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Abstract
The laminar microstructure of the cerebral cortex has distinct anatomical characteristics of the development, function, 
connectivity, and even various pathologies of the brain. In recent years, multiple neuroimaging studies have utilized magnetic 
resonance imaging (MRI) relaxometry to visualize and explore this intricate microstructure, successfully delineating the 
cortical laminar components. Despite this progress, T1 is still primarily considered a direct measure of myeloarchitecture 
(myelin content), rather than a probe of tissue cytoarchitecture (cellular composition). This study aims to offer a robust, 
whole-brain validation of T1 imaging as a practical and effective tool for exploring the laminar composition of the cortex. 
To do so, we cluster complex microstructural cortical datasets of both human (N = 30) and macaque (N = 1) brains using an 
adaptation of an algorithm for clustering cell omics profiles. The resulting cluster patterns are then compared to established 
atlases of cytoarchitectonic features, exhibiting significant correspondence in both species. Lastly, we demonstrate the 
expanded applicability of T1 imaging by exploring some of the cytoarchitectonic features behind various unique skillsets, 
such as musicality and athleticism.
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Introduction

Progress in MRI imaging of T1 layers

The intricate laminar structure of the cerebral cortex was 
first discovered toward the end of the nineteenth century 
using ex vivo histological methods, sparking over a cen-
tury of studies into its assumed roles in the development, 
function, connectivity, and even pathologies of the brain 
(Meynert 1872; Bevan Lewis 1879; Ramón y Cajal et al. 
1988; García-Cabezas et al. 2019). With the advent of MRI 
neuroimaging, the cerebral cortex was successfully seg-
mented, delineating its cortical surfaces bordering with 

underlying white matter and the surrounding cerebrospinal 
fluid (Fischl 2012). However, the laminar substructure of the 
cerebral cortex was initially assumed to be beyond the imag-
ing capabilities of MRI. Since then, an increasing number 
of neuroimaging studies have proposed a variety of MRI 
imaging modalities and approaches for exploring the lami-
nar composition of the cortex, with T1 relaxometry proving 
to be one of the most suitable and accurate approaches so 
far (Clark et al. 1992; Barbier et al. 2002; Bridge and Clare 
2006; Duyn et al. 2007; Deistung et al. 2013; Glasser et al. 
2014; Lutti et al. 2014; Shafee et al. 2015; Assaf 2019; Van 
Essen et al. 2019).

The applicability of T1 relaxometry in exploring the 
cortical laminar composition was established in a series of 
studies. In 2012, a study characterized the cortical layers 
in the brains of both humans and rats and compared the 
resulting T1 clusters to histological findings from the rat 
brain (Barazany and Assaf 2012). In 2018, a larger scale 
study used the same inversion recovery (IR) MRI protocol 
to explore the laminar composition of both humans and 
rats, concluding that low-resolution T1 mapping is the most 
appropriate approach for delineating the layers (Lifshits 
et al. 2018). The study concluded that due to their small 
physical thickness, the layers are better delineated using 
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high resolution in the T1 relaxation domain, rather than 
high resolution in the spatial domain. While this conclu-
sion is counterintuitive, it is analogous to diffusion MRI, in 
which micron-level resolution is achieved not by generating 
an image at the micron scale, but rather by characterizing a 
micron-scale phenomenon (Lifshits et al. 2018). In 2019, a 
complete automated framework was formed for analyzing 
the cortical laminar composition using low-resolution multi-
T1 mapping and a simple surface-based volumetric sampling 
system (Shamir et al. 2019). What followed were several 
studies using multi-T1 imaging to explore the role of the 
cortical laminar composition in different pathologies, such 
as epilepsy (Lotan et al. 2021), as well as in healthy aging 
(Tomer et al. 2022). Other studies modeled and explored 
patterns of cortical connectivity on the laminar level (Shamir 
and Assaf 2021a, b; Shamir et al. 2022).

The abovementioned studies provide fur ther 
substantiation for cortical laminar composition analysis 
using low-resolution, multi-T1 imaging. However, this 
methodology has so far been limited by the fact that T1 
is still not considered a direct measure of cytoarchitecture 
(cellular composition). This study aims to offer a robust, 
whole-brain validation of T1 imaging as a practical and 
effective probe for exploring cortical microstructure on the 
laminar level.

Challenges in clustering multilayered surface‑based 
data

Use of the framework for cortical laminar composition anal-
ysis (Shamir et al. 2019, 2022; Shamir and Assaf 2021a, b) 
results in a multilayered, surface-based dataset represent-
ing the regionally varying laminar composition across the 
cortical surfaces of both hemispheres. Despite the estab-
lished correspondence between T1 layers and the actual cor-
tical layers (Clark et al. 1992; Barbier et al. 2002; Bridge and 
Clare 2006; Duyn et al. 2007; Barazany and Assaf 2012; 
Deistung et al. 2013; Glasser et al. 2014; Lutti et al. 2014; 
Shafee et al. 2015; Lifshits et al. 2018; Assaf 2019; Shamir 
et al. 2019, 2022; Van Essen et al. 2019; Lotan et al. 2021; 
Shamir and Assaf 2021a, b; Tomer et al. 2022), T1 is still 
thought to be more of a direct measure of myeloarchitec-
ture (myelin content) than of cytoarchitecture (Glasser et al. 
2016; Shamir and Assaf 2023). This dataset is both multi-
dimensional and geometrically complex: up to six cortical 
laminar components, representing the regionally varying 
microstructure of the cortex, are measured across vertices of 
a Delaunay triangulation, delineating the intricate geometry 
of the cortex. It is noted that some components (or laminar 
components) can have the value zero at some vertices. More 
specifically, for each hemisphere the triangulation consists of 
~150,000 vertices, connected by ~300,000 faces, with lami-
nar composition values available for each vertex, including 

six laminar components corresponding to the widths of T1 
layers 1–6 (see Fig. 1, part 1).

