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BSTRACT 

ntegrative analysis of multi-omic datasets has 

r o ven to be e xtremel y valuable in cancer research 

nd precision medicine. Ho we ver, obtaining multi- 
odal data from the same samples is often diffi- 

ult. Integrating multiple datasets of different omics 

emains a challeng e , with only a few available al- 
orithms developed to solve it. Here, we present 

NTEND (IntegratioN of Transcriptomic and Epige- 
omic Data), a novel algorithm for integrating gene 

xpression and DNA methylation datasets co ver - 
ng disjoint sets of samples. To enable integra- 
ion, INTEND learns a predictive model between 

he two omics by training on multi-omic data mea- 
ured on the same set of samples. In comprehen- 
ive testing on 11 TCGA (The Cancer Genome At- 

as) cancer datasets spanning 4329 patients, INTEND 

chie ves significantl y superior results compared 

ith four state-of-the-art integration algorithms. We 

lso demonstrate INTEND’s ability to uncover con- 
ections between DNA methylation and the regu- 

ation of gene expression in the joint analysis of 
w o lung adenocar cinoma single-omic datasets fr om 

ifferent sources. INTEND’s data-driven approach 

akes it a v aluable m ulti-omic data integration tool. 
he code for INTEND is available at https://github. 
om/ Shamir-Lab/ INTEND . 
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NTRODUCTION 

merging technolo gical ad vances in recent years have made 
igh-throughput genome-wide sequencing a central tool 

or biological r esear ch. It allows the collecti v e analysis 
f various types of biological data (commonly termed 

omics’), in a single tissue or e v en at the le v el of a single
ell. These include genomics –– covering the DNA sequence 
tself; transcriptomics –– the expression levels of genes in 

he form of mRNAs; epigenomics –– re v ersib le modifica- 
ions on the genetic da ta, e.g. DNA methyla tion and chro- 
atin accessibility; proteomics –– the le v els of translated 

roteins; and more. Although the analysis of a single omic 
ay generate meaningful insights, it may be necessary to 

onduct a multi-omic integrati v e analysis to comprehen- 
i v ely understand a biological system and its complexities. 
or brevity, we will use throughout the term ‘integration’ 

or integrati v e analysis. Hence, integra ting dif ferent omic 
atasets is one of the most interesting challenges in com- 
utational biology today, with the potential for opening 

p new avenues in cancer r esear ch and precision medicine 
 1–3 ). 
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Multi-omic integration: div erse pr oblems, div erse appr oaches

One way to obtain multi-omics data for analysis is to si-
m ultaneousl y measur e mor e than one omic from the same
tissue. For example, TCGA (The Cancer Genome Atlas)
( 4 ) contains multimodal data for numerous tissues span-
ning dozens of cancer types. The main data types covered
by T CGA ar e genotype, cop y number variations, genome
methylation, mRNA expression and microRNA (miRNA)
expression, along with clinical data. Multimodal data can
also be obtained at the cell le v el by sim ultaneousl y measur-
ing multiple types of molecules within the cell ( 5–7 ). Such
technologies ar e r elati v ely ne w and e xpensi v e, and thus so
far there are far fewer data of multiple omics from the same
cells. 

Schema tically, we can ca tegorize the integra tion prob-
lems into three scenarios (Figure 1 A). (i) Single omic–
multiple datasets (SO / MD). Here only one omic type is
used but multiple datasets (typically experiments from dif-
ferent labs or studies) need to be analyzed together. (ii)
Multiple omic–single dataset (MO / SD). Here there is one
set of samples on which se v eral omics were measured, and
the feature sets of the different omics are disjoint. (iii) Multi-
ple omics–multiple datasets (MO / MD). This problem gen-
eralizes both (i) and (ii). 

Many algorithms were de v eloped to handle the integra-
tion in the MO / SD setting. These include DIABLO ( 8 ),
iCluster ( 9 ) and MOF A / MOF A+ ( 10 , 11 ), which use the
latent variable analysis approach; iNMF ( 12 ), which uses
non-negati v e matrix factorization; similarity-based meth-
ods such as SNF ( 13 ), NEMO ( 14 , 15 ) and MONET ( 16 );
and scAI ( 17 ), which specializes in single-cell data. Other
algorithms were de v eloped to tackle the integration in
the SO / MD setting. These algorithms should balance the
trade-off between the removal of batch effects and the con-
servation of biological variance ( 18 ). Relevant examples
are MNN ( 19 ), Seurat v3 ( 20 ), scVI ( 21 ), Scanorama ( 22 ),
LIGER ( 23 ), Conos ( 24 ) and Harmony ( 25 ). 

