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Abstract

The volume of high-throughput sequencing data is constantly growing, and new
sequencing technologies such as long-read sequencing and new data types such as
metagenomic sequencing are frequently introduced. As a result, constant computa-
tional innovation is needed to improve or modify basic processing steps such as read
assembly and alignment in order to handle new types of data while also improving
runtime and memory efficiency. In this thesis I present our work contributing to
this challenge. First, we introduced the notion of the Universal Hitting Set (UHS),
a compact set of k-mers that can be used to efficiently represent longer sequences.
This set can be used to define a low density seed selection scheme that could im-
prove the memory efficiency of a large range of basic sequence processing tasks. We
developed a new heuristic for constructing compact UHS, and showed its advan-
tage over extant approaches. Second, we developed methods to enable the assembly
of complete plasmid sequences from metagenomic sequencing experiments. This
required us to develop a better plasmid sequence classifier, and to incorporate back-
ground biological knowledge in an efficient manner to limit false positive assemblies.
The resulting tools enable microbiologists to study the genetic content, population

structure and ecology in plasmids across metagenomic samples.
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Chapter 1

Introduction

The analysis of high-throughput sequencing data has enabled a rapid increase in
biological discovery [52, 118, 14, 76]. Due to large and increasing data volumes from
high-throughput sequencing, computational analyses have become more challenging
and must be more memory and runtime efficient. The challenges are compounded
by ever-advancing technologies and the new analyses that they enable. For exam-
ple, third-generation long-reads [65], high throughput single-cell sequencing [37],
hi-C [10], and optical mapping [132] are new high throughput sequencing methods
and technologies. These high throughput technologies allow scientists to interrogate
not just the genome sequence and RNA expression but also the 3D structure of the
genome [13], the community structure of diverse and complex microbiomes [138],
epigenetic interactions and regulation [40, 44], cell sub-types [125, 122], trajectories
of gene expression programs in cells throughout their lifespan [16] and endless other

biological questions.

The ability to analyse ever-growing sequencing data has depended on theoreti-
cal algorithmic advances going back decades. Some notable advances on this front
were the introduction of the suffix array [70] and Burrows Wheeler Transform [57]
for indexing and alignment, BLAST [1] for local alignment, Bloom filters [12] for
approximate k-mer set containment queries [117], the de Bruijn graph for assem-
bly [94], minimizer sequence sketches [102], and MinHash for approximate sequence
matching [87], among many others. The latest generation of sequence analysis tools

have built on even more complex algorithmic work.

In addition to the introduction of elegant theoretical algorithms and data struc-
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tures, advances in high-throughput analysis have depended on good software engi-
neering, effective heuristics, and implementation tricks and details that squeeze ever
more computational efficiency out of these methods. Molecular biology, with more
exceptions than rules [53], complicates matters further. Effective tools may have
to leverage prior biological knowledge and models, messy or ad hoc heuristics, and

special cases on top of any algorithmic advances.

In this thesis I present my work on both fronts — basic theoretical advances that
improve the computational efficiency and performance of sequence analysis tools,
and efficient implementations of bioinformatics tools for plasmid reconstruction that
leverage biological knowledge to increase effectiveness. In the first case, we worked
on the universal hitting set (UHS) problem, developed an algorithm, DOCKS, that
solves it heuristically, and used UHS produced by DOCKS to create k-mer selection
schemes with lower density than other minimizer schemes. In the second case, I
worked on plasmid sequence classification and reconstruction in metagenomic sam-
ples. I introduced the PlasClass classifier and the SCAPP plasmid assembler, which

leverages prior knowledge of plasmid biology to be more effective.

In the following sections in the introduction I provide the necessary background
and definitions on the topics of efficient k-mer selection, classification of metage-
nomic sequences, and plasmid reconstruction. The subsequent chapters of the thesis
present my papers listed in the last section of the introduction. The final chapter
of the thesis offers a discussion of the papers, their impact, and possible future

directions.

1.1 k-mer selection schemes

1.1.1 Background

A k-mer in a sequence S over an alphabet X is a consecutive substring of S of length
k (in our case the nucleotide alphabet A,C,G,T). S can be represented by all of
its overlapping k-mers: S1...Sk, S2...5k41; -y S|S|—k41---5)s]-

A k-mer selection scheme is a function that selects a subset of the positions in
a sequence: f(S): X* — P({1,...,|S| — k 4+ 1}), where P represents the powerset.

In most cases the identity of the k-mer at a selected index is also of interest, and
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the scheme can be defined: f;(S) : ¥* — {(i,8)}, i € {1,...,|S| —k+1},s € X*. In
some cases, when the selected k-mers are used as a hash of S, only the identity of
the selected k-mers matters: fi,(S) : ©* — ¥*. In practice, for the DNA alphabet it
is often desirable to treat a sequence and its reverse complement as a single entity,
thus canonical k-mers, that represent each k-mer by the minimum of itself and its
reverse complement are considered. For k-mer x with reverse complement z and
order over the k-mers o, Canonical(x) = min,{x,z}, i.e. the minimum of the two

under a k-mer order o.

I will explain key properties of selection schemes using two simple examples.
A very simple selection scheme is fr(S) = {(4,S;..Sitx-1)]7 mod m = 0}, i.e. to
select every m-th position. The scheme has a window guarantee, meaning that
any sequence of w consecutive k-mers, for some fixed w (in this case w = m), is
guaranteed to contain a selected index. Note that the final kK — 1 positions cannot be
selected as they do not start a full k-mer. This scheme has density = 1/m, meaning
that on average one index is selected from every m positions. This is the minimal
density possible for a scheme with a window guarantee of length m. However, this
scheme is lacking the key property of consistency: two nearly identical sequences
may have completely different A-mers selected. For example S5...S|g will have a
non-overlapping set of k-mers selected from it even though it is a substring of S,
sharing identical sequence except for the first position of S. In almost all applications

consistency is a necessary property of a selection scheme.

Another simple scheme is: fi(S) = {(7, S;..Sitk—1)|h(Si..Sizx—1) < H/d} for a
given 0 < ¢ < 1, and hash function h : ¥* — [0, H], § is called the compression
rate. Note that the compression rate is the inverse of density; in expectation over
an infinitely long random sequence 1/§ of the positions will be selected. However,
this scheme does not have a window guarantee and arbitrarily long sequences may
contain no selected k-mer. This scheme is local (referred to as “l-local” in [112]),
meaning that only the identity of the k-mer itself determines whether it is selected.
Non-local schemes select k-mers as a function of their sequence context. In the
first example scheme above, the positions selected depend on the entire sequence,
as would be the case a scheme that selects k-mers based on their frequency in the
sequence, for example. A w-local scheme selects k-mers as a function of a sequence
context of w k-mers. For example, a scheme that yields a window guarantee for
length w may select a k-mer from a window of w k-mers depending on the contents

of that window. As a 1-local scheme, the current example has better conservation
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than a scheme that selects k-mers based on a longer window in which they appear.
This means that selected k-mers are more likely to be conserved under mutation
of the sequence (or sequencing errors). Specifically, a mutation anywhere in the
w-long window may change the k-mer selected by a w-local scheme, while in the
1-local scheme, the selected k-mer will be conserved unless the mutation appears in

it, which is less likely.

Selection schemes have many practical applications. They can be used to select
seeds from a sequence for indexing [129, 128, 75] and alignment [91, 112, 108, 48, 61],
as a hash of their underlying sequence (e.g. for sequence binning [22, 32, 35, 28, 63,
86, 75] or locality sensitive hashing [47]), to sparsify the sequence [30, 128, 99], or
as a sequence sketch [47]. (Sketching is a broader topic. For a practical review of
sequence sketching see [106] and for a review of sketching and other related methods
see [74]) In the following subsections I introduce some practical selection schemes

and their applications.

1.1.2 Minimizer schemes

The most commonly used sequence selection schemes in computational biology ap-
plications are minimizer schemes. Minimizers were first defined by Schleimer et al.
[109], for the purpose of plagiarism detection (they refer to their scheme as the win-
nowing algorithm). They were introduced into bioinformatics by Roberts et al. [102]
as a method to find similar sequences. A minimizer scheme selects the minimum
k-mer from every window of w contiguous k-mers in a sequence according to some

order, o, over the k-mers. An example minimizer scheme is shown in Figure 1.1.

Minimizers have a window guarantee for windows of length w by construction
and are w-local. Because the minimum k-mer is likely to be maintained across
multiple overlapping windows, minimizer schemes have relatively low density. The
expected density was approximated to be 2/(w++1) [102], but the assumptions of this
approximation do not always hold and lexicographic orders achieve slightly higher
expected density [73]. In practice, nucleotides are not randomly distributed in real
genetic sequences, and minimizer schemes using a random ordering of the k-mers
have much better density on actual sequences than the lexicographic order [73].
Some works have attempted to improve the performance of the lexicographic order

by re-ordering certain k-mers [102, 28]. In Marcais et al. [73] we built on the selection
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12#15%78%10111213
CCAGTGTTTACGSG
CCAGTGTTTACGG
CCAGTGTTTACGG
CCAGTG|TTTAZCG G|
CCAGT|GTTTAC G|G
CCAGITGTTTAGC|GG
CCA|[GTGTTT A|C GG
CCIAGTGTTT|ACGG
clcAGTGT T T[T ACGG®G
ICCAGTGT|[TTACGSG®

Figure 1.1: Minimizer schemes. An example minimizer scheme with w = 3, k = 5,
and lexicographic ordering. All overlapping windows of 3 5-mers are shown. The
minimizer is the least (lexicographically smallest) 5-mer in every window, highlighted
in yellow. Selected positions are marked in red in the underlying sequence at the
top. Note that for simplicity, only k-mers on the forward strand are considered in
this example. Source: [91].

scheme introduced in the first paper included in this thesis [88] to define a minimizer
scheme with expected density 2(1 — SP(U))/(w + 1), where U is the scheme and
SP(U) denotes the sparsity, or fraction of all possible w + 1 long windows that
contain more than one k-mer selected by Y. In practice this minimizer scheme also
has lower density on real genomic sequences than minimizers with random ordering.
Other works have used the k-mer frequency in a specific sequence or sample to define
the minimizer order [49, 22] although the density of these minimizer schemes was

not explored.

1.1.3 Universal hitting sets

The universal hitting set problem, introduced in the first paper of this thesis [88],
seeks a minimal sized subset of k-mers Uy, 1, C ¥* such that every sequence of length
L contains at least one k-mer from Uy, . Any set Uy, 1, of k-mers hitting all L-long
sequence is known as a universal hitting set, abbreviated UHS. There is no known

efficient general construction for a UHS of optimal size, and in [88] we proposed a
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heuristic algorithm, named DOCKS, to construct a small UHS for given k& and L.

A selection scheme that selects k-mers from a UHS U} ; will have a window
guarantee for windows of length w = L —k+ 1, and will have low expected density if
the UHS is small. Simply selecting every k-mer from U}, ;, yields a 1-local scheme. A
lower density could be achieved by assigning an order over k-mers in U}, ;, and only
picking the minimum element from U}, ;, in every window of length w = L — k + 1.
The expected density and improvement in actual density on real genomic sequences

from this minimizer order were shown in [73] and discussed above.

1.1.4 Other selection schemes

Other selection schemes have been introduced in addition to those mentioned thus
far. In this section I will briefly describe some of them, with more detail on methods

I contributed to that are not included in the papers in this thesis.

Syncmers [29] are a 1-local scheme that selects k-mers that have their s-long
minimizer (for s < k) at a specific position. Open syncmers have a single position
at which the s-minimizer may appear and closed syncmers select a k-mer if its s-
minimizer is in the first or last position. An example syncmer scheme is shown in
Figure 1.2. As a 1-local scheme, syncmers have better conservation than minimizers
and thus may be better suited to tasks such as sequence-to-sequence alignment be-
tween species or strains under mutation, or error-prone long-read mapping. Closed
syncmers have a window guarantee with w = k — s, as the s-minimizer of a sequence
of k — s k-mers must appear as the first or last k-mer of one of them. Shaw and
Yu [112] developed a theoretical framework to analyse the conservation of syncmers
and implemented open syncmers in the minimap2 [61] read mapper. We generalized
the notion of syncmers to k-mers with s-minimizer occurring in one of a set of ar-
bitrary positions, named a parameterized syncmer scheme (PSS) [91]. We extended
the theoretical analysis to the distribution of conserved k-mers selected by a PSS to
select the best multiparameter scheme and implemented PSS in the latest version

of minimap2 [62] and Winnowmap?2 [48].

Improving minimizer schemes by modifying k-mer order has been the focus of
some works aimed at achieving balanced bins when sequences are hashed to bins
based on their minimizers. This is an important step in many k-mer counters

that count each bin individually in order to reduce memory usage. For example
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*234567%910111213
CCAGTGTTTACGG
CCAGTGTT|T ACG G|
CCAGTGT|TTACG|G
CCAGTG|TTTAC|GG
CCAGT|GTTTA|CGG
CCAGTGTTT|ACGEG
CcAlagTaT T[T ACGG® G
CCIAGTGT|TTACGSG
clcaAcgTG[TTTACGG G
ICCAGT|GTTTACGSG

Figure 1.2: Syncmer schemes. An example syncmer scheme with &£ =5, s = 2 and
parameter (also called offset) x; = 3 using lexicographic ordering. The 2-minimizer
of every 5-mer is underlined in red. k-mers with their s-minimizer at position z;
are syncmers and highlighted in yellow. Selected positions are marked in red in the
underlying sequence at the top. Note that only k-mers on the forward strand are
considered in this example. Source: [91].

KMC2 [28] uses a re-ordered lexicographic order that moves k-mers that frequently
appear in real genomes later in the order. Nystrom-Persson et al. combined a UHS
and frequency based order [86]. In Flomin et al. [35] we directly optimized the order
to result in lower maximum bin size in an iterative, heuristic manner. Each k-mer
was assigned an initial value corresponding to its position in the re-ordered lexico-
graphic order of KMC2. Then, in each iteration, the bin size assigned to each k-mer
was estimated by a sample from the sequences being binned. The k-mer with the

largest bin is re-ordered by increasing its value by an additive penalty.

Another type of selection scheme is sequence specific, i.e., the selection scheme is
tailored to a specific sequence and designed to have desirable properties on it. For
example, AdaOrder [35] optimizes the order to achieve balanced bins for a specific
order, and the frequency order [22, 49] uses a k-mer’s frequency in a set of sequences
to assign its rank in the order. Another sequence specific scheme is polar set based
minimizers [137], which define a minimizer scheme using a set of k-mers with density
minimized on a specific sequence. DeepMinimizer [42] uses deep learning to minimize

the divergence between a low density template and a consistent scoring scheme to



8 CHAPTER 1. INTRODUCTION

construct a sequence specific low density scheme efficiently, even for large k.

Other selection schemes may not use k-mers and instead select subsequences from
a sequence that are not contiguous or not of fixed length. For example, strobemers
link between two selected syncmers that are some minimum and maximum distance
from each other wyin, Winae, thus selecting gapped subsequences of length 2k [108].
Gapped minimizers are also used in Kraken2 [128] where k-mers are hashed to a
binary string and every other bit from the 2nd least significant is masked up to s
masked bits.

1.1.5 Applications of selection schemes

Many applications of k-mer selection schemes have been mentioned above. Here
I list applications of a variety of selection schemes to highlight the importance of

selection schemes across many areas of bioinformatics.

Lexicographic minimizers were first introduced to reduce memory usage for se-
quence similarity search [102]. Disk-based k-mer counters divide k-mers into bins
based on their minimizer. Examples include MSPKmerCounter, which uses lexico-
graphic minimizers [63], and KMC2 [28] and Gerbil [32], which use re-ordered lex-
icographic minimizers. minimap [60], minimap2 [61] and miniasm [60] use random
minimizers as alignment seeds for long read mapping and assembly. Random orders
are used in most other applications as well: MashMap [47] uses MinHash Jaccard ap-
proximation computed over random minimizers to efficiently find approximate long
read mappings to a large database; kraken [129] uses random minimizers to store
k-mers with the same minimizer in contiguous chunks of memory for metagenomic
read classification; kraken2 [128] uses gapped, random minimizers as the sequence
similarity seeds for the same task; ntJoin [25] creates graphs representing adjacent
random minimizers for lightweight assembly scaffolding; MBG [99] represents a de
Bruijn graph in minimizer space for lightweight assembly of hiFi reads; BLight [75]
uses random minimizers to hash k-mers in an exact associative k-mer index. Fre-
quency based minimizers were used to bin k-mers for counting as a preprocessing
step to assembly in bealm?2 [22], and Winnowmap [49] re-weighted the most frequent
k-mers to select minimizers as seeds for long read mapping. The Discount k-mer
counter [86] used a combination of a UHS-based and frequency-based orders for

minimizers to achieve evenly sized k-mer bins for counting. AdaOrder [35] directly
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optimized the minimizer order to achieve evenly sized k-mer bins for counting.

Syncmers and PSS are used in long-read mapping and were shown to select align-
ment seeds that are better conserved than minimizers [112, 91]. Strobealign [108]
uses linked syncmers for fast read alignment. Schemes selecting k-mers from a
fixed subset of the universe of k-mers have been given different names: mincode
submers [29], fractional minhash [46], universe minimizers [30], hash-based subsam-
pling [128], and downsampling [91]. These schemes have been used on their own or
in combination with other schemes such as minimizers or syncmers in a variety of
applications including lowering memory usage for metagenomic read classification in
Kraken2 [128]; reducing density of alignment seeds in long read mapping [91]; effi-
ciently estimating taxonomic composition of metagenomes [46]; and very lightweight

assembly of HiFi reads and pangenomes [30].

1.1.6 My contribution to k-mer selection schemes

We propose an alternative paradigm that can lead to substantial further improve-
ment in these and other tasks. For integers k and L > k, we say that a set of k-mers
is a universal hitting set (UHS) if every possible L-long sequence must contain a
k-mer from the set. We develop a heuristic called DOCKS to find a compact UHS,
which works in two phases: The first phase is solved optimally, and for the second we
propose several efficient heuristics, trading set size for speed and memory. The use
of heuristics is motivated by showing the NP-hardness of a closely related problem.
We show that DOCKS works well in practice and produces UHSs that are very close
to a theoretical lower bound. We present results for various values of £ and L and
by applying them to real genomes show that UHSs indeed improve over minimizers.
In particular, DOCKS uses less than 30% of the 10-mers needed to span the hu-
man genome compared to minimizers. The software and computed UHSs are freely
available at github.com/Shamir-Lab/DOCKS/ and acgt.cs.tau.ac.il/docks/, re-
spectively.
This study is presented in Chapter 2. It was published as:

Orenstein, Y.*, Pellow, D.*, Marcais, G., Shamir, R., & Kingsford, C. Design-
ing small universal k-mer hitting sets for improved analysis of high-

throughput sequencing. PLoS Computational Biology (2017) 13(10), e1005777
[88].


github.com/Shamir-Lab/DOCKS/
acgt.cs.tau.ac.il/docks/
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1.2 Classification of metagenomic sequences

1.2.1 Metagenomic sequencing and the microbiome

A microbiome sample contains microbes (bacteria, viruses, eukaryotes etc.) from a
single location or environment that can be sequenced together using high through-
put sequencing methods. This metagenomic sequencing can reveal the composition
of the microbial community from a given environment, known as its microbiome.
Many different types of environments have been extensively studied, including wa-
ter sources [124, 64], waste treatment facilities [21], soil [34], animal digestive sys-
tems [119], human environments such as homes [39], offices [20] or hospitals [98],
and of course human body sites [18, 96, 56, 68, 100, 116].

