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Abstract
Recent computational methods for inferring cell type-speci�c functional regulatory elements have used
sequence and epigenetic data. Active regulatory elements are characterized by open-chromatin state, and
the novel experimental technique ATAC-STARR-seq couples ATAC-seq assays, which capture such
genomic regions, with a functional assay (STARR-seq) to selectively examine the regulatory activity of
accessible DNA. ATAC-STARR-seq may thus provide data that could improve the quality of computational
inference of active enhancers and silencers. Here, we propose a novel regression-based deep learning
(DL) model that utilizes such data for predicting single nucleotide activation and repression maps. We
found that while models using only sequence and epigenetics data predict active enhancers with high
accuracy, they generally perform poorly in predicting active silencers. In contrast, models building also on
data of experimentally identi�ed enhancers and silencers do substantially better in the identi�cation of
active silencers. Our model predicts many novel enhancers and silencers in the model lymphoblastoid cell
line GM12878. Epigenetic signatures of the novel regulatory elements detected by our model resemble the
ones shown by the experimentally validated enhancers and silencers in this cell line. ChIP-seq enrichment
analysis in predicted novel silencers identify a few signi�cant enriched transcriptional repressors such as
SUZ12 and EZH2, which compose the PRC2 repressive complex. Intersection with GWAS data found that
the novel predicted enhancers are speci�cally enriched for risk SNPs of the Lupus autoimmune disease.
Overall, while silencers are still poorly understood, our results show that our DL-model can be used to
complement the experimental results on regulatory element discovery.

Background
Regulatory elements that control transcription such as enhancers and promoters have been studied
extensively over the past two decades (reviewed in (1); (2)). In contrast, silencers, which turn-off or reduce
the transcription of their target gene, have received less attention, mainly because they are harder to
validate experimentally. There is still no consensus on how to identify silencers. For example, two recent
studies have applied different genomic screening techniques and identi�ed 2,664 (3) and 3,001 (4)
silencers in K562 cell line. However, there is no overlap between these two sets. Thus, robust
characterization and annotation of functional silencers is a major genomic challenge. Furthermore, the
candidate regions tested in such experiments may contain sub-regions that are interchangeably
activating and repressing (5), making their detection even harder. For example, a recent study in
Drosophila suggested the existence of bi-functional elements (BFEs), acting as silencers in some cell
types and as enhancers in other cell types (6).

Functional enhancers are known to exhibit characteristic histone modi�cations such as acetylation of
histone H3 at Lysine 27 (H3K27ac) and monomethylation of histone H3 at Lysine 4 (H3K4me1), and to
reside within open genomic regions depleted of nucleosomes (1). In contrast, the precise epigenetic
marks for functional silencers is not well characterized, and they can be located within both closed and
open chromatin regions (7). Silencers can repress transcription through different modes: they can repress
target genes by enhancing the establishment of a repressive chromatin structure (8) or by competition
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between transcriptional repressors with transcriptional activators or general transcription factors (TFs) on
binding sites (BSs). For example, the BCL6 repressor competes with the STAT6 and CEBPB activators for
BSs in the IL4 promoter to repress transcription (9). An additional mode of action is the recruitment of the
Polycomb-Repressive Complex 2 (PRC2), which mediates trimethylation of histone H3 at Lysine 27
(H3K27me3) at promoters, making them inaccessible to activators (10, 11).

Several recent studies aimed at systematically predicting silencers on a genomic scale. The �rst
approach implemented by Huang et al. (12) used an SVM-based model to predict silencers from DNase-
Hypersensitive sites (DHSs) overlapped with H3K27me3 broad peaks (termed as H3K27me3-DHS sites)
using transcription factor binding site (TFBS) maps, various epigenetic signals and gene expression (GE)
as features. As large sets of experimentally identi�ed silencers were not available at that time, this study
used predicted sets of silencers for training the SVM model. Silencers were de�ned as H3K27me3-DHS
sites that are negatively correlated with the nearest gene's expression across 25 cell types. However, the
models were not trained against background sequences that are nonfunctional (i.e., sequences that
neither increase nor decrease their target GE). In a follow-up study, Huang and Ovcharenko developed a
sequence-based deep-learning (DL) method (13), which classi�es sequences into silencer, enhancer and
nonfunctional classes. However, the use of sequence information as the sole input to the model may limit
the prediction quality. Here too, the model was trained on putative silencers and enhancers de�ned based
on epigenomic marks. Validation against experimentally identi�ed silencers in K562 cell line (3, 4)
resulted with 0.47–0.48 area under the precision-recall (AUPR) curve, a substantial improvement over the
0.32 obtained by the previous SVM-based method. These results leave much room for improving silencer
prediction. The above mentioned prediction methods aimed to predict a speci�c class (silencer or
enhancer) per input sequence. However, the input sequences used in these studies were typically 1kb long
and therefore may contain distinct sub-intervals with either activating or repressing effects (5). To the
best of our knowledge, there are currently no methods that predict activating or repressing effects of an
input candidate regulatory element in a single-nucleotide resolution.

