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ABSTRACT

Missing data is a major challenge in clinical research. In electronic medical
records, often a large fraction of the values in laboratory tests and vital signs are
missing. The missingness can lead to biased estimates and limit our ability to draw
conclusions from the data. Additionally, many machine learning algorithms can
only be applied to complete datasets. A common solution is data imputation, the
process of filling-in the missing values. However, some of the popular imputation
approaches perform poorly on clinical data. We developed a simple new approach,
Time-Dependent Iterative imputation (TDI), which offers a practical solution for
imputing time-series data. It addresses both multivariate and longitudinal data, by
integrating forward-filling and Iterative Imputer. The integration employs a pa-
tient, variable, and observation-specific dynamic weighting strategy, based on the
clinical patterns of the data, including missing rates and measurement frequency.
We tested TDI on randomly masked clinical datasets. When applied to a cohort
consisting of more than 500,000 patient observations from MIMIC III, our ap-
proach outperformed state-of-the-art imputation methods for 25 out of 30 clinical
variables, with an overall root-mean-squared-error of 0.63, compared to 0.85 for
SoftImpute, the second best method. MIMIC III and COVID-19 inpatient datasets
were used to perform prediction tasks. Importantly, these tests demonstrated that
TDI imputation can lead to improved risk prediction.

1 INTRODUCTION

In many practical domains, missing data is a major challenge that has a significant effect on data
interpretation and analysis. Missing data can lead to biased estimates (Ayilara et al., 2019) and limit
our ability to study and draw conclusions. In addition, most machine learning models (ML) can be
applied to complete datasets only. Hence, techniques for dealing with missing data are necessary. A
simple approach is omission, in which observations with missing values are discarded from further
analysis. However, in most cases, the proportion of missing data is not negligible. A retrospective
electronical medical record (EMR) dataset is likely to have a large amount of missing values in
patients’ records. The omission would lead to a significant loss of valuable information, resulting
in an unrepresentative sample and strong bias. In practice, data imputation methods are used to deal
with missing data by filling in the missing data with artificial values. Such methods offer powerful
tools for addressing missing data in large datasets with complex data patterns.

Data imputation is usually done by inferring the missing values based on observed data. Imputation
of EMR remains a major challenge, as it includes irregular individualized time-series data. Although
various imputation methods are available (Batista & Monard, 2003; Mazumder et al., 2010; Van Bu-
uren & Groothuis-Oudshoorn, 2011), many of these are not well designed for clinical data, as they
fail to account for inherent individual longitudinal patterns and clinical characteristics. In recent
years, novel deep learning approaches were developed for data imputation (Che et al., 2018; Yoon
et al., 2018). However, such approaches usually require massive amounts of data and not always
practical.

We developed a new approach, Time-Dependent Iterative imputation (TDI), for imputing individ-
ualized time-series data. TDI addresses both multivariate and longitudinal data, by integrating
forward-filling and Iterative Imputer, a version of MICE (Multivariate Imputation by Chained Equa-
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tion, Van Buuren & Groothuis-Oudshoorn, 2011). The integration employs a patient, variable, and
observation-specific dynamic weighting strategy, based on the clinical patterns of the data including
missing rates and measurement frequency. TDI offers a simple and practical solution, that utilizes
the underlying metadata available, without requiring massive amounts of data. Experiments on real-
world clinical datasets demonstrated that our model outperforms state-of-the-art imputation, in both
producing better value estimates, and improving predictive performance.

2 PROBLEM FORMULATION

Let X ∈ RN×T×D be a time-series clinical dataset, where N is the number of patients, D is the
number of covariates, and each patient’s trajectory is represented by discrete time points indexed as
t ∈ {1, . . . , T}. We use the term observation for the vector of the D covariates of a subject at a par-
ticular time-point. The covariates can be either time-dependent (longitudinal) or time-independent
(static). The number of time points (observations) available for patient i is denoted by ti ≤ T .
Hence, the longitudinal data of subject i is represented by Xi = (Xi

1, . . . , X
i
ti), where Xi

t is the
observation of subject i at time point t. The actual time when the t-th observation is obtained is
denoted by sit. X

i
t may be incomplete. We define M ∈ {0, 1}N×T×D as the mask matrix of X ,

where mi
t,d = 1 if xit,d is observed and zero otherwise (See Figure A.1).