We hypothesize that suitable clustering of the T1 layer 
composition across the entire cortex should correlate 
to spatially defined cortical regions with distinct 
cytoarchitectonic features. While many cortical atlases 
exist, one of the most robust reference atlases for cortical 
cytoarchitecture is the granularity atlas (von Economo 2009). 
The granularity atlas divides each hemisphere into about a 
dozen continuous regions, each labeled with a granularity 
index of 1–6 according to the level of overall cross-section 
cellular granularity observed histologically (see Fig.  1, 
parts 2–3). Its robustness and applicability for our needs 
lie in the fact that it divides the cortex into regions based 
on cytoarchitectonic features alone. Since its publication, 
the granularity atlas has been further discussed (Beul and 
Hilgetag 2014), made publicly available (Scholtens et al. 
2016), and repeatedly utilized (Shamir and Assaf 2021a, b; 
Parkes et al. 2022; Sajad et al. 2022; Shamir et al. 2022; 
Wallace et al. 2022; Katsumi et al. 2023).

Analyzing patterns in this complex laminar dataset is no 
simple task, since the ability to visualize the entire dataset 
simultaneously is limited, and therefore, accurate whole-
brain clustering must be accomplished. The first challenge 
in clustering the dataset relates to its surface-based nature, 
in which the spatial locations of the data are not given across 
pixels or voxels, but rather across vertices on a triangulation 
surface. The second challenge relates to the dimensionality 
and low variability of the data, which includes six T1 layer 
widths with an overall average cortical cross section of 
approximately two millimeters. The third and final challenge 
relates to both spatial dispersion and multidimensionality: 
accurate clustering must take into consideration not only 
the T1 layer composition at each given data point but 
also the compositions of its neighboring data points. The 
importance of identifying neighborhoods of data points with 
similar laminar compositions (clusters) lies in the expected 
correspondence with well-defined cortical regions with 
distinct cytoarchitectonic features. Furthermore, at times 
even smaller regions vary in their cytoarchitectonic features. 
For example, gyral caps (peaks) and sulcal fundi (valleys) 
vary in their overall thickness as well as in their laminar 
substructure.

Existing methods for clustering multidimensional, 
graph‑based datasets

One popular approach for clustering data with spatial 
information is by using graphs. In this approach, graph 
vertices represent data points in space and graph edges 
connect vertices that are close in space. Edges can be 
weighted reflecting the distance between the points. Over 
the years, a plethora of clustering algorithms have been 
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developed for the problem, including some of the following: 
similarity graph connectivity clustering (Hartuv and 
Shamir 2000), density-based clustering using both attribute 
similarity and spatial proximity (Liu et al. 2012), distributed 
K-means clustering of mesh networks (Ramesh 2015), and 
community detection in networks (Girvan and Newman 
2002; Traag et al. 2019).

In medical imaging, various algorithmic approaches 
have been proposed for dealing with graph-based image 
segmentation (Chu et al. 2002) and density-based image 
segmentation using super-pixels (Zhang et al. 2017). In the 
field of MRI neuroimaging, different algorithmic approaches 
have been developed for threshold-free, surface-based 
clustering (Lett et  al. 2017), as well as for community 
detection in functional networks (Akiki and Abdallah 
2019). Recently, a novel algorithm in the field of omics, 
which includes genomics, transcriptomics, proteomics, and 
metabolomics, has been developed for clustering cell omics 
profiles using the spatial organization of the cells (Singhal 
et al. 2022). The algorithm, Building Aggregates with a 

Neighborhood Kernel and Spatial Yardstick (BANKSY), 
clusters multidimensional omics data across a surface-based 
spatial representation.

Methods and materials

Histological dataset‑BigBrain segmentation

The histological dataset was provided by BigBrain, a high-
resolution, three-dimensional histological model of the 
human brain (Amunts et al. 2013). Based on reconstruction 
of 7,404 histological sections, BigBrain provides a cellular-
level resolution of 20 µm of the brain. This dataset was 
utilized to provide the first whole-brain three-dimensional 
segmentation of all cortical and laminar surfaces in the 
human cerebral cortex. The layers were automatically 
segmented using a convolutional neural network based 
on histological intensities along cortical profiles sampled 
between the pial and white matters throughout the cortex. 

Fig. 1  Multilayered surface-based dataset and a cytoarchitectonic 
granularity atlas: (1) Multilayered cytoarchitectonic surface-based 
dataset: the cerebral cortex is represented by a Delaunay triangula-
tion, delineating the mid cortical surfaces of each hemisphere (seen 
from a superior view in A). A single vertex is seen (yellow) on a 
sulcus in the frontal lobe of the right hemisphere, surrounded by its 
thirty closest neighboring vertices (blue) (B). The cytoarchitectonic 
laminar composition at the location of the chosen vertex is shown, 
including widths of six laminar components: T1 layers 1–6 (colored 

individually in C). (2–3) A cytoarchitectonic atlas of granularity 
indices: cytoarchitectonic labeling of cortical regions according to 
granularity indices across the cerebral cortex. Granularity indices: (0) 
non-neocortical regions, (1) agranular, (2) slightly granular, (3, 4, 5) 
increasing levels of granule cell presence (3  <  4  <  5), (6) granular 
cortex. The entire atlas (2) and its components (3) can be seen from 
different viewpoints: (A) superior, (B) caudal, (C) lateral (left), (D) 
inferior
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These surfaces were used to evaluate cortical thickness 
gradients and the contributions of different cortical laminae 
to these gradients (Wagstyl et al. 2020). Since its publication, 
this dataset has been made publicly available and repeatedly 
utilized (e.g., Bazinet et al. 2023; Han et al. 2023; Shafiei 
et al. 2023). The BigBrain dataset is provided in a surface-
based format, including cortical surfaces delineating the 
borders of all cortical laminar components, from which 
laminar widths are easily extracted. Data are freely available 
at: https:// bigbr ainpr oject. org/