Recently, an ATAC-STARR-Seq study identi�ed experimentally a multitude of enhancer and silencer
elements in GM12878 cell line (5), each with high-resolution contribution scores for activation or
repression of transcription. These data can be used to develop more robust computational methods to
predict regulatory elements (REs) and to gain additional biological insights on functional silencers.

Here, we present a novel regression-based DL model that predicts per-nucleotide activation and
repression activities within candidate sequences. Our model predicts many additional enhancers and
silencers, and expands the current biological knowledge of what de�nes functional silencers.

Results
Training on experimentally identi�ed regulatory elements improves predictive accuracy of silencers
models 
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Due to lack of broad sets of experimentally identi�ed silencers, the computational models for silencers
developed by Huang and Ovcharenko (13) were trained on sets of putative silencers that were de�ned
based on their epigenomic pro�le rather than on experimentally detected silencer elements. The recent
ATAC-STARR-Seq study by Hansen et al. provides extensive sets of identi�ed enhancer and silencer
elements in the lymphoblastoid cell line GM12878 (5). Therefore, �rst, we wished to compare the
performance of silencer models trained on putative silencers that were de�ned based on epigenomic
marks to the performance of models trained on experimentally identi�ed silencers.

Following the epigenetic criteria used by Huang and Ovcharenko, we de�ned as the set of putative
silencers in GM12878 all H3K27me3 peaks not overlapping either H3K27ac, H3K4me1 or H3K4me3
peaks in this cell line. In parallel, we de�ned a set of putative enhancers that are active in GM12878 as
the regions of ATAC-seq peaks overlapping H3K27ac, but not H3K27me3 peaks in this cell line. We also
de�ned a background set of regulatory elements that are non-functional in GM12878 as regions of ATAC-
seq and H3K27me3 peaks randomly chosen from �ve other cell types that were not detected in
GM12878. Overall, this epigenetic approach de�ned 41,548 enhancers, 24,554 silencers and 396,612
nonfunctional peaks. We applied the Convolutional Neural Network (CNN) method introduced by Huang
and Ovcharenko on the GM12878 training set using 1kb sequence as the only feature, and evaluated how
accurately it classi�ed the experimentally identi�ed elements detected by ATAC-STARR-Seq in this cell line
(22,336 enhancers, 19,289 silencers and 175,088 nonfunctional ATAC-seq peaks; Methods). The CNN
model achieved for enhancers 0.3 AUPRC, and for silencers 0.06 AUPRC (Supplementary Figure 1).

Next, we applied the same CNN method, but now trained the model using the sequences identi�ed
experimentally as regulatory elements by ATAC-STARR-Seq (Hansen et al.)  Chromosomes 1-5, 9-22 and X
constituted the training set. Chromosome 6 was used as a validation set for tuning the model's hyper-
parameters. The test set used for evaluation of the model’s performance included chromosomes 7 and 8.
 

The predictive performance of enhancer models trained on the experimentally identi�ed enhancers was
0.37 AUPRC, a bit higher than the performance obtained by the enhancer models trained on putative
enhancers de�ned based on epigenomic marks (0.3 AUPRC). In contrast, for silencers, the performance of
the models trained on experimentally identi�ed silencers was 0.77 AUPRC, dramatically higher than that
obtained by the silencer model trained on REs de�ned by epigenomic marks (0.06 AUPRC)
(Supplementary Figure 1). This result re�ects the much better knowledge we currently have on
epigenomic marks de�ning active enhancers compared to those that mark active silencers. Furthermore,
as extensive sets of experimentally identi�ed enhancers and silencers are available for only a limited
number of cell lines, our result indicates that the availability of epigenomic pro�les for canonical marks in
various cell lines is su�cient for reasonable prediction of enhancers in these cells, but it does not allow
accurate prediction of the landscape of active silencers.  

