TEL AVIV TO'OT1XJIN
UNIVERSITY 2'AN'N

Tel-Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Genomic analysis of the spatial organization of the genome and its effect on cell
type-specific p53 transcriptional responses

Thesis submitted in partial fulfillment of graduate requirements for
The degree "Master of Sciences" in Tel-Aviv University

School of Computer Science

By

Hadar Amira Haham

Prepared under the supervision of
Prof. Ron Shamir

Prof. Ran Elkon

Feb 2023



1. Acknowledgments

| would like to extend my sincere thanks to the people who helped me make this thesis become

a reality.

First and foremost, | want to thank from the bottom of my heart my outstanding supervisor
Prof. Ron Shamir for supporting me on this journey. | feel fortunate to have been mentored
during my work by an extraordinary researcher and rare person like Ron. From you | learned
how to perform excellent science thoroughly, professionally and with never-ending dedication
to the profession. | would like to thank Prof. Rani Elkon, for showing me how deep and
wonderful the world of biology is, and for his creativity and broadening the horizons of

thinking, planting peace and calm in the difficult moments of research.

Thank you, Ron and Rani, for believing in me and giving me the opportunity to learn from you

in recent years.

Secondly, special thanks to Gony Shanel, who collaborated with me in this research and helped

me to make it happen. You are great.

Thirdly, | would like to thank my collaborator Dr. Tsung-Han Stanley Hsieh from Prof. Xavier
Darzacq lab, Department of Molecular and Cell Biology, University of California, Berkeley for

creating and providing us with the unigue datasets on which this study is based.

A great thanks to Naama, Tom and Hagai for the fruitful scientific discussions and for being

amazing friends and always supportive. it wouldn’t have looked the same without you.

| would like to deeply thank my friends from the ACGT group: Dr. Lianrong Pu, David Pellow,

Tom Hait, Nimrod Rappoport, Dan Coster, Hagai Levi, Naama Kadosh, Omer Noy, Yonatan Itai,



Dan Flomin, Eran Shpigelman, Ron Saad and Maya Metzger, for the helpful discussions and for

being great friends.

Additionally, | owe special thanks to Gilit Zohar-Oren for the administrative help that was

always done with a smile and kindness. You are the best.

| deeply thank for the financial support | was granted during my studies: the Edmond J. Safra
Center for Bioinformatics at Tel Aviv University, Koret-UC Berkeley-Tel Aviv University Initiative
in Computational Biology and Bioinformatics, The Israel Science Foundation (grant 1339/18
and grant 3165/19 within the Israel Precision Medicine Partnership program) and German-

Israeli Project Cooperation DFG-DIP RE 4193/1-1.

| wish to deeply thank to my parents Mazal and Moshe Amira who always supported and
believed in me, instilled in me the instinct of curiosity from childhood and always encouraged

me to keep learning.

Last but not least, my precious love Gil for your endless understanding and patience, for long
nights of debugging and resolving problems with creative ideas, and for being my partner for

life. | wouldn’t have done it without you all.



2. Abstract

Many studies have observed that transcriptional responses to multiple stresses are highly cell
type-specific. However, the mechanisms that underlie this tissue specificity remain largely
elusive. In our study, we focus, as a model system, on the transcriptional networks activated
by p53, and examine possible associations between cell type-specific genome 3D organization

and cell type-specific transcriptional responses.

p53, known as the "guardian of the genome", is the major tumor suppressor gene in our
genome, and it serves as a pivotal defense mechanism against cancer transformation. p53
activation in different cell types and tissues results in induction of very different transcriptional
networks, alongside the activation of a universal p53 core response. The main goal of our
research was to characterize cell type-specific responses to p53 activation and examine
possible links with 3D genome organization. Our research utilized three layers of omics
techniques: RNA-seq, ChIP-seq and Micro-C (an improved version of Hi-C, with enhanced
resolution), that were applied to ten different cell lines. For each cell line, measurements were

taken both in control conditions and after treatment by Nutlin-3a, a potent p53 activator.

In the analysis of these extensive datasets, we identified (1) dozens of cell type-specific p53-
chromatin binding events; (2) cell type-specific p53 cofactors; (3) cell type-specific p53 binding
events correlated with cell type-specific p53-induced gene expression, and (4) cell type-specific
enhancer-promoter physical interactions. We specifically tested correlations between cell
type-specific p53-induced responses and cell type-specific features of the spatial organization
of the genome. Interestingly, we found that in contrast to differential expression between cells

of different tissues of origin, which are strongly associated with difference in the spatial



organization of the genome, transcriptional changes in response to p53 activation do not show

a strong link with corresponding spatial genomic alterations.
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4. Introduction
In order to understand the functioning of the human genome, it is not enough to consider the
primary linear DNA sequence. Rather, a full understanding of genome function requires
investigation and understanding of the three-dimensional (3D) folding and spatial organization

of chromosomes in the nucleus [1].

The entire genome appears in the nucleus of every cell in our body, packed in the form of 23
pairs of chromosomes: 22 pairs of autosomes and a pair of sex chromosomes. Each pair of
chromosomes includes a chromosome that originates from each parent. The total length of
the human genome is about 3 billion bases (nucleotides) [2]. The number of protein-coding
genes in the human genome is about 20,000 [3]. In 2021, a complete version of the human
genome was published, covering the whole genome without any deficiencies. The name of the
full genome is called T2T-CHM13. This version replaces the current genome GRCh38[4], on

which our study was conducted.

In this thesis we sought to further investigate the relationship between the three-dimensional

spatial structure of the genome and its responsiveness to states associated with p53 activation.

Our aim was to compare two contrasting models:

1. Induction of stress causes major changes in the spatial organization of the genome, among
them — rearrangements of enhancer-promoter loops that precede the transcriptional

induction of certain stress-induced genes.

2. Induction of stress does not result in a major change in the spatial genome organization.
That is, the spatial structure largely remains as it was under basal conditions. That is,

transcriptional changes in response to stress are not accompanied by gross 3D changes.



To investigate the relationship between genome organization and gene expression we
analyzed a very large-scale data set containing ten cell lines, each profiled before and after

Nutlin-3a (hereafter referred to as Nutlin) treatment, using three different techniques:
1. RNA-seq, which measures the expression of genes in the sample.
2. ChlIP-seq, a method used to profile protein interactions with chromatin.

3. Micro-C, an improved method of Hi-C with enhanced resolution. It is used to analyze
physical interaction between any two genomic loci, and thus, infer the 3D organization

of the genome.



5. Background

This chapter provides the background and terminology required for the thesis. First, we
present the relevant biological basis that includes concepts in gene regulation, high throughput
sequencing methods, the relationship between structure and function, and the p53 gene and
its biological importance. Next, we describe the high throughput methods used in this thesis,
including a discussion of biases in these methods and the way they are treated. In addition, a
computational background is given on the various computational methods we used, such as
unsupervised learning methods, including clustering and PCA, a comprehensive explanation of

the Hi-C method, as well as the statistical tests used in this thesis.

5.1 Biological Background

In this section we introduce biological concepts and definitions that are needed for
understanding the motivation of this thesis, and the computational problems that we deal

with.

5.1.1 Biological Concepts

5.1.1.1 Structure-Function Relationship

In biology, a key idea is that structure determines function. The way in which a biological unit
is arranged in space allows it to perform a specific task. We see this at all levels in the hierarchy

of biological organization from atoms up to the biosphere.
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5.1.1.2 Chromatin organization

Certain proteins compact chromosomal DNA into the microscopic space of
the eukaryotic nucleus. These proteins are called histones, and the resulting DNA-protein
complex is called chromatin. Within the nucleus, histones provide the energy (mainly in the
form of electrostatic interactions) to fold DNA. As a result, chromatin can be effectively packed

into a very small volume.

Histones are a family of small, positively charged proteins termed H1, H2A, H2B, H3, and H4
(Van Holde, 1988). DNA is negatively charged, due to the phosphate groups in its phosphate-
sugar backbone, so histones bind with DNA very tightly. The basic unit of organization of
chromatin is the nucleosome, a structure of DNA and histone proteins that repeats itself
throughout an organism's genetic material. Approximately 150 bp of DNA wrap around this
protein structure almost twice to make a nucleosome core particle. With linker histone (e.g.,
histone H1) and linker DNA, this is called the nucleosome. The linker DNA can vary in length,
usually between 10 to 90 bp, depending on the species, gene activity, developmental stage,
and other factors [5]. High levels of DNA packing enable the final dense structure of the

chromosome (Figure 1).
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Figure 1. | Chromosomes are composed of DNA tightly wound around histones.

Chromosomal DNA is packaged inside microscopic nuclei with the help of histones. These are positively-
charged proteins that strongly adhere to negatively-charged DNA and form complexes called
nucleosomes. Each nucleosome is composed of DNA wound 1.65 times around eight histone proteins.
Nucleosomes fold up to form a 30-nanometer chromatin fiber, which forms loops averaging 300
nanometers in length. The 300 nm fibers are compressed and folded to produce a 250 nm-wide fiber,
which is tightly coiled into the chromatid of a chromosome. Source: Nature Education Adapted from
Pierce, Benjamin. Genetics: A Conceptual Approach, 2nd ed. 2013. All rights reserved.
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5.1.1.3 Gene regulation
Gene regulation is the process used to control when, where and to what level genes are
expressed. The process can be complicated and is carried out by a variety of mechanismes,
including regulatory proteins and chemical modification of DNA. Gene regulation is key to the
ability of an organism to respond to environmental changes.
Gene regulation is one of the fundamental processes that a cell carries out in order to produce
the transcripts that will be translated into proteins. A lot of the cell's energy is devoted to fine-

tune its gene regulation in the context of development, response to stress or other conditions.

