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Minimizers are ubiquitously used in data structures and algorithms for efficient searching, mapping, and indexing of high-
throughput DNA sequencing data. Minimizer schemes select a minimum k-mer in every L-long subsequence of the target
sequence, where minimality is with respect to a predefined k-mer order. Commonly used minimizer orders select more
k-mers than necessary and therefore provide limited improvement in runtime and memory usage of downstream analysis
tasks. The recently introduced universal k-mer hitting sets produce minimizer orders with fewer selected k-mers. Generating
compact universal k-mer hitting sets is currently infeasible for k> 13, and thus, they cannot help in the many applications
that require minimizer orders for larger k. Here, we close the gap of efficient minimizer orders for large values of k by in-
troducing decycling-set-based minimizer orders: new minimizer orders based on minimum decycling sets. We show that in practice
these new minimizer orders select a number of k-mers comparable to that of minimizer orders based on universal kmer hit-
ting sets and can also scale to a larger k. Furthermore, we developed a method that computes the minimizers in a sequence on
the fly without keeping the k-mers of a decycling set in memory. This enables the use of these minimizer orders for any value
of k. We expect the new orders to improve the runtime and memory usage of algorithms and data structures in high-

throughput DNA sequencing analysis.
[Supplemental material is available for this article.]

As the number and depth of high-throughput sequencing experi-
ments grow, efficient methods to map, store, and search DNA se-
quences have become critical for their analysis. Sequence
sketching is a fundamental building block of many of the basic se-
quence analysis tasks, such as assembly (Ekim et al. 2021;
Rautiainen and Marschall 2021), alignment (Li 2018; Dutta et al.
2022; Sahlin 2022), binning (Deorowicz et al. 2015; Chikhi et al.
2016; Flomin et al. 2022), and indexing (Holley and Melsted
2020; Marchet et al. 2021). The common principle in all sketching
techniques is the consistent selection of representative k-mers
from longer DNA sequences for indexing these sequences in data
structures or algorithms. A key parameter for evaluating and com-
paring sketching schemes is density (Marcais et al. 2017), which is
defined as the fraction of k-mers selected from a sequence by the
scheme.

One of the most common sequence sketching techniques is
minimizers (Schleimer et al. 2003). The minimizer of an L-long se-
quence is the minimum among all the k-mers that the sequence
contains, according to some order o over the k-mers. Selecting
the minimizers from all L-long windows of a sequence provides a
sketch of that sequence. Minimizer schemes provide a window
guarantee; that is, one representative k-mer is selected from every
L-long window for any desired value of L. Minimizers have low
density as the minimum k-mer is likely to persist across multiple
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overlapping windows. However, the commonly used lexicograph-
ic and random k-mer orders have been shown to have far from op-
timal density (Marcais et al. 2017).

A recent breakthrough in developing minimizer orders with
low density has been achieved by compact universal k-mer hitting
sets (UHSs) (Orenstein et al. 2017). A UHS is a set of k-mers guaran-
teed to hit (i.e., have a member included in) any L-long sequence. In
terms of a complete de Bruijn graph (dBG) of order k, a minimum
UHS is a minimum set of nodes whose removal leaves no path of
length L — k+ 1 nodes in the graph. Heuristic algorithms for finding
a compact UHS include DOCKS (Orenstein et al. 2017) and PASHA
(Ekim et al. 2020), both of which approach UHS construction as a
path-covering problem in a complete dBG. Both algorithms first
identify a minimum decycling set (MDS), which is a minimum
set of k-mers guaranteed to hit any infinitely long sequence, and
then extend this set into a UHS. An MDS can be generated in
time linear in the dBG size (Mykkeltveit 1972).

UHS-based minimizer orders were shown to achieve lower
density than common orders (Margcais et al. 2017; Ekim et al.
2020). However, constructing and storing UHSs are inefficient ow-
ing to the exponential dependence of the heuristic algorithms on
k, and currently, compact UHSs are available only for k<13. As a
result, UHS-based minimizer orders could not be used in many ap-
plications that require larger values of k, such as long-read map-
ping (Li 2018), assembly (Rautiainen and Marschall 2021), and
indexing (Holley and Melsted 2020; Pibiri 2022). Moreover,
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another bottleneck arising in these applications is storing and que-
rying UHS k-mers, as the UHS size grows exponentially with k.

Partly because of the challenges in constructing UHSs, other
recent works focused on developing sequence-specific minimizer
orders. For example, sequence-specific minimizer orders were
used in binning applications to achieve lower maximum bin size
or more balanced bin sizes than general minimizers (Chikhi
etal. 2016; Flomin et al. 2022). Hoang et al. (2022) used deep learn-
ing to achieve sequence-specific low-density minimizers for much
larger k (up to 320). Polar-set-based sequence-specific minimizers
achieved very low density for k <25 (Zheng et al. 2021). These so-
lutions are tailored to a specific sequence set, and thus, different or-
ders must be generated for every sequence.