Improved deep-learning model for prediction of enhancer and silencer elements
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Next, we aimed to build a DL model for regulatory elements with improved accuracy. We reasoned that a
DL model can utilize the quantitative output measured by STARR-Seq for the effect of the probed
genomic intervals on transcriptional activity, rather than using discrete classes (Enhancer/Silencer/Non-
functional categories) in the model learning phase. Therefore, we implemented a two-steps model as
follows: Step 1 implements a regression model that predicts, in a single-nucleotide resolution, activation
and repression effects in the trained cell type. Step 2 is a 3-class classi�cation model built upon the
trained regression model (Fig. 1a). The input to our model are 1kb sequences of ATAC-seq peaks together
with epigenetic signals of DNA methylation, H3K27ac, and H3K4me1 in that interval (Fig. 1b; see next
section for how we selected the epigenetic marks).

The regression model was built using activation and repression pro�les measured for GM12878 ATAC-
Seq peaks by STARR-Seq in 50-bp windows  (5) (Methods). These windows were computationally merged
to 21,125 silencers and 30,078 enhancers. We also generated an exploratory set composed of 70,937
GM12878 ATAC-seq peaks that did not overlap any silencer or enhancer identi�ed by ATAC-STARR-Seq in
this cell line. These peaks were excluded from the training phase and used in downstream analyses. We
tested three different DL architectures previously used in genomic analyses: deepTACT (14), CNN (13)
and ResNet (15). We also tested a simple linear regression as a baseline model. In each DL architecture,
we replaced the last layer by a new dense layer that outputs 1,000 regression scores, one per position in
the input sequence (Fig. 1a; Methods). Models were compared based on their classi�cation performance
in the second step.

In Step 2 we implemented a 3-category classi�cation model by appending two dense layers to the
regression network, to account for dependency between adjacent nucleotides' activation and repression
levels. The �rst layer consists of 300 outputs, and the second, �nal layer, has three outputs,
corresponding to the classes to be predicted: enhancer, silencer and nonfunctional. The predicted class is
the one receiving the highest probability.

For the classi�cation task, input 1kb sequences were labeled using the following scheme: (1) we scored
each sequence by summing over the activation and repression levels at every nucleotide, (2) we divided
the sequences into two sets: those with positive and negative sums, (3) in the positive set, the top 25th

percentile were labeled as enhancers, (4) in the negative set, sequences at the bottom 25th percentile were
labeled as a silencer, (5) all other sequences were labeled as nonfunctional. Overall, the 85% and 76% of
the silencers and enhancers called by the original ATAC-STARR-Seq matched the labels they got by this
scheme. 

We again used enhancers and silencers from chromosomes 1-5, 9-22 and X for the training set. Elements
from chromosome 6 were used as a validation set, and the test set included he elements from
chromosomes 7 and 8. The three DL architectures had similar performance (Fig. 1c), and all performed
better than the simple linear regression model. All DL models performed quite well in predicting silencers
(AUPRC 0.81-0.86), and much better than the sequence based model of Huang and Ovcharenko (13)
(AUPRC 0.77; Supplementary Figure 1). Performance of the DL models in predicting enhancers were
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much lower (AUPRC 0.51-0.55). This might be attributed to the fact that the observed activation levels of
enhancers are not clearly distinguishable from the nonfunctional levels (Fig. 2). Overall, the deepTACT
model performed best in predicting both enhancers and silencers. Thus, we used this model in
downstream analyses.

Epigenetic markers improve prediction performance

The silencers prediction models developed by Huang and Ovcharenko used only sequence information as
input. Our DL model utilizes also epigenetic data.  Therefore, next, we examined whether the addition of
epigenetic information improves the prediction performance. To this end, we trained the deepTACT model
on sequences alone or on sequences together with combinations of additional epigenetic markers.
Indeed, our result shows that adding the epigenetic data, and speci�cally H3K27ac and H3K4me1 signals,
improved the prediction performance of our model, with more prominent improvement obtained for
enhancers (AUPRC improves from 0.29 to 0.54 for enhancers and from 0.76 to 0.85 for silences)
(Supplementary Table 1).

When plotting the average signal across sequences of predicted classes, we found that our model
captures epigenetic signals that were not part of the input training data and are relevant to the activity of
enhancers and silencers (Fig. 2). For example, high signal for the transcriptional co-activator P300
(EP300), a histone acetyltransferase known to bind active enhancers, was obtained within predicted
enhancers but was markedly depleted within silencers. On the other hand, in �anking nucleosomes of
predicted silencers we observed high signals for the enhancer of zeste homolog 2 (EZH2), which is part of
the PRC2 complex, and for H3K27me3. In addition, predicted silencers seem to be more methylated
compared to the other two classes. EZH2 can also serve as an activator (16), which could explain the
high signals it obtained at the center of the predicted enhancers in the test set (Fig. 2).

