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2. Abstract 
 

Many studies have observed that transcriptional responses to multiple stresses are highly cell 

type-specific. However, the mechanisms that underlie this tissue specificity remain largely 

elusive.  In our study, we focus, as a model system, on the transcriptional networks activated 

by p53, and examine possible associations between cell type-specific genome 3D organization 

and cell type-specific transcriptional responses. 

p53, known as the "guardian of the genome", is the major tumor suppressor gene in our 

genome, and it serves as a pivotal defense mechanism against cancer transformation. p53 

activation in different cell types and tissues results in induction of very different transcriptional 

networks, alongside the activation of a universal p53 core response. The main goal of our 

research was to characterize cell type-specific responses to p53 activation and examine 

possible links with 3D genome organization.  Our research utilized three layers of omics 

techniques: RNA-seq, ChIP-seq and Micro-C (an improved version of Hi-C, with enhanced 

resolution), that were applied to ten different cell lines. For each cell line, measurements were 

taken both in control conditions and after treatment by Nutlin-3a, a potent p53 activator. 

In the analysis of these extensive datasets, we identified  (1) dozens of cell type-specific p53-

chromatin binding events; (2) cell type-specific p53 cofactors; (3) cell type-specific p53 binding 

events correlated with cell type-specific p53-induced gene expression, and (4) cell type-specific 

enhancer-promoter physical interactions. We specifically tested correlations between cell 

type-specific p53-induced responses and cell type-specific features of the spatial organization 

of the genome. Interestingly, we found that in contrast to differential expression between cells 

of different tissues of origin, which are strongly associated with difference in the spatial 
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organization of the genome, transcriptional changes in response to p53 activation do not show 

a strong link with corresponding spatial genomic alterations. 
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4. Introduction 

In order to understand the functioning of the human genome, it is not enough to consider the 

primary linear DNA sequence. Rather, a full understanding of genome function requires 

investigation and understanding of the three-dimensional (3D) folding and spatial organization 

of chromosomes in the nucleus [1]. 

The entire genome appears in the nucleus of every cell in our body, packed in the form of 23 

pairs of chromosomes: 22 pairs of autosomes and a pair of sex chromosomes. Each pair of 

chromosomes includes a chromosome that originates from each parent. The total length of 

the human genome is about 3 billion bases (nucleotides) [2]. The number of protein-coding 

genes in the human genome is about 20,000 [3]. In 2021, a complete version of the human 

genome was published, covering the whole genome without any deficiencies. The name of the 

full genome is called T2T-CHM13. This version replaces the current genome GRCh38[4], on 

which our study was conducted. 

In this thesis we sought to further investigate the relationship between the three-dimensional 

spatial structure of the genome and its responsiveness to states associated with p53 activation. 

Our aim was to compare two contrasting models: 

1. Induction of stress causes major changes in the spatial organization of the genome, among 

them – rearrangements of enhancer-promoter loops that precede the transcriptional 

induction of certain stress-induced genes. 

2. Induction of stress does not result in a major change in the spatial genome organization. 

That is, the spatial structure largely remains as it was under basal conditions. That is, 

transcriptional changes in response to stress are not accompanied by gross 3D changes.  
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To investigate the relationship between genome organization and gene expression we 

analyzed a very large-scale data set containing ten cell lines, each profiled before and after 

Nutlin-3a (hereafter referred to as Nutlin) treatment, using three different techniques: 

1. RNA-seq, which measures the expression of genes in the sample. 

2. ChIP-seq, a method used to profile protein interactions with chromatin. 

3. Micro-C, an improved method of Hi-C with enhanced resolution. It is used to analyze 

physical interaction between any two genomic loci, and thus, infer the 3D organization 

of the genome.  
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5. Background 

 

This chapter provides the background and terminology required for the thesis. First, we 

present the relevant biological basis that includes concepts in gene regulation, high throughput 

sequencing methods, the relationship between structure and function, and the p53 gene and 

its biological importance. Next, we describe the high throughput methods used in this thesis, 

including a discussion of biases in these methods and the way they are treated. In addition, a 

computational background is given on the various computational methods we used, such as 

unsupervised learning methods, including clustering and PCA, a comprehensive explanation of 

the Hi-C method, as well as the statistical tests used in this thesis. 

5.1 Biological Background 

In this section we introduce biological concepts and definitions that are needed for 

understanding the motivation of this thesis, and the computational problems that we deal 

with. 

5.1.1 Biological Concepts 

 

5.1.1.1 Structure-Function Relationship 

 

In biology, a key idea is that structure determines function. The way in which a biological unit 

is arranged in space allows it to perform a specific task. We see this at all levels in the hierarchy 

of biological organization from atoms up to the biosphere. 
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5.1.1.2 Chromatin organization 

 

Certain proteins compact chromosomal DNA into the microscopic space of 

the eukaryotic nucleus. These proteins are called histones, and the resulting DNA-protein 

complex is called chromatin. Within the nucleus, histones provide the energy (mainly in the 

form of electrostatic interactions) to fold DNA. As a result, chromatin can be effectively packed 

into a very small volume. 

Histones are a family of small, positively charged proteins termed H1, H2A, H2B, H3, and H4 

(Van Holde, 1988). DNA is negatively charged, due to the phosphate groups in its phosphate-

sugar backbone, so histones bind with DNA very tightly.  The basic unit of organization of 

chromatin is the nucleosome, a structure of DNA and histone proteins that repeats itself 

throughout an organism's genetic material.  Approximately 150 bp of DNA wrap around this 

protein structure almost twice to make a nucleosome core particle. With linker histone (e.g., 

histone H1) and linker DNA, this is called the nucleosome. The linker DNA can vary in length, 

usually between 10 to 90 bp, depending on the species, gene activity, developmental stage, 

and other factors [5]. High levels of DNA packing enable the final dense structure of the 

chromosome (Figure 1). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/histone
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/linker-dna
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Figure 1. | Chromosomes are composed of DNA tightly wound around histones. 
Chromosomal DNA is packaged inside microscopic nuclei with the help of histones. These are positively-
charged proteins that strongly adhere to negatively-charged DNA and form complexes called 
nucleosomes. Each nucleosome is composed of DNA wound 1.65 times around eight histone proteins. 
Nucleosomes fold up to form a 30-nanometer chromatin fiber, which forms loops averaging 300 
nanometers in length. The 300 nm fibers are compressed and folded to produce a 250 nm-wide fiber, 
which is tightly coiled into the chromatid of a chromosome. Source: Nature Education Adapted from 
Pierce, Benjamin. Genetics: A Conceptual Approach, 2nd ed. 2013. All rights reserved. 
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5.1.1.3 Gene regulation 

Gene regulation is the process used to control when, where and to what level genes are 

expressed. The process can be complicated and is carried out by a variety of mechanisms, 

including regulatory proteins and chemical modification of DNA. Gene regulation is key to the 

ability of an organism to respond to environmental changes. 

Gene regulation is one of the fundamental processes that a cell carries out in order to produce 

the transcripts that will be translated into proteins. A lot of the cell's energy is devoted to fine-

tune its gene regulation in the context of development, response to stress or other conditions. 

5.1.1.4 Transcription factors  

  

Transcription factors are proteins involved in the process of converting, or transcribing, DNA 

into RNA. A generic component of transcription is RNA polymerase, which initiates and 

performs the transcription of genes. One distinct feature of transcription factors is that they 

have DNA-binding domains that give them the ability to bind to specific sequences of DNA 

called transcription factor binding sites (TFBSs). Some transcription factors mainly bind to 

promoter regions proximal to the transcription start site (TSS) and help form the transcription 

initiation complex. Other transcription factors mainly bind to distal regulatory sequences, such 

as enhancer sequences, and can either stimulate or repress transcription of the target gene. 

These regulatory sequences can be many thousands of base pairs upstream or downstream 

from the gene they control. Regulation of transcription is the principal layer of gene control. 

The action of transcription factors allows for unique expression of each gene in different cell 

types and during development [6]. 
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5.2 Next-Generation Sequencing  
 

Next-generation sequencing (NGS) is a general name for new sequencing techniques 

developed over the last two decades. NGS performs deep high-throughput sequencing in a 

short time that can provide hundreds of millions of short sequences (e.g., 150 bases paired 

end). NGS has revolutionized genomic research in terms of time and cost needed to generate 

sequence data compared to the previous Sanger sequencing technology [7] used in the original 

Human Genome Project. 

 

5.2.1 RNA-seq 
 

RNA sequencing (RNA-seq) is a technique that uses NGS to quantify the expression level of all 

transcripts in a biological sample at a given time point, analyzing the modulation of the 

cellular transcriptome. Specifically, RNA-seq facilitates the ability to look at changes in gene 

expression over time, or differences in gene expression among different groups or treatments. 

The RNA-seq workflow is described below in Figure 2. 