In this work, we developed new methods to construct univer-
sal, low-density minimizer orders that scale to larger k. Motivated
by the fact that current algorithms, DOCKS and PASHA, generate a
UHS on top of an MDS, we defined minimizer orders based only on
an MDS. For most combinations of k and L, most of the k-mers in
the UHSs generated by these algorithms are in the MDS. In
addition, generating an MDS is the fastest part of UHS construc-
tion in these algorithms, taking only ©(Z|%) for alphabet X.
Moreover, the same order is used for all L and a given k, unlike
DOCKS and PASHA, which need to compute a UHS for every com-
bination of k and L. Furthermore, the longest remaining path in a
complete dBG after removal of an MDS was recently shown to be
bounded by o($) (Zheng et al. 2020a), so for large values of L, it
is likely that many of the windows contain a k-mer from an MDS.

As the MDS size grows exponentially in k, precomputing,
storing, and querying it become infeasible for large k. We over-
come this limitation by presenting an efficient method to test in
O(k) time if a k-mer belongs to the MDS, which enables computing
the minimizers in a sequence according to our MDS-based order on
the fly. Thus, the minimizer orders that we defined provide, for the
first time, universal orders with low density that easily scale to any
value of k and to any desired window length.

Methods

Preliminaries

We begin by providing definitions and theoretical background
and describing relevant related work (for further background, see
Orenstein et al. 2017; Edgar 2021).

Basic definitions

For a string S over an alphabet X, a k-mer is a contiguous substring of
length k. We denote the k-mer starting at position i as S[i, i+ k — 1].

A k-mer order is a function on k-mers 0:2% - R. We say that
k-mer xq is smaller than x, under o (X1 < ,X2) iff 0(x1) <o(x2).

A de Bruijn graph (dBG) of order k is a directed graph in which
every node is labeled with a distinct k-mer, and there is a directed
edge from node a to b iff the (k — 1)-long suffix of a is the same as
the (k — 1)-long prefix of b. The edge is labeled with the (k+ 1)-long
merge of the two labels. A complete dBG has a node for every possi-
ble k-mer and an edge for every possible (k + 1)-mer. Paths in a dBG
of order k represent sequences, and a path of w nodes represents a
sequence of w overlapping k-mers.

Minimizers

A minimizer scheme is a function fk,w,aiEMk_] -1{0, ..., w=1}
Function f returns the position of the minimum k-mer under o
in a given window of w overlapping k-mers (i.e., inan L=w+k—1

long sequence). By convention, ties are broken by choosing
the leftmost k-mer. The minimizers of a string S, denoted as
M w,0(S), are all the positions in the string that are selected by ap-
plying the scheme to all overlapping L-long windows of §.

The expected density of a minimizer scheme is the expected
fraction of k-mer positions that will be selected as minimizers
over an infinitely long random i.i.d. sequence. The particular densi-
ty of a minimizer scheme on a specific sequence $ (e.g., the human
genome) is the fraction of k-mer positions selected by the scheme
on that sequence. The expected (particular) density factor is the ex-
pected (particular) density multiplied by (w+1).

The expected density factor of a random minimizer is two
(Margais et al. 2017). Margais et al. (2018) discuss the asymptotic
behavior of minimizer density as k — oo or w — o0 and prove a gene-

1.5 +max(0, k_—w> +1/ 2w
ral lower bound of w

Wik for the density of

any forward scheme, a class of generalized sketching schemes that
includes minimizers.

Given an ordered partition of K11 = [C1, ..., Cm], and a k-mer
order h, we say that minimizer order oyy 5, is compatible with 11 and h if
for x1 €C, x2€C, i<j=x1<g,X, and if i=j, then
X1<py, X2 & h(x1) < h(x2). In other words, the partition order deter-
mines the order between elements from different sets, and another
order (typically random) determines the order within each set.

Minimum decycling sets

A decycling set of a graph G=(V, E) is a set of nodes whose removal
results in an acyclic graph. Finding an MDS (also called feedback
vertex set) in an arbitrary graph is NP-hard (Karp 1972). We are in-
terested in an MDS of a complete dBG of order k. Mykkeltveit
(1972) gave an efficient algorithm to construct such a set, which
we denote by Dy, in time linear in the size of a complete dBG,
that is, ©(Z[%). A pure cycle is a set of nodes corresponding to
all the cyclic rotations of some k-mer (Mykkeltveit 1972).
Mykkeltveit showed that Dy contains a single node from each
pure cycle in a complete dBG. Moreover, each pure cycle defines
a conjugacy class, and thus, the pure cycles factor the complete
dBG; namely, every k-mer belongs to exactly one of the pure
cycles.

To determine which of the cyclic rotations of a k-mer
to include in 7Dy, Mykkeltveit defined an embedding of
k-mers as a weighted sum of the kth complex roots of one
in the complex plane. For a k-mer x, M(x) = (R(x), I(x)) =

k=1 27 k=1 27
(Z%Xf cos (T)’ ZE) X; sin(7>), where x; is the numeric en-

i= i=
coding of the ith character of x (in our case the encoding of the
DNA alphabetis A=0, C=1, G=2, T=3) (Fig. 1). We say a rotation
x is positive (negative) if I(x) >0 (<0). All positive (negative) rotations
of a k-mer are consecutive, and either all rotations have I(x)=0 or
the two blocks of consecutive positive and negative rotations are
separated by at most one rotation with I(x)=0 on either side
(Lemma 1 in Mykkeltveit 1972). The MDS constructed by
Mykkeltveit’s algorithm includes, for each conjugacy class, the
first positive counterclockwise rotation. When all rotations have
I(x) =0, any arbitrary k-mer from the cycle can be selected.