5.1.1.4 Transcription factors

Transcription factors are proteins involved in the process of converting, or transcribing, DNA
into RNA. A generic component of transcription is RNA polymerase, which initiates and
performs the transcription of genes. One distinct feature of transcription factors is that they
have DNA-binding domains that give them the ability to bind to specific sequences of DNA
called transcription factor binding sites (TFBSs). Some transcription factors mainly bind to
promoter regions proximal to the transcription start site (TSS) and help form the transcription
initiation complex. Other transcription factors mainly bind to distal regulatory sequences, such
as enhancer sequences, and can either stimulate or repress transcription of the target gene.
These regulatory sequences can be many thousands of base pairs upstream or downstream
from the gene they control. Regulation of transcription is the principal layer of gene control.
The action of transcription factors allows for unique expression of each gene in different cell

types and during development [6].
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5.2 Next-Generation Sequencing

Next-generation sequencing (NGS) is a general name for new sequencing techniques
developed over the last two decades. NGS performs deep high-throughput sequencing in a
short time that can provide hundreds of millions of short sequences (e.g., 150 bases paired
end). NGS has revolutionized genomic research in terms of time and cost needed to generate
sequence data compared to the previous Sanger sequencing technology [7] used in the original

Human Genome Project.

5.2.1 RNA-seq

RNA sequencing (RNA-seq) is a technique that uses NGS to quantify the expression level of all
transcripts in a biological sample at a given time point, analyzing the modulation of the
cellular transcriptome. Specifically, RNA-seq facilitates the ability to look at changes in gene
expression over time, or differences in gene expression among different groups or treatments.

The RNA-seq workflow is described below in Figure 2.
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Figure 2. | RNA-seq workflow: long RNAs are first converted into a library of cDNA fragments through
either RNA fragmentation or DNA fragmentation. Sequencing adaptors (blue) are subsequently added
to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput
sequencing technology. The resulting sequence reads are aligned to the reference genome or
transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads. These
three types are used to generate a base-resolution expression profile for each gene, as illustrated at
the bottom; a yeast ORF with one intron is shown. Source: [8].
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5.2.2 ChlIP-seq

ChIP-sequencing (ChIP-seq) is a method used to analyze protein interactions with DNA. ChIP-
seq combines chromatin  immunoprecipitation (ChIP)  with  massively  parallel DNA
sequencing to identify the binding sites of DNA-associated proteins. The ChIP-seq workflow is

described below in Figure 3.

ChlP-seq data can also identify histone markers that characterize different chromatin states.
Histone modifications are roughly divided into two groups, which characterize open

(transcriptionally active) and closed (transcriptionally repressed) chromatin states.

Identification of DNA-protein binding sites from ChIP-seq reads count data requires
computational tools that perform peak calling (Figure 4). The most popular method at present
is MACS [9], [10], which finds genomic intervals that are statistically enriched for reads,

compared to the background read coverage in their local genomic neighborhood.
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Figure 3. | ChIP-seq workflow: First, the DNA is extracted from the nucleus and cross linked to the
protein to prevent detaching during the sonication process. Second, the DNA is sheared and
fragmented by sonication. Third, a protein antibody is attached to the protein of interest. Forth, the
antibody is precipitated and selects only those DNA fragments attached to the protein of interest.
Finally, the proteins are removed from the DNA segments, and the segments are then sequenced and
mapped to a reference genome. Source: https://en.wikipedia.org/wiki/ChlIP_sequencing.
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strand-specific pattern can be used for the optimal detection of enriched regions. To create an
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size in the appropriate orientation and the number of fragments can be counted at each position.
Source: [10].
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5.3 The Hi-C Technique and Chromosome Conformation

In this section we will describe methods used to study how DNA is organized within the nucleus.
First, we describe Hi-C, a method for capturing chromosome conformation by using high-
throughput sequencing, developed by Lieberman-Aiden et al [11]. Next, we describe the
Micro-C method [12], introduced by Hsieh et al., our collaborators in this current project, which
is an improvement of the Hi-C method with enhanced resolution. Micro-C allows the detection
of chromosomal interactions at the nucleosome level. Last, we present some key concepts in

the field of Hi-C.

5.3.1 Hi-C

Hi-C gives information on the three-dimensional architecture of whole genomes by coupling
proximity-based ligation with massively parallel sequencing. Hi-C allows unbiased identification

of chromatin interactions across the entire genome.

Briefly (Figure 5), cells are crosslinked with formaldehyde; DNA is digested with a restriction
enzyme that leaves a 5' overhang; the 5' overhang is filled, including a biotinylated residue;
and the resulting blunt-end fragments are ligated under dilute conditions that favor ligation
events between the cross-linked DNA fragments. The resulting DNA sample contains ligation
products consisting of fragments that were originally in close spatial proximity in the nucleus,
marked with biotin at the junction. A Hi-C library is created by shearing the DNA and selecting
the biotin-containing fragments with streptavidin beads. The library is then analyzed by using

massively parallel DNA sequencing, producing a catalog of interacting fragments.
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Figure 5. | Hi-C workflow. Source: [11].

After alignment of the sequence reads to the reference genome, a genome-wide contact
matrix Mis constructed by dividing the genome into, typically, 1-Mb regions (“loci”); the matrix
entry M; ; is the number of ligation products between locus i and locus j. This matrix reflects
an ensemble average of the interactions present in the original pool of cells; it can be visually

represented as a heatmap, with intensity indicating contact frequency (Figure 6).

Hindlll

1 chea q

Chr14

Figure 6. | Hi-C contact matrix. This is the result of Hi-C workflow for chromosome 14. Each pixel
represents the total number of interactions observed between two 1-Mb chromosomal intervals. Color
intensity corresponds to the total number of interactions. Tick marks appear every 10 Mb. Source: [11].
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The theoretical resolution limit of Hi-C is determined by the restriction enzyme used by the

protocol (~2-3k bps), although the practical resolution is determined by the sequencing depth

and is typically much poorer (~100k — 1M bps).

The contact matrix should be normalized into a new matrix M*. This can be done, for example,

by dividing each entry in the contact matrix by the genome-wide average number of contacts

for loci at that genomic distance. More advanced normalization methods include:

lterative correction and eigenvector decomposition (ICE) [13]. This algorithm works by
iteratively correcting for various sources of bias in the Hi-C data. In the first step, it
corrects for systematic biases such as GC content and mappability. In the second step,
it estimates the contact frequencies between all pairs of genomic bins, and then
computes the eigenvalues and eigenvectors of this matrix of contact frequencies. By
decomposing the matrix of contact frequencies into eigenvalues and eigenvectors, the
ICE algorithm is able to identify patterns in the Hi-C data that are not explained by
systematic biases. Finally, this algorithm uses these patterns to normalize the Hi-C data
and adjust for any remaining noise. The final output of the normalization process is a
matrix of corrected contact frequencies between different regions of the genome,
which can be used for downstream analysis. [13]

The Knight-Ruiz (KR) method [14] is a fast method for balancing the row and column
sums of the matrix of contact frequencies, i.e., reweighting rows and columns so that
the sum of each row and column equals one. The KR method works by iteratively scaling
the rows or columns of the matrix using the conjugate gradient method. This method

was demonstrated to handle various sources of bias and noise in HiC data. [14]

In the next step, a correlation matrix C is calculated, in which C; ; is the Pearson correlation between

the It" and ]th columns of M*. Last, PCA is performed on the correlation matrix C. PCA seeks to
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maximize the variance captured by reduced dimensions. In Hi-C data, the first PC usually represents the
division of the genome into two highest-level types of structural units, called A/B compartments, that
correspond to genomic loci that are overall transcriptionally active and inactive, respectively. Figure 7

summarizes the consequential process.
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Figure 7. | Hi-C contact matrix of chromosome 14 in different stages of Hi-C analysis workflow. A.
Contact matrix. Map of chromosome 14 at a resolution of 1 Mb, Tick marks appear every 10 Mb. B.
Normalized contact matrix. The observed/expected matrix shows loci with either more (red) or less
(blue) interactions than would be expected, given their genomic distance. C. Correlation matrix
calculated on B, showing the correlation [range from —1 (blue) to +1 (red)] between the profiles of every
pair of 1-Mb loci along chromosome 14. The plaid pattern indicates the presence of two compartments
within the chromosome. D. Correlation map of chromosome 14 at a resolution of 100 kb. The tracks
above show, from top to bottom, the read coverage, gene locations, three epigenetic tracks and the
first eigenvector of the correlation matrix, corresponding to A/B compartments in the correlation
figure. Source: [11].
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5.4 Micro-C

Micro-C is a Hi-C-based method, in which micrococcal nuclease (MNase) is used instead of
restriction enzymes to fragment the chromatin, thereby enabling nucleosome resolution (~150

bps) chromosome folding maps.