Overall, silencers predicted by our model tend to be more methylated and more strongly marked by
H3K27me3 than enhancers (Fig. 2). On the other hand, as expected, predicted enhancers tend to be
marked by H3K27ac and H3K4me1 and bound by EP300.

Next, we set to determine which features contributed the most to the classi�cation. For this task, we used
the integrated gradients (IG) approach (17) (Methods), which calculates feature importance scores per
input sample given their labels. The sign of these scores indicate a positive or negative correlation
between the feature signal and the classi�cation score. The magnitude of these scores indicates the
contribution of the feature to the classi�cation score. We applied this approach to input sequences in the
test set given their labels. We found that enhancer classi�cation scores were most positively correlated
with H3K4me1 and H3K27ac levels followed by the DNA bases C and G, and DNA methylation features
(Fig. 3a). The contribution of both H3K27ac and methylation is in agreement with previous �ndings of
their bivalent role in enhancers (18). In addition, methylation is associated with GC-rich regions, and, as
expected enhancers tend to be GC-rich. Interestingly, the G and C features were the only major
contributors to silencer classi�cation, with little contribution from the epigenetic marks. This could be
attributed to the fact that silencers tend to be closer to TSSs compared to enhancers (mean distance:



Page 7/21

18,782 bp vs. 52,324 bp; Supplementary Figure 2). Regions closer to TSSs, e.g., promoters, are highly GC-
rich (19). Both enhancer and silencer classi�cation scores were negatively correlated with A and T
features. In contrary to enhancer and silencer classi�cations, classi�cation scores for nonfunctional
elements were most positively correlated with A and T features. Chromatin in AT-rich regions is more
compacted than in GC-rich regions (20), which could explain why nonfunctional regions are AT-rich.
Nonfunctional classi�cation scores were strongly negatively correlated with H3K4me1 levels, as this
marker is mostly associated with enhancer regions.

Next, we used the feature importance scores to �nd enriched motifs in the sequences using TF-MoDISco
(21) (Methods). We identi�ed one motif within silencers in the test set. This motif matched the binding
motif of SP2 and SP3 TFs (using TomTom (22)) (Fig. 3b), which bind GC-rich elements. A richer set of 8
motifs was found within enhancers in the test set. Among the motifs, one matched Myocyte enhancer
factor (MEF) TFs (Fig. 3c), and others matched known B-cell TFs such as: PRDM6, BCL11A, and IRF3
(Supplementary Table 2).

deepTACT predicts novel enhancers and silencers in GM12878

We applied the trained deepTACT model on the ATAC-seq peaks in the exploratory set (containing the set
of 70,937 ATAC-seq peaks in GM12878 that were not detected by the ATAC-STARR-Seq assay as having
an effect on transcription) in order to �nd novel enhancers and silencers in GM12878 which were missed
by the ATAC-STARR-seq experiment (Methods). The model predicted 3,752 novel enhancers and 518
novel silencers. The epigenetic marks on these predicted elements are similar to those obtained on the
experimentally identi�ed enhancers and silencers (Fig. 2; Supplementary Figure 3).  

To provide further support for the functionality of these novel predictions, we examined their enrichment
for eQTLs and GWAS variants. We used eQTL data from Lymphoblastoid cell lines downloaded from the
GEUVADIS database (http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GEUVADIS/ge/;
Methods). Using logistic regression and accounting for the potential confounding effect of distance to
nearest TSS (Methods), we found that the set of novel enhancers predicted by our model is signi�cantly
enriched for eQTLs (P<3.1E-24; compared to ATAC-seq peaks not predicted as enhancers/silencers). We
observed no eQTL enrichment in the set of predicted silencers, possibly due to their low number (n=518).
On the other hand, the sets of experimentally identi�ed enhancers and silencers were both enriched for
eQTL signal (P<8.0E-27 and P<6.7E-45, respectively).   

Next, we used GWAS summary statistics for 50 diseases and traits from Groenewoud et al. (23). In each
one, we kept the SNPs with p-value < 10-7. When performing enrichment analysis of the SNPs in each
predicted class, we found that the set of experimentally identi�ed enhancers was enriched for systemic
lupus erythematosus (SLE)  risk SNPs (Q<5.2E-5;  Supplementary Fig. 4a), an autoimmune disease
involving B-cells, as well as for schizophrenia (SCZ) risk SNPs (Q<5.4E-7), in line with a study that
implicated increased levels of B-cell cytokines and autoantibodies in SCZ (24). The silencers were also
enriched for some diseases albeit at lower statistical signi�cance (Supplementary Fig. 4b). Reassuringly,
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the set of novel enhancers predicted by our model was also enriched for SLE (Fig. 4a; Q<1.5E-5) and
schizophrenia risk SNPs (Q<1.2E-3). No enrichment for GWAS risk SNPs was found within the set of
predicted silencers.