Mykkeltveit’s algorithm has an efficient implementation
owing to Knuth (https://www-cs-faculty.stanford.edu/~knuth/
programs/unavoidable2.w). This implementation uses the FKM al-
gorithm (Fredricksen and Maiorana 1978) to enumerate the k-mer
conjugacy classes in lexicographic order. The representative select-
ed for each class is the first positive one, and for classes with I(x) =0
for all k-mer rotations, the lexicographically smallest k-mer is in-
cluded in the decycling set. An MDS consists of ©(|Z|*/k) k-mers.
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Decycling-set minimizer orders

For large values of k, when Dy is too
large to store or takes too much time to
compute, we instead scan the target se-
quence and, for every k-mer, test its

Figure 1. Mpykkeltveit embedding. The embedding is shown for the rotations of the k-mer ACACT, in-
dicated above each plot. Each letter of the k-mer corresponds to a weight (in parentheses) placed at the
kth roots of unity (red dots). The embedding represents the center of mass of the k-mer (black dot). The
sign of each embedding projected onto the imaginary axis is shown below each rotation. In this example,
ACTAC (red box) is the first counterclockwise rotation x with I(x) > 0 and is thus included by Mykkeltveit's

algorithm in the MDS.

Universal hitting sets

A universal hitting set (UHS) Uy C s is a set of k-mers such that
any L-long string contains at least one k-mer from U ;. as a contig-
uous substring. By construction, at least one k-mer from U ; must
appear in every window of w=L —k+1 overlapping k-mers, and
thus, the nodes represented by U ; will be a covering set for all
w-long paths in a complete dBG of order k (Marcais et al. 2017).

Two algorithms proposed for UHS construction are DOCKS
(Orenstein et al. 2017) and PASHA (Ekim et al. 2020). They first
generate an MDS using MyKkkeltveit’s algorithm. Both algorithms
then add k-mers greedily until no path of length w remains in
the graph. DOCKS uses dynamic programming to compute the
number of w-long paths covered by each node in the remaining
graph, resulting in a runtime of O((1 + p)|=|[**'L) for p iterations of
node removal. Using DOCKS, small UHSs have been constructed
only for k<11. Minimizer orders compatible with these UHSs
were shown to have lower density than random orders (Marcais
et al. 2017).

PASHA uses a randomized approximation algorithm for Set
Cover to remove a small number of nodes in the remaining graph,
resulting in a runtime of O((L2|3|**'10g?(|2|¥))/(e5%)), where § and
€ are parameters of the approximation guarantee. UHSs have been
constructed using PASHA only for k<13, and the density of min-
imizer orders compatible with them was observed to be slightly
higher than that of minimizer orders compatible with DOCKS
UHSs.

Miniception (Zheng et al. 2020b) constructs a UHS for param-
eters k and L with an additional parameter ko < k. k-mers with the
first or the last ko-mer as their minimizers are added into the
UHS. This set does not need to be precomputed, and instead, mem-
bership in the set can be determined on the fly for each k-mer in a
sequence. Minimizer orders compatible with Miniception-gener-
ated UHSs can therefore be computed efficiently for any k but
were shown to have higher density than orders compatible with
UHSs constructed by PASHA.

Decycling-set-based minimizer orders

Given an MDS Dy, we define a k-mer order in which k-mers in Dy
precede all other k-mers, and for pairs not determined by this rule,
the order is random. Formally, we define the ordered partition
II = (Dx, Ek\Dk) and a pseudorandom k-mer order & and use a min-
imizer order compatible with ITand h. We implement a pseudoran-
dom order efficiently by XOR-ing the binary representation of a k-
mer with a random 2k-bit seed as was performed by Wood and
Salzberg (2014) and Flomin et al. (2022). D can be constructed ef-
ficiently using Knuth’s implementation of Mykkeltveit's algo-
rithm (Mykkeltveit 1972) as described above.

membership in Dy on the fly using the
procedure outlined in Algorithm 1 (see
also Fig. 2). The imaginary parts of the
embeddings of a k-mer x and its clock-
wise rotation x’ are computed in O(k)
time and compared to determine if x is
the first positive counterclockwise rota-
tion. If I(x) =I(x") =0, then the algorithm
determines whether x is a lexicographi-
cally smallest rotation in O(k) time.

Proposition 1 (Algorithm 1 correctness). Algorithm 1 correctly de-
termines whether a k-mer is a member of D in time O(k).