 

 

https://en.wikipedia.org/wiki/Transcriptome
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Gene_expression
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Figure 2. | RNA-seq workflow: long RNAs are first converted into a library of cDNA fragments through 
either RNA fragmentation or DNA fragmentation. Sequencing adaptors (blue) are subsequently added 
to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput 
sequencing technology. The resulting sequence reads are aligned to the reference genome or 
transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads. These 
three types are used to generate a base-resolution expression profile for each gene, as illustrated at 
the bottom; a yeast ORF with one intron is shown. Source: [8].  
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5.2.2 ChIP-seq 
 

ChIP-sequencing (ChIP-seq) is a method used to analyze protein interactions with DNA. ChIP-

seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA 

sequencing to identify the binding sites of DNA-associated proteins. The ChIP-seq workflow is 

described below in Figure 3. 

ChIP-seq data can also identify histone markers that characterize different chromatin states. 

Histone modifications are roughly divided into two groups, which characterize open 

(transcriptionally active) and closed (transcriptionally repressed) chromatin states. 

Identification of DNA-protein binding sites from ChIP-seq reads count data requires 

computational tools that perform peak calling (Figure 4). The most popular method at present 

is MACS [9], [10], which finds genomic intervals that are statistically enriched for reads, 

compared to the background read coverage in their local genomic neighborhood.  

https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Chromatin_immunoprecipitation
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Binding_site
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Figure 3. | ChIP-seq workflow: First, the DNA is extracted from the nucleus and cross linked to the 
protein to prevent detaching during the sonication process. Second, the DNA is sheared and 
fragmented by sonication. Third, a protein antibody is attached to the protein of interest. Forth, the 
antibody is precipitated and selects only those DNA fragments attached to the protein of interest. 
Finally, the proteins are removed from the DNA segments, and the segments are then sequenced and 
mapped to a reference genome. Source: https://en.wikipedia.org/wiki/ChIP_sequencing. 

https://en.wikipedia.org/wiki/ChIP_sequencing
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Figure 4. | ChIP-seq peak calling:  DNA fragments from a chromatin immunoprecipitation experiment 
are sequenced from the 5′ end. Therefore, the alignment of these tags to the genome results in two 
peaks (one on each strand) that flank the binding location of the protein or nucleosome of interest. This 
strand-specific pattern can be used for the optimal detection of enriched regions. To create an 
approximate distribution of all fragments, each tag location can be extended by an estimated fragment 
size in the appropriate orientation and the number of fragments can be counted at each position. 
Source: [10].  
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5.3  The Hi-C Technique and Chromosome Conformation  
 

In this section we will describe methods used to study how DNA is organized within the nucleus. 

First, we describe Hi-C, a method for capturing chromosome conformation by using high-

throughput sequencing, developed by Lieberman-Aiden et al [11]. Next, we describe the 

Micro-C method [12], introduced by Hsieh et al., our collaborators in this current project, which 

is an improvement of the Hi-C method with enhanced resolution. Micro-C allows the detection 

of chromosomal interactions at the nucleosome level. Last, we present some key concepts in 

the field of Hi-C. 

 

5.3.1 Hi-C  
 

Hi-C gives information on the three-dimensional architecture of whole genomes by coupling 

proximity-based ligation with massively parallel sequencing. Hi-C allows unbiased identification 

of chromatin interactions across the entire genome. 

Briefly (Figure 5), cells are crosslinked with formaldehyde; DNA is digested with a restriction 

enzyme that leaves a 5′ overhang; the 5′ overhang is filled, including a biotinylated residue; 

and the resulting blunt-end fragments are ligated under dilute conditions that favor ligation 

events between the cross-linked DNA fragments. The resulting DNA sample contains ligation 

products consisting of fragments that were originally in close spatial proximity in the nucleus, 

marked with biotin at the junction. A Hi-C library is created by shearing the DNA and selecting 

the biotin-containing fragments with streptavidin beads. The library is then analyzed by using 

massively parallel DNA sequencing, producing a catalog of interacting fragments.  
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Figure 5. | Hi-C workflow. Source: [11]. 

 

After alignment of the sequence reads to the reference genome, a genome-wide contact 

matrix 𝑀is constructed by dividing the genome into, typically, 1-Mb regions (“loci”); the matrix 

entry 𝑀𝑖,𝑗 is the number of ligation products between locus 𝑖 and locus 𝑗. This matrix reflects 

an ensemble average of the interactions present in the original pool of cells; it can be visually 

represented as a heatmap, with intensity indicating contact frequency (Figure 6). 

 

 

 

 

 

 

 

 

Figure 6. | Hi-C contact matrix. This is the result of Hi-C workflow for chromosome 14. Each pixel 
represents the total number of interactions observed between two 1-Mb chromosomal intervals. Color 
intensity corresponds to the total number of interactions. Tick marks appear every 10 Mb. Source: [11]. 
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The theoretical resolution limit of Hi-C is determined by the restriction enzyme used by the 

protocol (~2-3k bps), although the practical resolution is determined by the sequencing depth 

and is typically much poorer (~100k – 1M bps).  

The contact matrix should be normalized into a new matrix  𝑴∗. This can be done, for example, 

by dividing each entry in the contact matrix by the genome-wide average number of contacts 

for loci at that genomic distance. More advanced normalization methods include: 

• Iterative correction and eigenvector decomposition (ICE) [13]. This algorithm works by 

iteratively correcting for various sources of bias in the Hi-C data. In the first step, it 

corrects for systematic biases such as GC content and mappability. In the second step, 

it estimates the contact frequencies between all pairs of genomic bins, and then 

computes the eigenvalues and eigenvectors of this matrix of contact frequencies. By 

decomposing the matrix of contact frequencies into eigenvalues and eigenvectors, the 

ICE algorithm is able to identify patterns in the Hi-C data that are not explained by 

systematic biases. Finally, this algorithm uses these patterns to normalize the Hi-C data 

and adjust for any remaining noise. The final output of the normalization process is a 

matrix of corrected contact frequencies between different regions of the genome, 

which can be used for downstream analysis. [13] 

• The Knight-Ruiz (KR) method [14] is a fast method for balancing the row and column 

sums of the matrix of contact frequencies, i.e., reweighting rows and columns so that 

the sum of each row and column equals one. The KR method works by iteratively scaling 

the rows or columns of the matrix using the conjugate gradient method. This method 

was demonstrated to handle various sources of bias and noise in HiC data. [14] 

In the next step, a correlation matrix 𝐶 is calculated, in which 𝐶𝑖,𝑗 is the Pearson correlation between 

the 𝐼𝑡ℎ and 𝐽𝑡ℎ columns of 𝑀∗. Last, PCA is performed on the correlation matrix 𝐶. PCA seeks to 
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maximize the variance captured by reduced dimensions. In Hi-C data, the first PC usually represents the 

division of the genome into two highest-level types of structural units, called A/B compartments, that 

correspond to genomic loci that are overall transcriptionally active and inactive, respectively. Figure 7 

summarizes the consequential process. 

 

 

Figure 7. | Hi-C contact matrix of chromosome 14 in different stages of Hi-C analysis workflow.  A. 
Contact matrix. Map of chromosome 14 at a resolution of 1 Mb, Tick marks appear every 10 Mb. B. 
Normalized contact matrix. The observed/expected matrix shows loci with either more (red) or less 
(blue) interactions than would be expected, given their genomic distance. C. Correlation matrix 
calculated on B, showing the correlation [range from –1 (blue) to +1 (red)] between the profiles of every 
pair of 1-Mb loci along chromosome 14. The plaid pattern indicates the presence of two compartments 
within the chromosome. D.  Correlation map of chromosome 14 at a resolution of 100 kb. The tracks 
above show, from top to bottom, the read coverage, gene locations, three epigenetic tracks and the 
first eigenvector of the correlation matrix, corresponding to A/B compartments in the correlation 
figure. Source: [11].  

D 
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5.4 Micro-C 
 

Micro-C is a Hi-C-based method, in which micrococcal nuclease (MNase) is used instead of 

restriction enzymes to fragment the chromatin, thereby enabling nucleosome resolution (~150 

bps) chromosome folding maps. 

This protocol is based on the Hi-C protocol [11], with key alterations being the MNase digestion 

step, subsequent mononucleosomal end repair, and a modified two-step method for 

specifically purifying ligation products. After purification of ligation products between 

mononucleosomes, paired-end deep sequencing is used to characterize the ligation products. 

Figure 8 shows the workflow of the method and Figure 9 shows the resulting interaction matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. | Micro-C Workflow. Source: [12]. 
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Figure 9. | Nucleosome-nucleosome interaction matrix. Zoom-in on a 20 kb X 20 kb submatrix from 
chromosome 9 (360,001–380,000), with Micro-C interactions represented in white-yellow-red-black 
heat map showing the interaction intensity between pairs of loci. Source: [12]. 

 

5.4.1 Key Concepts in Hi-C Data 
 

Hi-C resolution:   

The average size of DNA fragments that are created by Hi-C when chromosomes are cut by 

restriction enzyme. 