Our goal is to impute the missing values in X . The imputed dataset X̃ ∈ RN×T×D is X̃ =

M � X + (1 − M) � X̂ , where X̂ is an estimate of X and � is the element-wise product of
matrices.

3 TIME-DEPENDENT ITERATIVE IMPUTATION (TDI)

3.1 PRELIMINARIES

Our method relies on two established imputation methods that are applied to the data matrix X .
In Forward-filling, each missing value of a patient’s variable is imputed by using its last observed
value. Let X̃F be the resulting dataset. Notably, X̃F could remain incomplete, due to missing
values before the first measurement of a variable, or variables that were not recorded for a patient
at all. Additionally, let X̃I be the imputed dataset after applying the multivariate Iterative Imputer
algorithm to X . Specifically, we applied scikit-learn’s IterativeImputer (Pedregosa et al., 2011),
which was inspired by MICE (Van Buuren & Groothuis-Oudshoorn, 2011). The Iterative Imputer
uses a regression model to predict the missing values of each feature based on the other features, in
a round-robin fashion. It is applied on the entire dataset X , independently of X̃F .

For each patient i, time point t, and variable d, we define the time passed since the last observa-
tion as ∆tid = sit − sit−1,d, where sit−1,d is the time of the previous record of variable d of patient
i (∆tid ≥ 0). ∆tid = 0 corresponds to the current time. ∆tid = ∞ if there is no past mea-
surement. Additionally, let rit denote the fraction of available values of patient i at time point t:
rit = 1

D

∑D
d=1m

i
t,d. Finally, denote the measurement frequency of variable d by fd. Namely, fd is

the inverse value of the cohort average time (in hours) between measurements of variable d.

3.2 THE PROPOSED MODEL

We propose a new time-dependent approach that considers both multivariate and longitudinal data
in missing values imputation. At each time-point, the imputed value is the weighted sum of two
imputed values estimated by the Iterative Imputer (X̃I ) and forward-filling (X̃F ). The integration
employs a patient, variable, and observation-specific dynamic weighting strategy, based on the
clinical patterns of the data. The imputed value for variable d of patient i at time point t is:

x̃it,d = wi
t,d · x̃iFt,d

+ (1− wi
t,d) · x̃iIt,d

Where w : R+ → [0, 1] is the following weight function:

wi
t,d =

1

1 + fd · rit ·∆tid
In other words, w(∆tid) assigns weights to the imputation estimations as a function of three factors:
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(i) Time elapsed since past measurement (∆tid): The key idea is that higher weights are assigned
to Forward-filling with more recent observed values (lower ∆t), in a similar manner to the inference
by a caregiver in the clinical practice, when there are recent available values. In contrast, for large
∆t, relying on the multivariate distributions using the observed data of other covariates is plausible.
Importantly, while X̃I is a complete dataset, X̃F can still contain missing values (see Section 3.1).
Such values are imputed solely based on the Iterative Imputer algorithm.

(ii) Variable sampling rates (fd): For variables measured less often than others, Forward-filling is
assigned more weight, covering a longer period back.

(iii) The observational availability rates (rit): The Iterative Imputer initializes missing values with
a naive estimate (e.g., mean). In time points with high missing rates, the imputed values might
be estimated mainly based on this initial strategy. Adding rit to the weight function penalizes the
Iterative Imputer at time points with higher missing rates.

While we require that w will be a decay function, we do not limit it to a specific function family. It
can be either chosen a priori or treated as a hyper-parameter and selected via cross-validation. The
weights should remain between 0 and 1 to preserve clinically plausible imputed values.