Algorithm 1: Minimum-decycling-set membership

Input: k-mer x
Output: Membership in the MDS Dy
1: forie|0, k- 1] do ¢;=sin(2ni/k)

k=1
I(x) =Y cixi
i=0
X' =Xg_1X0X1.-Xk_2
k=1
IX) = > cix;
i=0

2

3

4

5. if I(x) >0 then > Check if x is the first rotation with I(x) >0

6: if I(x') <0 then return true

7: elseif I(x)=0 then

8: if I(x') =0 then > Check if x is the lexico. smallest rotation
9: i<0

10: forje[l, 2k—1] do

11: if Xt modgrk < X; then return false

12: if X jgt modgtk > x; then i=0

13: elsei—i+1

14: if j > k—1) A (i mod k = 0) then return true

15: return false

Proof. The proof follows from the definition of Dx. We say that a
k-mer x is positive, negative, or nonpositive if I(x) >0, <0, or <0, re-
spectively. Recall that a k-mer x € Dy iff either: (1) it is the first pos-
itive counterclockwise rotation in its conjugacy class or (2) all k-
mers in the conjugacy class have I(x) =0 and x is a lexicographically
smallest rotation.

v Voo Yoo
S = GACTAC GCNTAGACAC CA... ¢ Starting position of a minimizer

it e

Minimizer selected by hash function

4+ Starting position of a positive k-mer

GACTA 1(x) <0 —  Starting position of a negative k-mer
w- ACTAC 162)>0 i1 Window with no k-mer fi MDS
1=l cTacG 106 > 0 ™"t Window with no k-mer from an
TACGC 1(xg) <0
ACGCA I(x5) >0 h(xz) > h(xs)

Figure 2. Decycling-set-compatible minimizers. An example of select-
ing minimizers based on an MDS with parameters k=5, L=8. k-mers in
the leftmost two windows are shown below the sequence, with k-mers in
the decycling set in red. The second window w, contains two k-mers
from the decycling set, and a hash function (lexicographic order in this ex-
ample) is used to select ACGCA as the minimizer. The sequence boxed in
green is a window with no k-mer from the decycling set, and thus, the lex-
icographically smallest k-mer is selected as the minimizer by the hash
function.
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For 1 above, line 6 returns true iff the input k-mer x is the first
positive counterclockwise rotation in its conjugacy class; that is,
x has I(x) >0, and the one-letter clockwise rotation of x, denoted
X, has I(x') <0.

For 2 above, note that if two consecutive rotations of a k-mer x, x’
have I(x)=I(x)=0 (lines 7-8), then all k-mers in that conjugacy
class have zero embedding by Lemma 1 from Mykkeltveit
(1972). The loop in lines 10-14 checks all possible rotations of
x and returns false if there is a k-mer that is lexicographically small-
er than x (line 11). Otherwise, it returns true if either all possible
rotations are lexicographically larger than x (in this case, i=0
and j=k-1) or x is a lexicographically smallest rotation but is
identical to another rotation (in this case, i reaches k and j>k —
1; line 14).

The embedding computations (lines 1, 2, and 4) take O(k) time.
The loop beginning on line 10 can run for at most 2k times and
performs constant time computations per iteration for a total run-
ning time of O(k).

Double decycling-set-based minimizer orders

By symmetry, MyKkkeltveit’s construction can be used to create an
MDS using the first counterclockwise negative k-mer x in each con-
jugacy class rather than the first positive one. We refer to this set as
the symmetric decycling set Dy. The decycling set and symmetric
decycling set divide sequences according to the following interest-

ing property:

Theorem 1 (remaining path partition). In any remaining
path in a complete dBG after removing Dy, all the positive nodes (i.e., la-
beling positive k-mers) precede all the nonpositive nodes.

In other words, a remaining path must consist of two distinct
parts: a positive part, containing only positive k-mers, followed by
a nonpositive part consisting of only nonpositive k-mers. The proof
relies on two lemmas:

Lemma 1. The k-mers associated with all incoming neighbors of a
node x in a dBG have the same 1(x).

Proof. All incoming neighbors y of x differ only in y, and have em-

k-1 k-1

bedding with I(y) =yosin(0) + Y_ sin 2#i/K)y; = Y _ sin(27i/K)y;.
i=1 i=1

Lemma 2. The pure cycles factor a complete dBG; namely, every k-mer

belongs to exactly one of the pure cycles.

Proof. Every k-mer is on some pure cycle corresponding to its rota-
tions. Assume the contrary that k-mer x is on two distinct pure cy-
cles, C; and C,. Let y be the last common node in the path in
C; N Cy starting from x. Then, the edges out of y in the two cycles
are distinct, contradicting the fact that both correspond to the cy-
clic rotation of y.

Proof (Theorem 1). Let x; be the first nonpositive node in a remain-
ing path x;, ..., X, and assume the contrary that there exists a pos-
itive x; for j>i. W.L.o.g. assume x; is the first with that property in
the path. Let C be the pure cycle that contains x;. C exists, and it
is well defined by Lemma 2. Let y be the node preceding x; in C.
By Lemma 1, I(x;_;) =I(y). Because y is nonpositive, x; should be
in Dy as the first positive node in C, a contradiction.

By a similar argument, in a remaining path after removing Dy,
the negative nodes precede all other nodes. Thus, removal of a dou-
ble decycling set consisting of Dy U Dy would leave only short

remaining paths that cannot contain both negative and positive
k-mers.