A/B compartments:  

The highest-level organization of the genome, observable even under the microscope, is into 

two types of compartments, heterochromatin and euchromatin. Heterochromatin is typically 

highly condensed, gene-poor, and transcriptionally silent, whereas euchromatin is less 

condensed, gene-rich, and more accessible to transcription. The typical size of a contiguous 

compartment is a few mega base pairs. In Hi-C, the terms compartment A and B correspond to 

euchromatin and heterochromatin, respectively. Compartments tend to vary among cell types 
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and tissues. A/B compartmentalization is outlined by PCA analysis of the Hi-C correlation matrix 

(usually, by the main PC – PC1, See Figure 7D).   

Topologically Associated Domains: 

Topologically Associated Domains (TADs) are self-interacting genomic regions. DNA sequences 

within a TAD physically interact with each other more frequently than with sequences outside 

the TAD (Figure 10). TADs are also known as CID – Chromosomal Interaction Domains in other 

species (not human). The typical size of TADs is of ~0.5 Mb, containing 1-5 genes. TADs are 

largely conserved between cell types and species [12], [15]. 

 

 

 

 

 

 

 

 

 

Figure 10. | Schematic illustrations of TADs. The top figure shows two adjacent DNA segments that are 
compacted into two separate dense parts, denoted A and B. As a result, there are many interactions 
among segments in A, and similarly in B, but few interactions between A and B. The intensity of 
interactions is shown at the bottom, where the upper diagonal of the corresponding square of the 
contact matrix is rotated 45 degrees. The red triangles correspond to TADs A and B with the putative 
boundary (gray rectangle) between them. There are very few A-B interactions. Source: [15].  
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Loops:  

Chromatin loops (Figure 11) are defined as pairs of genomic sites that lie far apart along the 

linear genome but are brought into spatial proximity through chromatin folding maintained by 

a cohesin unit. The two ends of the loops are called anchors and they delimit the loop.  

One of the loop’s anchors commonly contain a gene’s promoter whose activity is induced when 

the loop is created. Two common types of regulatory loops are promoter-promoter loops and 

enhancer-promoter loops (which increase the expression of a gene).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. | Illustration of different chromosomal structures and their corresponding signal on the 
contact map. Unstructured chromosomes: only neighboring nucleosomes will be crosslinked producing 
a linear signal along the diagonal. Interaction Domain: the nucleosomes within a domain will be also 
crosslinked forming a square along the diagonal. Loop: the nucleosomes at the base of the loop (5’ and 
3’ anchors) will be crosslinked forming a spot away from the diagonal. These different structures can 
form concomitantly on chromosomes producing contact maps with squares and spots along the 
diagonal. Source: [16]. 
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5.4.2 The p53 Gene 
 

p53 is a tumor suppressor protein that promotes apoptosis, DNA repair or cell-cycle arrest in 

response to DNA damage and other cellular stresses. It thus serves as a cell defense 

mechanism. The protein encoded by this gene is a transcription factor that regulates the 

expression of dozens of target genes [17]. It is the most frequently mutated gene in human 

cancer [18]. P53 is usually found in the cytoplasm in an inactive state, inhibited by the MDM2 

protein, but in response to genotoxic stress, the p53 protein is activated by several kinases, 

such as the ATM protein kinase. After its activation, p53 enters the cell’s nucleus where it 

induces the transcription of numerous targets, key among them is the gene encoding the 

CDKN1A (p21) protein [19].  

Nutlin-3 is a molecule that occupies p53 binding site of MDM2 and effectively disrupts the 

p53–MDM2 interaction, which leads to activation of the p53 pathway in p53 wild-type cells. 

Inhibiting the interaction between MDM2 and p53 stabilizes p53 and is thought to selectively 

induce a growth-inhibiting state called senescence in cancer cells. Nutlin is thus used as an 

effective p53 activator. Nutlin-3 has been shown to affect the production of p53 within 

minutes. It is the compound that is used for p53 activation in our study. 
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6. Materials and Methods 

6.1 Data sets  

The data analyzed in my research consists of 10 human cell lines with a p53 status as shown in 

Table 1. 

For each cell line, measurements were taken in control cells as well as in cells treated with 

Nutlin, a potent p53 activator, with two replicates per condition. 

To characterize the change in the spatial structure and transcriptome associated with p53 

activation, three different omics techniques were applied to each treated and untreated cell 

line:  RNA-seq, ChIP-seq, and Micro-C. All data were generated by our collaborator Dr. Tsung-

Han S. Hsieh from the lab of Prof. Darzacq at the Department of Molecular and Cell Biology, 

University of California, Berkeley.  

Cell 

Line 

A549 GM12878 HCT116 HEK293 HeLa HepG2 MCF7 IMR90 SKNSH U2OS 

Tissue lung blood colon kidney cervix liver breast lung brain bone 

Type cancer normal cancer immortal cancer cancer cancer normal cancer cancer 

P53 

status 
WT WT WT Mutated Absent WT WT WT WT WT 

 
Table 1. | Properties of the different cell types used in this study. Most of cell types are p53 wild type 
profile, while HeLa and HEK293 cells are with non-functional p53. 
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6.2 Methods for analysis of Hi-C data 

For the analysis of Hi-C data we used the following methods and tools: 

6.2.1 Juicer 
 

Juicer is a unified pipeline for processing tera-base scale Hi-C datasets. It enables processing 

raw fastq files to create Hi-C maps binned at many resolutions, and automatically annotates 

loops and contact domains [20]. We mainly used this tool to annotate TADs in 10 kbp 

resolution.  

6.2.2 Mustache 
 

Chromatin loops are defined as pairs of genomic sites that lie far apart along the linear genome 

but are brought into spatial proximity by a mechanism called loop extrusion [21]. Mustache is 

a local enrichment-based method for high-resolution Hi-C and Micro-C data. It uses scale-

space representation from computer vision to identify "blob-shaped" objects in the contact 

map and this way identifies chromatin loops at multiple resolutions. We used this tool mainly 

to annotate chromatin loops in 5 kbp resolution.  
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6.2.3 HiCDC+ 
 

HiC-DC+ estimates significant changes in interactions between two conditions measured by Hi-

C or HiChIP experiments. It works on the raw contact matrix and analyses interactions for each 

chromosome up to a specified genomic distance, binned by uniform genomic intervals or 

restriction enzyme fragments. It trains a background model to account for random polymer 

ligation and systematic sources of read count variation [22]. 

This tool was mainly used for identifying significant changes in chromatin loop interactions 

between two conditions in 5 kbp resolution. 

 

6.2.4 FANC 
 

FAN-C is a command-line tool and Python API for matrix generation, analysis, and visualization 

on Hi-C data. FAN-C also includes a basic genome browser utility that allows for interactive 

exploration of Hi-C and additional genomic datasets. These include various visualizations of Hi-

C matrices: square; triangular; mirrored, in which two triangular Hi-C matrices are shown above 

and below a horizontal dividing line; and split, where the diagonal separates two different 

matrices in a square plot. All of the above matrix plots can also be used to display difference 

and fold-change maps. The latter was our main interest in using this tool [23]. 
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6.2.5 PCA 

 

Principal component analysis (PCA) is a statistical method for reducing the dimensionality of 

the data while retaining most of the variation in the data set. It accomplishes this reduction by 

iteratively identifying directions, called principal components, along which the residual 

variation in the data is maximal. By using the few first components, each sample can be 

represented by a small number of features instead of by values for the (potentially, thousands 

of) original variables. Samples can be plotted by projecting their top components in 2D or 3D, 

making it possible to visually assess similarities and differences between samples and 

determine whether samples can be grouped [24]. 

The input of PCA is a matrix 𝐺𝑚𝑋𝑛 where 𝑚 is the number of observations and 𝑛 is the number 

of variables. The output is a linear transformation that transforms the data to a new coordinate 

system. The first coordinate, named first principal component (PC1), has the greatest possible 

variance out of all the linear combinations over the variables, the second principal component 

(PC2) has the second greatest residual variance given the first, and so on. The number of 

features can be up to the number of variables, but typically, low variance components are 

discarded, leading to low dimension representation of the data. 

Formally, let 𝐺 be centered, so that the mean of each observation is zero. The projection of a 

vector 𝑣 is given by 𝐺𝑣. The normalized variance of the projection is 
1

𝑛−1
𝐺𝑣

𝑇 ∙ 𝐺𝑣 = 𝑣𝑇 ∙

(
1

𝑛−1
𝐺𝑇𝐺) ∙ 𝑣 = 𝑣𝑇𝐶𝑣 = 𝐷 where 𝐶 is the covariance matrix of 𝐺, and D is the diagonal matrix 

of eigenvalues of C. We would like to find 𝑣 that maximizes 𝑣𝑇𝐶𝑣. Since 𝐶 is symmetric, it can 

be diagonalized by its eigenvector basis denoted by {𝑧𝑖}. The diagonal matrix D contains the 

eigenvalues that correspond to the eigenvectors in C. We can represent each vector 𝑣 by a 

linear combination of the eigenvector basis vectors: 𝑣 =  ∑ 𝑤𝑖𝑧𝑖, and calculate its variance as 
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∑ 𝜆𝑖𝑤𝑖
2.  Given that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 , we can represent the correspond eigenvectors 

accordingly and get 𝑃𝐶1, 𝑃𝐶2, … , 𝑃𝐶𝑛, while 𝑃𝐶1 fits the 𝜆1 and will give the first feature with 

the maximum variance. 