Among the SLE risk SNPs in the novel enhancers is rs8052690, located within an enhancer that interacts,
according to C-HiC analysis, with the promoter of the IRF8 gene (25) (Fig. 4b). As an another example, the
SLE risk SNP rs13240595, which has ~2.5-fold enhancing effect as measured using MPRA (26), is
located within a novel enhancer, which is predicted (by FOCS (27) and GeneHancer (25) enhancer-
promoter maps) to interact with the promoter of the TNPO3 gene. TNPO3 was previously shown to be
associated with SLE (Supplementary Fig. 5) (28).

Predicted novel enhancers and silencers are enriched for binding motifs of known transcriptional
activators and repressors 

To further support the functionality of the novel enhancers and silencers predicted by our model for
GM12878 in the exploratory set, we performed motif enrichment analyses (Methods). Using very stringent
cutoffs of q-value=1E-40 and 1.5 fold-enrichment, 54 motifs were found within the novel enhancers,
including some well-established B-cell TFs: PAX5, IRF8, BCL11A and SPIB (Supplementary Fig. 6a). 42
(78%) of these motifs were also found among the 93 enriched TFs detected in the set of experimentally
identi�ed enhancers. Within the novel predicted silencers, we detected four enriched TFs (Supplementary
Fig. 6b). Among them, ZBTB17 and PATZ1 were implicated as transcriptional repressors (29). These four
enriched TFs were also found among the 146 enriched TF motifs detected in the set of experimentally
identi�ed silencers.

In addition to motif analysis, we also examined enrichment for physical TF binding sites in GM12878. To
this goal, we downloaded all 154 available GM12878 ChIP-seq experiments from ENCODE project and
analyzed their enrichment within the predicted and experimentally identi�ed sets of enhancers and
silencers. For the novel silencers, using stringent cutoffs of q-value=1E-20 and at least 10 fold-
enrichment, we found four enriched proteins (Fig. 5a), SUZ12, HDAC6, EZH2 and NRF1. Notably, SUZ12
and EZH2 are members of the PRC2 complex, which represses transcription (30). HDAC6 is a histone
deacetylate and marks epigenetic repression (31). The experimentally identi�ed silencers were enriched
for binding of 35 proteins (Supplementary Fig. 7a)   

The predicted enhancers were enriched for 26 proteins (Fig. 5b), including MAX and MYC, which when in
complex act as activators in B-cells (32), and IRF3, which is known to be involved in B-cell functions (33).
18 out of 26 enriched proteins (~69%) were also enriched within the experimentally identi�ed enhancers
(Supplementary Fig. 7b).

Discussion
Our �rst goal in this study was to test if a DL model trained on putative silencers labeled using
epigenomic data can accurately detect experimentally identi�ed silencers. To this end, we compared two
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class labeling approaches: the epigenetic approach, in which putative enhancers and silencers are
labeled using epigenetic data, and the experimentally identi�ed approach, in which enhancers and
silencers are labeled using elements identi�ed by ATAC-STARR-Seq assay. We trained a CNN model
proposed by Huang and Ovcharenko on each dataset and tested the performance of the models on
experimentally identi�ed test set. While both trained CNN models performed similarly on predicting true
enhancers (0.3 and 0.37 AUPRC for the models trained using the epigenetic and the experimental
approaches, respectively), the silencer prediction performance of the model trained on the experimental
dataset was dramatically higher (0.77 AUPRC) than that obtained by the model trained on the epigenetic
dataset (0.06 AUPRC; Supplementary Fig. 1). These results re�ect the much better knowledge that we
currently have on epigenomic marks de�ning active enhancers compared to those de�ning active
silencers.

Our second goal was to build a computational model that predicts activation and repression
transcriptional activities at single nucleotide resolution within regulatory elements. To this end, we used
the ATAC-STARR-Seq quantitative results to train a regression-based DL model combined with a
classi�cation model to classify sequences into enhancer, silencer or nonfunctional elements. We
compared published DL architectures and found that deepTACT performed best in terms of AUROC and
AUPRC (Fig. 1c). Predicted silencers harbor high levels of the H3K27me3 repressive mark, whereas
predicted enhancers harbor high levels of H3K27ac and H3K4me1 activation marks (Fig. 2;
Supplementary Fig. 3).