We define a partition-compatible minimizer order based on dou-
ble decycling sets with IT = {Dy, 5k\Dk, Ek\(Dk U 5;()}. Because the
double decycling set leaves even shorter remaining paths, we hy-
pothesize that this minimizer order will achieve lower density
compared with the one using only a single decycling set.

Results

We compared the performance of our new MDS-based minimizer
orders to random orders and to orders based on DOCKS, PASHA,
and Miniception (Zheng et al. 2020b), across a range of k and L val-
ues. Miniception uses lexicographic order by default, which was
shown to have worse performance than random order. To be
fair, here we modified Miniception to use the same random hash
as our implementations and ran it with the recommended
parameters.

We evaluated performance on expected and particular densi-
ty factors. We estimated expected density factors by calculating
density on 10 random i.i.d. sequences of 10 million nucleotides,
each time with a different pseudorandom seed for the k-mer order.
We calculated particular density factors on 10 randomly selected
10 million-nt segments from Chromosome X of the CHM13 telo-
mere-to-telomere human genome assembly (Nurk et al. 2022) us-
ing different pseudorandom seeds. Particular densities for more
real genomic sequences are also presented in the Supplemental
Figures.

MDS-based orders outperform UHS-based orders

The expected density factors of the tested orders are compared for
5 <k<15 and L=100 in Figure 3A and for k=11 and 10 <L <200
in Figure 3B. Average density factors over the runs are shown with-
out error bars for visual clarity. The same plots with error bars and
theoretical lower bounds are in Supplemental Figure S1.

UHS:s for k< 7 and L = 100 consist only of an MDS and thus are
not shown. DOCKS-generated UHSs were computed for k up to 11
and PASHA-generated UHSs for k up to 13. UHSs for larger k could
not be generated owing to the runtime and storage required for ev-
ery combination of k and L. In contrast, our new MDS-based orders
have the distinct advantage of being easily computable on the fly
for any (k, L) combination.

The MDS-based orders consistently perform similarly or bet-
ter than UHS-based orders. As hypothesized, the double decy-
cling-set order has lower density than the decycling-set order.
Miniception performs better than random and worse than the
UHS-based orders, as was previously shown (Zheng et al. 2020b).
As expected, random orders typically perform worst across most
of the range of L, and the relative improvement of UHS- and
MDS-based orders compared with random orders increases with
k. Conversely, as L grows for fixed k, the density factors of the dif-
ferent methods tend to perform similarly to random because lon-
ger windows are more likely to contain multiple k-mers from the
sets defining the order (UHS or MDS), and the k-mers within the
set are ordered randomly. MDS-based orders have much lower
standard errors than the others, likely because the decycling-set
k-mers remain the same for all repeated runs regardless of the ran-
dom seed.

The particular density factors are presented in Supplemental
Figures S1 and S2 as they display a similar trend as the expected fac-
tors. The particular density is slightly higher and more variable,
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Figure 3. Expected density factors of various minimizer orders. The ex-
pected density factors of various minimizer orders are compared for L=
100 and varying 5 <k<15 (A) and for k=11 and 15 <L <200 (B).

with higher standard errors, as it is dependent on the particular se-
quence, and k-mer usage is not uniformly distributed in real geno-
mic sequences. However, the overall shape of the density curves
and the performance ranking among the methods remain the
same.

Scaling MDS-based orders to k> 20

We compared the MDS-based orders to the random baseline order
and to Miniception for values of k greater than those that are fea-
sible to run with DOCKS and PASHA. Figure 4, A through C, shows
particular density factors for k=20, 50, and 100 on random seg-
ments of the human X Chromosome. Average density factors
over the repeated runs are shown without error bars for visual clar-
ity. The same plots with error bars as well as the expected density
factors for k=20, 50, and 100 are in Supplemental Figure S1, and
particular density factors of more genome sequences are in
Supplemental Figure S2.

As k grows, the advantage of the MDS-based orders becomes
even more pronounced, and the double decycling-set-based order
improves more significantly over the decycling-set-based order.
This is true in particular for smaller L, with the differences between
the decycling-set-based and double decycling-set-based orders be-
ginning to diminish as L>2k. The advantage compared to
Miniception is maintained for large values of k across most L values,

and the MDS-based minimizer orders achieve density factors that
are up to 20% lower than Miniception-based orders. Miniception-
based orders achieve lower density for small L as MDS-based orders
are similar to random in that regime because most windows do not
contain a member of the MDS. In contrast, Miniception approaches
its theoretical density factor of 1.67 while L <2k and converges to
(but remains below) the performance of random for larger L. In
most cases, the particular density factor is slightly higher than the
expected density factor, but the overall shape of the performance
curves and the relative performance of the methods are the same
for both particular and expected density.

There exists a consistent gap between the theoretical lower
bound for forward schemes, which is not known to be tight for
minimizers and converges to 1.5 as L increases, whereas the
MDS-based orders converge to two. Interestingly, the shape of
the density factor curves is similar to the lower bound with a min-
imum around L = 2k.