This protocol is based on the Hi-C protocol [11], with key alterations being the MNase digestion
step, subsequent mononucleosomal end repair, and a modified two-step method for
specifically purifying ligation products. After purification of ligation products between
mononucleosomes, paired-end deep sequencing is used to characterize the ligation products.

Figure 8 shows the workflow of the method and Figure 9 shows the resulting interaction matrix.
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Figure 8. | Micro-C Workflow. Source: [12].
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MicroC contact frequency (ppm)

Figure 9. | Nucleosome-nucleosome interaction matrix. Zoom-in on a 20 kb X 20 kb submatrix from
chromosome 9 (360,001-380,000), with Micro-C interactions represented in white-yellow-red-black
heat map showing the interaction intensity between pairs of loci. Source: [12].

5.4.1 Key Concepts in Hi-C Data

Hi-C resolution:

The average size of DNA fragments that are created by Hi-C when chromosomes are cut by

restriction enzyme.

A/B compartments:

The highest-level organization of the genome, observable even under the microscope, is into
two types of compartments, heterochromatin and euchromatin. Heterochromatin is typically
highly condensed, gene-poor, and transcriptionally silent, whereas euchromatin is less
condensed, gene-rich, and more accessible to transcription. The typical size of a contiguous
compartment is a few mega base pairs. In Hi-C, the terms compartment A and B correspond to

euchromatin and heterochromatin, respectively. Compartments tend to vary among cell types
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and tissues. A/B compartmentalization is outlined by PCA analysis of the Hi-C correlation matrix

(usually, by the main PC — PC1, See Figure 7D).

Topologically Associated Domains:

Topologically Associated Domains (TADs) are self-interacting genomic regions. DNA sequences
within a TAD physically interact with each other more frequently than with sequences outside
the TAD (Figure 10). TADs are also known as CID — Chromosomal Interaction Domains in other
species (not human). The typical size of TADs is of ~0.5 Mb, containing 1-5 genes. TADs are

largely conserved between cell types and species [12], [15].

Interactions downstream

Interactions upstream

Putative boundary

'S N2

N . S S
‘ - *‘..’.M.—
< AllB=

Figure 10. | Schematic illustrations of TADs. The top figure shows two adjacent DNA segments that are
compacted into two separate dense parts, denoted A and B. As a result, there are many interactions
among segments in A, and similarly in B, but few interactions between A and B. The intensity of
interactions is shown at the bottom, where the upper diagonal of the corresponding square of the
contact matrix is rotated 45 degrees. The red triangles correspond to TADs A and B with the putative
boundary (gray rectangle) between them. There are very few A-B interactions. Source: [15].
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Loops:

Chromatin loops (Figure 11) are defined as pairs of genomic sites that lie far apart along the
linear genome but are brought into spatial proximity through chromatin folding maintained by

a cohesin unit. The two ends of the loops are called anchors and they delimit the loop.

One of the loop’s anchors commonly contain a gene’s promoter whose activity is induced when
the loop is created. Two common types of regulatory loops are promoter-promoter loops and

enhancer-promoter loops (which increase the expression of a gene).

Chromosome Structure Contact Map

Unstructured

Interaction Domain

v Ve

3" anchor .
Loop
Figure 11. | lllustration of different chromosomal structures and their corresponding signal on the

contact map. Unstructured chromosomes: only neighboring nucleosomes will be crosslinked producing
a linear signal along the diagonal. Interaction Domain: the nucleosomes within a domain will be also
crosslinked forming a square along the diagonal. Loop: the nucleosomes at the base of the loop (5’ and
3’ anchors) will be crosslinked forming a spot away from the diagonal. These different structures can
form concomitantly on chromosomes producing contact maps with squares and spots along the
diagonal. Source: [16].
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5.4.2 The p53 Gene

P53 is a tumor suppressor protein that promotes apoptosis, DNA repair or cell-cycle arrest in
response to DNA damage and other cellular stresses. It thus serves as a cell defense
mechanism. The protein encoded by this gene is a transcription factor that regulates the
expression of dozens of target genes [17]. It is the most frequently mutated gene in human
cancer [18]. P53 is usually found in the cytoplasm in an inactive state, inhibited by the MDM?2
protein, but in response to genotoxic stress, the p53 protein is activated by several kinases,
such as the ATM protein kinase. After its activation, p53 enters the cell’s nucleus where it
induces the transcription of numerous targets, key among them is the gene encoding the

CDKN1A (p21) protein [19].

Nutlin-3 is a molecule that occupies p53 binding site of MDM2 and effectively disrupts the
p53—MDM2 interaction, which leads to activation of the p53 pathway in p53 wild-type cells.
Inhibiting the interaction between MDM2 and p53 stabilizes p53 and is thought to selectively
induce a growth-inhibiting state called senescence in cancer cells. Nutlin is thus used as an
effective p53 activator. Nutlin-3 has been shown to affect the production of p53 within

minutes. It is the compound that is used for p53 activation in our study.
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6. Materials and Methods

6.1 Data sets

The data analyzed in my research consists of 10 human cell lines with a p53 status as shown in

Table 1.

For each cell line, measurements were taken in control cells as well as in cells treated with

Nutlin, a potent p53 activator, with two replicates per condition.

To characterize the change in the spatial structure and transcriptome associated with p53

activation, three different omics techniques were applied to each treated and untreated cell

line: RNA-seq, ChIP-seq, and Micro-C. All data were generated by our collaborator Dr. Tsung-

Han S. Hsieh from the lab of Prof. Darzacq at the Department of Molecular and Cell Biology,

University of California, Berkeley.

Cell A549 | GM12878 | HCT116 | HEK293 Hela | HepG2 | MCF7 | IMRY0 | SKNSH | U20S
Line
Tissue | lung blood colon kidney cervix liver | breast | lung brain | bone
Type | cancer | normal | cancer | immortal | cancer | cancer | cancer | normal | cancer | cancer
P53
WT WT WT Mutated | Absent | WT WT WT WT WT
status

Table 1. | Properties of the different cell types used in this study. Most of cell types are p53 wild type
profile, while HeLa and HEK293 cells are with non-functional p53.
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6.2 Methods for analysis of Hi-C data

For the analysis of Hi-C data we used the following methods and tools:

6.2.1 Juicer

Juicer is a unified pipeline for processing tera-base scale Hi-C datasets. It enables processing
raw fastq files to create Hi-C maps binned at many resolutions, and automatically annotates
loops and contact domains [20]. We mainly used this tool to annotate TADs in 10 kbp

resolution.

6.2.2 Mustache

Chromatin loops are defined as pairs of genomic sites that lie far apart along the linear genome
but are brought into spatial proximity by a mechanism called loop extrusion [21]. Mustache is
a local enrichment-based method for high-resolution Hi-C and Micro-C data. It uses scale-
space representation from computer vision to identify "blob-shaped" objects in the contact
map and this way identifies chromatin loops at multiple resolutions. We used this tool mainly

to annotate chromatin loops in 5 kbp resolution.

29



6.2.3 HICDC+

HiC-DC+ estimates significant changes in interactions between two conditions measured by Hi-
C or HiChIP experiments. It works on the raw contact matrix and analyses interactions for each
chromosome up to a specified genomic distance, binned by uniform genomic intervals or
restriction enzyme fragments. It trains a background model to account for random polymer

ligation and systematic sources of read count variation [22].

This tool was mainly used for identifying significant changes in chromatin loop interactions

between two conditions in 5 kbp resolution.

6.2.4 FANC

FAN-C is a command-line tool and Python API for matrix generation, analysis, and visualization
on Hi-C data. FAN-C also includes a basic genome browser utility that allows for interactive
exploration of Hi-C and additional genomic datasets. These include various visualizations of Hi-
C matrices: square; triangular; mirrored, in which two triangular Hi-C matrices are shown above
and below a horizontal dividing line; and split, where the diagonal separates two different
matrices in a square plot. All of the above matrix plots can also be used to display difference

and fold-change maps. The latter was our main interest in using this tool [23].
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6.2.5 PCA

Principal component analysis (PCA) is a statistical method for reducing the dimensionality of
the data while retaining most of the variation in the data set. It accomplishes this reduction by
iteratively identifying directions, called principal components, along which the residual
variation in the data is maximal. By using the few first components, each sample can be
represented by a small number of features instead of by values for the (potentially, thousands
of) original variables. Samples can be plotted by projecting their top components in 2D or 3D,
making it possible to visually assess similarities and differences between samples and

determine whether samples can be grouped [24].

The input of PCA is a matrix G,,xn, Where m is the number of observations and n is the number
of variables. The output is a linear transformation that transforms the data to a new coordinate
system. The first coordinate, named first principal component (PC1), has the greatest possible
variance out of all the linear combinations over the variables, the second principal component
(PC2) has the second greatest residual variance given the first, and so on. The number of
features can be up to the number of variables, but typically, low variance components are

discarded, leading to low dimension representation of the data.

