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Abstract 

Integrative analysis of multi-omic datasets has proven to be extremely valuable in cancer 

research and precision medicine. However, obtaining multimodal data from the same samples 

is often difficult. Integrating multiple datasets of different omics remains a challenge, with only 

a few available algorithms developed to solve it. 

Here, we present INTEND (IntegratioN of Transcriptomic and EpigeNomic Data), a novel 

algorithm for integrating gene expression and DNA methylation datasets covering disjoint sets 

of samples. To enable integration, INTEND learns a predictive model between the two omics 

by training on multi-omic data measured on the same set of samples. In comprehensive testing 

on eleven TCGA cancer datasets spanning 4329 patients, INTEND achieves significantly 

superior results compared to four state-of-the-art integration algorithms. We also demonstrate 

INTEND’s ability to uncover connections between DNA methylation and the regulation of 

gene expression in the joint analysis of two lung adenocarcinoma single-omic datasets from 

different sources. INTEND’s data-driven approach makes it a valuable multi-omic data 

integration tool. 

The code for INTEND is available at https://github.com/Shamir-Lab/INTEND. 

  

https://github.com/Shamir-Lab/INTEND
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1 Introduction 

Emerging technological advances in recent years have made high throughput genome-wide 

sequencing a central tool for biological research. It allows the collective analysis of various 

types of biological data (commonly termed ‘omics’), in a single tissue or even at the level of a 

single cell. These include genomics – covering the DNA sequence itself; transcriptomics – the 

expression levels of genes in the form of messenger RNAs; epigenomics –reversible 

modifications on the genetic data, e.g. DNA methylation and chromatin accessibility; 

proteomics – the levels of translated proteins; and more (Figure 1). Although the analysis of a 

single omic may generate meaningful insights, a multi-omic integrative analysis can lead to  

comprehensive understanding of a biological system and its complexities. For brevity, will use 

throughout the term integration for integrative analysis. Hence, integrating different omic 

datasets is one of the most interesting challenges in computational biology today, with the 

potential of opening new avenues in cancer research and precision medicine (1–3) 

 

Figure 1. Multi-omics (Figure source: 

https://www.thermofisher.com/il/en/home/brands/thermo-scientific/molecular-

biology/molecular-biology-learning-center/molecular-biology-resource-library/spotlight-

articles/supporting-multi-omics-approaches.html) 

https://www.thermofisher.com/il/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://www.thermofisher.com/il/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://www.thermofisher.com/il/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
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1.1  Multi-omic integration – diverse problems, diverse approaches 

One way to obtain multi-omics data for analysis is to simultaneously measure more than one 

omic from the same tissue. For example, TCGA (The Cancer Genome Atlas) (4) contains 

multimodal data for numerous tissues spanning dozens of cancer types. The main data types 

covered by TCGA are genotype, copy number variations, genome methylation, mRNA 

expression, and miRNA expression, along with clinical data. Multimodal data can be also 

obtained at the cell level by simultaneously measuring multiple types of molecules within the 

cell (5–7). Such technologies are relatively new and expensive, and thus so far there is much 

less data of multiple omics from the same cells. 

Schematically, we can categorize the integration problems into three scenarios (Figure 4A): 

a. Single omic – multiple datasets (SO/MD). Here only one omic type is used but multiple 

datasets (typically experiments from different labs or studies) need to be analyzed 

together. 

b. Multiple omic – single dataset (MO/SD). Here there is one set of samples on which 

several omics were measured, and the feature sets of the different omics are disjoint. 

c. Multiple omics – multiple datasets (MO/MD). This problem generalizes both (a) and 

(b). 

Many algorithms were developed to handle the integration in the MO/SD setting. These include 

DIABLO (8), iCluster (9), and MOFA/MOFA+ (10, 11), which use latent variable analysis 

approach; iNMF (12), which uses non-negative matrix factorization; similarity-based methods 

like SNF (13), NEMO (14, 15) and MONET (16); and scAI (17), which specializes in single-

cell data. Other algorithms were developed to tackle the integration in the SO/MD setting. 

These algorithms should balance the tradeoff between the removal of batch effects and the 
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conservation of biological variance (18). Relevant examples are MNN (19), Seurat v3 (20), 

scVI (21), Scanorama (22), LIGER (23), Conos (24) and Harmony (25). 

The challenge we address in this paper is the composition of the two problems discussed above: 

MO/MD integration. Only a few algorithms have been developed to tackle this challenge. Both 

LIGER and Seurat v3 were used to integrate different omic datasets of disjoint sets of cells, 

specifically transcriptome and epigenome datasets. LIGER was shown to integrate scRNA-seq 

with genome-wide DNA methylation, and Seurat to integrate scRNA-seq with scATAC-seq 

(measuring chromatin accessibility).  

The motivation behind integrating datasets across different experiments arises from the 

difficulties to obtain multimodal data from the same samples. These difficulties may be 

technical inabilities, as mentioned in the context of single-cell data, and economical, a 

significant factor also in the case of bulk sequencing data. An algorithm that can integrate two 

different omic datasets measured from disjoint sets of samples, could assist researchers in 

utilizing data that has already been collected in the past, allowing a multi-omic systemic view 

on the investigated subject. This could increase efficiency, both in time and in cost. Consider 

the situation where the methylation patterns inside tumors of a specific cancer subtype are 

being investigated. The multi-omics approach could suggest further inquiry of the epigenome-

transcriptome connections, i.e. obtaining mRNA sequencing from every tumor and conducting 

an integrative analysis of the methylation and gene expression patterns together. As RNA-seq 

data is widely available for many cancer subtypes, it may be the case that such RNA-seq data 

is already available for other samples of that cancer subtype. With an algorithm that can 

integrate RNA-seq and DNA methylation datasets measured on disjoint samples, the researcher 

could conduct an integrative multi-omic analysis while measuring only the methylation 

patterns, thus requiring fewer resources. 
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The algorithms for MO/MD integration can be classified according to the correspondence 

information they require as input. Some methods require partial correspondence between the 

samples (either tissues or cells). One example is the semi-supervised correspondence approach 

of the MAGAN algorithm (26). This approach uses matching pairs of samples from both 

datasets to learn the correct alignment of the datasets. Other methods, as LIGER and Seurat, 

require correspondence information between the features of the different omics. Finally, some 

methods do not require any correspondence information and assume a common underlying 

structure that is maintained across technologies and omics. Such methods usually belong to the 

class of machine learning algorithms that solve the unsupervised manifold alignment problem. 

One algorithm that uses such techniques to integrate single-cell multi-omics data is the 

maximum mean discrepancy-manifold alignment (MMD-MA) algorithm (27) Another 

algorithm that can jointly embed two datasets, without any correspondence information 

between their features or samples, is the joint Laplacian manifold alignment algorithm (JLMA) 

(28). Using a method that does not require any correspondence information may sound 

appealing, but may not perform adequately when the assumed common underlying structure is 

weak. 

In our study, we developed a method for the integration of transcriptomic and epigenomic data 

across different experiments. We focused on the integration of gene expression and DNA 

methylation. Specializing in two particular creates a less general method, but allows us to 

develop a stronger model: we can incorporate the known biological connections between gene 

expression and DNA methylation. 

1.2  Associations between DNA methylation and gene expression 

The regulation of gene expression allows cells to increase or decrease the production of 

proteins or RNA. Such adjustments enable response to external changes in the environment 

and to internal signals within cells. In complex multicellular organisms, the regulation of genes 
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in particular cellular contexts enables the differentiation and proliferation of cells. Epigenetic 

modifications mainly include DNA methylation and histone protein modifications, which alter 

the chromatin structure. These modifications are known to be key factors in the regulation of 

gene expression. In the last two decades, a strong connection has been established between 

epigenetic modifications and the development of cancer. Hence, the integration of 

transcriptomic and epigenomic data has the potential to broaden our understanding of the 

molecular mechanisms orchestrating the regulation of genes, in both normal and malignant 

tissues. 

DNA methylation in mammals occurs almost exclusively in the 5’ position of a Cytosine 

followed by a Guanine, commonly termed a CpG site. CpG dinucleotides tend to cluster in 

CpG islands (CGIs), regions with a high frequency of CpG sites. The majority of CpG 

dinucleotides (75%) throughout the mammalian genomes are methylated (29), except for CGIs, 

which are mostly unmethylated. About 70% of the proximal promoters of human genes contain 

a CGI, and reciprocally, about 50% of the CGIs are located near a gene’s transcription start site 

(TSS). In fact, CGIs are strongly linked to  the regulation of transcription (30). Although CGIs 

are mostly hypomethylated, there are known examples of their methylation, resulting in stable 

silencing of the associated promoter (Figure 2). However, it is believed that CGI methylation 

does not initiate the silencing of genes, but assists in making the silenced state permanent (30). 

For example, in X chromosome inactivation, the methylation process of CGIs in the X 

chromosome has been shown to start only after gene silencing. However, when DNA 

methylation is inhibited, genes in the X chromosome can be reactivated. 

The connection between CGI hypermethylation and silencing of genes is not the only 

relationship observed between methylation and gene expression. There is evidence of both 

strong positive and strong negative correlations between gene-body methylation and gene 

expression (31). Other studies have shown that hypermethylation of CGIs in cancer tissues is 
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not always accompanied by a decrease in gene expression (32). These findings suggest that 

DNA methylation can play diverse roles in gene regulation, depending on the genomic context 

(33). This should be considered when using multi-omic integration algorithms like LIGER and 

Seurat, which require correspondence information between the features of the different omics. 

The methods that are currently used to link the feature spaces of DNA methylation and gene 

expression assume a simplistic connection between the two (see LIGER description in the next 

section). The complex and not fully understood relationship between DNA methylation and 

gene expression stresses the necessity for a more sophisticated approach. 

 

Figure 2. The major epigenetic mechanisms regulating gene expression. (A) – Methylation 

of cytosine residues in the CpG island located in the gene promoter region. (B) – The most 

common modifications of the histone proteins involved in gene expression activation and 

suppression. (Figure source: DNA Methylation As an Epigenetic Mechanism in the 

Development of Multiple Sclerosis, https://actanaturae.ru/2075-8251/article/view/11043). 

 

1.3  Our approach 

In this paper, we present a novel algorithm for the MO/MD problem. The algorithm is called 

INTEND (IntegratioN of Transcriptomic and EpigeNomic Data). Specifically, INTEND aims 

to integrate gene expression (GE) and DNA methylation (DM) datasets covering disjoint sets 

of samples. INTEND does not use any correspondence information between the samples in the 

https://actanaturae.ru/2075-8251/article/view/11043
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two datasets (e.g. knowing which GE and DM profiles originated from the same individual). 