Runtime and memory usage

We report runtime measurements under three regimes of our MDS-
compatible minimizer scheme implementations. For k<20, the
MDS is precomputed and stored as a boolean vector. Thus, k-mer
set membership is determined with an O(1) lookup. The exponen-
tial growth of the MDS makes it impossible to precompute or store
in memory for even moderately larger k. Instead, we compute k-
mer set membership on the fly for every k-mer in O(k) time using
Algorithm 1. As k-mers are represented using two bits per nucleo-
tide, our implementation in C++ can use CPU-supported 128-bit
operations for k<63 (an additional bit of the representation is
used to indicate set membership). We used the GMP library
(https://gmplib.org/) to support operations for k>63. As a result,
the process is an order of magnitude slower than CPU-supported
operations. We report runtimes to compute minimizers of a ran-
dom 10 million-nt sequence for all methods and three values of
k representing the different regimes in Table 1. Runtimes were
measured on a 44-core, 2.2-GHz server with 792 GB of RAM, using
asingle thread. We report averages and standard deviations over 10
runs.

We implemented the pseudorandom order by a simple XOR
operation and a comparison of the resulting integers. Thus, the ran-
dom order is extremely fast for all k and L values. The lookup and
comparison used by the precomputed decycling set and UHS meth-
ods are also fast but limited to relatively small k. Algorithm 1 with
the more complex embedding calculation and comparison is
slower, and the runtime increases with k. Our implementation’s
runtime increases by one to two orders of magnitude for k>63.
However, even the slowest double decycling order processes 10 mil-
lion nucleotides in less than half a minute for k=100, achieving
much lower density than a random order. Miniception is imple-
mented in Python and has a consistent runtime across all values
of k but is much slower than other methods in two of the three re-
gimes and achieves higher density than MDS-based orders.

The implementation of lookup-based methods for the pre-
computed MDS-based order and UHS-based orders represents all
4% k-mers in a boolean vector. In contrast, the memory overhead
of the random and MDS-based orders computed on the fly is neg-
ligible, and the memory usage is dominated by the sequence being
processed. For the lookup-based methods, memory grows expo-
nentially with k, and for a 10 million-nt sequence, the memory
needed to store the set begins to dominate the memory for the se-
quence starting at k=14. The memory usage, measured as the
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Figure 4. Particular density factors of minimizer orders for large k. The
particular density factors computed on 10 million-nt samples from the X
Chromosome of the CHM13 assembly of various minimizer orders are
compared for k=20 (A), k=50 (B), and k=100 (C) over variable L values.
The theoretical lower bound from Marcais et al. (2018) is also shown for
comparison.

maximum resident set size, for k=19 reaches 33.6 GB and is pro-
hibitively large for k=20.

Discussion

In this study, we developed a method to generate highly effective
minimizer orders for any k. A major limitation of minimizer orders

based on UHSs was the need to create and store the whole set in ad-
vance. Instead, we based our new order only on an MDS, avoiding
the need to add k-mers to make the set universal. This bypasses the
costliest steps in DOCKS and PASHA and generates minimizer or-
ders that are even better in terms of their density factors.
Furthermore, this approach enables calculating the minimizers
in a sequence efficiently on the fly, without the need to store the
set. We showed that based on Mykkeltveit’s algorithm, we can
determine in O(k) if a k-mer belongs to the MDS, and thus, MDS
membership can be checked for all k-mers in a sequence. The re-
sulting new orders are comparable or better in their density than
UHS-based minimizer orders, thus achieving good performance
while avoiding escalating runtime and memory usage with the in-
crease of k.

In addition, we defined double decycling-set-based minimiz-
er orders. For larger k and L < 2k, the double decycling-set-based or-
ders yielded much lower density than the decycling-set-based
orders (Fig. 3) at the cost of a small increase in runtime. As the den-
sity of the two methods becomes similar as L increases, we recom-
mend using double decycling-set-based orders for L<2.5k to
achieve lower density, whereas decycling-set-based orders can be
used for L > 2.5k to achieve similar density with slightly faster run-
time. When L>k, our new MDS-based orders achieved only a
modest advantage in density over the much faster random order
(Fig. 4). We note that the idea of using alternate decycling sets
can be extended to using any number of sets, each defined by
the first cyclic rotation of a k-mer whose embedding crosses any
line in the complex plane, not just one of the axes.

We see several promising future directions. Our work focused
on general minimizer orders, but other sequence sketches are se-
quence specific or relax the strict window guarantee of minimizers
to obtain improved performance. The advantages of an MDS are
likely to extend to these methods. For example, frequency-based
orders are known to be highly efficient in terms of density and
are easily computable as sequence-specific minimizer orders. It
will be interesting to extend our work by ranking each of the sets
in a partition by their frequency in a specific sequence data set
to achieve lower density values (as was recently shown by incorpo-
rating UHS-based orders with frequency ranking [Nystrém-Persson
et al. 2021]). In addition, it would be possible to use decycling sets
and their variants as sketches without defining compatible mini-
mizer orders by simply including all decycling-set k-mers in the
sketch. Although not providing a window guarantee, such
schemes would be better conserved under mutations than mini-
mizers, as they are not dependent on a longer sequence window
(Edgar 2021).