Different sequencing technologies and protocols can be used to interrogate the
microbiome. Sequencing can use high throughput short reads or, more recently, long
reads [65]. Whole genome sequencing can resolve individual genomes, and also may
facilitate the characterization of genes, functions, strains, mutations etc. that exist
in a microbial community. Alternatively, shotgun 16S rRNA sequencing allows for
the identification of bacteria present in the sample without the need for assembling
full genome sequences. Microbiome studies often examine the microbiome composi-
tion or compare composition across individuals, environments, disease states or time
points. Metagenomics also enables the discovery and sequencing of new bacterial
species (or viruses, archaea, plasmids etc.) that cannot be cultured. This is vital
for basic microbiological research and can also have clinical or biotechnological ap-
plications. Finally, knowing the composition and genetic makeup of the microbiome

allows for a functional analysis of complex microbial communities.

More information about microbiome studies and metagenomic sequencing can
be found in the many reviews of the topic. A few example review papers are [121,
38, 23, 82].

1.2.2 Assembling short read sequences

Short read high throughput sequencing experiments generate millions of sequences
of length ~50-200bp, sampled, with sequencing errors, from the DNA sequence of a

biological sample. These overlapping reads must then be assembled to reconstruct
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(GCG}+(CGA) +(GAT}~(ATT)

(CAG}-(AGT}+(GTT)

(ma)  Ted -Gea) — 1),

Figure 1.3: de Bruijn graph compaction and cleaning. Left: An example order
3 de Bruijn graph. Right: The two non-branching paths have been compacted into a
single node. The graph can be cleaned by removing dead-end nodes (red boxes), and
collapsing similar parallel paths (blue dashed box) when one is not well-supported
by the reads. Figure adapted from: [43].

the genomes that they were sequenced from. Modern short read assemblers use the
de Bruijn graph data structure [26] to achieve this [94, 45]. The de Bruijn graph of
order k of the data consists of a node for every k-mer in the reads and a directed
edge from node s to node t if the k — 1 long suffix of s is the same as the k — 1 long
prefix of t. Paths in the graph represent longer sequences that can be assembled

from the reads.

Unambiguous non-branching paths in the de Bruijn graph can be compacted
into a single node representing the entire sequence along the path and the graph
undergoes cleaning steps to remove or collapse spurious paths (see Figure 1.3). The
resulting graph is called the assembly graph. Contiguous sequences that can be
unambiguously assembled are called contigs. Contigs can be joined together (some-
times with gaps between them) in scaffolds to create larger segments of the under-

lying genome or even full genomic assemblies.

There are a number of common assemblers for assembling bulk isolate samples
such as SOAPdenovo [66], Velvet [134] and ABySS [115] and the highly popular
SPAdes [9].

Metagenomic assembly is more complicated than isolate assembly since segments
of multiple genomes are represented in the assembly graph, and there is a large vari-
ation in abundance of the different genomes in the sample, resulting in different read
coverage in different parts of the graph. The assembly graph of a microbiome sam-
ple will be much larger, more complex, more tangled and more fragmented than for
an isolate sample. Commonly used short-read metagenomic assemblers are metaS-
PAdes [85] and MEGAHIT [59]. Some example review papers of isolate and metage-
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nomic assembly are [81, 84, 15| and some of these tools have been benchmarked in:
[79, 80, 15].

1.2.3 Sequence classification

Due to the challenges of analyzing metagenomic sequence data, classification of se-
quences, whether assembled contigs or individual reads, is often an efficient way to
achieve tasks that do not require assembly of full genomes. There are a number
of tools for taxonomic classification of reads (i.e. according to their family, genus,
species or strain of origin). Among these are Kraken [129] and Kraken2 [128], which
match k-mers from the read to the lowest common ancestor on a taxonomic tree
that contains each k-mer; Clark [90] indexes only target-specific k-mers and classifies
reads according to the target with the most specific k-mers hit; Centrifuge [51] uses
an FM index of a large genome database, finds maximal exact matches (MEMs)
in each read, and then selects taxa with the highest weighted scores across the
matches; and Kaiju [78] similarly uses MEMs in a large database of protein se-
quences. A review of some of these methods can be found in [15] and a benchmark
in [130]. Taxonomic read classifiers can provide quantitative taxonomic profiles of

the microbiome.

Other methods focus on classifying larger contigs after assembly. For taxonomic
classification of longer contigs, it is possible to use local alignment tools to align
contigs to reference genomes. Another task is binary or multi-way classification of
contigs by type, for example: bacterial origin, viral origin, plasmid origin etc. In the
next section I will focus on plasmid classification. VirFinder [101] is a viral contig
classifier; PPR-Meta [33], viralVerify [5], and 3CAC [97] are three-way classifiers
that classify contigs as chromosomal, viral, or plasmid. Classifiers may be k-mer
based, using the frequency distribution of k-mers as features, or they may use other

features such as gene content, sequence coverage, and more.

An effective method of classifying contigs is to first bin or cluster them and then
identify each bin based on features of all of its contigs. Even when the bin can-
not be classified as a known bacterial species, binning allows multiple contigs to be
identified as originating from the same organism (referred to as OTUs — operational
taxonomic units). There are many metagenomic binning methods that cluster based

on sequence composition, coverage in a sample or across multiple samples, gene con-
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tent, or a combination of these features. Reviews and benchmarks of metagenomic
binning tools can be found in [15, 79, 133].

1.2.4 Plasmid sequence classifiers

In the second paper in this thesis I developed an improved plasmid classifier for
metagenomic contigs [92]. In this subsection I will provide background on existing
and subsequently developed tools for plasmid sequence classification. (In the next

section I will motivate the study of plasmids in more detail.)

The task of plasmid sequence classification is to assign a binary label or proba-
bility score to each contig in an assembly classifying it as being of plasmid origin or
not. Some classification tools are specifically designed to identify plasmids in isolate
assemblies, in our work we focused on identifying plasmid contigs in metagenomic

assemblies.

PlasmidFinder [19] identifies BLAST matches to known plasmid replicon se-
quences in Enterobacteriaceae. Gomi et al. [41] used a custom Klebsiella pneumoniae
plasmid database in Kraken to identify plasmid contigs in K. pneumoniae isolates.
MOB-recon [103] uses BLAST matches to a curated database of plasmid genes and
to known plsamid references to identify plasmids in isolate assembly. Platon [110)]
looks for enrichment of plasmid or bacterial replicon protein sequences to identify
plasmid contigs in isolate.

cBar [139] is an SVM classifier trained on 5-mer frequencies in chromosomal and
plasmid sequences from almost 1000 bacterial references. mlplasmids [7] also uses
an SVM trained with 5-mer frequencies for classification in E. faecium, K. pneumo-
niae, and E. coli isolates. PlasmidSeeker [105] identifies plasmids in unassembled
isolate reads using a database of k-mers in 10,000 known plasmids. PlasForest [95]
is a random forest classifier trained on features of the sequence matches between
subsequences of the chromosomes and plasmids of over 10,000 bacterial assemblies
and a database of almost 40,000 plasmid reference sequences. RFPlasmid [123] is
another random forest classifier that uses 5-mer and marker gene features. plasmid-
Verify [4] uses a naive Bayes classifier with hmm-profile matches to plasmid genes
as the features. PlasX [131], uses a logistic regression model on all gene families in

the sequence.

PlasFlow [55] is a neural network based classifier trained on the tf-idf (term
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frequency-inverse document frequency, which weights the importance of k-mers in
a sequence given a set of sequences) count statistics of different length k-mers in
subsequences of almost 10,000 chromosomal and plasmid references. Deeplasmid [2]
is another neural network based method trained on 300bp subsequences and sequence
features such as GC content, length, gene hits, PFam hits etc. on almost 30,000
plasmids and 40,000 bacterial chromosomes.

The most recent classifiers use assembly graph connections to improve classifi-
cation. GraphPlas [127] computes similarity in 4-mer composition, coverage, and
assembly graph topology to propagate classification labels from confidently classified
contigs to other contigs. 3CAC [97] also corrects and propagates plasmid and virus
classifications to neighboring contigs in the assembly graph. plASgraph [114] uses
a graph neural network encoding the structure of the assembly graph, and contig
length, coverage, GC content, k-mer distance from the sample k-mer profile, and

node degree features to classify plasmid contigs in isolate samples.

1.2.5 My contribution to plasmid sequence classification

We developed PlasClass, a new plasmid classifier. It uses a set of standard clas-
sifiers trained on the most current set of known plasmid sequences for different
sequence lengths. We tested PlasClass sequence classification on held-out data and
simulations, as well as publicly available bacterial isolates and plasmidome samples
and plasmids assembled from metagenomic samples. PlasClass outperforms the
state-of-the-art plasmid classification tool on shorter sequences, which constitute
the majority of assembly contigs, allowing it to achieve higher F1 scores in classify-
ing sequences from a wide range of datasets. PlasClass also uses significantly less
time and memory. PlasClass can be used to easily classify plasmid and bacterial
genome sequences in metagenomic or isolate assemblies. It is available under the
MIT license from: https://github.com/Shamir-Lab/PlasClass.

This study is presented in Chapter 3. It was published as:

Pellow, D., Mizrahi, 1., & Shamir, R. PlasClass improves plasmid sequence
classification. PLoS Computational Biology (2020) 16(4), e1007781 [92].
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Old donor New donor

Figure 1.4: Illustration of plasmid replication and conjugation. Left: Plas-
mids are small circular extrachromosomal DNA molecules. The plasmid is replicated
along with the host cell DNA. Right: Conjugative plasmids contain genes for pilus
construction and transfer, replicating themselves into other host cells.

[Figures adapted from Wikimedia Commons. Left: “Plasmid replication”, by
Spaully Right: “Overview of bacterial conjugation”, by Adenosine.]

1.3 Plasmid reconstruction

1.3.1 Plasmids: biological and clinical motivation

Plasmids are small extrachromosomal DNA molecules in bacterial cells that are able
to replicate using the host cell replication machinery, and may be integrated into
the host genome. Plasmids are usually circular and typically range in size from
around 1kb to hundreds of kilobases. Conjugative plasmids may transfer from one
host cell to another, facilitating horizontal gene transfer in bacterial populations.
See Figure 1.4 for a visualization. Plasmids are of biological and clinical interest as
they can carry antibiotic resistance or other metabolically advantageous genes, and

can be responsible for transferring them throughout or across bacterial populations.

Plasmids can be classified according to their replication and transfer genes, and
are grouped into incompatibility classes based on them. Reviews of plasmid classi-
fications can be found in [113, 89]. More elaborate classification methods have been

proposed more recently [36].

Plasmid biology, ecology, and evolution have been extensively studied. Some
recent papers and reviews of the subject for further reference can be found in [104,
50, 131]. A large number of papers also review discovery and surveillance of plasmid

mediated virulence and antibiotic resistance, for example [54, 77, 24]. As in the case
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of bacterial genomes, metagenomic samples greatly advanced the study of plasmids.
Several recent large-scale studies have begun to elucidate the landscape of plasmids

based on large sets of metagenomic samples [131, 17, 120].

1.3.2 Plasmid assembly

An important step in characterizing and studying plasmid biology and ecology is
the assembly of plasmid sequences. Although for some biological questions using
the classification methods described above is sufficient, others require assembly of
complete plasmid sequences. In the third paper in this PhD, I developed a metage-
nomic plasmid assembler for this purpose [93]. In this section I introduce plasmid

assembly methods.

Most plasmid assembly methods build on existing assemblers such as the ones
described in Chapter 1.2.2. Many of the early plasmid assemblers attempted to
assemble plasmids in isolate samples. Plasmid assembly in isolate is itself a difficult
task, an early review paper of assembly methods was title “On the (im)possibility
of reconstructing plasmids from whole-genome short-read sequencing data” [8]. One
option to assemble plasmids in isolate samples is to use a regular assembler, identify
plasmid contigs (for example using a plasmid classifier), and manually determine the
contig layout. Placnet [58] is a visualization tool that enables this pipeline. Uni-
cycler [126] is an assembly tool that post-processes the assembly graph constructed
by SPAdes using graph cleaning, repeat resolution, and bridging steps. It is able to
construct complete circular sequences in isolate samples, and can construct complete
plasmid sequences. PlasmidSPAdes [3] is a variant of the SPAdes assembler that was
modified to assemble plasmids from isolate samples. It creates a “plasmid graph” by
removing edges in the assembly graph with coverage close to the median, trimming
neighbouring edges that then become disconnected, and removing small non-circular
connected components. The idea is that components in the graph with significantly
different coverage than the rest of the graph are likely plasmids. HyAsP [83] takes
as input a Unicycler assembly graph for an isolate sample; identifies likely plasmid
contigs based on gene content, differential GC-content and read depth; and greedily
extends a path from likely plasmid contigs to neighboring contigs with plasmid genes

and similar depth and GC-content.

Plasmid assembly in metagenomic samples is an inherently much more difficult
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task for several reasons: samples are much larger and more complex, the plasmids
included in them are only a small fraction of the sample, there are more plasmids,
and plasmids from different species may be similar to each other. The result is large
and fragmented assembly graphs with plasmid sequences that are not easily iden-
tifiable or separable subgraphs. In addition, because of the variation in abundance
among organisms in a metagenomic sample, the differential abundance of plasmids
cannot be used to identify them. The CAMI 2 benchmark [79] included results on
circular elements that demonstrated the difficulty of existing (non-plasmid-specific)

metagenomic assemblers in assembling plasmid sequences.

There are a number of metagenomic-specific plasmid assembly tools. Recy-
cler [107] iteratively finds cyclic paths with uniform coverage that are concordant
with paired-end read matches in a metagenomic assembly graph and reports them
as plasmids. After constructing a plasmid sequence in this way, the cycle is “peeled”
out of the assembly graph and the corresponding coverage values are updated. meta-
plasmidSPAdes [4] is a variant of of the SPAdes assembler for metagenomic plasmids.
It iteratively generates smaller and smaller subgraphs of the assembly graph by re-
moving contigs with coverage below a threshold that increases in each iteration. As
lower coverage segments of the graph are removed, longer contigs may be constructed
in the remaining subgraph. Cyclic contigs are considered as putative plasmids and
then verified using the profile of their genetic contents. Domcycle [111] generates
cyclic paths in an assembly graph and performs statistical tests on the read coverage
and orientation of paired-end reads mapping in and out of the cycle to determine
whether they are true plasmid sequences. Yu et al. [131] identify cyclic contigs in

the assembly graph and then use PlasX to identify those that are plasmids.

As in the case of metagenomic assembly of bacterial genomes, binning plasmid
contigs into individual plasmid bins may be a more effective option than attempt-
ing to fully assemble complete plasmid sequences. Plasmid bins could then be re-
assembled or treated as “plasmid OTUs”. Plasmid binning is a more difficult task
than classification, which groups all plasmid contigs together. It is also more difficult
than metagenomic binning as the plasmid contigs are a small, unidentified fraction
of the entire assembly, and thus global binning, aimed at clustering all contigs, will
not necessarily perform well at binning individual plasmids. A recent benchmark
showed that existing metagenomic binning tools do not successfully bin plasmid

contigs [69].
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PlasBin [71] is a mixed integer linear programming method for creating plasmid
bins in isolate samples. It maximizes plasmid gene density and minimizes deviation
from average GC content along a path of selected plasmid contigs in an assembly
graph. gplas [6] also bins plasmid contigs in isolate samples by generating walks
between plasmid contigs that are consistently covered. A plasmid contig graph is
then generated, connecting all contigs that are reachable in the walks into connected

components and splitting the components using graph partitioning algorithms.

1.3.3 My contribution to metagenomic plasmid assembly

We developed SCAPP (Sequence Contents-Aware Plasmid Peeler) — an algorithm
and tool to assemble plasmid sequences from metagenomic sequencing. SCAPP
builds on some key ideas from the Recycler algorithm while improving plasmid as-
semblies by integrating biological knowledge about plasmids. We compared the per-
formance of SCAPP to Recycler and metaplasmidSPAdes on simulated metagenomes,
real human gut microbiome samples, and a human gut plasmidome dataset that we
generated. We also created plasmidome and metagenome data from the same cow
rumen sample and used the parallel sequencing data to create a novel assessment
procedure. Overall, SCAPP outperformed Recycler and metaplasmidSPAdes across

this wide range of datasets.

SCAPP is an easy to use Python package that enables the assembly of full
plasmid sequences from metagenomic samples. It outperformed existing metage-
nomic plasmid assemblers in most cases and assembled novel and clinically relevant
plasmids in samples we generated such as a human gut plasmidome. SCAPP is

open-source software available from: https://github.com/Shamir-Lab/SCAPP.
This study is presented in Chapter 4. It was published as:
Pellow, D., Zorea, A., Probst, M., Furman, O., Segal, A., Mizrahi, I., & Shamir, R.

SCAPP: an algorithm for improved plasmid assembly in metagenomes.
Microbiome (2021), 9(1), 1-12 [93].
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Chapter 2

Designing small universal k-mer
hitting sets for improved analysis

of high-throughput sequencing
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Abstract

With the rapidly increasing volume of deep sequencing data, more efficient algorithms and
data structures are needed. Minimizers are a central recent paradigm that has improved var-
ious sequence analysis tasks, including hashing for faster read overlap detection, sparse
suffix arrays for creating smaller indexes, and Bloom filters for speeding up sequence
search. Here, we propose an alternative paradigm that can lead to substantial further
improvement in these and other tasks. For integers kand L > k, we say that a set of k-mers
is a universal hitting set (UHS) if every possible L-long sequence must contain a k-mer from
the set. We develop a heuristic called DOCKS to find a compact UHS, which works in two
phases: The first phase is solved optimally, and for the second we propose several efficient
heuristics, trading set size for speed and memory. The use of heuristics is motivated by
showing the NP-hardness of a closely related problem. We show that DOCKS works well in
practice and produces UHSs that are very close to a theoretical lower bound. We present
results for various values of kand L and by applying them to real genomes show that UHSs
indeed improve over minimizers. In particular, DOCKS uses less than 30% of the 10-mers
needed to span the human genome compared to minimizers. The software and computed
UHSs are freely available at github.com/Shamir-Lab/DOCKS/ and acgt.cs.tau.ac.il/docks/,
respectively.

Author summary

High-throughput sequencing data has been accumulating at an extreme pace. The need to
efficiently analyze and process it has become a critical challenge of the field. Many of the
data structures and algorithms for this task rely on k-mer sets (DNA words of length k) to
represent the sequences in a dataset. The runtime and memory usage of these highly
depend on the size of the k-mer sets used. Thus, a minimum-size k-mer hitting set,
namely, a set of k-mers that hit (have non-empty overlap with) all sequences, is desirable.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005777 October 2, 2017 1/15
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In this work, we create universal k-mer hitting sets that hit any L-long sequence. We pres-
ent several heuristic approaches for constructing such small sets; the approaches vary in
the trade-off between the size of the produced set and runtime and memory usage. We
show the benefit in practice of using the produced universal k-mer hitting sets compared
to minimizers and randomly created hitting sets on the human genome.

Introduction

The pace of high-throughput sequencing keeps accelerating as it becomes cheaper and faster
and with it the need for faster and more memory efficient genomic analysis methods grows.
The NIH Sequence Read Archive, for example, currently contains over 12 petabases of
sequence data and is growing at a fast pace. Increased use of sequence-based assays (DNA

<

sequencing, RNA-seq, numerous other “*-seq”s) in research and in clinical settings creates
high computational processing burdens. Metagenomic studies generate even larger sequencing
datasets. New fundamental computational ideas are essential to manage and analyze these
data.

The minimizer approach has been extremely successful in increasing the efficiency of sev-
eral sequence analysis challenges. Given a sequence of length L, its minimizer is the lexico-
graphically smallest k-mer in it [1, 2]. For a sequence S of any length its minimizer set is the set
of minimizers of every L-long subsequence in S. Hence, every window of length L in S is repre-
sented in the set, and a minimizer set for a sequence S constitutes a succinct representation for
it. As we discuss below, minimizers have had numerous applications in sequence analysis.