To handle the complex connections between DM and GE, INTEND learns a predictive model 

between the two, by training on multi-omic data measured on the same set of samples. To the 

best of our knowledge, this is the first use of a predictive model in the context of the studied 

problem.  

As a preliminary step, for each gene, INTEND learns a function that predicts its expression 

based on the methylation levels in sites located proximal to it. To integrate the target 

methylation and gene expression datasets, INTEND first predicts for each methylation profile 

its expression profile. Then, it identifies a set of genes that will be used for the joint embedding 

of the expression and predicted expression datasets. At this stage, both datasets share the same 

feature space. INTEND then employs canonical-correlation analysis (CCA) to jointly reduce 

their dimension.  

We evaluated the performance of INTEND by comparing it to four state-of-the-art MO/MD 

integration methods: LIGER, Seurat v3, JLMA, and MMD-MA. The first two require 

correspondence information between the different omic features, in order to create a common 

feature space before the integration, whereas the last two do not require such information. We 

used eleven TCGA cancer datasets spanning 4329 patients for testing the algorithms in multiple 

integration tasks. We also showed the utility of the method in identifying SKCM cancer 

subtypes and in joint analysis of LUAD using two single-omic datasets obtained from different 

individuals. 

1.3.1 Integration methods used in the benchmark 

LIGER 

LIGER (23) takes as input multiple single-cell datasets, either scRNA-seq experiments or 

multi-omic measurements. In the latter case, LIGER takes as input the preprocessed datasets 
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after conversion to a shared gene-level feature space. When LIGER is used to integrate gene 

expression with methylation data from mouse frontal cortical neurons, the methylation data is 

first converted to gene-level methylation features (non-CpG gene body methylation). The 

direction of the methylation signal is reversed to incorporate the assumption of general anti-

correlation with gene expression in neurons (34). LIGER then employs integrative non-

negative matrix factorization to create for each matrix a dataset-specific factor plus a shared 

factor across the datasets. The shared factor is used to jointly embed cells in a common low-

dimensional space. 

Seurat v3 

The Seurat v3 algorithm (20) was designed to integrate multiple scRNA-seq datasets in the 

SO/MD setting, but was also demonstrated to integrate scATAC-seq and scRNA-seq data in 

the MO/MD setting. The first step of such integration is similar to LIGER. The scATAC-seq 

data is converted to a gene-activity matrix, based on the accessibility of sites proximal to the 

gene’s transcription start site (35). The gene activity matrix has the same feature set as the 

scRNA-seq matrices and it is assumed to be correlated with them. Seurat first uses canonical-

correlation analysis to jointly reduce the dimension of the two datasets to a shared space. Then 

it identifies mutual nearest neighbors across the datasets. The pairings found are termed 

“anchors”. These anchor pairs are scored based on the consistency of anchors across the 

neighborhood structure of each dataset. The scored anchors are utilized to compute a projection 

mapping for each cell to embed it in the shared space. 

JLMA 

The joint Laplacian manifold alignment (JLMA) algorithm (28) learns a projection that maps 

datasets from two different feature spaces to a shared lower-dimensional space. This is done 

while simultaneously preserving the neighborhood relationships in each set and matching the 

local geometry of samples from the two sets. JLMA constructs a joint Laplacian matrix across 
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the two domains, which captures the similarities within each dataset and the similarities across 

the datasets. The similarities across the datasets can be given as input to the algorithm (in a 

semi-supervised manner) or computed by the algorithm according to matching between the 

local geometry of the samples. In the latter case, JLMA does not require any correspondence 

information. The local geometry measure is computed based on the 𝑘-NN graph of each 

dataset. Finding the local geometry matching is computationally expensive even for small 

values of 𝑘, as it runs in 𝑂(𝑘!) time. After the joint Laplacian is computed, the optimal solution 

is found by solving a generalized eigenvalue decomposition problem. 

MMD-MA 

The maximum mean discrepancy-manifold alignment (MMD-MA) algorithm (27) is an 

unsupervised manifold alignment algorithm. It was created specifically for the task of single-

cell multi-omics integration. The algorithm assumes the samples from the different omic 

datasets are drawn from the same initial population, but it does not require any 

correspondence information between the samples or the features. MMD-MA seeks an optimal 

alignment by minimizing an objective function with three terms. The first is the maximum 

mean discrepancy, which corresponds to the distance between the two mapped manifolds in 

the shared space. The second term, named distortion, measures relationships among data 

points between the original space and the shared latent space. The third is a penalty term that 

is intended to avoid a collapse to a trivial solution. 

1.3.2 Additional computational background 

Lasso Regression 

INTEND uses Lasso regression (37, 38) to learn a predictive model between DM and GE. 

Lasso regression is a multivariate linear regression with an 𝑙1-norm penalty. Given a dataset 

((𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑝), 𝑦𝑖) , 𝑖 = 1,2, … , 𝑛, where 𝑥𝑖𝑗 are the predictor variables and 𝑦𝑖 are the 
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response values, Lasso solves the 𝑙1-regularization problem by finding 𝛽 = {𝛽1, 𝛽2, … 𝛽𝑝} that 

minimizes: 

This is equivalent to minimizing the sum of squares with the constraint ∑|𝛽𝑗| ≤ 𝑐. This shrinks 

the coefficients, some of them to zero, thus employing also variable selection. The tuning 

parameter 𝜆 controls the power of the 𝑙1-penalty. We solve the minimization problem via the 

coordinate-descent method and choose the optimal 𝜆 using 10-fold cross-validation on the 

training set. This is done with the glmnet R package. 

Cross validation 

K-fold cross-validation uses the following approach to evaluate a model (Figure 3): 

• Step 1: Randomly divide a dataset into k groups, or “folds”, of roughly equal size. 

• Step 2: Choose one of the folds to be the holdout set. Fit the model on the remaining 

k-1 folds. Calculate the test mean squared error (MSE) on the observations in the fold 

that was held out. 

• Step 3: Repeat this process k times, using a different set each time as the holdout set. 

• Step 4: Calculate the overall test MSE to be the average of the k test MSE’s. 

  

 ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑗

)

2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 (1) 
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•  

K-fold cross-validation  

Step 1 

 

Step 2 

 

Step 3 

 

Figure 3. K-fold cross validation (source: https://www.statology.org/k-fold-cross-validation)  

https://www.statology.org/k-fold-cross-validation
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2 Materials and Methods 

2.1  INTEND algorithm 

INTEND works in two phases (Figure 4B). The training phase receives as input training data 

consisting of GE and DM profiles measured on the same set of samples. The algorithm uses 

this data to learn the connections between the omics. This will allow it later to make accurate 

predictions of expression levels of specified genes based on a given methylation profile. The 

training process can be executed once for any number of future integration tasks. Intuitively, 

the multimodal data used in the training process should be “biologically similar” to the datasets 

that INTEND will integrate subsequently. However, as we shall show, even when we used 

INTEND to integrate datasets covering tumor types that were different from the ones covered 

by the multimodal training data, it performed well. 

For the embedding phase, INTEND’s inputs are from two disjoint cohorts, denoted T1 and T2.  

They include a DM matrix for T1 and a GE matrix for T2. It proceeds in three steps: (1) 

Creation of predicted GE matrix for T1 based on the DM data. (2) Selection of a subset of the 

genes based on the predicted GE for T1, the GE for T2, and the trained model from the 

preliminary step. (3) Reducing jointly the dimension of the two GE datasets on the selected 

gene set. 

2.1.1 The training phase 

The preliminary training phase aims to learn connections between GE and DM using training 

data. Its inputs are expression and methylation profiles for the same set of 𝑛 samples. 𝐸𝑡𝑟𝑎𝑖𝑛 is 

an |𝑓𝐸| × 𝑛 expression matrix, where 𝑓𝐸  is the set of genes for which the expression was 

measured. The methylation matrix 𝑀𝑡𝑟𝑎𝑖𝑛 has dimensions |𝑓𝑀| × 𝑛, where 𝑓𝑀 is the set of 

measured methylation sites. The goal is to determine a function 𝑝(𝑔) for every gene 𝑔, that 

predicts the expression level of 𝑔 based on the methylation levels of potentially relevant sites. 
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Let 𝑓𝑀
(𝑔)

⊆ 𝑓𝑀 be the set of relevant sites (its creation is described below). For a methylation 

profile 𝑚(𝑔) ∈ ℝ|𝑓𝑀
(𝑔)

|
, we seek a function 𝑝(𝑔): ℝ|𝑓𝑀

(𝑔)
| ⟶ ℝ, s.t. 𝑝(𝑔)(𝑚(𝑔)) is the predicted 

expression level of 𝑔. 

Model 

We hypothesized that accurately predicting the expression levels of even a small number of 

genes, from an input methylation matrix, will enable successful integration. To achieve this 

goal, we developed a prediction model considering the known connections between 

methylation in promoter CGIs and gene expression (30), as well as gene-body methylation 

(31). Furthermore, to capture the variation in the correlation between methylation and 

expression across the CGI, its shores and shelves, and also outside CGIs (32), the model uses 

the methylation levels in each probe separately. 

For each 𝑔 ∈ 𝑓𝐸 we set 𝑓𝑀
(𝑔)

 to be all the probed methylation sites in the range 

[𝐶5′-end − 10kb, 𝐶3′-end + 10kb], where 𝐶5′-end and 𝐶3′-end are the coordinates of 𝑔’s 5′-end and 

3′-end on the chromosome, respectively. While in certain cases more distal methylation sites 

were reported to affect gene expression (36), the main effect is usually due to proximal sites 

(30). We limited the range in order to have modest-size gene models. As we will show, such 

models provide a good basis for the integration task. 

The size of 𝑓𝑀
(𝑔)

 may vary due to the variability in gene length and the assay’s coverage. Genes 

that had less than two measured methylation sites were removed from the model. Let 𝑓𝑀 =

⋃ 𝑓𝑀
(𝑔)

 the union of the used methylation sites for all genes. 

For each 𝑔, after obtaining 𝑓𝑀
(𝑔)

, INTEND uses Lasso regression model (37, 38) to learn the 

prediction function 𝑝(𝑔) and select model features. Lasso was run using the glmnet R package 

and the optimal value of the penalty constant was chosen using 10-fold cross-validation on the 
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training set. Using Lasso allows the preliminary step to handle genes with a large number of 

methylation sites, by ignoring sites that have little relevance for the gene expression prediction. 