There are also open theoretical and technical questions aris-
ing from our study. It is necessary to explain why the densities
of the MDS-based minimizer orders match the shape of the theo-
retical lower bound for the more general forward sequence sketch-
ing schemes. The gap observed between the MDS-based order and
the lower bound should be studied, and hopefully, a tighter lower
bound for minimizer schemes can be found. Performance analysis
of our new minimizer orders in terms of other criteria, including
maximum bin load (Chikhi et al. 2016; Flomin et al. 2022) and
conservation (Edgar 2021), is also a worthy goal.

Immediate future work should improve the implementation
for k> 63 to speed up runtimes for very large k. In addition, the im-
plementations using precomputed UHS or MDS could use more ef-
ficient data structures to store the set, for example, Bloom filters
(Bloom 1970) or prefix tries as in DeBlasio et al. (2019). More effi-
cient data structures would allow for faster lookup-based methods
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Table 1. Runtime results

Minimizer order k=11, L=100 k=50, L=100 k=100, L=200
Random 0.07+0.0014 0.07+£0.0011 0.62+0.0020
PASHA 0.14+0.0277 — —

DOCKS 0.14+0.0263 — —

Decycling® 0.28+0.0011 0.96+0.0018 21.84+0.2324
Double decycling? 0.34+0.0008 1.24+0.0040 28.57+0.1270
Precomputed decycling 0.15+0.0281 — —

Miniception 24.28+0.0855 23.87+0.0263 23.90+0.0308

Average time in seconds to compute the minimizers for each order on a 10 million-nt sequence.

“MDS membership is computed on the fly.

to be extended to larger k, but the exponential dependence on k in
the size of the sets means that a memory bottleneck would be
reached very quickly. Such speedups could also make the runtimes
of MDS-based minimizer orders for longer k more competitive with
random minimizer orders. The runtimes of random minimizer or-
ders are extremely fast even for large k, resulting in a trade-off be-
tween improved density and increased runtimes for our decycling-
set-based minimizers.

To conclude, we expect our new approach to enable more ef-
ficient analyses of high-throughput sequencing data. By imple-
menting our new MDS-based minimizer orders in data structures
and algorithms of high-throughput DNA sequencing analysis,
we expect to achieve reductions in runtime and memory beyond
what was previously shown using UHS-based minimizer orders.

Software availability

All code developed under this project is publicly available at
GitHub (https://github.com/OrensteinLab/DecyclingSetBasedMi
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Competing interest statement

The authors declare no competing interests.

Acknowledgments

This study was supported by a United States-Israel Binational
Science Foundation (BSF) grant no. 2020297 to Y.O. and B.B.
R.S. was supported in part by the Israel Science Foundation (grant
2206/22) and by Len Blavatnik and the Blavatnik Family
Foundation. D.P. and L.P. were supported in part by fellowships
from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv
University. L.P. was supported in part by the National Natural
Science Foundation of China project 61902072. B.E. and B.B.
were partially supported by National Institutes of Health grant
1R35GM141861 (to B.B.).

References

Bloom BH. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun ACM 13: 422-426. doi:10.1145/362686.362692

ChikhiR, Limasset A, Medvedev P. 2016. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32: i201-
i208. doi:10.1093/bioinformatics/btw279

DeBlasio D, Gbosibo F, Kingsford C, Marcais G. 2019. Practical universal k-
mer sets for minimizer schemes. In Proceedings of the 10th ACM
International Conference on Bioinformatics, Computational Biology and
Health Informatics, BCB ‘19, pp. 167-176. Association for Computing
Machinery, New York.

Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. 2015. KMC 2: fast
and resource-frugal k-mer counting. Bioinformatics 31: 1569-1576.
doi:10.1093/bioinformatics/btv022

Dutta A, Pellow D, Shamir R. 2022. Parameterized syncmer schemes im-
prove long-read mapping. PLoS Comput Biol 18: €1010638. doi:10
.1371/journal.pcbi.1010638

Edgar R. 2021. Syncmers are more sensitive than minimizers for selecting
conserved k-mers in biological sequences. Peer] 9: e10805. doi:10
.7717/peerj.10805

Ekim B, Berger B, and Orenstein Y. 2020. A randomized parallel algorithm
for efficiently finding near-optimal universal hitting sets. In Research
in computational molecular biology, pp. 37-53. Springer International
Publishing, Cambridge, MA.

Ekim B, Berger B, Chikhi R. 2021. Minimizer-space de Bruijn graphs: whole-
genome assembly of long reads in minutes on a personal computer. Cell
Syst 12: 958-968.e6. doi:10.1016/j.cels.2021.08.009

Flomin D, Pellow D, Shamir R. 2022. Data set-adaptive minimizer order re-
duces memory usage in k-mer counting. /] Comput Biol 29: 825-838.
doi:10.1089/cmb.2021.0599

Fredricksen H, Maiorana J. 1978. Necklaces of beads in k colors and k-ary de
Bruijn sequences. Discrete Math 23: 207-210. doi:10.1016/0012-365X
(78)90002-X

Hoang M, Zheng H, Kingsford C. 2022. Differentiable learning of sequence-
specific minimizer schemes with DeepMinimizer. ] Comput Biol 29:
1288-1304. doi:10.1089/cmb.2022.0275

Holley G, Melsted P. 2020. Bifrost: highly parallel construction and index-
ing of colored and compacted de Bruijn graphs. Genome Biol 21: 249.
doi:10.1186/513059-020-02135-8

Karp R. 1972. Reducibility among combinatorial problems. In Complexity of
computer computations (ed. R Miller, ] Thatcher), pp. 85-103. Plenum
Press, Boston, MA.