Here, we generalize and improve on the minimizer idea. To avoid dependence on a particu-
lar sequence S, we introduce the notion of a universal hitting set. For integers k, L, a set Uy 1 is
called a universal hitting set of k-mers (UHS) if every possible sequence of length L must con-
tain at least one k-mer from Uy ;. The set of all k-mers is a trivial UHS, but it does not provide
any useful reduction in computational resources needed. Hence, our main computational
problem is:

Problem 1. Given k and L, find a smallest universal hitting set of k-mers.

A small UHS has a variety of applications in speeding up genomic analyses since it can be
used where minimizers have been used in the past. For example:

1. Hashing for read overlapping. A naive read overlapper must test O(n”) pairs of reads to
see whether they overlap (where # is the number of reads). If we require an overlap of
length L, any pair of reads with such an overlap must share a k-mer from set Uy in this
overlapped region. By bucketing reads into bins according to the universal k-mers they con-
tain, we need only test pairs of reads in the same bucket. The number of buckets is limited

by |Uk,L|'

2. Sparse suffix arrays. A sparse suffix array of a string S saves memory by storing an index
for only every sth position in S [3]. To query a sparse suffix array for string g, we perform at
most s queries starting from indices 0, . . ., s — 1 in g; one of these queries will intersect a
position stored in the suffix array. Using Uy 1, we can instead store only positions in S that
start with a k-mer in Uy ;. Any query with |g| > L must contain one of these selected k-mers
and will be matched when searching the suffix array. This approach has been applied with
minimizers [4] to good effect.

3. Bloom filters to speed up sequence search. Bloom filters have been used to speed up
sequence search by storing k-mers present in a read set for quick testing [5, 6]. In current

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005777 October 2, 2017
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implementations, all k-mers present in a read set are stored in these filters. If, instead, only
the set of k-mers in Uy is stored, any window of length > L is still guaranteed to contain
one of these representative queries, potentially reducing the size of Bloom filters that must
be maintained.

Minimizers have been used for some of these and similar applications [4, 7-9]. They were
originally introduced by Roberts et al. [1] for genome assembly. The same idea was introduced
independently for plagiarism detection in Schleimer et al. [2]. For example, MSP [10] com-
presses k-mers by hashing them to their 4-mer minimizer to efficiently construct a de Bruijn
graph for assembly. SparseAssembler [11] represents the de Bruijn graph using only every g-th
k-mer in the sequence (and has also been implemented using minimizers). Kraken [12] uses
minimizers to speed up database queries for k-mers during metagenome sequence classifica-
tion. KMC 2 [8] uses minimizers to cluster subsequences for counting k-mer occurrences. The
Locally Consistent Parsing (LCP) [13] algorithm provides the concept of “core substrings”
which, like minimizers, are guaranteed to be shared by long enough identical strings. SCALCE
[14] uses core substrings to compress DNA sequences.

A small UHS, if it can be found, has a number of advantages over minimizers for these
applications:

1. The set of minimizers for a given collection of reads may be as dense as the complete set of
k-mers (size |Z|* for an alphabet X), whereas we show that we can often generate UHSs
smaller by a factor of nearly k. We also demonstrate on real genomic sequences that the
number of UHS k-mers needed to process them is substantially smaller.

2. For any k and L, a set of universal k-mers needs to be computed only once and not recom-
puted for every dataset.

3. The hash buckets, sparse suffix arrays, and Bloom filters created for different datasets will
contain a comparable set of k-mers if they are sampled according to a UHS. This will enable
easier comparison and integration of the datasets.

4. One does not need to look at the reads or to build a dataset-specific de Bruijn graph in
order to decide which k-mers to use.

Problem 1 can be rephrased as a problem on the complete de Bruijn graph of order k (see
Definition 1 below). This is the viewpoint we take for most of this study:

Problem 2. Given a de Bruijn graph Dy, of order k and an integer L, find a smallest set of ver-
tices Uy 1, such that any path in Dy of length £ = L — k passes through at least one vertex of Uy ;.
Here and throughout, the length of a path is the number of edges in it. We show that the

related problem of finding a minimum-size k-mer set that hits every string in a given set S of
L-long strings is NP-hard. This problem differs from ours, in that the set S is part of the input.
However, the fact that finding a small set of k-mers that hits every sequence in a particular data
set is hard further motivates the need for a universal set that can be computed once for any
input sequence. Our main contribution is an algorithm called DOCKS that finds a compact set
of k-mers that hits any L-long sequence. We also provide several variants of the algorithm,
trading-off some solution quality for speed. We show empirically that the produced sets are
often close to a theoretical lower bound, implying their near-optimality. Our use of a greedy
heuristic is motivated by the fact that finding a minimum-size £-long path cover in a graph G
is NP-hard when G is a directed acyclic graph (DAG). We report on the size of the universal
k-mer hitting set produced by DOCKS and demonstrate on genomic datasets that we can
more uniformly cover sequences with a smaller set of k-mers than is possible using
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minimizers. For example, we show that the number of k-mers needed to cover the human
genome using a UHS is less than one third of that required by minimizers.

The software to compute small UHSs is freely available at github.com/Shamir-Lab/
DOCKS/. Universal sets of k-mers computed by DOCKS for a range of values of L and k are
freely available at acgt.cs.tau.ac.il/docks/. A preliminary version of this study appeared in [15].

Preliminaries

Throughout this paper, k denotes the length of a k-mer word, while L denotes the length of the
long sequences.

Definition 1 (de Bruijn Graph). A de Bruijn graph of order k over alphabet X is a directed
graph in which every vertex has an associated label (a string over X) of length k (k-mer) and
every edge has an associated label of length k + 1. There are exactly |Z|* vertices in a de Bruijn
graph, each representing a unique k-mer. If an edge (1, v) has label , then the label of u must
be the k-prefix (prefix of length k) of / and the label of v must be the k-suffix (suffix of length k)
of I. A complete de Bruijn graph contains all possible edges of this type, which represent
together all (k + 1)-mers over X.

Every path in a de Bruijn graph represents a sequence. A path vo, ey, vy, 1, v2, . . ., v, of
length # spells a sequence s of length 7 + k such that the label of v; occurs in s starting at posi-
tion i for all 0 < i < n, and the label of e; occurs in s starting at position i forall 0 <i <n - 1.
Note that vertices and edges may repeat in a path.

We define terminology for k-mers intersecting sequences over an alphabet X:

Definition 2 (hits). We say that k-mer w hits string S, denoted w C S, if w appears as a
contiguous substring in S. k-mer set X hits string S if there exists w € X s.t. w C S. Define
hit(w, L) = {Se Xt | w C S} for k-mer w and length L, where L is the set of all L-long sub-
strings over alphabet X. Define hit(X, L) :nghit(w’ L).

The universal set of hitting k-mers from Problem 1 is then a set Uy ; which satisfies
hit(Uyp, L) = ="

Materials and methods

It is not known how to efficiently find a minimum universal (k, L)-hitting set. As we prove in
the Appendix, the problem of finding a minimum (non-universal) k-mer set that hits a given set
of input sequences is NP-hard (see Appendix, Subsection NP-hardness of MINIMUM (k, L)-
HITTING SET in S1 Text). In the face of the hardness result for this related problem, we give
below a practical heuristic to find a compact (near-optimal) universal k-mer set. This algorithm
works on the de Bruijn graph of order k in two steps: first it finds and removes a minimum-size
k-mer set hitting all infinite sequences, and then it finds and removes additional k-mers in
order to hit all remaining L-long sequences. We now describe these two steps in detail.

Finding a minimum k-mer set hitting all infinite sequences

The problem of finding a minimum-size k-mer set hitting all infinite sequences is known in
the literature as finding an unavoidable set of constant length [16]. Note that finite words may
avoid the set. Finding a minimum-size unavoidable set for a given k can be solved in time poly-
nomial in the output size [16]. The original algorithm is due to Mykkeltveit [17]. Its running
time is O(kM(k)), where M(k) is the size of the minimum unavoidable set. M(k) converges to
|Z[*/k (an exact formula is given in Eq 11), so the running time is O(|Z|").

An unavoidable set of constant length k is equivalent to a set of vertices in a complete de
Bruijn graph of order k whose removal turns it into a directed acyclic graph (DAG). Each

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005777 October 2, 2017 4/15



©PLOS

COMPUTATIONAL

BIOLOGY

Compact universal k-mer hitting sets

k-mer in the set corresponds to a vertex, and the removal of vertices from every cycle guaran-
tees that no infinite sequence is represented as a path in the graph. This set is known as a decy-
cling set.

Hitting remaining length L sequences

Unfortunately, finding an unavoidable set is not enough, as there may be L-long sequences
that avoid that set. Thus, we need additional k-mers to hit those. If we consider the graph for-
mulation, after removal of a decycling set from the graph we are left with a DAG, which may
contain (L — k)-long paths representing L-long sequences. We need to remove additional verti-
ces, so that there is no path of length £ = L — k. The problem of finding a minimum-size set of
vertices that hit all £-long paths in a general directed acyclic graph is known to be NP-hard, as
we review in the Appendix (see Appendix, Subsection NP-hardness of MINIMUM ¢-PATH
COVER IN A DAG in S1 Text). Therefore, we give a heuristic solution.

Our initial algorithm is based on the greedy algorithm for the minimum hitting set [18].
We define the hitting number T(v, £) of a vertex v to be the number of paths of length £ that
contain v. The main observation is that we can calculate the hitting number of each vertex effi-
ciently using dynamic programming. The solution is based on calculating the number of paths
of length i that terminate at vertex v, and the number of paths of length i that start at vertex v,
forall v € Vand 0 <i < £. Then, the number of ¢-long paths through v is directly computable
from these values by breaking any path into an i-long path ending at v and an (€ - i)-long path
starting at v, for all possible values of i. We set £ = L — k to get the desired hitting number of
each vertex.

Specifically, let G’ = (V', E') be the directed acyclic graph, after removal of the decycling set.
Denote by D and F matrices of size |V'| x (€ + 1) where D(v, i) is the number of i-long paths in
G’ starting at vertex v and F(v, 1) is the number of i-long paths ending at vertex v.

The calculation of D and F is done recursively as follows:

D(v,0) = F(v,0) = 1,for all v € V' (1)

D(v,i)= Y D(u,i—1) ()

(vyu)eE

F(v,i)= > F(u,i—1) (3)

(u,v)€E’

To get the number of ¢-long paths that vertex v participates in, we sum:
4
T(v,0) =Y F(v,i)-D(v,{ — i) (4)
i=0

The running time is proportional to the sum of all vertex degrees (which is O(|E'|)) times ¢, giv-
ing a running time of O(|Z|**! - ¢) for £= L - k.

The DOCKS algorithm

The full algorithm combines the two steps. First, we find a decycling set in a complete de
Bruijn graph of order k and remove it from the graph, obtaining a DAG. Then, we repeatedly
remove a vertex v with the largest hitting number T(v, £) until there are no ¢-long paths,
recomputing T(u, £) for all remaining vertices u after each removal. This is summarized below
(Algorithm 1).
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Algorithm 1 DOCKS: Find a compact k-mer set hitting all L-long
sequences

: Generate a complete de Bruijn graph G of order k, set £ = L — k.

: Find a decycling vertex set X using Mykkeltveit’s algorithm.

: Remove all vertices in X from graph G, resulting in G'.

: while there are still paths of length ¢ do

Calculate D(v, i) and F(v, i) for each vertex vand 0 < i < ¢.

Calculate T(v, £) for each vertex v.

Remove a vertex with maximum hitting number from G, and add it to set X.
: end while

: Output set X.

—

O ® N QU A W N

Finding the decycling set takes O(|Z|¥). In the second phase, each iteration calculates the
hitting number of all vertices in time O(|Z[**'¢). The number of iterations is 1 + p, where p is
the number of vertices removed. Thus, the total running time is dominated by steps 4-8 and is
o((1 + p)|=|F ).

The exponential dependence of DOCKS on k limits the range of k to which it can be applied
(see Results, Subsection DOCKS). This motivates us to develop two variants that trade larger
solution sizes for faster running times in the different heuristics described next.

The DOCKSany algorithms

In order to extend the range of k, L values beyond what DOCKS can compute in reasonable
times, we develop a faster heuristic that may produce cruder solutions. Instead of calculating
the number of ¢-long paths through each vertex, we consider all paths through each vertex.
This number, denoted by T(v), can be calculated more quickly and serve as an estimate of T(v,
£). We call this heuristic DOCKSany (Algorithm 2).

DOCKSany has the same structure as DOCKS, but with one difference: it removes a node v
with maximum T(v) in each iteration. To compute T(v) for all v, the vertices in the current
graph G’ = (V/, E') are first sorted in topological order v; < ... < v,. Define F(v) as the number
of paths ending at v. The vertices are visited in topological order and the incoming edges into v
are used to compute:

F(v)=1+ > F(u) (5)

(u,v)eE

Similarly, D(v), the number of paths starting at v is computed by visiting the vertices in reverse
topological order and computing.

D(v)=1+ Y D(u) (6)

(vyu)eE
T(v) is then calculated for all vertices as:
T(v) = F(v) - D(v). (7)

A vertex v with maximum T(v) is removed, G’ is updated, and the process is repeated until
there are no paths of length € in the graph.
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Algorithm 2 DOCKSany: A faster heuristic for a compact k-mer set
hitting all L-long sequences

: Generate a complete de Bruijn graph G of order k, set £ = L — k.

—

: Find a decycling vertex set X using Mykkeltveit’s algorithm.

: Remove all vertices in X from graph G, resulting in G'.

: while there are still paths of length ¢ do

Calculate D(v) and F(v) at each vertex v.

Calculate the number T(v) of paths passing through each vertex v.
Remove a vertex v with maximum T(v) from G/, and add it to set X.
: end while

: Output set X.

O ® N QU A W N

Computing D(v) for all v requires visiting each edge in the graph once, and hence takes
O(|Z|**"). The time for computing F(v) for all v is the same. Hence, T is computable in
O(|Z|**!) time. Computing the longest path in a DAG (step 4) also requires O(|Z|**"). If p ver-
tices are removed, then the total runtime for this algorithm is O((1 + p)|2|k+1), a factor of O(¢)
faster than the DOCKS algorithm. The space complexity is also smaller, O(|Z|**") vs.
O(¢|Z|**") for DOCKS.

In addition to shorter runtimes and decreased memory usage, this heuristic offers one more
advantage over the original DOCKS algorithm. The vertex removal choice is independent of L.
The value of L only determines when the algorithm terminates. Thus, hitting sets for all values
of L or larger can be computed in one run. This is in contrast with DOCKS, in which the hitting
number of each vertex depends on L, and so DOCKS must be run for each desired value of L.

Finally, in order to calculate the hitting set for even larger k, we can further speed up
DOCKSany as follows. In the DOCKSanyX heuristic, the top X vertices, ranked by the hitting
number T(v), are removed (in step 7) in each iteration. This can shorten the running time of
each iteration by a factor of X, but may produce larger hitting set solutions.

An integer linear programming (ILP) formulation

To investigate whether optimal solutions can be found practically, we formulate the problem
of the minimal universal k-mer hitting set as an integer linear program (ILP). In the ILP for-
mulation there are |Z|* binary variables x; representing whether vertex i is in the solution hit-
ting set. There are also |Z|* variables L; representing an upper bound on the number of edges
in the longest path ending at vertex i. The constraints on L; guarantee that the vertices chosen
remove all £-long paths (£ = L — k) from the graph. The ILP is defined as follows:

k
Z]

minimize : E X;,

i—1 (8)

subjectto:  x, € {0, 1}, 1<i<|z)f
0<L <1, 1<i<[zf
L >1+L,—¥x, (u,v) € E (9)
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Here E contains all |Z|**! possible edges. The constraint on edge (u, v) requires that if v is
not in the set then L, > 1 + L,,. The validity of this formulation is proven in the Appendix (see
Appendix, Subsection Validity of the ILP formulation in S1 Text).

The number of variables and constraints grows exponentially in k, making it hard to use for
k > 7. However, the ILP solver can start from a feasible solution produced by one of the
DOCKS algorithms and improve that solution for a limited set time.

Handling larger k

The DOCKS variants described above have exponential dependence in k in both runtime and
memory usage. Hence, the range of k values to which they can be applied is limited. To extend
this range, we present below a procedure to construct a universal k-mer hitting set by extend-
ing UHSs computed for smaller k values. Given a set Uy, ; and integer j, we can construct set
Uk+;, 1+j by concatenating all possible j-mers over X to each k-mer in Uy, ;. Formally,

Ujurj =fw-x|we Uy x € ¥} (10)

To see that Uy, 1., is a universal (k + j)-mer hitting set, denote by S an (L + j)-long sequence.
By definition, there must be at least one k-mer w € Uy, ; that hits §’s L-long prefix. Uy, 14; con-
tains all (k + j)-mers w - x, where x is any j-mer. Thus, it must contain a (k + j)-mer that hits S.
For example, by appending all possible 10-mers to each 10-mer in U}, we obtain Uyg 30.
The size of the set Uy is |Ujg20| = ¢ - decyo, where dec,, ~ % is the size of a minimum decy-
cling set for k = 10 (Eq 11). Here ¢ > 1 is the approximation factor obtained by the UHS. Then,
the size of Uyg30 18 |Uyy 5| = [Uygo| - 4" = ¢ - dec,, - 4" ~ ¢ - %
This is approximately | Uy 30| & 2¢ - decyp, i.e. the approximation factor doubled.

=2c- % by this construction.

Results
A theoretical lower bound for | Uy ]|

For a given k-mer w, its conjugacy class is the set of k-mers obtained by rotation of w. Conju-
gacy classes form cycles in the de Bruijn graph and form a partition of the k-mers. The number
of conjugacy classes over all k-mers is given by [16]:

k
dg,
C([Zl, k) = D 2840 k. ()
i=1

A decycling set necessarily contains a k-mer from each conjugacy class. Golomb’s conjec-
ture, proved by Mykkeltveit [17], states that the smallest decycling set has cardinality C(|Z|, k).
Consequently, a minimum hitting set Uy, ; has a size > C(|Z|, k) > |[Z|*/k.

Table 1 reports L,,,,,, the length of the longest sequence in a complete de Bruijn graph after
a minimum decycling set computed using Mykkeltveit’s algorithm is removed, for k = 2 to 14.
For this range of k, the length of sequences avoiding the decycling set can theoretically be
appropriate for long-read sequencing technologies, such as PacBio [19] and Nanopore [20],
which produce reads of length L > 1000. Such long reads are all hit by a decycling set

Table 1. Length of longest sequence avoiding an unavoidable set for different values of k. For each value k, a minimum decycling set was removed
from a complete de Bruijn graph, and the length L. of the longest sequence, represented as a longest path, was calculated.

k 2 3 4 5 6 7 8 9 10 11 12 13 14
Limax 5 11 20 45 70 117 148 239 311 413 570 697 931

https://doi.org/10.1371/journal.pchi.1005777.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005777 October 2, 2017 8/15



©PLOS

COMPUTATIONAL

BIOLOGY

Compact universal k-mer hitting sets

according to Table 1 for k < 14 (although a shorter window size may be needed to overcome
sequencing errors). However, many short reads can avoid the decycling set. Additional k-mers
must be selected to obtain a hitting set for shorter sequences. Note that different minimum
decycling sets may result in different lengths of the longest path in the remaining DAG. Myk-
keltveit’s approach is different from that of Champarnaud et al. (2004), and the former has an
advantage in producing solutions with shorter longest paths [16].

DOCKS

We implemented and ran DOCKS over a range of k and L: 5 < k < 10 and 20 < L < 200, in
increments of 10. The values of k are typical lengths for minimizers, and the L values are typical
lengths of short reads. Note that in some applications, like KMC 2 [8] and Kraken [12], the
length of the window used (denoted by k there) corresponds to our L parameter, and the
length of the minimizers (1 in KMC 2) corresponds to our k parameter.