For example, in a TCGA training set that we used, spanning 10 cancer subtypes (the datasets 

listed in Table 1, excluding LUAD) and spanning 3852 tumor samples, 𝑓𝑀
(𝑔)

 contained 25 sites 

on average, with a maximum of 1055 sites per gene (Supplementary Figure 1). However, the 

maximal number of probes for which the regression resulted with non-zero coefficients for a 

specifed gene was only 424, with an average of 21 sites per gene (Supplementary Figure 2). 

After calculating 𝑝(𝑔) for every 𝑔 in every training sample, the 2000 genes with the highest 𝑅2 

between predicted and observed gene expression are identified for use in the next stages of 

INTEND. For example, using the above training set, the average 𝑅2 of all 19143 genes 

considered was 0.30, and the average 𝑅2 of the top 2000 genes was 0.68 (Supplementary 

Figure 3).  

Note that when applying the preliminary step to certain cancer subtypes, the subsequent 

algorithmic steps use only data from other subtypes, in order to avoid overfitting. 

2.1.2 The embedding phase 

The inputs for the main phase of the algorithm are: 

1. A DM matrix 𝑀, for one target set of samples (T1), of dimensions |𝑓𝑀| × 𝑛𝑀 

2. A GE matrix 𝐸 for a second, disjoint target set of samples (T2), of dimension |𝑓𝐸| × 𝑛𝐸 

3. A desired dimension 𝑑 for the shared space 

Additionally, the prediction functions 𝑝(𝑔) for each 𝑔 from the preliminary step are used. The 

requested output is a 𝑑 × (𝑛𝑀 + 𝑛𝐸) matrix denoted 𝑆, which contains the projections of the 

input and predicted expression profiles into the shared 𝑑-dimensional space. The phase has 

three steps: 
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Step 1: Gene expression prediction using methylation data 

Let 𝑝(𝑔) be the learned prediction function for gene 𝑔 and let  𝑚1, 𝑚2, … , 𝑚𝑛𝑀
 be the 

methylation profiles in 𝑀. Recall that 𝑚𝑖
(𝑔)

 describes the methylation levels of 𝑚𝑖 in 𝑓𝑀
(𝑔)

 

(possibly with some coefficients zeroed by the Lasso process). We apply 𝑝(𝑔) on 𝑚𝑖
(𝑔)

and get 

the predicted expression 𝑒𝑖
(𝑔)

. We denote the predicted expression profile for 𝑚𝑖 as 𝑒𝑖 =

{𝑒𝑖
(𝑔)

 | 𝑔 ∈ 𝑓𝐸}. This step results in the predicted expression matrix 𝑃 = (𝑒1, 𝑒2, … , 𝑒𝑛𝑀
). 

Step 2: Selecting genes 

Denote the 2000 genes selected in the training phase by 𝐺𝑅. The expression of these genes 

has the highest likelihood to be predicted accurately by the methylation profile, at least in the 

tissue types and states included in the training set. However, the target datasets may originate 

from a different tissue type or state. Hence, an additional heuristic for feature selection is 

employed. Genes may be regulated by mechanisms other than DNA methylation. Thus we 

assumed that the genes that are most likely to be regulated by the methylation profile are the 

ones with high variance in both methylation and expression levels. Let 𝐺𝐸 denote the 2000 

genes with the highest expression variability in 𝐸. Let 𝐺𝑃 denote the 2000 genes with the 

highest variance in the predicted expression 𝑃. We select the following genes from 𝐸 and 𝑃: 

The resulting matrices are 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

,  with dimensions |𝐺𝑠| × 𝑛𝐸  and |𝐺𝑠| × 𝑛𝑀 respectively. 

The size of 𝐺𝑠 varies depending on the training and target datasets. Finally, each row of 𝐸𝐺𝑠
 

and 𝑃𝐺𝑠
 is centered and scaled separately so that each feature has zero mean expression level 

and unit variance. 

 𝐺𝑠 = 𝐺𝑅⋂𝐺𝐸⋂𝐺𝑃 (2) 
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Step 3: Embedding 

The last step applies CCA to 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

, and produces the integrated matrix 𝑆. CCA is a 

dimension reduction method that finds linear combinations of features across datasets such that 

these combinations have maximum correlation (39). It was used in computational genomics to 

project datasets that share the same samples but have different features (the MO/SD setting) to 

a common low-dimensional feature space. CCA has been used in this way, for example, in 

multi-omic clustering (15, 40). In contrast, here we apply CCA to 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

, which covers 

samples from different datasets but share the same set of selected genes (similar to the SO/MD 

setting). This approach for utilizing CCA was introduced in Seurat v2 (41). 

Let us denote 𝑋 = 𝐸𝐺𝑠
∈ ℝ |𝐺𝑠|×𝑛𝐸 and 𝑌 = 𝑃𝐺𝑠

∈ ℝ|𝐺𝑠|×𝑛𝑀. Let 𝑑 ≤ min (𝑛𝐸 , 𝑛𝑀). CCA aims 

to find canonical correlation vectors 𝑢1, … 𝑢𝑑 , 𝑣1, … , 𝑣𝑑 such that the correlations between the 

projections 𝑋𝑢𝑖 and 𝑌𝑣𝑖 are maximized, under the constraint that  𝑋𝑢𝑖 is uncorrelated with 𝑋𝑢𝑗 

for 𝑗 < 𝑖 and the same for 𝑌𝑣𝑖 and 𝑌𝑣𝑗 . To get the first pair of canonical correlation vectors, 

the following optimization problem should be solved: 

When |𝐺𝑠| is smaller than the number of samples 𝑛𝐸  and/or 𝑛𝑀, the solution for 𝑢1, 𝑣1 is not 

unique. To overcome this, as proposed in Butler et al., the covariance matrix within each dataset 

is treated as if it were diagonal, resulting in the following problem: 

We scale and center the columns of 𝑋 and 𝑌 to have a mean of 0 and variance of 1 (in the 

previous step the same process was applied to the rows). The problem can be solved using 

Lagrange multipliers. See the Supplement for details. 

The code for INTEND is available at https://github.com/Shamir-Lab/INTEND. 

 (𝑢1, 𝑣1) = argmax
𝑢∈ℝ𝑛𝐸  ,𝑣∈ℝ𝑛𝑀

𝑢𝑇𝑋𝑇𝑌𝑣 𝑠. 𝑡 {𝑢𝑇𝑋𝑇𝑋𝑢 = 1
𝑣𝑇𝑌𝑇𝑌𝑣 = 1

 (3) 

 (𝑢1, 𝑣1) = argmax
𝑢,𝑣

𝑢𝑇𝑋𝑇𝑌𝑣 𝑠. 𝑡 {
‖𝑢‖2

2 = 1

‖𝑣‖2
2 = 1

 (4) 

https://github.com/Shamir-Lab/INTEND


22 
 

 

Figure 4. (A) Three scenarios of integration problems: Green: single omic – multiple datasets 

(SO/MD); red: multiple omic – single dataset (MO/SD); blue: multiple omics – multiple 

datasets (MO/MD). (B) An overview of the two phases of INTEND: the training phase and the 

embedding phase. 

 

2.2  Data 

2.2.1 TCGA data 

To assess performance, we used RNA-seq and DM data from TCGA (4) covering 11 different 

cancer types. See Table 1 for cancer types, their abbreviations and statistics. The data was 

downloaded using the TCGA-Assembler software (42, 43). We used only 4329 samples for 

which both omics were measured.  

The DM data we used was gathered with Illumina’s Infinium HumanMethylation450 

BeadChip assay. The levels of > 450,000 methylation sites were reported as 𝛽-values. The 

RNA-seq data was gathered with Illumina HiSeq assay, and quantified using RSEM (44). In 

each GE and DM sample the zero counts were removed, then the raw count values were divided 

by the 75th percentile of the counts, and then multiplied by 1000. In both omics, we downloaded 

the data after these transformations from the TCGA website. 

  

A B 
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Table 1. Summary information of TCGA cancer datasets used 

Cancer type Abbreviation 

Number of patient samples 

Gene 

expression 

DNA 

methylation 
Both 

Acute Myeloid Leukemia AML 173 194 170 

Bladder Urothelial 

Carcinoma 
BLCA 427 440 425 

Colon Adenocarcinoma COAD 328 353 298 

Brain Lower-Grade Glioma LGG 534 534 530 

Liver Hepatocellular 

Carcinoma 
LIHC 424 430 414 

Lung Adenocarcinoma LUAD 576 507 477 

Pancreatic Adenocarcinoma PAAD 183 195 183 

Prostate Adenocarcinoma PRAD 550 553 533 

Sarcoma  SARC 265 269 263 

Skin Cutaneous Melanoma SKCM 473 475 473 

Thyroid Carcinoma THCA 572 571 563 

 

2.2.2 An additional LUAD gene expression dataset 

In addition to the TCGA LUAD data, we used RNA-seq profiles from 172 tumors of LUAD 

patients from Singapore (45). GE was quantified with RSEM and normalized as done for the 

TCGA data. 

2.2.3 Data preprocessing 

To handle missing values, for each dataset, features with > 5% missing values were removed, 

and then samples with >  5% missing values were removed. Subsequently, the missing values 

per each feature were imputed to the mean of this feature across all samples. The number of 

features and samples in each dataset we used, before and after the handling of missing values, 
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are described in Supplementary Table 1. Finally, for GE data from all sources and for all 

purposes, we added 1 pseudo-count to each value and  log-transformed the result. 

2.2.4 Running other algorithms 

We evaluated the performance of INTEND by comparing it to four state-of-the-art MO/MD 

integration methods: LIGER, Seurat v3, JLMA, and MMD-MA. The methods are briefly 

described in the Supplement. To use LIGER and Seurat, we supplied the algorithms with an 

aggregated gene-level methylation matrix as input, as they require correspondence information 

between features across omics. The aggregated matrix computation process is described in the 

Supplement. JLMA and MMD-MA algorithms do not require correspondence information 

between the features. However, empirical results from (27) showed that JLMA failed to 

integrate GE and DM using the local geometry metric as a measure for cross-omic similarity. 