The challenge we address herein is the composition of the
two problems discussed above: MO / MD integration. Only
a few algorithms have been developed to tackle this chal-
lenge. Both LIGER and Seurat v3 were used to integrate
dif ferent omic da tasets of disjoint sets of cells, specifically
transcriptome and epigenome datasets. LIGER was shown
to integrate single-cell RNA sequencing (scRNA-seq)
with genome-wide DNA methylation, and Seurat to inte-
grate scRNA-seq with scATAC-seq (measuring chromatin
accessibility). 

The motivation behind integrating datasets across dif-
ferent experiments arises from the difficulties in obtaining
multimodal data from the same samples. These difficul-
ties may be technical inabilities, as mentioned in the con-
text of single-cell data, and economic, a significant fac-
tor also in the case of bulk sequencing data. An algo-
rithm that can integrate two different omic datasets mea-
sured from disjoint sets of samples could assist r esear chers
in utilizing data that have already been collected in the
past, allowing a multi-omic systemic view on the investi-
gated subject. This could increase efficiency, both in time
and in cost. Consider the situation where the methyla-
tion patterns inside tumors of a specific cancer subtype are
being investigated. The multi-omics approach could sug-
gest further inquiry of the epigenome–transcriptome con-
nections, i.e. obtaining mRNA sequencing from e v ery tu-
mor and conducting an integrati v e analysis of the methy-
lation and gene expression patterns together. As RNA-
seq data are widely available f or man y cancer subtypes, it
may be the case that such RNA-seq data ar e alr eady avail-
able for other samples of that cancer subtype. With an al-
gorithm that can integrate RNA-seq and DNA methyla-
tion datasets measured on disjoint samples, the r esear cher
could conduct an integrati v e m ulti-omic anal ysis w hile mea-
suring only the methylation patterns, thus requiring fewer
r esour ces. 

The algorithms for MO / MD integration can be classified
according to the correspondence information they require
as input. Some methods r equir e partial corr espondence be-
tween the samples (either tissues or cells). One example is
the semi-supervised correspondence approach of the MA-
GAN algorithm ( 26 ). This approach uses matching pairs of
samples from both datasets to learn the correct alignment
of the datasets. Other methods, such as LIGER and Seurat,
r equir e corr espondence information between the features of
the different omics. Finally, some methods do not require
an y correspondence inf ormation and assume a common un-
derlying structure that is maintained across technologies
and omics. Such methods usually belong to the class of
machine learning algorithms that solve the unsupervised
manifold alignment problem. One algorithm that uses such
techniques to integrate single-cell multi-omics data is the
maximum mean discrepancy-manifold alignment (MMD-
MA) algorithm ( 27 ). Another algorithm that can jointly
embed two datasets, without any correspondence informa-
tion between their features or samples, is the joint Lapla-
cian manifold alignment algorithm (JLMA) ( 28 ). Using a
method that does not r equir e any corr espondence infor-
mation may sound appealing, but may not perform ade-
quatel y w hen the assumed common underl ying structure is
weak. 

In our study, we de v eloped a method for the integration
of transcriptomic and epigenomic data across different ex-
periments. We focused on the integration of gene expres-
sion and DNA methylation. Specializing in two particu-
lar omics creates a less general method, but allows us to
de v elop a stronger model: we can incorporate the known
biological connections between gene expression and DNA
methylation. 