The results are summarized in Fig 1. As expected, the fraction of k-mers included in the
solution set decreases with L. It is easier to hit longer sequences as they contain more k-mers.
In addition, running times and memory usage increase exponentially with k. For k = 10,
DOCKS terminated after more than 2.5 hours and used more than 1 GB of memory. For
k=11 and L = 20 running time was 128 hours. Hence, DOCKS runtime would be prohibitively
long for larger values of k. Running times were benchmarked on a single CPU of a 20-CPU
Intel Xeon E5-2650 (2.3GHz) machine with 384GB 2133MHz RAM.

Fig 1A also shows the size of the decycling set for each k. For k = 10 and L = 20 the number
of added k-mers roughly equals the size of the decycling set, while for k =5 and L =20 it is
only 20% larger. For all values of k, the ratio improves as L grows. We also compared DOCKS
to a pure greedy algorithm that repeatedly removes a vertex with a maximum hitting number,
without removing a decycling set first. For almost all combinations of (k, L) the size of the pro-
duced set, runtime and memory of the greedy algorithm were far greater than those of
DOCKS (see Fig A in S1 Text). In particular, the greedy algorithm’s runtime was greater by a
factor of more than 1000 for k = 8 (taking days compared to minutes), and it increased with L,
as opposed to DOCKS’s runtime, which decreased with L.

DOCKSany

We ran DOCKSany for 5 < k < 11 and 20 < L < 200. The results for k = 10 are shown in Fig 2
and the full results are in S1 Table and visualized in Fig B in S1 Text. In comparison to
DOCKS (see Fig Cin S1 Text), the produced sets are larger, especially for smaller values of L,
and that gap grows with k: from 10% for k = 5 to 60% larger for k = 10. Set sizes of DOCKS
and DOCKSany are closer as L increases and both approach the size of the decycling set. In
terms of running time, on the other hand, we see a great benefit in using DOCKSany as run-
times decrease to a small fraction of the DOCKS running times for the larger values of k. We
also see reduced memory usage for larger values of k and L (see the table in S1 Table). Still,
DOCKSany becomes impractical for k > 13 (runtime for k = 12, L = 20 was 45 days), so we
turn to another heuristic to increase runtime on the expense of larger set sizes.

DOCKSanyX

We tested the performance of DOCKSanyX for k= 10,20 <L <200 and X = 5 for0<i<5
(Fig D in S1 Text). As expected, the generated set sizes increase with X, but the differences are
very small for X < 125. On the other hand, the running time improves dramatically as X
increases and the memory usage also improves with X, albeit not as dramatically (see S1
Table). Fig 2 compares the sizes of the sets generated by DOCKS, DOCKSany, and
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Fig 1. Performance of DOCKS. For different combinations of kand L we ran DOCKS over the DNA alphabet. (A) Set sizes. The results
are shown as a fraction of the total number of k-mers ||¥. The broken lines show the decycling set size for each k. (B) Running time in
seconds. Note that y-axis is in log scale. (C) Maximum memory usage in megabytes. Note that y-axis is in log scale.

https://doi.org/10.1371/journal.pchi.1005777.9001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005777 October 2, 2017 10/15



@ PLOS COMPUTATIONAL
NZ] BIOLOGY Compact universal k-mer hitting sets

400 1 Algorithm

I decycling

B DOCKS

I DOCKSany

I DOCKSany-625

350 A
300 A1
250 1

200

150 A

100 1

: T
o_

100 110 120 130 140 150 160 170 180 190 200
L

Fig 2. Comparison of the sizes of the universal sets generated by the different heuristics. The histogram shows the size of the universal sets

generated by DOCKS, DOCKSany, and DOCKSanyX with X = 625. The results are for k=10 and 20 < L < 200. The size of the decycling set is provided
as a lower bound for comparison.
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size / 1000

DOCKSanyX (for X = 625). Remarkably, for k = 10, the size of the solution is similar to that of
DOCKSany while there is a factor of > 100 x speedup. The results, runtime and memory
usage of DOCKSanyX are in S1 Table and visualized in Fig E in S1 Text.

ILP solutions

We solved the ILP using Gurobi 6.5.2 [21] for 5 < k < 10 with 20 < L < 200. To save time, we

set the starting feasible solution to be the DOCKS solution. We let the solver run for up to one

day for each k and L. This did not necessarily produce an optimal solution to the ILP, although
the solver was often able to improve on the starting DOCKS solution. In Fig 3, we show the

lLl!-JI

L - sequence length

w
1

% improvement
N

N
1
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Fig 3. Performance of ILP solver compared to DOCKS. For each combination of 5 < k< 10 and 20 < L < 200 we ran the
ILP solver for up to 24 hours starting from a DOCKS feasible solution. The histograms show the percent improvement of the k-

mer set size generated by the ILP solver compared to DOCKS. For L > 60 and all tested values of k, the improvement was
<1%.

https://doi.org/10.1371/journal.pcbi.1005777.g003
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Table 2. The number of 10-mers needed to hit all 30-long sequences in four genomes: Two bacterial genomes A. tropicalis, C. crescentus, the
worm C. elegans and a mammal genome, H. sapiens. The genome sizes are quoted after removing all Ns and ambiguous codes. We tested three algo-
rithms: minimizers picking the lexicographically smallest 10-mer, minimizer picking the first in a random k-mer ordering, and selection using the set produced
by DOCKS. In case of multiple DOCKS-selected 10-mers in the 30-long window, the lexicographically smallest was chosen. # mers is the number of distinct
10-mers selected, and avg. dist. is the average distance between two selected 10-mers.

A. tropicalis

C. crescentus

C. elegans

H. sapiens

Species Genome size (Mbp) Method # mers (thousands) avg. dist.

0.393 lexicographic 32.9 9.48
randomized 28.0 11.0
DOCKS 23.7 12.4
4 lexicographic 114.0 10.2
randomized 89.6 11.0
DOCKS 66.0 12.4

100 lexicographic 286.0 8.83
randomized 277.0 11.0
DOCKS 145.0 12.4

2900 lexicographic 543.0 9.13
randomized 389.0 10.9
DOCKS 154.0 12.1

https://doi.org/10.1371/journal.pchi.1005777.1002

improvement in the solution set size obtained by the ILP over the DOCKS solution. We can
see that using the ILP solver leads to minor improvements over the DOCKS solution (0-4%),
especially for small k. Improvements diminish as L increases, since the set sizes approach the
theoretical lower bound, i.e., the size of the minimum decycling set. Letting the ILP solver run
for longer times may provide further improvements for small values of L.

Comparison to minimizers on several genomes

The minimizer algorithm [1] selects the lexicographically smallest k-mer in each window of w
consecutive k-mers in order to reduce storage size for sequence comparison. We can improve
the minimizers algorithm by choosing the lexicographically smallest k-mer that is in the
DOCKS set for the corresponding k and L parameters (i.e. L = k + w — 1). Such a k-mer is
guaranteed to exist, as by construction, every window of length w contains a k-mer in the
UHS. We ran the minimizer selection algorithm and DOCKS-based selection on four different
genomes, using k = 10 and L = 30: the entire human reference genome (GRCh38), the bacteria
A. tropicalis strain NBRC 16470, and C. crescentus strain CB15, the worm C. elegans assembly
WBcel235. For comparison, we also included the results when using the minimizer according
to a random ordering of the k-mers, instead of lexicographic. This random ordering typically
improves over minimizers since it avoids the problem of always selecting the common poly-A
homopolymer.

Table 2 shows that DOCKS selects far fewer k-mers and those k-mers are more widely
spread apart in the sequence. The advantage of DOCKS grows as the sequence length
increases, having a size ~ 85% of the next-best method for the small bacterial genome, ~ 50%
for the larger C. elegans genome, and only ~ 40% for the human genome.

Discussion

We presented the DOCKS algorithm, which generates a compact set of k-mers that together
hit all L-long DNA sequences. Such compact sets have many applications in sequence analysis,
including space efficient data structures and large-scale sequence analysis. We tested the sets
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produced by our algorithm in an application that requires finding a small set of 10-mers hit-
ting all 30-long words in the input genomes. Compared to minimizers, the current state of the
art, our sets were almost 2.5-3.5 times smaller for the human genome. We could produce sets
for the range of k = 5 to 10 and L = 20 to 200, and the results show that for L > 100 the size of
the solution is quite close to the theoretical lower bound. We expect the sets produced by our
approach to be useful and improving a variety of biological applications that require complex
analysis of numerous sequences.

We see the benefit of our compact UHSs in many data structures and algorithms that ana-
lyze high-throughput sequencing data. For example, we expect that binning-based k-mer
counting applications, such as KMC 2 [8], can reduce the number of bins, and thus the num-
ber of disk accesses, using universal k-mer hitting sets. Analyses that rely on k-mer counting,
such as metagenomic binning as implemented in Kraken [12], will also see improved compu-
tational resource usage. The minimizer idea has been widely deployed, and universal hitting k-
mers can typically be used as a drop-in replacement, improving computational performance.

The good performance of the algorithms can be attributed to their two phase approach. In
the first phase we optimally and rapidly remove a minimum-size set that hits all infinite
sequences, which also takes care of many L-long sequences. In the second phase we greedily
remove k-mers that hit remaining L-long sequences. Overall efficiency is primarily due to the
first phase, which runs in time O(k) times the size of the output. In the second phase dynamic
programming is used, providing running time polynomial in the output size.

We developed two additional variants of DOCKS that reduce the runtime and memory
usage at the price of increasing the size of the set created. DOCKS can provide a solution for
k =10, DOCKSany for k = 11, and the fastest variant, DOCKSanyX for k = 13 (with X = 10000)
with L = 200, within a day. Note that all heuristics are bound to hit a limit since their runtime
depends exponentially on k. This is an inherent property of the problem and its output size.
Still, we manage to increase k by one or two using each heuristic. In partial remedy, we also
proposed a construction that can push that limit further at the expense of solution size.

Our approaches are heuristic in nature. This is not surprising, since as we show, the prob-
lem of finding a minimum (k, L)-hitting set for a given set of sequences is NP-hard. Moreover,
even after removing an optimal decycling set, one needs to solve the problem of finding a min-
imum vertex set that hits all L-long sequences in a directed acyclic graph, which is NP-hard.
Hence, DOCKS usually produces sub-optimal solutions. For example, for k =4 and L = 10 the
optimal solution obtained by solving an ILP formulation had size 89, compared to 91 produced
by DOCKS. In fact, our tests show that if further reduction to the hitting set size is needed,
starting from the DOCKS solution and improving it using ILP is a good strategy, at least for
small values of k.

Our study raises several open problems. First, is there a characterization for a minimum
universal (k, L)-hitting set similar to the characterization of decycling sets by Mykkeltveit [17]?
That is, does there exist an algorithm polynomial in k and L that can check if a k-mer belongs
to a particular universal (k, L)-hitting set. The fact that MINIMUM (k, L)-HITTING SET on a
given set of input sequences is NP-hard still leaves the universal case open. A related question
is whether one can find an algorithm that generates an optimal (universal) (k, L)-hitting set
while requiring work polynomial in the output set size. This is particularly interesting for the
universal case, where the input is only the values k and L and the output size is > |Z|*/k. Sec-
ond, is the problem of minimum ¢-path cover in a DAG G polynomial when G is a subgraph
of a de Bruijn graph? We know it is hard for a general DAG, but the specific structure of de
Bruijn graphs may make the problem easier. Third, the bottleneck to DOCKS running time is
the second phase, which currently re-calculates the vertex hitting numbers on each iteration.
Can one find a dynamic algorithm that updates these numbers more efficiently after the
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removal of one vertex? Fourth, is there a tight upper bound on the number p of vertices that
will be removed by the greedy heuristic? Fifth, can we give an upper bound or a tighter lower
bound on the size of Uy, ;?

Conclusion

We demonstrated the ability of DOCKS to generate compact sets of k-mers that hit all L-long
sequences. These k-mer sets can be generated once for any desired value of k < 13 and L and
then readily used for many different purposes. For example, we produced a set of only 700
6-mers out of a total of 4096 that hits every sequence longer than 70 bases—a typical read
length for many sequencing experiments—enabling efficient binning of reads. Our compact
sets can improve many of the applications that currently use minimizers, as we showed that
they are both smaller and more sparsely distributed across genome sequences.

Supporting information

S1 Table. Set size, running time and memory usage of DOCKS, DOCKSany, DOCKSanyX,
and the greedy algorithm for the hitting set problem. The table contains solution set size,
time in seconds and memory in KB for DOCKS, DOCKSany, DOCKSanyX and the greedy
approach algorithms. Note that the reported times are for individual runs of each (k, L) pair,
but the sets for all longer L values are computed when computing the (k, L = 20) set with
DOCKSany or DOCKSanyX and the runtime can be amortized across all of these calculations.
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(PDF)
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Appendix

In this section we prove theoretical results used in the body of the paper.

NP-hardness of MINIMUM (k, L)-HITTING SET

One of the motivations for a universal k-mer set comes from the fact that the problem
of finding a minimum-size k-mer set that hits every string in a given set of L-long
strings is NP-hard. The hitting set problem, if a given set of target sequences is part of

the input, is as follows:

MINIMUM (k, L)-HITTING SET

INSTANCE: Set S of L-long sequences over ¥ and k.
VALID SOLUTION: Set X of k-mers s.t. S C hit(X,L).
GOAL: Minimize |X]|.

We prove that MINIMUM (k, L)-HITTING SET is NP-hard. For simplicity, we study
the problem on the DNA alphabet, but it can be easily generalized to any finite
alphabet 3. We show a reduction from HITTING SET [1]. While the problems look
similar, HITTING SET is a more general case than our problem, since in HITTING
SET the subsets are arbitrary, while in MINIMUM (k, L)-HITTING SET problem each
subset is made of overlapping k-mers. Hence, the hardness of the former does not

directly imply hardness of the latter.
Theorem 1. MINIMUM (k,L)-HITTING SET is NP-hard.

Proof. Given an input to HITTING SET, a set S of subsets of E = {e;...e,}, we
generate an input to MINIMUM (k, L)-HITTING SET problem as follows: Denote by
m the size of the maximum cardinality set, i.e. m = maxg,es |S;|. We choose

£ = [logy(max(m,n))], L = 3¢m and k = 2¢. We map each set S; € S to a k-long
binary representation of ¢, where instead of bits we use nucleotides C and G. We map
each element e; € E to a k-long binary representation of j, where instead of bits we use
nucleotides A and T. We call these representations the set’s {C, G}-representation and

the element’s { A, T'}-representation and denote them by feq(S;) and far(e;).
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We generate a sequence set T', which is the input to MINIMUM (&, L)-HITTING
SET. For each set S; € S we generate a sequence that contains all of its elements’

{A, T'}-representations, each appearing twice consecutively and buffered by the set’s

{C, G}-representation. Formally, for the set S; = {e;,,..., €4} we create the sequence:
T = (T112] far(es,) - far(es,) - foa(Si) - (Far(es) - far(es) - fea(Si)™ 15 (here
[] indicates concatenation). The new instance T is {T1,...,T|g}.

Denote by T9FT an optimal solution to MINIMUM (k, L)-HITTING SET. If a
k-mer contains as a substring a complete { A, T'}-representation w, then the element
f;}(w) is in the optimal solution to HITTING SET. If a k-mer contains a complete
{C, G}-representation w, then any element from the set fc_é(w) can be part of the
optimal solution. The running time of the reduction is bounded by O(|S]| x L) to
generate the input sequence set T. In terms of m and n the running time is
O(IS] - m - (1og(m) + log(n))).

We now prove the correctness of the reduction. We start with proving several

properties of the solution.

Lemma 1. A k-mer that contains a complete { A, T}-representation w can be replaced

by k-mer ww to produce a hitting set of the same cardinality.

Proof. The k-mer contains a complete {A, T }-representation w. Thus, it can only hit
sequences that contain w. Since the sequences were constructed to contain two adjacent
{A, T}-representations per element, and since this representation is unique, k-mer ww

hits the same set of sequences. O

Lemma 2. A k-mer that contains a complete {C, G}-representation can be replaced by
a k-mer that contains two adjacent occurrences of any {A, T }-representation from this

sequence to produce a hitting set of the same cardinality.

Proof. A {C, G}-representation is unique to each sequence. Thus, it can only hit one
sequence, and replacing it by any other k-mer from that sequence preserves the hitting

properties of the set. U

We now prove the two sides of the reduction:

1. MINIMUM (k, L)-HITTING SET = HITTING SET: all L-long sequences in T’

are hit by k-mers in TP7. By Lemmas 1 and 2 we can transform any hitting set
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to a hitting set of the same cardinality, but containing only k-mers over {A,T}.
These correspond to elements in an optimal solution of HITTING SET. Assume
contrary that there is a smaller solution U to HITTING SET. Then, the set

{far(w) - far(w) | w € U} hits all sequences in the k-mer hitting problem, and

by that producing a smaller solution, contrary to its optimality.

2. HITTING SET = MINIMUM (k, L)-HITTING SET: denote by SFT an optimal
solution to HITTING SET. Then, a set of k-mers {far(w) - far(w) | w € SOFT}
is an optimal solution to MINIMUM (k, L)-HITTING SET. Assume contrary that
there is a smaller solution U to MINIMUM (k, L)-HITTING SET. By Lemmas 1
and 2 there is a solution composed of k-mers over {A,T}. The set of element
{far(wWik/2) | w € U} is a smaller hitting set in HITTING SET, contrary to its

optimality.

NP-hardness of MINIMUM /¢-PATH COVER IN A DAG

Our heuristic to find Uy, searches for a minimum /¢-path cover in the DAG created
after removing a decycling set. In the second phase of DOCKS we encounter a special

case of the following problem.
MINIMUM /-PATH VERTEX COVER IN A DAG
INSTANCE: A directed acyclic graph G = (V, E) and integer £.
VALID SOLUTION: Vertex set X s.t. G’ = (V' \ X, E) contains no ¢-long paths.
GOAL: Minimize |X]|.

This general problem was shown to be NP-hard in [2]. A special case of the problem,
for an acyclic subgraph of the de Bruijn graph, arises in the second phase of DOCKS
after removing a minimum decycling set. The hardness result motivates the use of

heuristics in the second phase.

Validity of the ILP formulation

Lemma 3. The ILP is a valid formulation of the minimum hitting set problem.
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Proof. Suppose S is a UHS, and define 2 =1 <= v e S, Ly =0if v € S and
otherwise L equal to the length of the longest path ending at v. We claim that (z*, L*)
satisfy the constraints. By construction, (8) holds. To show (9), if v € S then
0=L;>1+L; —¢ Ifv¢gS, then L} > 1+ L}, by the property of the longest path
labels. Hence all constraints are satisfied. Conversely, suppose the vectors * and L*
solve the ILP. W.l.o.g., we can assume that L* is integer (otherwise round all
coordinates down and all inequalities still hold for the new solution). Define

S = {i|zf =1}. We claim that S is a UHS. Suppose by contradiction there exists a
path of ¢ edges p = (uo, €p,u1,e€1,...,ur) in the graph induced by Gy \ S (i.e. the DAG
induced by removing the set S from the order £ de Bruijn graph). Then, x} = 0 for

1 =0,...,¢ and summing the inequalities (9) for the edges in the path we get

Ly, > Ly, + ¢, which contradicts (8). Hence, S is indeed a UHS. O

References

1. Karp RM. Reducibility among combinatorial problems. In: 50 Years of Integer

Programming 1958-2008. Springer; 2010. p. 219-241.

2. Paindavoine M, Vialla B. Minimizing the Number of Bootstrappings in Fully
Homomorphic Encryption. In: Revised Selected Papers of the 22Nd International
Conference on Selected Areas in Cryptography - SAC 2015 - Volume 9566. New
York, NY, USA: Springer-Verlag New York, Inc.; 2016. p. 25-43. Available from:

http://dx.doi.org/10.1007/978-3-319-31301-6_2.