PCA is used as part of the pipeline of Hi-C data analysis, for calculation of the genome 

compartments. The first PC of the correlation matrix of the Hi-C data usually reflects the A/B 

chromosomal compartments. Regions with negative and positive values of PC1 represent this 

partition. The determination of whether positive or negative values of PC1 correspond to A or 

B compartments in the genome is based on gene density, which is markedly higher in the A 

compartment. In Figure 12, heterochromatin compartment (label ‘B’) is represented in blue, 

whereas euchromatin (label 'A') is represented in red.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. | Correlation map of chromosome 14 at a resolution of 100kb. The principal component 
(eigenvector) correlates with features of open chromatin. The matrix shows loci with either more (red) 
or less (blue) interactions than would be expected, given their genomic distance. Source: [11].  
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6.2.6 The hypergeometric test 

 

This test is used in enrichment analysis. Formally, let 𝐵 be a background set of genes of size 𝑁, 

let 𝑆 ⊆ 𝐵 be a set of 𝑛 target genes, and let 𝐷 ⊆ 𝐵 be a fixed set of 𝐾 apriori defined genes 

(see Figure 13). This can be a set of genes defining a certain biological process, a pathway, or 

the targets of some regulatory factor. Suppose |𝑆 ∩ 𝐷| = 𝑘. We wish to compute the 

probability of obtaining such overlap size 𝑘 given the null hypothesis that the genes in the 

target set were selected randomly without replacement from the background group. Under 

that assumption the probability of intersection 𝑘 is given by: 

pX(𝑘) =  Pr(𝑘) =  
(𝐾

𝑘
) ∙ (𝑁−𝐾

𝑛−𝑘
)

(𝑁
𝑛

)
 

The hypergeometric p-value for enrichment is calculated as the probability of obtaining overlap 

of at least  𝑘 when making 𝑛 draws in total, i.e., ∑ Pr(𝑖)
min (𝑛,𝐾)
𝑖=𝑘 . 

 

 

 

 

 

 

 

Figure 13. | Schematic of the hyper geometric test. In this example the test is for enrichment of genes 
associated with P53 chip-seq peaks among induced genes.  
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In addition, for each test, we also calculated its enrichment factor as follows:  

𝐸𝐹 =
 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∙ 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑒𝑡

𝑝53 𝑝𝑒𝑎𝑘𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑔𝑒𝑛𝑒𝑠 ∙   𝑅𝑁𝐴 − 𝑠𝑒𝑞 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑔𝑒𝑛𝑒𝑠
 =

𝑘 ∙ 𝑁

𝐾 ∙ 𝑛
 

 

6.2.7 Non-parametric statistical tests 

 

Parametric tests are used when data is assumed to follow a particular distribution (e.g., a 

normal distribution). Nonparametric tests are used when a particular distribution cannot be 

assumed; they are based on ranking the values rather than taking the actual values into 

account. Parametric tests generally have higher statistical power.   

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/nonparametric-test
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7. Results 
 

6.1 Gene expression analysis of the response to p53 activation 

 

Gene expression count data can be represented as an integer matrix 𝑀 ∈ ℝ𝑛𝑥𝑚, where n is 

the number of genes in the data and m is the number of conditions. Each row in the matrix 

contains the expression level of a specific gene, and each column represents the biological 

condition (cell line, pre/post-Nutlin treatment) of a sample. The entry 𝑀𝑖,𝑗 in the matrix is the 

number of reads of gene 𝑖 under a certain probed condition 𝑗. Values are normalized to counts 

per million (CPM). This calculation is done in two steps: 

1. Count  the total reads in the sample (column) and divide that number by 1,000,000 – 

this is our “per million” scaling factor. 

2. Divide the actual read counts by the “per million” scaling factor. This normalizes for 

sequencing depth, giving counts per million (CPM). 

We filtered out all the genes that were not robustly detected in any condition in our dataset. 

Specifically, we filtered out the genes whose CPM value did not reach 1 CPM in both replicates 

of at least one cell line. The remaining gene set contained 21,651 genes, of which 15,459 were 

protein-coding genes.  

Next, to examine the quality of our expression data, we applied PCA analysis to the transposed 

expression matrices of control and treatment, without combining replicates. PCA plots (Figure 

14) indeed show that replicate samples of the same cell line and biological condition are 

located close to each other.  
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Figure 14. | PCA plots of the expression data. Top: basal conditions. Bottom:  treatment conditions. It 
can be seen that replicates in each condition tend to be close to each other and that there is a difference 
between basal and after treatment with Nutlin.  

We then identified the genes that significantly responded to Nutlin treatment in our dataset. 

We applied DESeq2 on each cell line separately to identify differentially expressed genes 

(DEGs; either induced or repressed) upon Nutlin treatment. Each DESeq2 run included four 
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samples: 2 replicates of the control condition and 2 replicates of the Nutlin-treated condition. 

The genes with q-value < 0.05 and fold-change > 1.5 (up or down) were defined as DEGs. In all 

cell lines combined; we detected a set of 583 unique DEGs, of which 451 were protein-coding 

genes. Table 2 and Figure 15 summarize the number of DEGs detected per cell line. 

Cell Line No. of Induced Genes No. of Repressed Genes 

A549 260 74 

GM12878 66 0 

HCT116 103 13 

HEK293 1 0 

HeLa 21 7 

HepG2 181 29 

MCF7 288 39 

IMR90 60 7 

SKNSH 72 2 

U2OS 156 36 

 

Table 2. | Summary of differentially expressed genes per cell line. 

 

 

Figure 15. | Bar plot representing the number of differentially expressed genes. 
 

Reassuringly, the two cell lines that do not carry a functional p53 (HEK293 and Hela) showed 

the lowest number of DEGs.  
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For each cell line, we created a volcano plot for visualizing the responsive genes and marked 

on it some canonical target genes of p53. Figure 16 presents the plot for the A549 cell line; the 

other volcano plots are presented in Figure S1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. | Volcano plot of A549 cell line: Each dot represents a differentially expressed gene. Red dots 
represent up-regulated genes, blue dots represent down-regulated genes, and genes in grey are not 
significantly differentially expressed. Labeled genes are well known targets of p53.
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Most of the transcriptional response upon p53 activation was cell type-specific: 338 genes 

were induced in only one cell line, while 45 were induced in at least six, see Figures 17,18.  

We refer to the set of genes that were induced in at least 6 cell lines (out of 8 cell lines with 

functional p53) as the “p53 core/canonical responsive genes”. This gene set is highly enriched 

for the known p53 network [25] (enrichment factor = 37.77; p-value = 1.27e-37). A description 

of each protein-coding p53 core gene is given in Table 3. There was one gene that was induced 

in 9 out of 10 cell lines, and it is SESN2, a well-established p53 target gene [26].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. | Binary DEGs heatmap. red: up-regulated gene. The blue rectangle at the top indicates the 
set of genes that were DEGs in eight of the cell lines. 
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Figure 18. | The number of cell lines in which genes were induced. The histogram shows how many 
genes were induced in 𝑖 cell lines for 𝑖 =1, ..., 9, cell lines. 45 genes were induced in at least 6 cell lines.  
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Gene ID Gene name

Number 

of Cell 

Lines

Gene description

ENSG00000130766 SESN2 9 sestrin 2 [Source:HGNC Symbol;Acc:HGNC:20746]

ENSG00000128965 CHAC1 8 ChaC glutathione specific gamma-glutamylcyclotransferase 1 [Source:HGNC Symbol;Acc:HGNC:28680]

ENSG00000130513 GDF15 8 growth differentiation factor 15 [Source:HGNC Symbol;Acc:HGNC:30142]

ENSG00000128165 ADM2 8 adrenomedullin 2 [Source:HGNC Symbol;Acc:HGNC:28898]

ENSG00000078237 TIGAR 8 TP53 induced glycolysis regulatory phosphatase [Source:HGNC Symbol;Acc:HGNC:1185]

ENSG00000080546 SESN1 8 sestrin 1 [Source:HGNC Symbol;Acc:HGNC:21595]

ENSG00000105327 BBC3 8 BCL2 binding component 3 [Source:HGNC Symbol;Acc:HGNC:17868]

ENSG00000124762 CDKN1A 8 cyclin dependent kinase inhibitor 1A [Source:HGNC Symbol;Acc:HGNC:1784]

ENSG00000135679 MDM2 8 MDM2 proto-oncogene [Source:HGNC Symbol;Acc:HGNC:6973]

ENSG00000143217 NECTIN4 8 nectin cell adhesion molecule 4 [Source:HGNC Symbol;Acc:HGNC:19688]

ENSG00000154767 XPC 8 XPC complex subunit, DNA damage recognition and repair factor [Source:HGNC Symbol;Acc:HGNC:12816]