Formally, let G be centered, so that the mean of each observation is zero. The projection of a

vector v is given by G,. The normalized variance of the projection is EGUT G, =vT-

(ﬁ GTG) -v = vTCv = D where C is the covariance matrix of G, and D is the diagonal matrix

of eigenvalues of C. We would like to find v that maximizes v Cv. Since C is symmetric, it can
be diagonalized by its eigenvector basis denoted by {z;}. The diagonal matrix D contains the
eigenvalues that correspond to the eigenvectors in C. We can represent each vector v by a
linear combination of the eigenvector basis vectors: v = Y w;z;, and calculate its variance as
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Y A;w?. Given that 4, =1, >+ > 1, , we can represent the correspond eigenvectors
accordingly and get PC1, PC2, ..., PC,,, while PC1 fits the A; and will give the first feature with

the maximum variance.

PCA is used as part of the pipeline of Hi-C data analysis, for calculation of the genome
compartments. The first PC of the correlation matrix of the Hi-C data usually reflects the A/B
chromosomal compartments. Regions with negative and positive values of PC1 represent this
partition. The determination of whether positive or negative values of PC1 correspond to A or
B compartments in the genome is based on gene density, which is markedly higher in the A
compartment. In Figure 12, heterochromatin compartment (label ‘B’) is represented in blue,

whereas euchromatin (label 'A') is represented in red.

Eigenvector W“

e P T [ S ;}

“Chr 14

Figure 12. | Correlation map of chromosome 14 at a resolution of 100kb. The principal component
(eigenvector) correlates with features of open chromatin. The matrix shows loci with either more (red)
or less (blue) interactions than would be expected, given their genomic distance. Source: [11].
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6.2.6 The hypergeometric test

This test is used in enrichment analysis. Formally, let B be a background set of genes of size N,
let S € B be a set of n target genes, and let D € B be a fixed set of K apriori defined genes
(see Figure 13). This can be a set of genes defining a certain biological process, a pathway, or
the targets of some regulatory factor. Suppose |SND|=k. We wish to compute the
probability of obtaining such overlap size k given the null hypothesis that the genes in the
target set were selected randomly without replacement from the background group. Under

that assumption the probability of intersection k is given by:

() Gk

()

px(k) = Pr(k) =

The hypergeometric p-value for enrichment is calculated as the probability of obtaining overlap

of at least k when making n draws in total, i.e., Z?;i,? (n.K) Pr(i).

Background set — all measured genes (N)

RNA-seq
induced
genes (n)

P53 peaks
associated
genes (K)

Intersection (k)

Figure 13. | Schematic of the hyper geometric test. In this example the test is for enrichment of genes
associated with P53 chip-seq peaks among induced genes.
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In addition, for each test, we also calculated its enrichment factor as follows:

intersection - Background set k-N

EF = =
p53 peaks nearest genes - RNA — seq induced genes K-n

6.2.7 Non-parametric statistical tests

Parametric tests are used when data is assumed to follow a particular distribution (e.g., a
normal distribution). Nonparametric tests are used when a particular distribution cannot be
assumed; they are based on ranking the values rather than taking the actual values into

account. Parametric tests generally have higher statistical power.
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7. Results

6.1 Gene expression analysis of the response to p53 activation

Gene expression count data can be represented as an integer matrix M € R™™  where n is
the number of genes in the data and m is the number of conditions. Each row in the matrix
contains the expression level of a specific gene, and each column represents the biological
condition (cell line, pre/post-Nutlin treatment) of a sample. The entry M; ; in the matrix is the
number of reads of gene i under a certain probed condition j. Values are normalized to counts

per million (CPM). This calculation is done in two steps:

1. Count the total reads in the sample (column) and divide that number by 1,000,000 —

this is our “per million” scaling factor.

2. Divide the actual read counts by the “per million” scaling factor. This normalizes for

sequencing depth, giving counts per million (CPM).

We filtered out all the genes that were not robustly detected in any condition in our dataset.
Specifically, we filtered out the genes whose CPM value did not reach 1 CPM in both replicates
of at least one cell line. The remaining gene set contained 21,651 genes, of which 15,459 were

protein-coding genes.

Next, to examine the quality of our expression data, we applied PCA analysis to the transposed
expression matrices of control and treatment, without combining replicates. PCA plots (Figure
14) indeed show that replicate samples of the same cell line and biological condition are

located close to each other.
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Figure 14. | PCA plots of the expression data. Top: basal conditions. Bottom: treatment conditions. It
can be seen that replicates in each condition tend to be close to each other and that there is a difference
between basal and after treatment with Nutlin.

We then identified the genes that significantly responded to Nutlin treatment in our dataset.
We applied DESeq2 on each cell line separately to identify differentially expressed genes

(DEGs; either induced or repressed) upon Nutlin treatment. Each DESeqg2 run included four
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samples: 2 replicates of the control condition and 2 replicates of the Nutlin-treated condition.
The genes with g-value < 0.05 and fold-change > 1.5 (up or down) were defined as DEGs. In all
cell lines combined; we detected a set of 583 unique DEGs, of which 451 were protein-coding

genes. Table 2 and Figure 15 summarize the number of DEGs detected per cell line.

Cell Line No. of Induced Genes No. of Repressed Genes
A549 260 74
GM12878 66 0
HCT116 103 13
HEK293 1 0
Hela 21 7
HepG2 181 29
MCF7 288 39
IMR90 60 7
SKNSH 72 2
U20S 156 36

Table 2. | Summary of differentially expressed genes per cell line.
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A549  GM12878 HCT116 HEK293 Hela HepG2 IMR90 MCF7 SKNSH u20s
Cell Line

Figure 15. | Bar plot representing the number of differentially expressed genes.

Reassuringly, the two cell lines that do not carry a functional p53 (HEK293 and Hela) showed

the lowest number of DEGs.
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For each cell line, we created a volcano plot for visualizing the responsive genes and marked
on it some canonical target genes of p53. Figure 16 presents the plot for the A549 cell line; the

other volcano plots are presented in Figure S1.
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Figure 16. | Volcano plot of A549 cell line: Each dot represents a differentially expressed gene. Red dots
represent up-regulated genes, blue dots represent down-regulated genes, and genes in grey are not
significantly differentially expressed. Labeled genes are well known targets of p53.
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Most of the transcriptional response upon p53 activation was cell type-specific: 338 genes

were induced in only one cell line, while 45 were induced in at least six, see Figures 17,18.

We refer to the set of genes that were induced in at least 6 cell lines (out of 8 cell lines with
functional p53) as the “p53 core/canonical responsive genes”. This gene set is highly enriched
for the known p53 network [25] (enrichment factor = 37.77; p-value = 1.27e-37). A description
of each protein-coding p53 core gene is given in Table 3. There was one gene that was induced

in 9 out of 10 cell lines, and it is SESN2, a well-established p53 target gene [26].
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Figure 17. | Binary DEGs heatmap. red: up-regulated gene. The blue rectangle at the top indicates the
set of genes that were DEGs in eight of the cell lines.
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Figure 18. | The number of cell lines in which genes were induced. The histogram shows how many
genes were induced in i cell lines fori =1, ..., 9, cell lines. 45 genes were induced in at least 6 cell lines.
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Number