Neuroimaging datasets‑MRI T1 layers

Human (N = 33)

The human neuroimaging dataset includes (N = 33) healthy 
human subjects, 16 male and 17 female, 18–78 years old, all 
neurologically and radiologically healthy with no history of 
neurological diseases. Of the (N = 33) subjects, (N = 30) 
subjects were chosen from the same dataset used by (Shamir 
et al. 2022) for assessing the overall resulting clustering 
patterns. The additional (N = 3) subjects included were 
chosen from three groups of interest: a professional athlete, a 
professional musician, and a multilingual subject (polyglot). 
These exemplary subjects were chosen for assessing subject-
specific features in comparison to the thirty-subject group 
average. Data for all subjects (N = 33 in total) were collected 
and processed in the same way.

All subjects gave fully informed consent before 
enrollment in this study. The whole study and the imaging 
protocols were approved by the institutional review boards 
of Sheba Medical Center and Tel Aviv University, where 
the MRI investigations were performed. All methods were 
performed in accordance with the relevant guidelines 
and regulations. Each subject was then scanned in a 3 T 
Magnetom Siemens Prisma (Siemens, Erlangen, Germany) 
scanner with a 64-channel RF coil and gradient strength of 
up to 80 mT/m at 200 m/T/s. The scans include the following 
sequences:

1. A T1-weighted MPRAGE sequence, with the following 
parameters: TR/TE  =  1750/2.6  ms, TI = 900  ms, 
1 × 1 × 1 mm3 , 224 × 224 × 160 voxels. Acquisition 
time was approximately 3.5 min.

2. An inversion recovery echo planar imaging (IR 
EPI) sequence, with the following parameters: TR/
TE  =  10,000/30  ms and 60 inversion times spread 
between 50  ms up to 3000  ms, 3  ×  3  ×  3  mm3 , 
68 × 68 × 42 voxels, each voxel fitted with up to 7 dis-
crete and weighted T1 values using seven individual 
exponential fits, based on an assumption regarding the 
number of T1 components in the tissue (Lifshits et al. 
2018). Acquisition time was approximately 12 min.

Total scan time for both sequences was approximately 
15.5 min.

The first sequence was used as an anatomical reference, 
as well as for delineating the cortical surfaces, and the 
second sequence was used for characterizing the cortical 
layers. The acquired images were processed according to 
the framework for cortical laminar composition analysis. 
In general terms, the framework starts with estimation of 
multiple T1 components per voxel in the IR EPI images 
using an IR decay function fit. The whole-brain histogram 
of weighted T1 values then undergoes probabilistic clas-
sification into different brain tissues using a t-distribution 
mixture model. After precise image registration, the corti-
cal surfaces are extracted from the MPRAGE image and a 
cortical sampling system of virtual spheres is built within 
the delineated cortical volume. The per-voxel classified T1 
values are then sampled within the cortical spheres using 
a super-resolution solution. The result is an estimation of 
T1 layer values across the cortical surfaces (Shamir et al. 
2019; Shamir and Assaf 2021b; Shamir et al. 2022; Shamir 
and Assaf 2023, see Fig. 2).

Macaque (N = 1):

The macaque neuroimaging dataset is taken from Shamir 
and Assaf (2021b) and includes a single excised macaque 
brain that was obtained from the Mammalian MRI (MaMI) 
database (Assaf et al. 2020). No animals were deliberately 
euthanized for the present study. The excised macaque 
brain was formalin fixated, and some 24 h before MRI it 
was placed in phosphate-buffered saline for rehydration. 
For the scan, the brain was placed in a plastic bag and 
immersed in fluorinated oil (Flourinert, 3 M) to minimize 
image artifacts caused by magnetic susceptibility effects. 
The brain was scanned on a 7 T/30 Bruker scanner with 
a 660 mT/m gradient system. The high-resolution scans 
include the following sequences:

1. A T1w sequence with a 3D modified driven equilibrium 
Fourier transform (MDEFT), with the following 
parameters: TR/TE  =  1300/2.9  ms, TI  =  400  ms, 
0.2  ×  0.2  ×  0.2  mm3 , 300  ×  360  ×  220 voxels. 
Acquisition time was approximately 2 h and 13 min.

2. An inversion recovery sequence using 3D FLASH, with 
the following parameters: TR/TE = 1300/4.672 ms and 
44 inversion times spread between 25 ms up to 1000 ms, 
voxel size 0.67 × 0.67 × 0.67 mm3 , 96 × 96 × 68 voxels, 
each voxel fitted with up to 8 discrete and weighted 
T1 values using eight individual exponential fits 
(similarly to (Lifshits et al. 2018)). Acquisition time was 
approximately 69 h and 34 min.

https://bigbrainproject.org/
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Total scan time for both sequences was approximately 
71 h and 47 min.