Hence, we computed the cross-omic similarity matrix for JLMA based on the aggregated gene-

level methylation matrix. For MMD-MA we used both the original methylation data and gene-

level methylation matrix as inputs. We denoted the runs of JLMA and MMD-MA with the 

gene-level methylation matrix as JLMA WFCI (with features correspondence information) and 

MMD-MA WFCI. We ran all the algorithms with their default recommended hyper-

parameters, and whenever applicable, we used the algorithm’s pipeline for feature selection 

and normalization. Since MMD-MA and JLMA do not include a method for feature selection, 

when running them in the WFCI mode, we selected the 𝑛 genes with the highest variance in 

expression, for 𝑛 = 500 and 2000. Further details regarding how each of the algorithms was 

applied, including hyper-parameters and additional necessary preprocessing steps, are 

described in the Supplement. 

2.3 Evaluating the quality of the results 

For the TCGA data, we have the true pairing of samples that represent different omic 

measurements of the same patient. This pairing is not given as input to the integration 
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algorithms and can therefore be used to evaluate their results. We use the metric defined in Liu 

et al. to evaluate the algorithms. For GE and DM input datasets covering  𝑛𝐸  and 𝑛𝑀 samples 

respectively, each algorithm produces a 𝑑-long vector of the projected expression 𝑒𝑖 for each 

sample 𝑖 and a 𝑑-long vector of the projected estimated expression 𝑚𝑗  based on the 

methylation for each sample 𝑗. For patient 𝑖, let 𝑓𝑖 be the fraction of samples 𝑗 with projections 

𝑚𝑗 closer to 𝑒𝑖 than 𝑚𝑖. We call it the “fraction of samples closer than the true match” 

(FOSCTTM). FOSCTTM ranges from 0 to 1, where 0 means that the true match of a sample 𝑖 

is the closest to 𝑖 in the projected space. We calculate the FOSCTTM for every sample in the 

GE and DM datasets, and average these values. A perfect integration will have a score of 0. 

For a random projection, the expected FOSCTTM is 0.5. 

2.4 Clustering 

For clustering (subsection 3.3), we used the k-means algorithm of Hartigan and Wong (1979), 

with maximum number of 100 iterations and 100 different starting solutions. We selected the 

desired number of clusters using the “elbow method” as described in Rappoport and Shamir 

(2018). Let 𝑣(𝑖) be the total within-cluster sum of squares for a solution with 𝑖 clusters, then 

we chose 𝑖 for which the point 𝑣(𝑖) had the maximum curvature. Specifically, we chose the 𝑖 

that maximized the following approximation of the second derivative of 𝑣: 

3 Results 

We applied INTEND in several settings. In the first part, we applied INTEND and four other 

algorithms in several integration tasks of GE and DM data, using eleven cancer datasets from 

TCGA. We also demonstrated the utility of the method in identifying SKCM cancer subtypes. 

𝑣[𝑖 + 1] + 𝑣[𝑖 − 1] − 2𝑣[𝑖] (5) 
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In the second part, we used INTEND for the integration of datasets from two different sources, 

covering two populations of LUAD patients.   

Our first set of analyses compared five algorithms: INTEND, LIGER, Seurat v3 (hereafter: 

Seurat), MMD-MA, and JLMA. We used eleven datasets of different cancer types from TCGA. 

First, we integrated GE and DM data of the same cancer type, for each of the eleven types. 

Next, we integrated data of four cancer types simultaneously.  

3.1 Single cancer dataset integration task 

We first ran the algorithms with input datasets of a single cancer subtype. We used the eleven 

datasets listed in Table 1. For each dataset, we considered only the subset of samples measured 

in both omics. The total number of samples used in these integration tasks was 4329, where 

dataset sizes ranged from 170 to 563. For each cancer dataset, we trained a new regression 

model in INTEND’s preliminary phase, using the samples of the remaining ten cancer datasets 

as the training set. To evaluate the results, we used the pairing information between samples 

from the two omics measured on the same tissue to calculate the FOSCTTM score. 

We ran the algorithms using projected space dimension 𝑑 ranging from 2 to 40, and recorded 

the best integration scores (average FOSCTTM). The results are summarized in  
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Table 2 and Supplementary Figure 5. INTEND performed best across all datasets and all 𝑑 

values, and substantially better than the rest, with MMD-MA the second performer. In fact, 

INTEND results were often 1-2 orders of magnitude better than those of all the other methods. 
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Table 2. Average FOSCTTM of algorithms for integrating GE and DM data 

Cancer/Alg INTEND LIGER Seurat v3 
MMD-

MA 

MMD-

MA 

WFCI 

(500) 

MMD-

MA 

WFCI 

(2000) 

JLMA 

WFCI 

(500) 

JLMA 

WFCI 

(2000) 

AML 2.42 (25) 29.83 (7) 17.05 (36) 23.63 (40) 19.08 (40) 22.35 (40) 24.01 (8) 28.38 (7) 

BLCA 0.04 (39) 39.62 (9) 13.86 (40) 11.20 (40) 16.34 (40) 14.58 (40) 34.80 (40) 37.11 (40) 

COAD 0.02 (37) 26.84 (19) 19.14 (40) 12.59 (40) 12.19 (40) 12.92 (40) 32.98 (5) 34.73 (4) 

LGG 6.82 (22) 41.97 (8) 32.06 (26) 8.88 (40) 15.50 (40) 12.08 (40) 37.41 (14) 32.38 (12) 

LIHC 0.14 (36) 42.34 (3) 19.23 (38) 16.04 (30) 11.02 (30) 12.94 (30) 32.68 (21) 36.03 (12) 

LUAD 0.06 (32) 36.72 (4) 16.36 (39) 8.71 (40) 14.11 (40) 13.89 (40) 29.60 (9) 32.16 (8) 

PAAD 0.55 (30) 36.68 (15) 24.18 (35) 11.07 (40) 23.42 (40) 16.27 (40) 29.83 (3) 27.44 (2) 

PRAD 0.37 (38) 35.96 (8) 16.32 (17) 10.88 (40) 11.15 (40) 10.99 (40) 27.14 (2) 29.53 (2) 

SARC 0.05 (35) 42.06 (15) 12.86 (36) 8.86 (40) 20.97 (40) 17.42 (40) 34.47 (7) 34.73 (5) 

SKCM 0.03 (39) 42.20 (17) 18.97 (37) 16.02 (40) 20.53 (40) 16.62 (40) 32.11 (15) 34.71 (3) 

THCA 3.07 (11) 32.58 (7) 15.96 (36) 6.71 (40) 7.78 (40) 6.65 (40) 30.95 (2) 27.52 (5) 

Average 

(all datasets) 
1.23 (31) 36.98 (10) 18.73 (34) 12.24 (39) 15.64 (39) 14.25 (39) 31.45 (11) 32.25 (9) 

Average FOSCTTM score (percent) for each algorithm on each of the eleven cancer datasets. 

The optimal score is 0%, and the expected score for a random projection is 50%. The requested 

shared space dimension 𝑑 ranges from 2 to 40 for each algorithm. The score shown is the best 

across all values of 𝑑, and the optimal 𝑑 is written in parenthesis. The numbers 500 and 2000 

for MMD-MA and JLMA denote the number of selected genes in the WFCI runs. 

 

We also analyzed the contribution of the last step in INTEND – applying CCA for dimension 

reduction – to its performance. We measured the average FOSCTTM when using the original 

GE data and the imputed GE computed by INTEND, for the selected gene set (see subsection 

2.1.2). Excluding the CCA step resulted in poorer FOSCTTM scores. Notably, these scores 

were better than all other tested algorithms in all datasets, with only one exception 

(Supplementary Table 2).  

In later analyses, we preferred to use the same space dimension 𝑑 for all algorithms. MMD-

MA and JLMA do not recommend a method for determining 𝑑. For Seurat, the authors 

originally suggested approaches to select 𝑑   (41) but later noted that the identification of this 
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value remains a challenge (20). After running all methods for 𝑑 ∈ [2,40] for all datasets, we 

observed that most algorithms reach a plateau in the FOSCTTM score around 𝑑 = 40 

(Supplementary Figure 5). Hence, in subsequent runs we set 𝑑 = 40 for all algorithms, with 

one exception: LIGER failed to run on the AML dataset with 𝑑 = 40 or 𝑑 = 39, so in that case 

we used 𝑑 = 38. 
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Figure 5. Distribution of FOSCTTM (%) scores in INTEND results on each cancer type. 

 

Next, we analyzed the FOSCTTM per sample across all methods and datasets. Figure 5 shows 

boxplots of the FOSCTTM per sample for each algorithm and cancer dataset using 𝒅 = 𝟒𝟎. 
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INTEND’s advantage was prominent, with the entire FOSCTTM interquartile range (𝑰𝑸𝑹) at 

zero for eight of the 11 datasets tested. In six of the 11 datasets, the FOSCTTM was perfect 

(zero) for > 𝟗𝟎% of the samples. 

We analyzed in more detail the results for the COAD dataset. We used UMAP (47) for the 2D 

projection of the samples from the original omic feature spaces and from the integration shared 

space. Figure 6 shows the results for INTEND, LIGER, Seurat, and MMD-MA algorithms. 

The results for JLMA WFCI and MMD-MA WFCI versions are presented in Supplementary 

Figure 6. 

Figure 6A-B show the projections from the original feature spaces. One can appreciate that 

pairwise distances are not preserved between the omics. Figure 6C-F show for each algorithm 

the projections from the shared feature space. It is evident that the level of mixing between the 

two omics is highest for INTEND, intermediate for MMD-MA and lower for Seurat and 

LIGER. Figures 6G-J show the same projections as in Figures 6C-F with the 10 samples of 

Figure 6B marked. Evidently, INTEND does a much better job in projecting omics from the 

same sample to close positions. For example, the two points labeled 3 belong to distinct clusters 

of samples in both the DM and the GE spaces. INTEND was the only method to succeed in 

projecting the points from both omics into the same cluster in the shared space. A similar 

advantage of INTEND was obtained for all other cancer types, even when the average 

FOSCTTM was higher (Supplementary Figures 7-16). 
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Figure 6. Results of integration of GE and DM samples from the colon adenocarcinoma dataset 

by different algorithms. (A) UMAP plots of the original data.  (B) The same plots as in A. To 

appreciate concordance between omics, ten samples were randomly selected, and their 

matching points in both omics were labeled. (C-F) UMAP plots of the samples after they were 

projected to a shared space by each algorithm. (G-J) The same plots as in C-F with the selected 

points labeled. In all plots colors correspond to omics. 