We applied the trained deepTACT model on an exploratory dataset, which included the ATAC-seq peaks in
GM12878 that were not detected by the ATAC-STARR-Seq assay as having an effect on transcription.
Within this set, the model identi�ed 3,752 and 518 novel putative enhancers and silencers, which were
possibly missed by the experiment. Reassuringly, 18 of the predicted novel enhancers overlapped 42
Lupus risk SNPs, including rs13240595 Lupus risk-SNP, which was shown to have 2.5-fold enhancing
effect by MPRA analysis (26). We showed that predicted enhancer sequences tend to contain
signi�cantly more eQTLs than predicted nonfunctional sequences. ChIP-seq enrichment analysis within
predicted novel silencers identi�ed four major enriched proteins: SUZ12, HDAC6, EZH2 and NRF1. SUZ12
and EZH2 form the PRC2 repressive complex known to bind silencers (Fig. 5a). Predicted enhancers, on
the other hand, were enriched for many proteins, the majority of which are known to induce transcription
(Fig. 5b).

Our study has several limitations. It was performed on a single cell type for which genome-wide
experimentally identi�ed enhancers and silencers are available. Additional validation would necessitate
experiments in more cell types. A major future challenge is to transfer the trained model on GM12878 cell
type to other cell types where activation and repression levels are not in hand. As proof of concept, we
retrained only the last two dense layers in the classi�cation step on HepG2 and K562 cancer cell lines
(Fig. 1a). We constructed training and test sets for these cell lines using (a) enhancers detected by
STARR-seq experiments done by ENCODE in these cell lines, and (b) ATAC-seq regions overlapping
H3K27me3 ChIP-seq peaks as putative silencers. Our results on test sets from HepG2 and K562 achieved
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high AUROC and moderate AUPR scores for enhancer and silencer classi�cations (Supplementary Fig. 8).
This analysis indicates a great promise for the application of transfer learning techniques for predicting
REs in many cell types.

Conclusions
Computational models trained on enhancer and silencer sequences labeled using epigenetic data
generally perform poorly in predicting silencers

Leveraging data from experimentally identi�ed enhancers and silencers substantially improves
silencer prediction accuracy

ATAC-STARR-seq experiment might miss true enhancers and silencers. These regulatory elements
can be recovered using DL models

Methods

GM12878 data preparation
101,896 GM12878 ATAC-STARR-seq peaks were obtained from (5) (GEO dataset GSE181317) and resized
to 1kb around their central positions. Experimentally identi�ed silencer (n = 21,125) and enhancer (n = 
30,078) regions and their repression or activation signals, as measured by STARR-Seq in GM12878, were
also taken from the same dataset. Transcriptional repression and activation signals were measured at
resolution of 50 bp. ATAC-seq, H3K4me1, H3K27ac, H3K27me3 and WGBS DNA methylation signal
datasets in GM12878 were downloaded from the ENCODE project (https://www.encodeproject.org/).
44,494,433 CpG sites with at least 4 mapped reads were kept. The methylation level in each CpG site is
the fraction of methylated reads that cover it. CpGs with insu�cient coverage were given a methylation
level of -1.

The input data to our model is a 1000x7 matrix. For each of the 1000 bases, the �rst four features are
one-hot encoding of the DNA sequence of the ATAC-STARR-seq peak, followed by nucleotide-resolution
signals for DNA methylation, H3K27ac and H3K4me1. We normalized the features to mean 0 and std 1.
The 1k target vector is a per-position value with a positive activation signal for enhancers, negative
repression signal for silencers, and 0 otherwise.

The model was trained on data from chromosomes 1–5, 9–23. Data from chromosome 6 were used for
validation of the model while tuning the hyper-parameter (the number of training epochs). Data from
chromosomes 7 and 8 were held out as a test set to assess the model's performance.

For model training and testing, positive cases were ATAC-seq peaks overlapping experimentally identi�ed
enhancers or silencers. Following the approach of Huang and Ovcharenko (13), we used as negative
cases ATAC-seq peaks that were detected in other �ve cell types, but not in GM12878. For each positive
peak, six negative ones were randomly sampled from the same chromosome. Overall, our dataset
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contained 216,713 cases: 30,959 positive peaks and 185,754 negatives. GM12878 ATAC-seq that were
not detected by the ATAC-STARR-Seq assay as having an effect on transcription were left out from the
phase of model training and testing, and were used as an exploratory set in downstream analyses.