Gene 1D Gene name | of Cell Gene description
Lines

ENSG00000130766 SESN2 9 sestrin 2 [Source:HGNC Symbol;Acc:HGNC:20746]
ENSG00000128965 CHAC1 8 ChaC glutathione specific gamma-glutamylcyclotransferase 1 [Source:HGNC Symbol;Acc:HGNC:28680]
ENSG00000130513 GDF15 8 growth differentiation factor 15 [Source:HGNC Symbol;Acc:HGNC:30142]
ENSG00000128165 ADM?2 8 adrenomedullin 2 [Source:HGNC Symbol;Acc:HGNC:28898]
ENSG00000078237 TIGAR 8 TP53 induced glycolysis regulatory phosphatase [Source:HGNC Symbol;Acc:HGNC:1185]
ENSG00000080546 SESN1 8 sestrin 1 [Source:HGNC Symbol;Acc:HGNC:21595]
ENSG00000105327 BBC3 8 BCL2 binding component 3 [Source:HGNC Symbol;Acc:HGNC:17868]
ENSG00000124762 | CDKN1A 8 cyclin dependent kinase inhibitor 1A [Source:HGNC Symbol;Acc:HGNC:1784]
ENSG00000135679 MDM?2 8 MDM?2 proto-oncogene [Source:HGNC Symbol;Acc:HGNC:6973]
ENSG00000143217 | NECTIN4 8 nectin cell adhesion molecule 4 [Source:HGNC Symbol;Acc:HGNC:19688]
ENSG00000154767 XPC 8 XPC complex subunit, DNA damage recognition and repair factor [Source:HGNC Symbol;Acc:HGNC:12816]
ENSG00000164938 | TP53INP1 8 tumor protein p53 inducible nuclear protein 1 [Source:HGNC Symbol;Acc:HGNC:18022]
ENSG00000170734 POLH 8 DNA polymerase eta [Source:HGNC Symbol;Acc:HGNC:9181]
ENSG00000170836 PPM1D 8 protein phosphatase, Mg2+/Mn2+ dependent 1D [Source:HGNC Symbol;Acc:HGNC:9277]
ENSG00000170855 TRIAP1 8 TP53 regulated inhibitor of apoptosis 1 [Source:HGNC Symbol;Acc:HGNC:26937]
ENSG00000177076 ACER2 8 alkaline ceramidase 2 [Source:HGNC Symbol;Acc:HGNC:23675]
ENSG00000196152 ZNF79 8 zinc finger protein 79 [Source:HGNC Symbol;Acc:HGNC:13153]
ENSG00000197852 INKA2 8 inka box actin regulator 2 [Source:HGNC Symbol;Acc:HGNC:28045]
ENSG00000168209 DDIT4 7 DNA damage inducible transcript 4 [Source:HGNC Symbol;Acc:HGNC:24944]
ENSG00000162772 ATF3 7 activating transcription factor 3 [Source:HGNC Symbol;Acc:HGNC:785]
ENSG00000048392 RRM2B 7 ribonucleotide reductase regulatory TP53 inducible subunit M2B [Source:HGNC Symbol;Acc:HGNC:17296]
ENSG00000116717 | GADD45A 7 growth arrest and DNA damage inducible alpha [Source:HGNC Symbol;Acc:HGNC:4095]
ENSG00000120889 | TNFRSF10B 7 TNF receptor superfamily member 10b [Source:HGNC Symbol;Acc:HGNC:11905]
ENSG00000164331 | ANKRA2 7 ankyrin repeat family A member 2 [Source:HGNC Symbol;Acc:HGNC:13208]
ENSG00000167196 FBXO022 7 F-box protein 22 [Source:HGNC Symbol;Acc:HGNC:13593]
ENSG00000131080 EDA2R 7 ectodysplasin A2 receptor [Source:HGNC Symbol;Acc:HGNC:17756]
ENSG00000177595 PIDD1 7 p53-induced death domain protein 1 [Source:HGNC Symbol;Acc:HGNC:16491]
ENSG00000026103 FAS 7 Fas cell surface death receptor [Source:HGNC Symbol;Acc:HGNC:11920]
ENSG00000159388 BTG2 7 BTG anti-proliferation factor 2 [Source:HGNC Symbol;Acc:HGNC:1131]
ENSG00000168918 INPP5D 7 inositol polyphosphate-5-phosphatase D [Source:HGNC Symbol;Acc:HGNC:6079]
ENSG00000173846 PLK3 7 polo like kinase 3 [Source:HGNC Symbol;Acc:HGNC:2154]
ENSG00000175197 DDIT3 7 DNA damage inducible transcript 3 [Source:HGNC Symbol;Acc:HGNC:2726]
ENSG00000196072 | BLOC1S2 7 biogenesis of lysosomal organelles complex 1 subunit 2 [Source:HGNC Symbol;Acc:HGNC:20984]
ENSG00000051108 | HERPUD1 6 homocysteine inducible ER protein with ubiquitin like domain 1 [Source:HGNC Symbol;Acc:HGNC:13744]
ENSG00000176046 NUPR1 6 nuclear protein 1, transcriptional regulator [Source:HGNC Symbol;Acc:HGNC:29990]
ENSG00000115129 TP5313 6 tumor protein p53 inducible protein 3 [Source:HGNC Symbol;Acc:HGNC:19373]
ENSG00000164237 CMBL 6 carboxymethylenebutenolidase homolog [Source:HGNC Symbol;Acc:HGNC:25090]
ENSG00000166592 RRAD 6 RRAD, Ras related glycolysis inhibitor and calcium channel regulator [Source:HGNC Symbol;Acc:HGNC:10446]
ENSG00000161513 FDXR 6 ferredoxin reductase [Source:HGNC Symbol;Acc:HGNC:3642]
ENSG00000100647 SUSD6 6 sushi domain containing 6 [Source:HGNC Symbol;Acc:HGNC:19956]
ENSG00000172831 CES2 6 carboxylesterase 2 [Source:HGNC Symbol;Acc:HGNC:1864]

Table 3. | p53 core/canonical responsive genes. The 41 protein-coding genes induced in six or more
tissues, with a short description of the function of each.
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6.2 p53 Chip-seq analysis

We performed p53 ChIP-seq analysis to identify p53 binding sites in the ten cell lines analyzed
in our study. In order to identify significantly enriched genomic regions (‘peaks’) in the p53
ChlP-seq data we used the MACS2 algorithm. For each cell line after Nutlin treatment, p53
ChlIP-seq reads were mapped to the reference genome in order to call ‘p53 peaks’. The number
of peaks detected in each cell line is reported in Table 4. We also applied p53 ChlP-seq analysis

to the untreated cells and obtained a profile of p53 binding events under basal condition.

We next applied motif analysis to the set of p53 peaks detected in each cell line after Nutlin
treatment, to identify known as well as de novo motifs, using Homer [27] and DREME [28]
algorithms. In particular, as a quality control for the called peaks, we sought to confirm that
the p53 motif was highly enriched. Reassuringly, in all cell lines, the strongest detected motif
corresponded to the p53 motif. We wished to find enriched motifs of additional TFs, as these
could represent cofactors of p53 that drive cell type-specific responses. Table 4 shows the

number of significant motifs and the enrichment for the p53 motif in each cell line:

Cell Line # p53 Peaks | # Total Motifs # Enriched p53 Motif

(p-value <1e-5) Motifs Enrichment
(p-value <1e-20) (p-value)
GM12878 14,119 19 14 le-1359
A549 11,113 21 14 le-1435
MCF7 7,731 22 19 1le-1892
HepG2 7,657 22 17 le-1691
HCT116 6,584 23 17 le-1412
HEK293 2,797 21 15 1e-828
u20s 2,596 21 16 le-843
Hela 1,750 22 15 1le-550
IMR9S0 8,076 22 13 le-1571
SKNSH 8,934 22 16 le-1927

Table 4. | The number p53 peaks found in each treated cell line and the number of significantly enriched
motifs found in them. "Total motifs" is the number of motifs found for p — value < 0.05. The last
column shows enrichment p-value for the p53 motif. That motif was the most significant and strongest
motif in all cell types.
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a)

b)

We also sought de novo motifs using Homer and DREME. Figure 19 shows an example of such
motif.

x5 5ACATCIERA

caeeCAT ISSsACASEee

T T T

Figure 19. | De-novo motif found in p53 peaks of SKNSH cell line: a) The motif found de novo (P-value
= 1e-1927 in HOMER de novo motif discovery tool.) b) a matching known motif.

The following heatmap summarizes the strongly enriched known motifs (p<102°) detected in
our p53 ChlP-seq dataset, and the cell lines in which each was detected. As can be seen, p53
motif is the only one detected in all cell lines. This analysis suggests cell type-specific
coactivators of p53, including AP-1 and NFkB in GM12878, PTX1 in HCT116, HOXAS in HepG2,
SOX3 and FOXL1 in MCF7 and TEAD4 in SKNSH. Some other factors seem to cooperate with
p53in multiple cell lines e.g., SHN and TBX21. The GATA1 motif was mildly enriched in five cell
lines. Itis known as a paralog of GATA2, which plays an essential role in regulating transcription
of genes involved in the development and proliferation of hematopoietic and endocrine cell
lineages. Another presentation that uses the p-value of each motif to create a heatmap is given

in Figure S2.

SHN gene function is unknown for humans but known for Drosophila. In Drosophila it was
demonstrated that schnurri (SHN) gene is required for cell differentiation in the dorsal

ectoderm [29].
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Figure 20. | Binary heatmap of enriched motifs in p53 peaks of treated cells. The motifs found de novo
were matched to known motifs. A motif is considered enriched if it has p — value < 1e — 20. Red:
enriched motif, grey: not enriched. P53 is enriched in all cell lines.
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6.2.1 Integrated analysis of p53 ChIP-seq and gene expression data

Next, we carried out an integrative analysis of the transcriptomic and p53 ChIP-seq data. We
wished to demonstrate that p53 binding to the chromatin is associated with induction of the
target genes. For this task, we took a naive approach and associated each p53 peak to its
closest gene (the gene with the closest transcription start site (TSS)). In particular, we tested
all p53 peak-nearest gene associations, as well as only those in which the TSS and the peak are
within 50k and 20k bp. Table 5 shows the number of target genes that were associated with

P53 peaks in each cell line:

Cell Line # p53 Peaks # of Associated # of Associated # of Associated
Genes Genes at Dis < | Genes at Dis < 50K
20K

GM12878 14,119 13,852 6673 8854
A549 11,113 10,860 5448 7135
MCF7 7,731 7,555 2844 4341
HepG2 7,657 7,464 2990 4484
HCT116 6,584 6,411 2609 3828
HEK293 2,797 2,707 974 1523
u20S 2,596 2,482 774 1243
Hela 1,750 1,698 637 991
IMR90 8,076 7,814 3212 4662
SKNSH 8,934 8,682 3402 5010

Table 5. | The number of genes associated with p53 ChIP-seq peaks in each cell line. The two right most
columns show the number of associated genes located within 220,000 bp or 50,000 bp.

We then examined the significance of the overlap between the closest genes to p53 peaks and
the set of Nutlin-induced genes in each cell line, using the hyper geometric test (Figure 13) and
the enrichment factor. We then tested the overlap between the set of Nutlin-induced genes
and the set of genes that are closest to some p53 peak. Table 6 shows the results for all genes
and for the two different distance cut-offs. Notably, in all these tests the overlap between the

Nutlin-induced genes and p53 ChlIP-seq closest genes is highly significant. Moreover, the
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enrichment factor (EF) for those genes that lie within a distance of 20kbp from the p53 binding
site is higher than the EF for genes within a distance of 50kbp, suggesting that the binding of

p53 within the close region has a stronger effect on the expression of the target genes.