The first sequence was used as an anatomical reference 
with high gray/white matter contrast for segmentation 
and estimation of cortical surfaces (like the clinical 
MPRAGE sequence), and the second sequence was used for 
characterizing the cortical layers. The acquired images were 
processed according to the framework for cortical laminar 
composition analysis, using an adaptation for the macaque 
dataset (Shamir et al. 2019, 2022; Shamir and Assaf 2021b).

Ground truth reference‑granularity atlas

In performance analysis of algorithms, to evaluate the 
quality of a solution, it is compared to an independently 
available, established reference resource, defined—for the 
sake of the evaluation—as the ideal expected result, or 
the “ground truth”. Here, the cortical atlas of granularity 
indices (as shown in Fig. 1, parts 2–3) was used as the 
ground truth reference for cytoarchitecture. The granularity 
atlas labels cortical regions according to the overall level of 
cytoarchitectonic granularity observed histologically across 
cortical cross sections, from agranular low order cortex 
to high order granular cortex. The atlas was generated by 
manual labeling of the 44 cytoarchitectonic regions (per 
hemisphere) of the von Economo–Koskinas atlas, resulting 

in about a dozen continuous regions with varying degrees 
of granularity (von Economo 2009; Beul and Hilgetag 2014; 
Scholtens et al. 2016; Shamir and Assaf 2021a). A similar 
atlas of cortical granularity was used for the macaque brain, 
based on a map of cytoarchitectonic features across the 
primate cortex (Beul and Hilgetag 2019; Shamir and Assaf 
2021b).

BANKSY algorithm adaptation

In this study we use the BANKSY algorithm for spatial 
clustering (Singhal et  al. 2022). The algorithm was 
originally developed for clustering cells into types based 
on their transcription profiles and spatial organization. We 
adapt and implement the algorithm on surface-based cortical 
laminar composition datasets, both histological (BigBrain) 
and neuroimaging (MRI T1 layers). Our implementation of 
the algorithm includes the following steps:

1. Neighbor-augmented matrix construction:
  For each hemisphere, we construct a neighbor-

augmented matrix as described by Singhal et al. (2022) 
using cortical layer width values instead of genomic 
transcription expression values. The matrix B is m × n, 
where n ≅ 150,000 columns, corresponding to vertices 
on the cortical surface, and m = 12 (see Eq. 1). Each 

Fig. 2  An outline of the framework for analyzing the cortical 
laminar composition: (1) MPRAGE image acquisition (axial) as an 
anatomical reference of the overcall cortical geometry. (2) Cortical 
surfaces extraction, including the inner and outer cortical borders. (3) 
Cortical spheres formation, including a system of volumetric spheres 
across the cortex. (4) The outer cortical surface of the left hemisphere 
(gray) and the cortical spheres beneath it (red) are seen from a cau-
dal viewpoint. (5) IR EPI image acquisition (axial) for characterizing 
composition of the cortical layers. (6) T1 analysis using probabilistic 

classification of the T1 histogram (black bins) into a mixture of t-dis-
tributions (colored lines) corresponding to different brain tissues. (7) 
T1 layer sampling of t-distributions 2–9, corresponding to T1 layers 
VI-I (top), from a weighted voxel-wise basis to the system of corti-
cal spheres (bottom). (8) Resulting T1 layers 1–6, represented here by 
the cortical surfaces bordering with each component (coronal view of 
both hemispheres). The thirty-subject average dataset, including both 
standard connectivity and laminar connectivity, is freely available at 
https:// github. com/ ittais/ Lamin ar_ Conne ctivi ty

https://github.com/ittais/Laminar_Connectivity
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column in the top half of the matrix Btop includes the 
six cortical layer widths for the vertex, and the bottom 
half Bbottom includes the six layer widths averaged 
over the neighborhood of the vertex. The contribution 
of each component is controlled by parameter � (see 
Eqs. 1–3). The neighborhood values are calculated by 
locating the thirty nearest vertices on the cortical surface 
and averaging them using the inverse of the distance 
to the original vertex, after normalizing the sum of the 
distances to one (see Eqs. 4 and 5).

where � is the neighborhood weight, we used � = 0.3 
(Singhal et al. 2022).

where Ci is the cortical layer widths for vertex i.

where �i is the average cortical layer widths of 
neighborhood of vertex i.

where Cj is the cortical layer widths for neighbor j of 
vertex i, wij—weight for neighbor j.

where rij is the distance of neighbor j from vertex i.
  For the histological dataset, because of its assumed 

high resolution and accuracy, we only used the six 
layer width values for each vertex. In other words, the 
neighbor-augmented matrix was ~150,000 ×  12 as 
described above.

  For the neuroimaging datasets, because the T1 layers 
correspond to laminar components and lack a one-to-
one correspondence to the histological cortical layers, 
we used the six layer width values as well as the overall 
cortical width values. The addition of the overall cortical 
width can be further explained by the relatively more 
established measurement of the cortical cross-section 
segmentation using MRI (Fischl 2012). Overall, the 
neighbor-augmented matrix was ~150,000  ×  14, 
including six cortical layer widths and the overall 
cortical width of the vertex, and six averaged cortical 
layer widths and the averaged overall cortical width of 
its neighborhood.

(1)B =

�

√

1 − �⋅ Btop

�⋅ Bbottom

�

(2)Btop = [C1 C2 … Cn]

(3)Bbottom = [�1 �2 … �n]

(4)�i =
∑30

j=1
wij ⋅ Cj

(5)wij =

1

rij

∑30

q=1

1

riq

2. Neighbor-augmented matrix clustering:
  The neighbor-augmented matrices for both 

hemispheres are concatenated into a single whole-brain 
matrix for clustering (see Eq. 6).

