datasets, and B, D, F show results for 

the mixed data.  
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In Table 4 we show the weighted rank (𝑊𝑅) and weighted ARI (𝑊𝐴𝑅𝐼) scores of all algorithms 

for datasets 1-11. Apart from dataset 7 with the WARI, a variant of FRIGTAE is among the top 

two algorithms in all cases. In terms of WR, FRIGATE was best in the 4 cases and second in 4, 

and FRIGATE-MW was best in one and second in 6. In terms of WARI, FRIGATE was best in 4, 

second in 2, FRIGATE-MW best in 2 and second in 5 cases. FRCM was best in 3 and second in 

one case for both measures.  

Dataset 1 2 3 4* 5 6* 7* 8 9 10 11 

Weighted rank 

FRIGATE 0.727 0.662 0.678 0.748 0.881 0.613 0.657 0.649 0.668 0.667 0.933 

FRIGATE-MW 0.699 0.582 0.565 0.735 0.807 0.606 0.522 0.682 0.794 0.751 0.752 

FRMV 0.430 0.951 0.345 0.245 0.334 0.527 0.596 0.411 0.301 0.517 0.383 

FRCM 0.514 0.195 0.468 0.429 0.519 0.854 0.825 0.358 0.789 0.782 0.625 

FRSD 0.544 0.541 0.879 0.721 0.405 0.255 0.297 0.800 0.414 0.226 0.266 

Weighted ARI 

FRIGATE 0.347 0.659 0.268 0.312 0.314 0.175 0.287 0.411 0.214 0.103 0.327 

FRIGATE-MW 0.347 0.646 0.255 0.307 0.277 0.178 0.296 0.424 0.223 0.106 0.308 

FRMV 0.321 0.737 0.236 0.179 0.085 0.166 0.367 0.185 0.161 0.089 0.152 

FRCM 0.346 0.529 0.245 0.227 0.201 0.236 0.412 0.218 0.216 0.108 0.279 

FRSD 0.339 0.641 0.334 0.311 0.105 0.058 0.143 0.432 0.126 0.058 0.128 

 

 

4.2 Clinical Significance – Test Case     

We wished to evaluate the clinical relevance of the leading chosen features to the target labels. 

We chose to focus on Dataset 6 as there is evidence for sex-based differences in lab tests [42]. 

We chose the twelve features that were available in both cohorts and according to [42] fulfil:       

           
𝑎𝑏𝑠(𝑥𝑚𝑎𝑙𝑒−𝑥𝑓𝑒𝑚𝑎𝑙𝑒)

max (𝑥𝑚𝑎𝑙𝑒,𝑥𝑓𝑒𝑚𝑎𝑙𝑒)
≥ 0.1           (9) 

where 𝑥𝑖 is the mean value of feature 𝑥 for sex 𝑖 [42]. We call these the top features. A ranked list 

of all features according to FRIGATE and FRIGATE-MW and the top features are in 

Supplementary 7.  

Figure 4. Weighted rank and weighted ARI for the tested algorithms in datasets 1-11. In bold is the top performer for the dataset, 

underlined is the second best. * - Datasets where the top two performing algorithms were different for the two evaluation metrics.    
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We performed a hypergeometric test between the 12 top ranked features according to FRIGATE 

and the top features from [42], and similarly for FRIGATE-MW. For FRIGATE-MW, six of the top 

ranked features were also top features in [42] giving a significant p-value of 0.034. For FRIGATE, 

five of the top twelve features were common with the top features of [42], which accounts to a 

non-significant p-value of 0.136.  

We also calculated the p-value of the minimum hypergeometric score (mHG), as used in the DRIM 

algorithm [43], for calculating the significance without determining in advance the threshold for 

the hypergeometric test and accounting for multiple testing. For FRIGATE the mHG was obtained 

for 13 features, with p-value of 0.07. For FRIGATE-MW the threshold was 10 features with p-

value of 0.01. 

It is important to remember that [42] refers to seemingly healthy individuals, while Dataset 6 

comprised of patients who spent in the ICU for up to one day, and some stayed overnight. That 

means that although the patients were young and did not require a major intervention, they still 

suffered from some medical condition. Indeed, the top feature in both versions of FRIGATE was 

“days in hospital” (more females stayed overnight, details not shown), which might suggest some 

correlation between the clusters and the medical condition, together with the correlation with sex. 

4.3 Runtime comparison  

Table 5 shows the runtimes on Databases 1-8 for the tested algorithms. The FRIGATE variants 

are slower on the genomic Datasets 1-4, which have many features and a few samples, but fast 

on the EMR datasets, which have less features. FRCM runs faster on Datasets 1-4, but when the 

number of samples grows its runtime increases sharply (Database 7).  

The behavior of FRIGATE can be explained by the choice to set the number iterations depending 

on the number of features. However, this is a tunable parameter with a trade off with 𝑓, the number 

of features included per iteration (see Supplementary 2). FRCM, on the other hand, has a set 
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number of iterations, and produces an 𝑚x𝑚 matrix for each feature, which is expensive both in 

runtime and in space. Note also the slowdown of FRSD on Dataset 7, which has thousands of 

patients. 

Dataset no. 