4 EVALUATION

We empirically evaluated our method and six other simple and state-of-the-art imputation methods,
on real-world clinical datasets (see Section 5.1). Section A.1 describes the benchmark imputation
methods. We evaluated the methods using two approaches:

Masking: This test compares imputed values to their known true values. Here, in addition to the
originally missing data, we randomly mask a fraction of the available values of each variable (i.e.,
values xit,d such that mi

t,d = 1). Then, we impute the resulting masked dataset and compare the
imputed values of the masked data to the ground truth values using different metrics (see Table S3).

Prediction: Data imputation does not always provide substantial improvement to predictive models.
Hence, this test aims to assess the impact of the imputation on the quality of predicting a clinical
outcome. We consider two different types of predictive tasks: (1) Baseline prediction: A single
prediction for each patient, based on baseline data obtained on admission or a few hours thereafter.
(2) Longitudinal predictions: Repeated predictions during hospitalization (e.g., at every time point
t), using the patient’s baseline and longitudinal data up to the current time point (Figure A.2).

5 RESULTS

5.1 DATASETS

MIMIC-III: A public dataset of de-identified clinical care data with over 40,000 patients admitted to
the Beth Israel Deaconess Medical Center, Boston, between 2001 to 2012 (Johnson et al., 2016). We
extracted 30 longitudinal features, including vital signs, basic metabolic panel (BMP), hematology
panel, and coagulation panel (Table S1).

COVID-19: A dataset containing EMRs of 3,293 COVID-19 inpatients admitted to two hospitals
(detailed hidden for double-blind review).

Preprocessing details can be found in Section A.2.

5.2 MASKING

The masking experiment was conducted on a subsample of 559, 837 observations from N = 8000
patients (D = 30). Data standardization was performed, as required for some imputation methods
(e.g., KNN). We randomly masked 10% of the available values of each variable, and then imputed
the data. We used three metrics to measure the difference between the imputed and real values (Ta-
ble S3). Figure 1 summarizes the performance of seven imputation methods, in terms of normalized
root mean squared error (NRMSE). TDI outperformed the other methods for 25 out of 30 variables.
It also had the best overall score in all performance metrics, with an overall RMSE of 0.63, com-
pared to 0.85 for SoftImpute, the second best method (see Table S4). Notably, after applying only
forward-filling, our dataset still contains a large fraction of missing values (Table S5). In a (possibly
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biased) evaluation tailored to test imputation by forward-filling, it was slightly inferior to TDI but
outperformed the other methods (detailed in Section A.3).

Figure 1: Masking performace. A comparison of imputation models for each variable, using NRMSE (lower
is better). TDI imputation (orange dashed bar) does best in 25 out of 30 variables.

5.3 PREDICTION

We performed a baseline binary classification task on MIMIC-III for predicting mortality in hos-
pitalization or 30 days thereafter, based on data obtained in the first 48 hours after admission. We
evaluated ten ML models for this prediction task, including feedforward neural network (Haykin,
1994), SVM (Cortes & Vapnik, 1995), Logistic Regression, Random Forest (Breiman, 2001), Cat-
Boost (Dorogush et al., 2018), XGBoost (Chen & Guestrin, 2016) and GRU-D (Che et al., 2018).
Note that GRU-D does not use an external imputation method. We measured the predictive per-
formance in 5-fold cross-validation. In each iteration, an imputation method was first applied, and
then each of the predictive models was trained on the imputed data. The imputation was done sep-
arately on the train and test folds. Each model’s performance was measured using the area under
the receiver-operator characteristics curve (AUROC) and the area under the precision-recall curve
(AUPR) over the test folds. When applied to a subsample of N=2,000 patients, TDI improved the
mean AUROC and AUPR in all classifiers, six of which perfomed better than GRU-D (Figures 2,
A.4). For a subsample of N=10,000 patients, GRU-D and CatBoost with TDI achieved comparable
results (A difference of 0.1% in favor of GRU-D in both metrics) (Table S7). Similar results were
achieved in a longitudinal setting on the COVID-19 datasets, for predicting mortality in the next 1-7
days (Supplementary A.5). Section A.5 describes the experimental design of this benchmark.