  For both the histological and the neuroimaging 
datasets we clustered the corresponding matrices using 
a simple unsupervised K-means clustering algorithm, 
which partitions the vectors (~150,000  ×  2 matrix 
columns) into K clusters. Aside from the variation in 
the construction of the neighbor-augmented vectors (see 
step 1), we used a different number of clusters K for 
the histological and neuroimaging datasets. For each 
dataset, K was selected according to visual assessment 
using global matching of regional patterns to those in the 
granularity atlas. For the histological dataset we got the 
best results when using K = 6, and for the neuroimaging 
datasets (N = 30 subjects) we repeatedly got the best 
results using K = 4. For the first neuroimaging subject, 
the clusters were relabeled 1–4 in increasing levels of 
average granularity according to the granularity atlas 
(see Fig. 1, parts 2–3). To obtain consistent cluster 
labeling across subjects, the K-means solution of one 
subject was used as seed for all other (N = 29) subjects. 
For the macaque neuroimaging dataset, we got the best 
results when using K = 5.

3. Evaluating the clustering results:
  After assigning a label to each vertex, the clusters were 

plotted across the cortical surfaces and visually assessed 
for hemispheric symmetry and overall similarity to the 
granularity atlas using global matching of regional 
patterns. To integrate the results across subjects, we used 
the Brainnetome atlas, which partitions the cortex into 
210 cortical regions, 105 regions per hemisphere (Fan 
et al. 2016). Three visual and quantitative assessments 
were then performed:

a. Hemispheric symmetry:

 i. A cross-subject cluster label was assigned 
to each cortical region according to a 
majority vote of all vertices in that region 
across all subjects (N = 30). To visually 
assess the symmetry, the clusters were 
plotted across the cortical surfaces.

 ii. To quantitatively assess the level 
of symmetry, for each subject, each 
region was assigned a per-subject label 
according to majority vote of its vertex 
labels. To measure symmetry, we used 
the pairing of regions in the left and right 
hemispheres. Symmetry for a single 

(6)Bwhole brain = [Bleft hemisphere Bright hemisphere].
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subject was defined as the percentage of 
pairs of regions that had the same label. 
Cohort symmetry was defined in the 
same way using the cross-subject cluster 
labels (see a(i)). Symmetry for randomly 
spatially permuted datasets was computed 
for comparison.

b. Inter-subject variability:
  To assess inter-subject variability, the per-subject 

region labels described in a(ii) were used. The 
standard deviation in cluster assignment per region 
across all (N = 30) subjects was then measured and 
plotted across the cortical surfaces.

c. Similarity to granularity atlas:
  To visually assess the similarity, the cross-subject 

region labels described in a(i) were used. The 
clusters were plotted across the cortical surfaces and 
compared to a simplified version of the granularity 
atlas. To quantitatively assess the correspondence, 
a hypergeometric test was performed (Fisher 1922, 
1992; Liddell 1976). The hypergeometric test, also 
known as Fisher’s exact test, uses the hypergeometric 
distribution to measure the statistical significance of 
drawing a sample consisting of a specific number 
of at least k successes out of a total of n draws 
from a given population size containing a given 
number of successes, assuming that draws are done 
independently at random without replacement. This 
test was used for comparing the resulting clusters 
to the simplified groups of granularity indices. For 
each index and cluster, the number of regions in 
that index that belong to that cluster was computed, 
and the significance of the index-cluster overlap 
was computed. P-values were corrected using the 
Bonferroni correction for multiple comparisons.

d. Subject-specific features:
  To visually assess the relative granularity features 

of the (N = 3) exemplary subjects, for each subject 
clusters were plotted in comparison to the thirty-
subject regional majority vote. Regions with clusters 
corresponding to higher granularity levels than 
the majority vote are presented in hot colors, and 
regions with lower granularity level are presented 
in cold colors.

Results

The same basic clustering algorithm was used for both the 
histological and the neuroimaging datasets, including two 
main parameters: neighborhood size and neighborhood 
weight. The neighborhood size, or number of vertices nearest 

to a given vertex to be averaged, was chosen by testing 
multiple values ranging between 0 and 100. When testing 
both types of datasets and increasing the neighborhood size 
incrementally, results did not change much beyond a size 
of thirty neighboring vertices. Accordingly, a neighborhood 
size of thirty vertices was deemed satisfactory for both types 
of datasets. The second parameter is the neighborhood 
weight ( � ), which weighs the relative contributions of 
the two components per vertex: its individual laminar 
composition value, and the averaged values of its 
neighborhood. The neighborhood weight was chosen by 
testing multiple values ranging between 0, representing 
no neighborhood contribution, and 1, representing solely 
neighborhood contribution. For both types of datasets, 
� = 0.3 resulted in the most visually distinct and cohesive 
clusters across the cortex and was consequently deemed 
most fitting. It is worth noting that the same neighborhood 
weight was used for omics data in the study that introduced 
BANKSY (Singhal et al. 2022).

Clustering the histological dataset

K-means clustering of the neighbor-augmented matrix for 
the histological dataset resulted in six distinct clusters that 
show correspondence to most of the six granularity indi-
ces in the granularity atlas (see results in Fig. 3). When 
examining the resulting six clusters, global matching of 
regional patterns appears. Firstly, overall visual assessment 
of the clusters shows high hemispheric symmetry between 
the left and right hemispheres. Secondly, the methodology 
successfully delineated occipital regions with increasingly 
high granularity, alongside successful delineation of tem-
poral regions with mid-to-low granularity levels (Fig. 3, 
top row B and C, respectively). When examining the six 
clusters individually, additional interesting features appear. 
As seen, the process successfully delineated non-neocortical 
regions (Fig. 3, row 1). This result is expected given the fact 
that no layer data are included for non-neocortical regions 
that have no granularity index labeling. The other clusters 
seem to correspond to regions with increasing granular-
ity indices, from frontal regions that are considered more 
agranular (Fig. 3, rows 2 and 3), to temporal and parietal 
regions that are considered more granular (Fig. 3, rows 4 
and 5), up to occipital regions that are considered entirely 
granular (Fig. 3, row 6). A third notable feature across all 
individual clusters is the differentiation across the cortical 
folding, i.e., gyral caps and sulcal fundi, which are known 
to differ in both thickness and laminar composition (Wagstyl 
et al. 2020; MacDonald et al. 2000).