PLOS

9/9



Chapter 3

PlasClass improves plasmid

sequence classification

44



PLOS COMPUTATIONAL BIOLOGY

Check for
updates

G OPEN ACCESS

Citation: Pellow D, Mizrahi |, Shamir R (2020)
PlasClass improves plasmid sequence
classification. PLoS Comput Biol 16(4): 1007781.
https://doi.org/10.1371/journal.pcbi.1007781

Editor: Mihaela Pertea, Johns Hopkins University,
UNITED STATES

Received: December 24, 2019
Accepted: March 8, 2020
Published: April 3, 2020

Copyright: © 2020 Pellow et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The reported results
are for publicly available datasets. The waste-water
plasmidome and human gut metagenomes are
available through the SRA (accessions
ERR1538272, ERR1297700, ERR1297720,
ERR1297770, ERR1297796, ERR1297822,
ERR1297834). The bacterial isolates dataset was
previously curated from publicly available data by
Arredondo-Alonso et al. It can be accessed from
https://gitlab.com/sirarredondo/Plasmid_
Assembly.

Funding: DP is supported in part by an Edmond J.
Safra PhD Fellowship (https:/safrabio.cs.tau.ac.il/),

RESEARCH ARTICLE
PlasClass improves plasmid sequence
classification

David Pellow®'*, Itzik Mizrahi®?, Ron Shamir'*

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel, 2 Department of Life Sciences,
Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family
Campus, Beer-Sheva, Israel

* dpellow @tau.ac.il (DP); rshamir@tau.ac.il (RS)

Abstract

Many bacteria contain plasmids, but separating between contigs that originate on the plas-
mid and those that are part of the bacterial genome can be difficult. This is especially true in
metagenomic assembly, which yields many contigs of unknown origin. Existing tools for
classifying sequences of plasmid origin give less reliable results for shorter sequences, are
trained using a fraction of the known plasmids, and can be difficult to use in practice. We
present PlasClass, a new plasmid classifier. It uses a set of standard classifiers trained on
the most current set of known plasmid sequences for different sequence lengths. We tested
PlasClass sequence classification on held-out data and simulations, as well as publicly
available bacterial isolates and plasmidome samples and plasmids assembled from meta-
genomic samples. PlasClass outperforms the state-of-the-art plasmid classification tool on
shorter sequences, which constitute the majority of assembly contigs, allowing it to achieve
higher F1 scores in classifying sequences from a wide range of datasets. PlasClass also
uses significantly less time and memory. PlasClass can be used to easily classify plasmid
and bacterial genome sequences in metagenomic or isolate assemblies. It is available
under the MIT license from: https://github.com/Shamir-Lab/PlasClass.

This is a PLOS Computational Biology Software paper.

Introduction

When using high-throughput sequencing to study the presence and dynamics of plasmids in
their bacterial hosts, it is often necessary to classify sequences as being of plasmid or chromo-
somal origin. This is especially true in the case of metagenomic sequencing, which can include
many sequences of unknown origin and varying lengths. We focus on the challenge of classify-
ing contigs in a metagenomic assembly in order to identify which are of plasmid origin.

The current state-of-the-art classifier of plasmid sequences is PlasFlow [1], a neural network
based algorithm that was shown to perform better than previous tools such as cBar [2]. While
PlasFlow is successful in classifying small sets of long sequences, it produces less reliable results
for short sequences and requires large memory on very large metagenomic datasets.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007781

April 3, 2020 1/9



PLOS COMPUTATIONAL BIOLOGY

PlasClass: Plasmid sequence classification

and in part by an Israel Ministry of Immigrant
Absorption PhD fellowship (https://www.gov.il/en/
departments/general/research_students_
scholarship). RS is supported in part by grants
from the Israel Science Foundation (ISF - https:/
www.isf.org.il/#/) grant 1339/18, the US - Israel
Binational Science Foundation (BSF - https://www.
bsf.org.il/), and the US National Science
Foundation (NSF - https://www.nsf.gov/) grant
2016694. IM is supported in part by ISF grant
1947/19 (ISF - https://www.isf.org.il/#/) and ERC
Horizon 2020 research and innovation program
grant 640384 (https://ec.europa.eu/programmes/
horizon2020/en). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Here we present PlasClass, a new plasmid sequence classifier implemented as an easy to use
Python package. It uses a set of logistic regression classifiers each trained on sequences of a dif-
ferent length sampled from plasmid and bacterial genome reference sequences. When applied
on a set of sequences, the appropriate length-specific classifier is used for each sequence.

We tested PlasClass on simulated data, on bacterial isolates, on a wastewater plasmidome,
and on plasmids assembled from human gut microbiome samples. For shorter sequences,
which are the majority of contigs in an assembly, PlasClass achieved better F1 scores than Plas-
Flow. This resulted in better overall performance across all the datasets tested. PlasClass also
used significantly less RAM and disk memory than PlasFlow, and can be run much faster by
using multiprocessing.

PlasClass is provided at https://github.com/Shamir-Lab/PlasClass.

Design and implementation
Training databases

We used reference sequence databases to obtain the training sequences for our classifiers. For
the plasmid references we used plasmid sequences listed in PLSDB [3] (v.2018_12_05), an up-
to-date curated plasmid database. After filtering out duplicate sequences this database con-
tained 13469 reference plasmids (median length: 53.8kb).

For the bacterial chromosome references we downloaded all complete bacterial genome
assemblies from NCBI (download date January 9, 2019). We removed sequences annotated as
being plasmids and filtered out duplicates, leaving 13491 reference chromosomes (median
length: 3.7Mbp).

One quarter of the sequences were randomly removed from the databases before training
in order to provide a held-out test set for validation. PlasClass was retrained on the full data-
bases and this version was used for testing on assembled data.

Training the classifiers

We sampled sequence fragments of different lengths from the reference sequences with
replacement and constructed a k-mer frequency vector for each fragment. Canonical k-mers
of lengths 3-7 were used, resulting in a feature vector of length 10952 for each fragment. Frag-
ment lengths were 500k, 100k, 10k, and 1k. For the two shorter lengths, 90,000 training frag-
ments were used from each class. For the lengths 500k and 100Kk, since there were not enough
long plasmids to do the same, we sampled enough fragments to cover all of the sufficiently
long plasmids to a depth of 5. This resulted in 1934 and 45525 plasmid fragments of length
500k and 100k, respectively on the full plasmid database.

For each length, a logistic regression classifier was trained on the plasmid and chromosomal
fragments’ k-mer frequency vectors using the scikit-learn [4] machine learning library in
Python. Code is provided to retrain the models on user-supplied reference sequence databases.

Length-specific classification

PlasClass uses four logistic regression models to classify sequences of different length. Each
sequence is assigned to the closest length from among 1kb, 10kb, 100kb, and 500kb. Equiva-
lently, this defines four length ranges: (0,5.5kb], (5.5kb,55kb], (55kb,300kb], (300kb, co).
Given a sequence, its k-mers are counted, the canonical k-mer frequency vector is calculated
and used to classify it with the classifier for the range it falls into. k-mer counting can be per-
formed in parallel for different sequences. Finally, all classification results are concatenated
into a single output in the same order as the input sequences.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007781
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Classification with PlasClass

PlasClass is available at https://github.com/Shamir-Lab/PlasClass. It has been retrained using
the full set of database references. PlasClass can be used as a command-line tool to classify
sequences in an input fasta file or it can be imported as a module into the user’s code to classify
sequences in the user’s program. It can be run in parallel mode to achieve faster runtimes. Plas-
Class is fully documented in S1 File and at the url provided above.

Results

We tested performance of PlasClass on both simulated and real data and compared it to
PlasFlow.

Experimental settings

PlasClass and PlasFlow both assign class probabilities to each sequence. We say a sequence is
classified as having plasmid origin if the probability that it belongs to the plasmid class

is > 0.5. When running PlasFlow, this probability was summed over all plasmid classes, and

we set the parameter - -threshold = 0.5 to ensure each sequence is classified as either
plasmid or bacterial. All assemblies were performed using the - -meta option of SPAdes [5]
v3.12.

Performance metrics

We calculated the precision, recall and F1 scores counting the number of true positive and
false positive predictions. Some previous works [1, 6] calculated performance based on the
lengths of the sequences classified as plasmids and the total length of the plasmids in a sample.
A length-weighted metric is appropriate in the context of plasmid sequence assembly, but in
the context of contig classification this makes little sense. (Consider the extreme case of one
extremely long sequence and 999 very short ones. Classifying the long contig is easy, but a clas-
sifier that only identifies it correctly will have weighted precision and recall near 1 even though
only 1/1000 of the sequences are correctly classified.) For this reason we used the numbers of
correctly classified sequences.

On the assembled contigs we follow the previous works [1, 6] and consider a contig to be
from the plasmid class if it matches a plasmid reference sequence—even if it also matches a
chromosomal reference sequence. This is appropriate for classifying all sequences in an assem-
bly to determine their origin. However, when constructing a benchmark for a classifier, it may
be more suitable to filter ambiguous sequences that may belong to both classes out of the test
set. For this reason, we also report results with all ambiguous sequences filtered out in S2 File.

Classifying sequences from held-out references

We sampled overlapping L-long fragments covering the held out plasmids with an overlap of
L/2 for L = 100k, 10k and 1k. A matching number of L-long fragments were sampled from the
held out bacterial genomes for each length L. (Note that this creates a balanced classification
scenario.) Table 1 summarizes the classification results. PlasClass improved precision at the
cost of slightly lower recall and had better overall F1 on the shorter sequence lengths. These
short sequences can make up the majority of contigs in metagenomic assemblies, allowing
PlasClass to outperform PlasFlow in many settings as shown below.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007781  April 3, 2020 3/9
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Table 1. Performance on held out data.

Length (bp) # fragments per class
100k 2979

10k 56583

1k 607656

Performance of PlasClass and PlasFlow on fixed length sequence fragments sampled from the held out references.

https://doi.org/10.1371/journal.pcbi.1007781.t001

Precision
96.9
88.7
75.1

PlasClass
Recall

85.4

86.4

74.6

F1
90.8
87.6
74.8

Precision
95.6
83.1
59.7

Performance on a benchmark of bacterial isolates

PlasFlow
Recall F1
88.4 91.9
87.7 85.3
79.1 68.1

We compared the performance of PlasClass to PlasFlow on the isolate assemblies from the
benchmark in [6]. Specifically, we downloaded the assemblies and all bacterial and plasmid
reference sequences used in the benchmarking experiment of [6] (available from: https://
gitlab.com/sirarredondo/Plasmid_Assembly). Assembled contigs were mapped to the refer-
ences using BLAST and contigs with matches (>95% mapping identity along >95% of the
contig length) were assigned to the plasmid or chromosome class as described. There were
60579 contigs across all the assemblies of which 36172 matched one of the classes (8569 plas-
mid and 27603 chromosome) and were used in this test. As seen in Table 2, the majority of
these sequences were extremely short (68% of the 36172 contigs <500bp). We looked at the
impact of these short sequences by filtering out contigs below a certain length and the results

of both methods improved when shorter sequences were filtered out. In all cases, PlasClass
had consistently higher F1.

Performance on simulated metagenome assemblies

We simulated metagenomes by randomly selecting bacterial genome references from the
NCBI along with their associated plasmids and using realistic distributions for genome abun-
dance and plasmid copy number. For genome abundance we used the log-normal distribution,
normalized so that the relative abundances sum to 1. For plasmid copy number we used a geo-
metric distribution with parameter p = min(1, log(L)/7) where L is the plasmid length. This
makes it much less likely for a long plasmid to have a copy number above 1, while shorter plas-

mids can have higher copy numbers. Short reads were simulated from the genome references

using InSilicoSeq [7] and assembled.

We then classified the assembled contigs. Classification was performed on the assembled
contigs that had a match to either a reference plasmid or reference chromosome sequence
used in the simulation (1641 plasmid contigs, 32451 chromosome contigs in Sim1, and 14272

Table 2. Performance on bacterial isolates.

Contig length (bp) # of contigs
All 36172
>500 11659
>1000 7414

>5000 3999

Precision

43.65
53.15
59.95
61.84

PlasClass

Recall
77.58
91.30
91.82
92.12

Performance on bacterial isolates from [6], as a function of the minimum contig length.

https://doi.org/10.1371/journal.pchi.1007781.t002

F1
55.87
67.18
72.54
74.00

Precision
31.16
37.68
47.54
50.05

PlasFlow
Recall F1
87.77 46.00
89.23 52.99
90.04 62.23
92.31 64.91

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007781
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Table 3. Performance on simulated metagenomes.

# chromosomes # plasmids # unique # contigs PlasClass F1 PlasFlow F1
Sim1 34 82 56 34092 15.79 13.49
Sim2 198 333 219 388669 12.08 8.79

Summary of the simulated metagenome datasets and comparison of F1 scores. # unique is the number of distinct plasmids, ignoring multiple copies.

https://doi.org/10.1371/journal.pchi.1007781.t003

plasmid contigs, 374397 chromosome contigs in Sim2). F1 results are shown in Table 3. Plas-
Class outperformed PlasFlow by more than 17%. Scores were low for both methods due to the
many short contigs in the assembly (50% and 73% of the contigs <500 bp in Sim1 and Sim2
respectively) and the class imbalance. We show the impact of short sequences on performance
in Table 4. PlasClass consistently outperformed PlasFlow, and both methods performed better
as more short sequences were filtered out.

Performance on a plasmidome sample

We assembled the wastewater plasmidome sample ERR1538272 from the study by Shi et al.
[8]. It is a metagenomic sample that was enriched for plasmid sequences. Each contig in the
assembly was matched to the plasmid and bacterial reference databases using BLAST. The set
of 9854 contigs (out of 35285) that matched the reference sequences (1888 plasmid contigs,
7966 chromosome contigs) was used as the gold standard to test the classifiers (contig length
distribution is presented in S3 File See also S1 Fig). Although the plasmid-enriched setting
favors PlasFlow, which sacrifices precision for higher recall, PlasClass still had a higher com-
bined F1 as shown in Table 5.

We computed the precision-recall curve for the classification of the gold standard contigs
in this sample by PlasClass, shown in S2 Fig (see also S3 File. The area under the curve is 0.41,
more than double the baseline of 0.19 (the fraction of the contigs that are of plasmid origin).

Classifying plasmids assembled from metagenomic samples

We assembled six publicly available human gut microbiome samples (accessions:
ERR1297700, ERR1297720, ERR1297770, ERR1297796, ERR1297822, ERR1297834) and
found plasmid sequences in the assemblies using Recycler [9]. Recycler assembles plasmid
sequences based on coverage and circularity—features that are not used by the classifiers. 16-

Table 4. Simulated metagenome performance by length.

Contig length (bp) # of contigs PlasClass PlasFlow
Precision Recall F1 Precision Recall F1
Siml All 34092 8.94 67.40 15.79 7.30 87.75 13.49
>500 17023 11.22 78.55 19.64 8.20 85.05 14.95
>1000 11696 15.67 80.96 26.26 10.92 85.00 19.36
>5000 4032 36.11 86.80 51.00 28.09 90.80 42.91
Sim2 All 388669 6.64 66.98 12.08 4.64 84.31 8.79
>500 106814 13.76 76.00 23.29 8.42 84.23 15.32
>1000 45597 22.42 79.20 34.95 14.01 86.52 24.11
>5000 5642 46.50 81.18 59.13 38.48 88.49 53.63

Performance on simulated metagenomes as a function of the minimum contig length.

https://doi.org/10.1371/journal.pchi.1007781.t004

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007781  April 3, 2020 5/9



PLOS COMPUTATIONAL BIOLOGY PlasClass: Plasmid sequence classification

Table 5. Performance on a plasmidome sample.

Precision Recall F1 score
PlasClass 32.32 64.25 43.01
PlasFlow 23.72 86.49 37.23

Performance of PlasClass and PlasFlow on the plasmidome sample from [8].

https://doi.org/10.1371/journal.pcbi.1007781.t005

27 plasmids were assembled per sample (median length: 3.4kb). We classified each of the plas-
mids generated by Recycler to determine the extent of agreement between the sequence classi-
fiers and this orthogonal approach. As seen in Fig 1, PlasClass agreed with Recycler on the
same number or more plasmids than PlasFlow in all samples. This suggests that PlasClass can
correctly identify more plasmids in real datasets, which contain many previously unknown
plasmid sequences.

Resource usage

In Table 6, we compare the runtime and memory usage of PlasClass and PlasFlow on the full
plasmidome, simulated metagenome, and isolate bacterial datasets. PlasClass (running with a

I PlasFlow
0.81 Il PlasClass

0.7 1

0.6

0.5

0.4 1

0.3

0.2 1

Fraction of Recycler
assemblies classified as plasmids

0.119

0.0 -

ERR1297700 ERR1297720 ERR1297770 ERR1297796 ERR1297822 ERR1297834

Samples

Fig 1. Classifying plasmids assembled from metagenomic samples. Agreement of PlasClass and PlasFlow classifications with the plasmids generated by Recycler.

https://doi.org/10.1371/journal.pcbi.1007781.9001
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Table 6. Resource usage.

Dataset PlasFlow PlasClass PlasClass—8 processes
Runtime RAM Disk Runtime RAM Runtime RAM
Isolates 12.8 47.8 21.4 36.3 17.2 6.8 17.2
Sim1 7.1 28.3 12.1 16.2 12.0 3.0 12.0
Sim2 89.3 291.3 137.5 54.8 17.3 17.1 17.3
Plasmidome 7.9 28.8 12.2 4.2 12.2 5.2 17.3

Runtime (wall clock time, in minutes) and memory usage (in GB) of PlasClass and PlasFlow.

https://doi.org/10.1371/journal.pchi.1007781.t006

single process) was faster than PlasFlow on the most time consuming sample and was signifi-
cantly faster in all cases when using multiprocessing. It used less than half the RAM of Plas-
Flow and the RAM usage was not increased significantly when using multiprocessing.
PlasFlow writes the feature matrices to disk while PlasClass does not. Performance was mea-
sured on a 44-core, 2.2 GHz server with 792 GB of RAM.

Discussion

We presented the PlasClass algorithm for classifying plasmid sequences. We applied the algo-
rithm across a wide range of contexts and showed that in most cases PlasClass outperformed
the state-of the-art algorithm PlasFlow. It was also faster and required less memory.

The task of classifying plasmid sequences in the real-world context of metagenomic data is
a difficult task due to the nature of the assembled sequences: the sequences are mostly short
(60-90% are shorter than 1 kbp, see Tables 2 and 4), and there is an imbalance between the
number of plasmid and bacterial sequences (1:3 in the bacterial isolates, and 1:4 in the plas-
mid-enriched plasmidome samples presented). Given the constraints, the quality of classifica-
tion is naturally limited, but the task is of high importance for understanding plasmid role in
horizontal transfer, antibiotic resistance and ecology. We also showed that classification qual-
ity improves when focusing on longer sequences and when plasmid sequences are enriched.

Availability and future directions

PlasClass is open-source and freely available under the MIT license. PlasClass is maintained on
GitHub, enabling bug-reporting and community collaboration in extending the tool to meet
needs of the users as they arise. It can be found at https://github.com/Shamir-Lab/PlasClass.

We plan to use PlasClass in order to improve plasmid assembly from metagenomic sam-
ples, by utilizing the classification scores of contigs. Another possible future direction is to tai-
lor the plasmid training data to the problem at hand: Currently we use all known plasmids for
training, which creates a bias towards clinically relevant samples. By using training datasets tai-
lored to other specific environments one can create a classifier that would fit those environ-
ments better.

Supporting information

S1 File. PlasClass documentation. Complete documentation for using PlasClass.
(PDF)

S2 File. Results with ambiguous sequences filtered. Extended results reporting performance
with ambiguous sequences filtered out.
(PDF)
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S$3 File. Plasmidome dataset extended results. Extended results reporting the contig lengths
and precision-recall curve for the plasmidome sample.
(PDF)

S1 Fig. Plasmidome contig lengths. Histogram of the contig lengths in the plasmidome
assembly. Note that the y-axis uses log-scale.
(TIF)

S2 Fig. Plasmidome precision-recall curve. Precision-recall curve for the classification of
contigs of in the plasmidome sample.
(TIF)
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Abstract

analysis of plasmids in metagenomic samples.