 

3.2 Joint integration of multiple cancer types 

In a second test, we applied the algorithms on four cancer datasets simultaneously. We used 

the datasets of COAD, LIHC, SARC and SKCM, covering 1448 GE and DM profiles. We did 

not supply the cancer type of each sample to the algorithms. We used the remaining seven 

TCGA datasets as the training set in INTEND’s training phase. INTEND performed this task 

with the best FOSCTTM integration score (Supplementary Figure 17), with perfect 
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FOSCTTM for > 65% of the samples, and 1-2 orders of magnitudes better than the other 

methods: The mean scores were 0.37% for INTEND, 41.59% for LIGER, 9.33% for Seurat, 

and 4.01% for MMD-MA. 

Figure 7 shows 2D projections of the mapping by each of the algorithms. INTEND, Seurat and 

MMD-MA projected the samples from the different cancer datasets into separate clusters in the 

shared space (Figure 7G-J). In contrast, LIGER failed to preserve the biological variance 

among the tissue types, mapping samples of different types to the same clusters (Figure 7I). 

While INTEND mixed the samples from both omics in each cancer type cluster, Seurat and 

MMD-MA created clusters with substantial separation between the samples from each omic 

(Figure 7C-F). 

To further evaluate the results, we tested the quality of classifying the DM samples to specific 

cancer types based on the types of their neighboring GE samples in the shared space, as follows. 

Each DM sample was assigned by majority voting to the cancer type most represented among 

its five closest GE samples in the shared space. The confusion matrices between the inferred 

and true assignments are shown in Figure 7K-N. INTEND performed best, with > 97% of DM 

samples in each cancer type correctly classified. MMD-MA performed slightly worse: three 

cancer types had high accuracy classification, but the SARC cancer type had > 9% of the 

samples misclassified as SKCM. For Seurat, three cancer types had high accuracy 

classification, but the SKCM cancer type had >26% of the samples misclassified as SARC. 

The LIGER projections led to the lowest accuracy classification. 
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Figure 7. Results of joint integration of GE and DM samples of four cancer datasets: COAD, 

LIHC, SARC, and SKCM.  (A-B) UMAP plots of the original data colored by omic (A) and 

by cancer type (B). (C-J) UMAP plots of the sample projections into the shared space by 

INTEND, LIGER, Seurat v3, and MMD-MA, colored by omic (C-F) and by cancer type (G-

J). (K-N) Confusion matrices for the classification of the DM sample projections into cancer 

types based on majority vote among the five nearest GE samples in the shared space. 
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3.3 Using INTEND to identify subtypes in skin cutaneous melanoma  

Clustering of single-omic cancer data is commonly used to identify subtypes. The quality of 

the clustering solution can be evaluated by the significance of separation in survival among 

subtypes. It has been observed that for certain cancer types, one omic may produce much better 

clustering than another. For example, Rappoport and Shamir (2018) benchmarked eight 

clustering algorithms on the TCGA SKCM data, and observed that GE profile clustering 

produced clusters with significant difference in survival in all algorithms, while in DM profile 

clustering only one algorithm showed such result. We hypothesized that in such cases, we could 

use INTEND to obtain GE predictions from the DM data, then jointly embed in the shared 

space the predictions and a set of GE profiles from the same cancer subtype, and achieve higher 

significance of separation in survival between clusters of the embedded predictions. 

We used a dataset of 473 SKCM samples from TCGA that had both GE and DM profiles. We 

created 30 random partitions of this set into two equal disjoint groups, and for each partition, 

we used the first group's DM profiles and the second's GE profiles. We used INTEND to obtain 

a predicted GE matrix (P) from the DM samples and then embed P jointly with the GE profiles. 

Call the embedded P data EP. For the training phase of INTEND model, we used samples from 

all TCGA datasets listed in Table 1 but excluded the SKCM dataset. 

We first clustered separately the original partitioned DM and GE data. We performed each 

clustering task using k-means (see Methods) after selecting the 2000 features with the highest 

variance and normalizing the features to have zero mean and a standard deviation of one (as in 

Rappoport and Shamir (2018)). We ran the algorithm for 𝑘 between 2 and 15, and selected the 

desired number of clusters using the “elbow method” (see Methods). We measured differential 

survival between clusters by computing the 𝑝-value for the log-rank test. We estimated the 𝑝-

values using permutation tests (48). As we hypothesized, in most cases, the clustering of the 
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GE data obtained more significant differential survival between clusters than the clustering of 

the DM data, with the log-rank 𝑝-value of the first being lower in 27 of the 30 partitions. 

Next, for each of the 30 partitions, we used INTEND’s joint embedding of the DM and GE 

samples to classify the DM samples based on the k-means clustering of the GE samples. Each 

DM sample was assigned by majority voting (with ties broken at random) to the cluster most 

represented among the five GE embeddings closest to its matching EP representation in the 

shared space. In 23 of the 30 splits, clustering the DM samples using this method obtained 

more significant differential survival than using the k-means clustering of the DM samples. 

The average log-rank 𝑝-values for the clusterings for all 30 random splits were: 0.07 for the 

GE k-means clustering, 0.56 for the DM k-means clustering, and 0.21 for the integration-based 

DM clustering, as described above. 

We further investigated one of the 23 partitions for which the integration-based DM clustering 

achieved more significant differential survival than the DM clustering. For that partition, the 

DM  clustering resulted in two clusters with insignificant differential survival (𝑝-value=0.978, 

Figure 8A), whereas the GE clustering resulted in two clusters with significant differential 

survival (𝑝-value=0.018, Figure 8B). The integration-based DM clustering also obtained 

significant differential survival between clusters (𝑝-value=0.036, Figure 8C). 

Next, we tested whether the subtypes obtained by the integration-based DM clustering were 

biologically or clinically more similar to those obtained by the GE k-means clustering. We 

found that primary tumor and metastases samples were represented in each of the DM k-means 

clusters exactly in their portion of all DM samples (18.26% of primary tumor samples in both 

clusters). By contrast, when looking at the GE clusters, the primary tumor samples were 

overrepresented in one cluster and underrepresented in the other (28.21% of primary tumor 

samples in the first cluster, 5.94% in the second, 17.89% in all GE samples). We observed a 

similar pattern in the integration-based DM clustering: 23.77% of primary tumor samples in 



37 
 

one cluster and 11.34% in the other (and 18.26% in all DM samples). This example shows the 

potential of transferring biological information between GE and DM samples measured on 

different populations, using INTEND’s integration. 

 

Figure 8. Kaplan-Meier plots of clusters of SKCM patients obtained using DM profiles, GE 

profiles, and their INTEND embeddings. (A) Plot for clusters of the original DM profiles. (B) 

Plot for clusters of the original GE profiles.  (C) Plot for clusters of the DM profiles obtained 

by the integration-based clustering. See Supplementary Figure 18A-E for the UMAP plots 

and the clusters. 

 

We also compared our results to iCluster, a widely used algorithm for multi-omic subtype 

identification  (9). Since iCluster requires multi-omic measurements from each sample, in order 

to make a fair comparison, we used the entire multi-omic SKCM TCGA dataset, which 

comprises GE and DM profiles from 473 samples. We used the same feature selection and 

normalization as we used for the k-means clustering. To determine the lower dimension of the 

data in iCluster, we used the dimension with maximal deviance ratio as defined by the authors. 

We ran iCluster for dimensions between 1 and 14, corresponding to the number of clusters 

between 2 and 15. We also ran that same procedure with k-means and INTEND, on the full set 

of 473 samples. Specifically, we clustered the 473 GE profiles using k-means and then obtained 

a clustering of the DM profiles based on the GE clustering, by assigning each DM profile to 

the cluster most represented amongst the five GE embeddings closest to its DM embedding. It 

is important to note that in that INTEND did not use the correspondence information between 

𝑝-value: 0.978 𝑝-value: 0.018 𝑝-value: 0.036 
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the GE and DM profiles, but only predicted the GE profiles from the DM profiles. Surprisingly, 

using INTEND’s joint embedding of the DM and GE samples to classify the DM samples based 

on the k-means clustering of the GE samples, achieved a significantly better separation of 

survival between clusters compared to the multi-omic clustering provided by iCluster. The log-

rank 𝑝-values for the clusterings were 0.39 for the DM k-means clustering, 0.0014 for the GE 

k-means clustering, 0.0062 for the integration-based DM clustering, and 0.14 for the iCluster 

multi-omic clustering. Therefore, our results suggest that our method outperforms iCluster in 

multi-omic subtype identification. 

3.4  Joint analysis of lung adenocarcinoma datasets from different sources 

Our next goal was to test the utility of INTEND in joint analysis of two datasets, one of DM 

profiles and one of GE profiles, coming from different sources. We used data from two studies 

of LUAD: GE of 172 tumor samples from Chen et al. (2020), and DM profiles of 477 samples 

from TCGA. The datasets were collected in different studies covering disjoint groups of LUAD 

patients. 

3.4.1 Integration  

For the training phase of the model, we used samples from all TCGA datasets listed in Table 

1 but excluded the LUAD dataset. The integration results are summarized in Figure 9A-B. As 

the two target datasets here are disjoint we cannot use FOSCTTM to evaluate their mixing in 

the embedding phase. As a sanity check, we considered for each sample its closest 32 neighbors 

(5% of the samples) in the shared space. We expected that if the local neighborhood of a sample 

is well mixed, the number of samples from each omic in the neighborhood would reflect the 

relative sizes of the target datasets. For each sample we measured the ratio between the 

observed and expected number of samples from the other omic in its neighborhood. If the omics 

are fully separated we would expect this ratio to be near zero, whereas for perfectly mixed 

samples we would expect it to be close to 1. The mean computed ratio for all samples in the 
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shared space was 1.003 (𝑆𝐷 = ±0.258), and the 𝐼𝑄𝑅 was 0.82 − 1.15, indicating well-mixed 

samples across omics. 

3.4.2 Correlations between methylation at specific sites and expression 

Next, we wished to test if INTEND application on the two datasets can be used to reveal 

connections between specific distal DM sites and the regulation of GE in LUAD tumors, even 

though the GE profiles and DM profiles used here were collected from disjoint sets of patients. 

For this task, we extracted the estimated correlations between methylation levels at specific 

CpG sites and the expression levels of specified genes as follows. 