Figure 2: Performance of baseline mortality prediction in MIMIC-III, using 5-fold cross-validation. TDI
(orange dashed) improves the AUROC (y-axis) in all classifiers. Horizonal line: median.

6 DISCUSSION

We presented TDI Imputation, a practical approach for missing data imputation designed for time-
series clinical datasets. Our method imputes missing data by integrating forward-filling and the
Iterative Imputer. The integration employs a patient, variable, and observation-specific dynamic
weighting strategy, based on the clinical characteristics of the data. Compared to state-of-the-art
imputation methods, our model achieved the best performance in the estimation of values of masked
clinical variables with known ground truth. While being simple and applicable, TDI imputation led
to an improved risk prediction in different ML models on real-world datasets. TDI can be readily
applied multiple times with different seeds to account for imputation uncertainty (See A.4). Future
work will consider additional prediction tasks on varying sample sizes, and compare to additional
benchmark models. Extended experiments will test our method under various missingness mecha-
nisms. We also intend to explore different weighting strategies.
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CODE AND DATA AVAILABILITY

The code for our method and for data preprocessing will be published in a GitHub repository upon
publicity. The MIMIC-III dataset is available upon request at http://dx.doi.org/10.13026/C2XW26.
Requests for access to the COVID-19 datasets should be directed to the hospitals.
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A APPENDIX

A.1 BENCHMARK IMPUTATION METHODS

Our benchmark includes the following imputation methods:

• Mean, Median: The missing values of a certain variable are replaced by the mean (or
median) of the available ones.

• Forward-filling: Each missing value of a patient’s variable is imputed by using its last
observed value. Notably, the imputed dataset after using forward-filling often remains
incomplete, due to missing values before the first measurement of a variable, or variables
that were not recorded for a patient at all (Table S5). A naive imputation of the remaining
missing values with backward filling (i.e., using the next observed values) leads to severe
leakage of future information and hence cannot be used in our framework. Therefore,
forward-filling was evaluated in an adjusted masking experiment (detailed in Section A.3)
and excluded from the prediction experiment.

• SoftImpute (Mazumder et al., 2010): Missing values are imputed using matrix completion
by iterative soft thresholding of Singular Value Decomposition (SVD).

• KNN (Batista et al., 2002): Missing values are imputed using the mean value of the k
nearest neighbors (closest samples) found in the training set.

• Iterative Imputer (Pedregosa et al., 2011): A version of the MICE algorithm (Van Buuren
& Groothuis-Oudshoorn, 2011). See 3.1 for additional information.

• MissForest (Stekhoven & Bühlmann, 2012): A non-parametric imputation method that uses
random forests to predict the missing values, based on the observed values.

• GRU-D (Che et al., 2018): A deep learning model, based on Gated Recurrent Unit (GRU),
that incorporates two representations of missing patterns, masking and time interval. Note
that GRU-D (Che et al., 2018) is not explicitly designed for missing values imputation, and
cannot be directly used in an unsupervised setting. Hence, it was used for prediction and
excluded from the masking experiment.

A.2 DATASETS PREPROCESSING DETAILS

A.2.1 MIMIC-III

This section describes the preprocessing of the MIMIC-III dataset. MIMIC-III contains clinical care
data for N=46,520 patients (patients available in both ADMISSIONS and PATIENTS data tables).

Variable extraction and mapping. We extracted 30 longitudinal features, including vital signs,
basic metabolic panel (BMP), hematology panel, and coagulation panel (Supplementary Table S1).
Variables that were measured with different monitoring modalities were merged (for example, fin-
gerstick glucose and blood glucose). We note that laboratory tests that were measured through other
body fluids than blood (e.g., urine) were removed. Unit conversions were done when required. For
the prediction tasks, we also utilized the patients’ age and gender information.

Outlier removal. To remove incorrect measurement values (due to typos for example), we manually
defined with clinicians ranges of possible values for each longitudinal variable (including patholog-
ical ones). Values outside these ranges were excluded.