Model implementation
Our model implementation is divided into two steps: In step 1, we implemented a deepTACT model as
follows: (A) we used model architecture and hyper-parameters similar to those implemented in Li et al
(14). (B) The last dense layer outputs 1,000 scores, one for each position in the input sequence, aiming to
predict the activation or repression scores measured by STARR-Seq for this genomic interval.
Intermediate batch normalization and Dropout layers were used to prevent over�tting. Model training was
performed with the mean squared error (MSE) loss function using the 'rmsprop' optimizer. We found the
number of epochs required for training the model using the MSE on the validation set. In step 2, the 1000-
scores output of the last dense layer of the model in step 1 is fed into a dense layer of 300 outputs scores
followed by a dense layer that outputs three scores – for predicting Enhancer, Silencer or Non-functional
elements - with the softmax activation function.

Inferring enhancer and silencer intervals
Given a sequence, , and its epigenetic signals, Step 1 of our model outputs for each position  a
transcriptional activity score. The score can be positive, indicating that position  is involved in
transcriptional activation (in GM12878 cell line), negative, indicating that position  is involved in
transcriptional repression, or 0 (i.e., suggesting position  is non-functional). To summarize the output, we
applied a 50bp sliding window with step size of 10 on the 1,000 scores the model outputs. We de�ne a
window as an Enhancer if all scores within that window are above a certain threshold ( ). Similarly, we
de�ne a window as a Silencer if all scores within that window are below a certain threshold ( ). We
merged overlapping windows that had the same label. We selected the  and  thresholds as those
yielding the maximum  score on the test set. For enhancers, the F1 score was computed by
considering as positives the true activating positions in the test set, and considering as negatives - all
other positions in the test set. Predicted activating positions that matched true activating positions were
considered as true positives whereas unmatched predicted activating positions were considered as false
positives. The same principle was applied for silencers.

The novel enhancer and silencer windows predicted (for GM12878) in the exploratory set are provided in
Supp. Table 3.

Alternative models
We implemented three alternative models: (1) a simple linear regression implemented as a single dense
layer in a DL model, (2) the CNN model of Huang and Ovcharenko (13), and (3) the ResNet-based model
from Luo et al (15).

Comparison of models trained on either experimentally
identi�ed or on epigenetically called enhancers and
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silencers
We took the CNN architecture as implemented by Huang and Ovcharenko (13) and used it to compare
models trained either on (A) regulatory elements called based on epigenomic markers as done by Huang
and Ovcharenko: (1) silencers: H3K27me3 ChIP-seq peaks not overlapping either H3K27ac, H3k4me1 or
H3k4me4 ChIP-seq peaks, (2) enhancers: ATAC-seq peaks overlapping H3K27ac ChIP-seq peaks, and (3)
nonfunctional: ATAC-seq peaks from �ve other cell types not detected in GM12878; or (B) regulatory
elements experimentally identi�ed by the ATAC-STARR-Seq assay (as described above). We measured the
performance of the two models in terms of AUPRC of detection experimentally identi�ed elements. In
both approaches, only sequences (without any epigenetic signal) were provided to the CNN model as
input (as done in Huang and Ovcharenko).

Feature importance scores using integrated gradients
To determine which features contribute the most to correct classi�cation we used the integrated gradients
(IG) approach (17). The main idea behind this approach is to �nd the contribution of input features to the
prediction by calculating the integral of the model's output gradients over a straight path between a
chosen ‘proper baseline’ input and the actual input. To do so, 50 points are sampled along the path and
the output gradients are calculated for each point. Accumulating the gradients from all points de�nes the
integrated gradients, which are used as the feature importance score. We chose a proper baseline input
as follows:

Where  and  is the feature type: A, C, G, T, Methylation, H3K27ac or H3K4me1. This
baseline corresponds to a sequence with 0 (or NA) signal for all seven features. After computing the
integrated gradients per position  and feature , we summed them up across all positions to represent
the integrated gradients of feature . The feature importance score of each feature is the average of the
integrated gradients across all inputs per class.

Identi�cation of motifs within importance scores
We used TF-MoDISco to �nd recurrent motifs within subsequences with highly positive or negative
importance scores (21). The tool �rst �nds subsequences of high importance scores, aligns and clusters
them, and then �nds a set of recurring motif patterns. We computed the IG of the enhancer and silencer
sequences in the test set. To account only for changes in the nucleotide composition we kept the
epigenetic features �xed along the path between the baseline and the input. The null IG distribution used
in TF-MoDISco was generated by dinucleotide shu�ing the original sequences and computing their IG.