In many control samples, a higher significance was obtained compared to the treated samples.
This can be explained as follows, the binding sites of p53 near the genes that undergo induction
are the "strongest" binding sites (with the highest binding affinity). Therefore, ChIP-seq will
detect a binding of p53 to these sites even when p53 levels are low (i.e., in control samples).
In the treated cells, the level of the p53 protein increases significantly and therefore it also
binds to hundreds/thousands of additional sites in the genome that are weaker and non-

functional (in this sense, that do not induce the expression of a gene in their vicinity).
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Condlt‘lon RNASeq PS3 peaks | P53 peaks P53 peaks . \ . HG p- HG p- HG p- [Enrichment| Enrichment | Enrichment
Cell Line (ChIPSeq:NUT/| Backgroun induced nearest nearest nearest Intersection {Intersection {Intersection- value - value - value - Factor - Factor - Factor -
Control, d set (M) genes - ALL genes - genes - ALL (k) |50kb]| (k) |20kb] (k)

RNASeq:NUT) genes (n) (N) 150kb]| (N) | |20kb] (N) ALL |50kb | |20kb]| ALL |50kb]| |20kb |
A549 Case (N) 21652 260 6370 5239 4306 145 133 126 5.0701E-19 | 3.76E-21 2.54E-25 1.9 2.1 2.4
Control 21652 260 77 51 33 11 9 9 2.0114E-09 | 8.86E-09 1.36E-10 11.9 14.7 22.7
GM12878 Case (N) 21652 66 7037 5881 4874 40 39 39 2.4774E-06 | 4.99E-08 1.59E-10 1.9 2.2 2.6
Control 21652 66 460 282 180 17 16 16 2.6395E-14 | 2.14E-16 1.57E-19 12.1 18.6 29.2
HCT116 Case (N) 21652 103 4431 3230 2327 52 49 47 1.1554E-11 | 3.74E-15 2.34E-19 2.5 3.2 4.2
Control 21652 103 273 163 96 19 16 15 4.1543E-17 | 6.42E-17 4.78E-19 14.6 20.6 32.9
HepG2 Case (N) 21652 181 4919 3630 2605 96 89 84 5.8747E-19 | 5.50E-24 1.28E-30 2.3 2.9 3.9
Control 21652 181 537 325 217 35 33 30 2.2512E-21| 2.92E-26 5.93E-28 7.8 12.1 16.5
MCE7 Case (N) 21652 288 4877 3556 2497 138 129 124 1.4205E-21 | 5.27E-30 2.35E-42 2.1 2.7 3.7
Control 21652 288 188 126 79 31 28 26 5.9885E-25 | 2.03E-26 1.47E-29 12.4 16.7 24.7
IMR9O Case (N) 21652 60 4890 3710 2725 38 34 32 1.5606E-11 | 5.09E-12 3.79E-14 2.8 3.3 4.2
Control 21652 60 438 262 166 14 11 11 1.1618E-11 | 1.34E-10 9.54E-13 11.5 15.2 23.9
SKNSH Case (N) 21652 72 5357 4021 2926 51 48 48 2.3068E-16 | 4.32E-19 3.76E-25 2.9 3.6 4.9
Control 21652 72 440 275 168 19 18 18 2.1129E-16 | 9.48E-19 1.18E-22 13 19.7 32.2
U205 Case (N) 21652 156 1932 1148 744 44 39 37 2.7471E-12 | 2.19E-16 5.84E-21 3.2 4.7 6.9
Control 21652 156 521 278 173 22 19 18 2.6522E-11 | 1.58E-13 4.67E-16 5.9 9.5 14.4

Table 6. | Hypergeometric test results for the overlap between induced genes and p53 ChiIP-seq peaks. Results are shown for all genes and for the two different
distance cut-offs. (“Case” — Nutlin-treated cells; “Control” — untreated cells).
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6.3 p53 Hi-C data: characterization of differential loops upon p53 activation

We first called TADs using Juicer [20] and loops using Mustache [30] in each cell line, both
without and after Nutlin treatment. Tables 7 and 8 below show the number of loops and TADs

in each condition for 5kb and 10kb resolution, respectively.

Cell Line # Basal # Treatment
GM12878 24649 28863
A549 15318 16438
MCF7 25307 28954
HepG2 24860 25147
HCT116 19227 22189
HEK293 30742 32716
U20sSs 12418 14942
Hela 20930 24207
IMR90 17602 15730
SKNSH 17687 24178

Table 7. | Average number of loops between two replicates in 5kb resolution.

Cell Line # Basal # Treatment
GM12878 4987 5772
A549 4620 4395
MCF7 5960 6935
HepG2 4828 4780
HCT116 4848 5032
HEK293 6600 6884
U20Ss 4049 4828
Hela 3719 4294
IMR90 4892 4510
SKNSH 3736 4999

Table 8. | Average number of TADs between two replicates in 10kb resolution.
The tables show that the number of loops detected in the basal and the treated condition is
about the same in all cell lines, with a minor increase in the treated cells. A similar observation

holds for TADs.
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6.3.1 Analysis of differential loops

Next, we used the HiC-DC+ software to detect statistically significant differential loops between
pairs of Micro-C samples [22]. We first used this tool to compare all pairs of cell types (45
pairwise comparisons between 10 different cell lines), under the basal condition. As these cell
lines originate from very different tissues, we expected them to have many differential
chromatin loops. Indeed, numerous loops passed this stringent statistical test employed by

HiC-DC+ (Table 9).

A549 GM12878 HCT116 HEK293 Hela HepG2 IMRSO  MCF7 SKNSH ~ U20S

A549 535 9 63 84 340 20 223 649 434
GM12878 393 170 59 1000 302 66 214 66 426
HCT116 7 133 21 122 127 42 63 12 179
HEK293 68 131 82 266 120 74 118 678 212
Hela 77 1684 169 306 1295 353 728 1804 1143
HepG2 196 358 172 37 421 9 94 833 1463
IMRS0O 1 11 11 3 0 0 5 0 3
MCF7 229 352 156 120 531 178 72 15 1004
SKNSH 36 10 0 0 102 51 0 0 10
u20S 552 281 405 60 1689 2733 15 1850 27

Table 9. | Number of differential loops between basal cell types found by HiC-DC+ tool in chr12: Cell
type measurements were taken in basal level only. Each entry in table represents the number of
differential loops found by the tool after removal of diagonal loops and using the parameter padj<=0.1.
For cell types i, j, entry (i, j) is the number of differential loops that were stronger in i and entry (j, i)
is the number of differential loops stronger in j. For example, for the pair: A549-GM12878 we get a
total of 928 differential loops, 535 are stronger in A549 and 393 in GM12878.
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Surprisingly, when we applied HiC-DC+ tests to compare Nutlin-treated to basal cells, no
differential loops were detected at all in any of the cell lines. This finding suggests that
chromatin loops that determine cell-identify transcriptional programs are markedly stronger
than loops that are formed in response to stress (p53 activation in our research). This is in line
with the fact that the scale of differential expression between different cell lines (originating
from very different tissues) is an order of magnitude larger than the differential expression

between Nutlin-treated and basal cells in the same tissue (Figure 21).
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Figure 21. | Density plots of gene expression fold change between A549 and GM12787 (red) and
between A549 Nutlin-treated and control sample (light blue). Fold change was calculated for all genes
in RNA-seq (n=14,180).

Next, we examined associations between changes in promoter loop intensities and changes in
expression levels of the associated genes. In this analysis too, when comparing different cell
lines, we detected very strong associations: in basal cell lines where a gene had markedly

higher expression, its promoter was associated with stronger loops (see Figure 22A for one
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example. Similar strong associations were obtained for all 45 pair-wise comparisons between
cell lines). In contrast, when we examined, for each cell line, association between changes in
promoter loop intensities and changes in expression levels upon Nutlin treatment, no

significant association was detected (Figure 22B).

Taken together, these results show that in our Micro-C dataset, we did not observe major
changes in chromatin organization that corresponded to the observed modulation of gene
expression upon p53 activation. This is in contrast to the strong association between genome
organization and transcriptional programs that we observed in the comparisons between

different basal cell lines.
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Figure 22. | Changes in gene expression levels vs. changes in interaction frequency of loops associated
with their promoters, between different cell lines or conditions. X axis: log2 fold change in gene
expression. Genes are binned according to log fold change between the two conditions. Y axis:
distribution of log2 fold change of the loop intensity for the genes in each bin. Pearson’s correlation
value and p-value are indicated in each plot. A. A549 vs. GM12878 when both cell lines are basal. B.
GM12878 treated with Nutlin vs. basal GM12878. In B, FC bins were defined as to include similar
number of genes. Colors have no meaning.
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In summary, we were not able to detect any statistically significant differential loops upon
Nutlin treatment. This, most likely, points to the fact that changes that occur in chromatin
interactions upon p53 activation were below the detection limit of our Micro-C analysis
(despite very high sequencing depth). Additionally, we are limited by the resolution of the
technique, and if most loops induced by p53 are shorter than 5k-10k, they are not detected
due to the binning resolution we used (5k-10k bp). Yet, no differential loops were detected

also when we used the resolution limit of our Micro-C protocol (0.5k bp).