Time discretization. The temporal data was discretized into a 15-minute grid.

Inclusion and exclusion criteria. We included only patients aged between ages 18 and 89 (patients
aged over 89 are masked in MIMIC) (N=36,564). In cases of several hospital admissions, we focused
on the first admission of each patient. Only patients with at least one measurement of any of the
longitudinal variables during the first hospitalization were included. The resulting cohort consists of
2,575,254 observations of N=35,968 patients,

A.2.2 COVID-19

We evaluated our proposed model on an additional retrospective cohort comprising two datasets
from hospitals A and B. The A dataset consisted of all COVID-19 patients admitted to A between
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March 2020 and March 2021 (NA = 782). The B dataset consisted of all COVID-19 patients
admitted to B between March 2020 and April 2021 NB = 2, 511). The study was reviewed and
approved by the Institutional Review Boards (details removed for blinded refereeing).

The data used for this study included age, gender, and 13 longitudinal features, including labora-
tory test results and vital signs (See Supplementary Table S2). We mapped variables from the two
hospitals and performed unit conversions when required. Similarly to the MIMIC-III preprocessing,
we removed clinical outliers, namely, variable values that are out of predefined valid ranges. The
temporal data was discretized to an hourly time grid, and multiple values of a test measured within
the same hour were aggregated by mean.

A.3 MASKING EVALUATION WITH FORWARD FILLING

Imputation by forward-filling is insufficient to enable prediction. After using forward-filling the
dataset often has a large fraction of missing values (see Table S5). Imputation of the remaining
values cannot be done with Backward-filling, as it leads to severe leakage of future information. To
properly compare forward-filling, we evaluated masking only on elements that had filled values by
forward-filling, ignoring values left empty by the process. Note that this might bias our experiment
towards highly measured variables and patients, a subset where it could be reasonable to use the
most recent values with forward-filling. Figure A.3 summarizes the imputation performance on
this subset, in terms of NRMSE. TDI outperformed the other methods for 21 out of 30 variables.
It also had the best overall RMSE and NRMSE scores (Table S6). Forward filling demonstrated
comparable results on this subset, with the best overall SMAPE score.

A.4 MULTIPLE IMPUTATION

Single imputation does not account for the uncertainty in imputation estimates. Multiple imputation
can be performed to measure uncertainty by providing valid standard errors and confidence intervals
for the imputation estimates. That is, rather than generating a single imputed dataset X̃ for a single
data matrix X , we generate m imputed datasets. These imputed datasets can then be utilized in the
subsequent pipeline (e.g., masking, prediction, and analysis) to derive multiple final results. This
process can be used to better understand the variability in final results and to measure the uncertainty
in estimation. As implemented in the IterativeImputer, our method can be readily used for multiple
imputations by applying it repeatedly to the same dataset with different random seeds.

A.5 PREDICTION TASKS DETAILS

A.5.1 BASELINE PREDICTION

We performed a baseline binary classification task on MIMIC-III for predicting mortality in hospi-
talization or 30 days thereafter, based on data obtained in the first 48 hours after admission. We eval-
uated ten ML models for this prediction task, including feedforward neural network (Haykin, 1994),
SVM (Cortes & Vapnik, 1995), Logistic Regression, Random Forest (Breiman, 2001), CatBoost
(Dorogush et al., 2018), XGBoost (Chen & Guestrin, 2016) and GRU-D (Che et al., 2018). Note
that GRU-D doesn not use an external imputation method. While the considered classifiers cannot
directly handle time series of different lengths for predicting a single target in time (e.g., mortality),
the GRU-D uses a time-series sequence input for a single prediction. To perform a fair comparison,
after data imputation, we sampled the time-series data to get a fixed-length input. Specifically, we
used the two last observations in the first 48 hours for each patient. We also concatenated the mask-
ing vector along with the measurements, similarly as done in the GRU-D architecture. The GRU-D
in contrast was fed initially with the full time-series dataset, giving it a potential advantage. To es-
timate the effect of the imputations on the predictive performance in different subsamples, we used
5-fold cross-validation. In each iteration, an imputation method was first applied, and then each of
the predictive models was trained on the imputed data. The imputation was done separately on the
train and test folds. Finally, the model performance was measured using the area under the receiver-
operator characteristics curve (AUROC) and the area under the precision-recall curve (AUPR) over
the test folds.