/Algorithm  

1 2 3 4 5 6 7 8 

FRIGATE 1967.9 ± 28.2 4739.7 ± 80.2 5309.5 ± 136.3 1336.7 ± 21.4 49.8 ± 0.2 32.5 ± 0.1 286.8 ± 2.7 132.9 ± 1.1 

FRIGATE-MW 2854.0 ± 11.9 4903.2 ± 45.6 5736.0 ± 35.084 1898.3 ± 6.4 40.9 ± 0.8 29.2 ± 1.2 296.3 ± 10.5 118.8 ± 1.3 

FRCM 500.2 ± 6.2 1188.9 ± 14.3 2457.3 ± 31.4 411.7.2 ± 3.7 229.6 ± 2.5 111.2 ± 1.3 74215.4 ± 938.4 268.6 ± 1.8 

FRSD 1159.6 ± 6.0 1898.3 ± 8.2 2808.4 ± 6.2 998.2 ± 11.1 1450.9 ± 12.3 922.8 ± 30.9 39716.9 ± 256.0 1484.0 ± 15.9 

FRMV 101.0 ± 0.6 123.7 ± 0.6 133.6 ± 1.2 82.8 ± 0.7 21.6 ± 0.2 19.8 ± 0.3 653.9 ± 3.3 47.3 ± 1.0 

5. Discussion  

We presented here FRIGATE, a new ensemble feature ranking algorithm for clustering, aimed for 

clustering of medical data. To the best of our knowledge, this is the first use of MW within the 

feature ranking for clustering framework and the first explicit use of Shapley values for 

unsupervised feature selection. Unlike extant ensemble feature ranking algorithms, FRIGATE 

incorporates categorical and mixed data features. In tests on simulated and on real EMR datasets 

FRIGATE was the only algorithm that performed constantly well, and had an acceptable runtime 

in all cases.  

The simulation results revealed interesting behaviors of the tested algorithms. FRSD and FRMV 

seem to improve, while FRIGATE and FRCM performed worse with higher correlation levels. 

Intuitively, it should be harder to set apart the informative features from the full set of features 

when high correlation levels are present. Our hypothesis is that enforcing extreme levels of 

correlation between all features shaped the data so that the differences between features are 

better captured by the changes in the silhouette score, which is incorporated in FRSD. This should 

be further addressed in future research. 

Table 5. Runtime in seconds for Datasets 1-8. Results are mean±STD of five runs for Datasets 1-4 and of three runs for Datasets 5-8 (the 

number of repetitions was reduced as the total runtime was large).  
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When algorithms had accurate recognition rates below the random 0.2, the informative features 

tended to be recognized as non-informative. Indeed, at the bottom 20 features of FRIGATE on 10 

simulation runs with: 𝑘 = 4, 𝜇 = 2, 𝜎 = 0.05 and normalized data, 68 ± 24% of the informative 

features were in the bottom 20%. This suggests that not only that FRIGATE did not recognize the 

informative features, but high levels of correlation make the algorithm recognize the informative 

features as the most non-informative. Although these levels of correlation are unrealistic, the 

behavior of the algorithm is not fully understood. Further research is needed to understand why 

the distance to centroids, which is objective function used by FRIGATE, was affected more 

dramatically for non-informative features when the correlation levels between all features were 

high. 

FRIGATE and FRIGATE-MW had different behavior on simulated and real data. On simulated 

data, the two algorithms performed comparably, but when a difference was observed it was 

usually in favor of FRIGATE-MW. This suggests that MW has the potential to improve random 

selection of features in unsupervised tasks. On real data FRIGATE performed slightly better than 

FRIGATE-MW. However, although the algorithm was designed to work with mixed data, including 

categorical features did not improve the results. Future work should evaluate the possible 

contribution of MW to the ensemble framework, and more specifically, broaden the options for 

cost functions, which are a key factor in MW.  

A limitation of FRIGATE compared to FRSD and FRCM is that the number of clusters 𝑘 is needed 

as input. However, when testing different values of 𝑘 on simulated data, the FRIGATE results 

were stable even when the input 𝑘 was much larger than the real 𝑘 (see Supplementary 8). Future 

research should test waiving the required input 𝑘. FRSD and FRCM are averaging their results 

over different values of 𝑘, but this method is currently not relevant for FRIGATE, as the solution 

score is affected by the number of clusters, and averaging over different values of 𝑘 will probably 

be biased.  
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Our study has several limitations. We compared FRIGATE to three other algorithms for which 

code was not available. Their reported performance here is based on our implementation. This is 

mostly relevant to the runtime comparison. Other implementations may improve runtime for some 

of the tested algorithms.  

A key limitation in the evaluation of EMR data was the validity of the clusters that we produced. 

Heterogenous cohorts like these of MIMIC and eICU may contain multiple overlapping subgroups, 

which may confound clustering attempts and their evaluation. Including mixed data where both 

the categorical and continuous features are relevant, was another challenging task. In our tests, 

adding the categorical features did improve the results, and in some cases harmed them. Also, 

all the datasets that we generated were partitioned into two clusters. More analysis is needed on 

medical datasets with mixed data and a larger number of clusters.  

We used the elbow method for choosing 𝑘, the number of clusters. In all runs of both simulated 

and real data, the value 𝑘 = 2 was chosen, even when the real number of clusters was higher. 

This is in line with a previous report [13]. Although we showed on simulated data that FRIGATE 

is unaffected by choosing the wrong 𝑘, there is a need for a better method to choose 𝑘. 

6. Data availability  

All real data used in this paper are from publicly available sources. See Table 2 for details.  

7. Code availability  

The code for FRMV, FRCM, and FRSD was not provided by their authors, and we reimplemented 

them. Their code, as well as the code for FRIGATE and FRIGATE-MW, are available in: 

https://github.com/Shamir-Lab/FRIGATE 
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