6.3.2 Integrated analysis of Micro-C and gene expression data in response to p53 activation

Following the above observations, we tried to further examine the correlation between
changes in gene expression levels and changes in the 3D organization of the chromatin. We
chose to focus on six well-known target genes of p53 that were significantly induced in all the
cell lines with functional p53 in our panel. Figure 23 shows the induction level of these genes

across the ten cell lines.
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Figure 23. | Expression levels of well-known target genes of p53. The plot shows the fold change in
Nutlin-treated cells vs controls. All six genes are induced in most or all cell lines. HEK293 and Hela
cell lines are less responsive as they do not carry a functional p53.
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We next sought changes in chromatin looping in the vicinity of these canonical p53 targets that
occur upon p53 activation. We therefore examined the Micro-C data in these loci using
resolution of 5kb. In line with our previous results, no change in chromatin interactions was
detected in these regions in response to Nutlin treatment (Figure 24). This is despite the
marked induction of their expression levels, as well as the induced binding of p53 in these loci
(p53 ChIP-seq peaks). Applying similar analysis to genes that showed cell type-specific

expression, detected very strong cell type-specific chromatin 3D organization (Figure 25).

Next, we characterized the promoter loops associated with these six canonical p53 target
genes. We found that most of these loops (14 out of 21) promoter-promoter loops (P-P loops)
(Figure 26). We therefore focused on the other gene that was linked to the canonical p53 target
on the other anchor of such P-P loop (see the examples of MED18 for SENS2 and CCNE2 for
TP53INP1, Figure 26). We tested if these ‘paired genes’ were induced too upon Nutlin
treatment. In contrast to our expectation, we did not find any significant induction for these
genes whose promoters physically interact with the promoter of the induced genes.
Furthermore, for six out of the six canonical genes, we found that the promoter anchor of its
P-loop also contains a p53 ChIP-seq peak. That is, the p53 binding site is located less than 5kb

(the bin resolution we worked with) from the gene’s TSS.

Given these results, we decided to further increase the resolution analysis of the Micro-C, and
produced data at bin resolution of 1000 bases (increasing the resolution decreases the number
of reads assigned to each bin and therefore lowers sensitivity of detecting chromatin
interactions). Since such resolution has a lot of background noise, we used a sliding window
mean and median of bins intensity for five consecutive bins (moving the window by one bin at

a time). Contrary to our expectation, this analysis too did not detect any increase the intensity
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of chromatin interactions that involve the promoters of these p53 canonical target genes upon
Nutlin treatment, despite the robust activation of these promoters by this treatment (Figure

27, 53-56).

In contrast, applying this analysis to genes that show a very strong differential expression
between different cell lines, we detected very strong cell type-specific E-P loops. Figure 28
shows the results for APOC3, which is specifically expressed in HepG2. Supplementary Figures

S7 and S8 show the results for CCR7 and CD80, which are specifically expressed in GM12878.

Taken together, these results demonstrate that transcriptional changes induced upon
activation of p53 are not accompanied by massive remodeling of chromatin interactions. This
is in stark contrast to differential expression between different cell types, where cell type-
specific transcriptional programs are accompanied by major changes in 3D organization of the
genome. This difference can be explained by the marked difference in the magnitude of
differential expression in these two cases: DE between different cell types is two orders of
magnitude larger than DE in response to p53 activation. That is, cell type-specific genes show
100-1000 fold-change in expression between cell types, while genes induced by p53 activation

typically show 2-4 fold change (Figure 25).
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Figure 25. | HiC contact maps and gene expression across cell lines. Each column shows the interaction
maps in four cell lines in the same genomic region, and the track below each map shows the mRNA
expression, in CPM. Cell type-specific expression as manifest in cell type-specific peak in the track is
coupled with the formation of cell type-specific chromatin loops observed in the interaction map. Blue
circles indicate cell type-specific loops.
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Figure 26. | UCSC Genome Browser display of regions that include loops anchored at the TSS of p53
canonical targets. Top: SESN2 gene. Bottom: TP53INP1 gene. Each display includes, from top to bottom,
loop anchors, p53 ChiP-seq peaks, TADs, the TSS of the p53 canonical gene, and all gene models in the
region. Data presented includes loops and peaks from all cell types, both basal and treated. It can be
seen that TSS and the p53 ChiIP-seq peaks are in the same loop anchor (light blue). Moreover, most of
the loop anchors reside near TSSs of different genes (blue). The dynamic loops were not detected at
5000bp bin resolution and higher resolution is needed.
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Figure 27. | Loop Intensities around the promoter of the gene TP53INP1: Loops intensity values in
sliding windows of chr8 in A549 cell line are shown. Intensity values were calculated as the mean or the
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values. Blue:
basal; red: treated.
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Figure 28. | Loop Intensities around the promoter of the gene APOC3: Loops intensity values in sliding
windows of chrll in all cell lines are shown. Basal intensity values were calculated as the mean and the
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values.
HepG2 is highlighted in red color to show its different intensity basal value from the rest of cell lines.
The arrows point to the two enhancers in the vicinity of the promoter.
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Finally, aggregated peak analysis (APA), which examines the strength of a set of loops

compared to their genomic surrounding, revealed no increase in interactions between induced

p53 peaks and their putative target promoters (closets to the p53 peak) (Figure 29A). In

contrast, as expected, cell type-specific loops showed strong aggregated peaks by this analysis

(Figure 29B).
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Figure 29. | (A) APA plots of interaction intensity between p53-ChiP-seq peaks and closest gene
promoters. Left: control sample. Right: Nutlin treated sample of A549 cell line. No signal is detected.
(B) Aggregated peaks in a contact map of loops detected in A549 control sample (left) and loops
detected in GM12878 control sample (right). In this positive control analysis, a very strong

interaction signal is evident.
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8. Discussion

In this thesis, we investigated how the spatial structure of the genome correlates with the

response of cells to stress, in the context of p53 activation.

First, we collected three different layers of data: RNA-seq, ChlIP-seq, and Micro-C from ten
different cell lines, before and after p53 activation using Nutlin, a potent activator of p53. The
results of the RNA-seq analysis were in line with our hypothesis: As befits an activator, there
were more induced genes than repressed genes after the treatment. Also, two cell lines in our
panel have a defective p53 profile, and in those cell lines little response was seen compared to

the other cell lines (Figure S1).

Second, we conducted p53 ChlIP-seq analysis. There, too, we saw many differential p53 ChIP-
seq peaks that were highly enriched for the p53 binding motif and for potential motifs of
cofactors. We considered the closest genes to p53 ChlP-seq peaks as putative targets of p53
and showed that their overlap with the set of DEGs was highly significant. This test was
performed twice, where putative targets were selected based on two possible maximal
distances from a promoter, and in both tests we saw a significant overlap before and after

treatment.

Third, we investigated the three-dimensional structure of the genome in the cell nucleus using
Micro-C data. First, we quantitatively characterized the number of TADs and loops, the
numbers were similar before and after p53 activation. After that, we sought loops whose levels
of intensity changed significantly following the treatment with Nutlin. Unexpectedly, using a
statistical tool for this task (HICDC+) we did not find differential loops. On the other hand, when
we conducted the same tests to compare two different basal cell types, dozens and sometimes

hundreds of differential loops were detected.

61



In light of the above results, we decided to increase the resolution and study in the vicinity of
the promoter of several known p53 genes that were robustly induced in our dataset. In each
cell type, we calculated the average intensity level as well as the median intensity level over a
sliding window of 5 windows of 1000 bases at a time. We found no significant change in the
interaction strength of these loops before and after the activation of p53. On the other hand,
looking at the basal level of the promoter-interaction intensities of a certain promoter of a
gene that was induced in response to Nutlin only in one cell line and not in the other cells, we
saw a change in the spatial structure between the cell in which where the induction took place

and all the other types of cells tested, even before exposure to Nutlin (Figure 28).

In conclusion, our work shows a clear difference between the impact of the 3D organization of
the genome on cell-identity and stress-induced transcriptional programs. While cell-identity
programs are highly correlated with cell type-specific genome organization, we did not detect
any similar correlations with the transcriptional response to p53. The most probable
explanation for this difference is that changes in transcriptional activity between different cell
types are orders of magnitude larger than changes induced within a cell type in response to
stress. Therefore, we conclude that chromatin loops that are associated with cell identity are
markedly stronger and more stable than chromatin loops induced by p53 activation. The
current sensitivity of HiC (Micro-C) is sufficient for detecting the former, but misses most of
the latter. Much higher sequencing depth, or revised protocols, are needed for this technique
to detect also the chromatin structures that are associated with transcriptional programs

modulated by stress responses.

62



9. References

[1] W. A. Bickmore, “The spatial organization of the human genome,” Annual Review of Genomics
and Human Genetics, vol. 14. pp. 67-84, Aug. 2013. doi: 10.1146/annurev-genom-091212-
153515.