Associations between DNA methylation and gene expression

The regulation of gene expression allows cells to increase or
decrease the production of proteins or RNA. Such adjust-
ments enable a response to external changes in the environ-
ment and to internal signals within cells. In complex mul-
ticellular organisms, the regulation of genes in particular
cellular contexts enables the dif ferentia tion and prolifera-
tion of cells. Epigenetic modifications mainly include DNA
methylation and histone protein modifications, which alter
the chromatin structure. These modifications are known to
be key factors in the regulation of gene expression. In the
last two decades, a strong connection has been established
between epigenetic modifications and the de v elopment of
  06 July 2023
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Figure 1. ( A ) Three scenarios of integration problems: green, single omic–multiple datasets (SO / MD); red, multiple omics–single dataset (MO / SD); blue, 
m ultiple omics–m ultiple datasets (MO / MD). ( B ) An ov ervie w of the two phases of INTEND: the training phase and the embedding phase. 
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ancer. Hence, the integration of transcriptomic and epige- 
omic data has the potential to broaden our understanding 

f the molecular mechanisms orchestrating the regulation 

f genes, in both normal and malignant tissues. 
DNA methylation in mammals occurs almost e xclusi v ely 

n the 5 

′ position of a cytosine followed by a guanine, com- 
only termed a CpG site. CpG dinucleotides tend to clus- 

er in CpG islands (CGIs), regions with a high frequency 

f CpG sites. The majority of CpG dinucleotides (75%) 
hroughout the mammalian genomes are methylated ( 29 ), 
xcept for CGIs, which are mostly unmethylated. About 
0% of the proximal promoters of human genes contain a 

GI and, reciprocally, ∼50% of the CGIs are located near 
 gene’s transcription start site (TSS). In fact, CGIs are 
trongly linked to the regulation of transcription ( 30 ). Al- 
hough CGIs are mostly h ypometh ylated, there are known 

xamples of their methylation, resulting in stable silencing 

f the associated promoter. Howe v er, it is belie v ed that CGI
ethylation does not initiate the silencing of genes, but as- 

ists in making the silenced state permanent ( 30 ). For exam- 
le, in X chromosome inactivation, the methylation process 
f CGIs in the X chromosome has been shown to start only 

fter gene silencing. Howe v er, w hen DN A methylation is in-
ibited, genes in the X chromosome can be reactivated. 
The connection between CGI h ypermeth ylation and si- 

encing of genes is not the only relationship observed be- 
ween methylation and gene expr ession. Ther e is evidence 
f both strong positi v e and strong negati v e correlations 
etween gene body methylation and gene expression ( 31 ). 
ther studies have shown that h ypermeth ylation of CGIs 

n cancer tissues is not always accompanied by a decrease 
n gene expression ( 32 ). These findings suggest that DNA 

ethylation can play di v erse roles in gene regulation, de- 
ending on the genomic context ( 33 ). This should be con- 
idered when using multi-omic integration algorithms such 

s LIGER and Seurat, which r equir e corr espondence in- 
ormation between the features of the different omics. The 

ethods that are currently used to link the feature spaces 
f DNA methylation and gene expression assume a simplis- 
ic connection between the two (see LIGER description in 

he Supplementary data). The complex and not fully un- 
erstood relationship between DNA methylation and gene 
xpr ession str esses the necessity for a more sophisticated 

pproach. 

ur approach 

er ein, we pr esent a novel algorithm for the MO / MD 

roblem. The algorithm is called INTEND (IntegratioN 

f Transcriptomic and EpigeNomic Data). Specifically, IN- 
END aims to integrate gene expression (GE) and DNA 

ethyla tion (DM) da tasets covering disjoint sets of sam- 
les. INTEND does not use any correspondence informa- 
ion between the samples in the two datasets (e.g. knowing 

hich GE and DM profiles originated from the same indi- 
idual). To handle the complex connections between DM 

nd GE, INTEND learns a predicti v e model between the 
wo, by training on multi-omic data measured on the same 
et of samples. To the best of our knowledge, this is the 
rst use of a predicti v e model in the context of the studied
roblem. 
As a preliminary step, for each gene, INTEND learns a 

unction that predicts its expression based on the methy- 
ation le v els in sites located proximal to it. To integrate the 
arget methylation and GE datasets, INTEND first predicts 
or each methylation profile its expression profile. Then, it 
dentifies a set of genes that will be used for the joint embed- 
ing of the expression and predicted expression datasets. At 
his stage, both datasets share the same feature space. IN- 
END then employs canonical-correlation analysis (CCA) 

o jointly reduce their dimension. 
We evaluated the performance of INTEND by compar- 

ng it with four state-of-the-art MO / MD integration meth- 
ds: LIGER, Seurat v3, JLMA and MMD-MA. The first 
wo r equir e corr espondence informa tion between the dif fer- 
nt omic features, in order to create a common feature space 
efore the integration, whereas the last two do not require 
uch information. We used 11 TCGA cancer datasets span- 
ing 4329 patients for testing the algorithms in multiple in- 
egration tasks. We also showed the utility of the method in 

dentifying SKCM (skin cutaneous melanoma) cancer sub- 
ypes and in joint analysis of LUAD (lung adenocarcinoma) 
sing two single-omic datasets obtained from different 
 06 July 2023
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Table 1. Summary informa tion of TCGA cancer da tasets used 