The effective clustering of cortical layers in the 
histological dataset, accurately identifying cortical regions 
with varying cytoarchitectonic features, provided a proof 
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of concept for the consequent application of the BANKSY 
clustering algorithm on our T1 layer neuroimaging datasets.

Clustering the neuroimaging datasets

The results of K-means clustering of the neighbor-aug-
mented matrix for the neuroimaging dataset with K = 4 
clusters show correspondence to a coarser division of the 
granularity indices in the granularity atlas (see Fig. 4). When 
examining all four clusters simultaneously, once again it 
appears that the process successfully delineated occipital 
regions with increasingly high granularity, alongside suc-
cessful delineation of temporal regions with mixed granular-
ity levels (Fig. 4, top row B and C, respectively). Addition-
ally, relatively high hemispheric symmetry can be seen from 
visual assessment of clusters 1 and 4. When examining the 
four clusters individually, some interesting features appear. 
As seen, the process delineated non-neocortical regions but 
merged it with the agranular cortex (Fig. 4, row 1). While 
the histological dataset only includes laminar information 
for neocortical regions, the neuroimaging datasets also 
include information for non-neocortical regions, which are 
characterized by a laminar composition of only three to four 
layers. The other clusters seem to correspond to a coarser 
division into regions with increasing granularity indices, 
from frontal regions that are considered less granular (Fig. 4, 
row 2), to temporal and parietal regions that are considered 

more granular (Fig. 4, row 3), ending once more in occipital 
regions with high granularity (Fig. 4, row 4).

Similar patterns were observed in the clustering results 
of all (N = 30) subjects. The differentiation between cyto-
architecture in gyri and sulci that was previously observed 
for the histological dataset is also noticeable here across all 
individual clusters (see Fig. 5, part 1). Furthermore, when 
we randomly permute the spatial locations of the neighbor-
augmented vectors in the neuroimaging dataset and then 
apply the same adaptation of the BANKSY algorithm, any 
delineation of regions of cytoarchitectonic importance dis-
appears (see Fig. 5, part 2).

When examining the six resulting clusters for the excised 
Macaque brain, a similar cytoarchitectonic differentiation 
between gyri and sulci appears (see Fig. 5, part 3). While 
the excised macaque brain displays fewer dominant clusters, 
presumably relating to formalin fixation, the resulting 
clusters display high hemispheric symmetry and a clear 
delineation of regions relating to the macaque motor cortex.

To further evaluate the performance of the algorithm 
on the neuroimaging datasets, we computed per-subject 
cluster assignment to each region using majority voting 
and measured the standard deviation of results across all 
(N = 30) subjects. The regional majority vote was also 
used for measuring the overall accuracy of the results on 
a regional level, by finding cross-subject cluster assign-
ment to each region using majority vote of the points in 
the region across all subjects (see Fig. 6, part 1). Standard 

Fig. 3  Clustering histological dataset (BigBrain): All six clusters 
can be seen in the top row, and each individual cluster can be seen on 
the rows below (1–6): (1) non-neocortical regions, (2, 3, 4) agranular 

to increasingly granular cortices, (5, 6) increasingly granular to gran-
ular cortex. The clusters can be seen from different viewpoints: (A) 
superior, (B) caudal, (C) lateral (left), (D) inferior
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deviation was used for measuring variability in per-subject 
regional cluster assignment across subjects (see Fig. 6, part 
2). The evaluation reestablishes the coarser delineation of 
overall granularity patterns: high granularity in occipital 
regions and in the postcentral gyrus, mixed granularity 
in temporal regions, low granularity in frontal regions 
(merged with non-neocortical regions), and increasing 
granularity in temporal and parietal regions. When assess-
ing hemispheric symmetry, some asymmetry appears, par-
ticularly in regions with mixed granularity indices, such 
as frontal and temporal regions, which also exhibit high 
inter-subject variability. To quantitatively assess the hemi-
spheric asymmetry, we measured the percentage of pairs 
of corresponding regions (mirroring regions between hem-
ispheres, including 105 pairs of regions) that differ in their 
cluster assignment. The datasets include the following 
three categories: cross-subject region labels, per-subject 
region labels (N = 30), and per-subject region labels on 
randomly spatially permuted datasets (N = 30). The results 
show high symmetry values for the original datasets in 
comparison to the spatially permuted datasets (see Fig. 6, 
part 4).To quantitatively assess the overall similarity to 
the granularity atlas (shown in Fig. 6, part 3), we meas-
ured hypergeometric scores, testing the correspondence 
between the four clusters and four groups of granularity 
indices. Significant correspondence was found between 
cluster 1 and granularity indices 2–3, cluster 2 and indi-
ces 0–1, cluster 3 and index 4, and between cluster 4 and 
indices 5–6 (see Fig. 6, part 5).