ENSG00000164938 TP53INP1 8 tumor protein p53 inducible nuclear protein 1 [Source:HGNC Symbol;Acc:HGNC:18022]

ENSG00000170734 POLH 8 DNA polymerase eta [Source:HGNC Symbol;Acc:HGNC:9181]

ENSG00000170836 PPM1D 8 protein phosphatase, Mg2+/Mn2+ dependent 1D [Source:HGNC Symbol;Acc:HGNC:9277]

ENSG00000170855 TRIAP1 8 TP53 regulated inhibitor of apoptosis 1 [Source:HGNC Symbol;Acc:HGNC:26937]

ENSG00000177076 ACER2 8 alkaline ceramidase 2 [Source:HGNC Symbol;Acc:HGNC:23675]

ENSG00000196152 ZNF79 8 zinc finger protein 79 [Source:HGNC Symbol;Acc:HGNC:13153]

ENSG00000197852 INKA2 8 inka box actin regulator 2 [Source:HGNC Symbol;Acc:HGNC:28045]

ENSG00000168209 DDIT4 7 DNA damage inducible transcript 4 [Source:HGNC Symbol;Acc:HGNC:24944]

ENSG00000162772 ATF3 7 activating transcription factor 3 [Source:HGNC Symbol;Acc:HGNC:785]

ENSG00000048392 RRM2B 7 ribonucleotide reductase regulatory TP53 inducible subunit M2B [Source:HGNC Symbol;Acc:HGNC:17296]

ENSG00000116717 GADD45A 7 growth arrest and DNA damage inducible alpha [Source:HGNC Symbol;Acc:HGNC:4095]

ENSG00000120889 TNFRSF10B 7 TNF receptor superfamily member 10b [Source:HGNC Symbol;Acc:HGNC:11905]

ENSG00000164331 ANKRA2 7 ankyrin repeat family A member 2 [Source:HGNC Symbol;Acc:HGNC:13208]

ENSG00000167196 FBXO22 7 F-box protein 22 [Source:HGNC Symbol;Acc:HGNC:13593]

ENSG00000131080 EDA2R 7 ectodysplasin A2 receptor [Source:HGNC Symbol;Acc:HGNC:17756]

ENSG00000177595 PIDD1 7 p53-induced death domain protein 1 [Source:HGNC Symbol;Acc:HGNC:16491]

ENSG00000026103 FAS 7 Fas cell surface death receptor [Source:HGNC Symbol;Acc:HGNC:11920]

ENSG00000159388 BTG2 7 BTG anti-proliferation factor 2 [Source:HGNC Symbol;Acc:HGNC:1131]

ENSG00000168918 INPP5D 7 inositol polyphosphate-5-phosphatase D [Source:HGNC Symbol;Acc:HGNC:6079]

ENSG00000173846 PLK3 7 polo like kinase 3 [Source:HGNC Symbol;Acc:HGNC:2154]

ENSG00000175197 DDIT3 7 DNA damage inducible transcript 3 [Source:HGNC Symbol;Acc:HGNC:2726]

ENSG00000196072 BLOC1S2 7 biogenesis of lysosomal organelles complex 1 subunit 2 [Source:HGNC Symbol;Acc:HGNC:20984]

ENSG00000051108 HERPUD1 6 homocysteine inducible ER protein with ubiquitin like domain 1 [Source:HGNC Symbol;Acc:HGNC:13744]

ENSG00000176046 NUPR1 6 nuclear protein 1, transcriptional regulator [Source:HGNC Symbol;Acc:HGNC:29990]

ENSG00000115129 TP53I3 6 tumor protein p53 inducible protein 3 [Source:HGNC Symbol;Acc:HGNC:19373]

ENSG00000164237 CMBL 6 carboxymethylenebutenolidase homolog [Source:HGNC Symbol;Acc:HGNC:25090]

ENSG00000166592 RRAD 6 RRAD, Ras related glycolysis inhibitor and calcium channel regulator [Source:HGNC Symbol;Acc:HGNC:10446]

ENSG00000161513 FDXR 6 ferredoxin reductase [Source:HGNC Symbol;Acc:HGNC:3642]

ENSG00000100647 SUSD6 6 sushi domain containing 6 [Source:HGNC Symbol;Acc:HGNC:19956]

ENSG00000172831 CES2 6 carboxylesterase 2 [Source:HGNC Symbol;Acc:HGNC:1864]

Table 3. | p53 core/canonical responsive genes. The 41 protein-coding genes induced in six or more 
tissues, with a short description of the function of each. 
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6.2 p53 Chip-seq analysis 
 

We performed p53 ChIP-seq analysis to identify p53 binding sites in the ten cell lines analyzed 

in our study. In order to identify significantly enriched genomic regions (‘peaks’) in the p53 

ChIP-seq data we used the MACS2 algorithm. For each cell line after Nutlin treatment, p53 

ChIP-seq reads  were mapped to the reference genome in order to call ‘p53 peaks’. The number 

of peaks detected in each cell line is reported in Table 4. We also applied p53 ChIP-seq analysis 

to the untreated cells and obtained a profile of p53 binding events under basal condition. 

 We next applied motif analysis to the set of p53 peaks detected in each cell line after Nutlin 

treatment, to identify known as well as de novo motifs, using Homer [27] and DREME [28] 

algorithms. In particular, as a quality control for the called peaks, we sought to confirm that 

the p53 motif was highly enriched. Reassuringly, in all cell lines, the strongest detected motif 

corresponded to the p53 motif. We wished to find enriched motifs of additional TFs, as these 

could represent cofactors of p53 that drive cell type-specific responses. Table 4 shows the 

number of significant motifs and the enrichment for the p53 motif in each cell line: 

 
Table 4. | The number p53 peaks found in each treated cell line and the number of significantly enriched 
motifs found in them. "Total motifs" is the number of motifs found for 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05. The last 
column shows enrichment p-value for the p53 motif.  That motif was the most significant and strongest 
motif in all cell types. 

Cell Line # p53 Peaks # Total Motifs 
(p-value ≤1e-5) 

# Enriched 
Motifs 

 (p-value ≤1e-20) 

p53 Motif 
Enrichment  

(p-value) 
GM12878 14,119 19 14 1e-1359 

A549 11,113 21 14 1e-1435 

MCF7 7,731 22 19 1e-1892 

HepG2 7,657 22 17 1e-1691 

HCT116 6,584 23 17 1e-1412 

HEK293 2,797 21 15 1e-828 

U2OS 2,596 21 16 1e-843 

HeLa 1,750 22 15 1e-550 

IMR90 8,076 22 13 1e-1571 

SKNSH 8,934 22 16 1e-1927 
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We also sought de novo motifs using Homer and DREME. Figure 19 shows an example of such 

motif. 

 

 

 

 

Figure 19. | De-novo motif found in p53 peaks of SKNSH cell line: a) The motif found de novo (P-value 
= 1e-1927 in HOMER de novo motif discovery tool.) b) a matching known motif. 

 

The following heatmap summarizes the strongly enriched known motifs (p<10-20) detected in 

our p53 ChIP-seq dataset, and the cell lines in which each was detected. As can be seen, p53 

motif is the only one detected in all cell lines. This analysis suggests cell type-specific 

coactivators of p53, including AP-1 and NFkB in GM12878, PTX1 in HCT116, HOXA5 in HepG2, 

SOX3 and FOXL1 in MCF7 and TEAD4 in SKNSH. Some other factors seem to cooperate with 

p53 in multiple cell lines e.g., SHN and TBX21. The GATA1 motif was mildly enriched in five cell 

lines. It is known as a paralog of GATA2, which plays an essential role in regulating transcription 

of genes involved in the development and proliferation of hematopoietic and endocrine cell 

lineages. Another presentation that uses the p-value of each motif to create a heatmap is given 

in Figure S2. 

SHN gene function is unknown for humans but known for Drosophila. In Drosophila it was 

demonstrated that schnurri (SHN) gene is required for cell differentiation in the dorsal 

ectoderm [29]. 

a) 

b) 
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Figure 20. | Binary heatmap of enriched motifs in p53 peaks of treated cells. The motifs found de novo 
were matched to known motifs. A motif is considered enriched if it has 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 1𝑒 − 20. Red: 
enriched motif, grey: not enriched. P53 is enriched in all cell lines. 
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6.2.1 Integrated analysis of p53 ChIP-seq and gene expression data 

 

Next, we carried out an integrative analysis of the transcriptomic and p53 ChIP-seq data. We 

wished to demonstrate that p53 binding to the chromatin is associated with induction of the 

target genes. For this task, we took a naïve approach and associated each p53 peak to its 

closest gene (the gene with the closest transcription start site (TSS)). In particular, we tested 

all p53 peak-nearest gene associations, as well as only those in which the TSS and the peak are 

within 50k and 20k bp. Table 5 shows the number of target genes that were associated with 

p53 peaks in each cell line:  

 
Table 5. | The number of genes associated with p53 ChIP-seq peaks in each cell line. The two right most 

columns show the number of associated genes located within 20,000 bp or 50,000 bp. 