We considered for every gene 𝑔, the methylation sites located within ±1Mb of 𝑔 (including 

sites in 𝑔). There was a total of approximately 10.14 million such gene-site pairs, for which the 

expression and methylation levels were measured, covering 18,553 different genes. Recall that 

INTEND model was trained using proximal sites located only within ±10Kb from each gene, 

while here we explore mostly distal methylation sites. To estimate the correlation between the 

methylation level at site 𝑠 and the expression level of gene 𝑔, we used INTEND projections to 

get matchings between GE and DM profiles from different patients. First, to match GE and 

DM profiles, we found the mutual nearest neighbors between the projections of all DM and GE 

samples in the shared space, using the batchelor R package (19). A pair of a GE profile 𝑒 and 

a DM profile 𝑚 was considered a match if the projection of 𝑚 was among the 𝑘-nearest 

neighbors of the projection of 𝑒 and vice versa (i.e. the projections of 𝑒 and 𝑚 are mutual k-

nearest neighbors). For 𝑘 = 5 we obtained 270 matches between GE and DM profiles (out of 

172 ⋅ 477 = 82,044 possible matches). The matches provided an expression vector of length 

270 for each gene 𝑔, and a corresponding vector of length 270 for each methylation site 𝑠, 

allowing the examination of the relationship between any gene and methylation site. Next, 

using the 270 matches, we computed the Pearson‘s correlation coefficient and tested the 
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statistical significance of the association between the expression level and the methylation level 

of each considered gene-site pair. 

We wished to assess the validity of the estimated correlations, based on the created 270 

matchings of GE and DM samples from the two LUAD datasets (from here on: “estimated 

correlations”).  We compared the estimations to the correlations obtained from 477 pairs of GE 

and DM profiles measured from the same tissue, from the multi-omic LUAD TCGA dataset. 

For each of the ~10M gene-site pairs previously described, we also computed the correlation 

between the expression of the gene and the methylation level of the relevant site, based on the 

multi-omic TCGA dataset (from here on: “TCGA-observed correlations”). Figure 9C shows 

for each gene-site pair the estimated correlation versus the TCGA-observed correlation. 

Approximately 5.08% of the considered gene-site pairs were detected with significant 

correlation (𝑝-value< 0.01), either positive or negative, according to both methods. For 

95.63% of these significant pairs, the estimated correlation coefficient had the same sign as the 

TCGA-observed correlation. We also tested for each of the considered genes, the correlation 

between the estimated correlation and the TCGA-observed correlation, for all sites relevant for 

that gene. Out of the 18,553 considered genes, there was a significant positive correlation 

between the estimated and TCGA-observed correlations (𝑝-value< 0.05) for 14,693 of the 

genes. The correlation between the estimated and TCGA-observed correlations was above 0.8 

for 1,041 of the genes, and above 0.9 for 180 of them (Figure 9D). This demonstrates the 

potential of INTEND integration method to uncover connections between DNA methylation 

and the regulation of gene expression, both for proximal and distal methylation sites. Repeating 

the same procedure with the integration results of LIGER, Seurat, and MMD-MA for the target 

LUAD datasets gave inferior results (Supplementary Table 3). 
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3.4.2.1 An in-depth look at the regulation of Thymidine Kinase 1  

We chose to look in detail at the distal methylation sites of the gene Thymidine Kinase 1 (TK1). 

High expression of TK1 was recorded in many solid tumors, and was associated specifically 

with poor prognosis of patients with LUAD (49–51). We computed the correlation between the 

methylation levels in 964 sites within 1Mb from TK1, and its expression level. The estimated 

correlations based on the matching of GE and DM profiles from INTEND projections were 

highly concordant with the correlations computed using the multi-omic TCGA dataset (𝑅2 =

0.824, Figure 9E). 

Methylation patterns in enhancer regions are known to be altered in cancer and are closely 

linked to changes in expression of cancer-related genes (36). Therefore, we checked if strong 

expression-methylation correlations extracted from INTEND projections can indicate potential 

distal enhancer regions. We used the GeneHancer database of enhancers and their inferred 

target genes (52) for information on TK1 enhancers. There were eight enhancer regions 

supported by at least four GH sources, seven of them within a 100Kb range from TK1. Figure 

9F shows the enhancer regions located ±100Kb from TK1, and the correlations between 

methylation and TK1 expression, for sites located in this range. 14 out of the 15 sites in this 

range with strong negative correlation (𝑝-value< 1e-5), are located in one of the documented 

enhancer regions. Note that all but two of them fall outside the ±10Kb used for the training 

phase. 

Out of the 964 sites in 1Mb range from TK1, we investigated the ten sites with the strongest 

negative estimated correlations (full details in Supplementary Table 4). Eight of them are 

located in two of the enhancer regions shown in Figure 9F (seven of them in a short interval 

of less than 500 bases). The other two sites, cg11868461 and cg05110391, are located 

approximately 350Kb downstream and 400kB upstream the TSS, respectively. They were not 

in one of the regions marked by GeneHancer as TK1 enhancers. Nevertheless, both 
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cg11868461 and cg05110391 were identified as “enhancer probes” (not specifically related to 

TK1) by Mullen et al. (2020), using H3K27ac ChIP-seq data from normal and tumor lung tissue 

samples to identify lung-relevant enhancer regions. 
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Figure 9. INTEND results on LUAD GE profiles from Chen et al. (2020) and DM profiles 

from TCGA. (A-B) UMAP plots of the original data (A) and of the projections into the shared 

space (B), colored by omic. (C) Scatterplot of the estimated correlations based on the matching 

of INTEND projections versus the observed correlations from the multi-omic TCGA dataset, 

for each of the considered 10.14 million gene-site pairs. The pairs for which the site is within 

10Kb from the gene are colored in orange. These gene-site pairs were considered in INTEND 

training phase on the TCGA datasets (excluding LUAD). (D) Histogram of the correlation 

between the estimated and TCGA-observed gene-site correlations, per gene. (E) Correlation 

coefficients between TK1 expression and methylation levels, at 964 sites located ±1Mb from 

TK1. Y axis: correlations when TK1 expression is based on INTEND projections; x axis: 

correlations when both the GE and the paired DM data were taken from TCGA. Correlations 

with 𝒑-value< 𝟏e-5 based on both methods are colored in dark blue (F) Estimated correlation 

coefficients based on INTEND projections in sites located ±100Kb from TK1. The x axis 

shows their genomic location (build GRCh37/hg19). Correlations with 𝒑-value< 𝟏e-5 are 

colored in dark blue, TK1 location is marked by the green arrow. The highlighted yellow 

regions indicate enhancer regions supported by at least four GeneHancer sources. 

 

4 Discussion 

We presented the INTEND algorithm for integrating gene expression and DNA methylation 

from different datasets. We tested it on multiple multi-omic cancer datasets and compared it 

with extant multi-omic integration algorithms. INTEND showed significantly superior results 

on all tested datasets when integrating data from single and multiple cancer types, both in terms 

of FOSCTTM score and in classification to cancer types according to the integration results. 

We demonstrated the potential of INTEND to transfer biological information between GE and 

DM samples measured on non-overlapping populations of skin cutaneous melanoma patients. 

Clustering DM samples achieved higher significance of separation in survival between clusters 

when using the integration results of the DM and GE data, than using the original DM data 

only. In another typical use case, we tested INTEND in joint analysis of two lung 

adenocarcinoma datasets from different sources. Here INTEND demonstrated its potential to 

uncover connections between DNA methylation and the regulation of gene expression. 
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INTEND’s novelty mainly resides in the incorporation of the prediction of a GE profile from 

a DM profile of a sample, into the MO/MD integration problem. Unlike algorithms such as 

LIGER and Seurat, which were developed mainly to solve the SO/MD problem and then were 

extended to solve the MO/MD problem, INTEND suggests another method to generate the 

correspondence information between features – a paramount part for the integration. INTEND 

presents a data-driven approach to generate a predicted GE matrix, thus effectively reducing 

the MO/MD problem of integrating GE and DM profiles to the simpler SO/MD problem of 

integrating multiple GE datasets. Importantly, the data necessary for the training phase of 

INTEND can represent different populations than the data used for the embedding phase. In all 

cases presented in this paper, the used training data originated from samples from other cancer 

types than represented in the target datasets for integration. It is important to note that the goal 

of INTEND is not to predict expression from methylation for individual genes, but rather to 

enable integrated analysis. In the embedding phase, INTEND uses prediction data for a selected 

set of genes. Although only a small portion of the genes is selected, the integrated analysis 

allows the examination of the relationship between any gene and methylation site, as we 

demonstrated in the lung cancer analysis. 

INTEND has several limitations. First, the training phase requires multi-omic data measured 

on the same set of samples, which is not required for the other algorithms we tested. While the 

training data is not required to be from a similar population to the target data, it is necessary 

that the omics will be measured in the same method on the train and target datasets. Obtaining 

multi-omic measurements may be harder in several scenarios, e.g. single-cell multi-omic data. 

Due to the lack of appropriate single-cell training data, we applied INTEND only on bulk data, 

which may bias the comparison against single-cell integration methods.  Further testing would 

be needed as such data emerges. Second, the final step in the embedding, applying CCA, may 

be less effective when the target datasets contain non-overlapping sample populations (e.g. 
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when one of the target datasets contains a group of samples from a cancer type which is not 

present in the second). Stuart et al. 2019 addressed this limitation of using CCA as a final step 

and introduced a method to overcome it, using the concept of mutual nearest neighbors to 

identify anchors between the target datasets. 

Lastly, we note two possible directions of extending this work. The first is the integration of 

other pairs of omics, in addition to GE and DM, in a similar method. Here we used an 

established, simple biological observation, namely the relation between the state of proximal 

methylation sites to the gene’s expression, to build a model and uncover the connections 

between GE and DM based on available multi-omic data. This concept may be extended to 

other pairs of omics with available data measuring both on the same set of samples. Another 

future research direction is the incorporation of methods from algorithms tackling the SO/MD 

integration problem, after the first step in INTEND’s embedding phase, which results in the 

predicted GE matrix. 
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Supplementary Information 

Data Collection 

The genes’ coordinates used in the training phase were taken from the GRCh37/hg19 assembly 

(54). The data was downloaded from the UCSC Genome Browser (55) from the following 

URL: https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.refGene.gtf.gz. 

Build version 37 of the assembly was used to match the genome coordinates in the methylation 

probes manifest file. 

The methylation data we used was measured using Infinium HumanMethylation450 v1.2 

BeadChip by Illumina. The genome mapping information of the methylation probes was 

downloaded from Illumina’s website (ftp://webdata2:webdata2@ussd-ftp.illumina.com/

downloads/ProductFiles/HumanMethylation450/HumanMethylation450_15017482_v1-

2.csv). 