To examine subject-specific cytoarchitectonic features, 
we applied the clustering methodology on each of the 
(N = 3) exemplary subjects, including an athlete, a musician, 
and a polyglot. The clustering results for these exemplary 
subjects are shown in relation to the thirty-subject majority 
vote (no statistical calculation performed here, see Fig. 7). 
The results show several notable features in concordance 
with prior neuroanatomical knowledge: the professional 
athlete exhibits relatively higher granularity in motor and 
premotor regions, as well as frontal regions (see Fig. 7, part 
1), the professional musician exhibits higher granularity 
in motor and auditory regions (see Fig. 7, part 2), and the 
polyglot exhibits higher granularity in regions associated 
with language perception and formation (see Fig. 7, part 3). 
Subject handedness is also apparent in the results: both the 
athlete and the musician are right handed, and accordingly 
they exhibit higher granularity in motor regions of the left 
hemisphere, while the polyglot is left handed and accord-
ingly exhibits high granularity in mirrored language regions 
of the right hemisphere.

Discussion

In this study we cluster microstructural multilayered 
surface-based data in the cerebral cortex using adaptations 
of an omics algorithm called Building Aggregates with a 
Neighborhood Kernel and Spatial Yardstick (BANKSY). 
This algorithm was developed in the field of omics for 

Fig. 4  Clustering neuroimaging dataset for a single subject 
(MRI T1 layers): All four clusters can be seen in the top row, and 
each individual cluster can be seen on the rows below (1–4): (1) non-

neocortical regions, agranular cortex, (2, 3) increasingly granular, (4) 
granular cortex. The clusters can be seen from different viewpoints: 
(A) superior, (B) caudal, (C) lateral (left), (D) inferior
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Fig. 5  Clustering different neuroimaging datasets: Differences in 
clusters between an original and a randomized neuroimaging dataset 
(human): (1) Original dataset: the resulting clusters in a neuroimag-
ing dataset showcase a differentiation between gyri and sulci across 
the cortical folding. (2) Randomized dataset: the same neuroim-
aging dataset was permuted spatially and then clustered using the 
same algorithm, resulting in no delineation of any regions of cyto-
architectonic importance. The results across the left hemisphere can 
be seen from a superior view (A) of the postcentral gyrus (B), and 

from a caudal view (C) of the primary visual cortex (D). (3) Cluster-
ing macaque neuroimaging dataset: of the five resulting clusters, four 
dominant clusters can be seen from different viewpoints: (A) superior, 
(B) caudal, (C) lateral (left), (D) lateral (right). (4) Granularity atlas 
(reduced): the cytoarchitectonic atlas of granularity indices (as seen 
in Fig. 1), adapted for the macaque brain (Bridge and Clare 2006; von 
Economo 2009) and reduced to five components
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clustering genomic and biological datasets based on both 
cell types and tissue domains and it has been shown to 
outperform related clustering methods for multiple types 
of datasets, including successful delineation of the cortical 
layers by clustering omics data from the dorsolateral 

prefrontal cortex (Singhal et  al. 2022). The same basic 
clustering methodology was used for both the histological 
and the neuroimaging datasets. However, its adaptations 
for these two types of datasets differed in two principal 
ways: (1) the inclusion, or exclusion, of the overall cortical 

Fig. 6  Inter-subject (N  =  30) clustering results and quantitative 
assessments: (1) Inter-subject majority vote: the most common clus-
ter assigned to vertices belonging to each Brainnetome atlas region, 
evaluated across all subjects (N  =  30). (2) Inter-subject variability: 
the standard deviation of the majority vote clusters across Brain-
netome atlas regions, evaluated across all subjects (N  =  30). (3) 
Granularity atlas (reduced): the cytoarchitectonic atlas of granularity 
indices (as seen in Fig. 1), reduced from the original six components 
to a coarser division including four components. Images are shown 
from different viewpoints: (A) superior, (B) caudal, (C) lateral (left), 
(D) lateral (right), (E) inferior. (4) Hemispheric symmetry: boxplots 

of the distribution of the fraction of pairs of corresponding cortical 
regions (left and right hemispheres, including 105 pairs of regions) 
that match in their cluster assignment. Three distributions are shown: 
randomly spatially permuted datasets (N  =  30), per-subject major-
ity vote (N  =  30), and majority vote for the entire cohort (all sub-
jects). (5) Similarity to granularity atlas: hypergeometric p values for 
the correspondence between the four cross-subject clusters and four 
groups of granularity indices. P values were Bonferroni corrected for 
multiple comparisons. Significantly correlated pairs (p value <0.05) 
are marked in yellow 
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thickness in the input vector; (2) a varying number of 
clusters generating.

We first adapted the algorithm for the BigBrain 
histological dataset (Amunts et al. 2013), a high-resolution 
three-dimensional segmentation of all cortical and laminar 
surfaces in the brain (Wagstyl et  al. 2020). This initial 
adaptation involved the use of the six width values of the 

laminar components and clustering into K = 6 clusters, 
resulting in delineation of multiple cortical regions with 
distinct cytoarchitectonic features, including non-neocortical 
regions, regions with increasing granularity from frontal to 
temporal and parietal regions, and high granularity regions 
in the occipital cortex as well as the postcentral gyrus. 
This adaptation provided an initial proof of concept for 

Fig. 7  Relative clustering results for exemplary subjects (N = 3) 
from different groups of interest: Clustering results are shown in 
relation to the thirty-subject majority vote (presented in Fig.  6, part 
1), where regions with higher granularity levels than the majority 
vote are presented in hot colors and regions with lower granularity 
level are presented in cold colors: (1) A professional athlete (N = 1): 
relatively higher granularity in motor and premotor regions (i), as 
well as frontal regions (ii). (2) A professional musician (N = 1): rela-

tively higher granularity in motor (iii) and auditory (iv) regions. (3) A 
polyglot, or person with fluency in multiple languages (N = 1): rela-
tively higher granularity in regions associated with language percep-
tion and formation (v and vi). It should be noted that while the pro-
fessional athlete and musician are both right handed, the polyglot is 
left handed. Images are shown from different viewpoints: (A) lateral 
(left), (B) superior, (C) lateral (right)



Brain Structure and Function 

the applicability of the BANKSY methodology for other 
surface-based cytoarchitectonic datasets.