Background: Metagenomic sequencing has led to the identification and assembly of many new bacterial genome
sequences. These bacteria often contain plasmids: usually small, circular double-stranded DNA molecules that may
transfer across bacterial species and confer antibiotic resistance. These plasmids are generally less studied and
understood than their bacterial hosts. Part of the reason for this is insufficient computational tools enabling the

Results: We developed SCAPP (Sequence Contents-Aware Plasmid Peeler)—an algorithm and tool to assemble
plasmid sequences from metagenomic sequencing. SCAPP builds on some key ideas from the Recycler algorithm
while improving plasmid assemblies by integrating biological knowledge about plasmids.

We compared the performance of SCAPP to Recycler and metaplasmidSPAdes on simulated metagenomes, real
human gut microbiome samples, and a human gut plasmidome dataset that we generated. We also created

plasmidome and metagenome data from the same cow rumen sample and used the parallel sequencing data to
create a novel assessment procedure. Overall, SCAPP outperformed Recycler and metaplasmidSPAdes across this
wide range of datasets.

Conclusions: SCAPP is an easy to use Python package that enables the assembly of full plasmid sequences from
metagenomic samples. It outperformed existing metagenomic plasmid assemblers in most cases and assembled

Keywords: Plasmids, Assembly

novel and clinically relevant plasmids in samples we generated such as a human gut plasmidome. SCAPP is
open-source software available from: https://github.com/Shamir-Lab/SCAPP.

Background

Plasmids play a critical role in microbial adaptation,
such as antibiotic resistance or other metabolic capa-
bilities, and genome diversification through horizontal
gene transfer. However, plasmid evolution and ecology
across different microbial environments and populations
are poorly characterized and understood. Thousands of
plasmids have been sequenced and assembled directly
from isolated bacteria, but constructing complete plasmid
sequences from short read data remains a hard challenge.

*Correspondence: dpellow@post.tau.ac.il

'Blavatnik School of Computer Science, Tel Aviv University, 6997801 Tel Aviv,
Israel

Full list of author information is available at the end of the article

B BMC

The task of assembling plasmid sequences from shotgun
metagenomic sequences, which is our goal here, is even
more daunting.

There are several reasons for the difficulty of plasmid
assembly. First, plasmids represent a very small fraction of
the sample’s DNA and thus may not be fully covered by the
read data in high-throughput sequencing experiments.
Second, they often share sequences with the bacterial
genomes and with other plasmids, resulting in tangled
assembly graphs. For these reasons, plasmids assembled
from bacterial isolates are usually incomplete, fragmented
into multiple contigs, and contaminated with sequences
from other sources. The challenge is reflected in the title
of a recent review on the topic: “On the (im)possibility of

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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reconstructing plasmids from whole-genome short-read
sequencing data” [1]. In a metagenomic sample, these
problems are amplified since the assembly graphs are
much larger, more tangled, and fragmented.

There are a number of tools that can be used to
detect plasmid sequences including PlasmidFinder [2],
cBar [3], gPlas [4], PlasFlow [5], and others. There is
also the plasmidSPAdes assembler for assembling plas-
mids in isolate samples [6]. However, there are currently
only two tools that attempt to reconstruct complete plas-
mid sequences in metagenomic samples: Recycler [7] and
metaplasmidSPAdes [8] (mpSpades). mpSpades iteratively
generates smaller and smaller subgraphs of the assembly
graph by removing contigs with coverage below a thresh-
old that increases in each iteration. As lower coverage
segments of the graph are removed, longer contigs may be
constructed in the remaining subgraph. Cyclic contigs are
considered as putative plasmids and then verified using
the profile of their genetic contents. The main idea behind
Recycler is that a single shortest circular path through

Page 2 of 12

each node in the assembly graph can be found efficiently.
The circular paths that have uniform read coverage are
iteratively “peeled” off the graph and reported as possi-
ble plasmids. The peeling process reduces the residual
coverage of each involved node, or removes it altogether.
We note that these tools, as well as our work, focus on
circular plasmids and do not assemble linear plasmid
sequences.

Here we present SCAPP (Sequence Contents-Aware
Plasmid Peeler), a new algorithm that uses the peeling idea
of Recycler and also leverages external biological knowl-
edge about plasmid sequences. In SCAPP, the assembly
graph is annotated with plasmid-specific genes (PSGs)
and nodes are assigned weights reflecting the chance that
they are plasmidic based on a plasmid sequence classifier
[9]. In the annotated assembly graph, we prioritize peeling
off circular paths that include plasmid genes and highly
probable plasmid sequences. SCAPP also uses the PSGs
and plasmid scores to filter out likely false positives from
the set of potential plasmids.

Algorithm 1 SCAPP pipeline

Input: Assembly graph G = (V, E) and read set R of the sample
Output: P: potential plasmids, O: confident plasmid predictions

1: Create annotated graph G’ = (V', E'):

: Initially G = G

. MapRto V'

. score(v) < sequence plasmid probability Vv € V'
w() = (1 — score(v))/(len(v) - cov(v)) Yv € V'

V™ = {v € V'|v contains a PSG}, w(v) =0 Vv € V"

: V<« V'\ {v e V'|deg(v) = 0 Vv vis probable chromosome node

V v is a non-compatible self-loop with indeg(v) = outdeg(v) = 1}

8 P <« {v € V'|vis a compatible self-loop}
9: for each strongly connected component CC € G’ do

10: for v € V" N CC in decreasing order by len(v) - cov(v) do

1L Find lowest weight cycle C through v

12 if C meets coverage and paired-end read criteria then

13: P <~ PU{C}, G < peel(G,C)

14 for v € {v € CC|vis a probable plasmid node} in decreasing order by len(v) - cov(v) do
15: Find lowest weight cycle C through v

16: if C meets coverage and paired-end read criteria then

17: P <« PU{C}, G « peel(G,C)

18: while V' changes do

19: S <—{}

20: for v € V' N CC in decreasing order by len(v) - cov(v) do
21: Find lowest weight cycle C through v

22: S«<SucC

23: for C € S in increasing order of coefficient of variation do
24: if C meets coverage and paired-end read criteria then
25: P« PU{C}, G « peel(G,C)

26: O < {C € P|(C contains a PSG A plasmid score(C) > 0.5)
V (C contains a PSG A C is self-loop ) Vv (plasmid score(C) > 0.5 A C is self-loop)}
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We tested SCAPP on both simulated and diverse real
metagenomic data and compared its performance to
Recycler and mpSpades. Overall, SCAPP performed bet-
ter than the other tools across these datasets. SCAPP
has higher precision than Recycler in all cases, mean-
ing it more accurately constructs correct plasmids
from the sequencing data. SCAPP also has higher
recall than mpSpades in most cases, and higher preci-
sion in most of the real datasets. We developed and
tested a novel strategy given parallel plasmidome and
metagenome sequencing of the same sample. We show
how to accurately assess the performance of the tools on
metagenome data, even in the absence of known reference
plasmids.

Implementation

SCAPP accepts as input a metagenomic assembly graph,
with nodes representing the sequences of assembled con-
tigs and edges representing k-long sequence overlaps
between contigs, and the paired-end reads from which the
graph was assembled. SCAPP processes each component
of the assembly graph and iteratively assembles plas-
mids from them. The output of SCAPP is a set of cyclic
sequences representing confident plasmid assemblies.

A high-level overview of SCAPP is provided in Table 1
and depicted graphically in Fig. 1; the full algorithmic
details are presented below. For brevity, we describe only
default parameters below; see Additional file 1, Section S1
for alternatives.

SCAPP is available from https://github.com/Shamir-
Lab/SCAPP and fully documented there. It was written in
Python3 and can be installed as a conda package, directly
from Bioconda or from its sources.

The SCAPP algorithm

The full SCAPP algorithm is given in Algorithm 1. The
peel function, which defines how cycles are peeled from
the graph, is given in Algorithm 2.

Algorithm 2 peel(G, C)

Input: Assembly graph G = (V, E) annotated with node
coverage, cycle C C G

Output: Updated graph G’ = (V/ € V,E' C E) with
cycle C peeled

1: G/ =G
2 ey (C) = > f(u, C)eoV' (u, C), the weighted mean
ueC
of the discounted coverage of Cin G
3: forve Cdo
4 cov(v) < max{cov(v) — pcoy (C),0}
5: if cov(v) = 0 then
6: V <~ V'\v
7: E <« E\{ele=(u,v)Ue= (v,u)Vu € V}

Page 3 0of 12

Table 1
Overview of SCAPP

1: Annotate the assembly graph:

a: Map reads to nodes of the mbly graph
b: Find nodes with plasmid-specific gene matches
¢: Compute plasmid sequence scores of nodes
d: Assign node weights
: for each strongly connected component do
Iteratively peel uniform coverage cycles through plasmid gene nodes

ively peel uniform coverage cycles through high scoring nodes
y peel shortest cycle through each remaining node if it meets
plasmid criteria

U L

6: Output the set of confident plasmid predictions

Read mapping

The first step in creating the annotated assembly graph
(Table 1 step 1la) is to align the reads to the contigs in
the graph. The links between paired-end reads aligning
across contig junctions are used to evaluate potential plas-
mid paths in the graph. SCAPP performs read alignment
using BWA [10] and the alignments are filtered to retain
only primary read mappings, sorted, and indexed using
SAMtools [11].

Plasmid-specific gene annotation

We created sets of PSGs by database mining and cura-
tion by plasmid microbiology experts from the Mizrahi
Lab (Ben-Gurion University). Information about these
PSG sets is found in Additional file 1, Section S2. The
sequences themselves are available from https://github.
com/Shamir-Lab/SCAPP/tree/master/scapp/data.

A node in the assembly graph is annotated as contain-
ing a PSG hit (Table 1 step 1b) if there is a BLAST match
between one of the PSG sequences and the sequence cor-
responding to the node (> 75% sequence identity along
> 75% of the length of the gene).

Plasmid sequence score annotation

We use PlasClass [9] to annotate each node in the assem-
bly graph with a plasmid score (Table 1 step 1c). PlasClass
uses a set of logistic regression classifiers for sequences
of different lengths to assign a classification score reflect-
ing the likelihood of each node to be of plasmid
origin.

We re-weight the node scores according to the sequence
length as follows. For a given sequence of length L and
plasmid probability p assigned by the classifier, the re-

- 0.5
1+ e€0‘001(L—2000) :
This tends to pull scores towards 0.5 for short sequences,
for which there is lower confidence, while leaving scores
of longer sequences practically unchanged.

Long nodes (L > 10 kbp) with low plasmid score (s <
0.2) are considered probable chromosomal sequences
and are removed, simplifying the assembly graph.
Similarly, long nodes (L > 10 kbp) with high plas-
mid score (s > 0.9) are considered probable plasmid
nodes.

weighted plasmid score is: s = 0.5 +
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Fig. 1 Graphical overview of the SCAPP algorithm. (A) The metagenomic assembly graph is created from the sample reads. (B) The assembly graph
is annotated with read mappings, presence of plasmid specific genes, and node weights based on sequence length, coverage, and plasmid
classifier score. (C) Potential plasmids are iteratively peeled from the assembly graph. An efficient algorithm finds cyclic paths in the annotated
assembly graph that have low weight and high chance of being plasmids. Cycles with uniform coverage are peeled. (D) Confident plasmid
predictions are retained using plasmid sequence classification and plasmid-specific genes to remove likely false positive potential plasmids

Assigning node weights

In order to apply the peeling idea, nodes are assigned
weights (Table 1 step 1d) so that lower weights correspond
to higher likelihood to be assembled into a plasmid. Plas-
mid score and PSG annotations are incorporated into the
node weights. A node with plasmid score s is assigned a
weight w(v) = (1 —5)/(C - L) where C is the depth of cov-
erage of the node’s sequence and L is the sequence length.
This gives lower weight to nodes with higher coverage,
longer sequence, and higher plasmid scores. Nodes with
PSG hits are assigned a weight of zero, making them more
likely to be integrated into any lowest-weight cycle in the
graph that can pass through them.

Finding low-weight cycles in the graph
The core of the SCAPP algorithm is to iteratively find
a lowest weight (“lightest”) cycle going through each
node in the graph for consideration as a potential plas-
mid. We use the bidirectional single-source, single-target
shortest path implementation of the NetworkX Python
package [12].

The order that nodes are considered matters since in
each iteration potential plasmids are peeled from the

graph, affecting the cycles that may be found in subse-
quent iterations. The plasmid annotations are used to
decide the order that nodes are considered: first all nodes
with PSGs, then all probable plasmid nodes, and then all
other nodes in the graph (Table 1 step 2). If the light-
est cycle going through a node meets certain criteria
described below, it is peeled off, changing the coverage of
nodes in the graph. Performing the search for light cycles
in this order ensures that the cycles through more likely
plasmid nodes will be considered before other cycles.

Assessing coverage uniformity
The lightest cyclic path, weighted as described above,
going through each node is found and evaluated. Recycler
sought a cycle with near uniform coverage, reasoning that
all contigs that form a plasmid should have roughly the
same coverage. However, this did not take into account
the overlap of the cycle with other paths in the graph (see
Fig. 2). To account for this, we instead compute a dis-
counted coverage score for each node in the cycle based
on its interaction with other paths as follows:

The discounted coverage of a node v in the cycle C is its
coverage cov(v) times the fraction of the coverage on all its
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Fig. 2 Evaluating and peeling cycles. Numbers inside nodes indicate coverage. All nodes in the example have equal length. A Cycles (g, e, f) and
(¢, e,g) have the same average coverage (13.33) and coefficient of variation (CV, 0.35), but their discounted CV values differ: The discounted
coverage of node a is 6, and the discounted coverage of node e is 10 in both cycles. The left cycle has discounted CV=0.22 and the right has
discounted CV=0. By peeling off the mean discounted coverage of the right cycle (10) one gets the graph in B. Note that nodes g, ¢ were removed
from the graph since their coverage was reduced to 0, and the coverage of node e was reduced to 10

neighbors (both incoming and outgoing), A/ (v), that is on
those neighbors that are in the cycle (see Fig. 2):

coV' (v, C) = cov(v) - Z

ueCAueN (v)

cov(u)/ Z cov(u)
ueN ()

A node v in cycle C with contig length len(v) is assigned
a weight f corresponding to its fraction of the length of
the cycle: f(v,C) = len(v)/ Y len(u). These weights are

ueC
used to compute the weighted mean and standard devia-

tion of the discounted coverage of the nodes in the cycle:
Heov' (C) = Z [, C)eoV' (u, C),

ueC

STDeoy (C) = [ Y f(u, C)(cov' (1, C) — 1oy (C))>

ueC

The coefficient of variation of C, which evaluates its
coverage uniformity, is the ratio of the standard deviation
to the mean:

STD coV ©

CvV(C) =
. Heov (C)

Finding potential plasmid cycles

After each lightest cycle has been generated, it is evalu-
ated as a potential plasmid based on its structure in the
assembly graph, the PSGs it contains, its plasmid score,
paired-end read links, and coverage uniformity. The pre-
cise evaluation criteria are described in Additional file 1,
Section S3. A cycle that passes them is defined as a poten-
tial plasmid (Table 1 steps 3-5). The potential plasmid

cycles are peeled from the graph in each iteration as
defined in Algorithm 2 (see also Fig. 2).

Filtering confident plasmid assemblies

In the final stage of SCAPP, PSGs and plasmid scores
are used to filter out likely false-positive plasmids from
the output and create a set of confident plasmid assem-
blies (Table 1 step 6). All potential plasmids are assigned
a length-weighted plasmid score and are annotated with
PSGs as was done for the contigs during graph annota-
tion. Those that belong to at least two of the following sets
are reported as confident plasmids: (a) potential plasmids
containing a match to a PSG, (b) potential plasmids with
plasmid score > 0.5, (c) self-loop nodes.

Results

We tested SCAPP on simulated metagenomes, human
gut metagenomes, a human gut plasmidome dataset
that we generated and also on parallel metagenome and
plasmidome datasets from the same cow rumen micro-
biome specimen that we generated. The test settings and
evaluation methods are described in Additional file 1,
Section S5.

Simulated metagenomes

We created seven read datasets simulating metagenomic
communities of bacteria and plasmids and assembled
them. Datasets of increasing complexity were created
as shown in Table 2. We randomly selected bacterial
genomes along with their associated plasmids and used
realistic distributions for genome abundance and plasmid
copy number. Further details of the simulation can be
found in Additional file 1, Section S4, and in Additional
file 2. 5M paired-end reads were generated for Sim1 and
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Table 2 Performance on simulated metagenome datasets. The number of covered plasmids (# covered) reports the number of the
simulation plasmids that were covered by reads along at least 95% of their length. The set of covered plasmids is used as the gold
standard in calculating the performance metrics. The numbers in parentheses are the median plasmid lengths (in kbp). F1 score is

presented as a percent

Recycler mpSpades SCAPP

Sample # genomes # plasmids # covered # plasmids F1 # plasmids F1 # plasmids F1

Sim1 10 9(5.9) 9(5.9) 7(5.6) 50.0 14.3) 20.0 5(5.6) 57.1
Sim2 50 47(19.3) 37(13.5) 20(3.8) 40.1 9(5.0) 39.1 23(55) 433
Sim3 200 210 (224) 136 (9.6) 61 (3.6) 32.8 27 (7.0) 323 48 (5.8) 429
Sim4 200 177 (25.4) 132(12.7) 62 (4.1) 40.8 29 (6.0) 36.5 51(6.2) 489
Sim5 300 318(23.9) 253 (9.6) 115 (3.6) 352 53(5.1) 338 100 (6.5) 47.5
Simé 400 480 (13.5) 368 (9.1) 138(3.0) 285 59 (5.5) 27.1 118 (5.5) 36.5
Sim7 500 571(17.3) 410(8.7) 132(3.5) 311 69 (5.3) 28.1 141 (5.2) 40.5

Sim2, 10M for Sim3 and Sim4, and 20M for Sim5, Sim6,
and Sim7.

Table 2 presents features of the simulated datasets
and reports the performance of Recycler, mpSpades, and
SCAPP on them. For brevity we report only F1 scores;
precision and recall scores are reported in Supplemen-
tary Table 1, Additional file 1 (Section S6). Here, and
throughout, all scores are adjusted to percent. SCAPP had
the highest F1 score in all cases, followed by Recycler.
SCAPP consistently achieved higher precision than Recy-
cler, allowing it to perform better overall. mpSpades had
the highest precision, but assembled far fewer plasmids
than the other tools and gained lower recall and F1 scores.
In fact, most of the plasmids assembled by mpSpades were
also assembled by the other tools (see Figure S1 in Addi-
tional file 1), suggesting that these plasmids were easier to
capture.

All of the tools assembled mostly shorter plasmids
as reflected in the median plasmid lengths. This is
likely due to the higher coverage and simplicity in the
assembly graph of these plasmids, as also evidenced by the
shorter lengths of the covered plasmids. SCAPP assem-
bled many more long plasmids (> 10 kbp) than the other
tools, achieving much higher recall and higher F1 score for
these longer plasmids than the other tools, at the cost of
some precision (see Supplementary Table 2 in Additional
file 1, Section S6 for results broken down by short and long
plasmids).

Human gut microbiomes

We tested the plasmid assembly algorithms on data of
twenty publicly available human gut microbiome sam-
ples selected from the study of Vrieze et al. [13]. The
true set of plasmids in these samples is unknown. Instead,
we matched all assembled contigs to PLSDB [14] and
considered the set of the database plasmids that were cov-
ered by the contigs as the gold standard (see Additional
file 1, Section S5 for details). All tools were evaluated

according to the same gold standard. We note that this
limits the evaluation to known plasmids, potentially over-
counting the number of false positive plasmids. We chose
the human gut microbiome in this experiment and the
next, as it is one of the most widely studied microbiome
environments so plasmids in gut microbiome samples are
most likely to be represented in the database.