The TCGA data was downloaded using the TCGA-Assembler software (42, 43). The DNA 

methylation data was downloaded using the ‘DownloadMethylationData’ function. The RNA-

seq data was downloaded with the ‘DownloadRNASeqData’ function, setting the 

‘assayPlatform’ parameter to ‘gene.normalized_RNAseq’. 

The additional LUAD dataset (45) was downloaded from OncoSG, the Singapore Oncology 

Data Portal (https://src.gisapps.org/OncoSG/), under ‘Lung Adenocarcinoma (GIS, 2019)’. 

 

 

Correspondence information between features  

Some of the tested multi-omic integration algorithms require correspondence information 

between the features across omics. LIGER and Seurat assume that the input matrices to be 

https://hgdownload.soe.ucsc.edu/‌goldenPath/‌hg19/‌bigZips/‌genes/‌hg19.refGene.gtf.gz
ftp://webdata2:webdata2@ussd-ftp.illumina.com/‌downloads/‌ProductFiles/‌HumanMethylation450/‌HumanMethylation450_15017482_v1-2.csv
ftp://webdata2:webdata2@ussd-ftp.illumina.com/‌downloads/‌ProductFiles/‌HumanMethylation450/‌HumanMethylation450_15017482_v1-2.csv
ftp://webdata2:webdata2@ussd-ftp.illumina.com/‌downloads/‌ProductFiles/‌HumanMethylation450/‌HumanMethylation450_15017482_v1-2.csv
https://src.gisapps.org/OncoSG/
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integrated share the same set of features. When these methods were previously used to integrate 

scRNA-seq and methylation (LIGER) or scATAC-seq (Seurat) data, the input from the latter 

omic was converted to a matrix with gene-level features. The new features were expected to 

correspond to the GE features. 

To summarize gene-level methylation, we used the annotations of methylation sites into six 

possible regions: TSS1500 (201-1500 bps upstream of the transcription start site(TSS)), 

TSS200 (0-200 bps upstream of the TSS), 5’UTR (untranslated region), 1stExon, Body, and 

3’UTR. The HumanMethylation450 BeadChip annotations were taken from Ilumina 

(https://support.illumina.com/downloads/humanmethylation450_15017482_v1-

2_product_files.html). Of those, we used the sites in the TSS1500, TSS200, 5’UTR and 

1stExon regions. We chose these regions as they showed anticorrelation with GE on the TCGA 

data (Supplementary Figure 4). This matched previous reports on anti-correlation between 

DM levels in the promoter region and the gene’s expression level (30). The final gene-level 

summary was minus the average methylation signal in those regions. 

 

 

  

https://support.illumina.com/downloads/‌humanmethylation450‌_15017482_v1-2_product_files.html
https://support.illumina.com/downloads/‌humanmethylation450‌_15017482_v1-2_product_files.html
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Benchmark Methods and Software 

All experiments ran on R-4.0.1 (and python 3.8.0 for MMD-MA). For all methods, we 

followed the usage guidelines supplied by the creators. The preprocessing steps described in 

section 2.2.3 were applied to the input GE and DM data for all algorithms used in the 

benchmark. 

LIGER 

Implementation: We used the ‘rliger’ R package, version 0.5.0. The methods referred to in 

the following subsection were supplied by this package. We followed LIGER guidelines for 

integrating GE and DM data (https://welch-lab.github.io/liger/rna-methylation.html). 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to 

the input GE and DM matrices. The aggregated gene-level methylation (described above in 

this supplement) was used as the methylation input for LIGER. The GE data was normalized 

and scaled using the normalize and scaleNotCenter methods. The DM input was not normalized 

and scaled as suggested by the guidelines. 

Feature selection: The genes were selected using the selectGenes method when considering 

only the GE data, as suggested by the guidelines. This method selects the variable genes by 

comparing the variance of each gene’s expression to its mean expression. 

Execution details: The default settings were used in the factorization and quantile 

normalizations phases of LIGER. As suggested by the guidelines, the quantileAlignSNF 

method was used with center=T, considering the density of the methylation data. The 

factorization was done with k (the number of factors) between 2 and 40, resulting in data 

projections in 2 to 40 dimensions. 

https://welch-lab.github.io/liger/rna-methylation.html
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Seurat v3 

Implementation: We used the ‘Seurat’ R package, version 3.2.3. The methods referred to in 

the following subsection were supplied by this package. We followed Seurat guidelines for 

integration and label transfer (https://satijalab.org/seurat/archive/v3.2/integration.html). 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to 

the input GE and DM matrices. The aggregated gene-level methylation (described above in 

this supplement) was used as the methylation input for Seurat. The GE data was normalized 

using the NormalizeData method with the relative count normalization method. This step is not 

documented in the guidelines but empirically improved the results in all tested cases. 

Feature selection: The genes were selected using the FindVariableFeatures method with the 

default parameters and selection method. 

Execution details: The default settings were used. In the step of identifying anchors (using 

FindIntegrationAnchors), we used 30 neighbors when filtering the anchors (k.filter=30). We 

ran the algorithm with all possible dimensions between 2 and 40. 

JLMA 

Implementation: We used our implementation based on the JLMA paper, as we didn’t find an 

R package implementing JLMA. The implementation code is part of the INTEND project on 

GitHub. 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to 

the input GE and DM matrices. The aggregated gene-level methylation (described above in 

this supplement) was used as the methylation input for JLMA. 

Feature selection: We selected the 𝑛 genes with the highest variance in expression for 𝑛 =

500 and 2000 (the algorithm ran in two variants). We scaled the inputs such that each feature 

(gene) had zero mean and unit variance. 

https://satijalab.org/seurat/archive/v3.2/integration.html
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Execution details: As mentioned in subsection 2.2.4, we computed the cross-omic similarity 

matrix for JLMA based on the aggregated gene-level methylation matrix. We used the hyper-

parameter 𝜇 = 1. 

MMD-MA 

Implementation: The algorithm’s source code was downloaded from 

https://noble.gs.washington.edu/proj/mmd-ma/. We made minor changes in the source code to 

allow us to run the algorithm for the desired dimensions. 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to 

the input GE and DM matrices. As mentioned in subsection 2.2.4, we ran MMD-MA with both 

the original methylation data and the aggregated gene-level methylation (described above in 

this supplement) as inputs. 

Feature selection: When using the original methylation data, no feature selection method was 

applied before computing the inter-similarity matrices for the GE and DM inputs. When 

running MMD-MA with the gene-level methylation data, we selected the 𝑛 genes with the 

highest variance in expression for 𝑛 = 500 and 2000 (the algorithm ran in two variants). In 

this case, we scaled the inputs such that each feature (gene) had zero mean and unit variance. 

Execution details: We ran MMD-MA with dimensions 2,10,20,30, 40. We did not run it for 

all possible dimensions between 2 and 40 due to long running times. 

CCA optimization problem solution 

To solve the optimization problem in equation (3), we use the Lagrange multipliers method. 

We denote 𝐾 = 𝑋𝑇𝑌. Let: 

Differentiating 𝐿 with respect to 𝑢 and 𝑣 gives: 

𝐿 = 𝑢𝑇𝐾𝑣 −
𝜆1

2
(𝑢𝑇𝑢 − 1) −

𝜆2

2
(𝑣𝑇𝑣 − 1) (1) 

https://noble.gs.washington.edu/proj/mmd-ma/
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Left-multiplying (6) and (7) by 𝑢𝑇 and 𝑣𝑇 respectively, and using the constraints ‖𝑢‖2
2 = 1 

and ‖𝑣‖2
2 = 1: 

Thus 𝑢 and 𝑣 are the left and right unit singular vectors of 𝐾 with singular value 𝜆 = 𝜆1 = 𝜆2. 

Since the objective is to maximize 𝑢𝑇𝐾𝑣, then 𝑢1, 𝑣1 are the left and right unit singular vectors 

of 𝐾 with the greatest singular value. We claim that ∀𝑖 ∈ {1, … , 𝑑}, 𝑢𝑖 and 𝑣𝑖 are the left and 

right unit singular vectors of 𝐾 with the 𝑖𝑡ℎ greatest singular value. Let 𝑢𝑖 and 𝑣𝑖 be the 𝑖𝑡ℎ unit 

singular vectors of 𝐾. Then we showed that (𝑢𝑖, 𝑣𝑖) maximizes over all 𝑢 ∈ ℝ𝑛𝐸  , 𝑣 ∈ ℝ𝑛𝑀, the 

correlation between 𝑋𝑢 and 𝑌𝑣. As 𝑢𝑖
𝑇𝑢𝑗 = 𝑣𝑖

𝑇𝑣𝑗 = 0 for 𝑗 < 𝑖, and we assumed that 𝑋𝑇𝑋 and 

𝑌𝑇𝑌 are diagonal, then 𝐶𝑜𝑟(𝑋𝑢𝑖 , 𝑋𝑢𝑗) = 𝐶𝑜𝑟(𝑌𝑣𝑖 , 𝑌𝑣𝑗) = 0 for 𝑗 < 𝑖. Hence the optimal 

canonical-correlation vectors can be obtained by SVD of 𝐾 = 𝑋𝑇𝑌. We denote 𝑈 =

(𝑢1, 𝑢2, … , 𝑢𝑑) ∈ ℝ𝑛𝐸×𝑑 and 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑑) ∈ ℝ𝑛𝑀×𝑑 where 𝑢𝑖  𝑎𝑛𝑑 𝑣𝑖 are the 𝑖-th left 

and right singular vectors, respectively. The output of this step is the matrix 𝑆 = [𝑈𝑇 𝑉𝑇], of 

dimensions 𝑑 × (𝑛𝐸 + 𝑛𝑀), containing the embeddings of samples from both target sets in the 

shared 𝑑-dimensional space. 