To create the baseline prediction setting, exclusion/inclusion criteria were applied. The number of
patients and observations remaining (out of N=2000 subsamples) after each criterion are listed:
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• Exclude patients who died less than 60 hours since admission (N=1,941 patients, 145,287
observations), as we wish to predict at least 12 hours in advance.

• Include observations from the first 48 hours (N=1,938 patients, 45,492 observations).
• Exclude empty observations, namely, such that all 30 longitudinal features are missing

(N=1938 patients, 44,659 observations).
• Include patients with at least three time-points (N=1,740 patients, 44,312 observations).

The resulting cohort contains 1,740 patients, of which 156 patients had a positive outcome (8.9%).

A.5.2 LONGITUDINAL PREDICTIONS

We performed a binary classification task for every hourly observation to predict mortality in one to
seven days. Patient observations where mortality was reported in the next seven days were called
positive, and the rest were called negative. Observations from the 24-hours prior to the target event
were excluded.

The initial cohort included 3,293 (195,237 observations) patients from both datasets. To create the
longitudinal prediction setting, the following exclusion/inclusion criteria were applied:

• Exclude pregnant women and patients aged ≤ 18 (N=2,940 patients).
• Include only patients admitted for more than 24 hours (N=2,563 patients).
• Exclude patients who died less than 48 hours since admission (N=2,534 patients).
• Exclude observations recorded in the 24-h gap prior to the target, as we wish to predict in

advance.

The resulting cohort consists of 43,812 hourly observations of 2,534 patients. 3,487 (7.9%) obser-
vations of 453 patients were labeled positive.

8
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A.6 SUPPLEMENTAL TABLES AND FIGURES

(a) Data Matrix (b) Mask Matrix

Figure A.1: Patient data. (a) The longitudinal data matrix of patient i, denoted asXi. Each patient’s
matrix consists of D covariates (columns) and a different number of time-points ti (rows). Missing
values are shaded. (b) A mask matrix that indicates which values of X are observed.

Figure A.2: Predictive tasks along the patient timeline. Top: Baseline prediction. The model
generates a single prediction for each patient, based on baseline data from the first 48-h after ad-
mission. Bottom: Longitudinal prediction. The model generates longitudinal predictions for each
patient, based on data from the entire hospitalization period. The blue areas refer to the time interval
when the predictions are made. The Red dashed area represents blocked prediction periods during
which no predictions are made.

9



Published as a conference paper at ICLR 2023

Figure A.3: Masking performance on the forward-filled subset. A comparison of imputation
models for each variable, using NRMSE (lower is better). This evaluation was focused on elements
that had filled values by forward-filling. TDI imputation (orange dashed bar) does best in 21 out of
30 variables.

Figure A.4: Performance of baseline mortality prediction in MIMIC-III, using 5-fold cross-
validation. TDI (orange dashed) improves the AUPR (y-axis) in all classifiers. Horizonal line:
median.