Table 3 presents the results of the three algorithms aver-
aged across all twenty samples. The detailed results on
each of the samples are presented in Supplementary Table
2 and Figure S2, Additional file 1 (Section S7). SCAPP
performed best in more cases, with mpSpades failing to
assemble any gold standard plasmid in over half the sam-
ples. We note that all of the cases where SCAPP had recall
of 0 occurred when the number of gold standard plasmids
was very small and the other tools also failed to assemble
them. On the largest samples with the most gold standard
plasmids SCAPP performed best, highlighting its supe-
rior performance on the types of samples most likely to
be of interest in experiments aimed at plasmid assembly.
SCAPP consistently outperformed Recycler by achieving
higher precision, a result that is consistent with the other
experiments.

Human gut plasmidome
The protocol developed in Brown Kav et al. [15] enables
extraction of DNA from isolate or metagenomic samples

Table 3 Performance on the human gut metagenomes. Number
of plasmids, the median plasmid length (in kbp), and performance
measures for all tools are averaged across the twenty samples.
The average number of plasmids and median length of the gold
standard sets of plasmids were 4.8 and 12.4 respectively

Tool # plasmids Median length Precision Recall F1

Recycler 159 36 7.1 364 109
mpSpades 6.5 5.0 7.9 174 10.3
SCAPP 9.8 44 1.5 364 16.1
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with the plasmid content highly enriched. The sequence
contents of such a sample is called the plasmidome of the
sample. This enrichment for plasmid sequences increases
the chance of revealing the plasmids in the sample. The
protocol was assessed to achieve samples with at least 65%
plasmid contents by Krawczyk et al. [5]. We sequenced the
plasmidome of the human gut microbiome from a healthy
adult male according to the plasmid enrichment protocol.
18,616,649 paired-end reads were sequenced with the Illu-
mina HiSeq2000 platform, read length 150bp and insert
size 1000.

The gold standard set of plasmids, determined as for
the gut metagenome samples, consisted of 74 plasmids
(median length = 2.1 kbp). Note that the plasmidome
extraction process over-amplifies shorter plasmids, as
reflected in the shorter median plasmid length. Perfor-
mance was computed as in the metagenomic samples and
is shown in Table 4. SCAPP achieved best overall perfor-
mance, while mpSpades had lower precision and much
lower recall than the other tools.

Notably, although the sample was obtained from a
healthy donor, some of the plasmids reconstructed by
SCAPP matched reference plasmids found in poten-
tially pathogenic hosts such as Klebsiella pneumoniae,
pathogenic serovars of Salmonella enterica, and Shigella
sonnei. The detection of plasmids previously isolated from
pathogenic hosts in the healthy gut indicates potential
pathways for transfer of virulence genes.

We used MetaGeneMark [16] to find potential genes in
the plasmids assembled by SCAPP. Two hundred ninety-
four genes were found, and we annotated them with the
NCBI non-redundant (nr) protein database using BLAST.
Forty-six of the plasmids contained 170 (58%) genes with
matches in the database (> 90% sequence identity along
> 90% of the gene length), of which 77 (45%) had known
functional annotations, which we grouped manually in
Fig. 3A. There were six antibiotic and toxin (such as heavy
metal) resistance genes, all on plasmids that were not in
the gold standard set, highlighting SCAPP’s ability to find
novel resistance carrying plasmids. Sixty of the 77 genes
(78%) with functional annotations had plasmid-associated
functions: replication, mobilization, recombination, resis-
tance, and toxin-antitoxin systems. Twenty-nine out of the
33 plasmids that contained functionally annotated genes
(88%) contained at least one of these plasmid associated

Table 4 Performance on the human gut plasmidome. Number
of plasmids, the median plasmid length (in kbp), and
performance measures for all tools

Tool # plasmids Median length Precision Recall F1

Recycler 93 2.1 15.1 378 215
mpSpades 53 3.0 11.3 94 10.3
SCAPP 82 24 17.1 359 23.1
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functions. This provides a strong indication that SCAPP
succeeded in assembling true plasmids of the human gut
plasmidome.

We also examined the hosts that were annotated for the
plasmid genes and found that almost all of the plasmids
with annotated genes contained genes with annotations
from a variety of hosts, which we refer to here as “broad-
range” (see Fig. 3B). Of the 40 plasmids with genes from
annotated hosts, only 10 (25%) had genes with annotated
hosts all within a single phylum. This demonstrates that
these plasmids assembled and identified by SCAPP may
be involved in one stage of transferring genes, such as the
antibiotic resistance genes we detected, across a range of
bacteria.

Parallel metagenomic and plasmidome samples

We performed two sequencing assays on the same cow
rumen microbiome sample of a four-month old calf.
In one subsample total DNA was sequenced. In the
other, plasmid-enriched DNA was extracted as described
in Brown Kav et al. [15] and sequenced (see Fig. 4).
27,127,784 paired-end reads were sequenced in the plas-
midome, and 54,292,256 in the metagenome. Both were
sequenced on the Illumina HiSeq2000 platform with read
length 150bp and insert size 1000.

This parallel data enabled us to assess the plasmids
assembled on the metagenome using the plasmidome,
without resorting to PLSDB matches as the gold standard.
Such assessment is especially useful for samples from non-
clinical environments such as the cow rumen, as PLSDB
likely under-represents plasmids in them.

Table 5 summarizes the results of the three plasmid dis-
covery algorithms on both subsamples. mpSpades made
the fewest predictions and Recycler made the most. To
compare the plasmids identified by the different tools, we
considered two plasmids to be the same if their sequences
matched at > 80% identity across > 90% of their length.
The comparison is shown in Figure S3, Additional file 1
(Section S8). In the plasmidome subsample, 50 plasmids
were identified by all three methods. Seventeen were
common to the three methods in the metagenome. In
both subsamples, the Recycler plasmids included all or
almost all of those identified by the other methods plus a
large number of additional plasmids. In the plasmidome,
SCAPP and Recycler shared many more plasmids than
mpSpades and Recycler.

We also evaluated the results of the plasmidome and
metagenome assemblies by comparison to PLSDB as was
done for the human gut samples. The metagenome con-
tained only one matching PLSDB reference plasmid, and
none of the tools assembled it. The plasmidome had
only seven PLSDB matches, and mpSpades, Recycler, and
SCAPP had F1 scores of 2.86, 2.67, and 1.74, respectively.
The low fraction of PLSDB matches out of the assem-
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Fig. 3 Annotation of genes on the plasmids identified by SCAPP in the human gut plasmidome sample. A Functional annotations of the plasmid
genes. B Host annotations of the plasmid genes. “Broad-range” plasmids had genes annotated with hosts from more than one phylum

bled plasmids suggests that the tools can identify novel
plasmids that are not in the database.

In order to fully leverage the power of parallel samples,
we computed the performance of each tool on the metage-
nomic sample using the reads of the plasmidomic sample,
without doing any contig and plasmid assembly on the lat-
ter. The rationale was that the reads of the plasmidome
represent the full richness of plasmids in the sample in a
way that is not biased by a computational procedure or
prior biological knowledge.

We calculated the plasmidome read-based precision by
mapping the plasmidomic reads to the plasmids assem-
bled from the metagenomic sample (Fig. 4). A plasmid

with > 90% of its length covered by more than one
plasmidomic read was considered to be a true positive.
The precision of an algorithm was defined as the fraction
of true positive plasmids out of all reported plasmids. The
plasmidome read-based recall was computed by mapping
the plasmidomic reads to the contigs of the metagenomic
assembly. Contigs with > 90% of their length covered by
plasmidomic reads at depth > 1 were called plasmidic
contigs. Plasmidic contigs that were part of the assembled
plasmids were counted as true positives, and those that
were not were considered false negatives. The recall was
defined as the fraction of the plasmidic contigs’ length
that was integrated in the assembled plasmids. Note that
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Fig. 4 Outline of the read-based performance assessment. Plasmidome (l) and metagenome reads (Il) are obtained from subsamples of the same
sample. (lll) The metagenome reads are assembled into a graph. (IV) The graph is used to detect and report plasmids by the algorithm of choice. (V)
The plasmidome reads are matched to assembled plasmids. Matched plasmids (red) are used to calculate plasmid read-based precision. (VI) The
plasmidome reads are matched to the assembly graph contigs. Covered contigs (red) are considered plasmidic. The fraction of total length of
plasmidic contigs included in the detected plasmids gives the plasmidome read-based recall
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Table 5 Number of plasmids assembled by each tool and their
median lengths (in kbp) for the parallel metagenome and
plasmidome samples

metagenome plasmidome
Tool # plasmids median # plasmids median
length length
Recycler 60 43 147 1.7
SCAPP 25 58 110 1.8
mpSpades 26 6.2 65 20

the precision and recall here are measured using different
units (plasmids and base pairs, respectively) so they are
not directly related. For mpSpades, which does not out-
put a metagenomic assembly, we mapped the contigs from
the metaSPAdes assembly to the mpSpades plasmids using
BLAST (> 80% sequence identity matches along > 90%
of the length of the contigs).

There were 293 plasmidic contigs in the metagenome
assembly graph, with a total length of 146.6 kbp. The plas-
midome read-based performance is presented in Fig. 5A.
All tools achieved a similar recall of around 12. SCAPP
and mpSpades performed similarly, with SCAPP having
slightly higher precision (24.0 vs 23.1) but slightly lower
recall (11.9 vs 12.2). Recycler had a bit higher recall (13.1),
but at the cost of far lower precision (11.7). Hence, a much
lower fraction of the plasmids assembled by Recycler in
the metagenome were actually supported by the parallel
plasmidome sample, adding to the other evidence that the
false positive rate of Recycler exceeds that of the other
tools.

We also compared the plasmids assembled by each tool
in the two subsamples. For each tool, we considered the
plasmids it assembled from the plasmidome to be the gold
standard set, and used it to score the plasmids it assem-
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bled in the metagenome. The results are shown in Fig. 5B.
SCAPP had the highest precision. Since mpSpades had a
much smaller gold standard set, it achieved higher recall
and F1. Recycler output many more plasmids than the
other tools in both samples, but had much lower preci-
sion, suggesting that many of its plasmid predictions may
be spurious.

Next, we considered the union of the plasmids assem-
bled across all tools as the gold standard set and recom-
puted the scores. We refer to them as “overall” scores.
Figure 5C shows that overall precision scores were the
same as in Fig. 5B, while overall recall was lower for all the
tools, as expected. mpSpades underperformed because of
its smaller set of plasmids, and SCAPP had the highest
overall F1 score. Recycler performed relatively better on
recall than the other tools as expected, as it reports many
plasmids and has significant overlap with the plasmids
reported by the other tools.

We detected potential genes in the plasmids assem-
bled by SCAPP in the plasmidome sample and annotated
them as we did for the human gut plasmidome. The gene
function and host annotations are shown in Figure S4,
Additional file 1 (Section S8). Out of 242 genes, only
34 genes from 17 of the plasmids had annotations, and
only 18 of these had known functions, highlighting that
many of the plasmids in the cow rumen plasmidome are
as yet unknown. The high percentage of genes of plas-
mid function (15/18) indicates that SCAPP succeeded
in assembling novel plasmids. Unlike in the human gut
plasmidome, most of the plasmids with known host anno-
tations had hosts from a single phylum.

Performance summary
We summarize the performance of the tools across all the
test datasets in Table 6. The performance of two tools was
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Fig. 5 Performance on the parallel datasets. A Plasmidome read-based performance. B Performance of each tool on the plasmids assembled from
the metagenome using as gold standard the plasmids assembled from the plasmidome by the same tool. € Overall performance on the plasmids
assembled from the metagenome compared to the union of all plasmids assembled by all tools in the plasmidome




Pellow et al. Microbiome (2021) 9:144

Table 6 Summary of performance. Comparison of the
performance of the tools on each of the datasets. When multiple
samples were tested, the number of samples appears in
parentheses, and average performance is reported. For the
parallel samples results are for the evaluation of the
metagenome based on the plasmidome, and precision and recall
are plasmidome read-based. Unless otherwise stated, F1 score is
used. Note that in the simulations, SCAPP > mpSpades

Test Ranking

Simulations (7) SCAPP > Recycler > mpSpades

Human gut metagenomes (20) SCAPP 3> mpSpades > Recycler

Plasmidome SCAPP > Recycler > mpSpades

Parallel: within tool mpSpades > SCAPP > Recycler

|, across tools

Parallel: “overal SCAPP > Recycler > mpSpades

Parallel: precision SCAPP ~ mpSpades >> Recycler

P arallel: recall Recycler > mpSpades ~ SCAPP

considered similar (denoted ~) if their scores were within
5% of each other. Performance of one tool was considered
to be much higher than the other (>>) if its score was >
30% higher (an increase of 5 — 30% is denoted by >).

We see that in most cases SCAPP was the highest
performer. Furthermore, in all other cases SCAPP per-
formed close to the top performing tool.

Resource usage
The runtime and memory usage of the three tools are
presented in Table 7. Recycler and SCAPP require assem-
bly by metaSPAdes and pre-processing of the reads and
the resulting assembly graph. SCAPP also requires post-
processing of the assembled plasmids. mpSpades requires
post-processing of the assembled plasmids with the plas-
midVerify tool. The reported runtimes are for the full
pipelines necessary to run each tool — from reads to
assembled plasmids.

In almost all cases assembly was the most memory
intensive step, and so all tools achieved very similar peak

Table 7 Resource usage of the three methods. Peak RAM of the
assembly step (metaSPAdes for Recycler and SCAPP,
metaplasmidSPAdes for mpSpades) in GB. Runtime (wall clock
time, in minutes) is reported for the entire pipeline including
assembly and any pre-processing and post-processing required.
Human metagenome results are an average across the 20
samples

Runtime (minutes)

Dataset RAM (GB) Recycler mpSpades SCAPP
Human metagenomes 21 115 103 130
Plasmidome 30 907 548 909
Parallel metagenome 148 2118 2132 2230
Parallel plasmidome 26 881 684 884
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memory usage (within 0.01 GB). Therefore, we report the
RAM usage for this step.

The assembly step was also the longest step in all cases.
SCAPP was slightly slower than Recycler as a result of
the additional annotation steps, and mpSpades was 5—
40% faster. However, note that mpSpades does not output
a metagenomic assembly graph, so users interested in
both the plasmid and non-plasmid sequences in a sam-
ple would need to run metaSPAdes as well, practically
doubling the runtime.

Performance measurements were made on a 44-core,
2.2 GHz server with 792 GB of RAM. Sixteen processes
were used where possible. Recycler is single-threaded, so
only one process was used for it.

Discussion

Plasmid assembly from metagenomic sequencing is a
very difficult task, akin to finding needles in a haystack.
This difficulty is demonstrated by the low numbers of
plasmids found in real samples. Even in samples of the
human gut microbiome, which is widely studied, relatively
few plasmids that have matches in the extensive plasmid
database PLSDB were recovered. Despite the challenges,
SCAPP was able to assemble plasmids across a number
of clinically relevant samples. SCAPP significantly outper-
formed mpSpades in simulation and on a range of human
gut metagenome and plasmidome samples. In simulation
mpSpades achieved very high precision at the expense of
low recall, and SCAPP had higher combined F1 score.
The high precision was not observed in real data, which
is more difficult than the simulations. SCAPP was also
consistently better than Recycler across almost all tests.
Though SCAPP and Recycler share the idea of cycle peel-
ing, SCAPP was shown to have higher precision, due to
incorporating additional biological information and better
edge weighting.

Another contribution of this study is the joint analy-
sis of the parallel metagenome and plasmidome from the
same sample. We show that this enables a novel way to
evaluate plasmid assembly algorithms on the metagenome
data, by using the coverage information from the plas-
midome. This novel approach bypasses the need to rely
on known plasmids for evaluation, which is biased due
to research focus. We developed several evaluation met-
rics for such data, and think they can be useful for future
plasmid studies, especially in non-clinical and non-human
samples where plasmid knowledge is scarce.

A key difficulty in evaluation of performance of plasmid
discovery algorithms is the lack of gold standard. The veri-
fication of reported plasmids is done either based on prior
biological knowledge, which is biased, or by experimental
verification, which is slow and expensive. Moreover, such
verification evaluates precision but does not give infor-
mation on the extent of missed plasmids, or recall. While
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simulations can evaluate both parameters accurately, they
are inherently artificial, and necessitate many modeling
assumptions that are not fully supported by experimental
data. For that reason we chose here to focus primarily on
real data, and preferred diversity in the real data types over
extensive but artificial simulations. The parallel samples
strategy is another partial answer to this problem.

SCAPP has several limitations. Like the other de Bruijn
graph-based plasmid assemblers, it may split a cycle into
two when a shorter cycle is a sub-path of a longer cycle.
It also has difficulties in finding very long plasmids,
as these tend to not be completely covered and frag-
mented into many contigs in the graph. Note however
that it produced longer cycles than Recycler. Compared
to mpSpades, each algorithm produced longer cycles in
different tests. Another limitation is the inherent bias in
relying on known plasmid genes and plasmid databases,
which tend to under-represent non-clinical samples. With
further use of tools like SCAPP, perhaps with databases
tailored to specific environments, further improvement is
possible.

Conclusions

We introduced SCAPP, a new plasmid discovery tool
based on combination of graph theoretical and biolog-
ical considerations. Overall, SCAPP demonstrated bet-
ter performance than Recycler and metaplasmidSpades
in a wide range of real samples from diverse con-
texts. By applying SCAPP across large sets of samples,
many new plasmid reference sequences can be assem-
bled, enhancing our understanding of plasmid biology and
ecology.
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S1 Alternatives for user set parameters

The SCAPP pipeline is highly flexible, and many of the options and parameters can be set by the user.
In most cases, we recommend using the default options and settings. Some of the alternatives that can be
chosen by the user are described below. All of the parameter settings that may be changed by the user are
fully documented at: https://github.com/Shamir-Lab/SCAPP.

Read mapping: The user has the option of providing a sorted and indexed BAM alignment file created by
any method.

Plasmid-specific genes: The user may add any set of PSGs or remove any of those included with
SCAPP.

Plasmid classification scores: The sequences may be classified using PlasFlow and the PlasFlow classi-
fication output file can be provided to SCAPP.

Algorithm thresholds: Thresholds for finding plasmid gene matches, defining probable plasmid and chro-
mosomal sequences, identifying potential plasmids, filtering them, and many more can all be user-defined.
The full software documentation at https://github.com/Shamir-Lab/SCAPP details all of these user op-
tions.

S2 Plasmid-specific genes

We created four sets of plasmid-specific genes (PSGs) by database mining and expert curation:

1. MOB genes: 890 amino acid sequences of plasmid maintenance genes curated by plasmid biologists
from the Mizrahi Lab (Ben-Gurion University) and filtered computationally (see details of filtering
below).

2. Plasmid ORF's: 4276 nucleotide sequences corresponding to ORFs annotated with ‘mobilization’, ‘con-
jugation’, ‘partitioning’, ‘toxin-antitoxin’, ‘replication’; or ‘recombination’ from a large set of putative
plasmids found by the Mizrahi Lab and then filtered computationally.

3. ACLAME plasmid genes: 4813 nucleotide sequences of genes that make up 96 gene families in the
ACLAME database [1] that were manually selected as possibly plasmid-specific. The set of genes was
deduplicated and filtered computationally.

4. PLSDB-specific ORFs: 94478 plasmid-specific sequences determined as follows: We used MetaGene-
Mark [2] to predict genes in the plasmid sequences from PLSDB (v.2018.12_05) [3]. We then counted
the number of BLAST matches (> 75% identity match along > 75% of the gene length) to these
genes in both PLSDB and bacterial reference genomes from NCBI (downloaded January 9, 2019 ). We



considered each predicted gene that appeared in the plasmids more than 20 times and was > 20X more
prevalent in the plasmids than in the genomes to be plasmid-specific.