 

We then examined the significance of the overlap between the closest genes to p53 peaks and 

the set of Nutlin-induced genes in each cell line, using the hyper geometric test (Figure 13) and 

the enrichment factor. We then tested the overlap between the set of Nutlin-induced genes 

and the set of genes that are closest to some p53 peak. Table 6 shows the results for all genes 

and for the two different distance cut-offs. Notably, in all these tests the overlap between the 

Nutlin-induced genes and p53 ChIP-seq closest genes is highly significant. Moreover, the 

Cell Line # p53 Peaks # of Associated 
Genes 

# of Associated 
Genes at Dis < 

20K 

# of Associated 
Genes at Dis < 50K 

GM12878 14,119 13,852 6673 8854 

A549 11,113 10,860 5448 7135 

MCF7 7,731 7,555 2844 4341 

HepG2 7,657 7,464 2990 4484 

HCT116 6,584 6,411 2609 3828 

HEK293 2,797 2,707 974 1523 

U2OS 2,596 2,482 774 1243 

HeLa 1,750 1,698 637 991 

IMR90 8,076 7,814 3212 4662 

SKNSH 8,934 8,682 3402 5010 
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enrichment factor (EF) for those genes that lie within a distance of 20kbp from the p53 binding 

site is higher than the EF for genes within a distance of 50kbp, suggesting that the binding of 

p53 within the close region has a stronger effect on the expression of the target genes.  

In many control samples, a higher significance was obtained compared to the treated samples. 

This can be explained as follows, the binding sites of p53 near the genes that undergo induction 

are the "strongest" binding sites (with the highest binding affinity). Therefore, ChIP-seq will 

detect a binding of p53 to these sites even when p53 levels are low (i.e., in control samples). 

In the treated cells, the level of the p53 protein increases significantly and therefore it also 

binds to hundreds/thousands of additional sites in the genome that are weaker and non-

functional (in this sense, that do not induce the expression of a gene in their vicinity).
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Table 6. | Hypergeometric test results for the overlap between induced genes and p53 ChIP-seq peaks. Results are shown for all genes and for the two different 
distance cut-offs. (“Case” – Nutlin-treated cells; “Control” – untreated cells).   

 

Cel l  Line

Condition 

(ChIPSeq:NUT/

Control , 

RNASeq:NUT)

Backgroun

d set (M)

RNASeq 

induced 

genes (n)

P53 peaks 

nearest 

genes - ALL 

(N)

P53 peaks 

nearest 

genes - 

|50kb| (N)

P53 peaks 

nearest 

genes - 

|20kb| (N)

Intersection - 

ALL (k)

Intersection -

|50kb| (k)

Intersection- 

|20kb| (k)

HG p-

value - 

ALL

HG p-

value -

|50kb|

HG p-

value -

|20kb|

Enrichment 

Factor - 

ALL

Enrichment 

Factor - 

|50kb|

Enrichment 

Factor - 

|20kb|

Case (N) 21652 260 6370 5239 4306 145 133 126 5.0701E-19 3.76E-21 2.54E-25 1.9 2.1 2.4

Control 21652 260 77 51 33 11 9 9 2.0114E-09 8.86E-09 1.36E-10 11.9 14.7 22.7

Case (N) 21652 66 7037 5881 4874 40 39 39 2.4774E-06 4.99E-08 1.59E-10 1.9 2.2 2.6

Control 21652 66 460 282 180 17 16 16 2.6395E-14 2.14E-16 1.57E-19 12.1 18.6 29.2

Case (N) 21652 103 4431 3230 2327 52 49 47 1.1554E-11 3.74E-15 2.34E-19 2.5 3.2 4.2

Control 21652 103 273 163 96 19 16 15 4.1543E-17 6.42E-17 4.78E-19 14.6 20.6 32.9

Case (N) 21652 181 4919 3630 2605 96 89 84 5.8747E-19 5.50E-24 1.28E-30 2.3 2.9 3.9

Control 21652 181 537 325 217 35 33 30 2.2512E-21 2.92E-26 5.93E-28 7.8 12.1 16.5

Case (N) 21652 288 4877 3556 2497 138 129 124 1.4205E-21 5.27E-30 2.35E-42 2.1 2.7 3.7

Control 21652 288 188 126 79 31 28 26 5.9885E-25 2.03E-26 1.47E-29 12.4 16.7 24.7

Case (N) 21652 60 4890 3710 2725 38 34 32 1.5606E-11 5.09E-12 3.79E-14 2.8 3.3 4.2

Control 21652 60 438 262 166 14 11 11 1.1618E-11 1.34E-10 9.54E-13 11.5 15.2 23.9

Case (N) 21652 72 5357 4021 2926 51 48 48 2.3068E-16 4.32E-19 3.76E-25 2.9 3.6 4.9

Control 21652 72 440 275 168 19 18 18 2.1129E-16 9.48E-19 1.18E-22 13 19.7 32.2

Case (N) 21652 156 1932 1148 744 44 39 37 2.7471E-12 2.19E-16 5.84E-21 3.2 4.7 6.9

Control 21652 156 521 278 173 22 19 18 2.6522E-11 1.58E-13 4.67E-16 5.9 9.5 14.4

IMR90

SKNSH

U2OS

A549

GM12878

HCT116

HepG2

MCF7
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6.3 p53 Hi-C data: characterization of differential loops upon p53 activation  
 

We first called TADs using Juicer [20] and loops using Mustache [30] in each cell line, both 

without and after Nutlin treatment.  Tables 7 and 8 below show the number of loops and TADs 

in each condition for 5kb and 10kb resolution, respectively.  

Cell Line # Basal # Treatment 

GM12878 24649 28863 

A549 15318 16438 

MCF7 25307 28954 

HepG2 24860 25147 

HCT116 19227 22189 

HEK293 30742 32716 

U2OS 12418 14942 

HeLa 20930 24207 

IMR90 17602 15730 

SKNSH 17687 24178 

 

Table 7. | Average number of loops between two replicates in 5kb resolution.  

 

Cell Line # Basal # Treatment 

GM12878 4987 5772 

A549 4620 4395 

MCF7 5960 6935 

HepG2 4828 4780 

HCT116 4848 5032 

HEK293 6600 6884 

U2OS 4049 4828 

HeLa 3719 4294 

IMR90 4892 4510 

SKNSH 3736 4999 

 

Table 8. | Average number of TADs between two replicates in 10kb resolution. 

  
The tables show that the number of loops detected in the basal and the treated condition is 

about the same in all cell lines, with a minor increase in the treated cells. A similar observation 

holds for TADs.  
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6.3.1 Analysis of differential loops  
 

Next, we used the HiC-DC+ software to detect statistically significant differential loops between 

pairs of Micro-C samples [22]. We first used this tool to compare all pairs of cell types (45 

pairwise comparisons between 10 different cell lines), under the basal condition. As these cell 

lines originate from very different tissues, we expected them to have many differential 

chromatin loops. Indeed, numerous loops passed this stringent statistical test employed by 

HiC-DC+ (Table 9).   

 
A549 GM12878 HCT116 HEK293  HeLa HepG2 IMR90 MCF7 SKNSH U2OS 

A549 
 

535 9 63  84 340 20 223 649 434 

GM12878 393 
 

170 59  1000 302 66 214 66 426 

HCT116 7 133 
 

21  122 127 42 63 12 179 

HEK293 68 131 82 
 

 266 120 74 118 678 212 

HeLa 77 1684 169 306  
 

1295 353 728 1804 1143 

HepG2 196 358 172 37  421 
 

9 94 833 1463 

IMR90 1 11 11 3  0 0 
 

5 0 3 

MCF7 229 352 156 120  531 178 72 
 

15 1004 

SKNSH 36 10 0 0  102 51 0 0 
 

10 

U2OS 552 281 405 60  1689 2733 15 1850 27 
 

 

 

Table 9. | Number of differential loops between basal cell types found by HiC-DC+ tool in chr12: Cell 
type measurements were taken in basal level only. Each entry in table represents the number of 
differential loops found by the tool after removal of diagonal loops and using the parameter padj<=0.1. 
For cell types 𝑖, 𝑗, entry (𝑖, 𝑗) is the number of differential loops that were stronger in 𝑖 and entry (𝑗, 𝑖) 
is the number of differential loops stronger in 𝑗. For example, for the pair: A549-GM12878 we get a 
total of 928 differential loops, 535 are stronger in A549 and 393 in GM12878. 
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Surprisingly, when we applied HiC-DC+ tests to compare Nutlin-treated to basal cells, no 

differential loops were detected at all in any of the cell lines. This finding suggests that 

chromatin loops that determine cell-identify transcriptional programs are markedly stronger 

than loops that are formed in response to stress (p53 activation in our research). This is in line 

with the fact that the scale of differential expression between different cell lines (originating 

from very different tissues) is an order of magnitude larger than the differential expression 

between Nutlin-treated and basal cells in the same tissue (Figure 21).   