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34: 3094-3100. doi:10.1093/bioinformatics/bty191

Marcais G, Pellow D, Bork D, Orenstein Y, Shamir R, Kingsford C. 2017.
Improving the performance of minimizers and winnowing schemes.
Bioinformatics 33: 1110-i117. doi:10.1093/bioinformatics/btx235

Margais G, DeBlasio D, Kingsford C. 2018. Asymptotically optimal minimiz-
ers schemes. Bioinformatics 34: 113-i22. doi:10.1093/bioinformatics/
bty258

Marchet C, Kerbiriou M, Limasset A. 2021. BLight: efficient exact associative
structure for k-mers. Bioinformatics 37: 2858-2865. doi:10.1093/bioin
formatics/btab217

MyKkkeltveit J. 1972. A proof of Golomb's conjecture for the de Bruijn graph.
J Comb Theory B 13: 40-45. doi:10.1016/0095-8956(72)90006-8

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger
MR, Altemose N, Uralsky L, Phillippy AM, et al. 2022. The complete se-
quence of a human genome. Science 376: 44-53. doi:10.1126/science
.abj6987

Nystrom-Persson J, Keeble-Gagnere G, Zawad N. 2021. Compact and evenly
distributed k-mer binning for genomic sequences. Bioinformatics 37:
2563-2569. doi:10.1093/bioinformatics/btab156

Orenstein Y, Pellow D, Marcais G, Shamir R, Kingsford C. 2017. Designing
small universal k-mer hitting sets for improved analysis of high-
throughput sequencing. PLoS Comput Biol 13: e1005777. doi:10.1371/
journal.pcbi. 1005777

Pibiri GE. 2022. Sparse and skew hashing of K-mers. Bioinformatics 38:1185-
i194. doi:10.1093/bioinformatics/btac245

Rautiainen M, Marschall T. 2021. MBG: Minimizer-based sparse de Bruijn
Graph construction. Bioinformatics 37: 2476-2478. doi:10.1093/bioin
formatics/btab004

Sahlin K. 2022. Strobealign: flexible seed size enables ultra-fast and accurate
read alignment. Genome Biol 23: 260. d0i:10.1186/s13059-022-02831-7

Genome Research 7
www.genome.org


https://github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder
https://github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder
https://github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder
https://github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder
https://github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277644.123/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on August 15, 2023 - Published by Cold Spring Harbor Laboratory Press

Pellow et al.

Schleimer S, Wilkerson DS, Aiken A. 2003. Winnowing: local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data,San Diego, CA, pp. 76-85.

Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol 15: R46. doi:10.1186/gb-
2014-15-3-r46

Zheng H, Kingsford C, and Marcais G. 2020a. Lower density selection
schemes via small universal hitting sets with short remaining path
length. In Research in computational molecular biology, pp. 202-217.
Springer International Publishing, Berlin, Heidelberg, Germany.

Zheng H, Kingsford C, Marcais G. 2020b. Improved design and analysis of
practical minimizers. Bioinformatics 36: i119-i127. doi:10.1093/bioin
formatics/btaa472

Zheng H, Kingsford C, Margais G. 2021. Sequence-specific minimizers via
polar sets. Bioinformatics 37: i187-i195. doi:10.1093/bioinformatics/
btab313

Received January 5, 2023; accepted in revised form April 20, 2023.

8 Genome Research
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on August 15, 2023 - Published by Cold Spring Harbor Laboratory Press

ENOME
ESEARCH

Efficient minimizer orders for large values of k using minimum
decycling sets

David Pellow, Lianrong Pu, Baris Ekim, et al.

Genome Res. published online August 9, 2023
Access the most recent version at doi:10.1101/gr.277644.123

Supplemental  http://genome.cshlp.org/content/suppl/2023/08/09/gr.277644.123.DC1
Material

P<P  Published online August 9, 2023 in advance of the print journal.

Open Access  Freely available online through the Genome Research Open Access option.

Creative This article, published in Genome Research, is available under a Creative
Commons Commons License (Attribution 4.0 International), as described at
License http://icreativecommons.org/licenses/by/4.0/.

Email Alerting  Receive free email alerts when new articles cite this article - sign up in the box at the
Service top right corner of the article or click here.

J5M

SCIENTIFIC

To subscribe to Genome Research go to:
https://genome.cshlp.org/subscriptions

© 2023 Pellow et al.; Published by Cold Spring Harbor Laboratory Press


http://genome.cshlp.org/lookup/doi/10.1101/gr.277644.123
http://genome.cshlp.org/content/suppl/2023/08/09/gr.277644.123.DC1
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.277644.123&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.277644.123.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fgreen-initiatives
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