Sets 1-3 were filtered as follows: We counted matches between the sequences and PLSDB plasmids and
NCBI bacterial reference genomes as for the PLSDB-specific ORFs (set 4). We excluded any gene that had
more than 4 matches to bacterial genes and met one of the following conditions: (1) < 4 matches to plasmid
genes and > 4x as many matches to bacterial genes as plasmid genes; or, (2) > 4 plasmid gene matches,
but < 4x as many matches to plasmid genes as to bacterial genes.

We did not search for and remove duplicate genes between sets, and did not back-translate the amino acid
sequences.

S3 Potential plasmid cycle criteria

Once the set of lightest cycles has been generated, each cycle is evaluated as a potential plasmid based on its
structure in the assembly graph, the PSGs it contains, its plasmid score, paired-end read links, and coverage
uniformity. A cycle is defined as a potential plasmid if one of the following criteria is met:

1. The cycle is formed by an isolated “compatible” self-loop node v, i.e. len(v) > 1000, indeg(v) =
outdeg(v) = 1, and at least one of the following conditions holds:

(a) v has a high plasmid score s(v) > 0.9.
(b) v has a PSG hit.
(¢) < 10% of the paired-end reads with a mate on v have the other mate on a different node.

2. The cycle is formed by a connected compatible self-loop node v, i.e. len(v) > 1000, indeg(v) > 1 or
outdeg(v) > 1, and < 10% of the paired-end reads with a mate on v have the other mate on a different
node.

3. The cycle is not formed by a self-loop and has:
(a) Uniform coverage: CV(C) < 0.5, and

(b) Consistent mate-pair links: a node in the cycle is defined as an “off-path dominated” node if the
majority of the paired-end reads with one mate on the node have the other mate on a node that
is not in the cycle. If less than half the nodes in the cycle are “off-path dominated”, then we
consider the mate-pair links to be consistent.

S4 Simulation of metagenomes with plasmids

To create the simulated metagenomes, we downloaded all completed whole genome bacterial reference se-
quences from RefSeq (RefSeq database updated on March 11, 2020). We first compiled a list of bacterial
strains or species that have been previously identified as prevalent in the human gut from three sources: (1)
The list compiled by Alneberg et al. [4] (Sup Table 1). (2) Species with abundance > 0.01 in at least one
human gut sample from the human microbiome project (HMP1) [5] as estimated by MetaPhLan (abundance
table available from https://www.hmpdacc.org/HMSMCP/#data). (3) The “dominant species” identified by
Forster et al. [6] (Sup Table 5) in the HGG (Human Gastrointestinal Bacteria Genome Collection). We
searched for the strains or species on this combined list in the RefSeq database, giving preference to strain
level matches. When multiple references appeared (for example, when a listed species has multiple reference
strains), we gave preference to those with longer plasmids (>10kbp), followed by those with any plasmid,
choosing randomly between references with the same preference. The list of human gut specific bacteria
used in the simulations contained 145 references, and is provided in Additional file 2.

For each simulation we first selected from the human gut specific bacteria and then supplemented with
randomly selected reference sequences to reach the desired number of genomes. Since the plasmids sequenced
with completed whole bacterial genomes are usually long, we also supplemented with a fixed number of shorter



(<10kbp) plasmids, selected randomly and associated at random with host genomes in the simulation. (5
short plasmids were added in Sim1, 15 in Sim2, 50 in Sim3 and Sim4, 100 in Sim5, 150 in Sim6, and 200 in
Sim7.)

Genome abundance and plasmid copy number were assigned using realistic distributions. For genome abun-
dance we used the log-normal distribution (¢ = 1.5, o = 1), normalized so that the relative abundances sum
to 1. This long-tailed distribution mimics the abundance distribution of real microbiome samples. Plasmids
were assigned the same abundance as their hosts, and plasmid copy number was assigned according to one of
several geometric distributions according to the plasmid length. The parameter of the geometric distribution
of a plasmid of length L was set to be

log10(L)/30, 1kbp < L < 10kbp
log10(L)/20, 10kbp < L < 100kbp
logi0(L)/10, 100kbp < L < 1Mbp
1, L > 1Mbp

This makes it more likely for shorter plasmids to have higher copy numbers, in accordance with observed
plasmid copy number patterns.

Paired-end short reads were simulated from the genome references using InSilicoSeq [7] with the HiSeq error
model (default read length = 126bp). To reflect circularity of the plasmids and bacterial genomes, multiple
copies of the reference sequence were concatenated before generating reads.

S5 Experimental settings and evaluation

All metagenomes were assembled using the SPAdes assembler (v3.13) with the —-meta option. The default
of 16 threads were used, and the maximum memory was set to 750 GB. metaplasmidSPAdes (mpSpades)
was run with the same parameters. mpSpades internally chooses the maximal value of k to use for the
k-mer length in the assembly graph. We matched the values of k used in SPAdes to these values for each
dataset. Defaults were used for all other options for Recycler and SCAPP. In practice, the maximum k&
value was 77 for the simulations and human metagenomic samples, and 127 for the plasmidome and parallel
metagenome-plasmidome samples.

For a simulated metagenome, the set of reference plasmids included in the simulation that were covered
along > 95% of their length by simulated reads was used as the gold standard. Reads were mapped using
BWA [8], and coverage at each base of the reference plasmids was called using bedtools [9].

We used BLAST to match the assembled plasmids to the gold standard plasmid sequences. A plasmid
assembled by one of the tools was considered to be a true positive if > 90% of its length was covered by
BLAST matches to > 90% of a reference with > 80% sequence identity. The rest of the assembled plasmids
were considered to be false positives. Gold standard plasmids that did not have assembled plasmids matching
them were considered to be false negatives. Precision was defined as TP/(TP + FP) and recall was defined
as TP/(TP + FN), where TP, FP, and FN were the number of true positive, false positive, and false
negative plasmids, respectively. The F1 score was defined as the harmonic mean of precision and recall.
Precision, recall, and F1 values are adjusted to percentage throughout. Note that these metrics evaluate the
complete assembly of entire plasmids, and do not capture rates of local misassembly or short range assembly
errors within each assembled plasmid.

For the human microbiome and plasmidome samples, the set of plasmids serving as the gold standard was
selected from PLSDB (v.2018_12_05) [3], a large curated plasmid database. After filtering duplicate plasmids,
the PLSDB contains 13469 reference plasmids. The contigs from the metaSPAdes assembly were matched
against the plasmids in PLSDB using BLAST. Matches between a contig and a reference plasmid with
sequence identity > 85% were marked and a contig was said to match a reference if > 85% of its length was
marked. Reference plasmids with > 90% of their lengths covered by marked regions of the matching contigs
were used as the gold standard.



Table 1 Full performance on simulated metagenome datasets. The gold standard is the number of plasmids
in the simulation that are covered by simulated reads (# covered).

Recycler mpSpades SCAPP
Sample # covered precision recall F1 precision recall F1 precision recall F1
Sim1 9 57.1 44.4  50.0 100 11.1  20.0 80.0 444  57.1
Sim2 37 60 324 40.1 100 24.3  39.1 56.5 35.1 43.3
Sim3 136 52.5 23.9 328 96.3 19.4 323 81.3 29.1 429
Sim4 132 62.9 30.2 40.8 100 22.3 36.5 86.3 34.1  48.9
Simb 253 55.6 25.7  35.2 96.2 20.5 33.8 77.2 34.3 475
Sim6 368 51.4 19.7  28.5 96.6 15.8 27.1 72.9 24.4  36.5
Sim7 410 62.9 20.6 31.1 95.7 16.5 28.1 75.9 27.6  40.5

The set of plasmids assembled by each method was compared to the gold standard set using BLAST. A
predicted plasmid was considered a true positive if there were sequence matches at > 80% identity between
the plasmid and a gold standard plasmid that covered more than 90% of their lengths.

Note that in the case of the real samples, if two assembled plasmids matched to the same reference gold
standard plasmid sequence(s), then one of them was considered to be a false positive. This strict definition
penalized methods for unnecessarily splitting potential plasmid genomes into multiple different plasmids. If
there were multiple gold standard reference plasmids that were matched to a single assembled plasmid, then
none of them was considered as a false negative. The precision, recall, and F1 score were calculated as for
the simulation.

For the parallel metagenome-plasmidome sample, plasmidomic reads were aligned to the plasmid sequences
and metagenome assembly contigs using BWA [8]. Coverage at each base of each metagenomic contig was
called using bedtools [9].

To compare the overlap between plasmids identified by the different tools, we considered two plasmids to
be the same if their sequences matched at > 80% identity across > 90% of their length. For visualization
purposes, when two plasmids in one tool match one plasmid in another, they are represented as one overlap
in the venn diagram (Figures S1 and S3).

S6 Extended results for simulated datasets

Table 1 reports the full precision, recall, and F1 performance results for all tools on the simulated metagenome
datasets. Table 2 reports the performance results when split by length into shorter (< 10 kbp) and longer
(> 10 kbp) plasmids. Figure S1 shows the overlap between the plasmids assembled by each tool in the
simulated metagenomes.
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Figure S1 Plasmid overlap between tools in simulation. Overlap of the plasmids assembled by the
tools on each of the simulated metagenomes.

S7 Extended results for human metagenomes

Figure S2 presents the F1 scores of the plasmid assemblers across all human gut metagenome samples.
Table 3 reports the full results and the number of plasmids assembled by each tool and the median plasmid
length for each of the human gut microbiome samples.

40

Recycler X
mpSpades
SCAPP

# gold standard
plasmids

.
f 1

F1 score
# of gold standard plasmids

Samples

Figure S2 Results on 20 human gut metagenomes. F1 scores of the plasmids assembled by Recycler,
mpSpades and SCAPP in the human gut microbiome samples (accessions given on x-axis), calculated using
PLSDB plasmids as the gold standard. The dashed line shows the number of gold standard plasmids in each
sample. Where bars are omitted the F1 score was 0.
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Figure S3 Number of plasmids assembled by each tool on the parallel samples. A: Plasmidome sample.
B: Metagenome sample. Discrepancies between the numbers in the diagram and Table 4 are due to cases of
overlaps between two plasmids in one tool to one plasmid in another, which were counted as one.

S8 Extended results for parallel plasmidome-metagenome

Figure S3 shows the overlap between the plasmids assembled by the tools in the parallel cow rumen plas-
midome and metagenome samples.

Figure S4 shows the annotations of the gene functions and hosts for the plasmids assembled in the rumen
plasmidome.

resistance recombination

Bacteroidetes

mobilization

Broad-range
Firmicutes
others

replication
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Figure S4 Annotation of genes on the plasmids identified by SCAPP in the rumen plasmidome sample.
A: Functional annotations of the plasmid genes. B: Host annotations of the plasmid genes.
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Chapter 5
Discussion

In this thesis I described my work on efficient methods for analysis of high through-
put sequencing data. I first introduced the universal hitting set problem and DOCKS,
our heuristic algorithm to generate a small UHS that could be used to define a
low density minimizer scheme. Next, I presented PlasClass, an efficient plasmid
sequence classifier with state-of-the-art classification performance. Finally, I pre-
sented SCAPP, a metagenomic plasmid assembler that uses biological knowledge
about plasmid sequences and genes to improve precision of plasmid assembly in an
efficient manner. In the latter two works, I implemented the algorithms as publicly
available open-source software tools and benchmarked their performance against

existing methods.

Below I discuss each of the papers, their impact, and possible future directions

for each work.

5.1 UHS and improved selection schemes

Our paper on the UHS problem, and the follow-up paper defining low density mini-
mizer orders gave rise to a number of other works trying to improve on solutions to

the UHS problem and on the density of minimizer orders.

Ekim et al. [31] improved the runtime of DOCKS and introduced PASHA, a
parallel randomized algorithm based on set cover approximation to more efficiently
construct UHS that are only slightly larger than those constructed by DOCKS.
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Marcais et al.[72] proved that asymptotically in k the optimal UHS is of size |X|*/w
and thus there is a minimizer scheme compatible with this UHS that has density
asymptotically approaching o(1/w) as k — oo. They provided a construction for
such a UHS and minimizer scheme. ReMuval [27] naively extended UHS generated
by DOCKS to larger k£ and iteratively pruned each extension using an efficient ILP
formulation. This allowed for lower density minimizers for larger k. Zheng et al. [136]
bounded the length of the maximum remaining path length in the de Bruijn graph
after removing the Mykkeltveit decycling set. Miniception [135] constructs UHS
that are (2 4 o(1))-approximations of the optimum for larger &k that are essentially

closed syncmers.

Despite the interest in this area, there are still open questions and more work to
be done in this field. The best performing UHS constructions and minimizer orders
are inefficient and do not scale to larger k, and achieving small UHS for larger &
and w is an unmet challenge. There are likely still constructions to create smaller
UHS and better lower bounds on the size of the optimal solution. It may even be

possible to provably achieve the optimal solution, at least in some interesting cases.

Recent work on syncmers has called into question the focus on density and on
window guarantees, suggesting that conservation under mutation and error is a more
important property for k-mer selection schemes to optimize. The subset of k-mers
selected by 1-local schemes such as syncmers could likely be optimized for conserva-
tion and density jointly, either in expectation or on real genomic sequences. Other
metrics are also relevant in some tasks, and the work on AdaOrder [35] suggests

directly optimizing selection schemes for a specific task on specific sequences.

In our own work to improve the efficiency of UHS construction we are now
experimenting with neural network models trained on existing UHS that can be
iteratively applied to larger k. These methods still do not improve running times
enough to achieve much larger k. In fact, in that work we observed that a minimizer
scheme based only on the Mykkeltveit decycling set may be both of low density and

efficient to compute, and we plan to explore this in the future.
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5.2 Plasmid sequence classification

In PlasClass we improved upon state-of-the-art plasmid classification using a simple
logistic regression model. This work demonstrated that extant neural network mod-
els trained on k-mer features do not achieve best performance on this task. Rather,
the training data is much more important. To facilitate continual improvement in
plasmid sequence classification it will be necessary to have standard well-curated
plasmid sequence databases. Plasmid classification tools that are easily or auto-
matically re-trained as plasmid sequence databases grow over time are necessary to

maintain and improve performance.

One main challenge we faced in our work was the lack of established benchmarks
on which to compare plasmid classification tools. We created test simulations using
realistic distributions for bacterial abundance and plasmid copy number, but future
work could expand these efforts to create simulations that match distributions di-
rectly learned from data. When using realistic distributions, the class imbalance
between plasmid and bacterial contigs creates a challenge in evaluating classifiers;

even with a very low false positive rate a classifier may end up with low precision.

Some other works “balance” the class sizes instead of using realistically imbal-
anced classes and thus report results that are not representative of performance on
real data. Short contigs also presented a key challenge in our work on PlasClass as
they have less representative k-mer profiles. We trained separate models for differ-
ent length contigs to address this issue. As shorter contigs are much more abundant
than longer in real data, poor performance on these more difficult sequences can
drastically reduce classifier performance. Most tools, including PlasClass, filter out
the shortest contigs and do not classify them. Raising the length threshold can
result in inflated performance and it is difficult to compare results between tools
that use different thresholds. Additionally, some works reported length-weighted
(i.e. per base) performance, that also inflates performance by giving higher weight
to the more easily classified longer sequences. For these reasons as well, it is critical
to have standard benchmarks and established performance criteria for evaluating

plasmid classification tools.

As long read technologies, such as those offered by PacBio and Oxford Nanopore
Technologies, become more widely used for metagenomic sequencing, plasmid classi-

fiers can be adapted to work on this data. In many cases long reads will be as long as
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contigs assembled using short-read data and individual reads can be classified using
the same techniques as currently used for assembled contigs. High accuracy long
reads also raise the possibility of more easily sequencing or assembling full plasmid
genomes, which could allow classifying plasmid sequences by aligning full genomes

to existing databases or searching for sets of plasmid marker genes in the sequences.

While PlasClass and many other tools only use compositional features (i.e. k-
mer profiles), some newer tools such as plasmidVerify and PlasX demonstrate the
importance of gene content features. Binning using assembly graph structure and
coverage information, possibly across multiple samples, has also improved the per-
formance of plasmid classifications. Future directions should incorporate all of these
features to achieve even better plasmid sequence classification. Another promising
direction is the introduction of multi-way classifiers. These ideas would all apply
to metagenomic long read classification as well. Ultimately, the goal will be to effi-
ciently and accurately identify all sequences in a metagenomic sample as originating

from bacteria, plasmid, archaea, virus, fungi and other eukaryotic genome sequences.

5.3 Plasmid assembly

In SCAPP we improved on previous metagenomic plasmid assemblers by more care-
fully assessing coverage uniformity and incorporating extensive biological knowledge
about plasmid sequence contents. This biological knowledge was crucial for reduc-
ing false positive and increasing precision of the tool. Another promising approach
was offered by DomCyecle [111], which used a very principled statistical analysis of
read coverage and orientation to identify potential plasmid cycles. Finally, binning
individual plasmids has been used in isolate but in metagenomic samples it was
only used for classification so far. Given the prevalence and success of binning for
bacterial genome assembly in metagenomic samples, it could likely be beneficial for
plasmid assembly as well. Methods such as GraphPlas [127] could be modified to
bin individual plasmid OTUs rather than just binary classification. Future work on

metagenomic plasmid assembly should probably combine all the advantages above.

One challenge in creating more complex and better performing plasmid assem-
blers will be efficiently scaling them to larger and larger datasets. Current tools are
limited in their ability to assemble plasmids from very large metagenomes or pooled

samples. The initial metagenomic assembly can also be a bottleneck. A possible
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future direction is to pre-filter large read sets (or metagenomic assembly graphs)
to reduce computational overhead. Future plasmid assemblers should also focus on
software engineering for efficiency in addition to any methodological advances. It is
also important that users understand when it is necessary to perform the compu-
tationally heavy task of assembly, and when a less intensive task such as sequence

classification or mapping to a database of known references could be sufficient.

As in the case of plasmid sequence classification, plasmid assembly lacks good
benchmark datasets and standard evaluations. The CAMI 2 benchmark included
circular sequences, but they are arguably not reflective of plasmid sequences and
distributions in most real metagenomic samples. In our work we also contributed
a novel evaluation method and dataset. Our collaborators at the Mizrahi lab se-
quenced the same cow rumen sample both using a standard metagenomic sequencing
protocol and using a plasmidome sequencing protocol they developed that filters out
chromosomal DNA before sequencing. This allowed us to evaluate the performance
of metagenomic plasmid assembly by determining what fraction of contigs covered
by plasmidome reads were assembled into plasmids (“recall”) and what fraction of
the assembled plasmids were actually covered by plasmidome reads (“precision”).
While many tool developers would not be able to generate such a dataset, it would
be worthwhile to construct a standard realistic benchmark. One possibility would
be to construct a synthetic sample mixing at least 100 bacterial species carrying
known plasmids with known copy numbers at known abundances. The widespread
adoption of such a benchmark could drive the development of even better plasmid

assemblers.

Plasmid assembly has the potential to be greatly improved by long read sequenc-
ing technologies, which are increasingly being used on metagenomic samples. Very
long reads could capture entire plasmids in a single read, removing the need for any
graph based assembly or binning methods. Assembly graphs constructed from long
read datasets are much simpler and more easily resolved than short read assembly
graphs, making it likely that cyclic paths representing plasmids could be found more
easily. Plasmid assembly from long reads opens the door to new challenges that could
not yet be approached using only short reads. Specifically, some current methods in
long read metagenomic assembly attempt to disambiguate sequences at the strain
level. Luo et al. [67] developed a tool for viral haplotyping to resolve viral strain
genomes from viral mixtures. Bickhart et al. [11] use Hi-C and high accuracy HiFi

long reads to resolve bacterial strains from metagenomic samples. Similar methods
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could be developed for plasmid assembly, allowing them to be studied at the strain

level and opening new avenues to understand plasmid evolution and ecology.
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