 

 

 

 

 

 

 

 

Figure 21. | Density plots of gene expression fold change between A549 and GM12787 (red) and 
between A549 Nutlin-treated and control sample (light blue). Fold change was calculated for all genes 
in RNA-seq (n=14,180). 

 

Next, we examined associations between changes in promoter loop intensities and changes in 

expression levels of the associated genes. In this analysis too, when comparing different cell 

lines, we detected very strong associations: in basal cell lines where a gene had markedly 

higher expression, its promoter was associated with stronger loops (see Figure 22A for one 
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example. Similar strong associations were obtained for all 45 pair-wise comparisons between 

cell lines). In contrast, when we examined, for each cell line, association between changes in 

promoter loop intensities and changes in expression levels upon Nutlin treatment, no 

significant association was detected (Figure 22B).  

Taken together, these results show that in our Micro-C dataset, we did not observe major 

changes in chromatin organization that corresponded to the observed modulation of gene 

expression upon p53 activation. This is in contrast to the strong association between genome 

organization and transcriptional programs that we observed in the comparisons between 

different basal cell lines.  
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Figure 22. | Changes in gene expression levels vs. changes in interaction frequency of loops associated 
with their promoters, between different cell lines or conditions. X axis: log2 fold change in gene 
expression. Genes are binned according to log fold change between the two conditions. Y axis: 
distribution of log2 fold change of the loop intensity for the genes in each bin. Pearson’s correlation 
value and p-value are indicated in each plot. A. A549 vs. GM12878 when both cell lines are basal. B. 
GM12878 treated with Nutlin vs. basal GM12878. In B, FC bins were defined as to include similar 
number of genes. Colors have no meaning. 

 

A 

B GM12878 treated vs. basal 

A549 basal vs. GM12878 basal 
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In summary, we were not able to detect any statistically significant differential loops upon 

Nutlin treatment. This, most likely, points to the fact that changes that occur in chromatin 

interactions upon p53 activation were below the detection limit of our Micro-C analysis 

(despite very high sequencing depth). Additionally, we are limited by the resolution of the 

technique, and if most loops induced by p53 are shorter than 5k-10k, they are not detected 

due to the binning resolution we used (5k-10k bp). Yet, no differential loops were detected 

also when we used the resolution limit of our Micro-C protocol (0.5k bp).  

 

6.3.2 Integrated analysis of Micro-C and gene expression data in response to p53 activation 

 

Following the above observations, we tried to further examine the correlation between 

changes in gene expression levels and changes in the 3D organization of the chromatin. We 

chose to focus on six well-known target genes of p53 that were significantly induced in all the 

cell lines with functional p53 in our panel. Figure 23 shows the induction level of these genes 

across the ten cell lines. 
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Figure 23. | Expression levels of well-known target genes of p53. The plot shows the fold change in 
Nutlin-treated cells vs controls. All six genes are induced in most or all cell lines. HEK293 and HeLa 
cell lines are less responsive as they do not carry a functional p53. 
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We next sought changes in chromatin looping in the vicinity of these canonical p53 targets that 

occur upon p53 activation. We therefore examined the Micro-C data in these loci using 

resolution of 5kb.  In line with our previous results, no change in chromatin interactions was 

detected in these regions in response to Nutlin treatment (Figure 24). This is despite the 

marked induction of their expression levels, as well as the induced binding of p53 in these loci 

(p53 ChIP-seq peaks). Applying similar analysis to genes that showed cell type-specific 

expression, detected very strong cell type-specific chromatin 3D organization (Figure 25). 

Next, we characterized the promoter loops associated with these six canonical p53 target 

genes.  We found that most of these loops (14 out of 21) promoter-promoter loops (P-P loops) 

(Figure 26). We therefore focused on the other gene that was linked to the canonical p53 target 

on the other anchor of such P-P loop (see the examples of MED18 for SENS2 and CCNE2 for 

TP53INP1, Figure 26). We tested if these ‘paired genes’ were induced too upon Nutlin 

treatment. In contrast to our expectation, we did not find any significant induction for these 

genes whose promoters physically interact with the promoter of the induced genes. 

Furthermore, for six out of the six canonical genes, we found that the promoter anchor of its 

P-loop also contains a p53 ChIP-seq peak. That is, the p53 binding site is located less than 5kb 

(the bin resolution we worked with) from the gene’s TSS.  

Given these results, we decided to further increase the resolution analysis of the Micro-C, and 

produced data at bin resolution of 1000 bases (increasing the resolution decreases the number 

of reads assigned to each bin and therefore lowers sensitivity of detecting chromatin 

interactions). Since such resolution has a lot of background noise, we used a sliding window 

mean and median of bins intensity for five consecutive bins (moving the window by one bin at 

a time). Contrary to our expectation, this analysis too did not detect any increase the intensity 
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of chromatin interactions that involve the promoters of these p53 canonical target genes upon 

Nutlin treatment, despite the robust activation of these promoters by this treatment (Figure 

27, S3-S6).  

In contrast, applying this analysis to genes that show a very strong differential expression 

between different cell lines, we detected very strong cell type-specific E-P loops. Figure 28 

shows the results for APOC3, which is specifically expressed in HepG2. Supplementary Figures 

S7 and S8 show the results for CCR7 and CD80, which are specifically expressed in GM12878.  

Taken together, these results demonstrate that transcriptional changes induced upon 

activation of p53 are not accompanied by massive remodeling of chromatin interactions. This 

is in stark contrast to differential expression between different cell types, where cell type-

specific transcriptional programs are accompanied by major changes in 3D organization of the 

genome. This difference can be explained by the marked difference in the magnitude of 

differential expression in these two cases: DE between different cell types is two orders of 

magnitude larger than DE in response to p53 activation. That is, cell type-specific genes show 

100-1000 fold-change in expression between cell types, while genes induced by p53 activation 

typically show 2-4 fold change (Figure 25).  
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Figure 24. | Hi-C Plot of 
chromatin loops, at bin 
resolution of 5kb: Left: MDM2 
gene in MCF7 cell line. Right: 
CDKN1A gene in HepG2 cell 
line. The tracks below each 
contact map shows the gene 
expression and p53 binding. 
The contact maps show  no 
difference in 3D loops between 
basal and treated samples, 
although there is a strong 
induction of gene expression. 

Nutlin Nutlin 

Control Control 
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Figure 25. | HiC contact maps and gene expression across cell lines. Each column shows the interaction 
maps in four cell lines in the same genomic region, and the track below each map shows the mRNA 
expression, in CPM. Cell type-specific expression as manifest in cell type-specific peak in the track is 
coupled with the formation of cell type-specific chromatin loops observed in the interaction map. Blue 
circles indicate cell type-specific loops.    
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Figure 26. | UCSC Genome Browser display of regions that include loops anchored at the TSS of p53 
canonical targets. Top: SESN2 gene. Bottom: TP53INP1 gene. Each display includes, from top to bottom, 
loop anchors, p53 ChIP-seq peaks, TADs, the TSS of the p53 canonical gene, and all gene models in the 
region. Data presented includes loops and peaks from all cell types, both basal and treated. It can be 
seen that TSS and the p53 ChIP-seq peaks are in the same loop anchor (light blue).  Moreover, most of 
the loop anchors reside near TSSs of different genes (blue). The dynamic loops were not detected at 
5000bp bin resolution and higher resolution is needed. 

 



 

59 
 

 

 

 

 

 

 

 

 

 

 

Figure 27. | Loop Intensities around the promoter of the gene TP53INP1: Loops intensity values in 
sliding windows of chr8 in A549 cell line are shown. Intensity values were calculated as the mean or the 
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values. Blue: 
basal; red: treated. 

 

   

 

 

 

 

 

 

 

 

 

Figure 28. | Loop Intensities around the promoter of the gene APOC3: Loops intensity values in sliding 
windows of chr11 in all cell lines are shown. Basal intensity values were calculated as the mean and the 
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values. 
HepG2 is highlighted in red color to show its different intensity basal value from the rest of cell lines. 
The arrows point to the two enhancers in the vicinity of the promoter. 
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Finally, aggregated peak analysis (APA), which examines the strength of a set of loops 

compared to their genomic surrounding, revealed no increase in interactions between induced 

p53 peaks and their putative target promoters (closets to the p53 peak) (Figure 29A). In 

contrast, as expected, cell type-specific loops showed strong aggregated peaks by this analysis 

(Figure 29B).   

 

 

  

  

Figure 29. | (A) APA plots of interaction intensity between p53-ChIP-seq peaks and closest gene 
promoters. Left: control sample. Right: Nutlin treated sample of A549 cell line. No signal is detected. 
(B) Aggregated peaks in a contact map of loops detected in A549 control sample (left) and loops 
detected in GM12878 control sample (right). In this positive control analysis, a very strong 
interaction signal is evident.  

A 

B 

A549 - Control A549 - Nutlin 

A549 - Control GM12878 - Control 
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8. Discussion 

 

In this thesis, we investigated how the spatial structure of the genome correlates with the 

response of cells to stress, in the context of p53 activation.  