Motif �nding
We applied the simple enrichment analysis (SEA) tool from the MEME suite (https://meme-
suite.org/meme/tools/sea) on the inferred sequences with Human HOCOMOCO v11 PWMs (34). A

baselinei,j = {
0 j ≠ Methylation

−1 j = Methylation

1 ≤ i ≤ 1000 j

i j

j
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Markov model of order of 1 was chosen to model the background distribution.

ChIP-seq enrichment
We downloaded all 158 ENCODE ChIP-seq narrowpeak bed �les of GM12878 cell type. For each peak �le,
we represented each peak by the single nucleotide position that had maximum ChIP-seq signal. Then, we
computed the number of these positions that overlapped with 1kb predicted enhancers, silencers and
nonfunctional sequences from the exploratory dataset. We computed the enrichment fold-change as
follows:

Where the target set is either the enhancers or silencers. The bg set included all sequences in the
exploratory set. We used the Hypergeometric test (python 'scipy.stats.hypergeom') to evaluate the
signi�cance of the enrichment. Benjamini-Hochberg multiple testing correction was used to correct the p-
values (35).

eQTL and GWAS risk SNPs enrichment
GWAS summary statistics of 50 traits were downloaded from the GWAS catalog
(https://www.ebi.ac.uk/gwas/) and preprocessed as described in Groenewoud et al. (23). For each trait,
we retained associated variants with p-value < 1E-7. Then, similar to ChIP-seq enrichment above, we
computed the overlap of the risk SNPs with the predicted enhancers and silencers from the exploratory
dataset and computed the signi�cance of the enrichment using HG test.

As for eQTL enrichment analysis, we downloaded the lymphoblastoid cell line (LCL) GEUVADIS eQTL
dataset (http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GEUVADIS/ge/) and computed the
overlap of the eQTLs with the predicted enhancers, silencers and nonfunctional sequences in the
exploratory dataset. To �nd whether eQTLs tend to overlap enhancers more than the nonfunctional
sequences we implemented a logistic regression test:  where:  denotes
whether sequence  has an eQTL or not,  denotes whether sequence  is an enhancer or a
nonfunctional sequence, and  is the distance from region  mid-position to the nearest gene TSS. We
added the distances to the nearest gene as this distance may confound the association between eQTLs
and genomic intervals. We used the python statsmodels.sd.Logit function to implement logistic
regression and to infer signi�cance of the coe�cients. If  is positive and signi�cant then we concluded
that the eQTLs are signi�cantly enriched within the set of enhancers. Similar analysis was done for
silencers versus the nonfunctional sequences.
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Python scripts and links to download the data used in this study are available on GitHub:
https://github.com/Shamir-Lab/EnhancerSilencerDL .
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Figure 1

Model implementation and comparison. (a) Model architecture. (b) Schematic �gure of the input and
output structure. (c) Performance of the models (Methods).
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Figure 2

Summary of epigenetic markers in the test set. Top to bottom: observed scores (as measured by STARR-
Seq), predicted scores (output of Step1 – the regression model), H3K27ac, H3K27me3, H3K27me1,
Methylation, EP300 and EZH2. Predicted enhancers, silencers and nonfunctional are marked by red, blue
and grey colors, respectively. In each predicted class and each track, the average signal per position in the
1kb sequences is shown. In b, the grey curve overlaps the blue curve for H3K27ac and the red curve for
the EZH2.
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Figure 3

Feature importance scores computed for each class on the test set. (a) We used the integrated gradients
approach to assign feature importance scores to the sequences per class: enhancer (top), silencer
(middle) and nonfunctional (bottom). Positive or negative importance scores re�ect a positive or negative
correlation between the feature and the classi�cation score, respectively. The magnitude of these scores
measures the contribution of the feature to the classi�cation score. (b) The top enriched motif in silencers
as computed by TF-MoDISco and the corresponding known TF matched by TomTom. (c) Same as (b) for
enhancers.
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Figure 4

Enrichment of GWAS risk SNPs within predicted enhancers. (a) Enrichment for GWAS SNPs. Traits with at
least one risk SNP overlapping an element in the exploratory set are shown. q-values are FDR-corrected
Hypergeometic test p-values. (b) UCSC genome browser tracks of SLE risk SNP, rs8052690 (marked in
arrow), falling within a predicted active enhancer that physically interacts with the promoter of IRF8.
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Figure 5

ChIP-seq enrichment analysis in predicted enhancers and silencers detected in the exploratory set. (a)
Silencers. (b) Enhancers.
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