Figure A.5: Performance of longitudinal mortality predictions on the COVID-19 data. Com-
parison of machine learning models using 3-fold cross-validation. TDI (orange dashed) improves
AUROC (top) and AUPR (bottom) in all classifiers. Horizonal line: median.
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Variable Unit N Mean ± SD Missing Rate (%)
Heart Rate (HR) BPM 1483322 86.73 ± 17.83 42.4
Respiratory Rate (RR) BPM 1482838 20.07 ± 5.83 42.42
Spo2 % 1459840 96.93 ± 3.15 43.31
Systolic Blood Pressure (SBP) mmHG 1427439 121.47 ± 22.38 44.57
Diastolic Blood Pressure (DBP) mmHG 1426266 62.41 ± 14.55 44.62
Glucose (GLU) mg/dL 822380 136.43 ± 55.98 68.07
Hematocrit (HCT) % 464369 30.33 ± 4.88 81.97
Potassium (POT) mEq/L 443183 4.08 ± 0.59 82.79
Hemoglobin (HGB) g/dL 439220 10.3 ± 1.77 82.94
Sodium (SOD) mEq/L 422425 138.69 ± 5.03 83.6
Temperature Celsius 414649 36.98 ± 0.83 83.9
Chloride mmol/L 414014 104.05 ± 5.97 83.92
Creatinine (CREA) mg/dL 414084 1.41 ± 1.41 83.92
Urea Nitrogen (BUN) mg/dL 412401 28.61 ± 23.06 83.99
Bicarbonate (HCO3) mEq/L 404863 25.33 ± 4.76 84.28
Platelet Count 10e3/µL 396073 233.38 ± 148.75 84.62
White Blood Cells (WBC) 10e3/µL 379718 11.37 ± 6.93 85.26
Red Blood Cells (RBC) m/µL 377993 3.42 ± 0.6 85.32
MCV fL 377547 89.86 ± 6.2 85.34
Red Cell Distribution Width (RDW) % 377251 15.54 ± 2.32 85.35
pCO2 mmHg 349334 41.85 ± 10.11 86.43
pO2 mmHg 349387 141.19 ± 90.66 86.43
Calcium mg/dL 326887 8.39 ± 0.8 87.31
PT Sec 248814 16.02 ± 4.97 90.34
Albumin (ALB) g/dL 63613 2.9 ± 0.67 97.53
Lactate Dehydrogenase (LD) IU/L 54444 530.19 ± 1045.02 97.89
Lymphocytes (Lym) % 49035 15.57 ± 16.88 98.1
Neutrophils (Neu) % 48818 74.39 ± 18.88 98.1
Fibrinogen (FIB) mg/dL 29644 312.39 ± 192.28 98.85
D-Dimer (DDM) ng/mL 1826 4128.61 ± 3435.9 99.93

Table S1: List of 30 variables after preprocessing the MIMIC-III dataset.

Variable Unit N Mean ± SD Missing Rate (%)
Heart Rate (HR) BPM 129026 85.88 ± 18.94 33.91
Temperature Celsius 80513 36.9 ± 0.82 58.76
SBP mmHG 70818 128.46 ± 22.36 63.73
DBP mmHG 70564 69.97 ± 14.55 63.86
Saturation % 68386 94.77 ± 5.04 64.97
Glucose mg/dL 51713 164.43 ± 76.8 73.51
HCO3 mmol/L 31083 29.42 ± 7.11 84.08
Platelets 10e3/µL 18658 244.54 ± 126.22 90.44
BUN mg/dL 18473 32.34 ± 26.56 90.54
Neutrophils (#) 10e3/µL 18431 8.12 ± 5.53 90.56
Lymphocytes (#) 10e3/µL 18261 1.25 ± 1.29 90.65
Albumin g/L 12755 31.46 ± 6.84 93.47
LDH U/L 11416 844.54 ± 2175.36 94.15

Table S2: List of 13 variables after preprocessing the COVID-19 datasets.
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Evaluation Metric Formula

RMSE

√
1
n

∑n
i=1

(
yi − ŷi

)2
NRMSE RMSE

ymax−ymin

SMAPE 1
nΣn

i=1
|ŷi−yi|

(ŷi+yi)/2

Table S3: Evaluation measures of differences between values. y and ŷ refer to the actual and
estimated values, respectively. RMSE: Root Mean Squared Error. NRMSE: Normalized Root Mean.
SMAPE: Symmetric mean absolute percentage error

Imputation RMSE NRMSE SMAPE
TDI 0.636 0.060 0.858
SoftImpute 0.851 0.079 1.365
Iterative Imputer 0.891 0.084 1.416
MissForest 0.932 0.086 1.058
Mean 1.013 0.095 1.985
Median 1.031 0.097 1.446
KNN 1.124 0.102 1.324