[2] H. bin Sun, J. Shen, and H. Yokota, “Size-dependent positioning of human chromosomes in

interphase nuclei,” Biophys J, vol. 79, no. 1, pp. 184-190, 2000, doi: 10.1016/S0006-
3495(00)76282-5.

[3] M. Jackson, L. Marks, G. H. W. May, and J. B. Wilson, “The genetic basis of disease,” Essays in
Biochemistry, vol. 62, no. 5. Portland Press Ltd, pp. 643-723, Dec. 03, 2018. doi:
10.1042/EBC20170053.

[4] S. Nurk et al., “The complete sequence of a human genome.” [Online]. Available:
https://www.science.org

[5] K. Pruitt, “Molecular and Cellular Changes During Cancer Progression Resulting From Genetic
and Epigenetic Alterations,” Prog Mol Biol Transl Sci, vol. 144, pp. 3-47, 2016, doi:
10.1016/BS.PMBTS.2016.09.001.

[6] Nature Education, “Transcription factors definition”.

[7] F. Sanger, S. Nicklen, and A. R. Coulson, “DNA Sequencing with Chain-Terminating Inhibitors,”
1977.

[8] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: A revolutionary tool for transcriptomics,”
Nature Reviews Genetics, vol. 10, no. 1. pp. 5763, Jan. 2009. doi: 10.1038/nrg2484.

[9] Y. Zhang et al., “Model-based analysis of ChIP-Seq (MACS),” Genome Biol, vol. 9, no. 9, Sep.
2008, doi: 10.1186/gb-2008-9-9-r137.

[10] P.J. Park, “ChIP-seq: Advantages and challenges of a maturing technology,” Nature Reviews
Genetics, vol. 10, no. 10. pp. 669—680, Oct. 2009. doi: 10.1038/nrg2641.

[11] E. Lieberman-Aiden et al., “Comprehensive mapping of long-range interactions reveals folding
principles of the human genome,” Science (1979), vol. 326, no. 5950, pp. 289-293, Oct. 2009,
doi: 10.1126/science.1181369.

[12] T. H. S. Hsieh, A. Weiner, B. Lajoie, J. Dekker, N. Friedman, and O. J. Rando, “Mapping
Nucleosome Resolution Chromosome Folding in Yeast by Micro-C,” Cell, vol. 162, no. 1, pp.
108-119, Jul. 2015, doi: 10.1016/j.cell.2015.05.048.

[13] M. Imakaev et al., “Iterative correction of Hi-C data reveals hallmarks of chromosome
organization,” Nat Methods, vol. 9, no. 10, pp. 999-1003, Oct. 2012, doi: 10.1038/nmeth.2148.

[14] P. A. Knight and D. Ruiz, “A fast algorithm for matrix balancing,” IMA Journal of Numerical
Analysis, vol. 33, no. 3, pp. 1029-1047, 2013, doi: 10.1093/imanum/drs019.

[15] J. R. Dixon et al., “Topological domains in mammalian genomes identified by analysis of
chromatin interactions,” Nature, vol. 485, no. 7398, pp. 376-380, May 2012, doi:
10.1038/nature11082.

63



[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

64

L. Costantino, T.-H. S. Hsieh, R. Lamothe, X. Darzacq, and D. Koshland, “Cohesin residency
determines chromatin loop patterns,” 2018, doi: 10.1101/2020.06.11.146902.

N. Parikh et al., “Effects of TP53 mutational status on gene expression patterns across 10
human cancer types,” Journal of Pathology, vol. 232, no. 5, pp. 522-533, 2014, doi:
10.1002/path.4321.

L. A. Donehower et al., “Integrated Analysis of TP53 Gene and Pathway Alterations in The
Cancer Genome Atlas,” Cell Rep, vol. 28, no. 5, pp. 1370-1384.e5, Jul. 2019, doi:
10.1016/j.celrep.2019.07.001.

C. L. Brooks and W. Gu, “New insights into p53 activation,” Cell Research, vol. 20, no. 6. pp.
614-621, Jun. 2010. doi: 10.1038/cr.2010.53.

N. C. Durand et al., “Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C
Experiments,” Cell Syst, vol. 3, no. 1, pp. 95-98, Jul. 2016, doi: 10.1016/J.CELS.2016.07.002.

M. Ganji et al., “Real-time imaging of DNA loop extrusion by condensin Downloaded from,”
2018. [Online]. Available: http://science.sciencemag.org/

M. Sahin, W. Wong, Y. Zhan, K. van Deynze, R. Koche, and C. S. Leslie, “HiC-DC+ enables
systematic 3D interaction calls and differential analysis for Hi-C and HiChIP,” Nat Commun, vol.
12, no. 1, Dec. 2021, doi: 10.1038/s41467-021-23749-x.

K. Kruse, C. B. Hug, and J. M. Vaquerizas, “FAN-C: a feature-rich framework for the analysis and
visualisation of chromosome conformation capture data,” Genome Biol, vol. 21, no. 1, Dec.
2020, doi: 10.1186/s13059-020-02215-9.

M. Ringnér, “What is principal component analysis?,” 2008. [Online]. Available:
http://www.nature.com/naturebiotechnology

M. Fischer, “Census and evaluation of p53 target genes,” Oncogene, vol. 36, no. 28. Nature
Publishing Group, pp. 3943-3956, Jul. 13, 2017. doi: 10.1038/0nc.2016.502.

I. Ben-Sahra et al., “Sestrin2 integrates Akt and mTOR signaling to protect cells against
energetic stress-induced death,” Cell Death Differ, vol. 20, no. 4, pp. 611-619, Apr. 2013, doi:
10.1038/cdd.2012.157.

S. Heinz et al., “Simple Combinations of Lineage-Determining Transcription Factors Prime cis-
Regulatory Elements Required for Macrophage and B Cell Identities,” Mol Cell, vol. 38, no. 4,
pp. 576-589, May 2010, doi: 10.1016/j.molcel.2010.05.004.

T. L. Bailey, “DREME: Motif discovery in transcription factor ChlP-seq data,” Bioinformatics, vol.
27, no. 12, pp. 1653-1659, Jun. 2011, doi: 10.1093/biocinformatics/btr261.

N. C. Grieder, D. Nellen, R. Burke, K. Basler, and M. Affolter, “schnurri Is Required for Drosophila
Dpp Signaling and Encodes a Zinc Finger Protein Similar to the Mammalian Transcription Factor
PRDII-BF1,” 1995.

A. Roayaei Ardakany, H. T. Gezer, S. Lonardi, and F. Ay, “Mustache: Multi-scale detection of
chromatin loops from Hi-C and Micro-C maps using scale-space representation,” Genome Biol,
vol. 21, no. 1, Sep. 2020, doi: 10.1186/s13059-020-02167-0.



65

Supplementary



200

-log10(adjusted P-value)

-log10(adjusted P-value}

A549 GM12878 HCT118 HEK293 Hela
; . ] 4
: .
: o]
! w0
: .
| (re2) .
: .
' = (o)
: = . s ) = B
; = = s : 3 E
' . d d d d .
: 2 Ehi)e o 2 . 2 2
' ° Y ° . EY () EY 3
H ) * e B . g 2
' H g b=, g g =]
' . g, g ° K g b
............... . _ o
4 3 2 E 2 3 4 4 1 o 1 3 4 4 1 [] 3 4 4 3 3 4
log2(fold change) log2(fold change) log2ifold change)
HepG2 MCF7 IMR90 SKNSH U208
(o] () =]
. . »
(e
. 2
- e
el . - o
() (oss)
. .
@ 40 2 -
* 7 S e T T 7
El E 52 2
=) E =20 s 3 .
0 d d g . o
.. 3 . 2 ] ot e *
¢ g . 8 B . z .
=l . T = - g
a -3 . . L
. g A g g g
. . 8 . E . B ) 7 )

Figure S1. | Volcano plots of all 10 cell lines. Each dot represents a differentially expressed gene. Red dots represent up-regulated genes, blue dots represent
down-regulated genes, and genes in grey are not significantly differentially expressed. Labeled genes are well known for P53.
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Figure S2. | P-values of de novo
motifs similar to known ones. An
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Figure S3. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr8 in all cell lines are shown. Intensity values were

calculated as the median of 5 bins in 1000bp resolution. 0 is the promoter of TP53INP1 gene. From left to right: A549, GM12878, HCT116, HEK293,
Hela, HepG2, IMR90, MCF7, SKNSH, U20S.
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Figure S4. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr8 in all cell lines are shown. Intensity values were
calculated as the mean of 5 bins in 1000bp resolution. 0 is the promoter of TP53INP1 gene. From left to right: A549, GM12878, HCT116, HEK293,
Hela, HepG2, IMR90, MCF7, SKNSH, U20S.
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Figure S5. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr6 in all cell lines are shown. Intensity values were
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Figure S6. | Loop Intensities around Promoter: Sliding window of loops intensity values of chr6 in all cell lines are shown. Intensity values were
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Figure S8. | Loop Intensities around Promoter of the gene CD80: Loops intensity values in sliding
windows of chr3 in all cell lines are shown. Basal intensity values were calculated as the mean or the
median of 5 bins in 1000bp resolution. Left: mean intensity values. Right: median intensity values.
GM12878 is highlighted in red color to show its difference intensity basal value from the rest of cell
lines.
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