First, we collected three different layers of data: RNA-seq, ChIP-seq, and Micro-C from ten 

different cell lines, before and after p53 activation using Nutlin, a potent activator of p53. The 

results of the RNA-seq analysis were in line with our hypothesis: As befits an activator, there 

were more induced genes than repressed genes after the treatment. Also, two cell lines in our 

panel have a defective p53 profile, and in those cell lines little response was seen compared to 

the other cell lines (Figure S1). 

Second, we conducted p53 ChIP-seq analysis. There, too, we saw many differential p53 ChIP-

seq peaks that were highly enriched for the p53 binding motif and for potential motifs of 

cofactors. We considered the closest genes to p53 ChIP-seq peaks as putative targets of p53 

and showed that their overlap with the set of DEGs was highly significant. This test was 

performed twice, where putative targets were selected based on two possible maximal 

distances from a promoter, and in both tests we saw a significant overlap before and after 

treatment. 

Third, we investigated the three-dimensional structure of the genome in the cell nucleus using 

Micro-C data. First, we quantitatively characterized the number of TADs and loops, the 

numbers were similar before and after p53 activation. After that, we sought loops whose levels 

of intensity changed significantly following the treatment with Nutlin. Unexpectedly, using a 

statistical tool for this task (HiCDC+) we did not find differential loops. On the other hand, when 

we conducted the same tests to compare two different basal cell types, dozens and sometimes 

hundreds of differential loops were detected. 
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In light of the above results, we decided to increase the resolution and study in the vicinity of 

the promoter of several known p53 genes that were robustly induced in our dataset. In each 

cell type, we calculated the average intensity level as well as the median intensity level over a 

sliding window of 5 windows of 1000 bases at a time. We found no significant change in the 

interaction strength of these loops before and after the activation of p53. On the other hand, 

looking at the basal level of the promoter-interaction intensities of a certain promoter of a 

gene that was induced in response to Nutlin only in one cell line and not in the other cells, we 

saw a change in the spatial structure between the cell in which where the induction took place 

and all the other types of cells tested, even before exposure to Nutlin (Figure 28).  

In conclusion, our work shows a clear difference between the impact of the 3D organization of 

the genome on cell-identity and stress-induced transcriptional programs. While cell-identity 

programs are highly correlated with cell type-specific genome organization, we did not detect 

any similar correlations with the transcriptional response to p53. The most probable 

explanation for this difference is that changes in transcriptional activity between different cell 

types are orders of magnitude larger than changes induced within a cell type in response to 

stress. Therefore, we conclude that chromatin loops that are associated with cell identity are 

markedly stronger and more stable than chromatin loops induced by p53 activation. The 

current sensitivity of HiC (Micro-C) is sufficient for detecting the former,  but misses most of 

the latter. Much higher sequencing depth, or revised protocols, are needed for this technique 

to detect also the chromatin structures that are associated with transcriptional programs 

modulated by stress responses.   
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Figure S1. | Volcano plots of all 10 cell lines. Each dot represents a differentially expressed gene. Red dots represent up-regulated genes, blue dots represent 
down-regulated genes, and genes in grey are not significantly differentially expressed. Labeled genes are well known for P53.
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Figure S2. | P-values of de novo 
motifs similar to known ones.  An 
enriched motif is defined as one with 
p-value<=1e-20. Scale is between 0 
to 3 such that zero in non-enriched 
and 3 is highly enriched motif. The 
scaling of the p-values to the range 
[0,3] was done as follows:  𝑝 −
𝑣𝑎𝑙𝑢𝑒 = 10−𝑛  →  𝑙𝑜𝑔10(10−𝑛) =
 −𝑛 →  (−𝑛) ∙ (−1) = 𝑛 →
 𝑙𝑜𝑔10(𝑛) = [0,3]. P53 is highly 
enriched in all cell lines. 
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Median - chr8 TP53INP1 gene: 

  
Figure S3. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr8 in all cell lines are shown. Intensity values were 
calculated as the median of 5 bins in 1000bp resolution. 0 is the promoter of TP53INP1 gene.   From left to right: A549, GM12878, HCT116, HEK293, 
HeLa, HepG2, IMR90, MCF7, SKNSH, U2OS. 

 

 



 

69 
 

Mean – chr8 TP53INP1 gene: 

 

 

 

Figure S4. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr8 in all cell lines are shown. Intensity values were 
calculated as the mean of 5 bins in 1000bp resolution. 0 is the promoter of TP53INP1 gene.   From left to right: A549, GM12878, HCT116, HEK293, 
HeLa, HepG2, IMR90, MCF7, SKNSH, U2OS. 
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Mean – chr6 CDKN1A gene: 

  

Figure S5. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr6 in all cell lines are shown. Intensity values were 
calculated as the mean of 5 bins in 1000bp resolution. 0 is the promoter of CDKN1A gene.   From left to right: A549, GM12878, HCT116, HEK293, 
HepG2, HeLa, HepG2, IMR90, MCF7, SKNSH, U2OS.  
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Median – chr6 CDKN1A gene: 

 

 

 

 

Figure S6. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr6 in all cell lines are shown. Intensity values were 
calculated as the median of 5 bins in 1000bp resolution. 0 is the promoter of CDKN1A gene.   From left to right: A549, GM12878, HCT116, HEK293, 
HepG2, HeLa, HepG2, IMR90, MCF7, SKNSH, U2OS.  
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Figure S7. | Loop Intensities around Promoter of the gene CCR7: Loops intensity values in sliding 
windows of chr17 in all cell lines are shown. Basal intensity values were calculated as the mean or the 
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values. 
GM12878 is highlighted in red color to show its difference intensity basal value from the rest of cell 
lines.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. | Loop Intensities around Promoter of the gene CD80: Loops intensity values in sliding 
windows  of chr3 in all cell lines are shown. Basal intensity values were calculated as the mean or the 
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values. 
GM12878 is highlighted in red color to show its difference intensity basal value from the rest of cell 
lines. 
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 תקציר   .10
 

ה רבים  תגובות    ראו מחקרים  המנגנונים   עקה  מצביל  וקעתשכי  זאת,  עם  התא.  לסוג  מאוד  ספציפיות  הינן 

במידה רבה. במחקר שלנו, אנו מתמקדים, כמערכת מודל,   ידועים  לא  והעומדים בבסיס ספציפיות רקמה זו נותר

 . p53המופעלת על ידי ק ועתשהברשת 

p53  גנון הגנה מרכזי  מדכא גידולים בגנום שלנו, והוא משמש כמנה, המכונה "שומר הגנום", הוא הגן העיקרי

בסוגי תאים ורקמות שונים מביאה להשראה של רשתות שעתוק    p53הפעלת    מפני טרנספורמציה של סרטן. 

אוניברסלית של   ליבה  היא  p53שונות מאוד, לצד הפעלה של תגובת  . המטרה העיקרית של המחקר שלנו 

:  omicsלוש שכבות של נתוני  שתמש בשהגורמים שקובעים תגובות ספציפיות לסוג תא. המחקר שלנו    מצואל

RNA-seq, ChIP-seq  ו-Micro-C    גרסה משופרת של(Hi-C  גבוהה, עם רזולוציה  ,)על עשר שורות   שנאספו

, מפעיל חזק של Nutlinתאים שונות. עבור כל שורת תאים בוצעו מדידות הן בבקרה והן בתאים שטופלו על ידי  

p53 . 

פקטורים  -( קו2ספציפיים לסוג תא; )  p53( עשרות אירועי קישור מסוג  1בניתוח של נתונים נרחבים אלה, זיהינו )

ספציפיים לסוג תא בקורלציה עם ביטוי גנים ספציפי    p53מסוג  ( אירועי קישור  3ספציפיים לתא; )   p53מסוג  

באיזו מידה תגובות    בדקנולסוג תא.    ותספציפי  תחל- מגביר( אינטראקציות פיזיות של  4)-, וp53המושרה על ידי  

ידי   על  לסוג  וה  p53הנגרמות  תכונות  הספציפיות  עם  בקורלציה  נמצאות  הגנום  תא  של  המרחבי  הארגון 

, לעומת שינויים Nutlin-ל  תגובהב  תאים  שורת  שוםב   המרחבי  בארגוןמצאנו שינויים    לא  . תאהספציפיות לסוג  ה

  קטנים   לעקה  בתגובה  שהשינויים  היא  השערתנוטופלו.    שלאמרחביים רבים שנצפו בין שורות תאים שונות  

 . Hi-C ל הנוכחיות השיטותשורות תאים שונות ואינם בטווח הזיהוי של  בין השינויים לעומת גודל בסדרי
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 אוניברסיטת תל אביב 

 הפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר 

 בית הספר למדעי המחשב ע"י בלווטניק 

 

הארגון המרחבי של הגנום והשפעתו על תגובות    ניתוח 

 הספציפיות לסוג תא   53p  של  שעתוק

 

"האוניברסיטה מוסמך "זה הוגש כעבודת גמר לתואר   חיבור  

המחשב   למדעי  הספר בבית  
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