Table S4: Masking overall performance. The average value across all variables in MIMIC-III, for
difference evaluation metrics.
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Variable Missing Rate (%)
Glucose (GLU) 2.08
Hemoglobin (HGB) 3.68
Hematocrit (HCT) 4.13
Creatinine (CREA) 4.45
Urea Nitrogen (BUN) 4.45
Platelet Count 4.55
Chloride 4.56
Bicarbonate (HCO3) 4.59
White Blood Cells (WBC) 4.93
Red Blood Cells (RBC) 4.94
Red Cell Distribution Width (RDW) 4.96
Potassium (POT) 4.98
MCV 4.98
Sodium (SOD) 5.21
Calcium 9.6
PT 10.23
pO2 20.2
pCO2 20.2
Respiratory Rate (RR) 26.85
Heart Rate (HR) 26.89
Spo2 26.97
Systolic Blood Pressure (SBP) 27.05
Diastolic Blood Pressure (DBP) 27.05
Temperature 29.0
Albumin (ALB) 40.69
Neutrophils (Neu) 47.62
Lymphocytes (Lym) 47.75
Lactate Dehydrogenase (LD) 49.44
Fibrinogen (FIB) 63.87
D-Dimer (DDM) 94.79

Table S5: Missing rates after forward-filling imputation. The variable missing rates (observation-
wise) after using forward-filling imputation on the MIMIC-III masking sample (N=8,000).

Imputation RMSE NRMSE SMAPE
TDI 0.573 0.054 0.736
Forward Filling 0.601 0.056 0.717
SoftImpute 0.846 0.078 1.366
Iterative Imputer 0.886 0.083 1.417
MissForest 0.92 0.084 1.059
Mean 1.007 0.094 1.984
Median 1.029 0.097 1.459
KNN 1.118 0.101 1.328

Table S6: Masking performance on the forward-filled subset. The average value across all vari-
ables in MIMIC-III, for difference evaluation metrics.
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AUROC AUPR
N ML Model Imputation Mean Median SD Mean Median SD

2,000 Random Forest TDI 0.814 0.825 0.023 0.339 0.342 0.069
CatBoost TDI 0.813 0.817 0.015 0.313 0.323 0.033
XGBoost TDI 0.809 0.81 0.042 0.342 0.355 0.029
L1 LR TDI 0.792 0.807 0.033 0.313 0.317 0.05
2-layer NN TDI 0.791 0.814 0.051 0.28 0.272 0.048
L2 LR TDI 0.791 0.806 0.033 0.316 0.347 0.062
GRU-D GRU-D 0.786 0.78 0.015 0.302 0.314 0.082
SVM (Linear) TDI 0.786 0.807 0.045 0.322 0.338 0.071
SVM (RBF) TDI 0.785 0.772 0.027 0.292 0.314 0.037
4-layer NN TDI 0.745 0.756 0.052 0.257 0.277 0.06

10,000 GRU-D GRU-D 0.817 0.818 0.016 0.363 0.359 0.041
CatBoost TDI 0.816 0.817 0.012 0.362 0.365 0.022
L1 LR TDI 0.8 0.801 0.005 0.344 0.359 0.032
L2 LR TDI 0.799 0.799 0.005 0.342 0.358 0.034
SVM (Linear) TDI 0.798 0.797 0.004 0.338 0.354 0.039
Random Forest TDI 0.797 0.797 0.012 0.344 0.346 0.017
XGBoost TDI 0.794 0.79 0.01 0.322 0.332 0.025
SVM (RBF) TDI 0.762 0.76 0.008 0.323 0.328 0.022
2-layer NN TDI 0.748 0.747 0.004 0.283 0.292 0.023
4-layer NN TDI 0.688 0.695 0.014 0.251 0.252 0.025

Table S7: Performance of baseline mortality prediction in MIMIC-III, using 5-fold cross-
validation. For each classifier, only the best performer imputation method is presented. GRU-D
does not use external imputation methods. Best measures per sample size are bolded.
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