 

𝛿𝐿

𝛿𝑢
= 𝐾𝑣 − 𝜆1𝑢 = 0 →  𝐾𝑣 = 𝜆1𝑢 (2) 

𝛿𝐿

𝛿𝑣
= 𝐾𝑇𝑢 − 𝜆2𝑣 = 0 → 𝐾𝑇𝑢 = 𝜆2𝑣 (3) 

𝜆1 = 𝑢𝑇𝐾𝑣 = 𝑣𝑇𝐾𝑇𝑢 = 𝜆2 (4) 
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Supplementary Tables 

Supplementary Table 1. Number of features and samples in each TCGA dataset before and 

after the handling of missing values 

Dataset 

Number of samples Number of features 

Gene 

expression 

DNA 

methylation 

Gene 

expression 

DNA 

methylation 

Before After Before After Before After Before After 

AML 173 173 194 194 20530 20530 526729 432429 

BLCA 427 427 440 440 20530 20530 526729 431716 

COAD 328 328 353 353 20530 20530 526729 431308 

LGG 534 534 534 534 20530 20530 526729 431991 

LIHC 424 424 430 430 20530 20530 526729 430791 

LUAD 576 576 507 507 20530 20530 526729 431486 

PAAD 183 183 195 195 20530 20530 526729 428806 

PRAD 550 550 553 553 20530 20530 526729 432201 

SARC 265 265 269 269 20530 20530 526729 428486 

SKCM 473 473 475 475 20530 20530 526729 430579 

THCA 572 572 571 571 20530 20530 526729 432307 
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Supplementary Table 2. Average FOSCTTM score for INTEND with and without applying 

CCA at the end of the embedding phase. When running with CCA the requested shared space 

dimension 𝒅 ranges from 2 to 40, and the presented score is the best across all values of 𝒅. The 

optimal 𝒅 is written in parentheses. When running without CCA the dimension is the size of 

the selected gene set. The set size is written in parentheses.  

Dataset INTEND – with CCA INTEND – without CCA 

AML 2.416 (25) 5.184 (191) 

BLCA 0.040 (39) 0.857 (362) 

COAD 0.025 (37) 1.361 (297) 

LGG 6.815 (22) 10.072 (222) 

LIHC 0.139 (36) 1.088 (339) 

LUAD 0.062 (32) 0.892 (359) 

PAAD 0.546 (30) 4.781 (362) 

PRAD 0.374 (38) 1.843 (295) 

SARC 0.052 (35) 0.616 (382) 

SKCM 0.027 (39) 1.043 (379) 

THCA 3.073 (11) 5.849 (264) 

 

  



60 
 

Supplementary Table 3. Comparison of correlation extraction from LUAD dataset integration 

results. The procedure described in section 3.4.2 was repeated with the integration results of 

INTEND, LIGER, Seurat and MMD-MA. The number of mutual nearest neighbors used was 

270, 142, 61, and 231, respectively. The analysis presented in the table included approx. 2.5 

million gene-site pairs that had significant TCGA-observed correlation (p-value<0.01). We 

tested the percentage of these pairs that were detected with significant estimated correlation (p-

value<0.01), the percentage of these pairs with the same correlation sign of estimated and 

TCGA-observed correlations, and the 𝑹𝟐 for the correlation between estimated and TCGA-

observed correlations. 

Algorithm INTEND LIGER Seurat 
MMD-

MA 

% of gene-site pairs with estimated 

significant correlation (p-value<0.01) 
20.17 3.78 5.12 17.45 

% of gene-site pairs with estimated and 

TCGA-observed correlation with same 

correlation sign 

74.51 47.29 52.08 56.73 

𝑅2 for the correlation between estimated 

and TCGA-observed correlation 
0.374 0.015 0.003 0.061 

 

Supplementary Table 4. Top ten methylation sites with the strongest negative estimated 

correlations out of the 964 sites in 1Mb range from TK1 

Methylation site 
Location on chromosome 

17 (build GRCh37/hg19) 

Correlation coefficient 

estimation 

cg11868461 75830800 -0.5181234 

cg06643271 76128170 -0.5016554 

cg24988684 76128556 -0.4887382 

cg10460946 76247467 -0.4631925 

cg11493223 76128522 -0.4516062 

cg02911077 76128621 -0.4396759 

cg18901278 76128531 -0.4280529 

cg04947157 76128481 -0.4135805 

cg03742808 76128634 -0.4130168 

cg05110391 76588634 -0.4063449 
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Supplementary Figures 

 

 

Supplementary Figure 1 

Histogram of the number of methylation sites per gene. Average: 25.22, median: 19, 

interquantile range (𝐼𝑄𝑅): 12-30. The maximum number of methylation sites per gene was 

1055 (outside the plot axis limits). 

  



62 
 

 

Supplementary Figure 2 

Histogram of the number of methylation sites per gene in the model after Lasso shrinkage on 

the TCGA data. The model was trained on ten cancer subtypes data from TCGA: AML, BLCA, 

COAD, LGG, LIHC, PAAD, PRAD, SARC, SKCM, and THCA. Average: 20.93, median: 16, 

interquantile range (𝐼𝑄𝑅): 10-26. The maximum number of methylation sites per gene was 424 

(outside the plot axis limits). 

  

  



63 
 

 

 

Supplementary Figure 3 

Histograms of 𝑅2 values between predicted and observed gene expression, when training on 

GE and DM data of 10 cancer subtypes from TCGA (the datasets listed in Table 1, excluding 

LUAD), covering 3852 tumor samples. (A) All 19143 genes, (B) The 2000 genes with the 

highest 𝑅2. 

  

A B 
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A 

 

B 

 

Supplementary Figure 4: Correlation between gene expression and DNA methylation 

levels in different genomic regions 

Correlations were measured for genes that had both expression and methylation data in the 

specified region of the gene. Data included samples from eleven cancer types from the TCGA 

database (Table 1). The horizontal line in each violin plot is the mean correlation for the region, 

and the black dashed line shows a correlation of zero. (A) Summary over all subtypes, (B) 

Results for each subtype separately. The mean correlation for TSS1500, TSS200, 5’UTR, and 

1stExon is < −0.04 for every subtype, and < −0.065 on average across subtypes. The Body 

regions exhibit a positive mean correlation for one subtype (BLCA), and 3’UTR for seven. 
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Supplementary Figure 5: Performance of the algorithms as a function of the projected 

dimension on eleven TCGA cancer datasets. Average FOSCTTM score versus the shared 

space dimension. The numbers 500 and 2000 in parenthesis denote the number of selected 

genes in the WFCI runs of MMD-MA and JLMA. The results of MMD-MA include only 𝒅 =

𝟐, 𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, due to the long runtime of the algorithm. 
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Supplementary Figure 6. The integration of gene expression and DNA methylation samples 

from the COAD dataset – results for JLMA and MMD-MA algorithms 

(A) UMAP plots of the original data colored by omic. 

(B) UMAP plots of the original data. To appreciate concordance between omics, ten samples 

were randomly chosen, and their matching points in both omics are labeled and colored by 

omic. 

(C-J) UMAP plots of the samples after they were projected to a shared space by each algorithm, 

with a set of selected genes of size 500 and 2000. The samples are colored by omic (C-F) and 

the projection of the points from (B) are labeled in (G-J). 
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Supplementary Figures 7-16. Results of integration of GE and DM samples from all TCGA 

datasets listed in Table 1, excluding COAD. (A) UMAP plots of the original data.  (B) The 

same plots as in A. To appreciate concordance between omics, ten samples were randomly 

selected, and their matching points in both omics were labeled. (C-F) UMAP plots of the 

samples after they were projected to a shared space by each algorithm. (G-J) The same plots as 

in C-F with the selected points labeled.  In all plots colors correspond to omics. 

AML 
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Supplementary Figure 17. FOSCTTM scores of the integration of four cancer datasets: 

COAD, LIHC, SARC and SKCM, simultaneously, by INTEND, LIGER, Seurat v3, and 

MMD-MA. 

 

 



79 
 

 

Supplementary Figure 18. SKCM clustering 

(A) UMAP plots of each original omic data. 

(B) UMAP plot of INTEND sample projections into the shared space colored by omic 

(C) k-means clustering of the original DM samples with 𝑘 = 2, shown on the same plot as in (A). 

Samples are colored according to their clusters. 

(D) k-means clustering of the original GE samples with 𝑘 = 2, shown on the same plot as in (A). 

Samples are colored according to their clusters. 

(E) Integration-based clustering of the methylation sample embeddings into the shared space (EP, 

the pink points in (B)), shown on the same plot as in (B). Samples are colored according to their 

assigned cluster from (D). Each sample was assigned by majority voting to the cluster most 

represented among the five GE embeddings closest to its matching EP representation in the shared 

space. 

(F) The total within-cluster sum of squares versus the number of clusters, for clustering DM data. 

(G) The total within-cluster sum of squares versus the number of clusters, for clustering GE data. 

The points with the maximum curvature are highlighted in red. 

  



80 
 

 תקציר 

נתונים   מערכי  של  אינטגרטיבי  גנומי  multi-omic)  אומיקים-מרוביניתוח  מידע  המכילים  סוגים  נרחב  ,  ממספר 

אומיקים  -רפואה מותאמת אישית. עם זאת, השגת נתונים מרוביבשונים( הוכח כבעל ערך רב במיוחד בחקר הסרטן ו

של מספר מערכי נתונים ממספר אומיקים    . אינטגרציהכרוכה בקשיים רביםשמקורם באותן דגימות לעיתים קרובות  

 .כדי להתמודד עם הבעיה אלגוריתמיםמצומצם של מספר רק  ועד כה פותחשונים עודנה מהווה אתגר, 

(, אלגוריתם IntegratioN of Transcriptomic and EpigeNomic Data)   INTENDבמסגרת עבודה זו, פותח  

חדשני לאינטגרציה של נתוני ביטוי גנים ומתילציה של דנ"א שמקורם בקבוצות זרות של דגימות. בכדי לאפשר את 

אומיקים  -, ע"י אימון על נתונים מרוביעל בסיס מתילצית דנ"א לומד מודל חיזוי לביטוי גנים  INTENDהאינטגרציה,  

  אשר מקיפים סוגי סרטן שונים ו 11-שמקורם בעל מערכי נתונים שנמדדו על אותה קבוצת דגימות. בבדיקה מקיפה 

שיג תוצאות טובות באופן משמעותי בהשוואה לארבעה אלגוריתמי אינטגרציה מתקדמים  ה  INTENDחולים,    4329

בניתוח    ביטוי גניםובקרת  לחשוף קשרים בין מתילצית דנ"א    INTENDאחרים. בעבודה זו מודגמת גם היכולת של 

של מאגר מידע    –( ממקורות שונים  lung adenocarcinomaשל סרטן ריאות )מידע    ימאגר שני  של    אינגרטיבי

עוצמה לניתוח -רב  לכלי  והופכת אות  INTENDמתילציה ומאגר מידע של ביטוי גנים. הגישה מוכוונת הנתונים של  

 אומיקים. -אינטגרטיבי של מידע מרובה
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