We then adapted the algorithm for the neuroimaging 
datasets, which include the laminar composition of six 
T1 layers across the cortical surfaces of (N = 30) healthy 
subjects (Shamir et al. 2022). For this adaptation of the 
algorithm, we achieved optimal results when using the 
widths of the six laminar components combined with the 
overall cortical width, all clustered into K = 4 clusters. 
The inclusion of the overall cortical thickness in the input 
vector for the neuroimaging dataset can be explained due 
to the relatively lower resolution of the MRI data, as well 
as the more well-established and well-documented nature 
of MRI segmentation of overall cortical thickness. The 
use of (K = 4) clusters when clustering the neuroimaging 
datasets can be explained by the relatively lower resolution 
of the neuroimaging datasets, compared to the ultrahigh 
resolution of the BigBrain histological dataset. Once again, 
the clustering resulted in delineation of multiple regions 
with distinct cytoarchitectonic features, including regions 
with increasing granularity from frontal to temporal and 
parietal regions, and high granularity in occipital regions as 
well as in the postcentral gyrus.

One of the main limiting factors of this study lies in the 
relatively small sample size tested, including thirty subjects. 
However, future studies can use the framework detailed here 
on a wider scale of subjects. Additional limitations relate 
to the qualitative nature of the selection process of some 
algorithm parameters, primarily the number of clusters 
generated. This process involves visual assessment of 
the results, which necessitates a level of neuroanatomical 
expertise. One final limitation involves the use of the 
granularity atlas as a gold standard reference for cortical 
cytoarchitecture. While many cytoarchitectonic atlases exist, 
none provide an actual in vivo, subject-specific reference.

The resulting clusters in both adaptations of the algorithm 
are characterized by a “patchy” appearance, compared to 
the more uniform nature of our chosen reference atlas 
of cytoarchitectonic features (von Economo 2009). The 
“patchiness” appears to relate to a differentiation between 
gyri and sulci across the cortical folding, known to vary 
in both overall thickness as well as in laminar composition 
(Wagstyl et  al. 2020; MacDonald et  al. 2000). This 
explanation is strengthened by the fact that this feature 
appears in both the histological dataset, which includes only 
laminar composition as input, as well as in the neuroimaging 
datasets, which also incorporates the overall cortical 
thickness as input. The difference in uniformity across 
cortical regions can also be attributed to methodological 
differences relating to the labeling process of the granularity 
atlas. This atlas is the result of a manual labeling process by 
histologists over a century ago according to cellular features 
observed across entire cortical regions. By comparison, our 

clustering methodology involves unsupervised labeling 
of present-day datasets according to assumed cellular 
features on a vertex-wise basis. The vertex-wise clustering 
better suits the nature of the neuroimaging datasets and the 
regional variability in laminar composition. Nevertheless, 
to better assess the accuracy of the results quantitatively we 
used a majority vote for clusters across cortical regions. Our 
analysis found a significant correspondence between each of 
the four resulting clusters and a different set of granularity 
indices. Furthermore, examination of the clustering results 
for three exemplary subjects with unique skills highlights the 
applicability of this framework in the exploration of some 
of the structural mechanisms and cytoarchitectonic features 
behind different skillsets.

It should be noted that this study does not claim 
to offer a single “optimal” cortical parcellation based 
on cytoarchitecture. Multiple other cytoarchitectonic 
parcellations were proposed, based on other modalities 
(Glasser et al. 2016; Palomero-Gallagher and Zilles 2019). 
Our study offers an effective solution to the challenge of 
clustering multilayered, surface-based datasets that represent 
the regionally varying laminar composition across the 
cortex. By doing so, three main goals are achieved. First and 
foremost, the results highlight the role of MRI neuroimaging 
as a probe of tissue cytoarchitecture, by providing a 
validation of T1 imaging as a tool for exploring cortical 
laminar composition. The full validation process is the 
accumulated result of multiple qualitative and quantitative 
assessments throughout the study: use of multiple datasets 
from different modalities (histology and neuroimaging) 
and species (human and macaque); visual assessment of 
the clusters as part of an initial global matching of regional 
patterns; assessment of results for spatially randomized 
datasets for comparison; and quantitative evaluations 
of the results, starting with hemispheric symmetry and 
culminating in correspondence with the granularity atlas. 
The correspondence between T1 layer clusters and regions 
with distinct cytoarchitectonic features shows that the T1 
imaging framework enables cortical laminar composition 
analysis (Shamir et al. 2019, 2022; Shamir and Assaf 2021a, 
b).

Additional achievements of this study include 
demonstrating the adaptability and applicability of the 
BANKSY algorithm (Singhal et al. 2022) to neuroimaging 
data, as well as demonstrating the applicability of the 
framework in exploring the cytoarchitectonic features behind 
unique skillsets, such as musicality or athleticism. In the 
future, the methodology presented here can be applied to 
large groups of subjects not only to create a new and updated 
in vivo atlas of cytoarchitectonic features but also to further 
characterize subject-specific features associated with various 
abilities and skills.
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