Number of patient samples 

Cancer type Abbreviation 
Gene 

expression 
DNA 

methylation Both 

Acute myeloid 
leukemia 

AML 173 194 170 

Bladder urothelial 
carcinoma 

BLCA 427 440 425 

Colon 
adenocarcinoma 

COAD 328 353 298 

Br ain lower-gr ade 
glioma 

LGG 534 534 530 

Li v er hepatocellular 
carcinoma 

LIHC 424 430 414 

Lung 
adenocarcinoma 

LUAD 576 507 477 

P ancr eatic 
adenocarcinoma 

PAAD 183 195 183 

Prostate 
adenocarcinoma 

PRAD 550 553 533 

Sarcoma SARC 265 269 263 
Skin cutaneous 
melanoma 

SKCM 473 475 473 

Thyroid carcinoma THCA 572 571 563 
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MATERIALS AND METHODS 

INTEND algorithm 

INTEND w orks in tw o phases (Figure 1 B). The training
phase recei v es as input training data consisting of GE and
DM profiles measured on the same set of samples. The al-
gorithm uses these data to learn the connections between
the omics. This will allow it later to make accurate predic-
tions of expression levels of specified genes based on a gi v en
methylation profile. The training process can be executed
once f or an y number of future integration tasks. Intuiti v ely,
the multimodal data used in the training process should
be ‘biolo gicall y similar’ to the da tasets tha t INTEND will
integrate subsequently. Howe v er, as we shall show, e v en
when we used INTEND to integrate datasets covering tu-
mor types that were different from those covered by the mul-
timodal training data, it performed well. 

For the embedding phase, INTEND’s inputs are from
two disjoint cohorts, denoted T1 and T2. They include a
DM matrix for T1 and a GE matrix for T2. It proceeds
in three steps: (i) creation of a predicted GE matrix for T1
based on the DM data; (ii) selection of a subset of the genes
based on the predicted GE for T1, the GE for T2 and the
trained model from the preliminary step; and (iii) reducing
jointly the dimension of the two GE datasets on the selected
gene set. 

The training phase. The preliminary training phase aims
to learn connections between GE and DM using training
data. Its inputs are expression and methylation profiles for
the same set of samples. Its goal is to determine, for each
gene, a function that predicts its expression le v el based on
methylation le v els of potentially rele vant sites. We hypothe-
sized tha t accura tely pr edicting the expr ession levels of even
a small number of genes, from an input methylation matrix,
will enable successful integration. To achieve this goal, we
de v eloped a prediction model considering the known con-
nections between methylation in promoter CGIs and gene
expression ( 30 ), as well as gene body methylation ( 31 ). Fur-
thermor e, to captur e the variation in the correlation be-
tween methylation and expression across the CGI, its shores
and shelves, and also outside CGIs ( 32 ), the model uses the
methylation le v els in each probe separately. 

For each gene, we considered all the probed methylation
sites contained in the gene region or within 10 kb from its
ends. While in certain cases more distal methylation sites
wer e r eported to affect gene expression ( 34 ), the main effect
is usually due to proximal sites ( 30 ). We limited the range
in order to have modest size gene models. As we will show,
such models provide a good basis for the integration task. 

INTEND uses the Lasso r egr ession model ( 35 , 36 ) to
learn the prediction function and select model features.
Lasso was run using the glmnet R package, and the op-
timal value of the penalty constant was chosen using 10-
fold cross-validation on the training set. Using Lasso allows
the preliminary step to handle genes with a large number
of methylation sites, by ignoring sites that have little rele-
vance for the gene expression prediction. For example, in
a TCGA training set that we used, spanning 10 cancer sub-
types listed in Table 1 (excluding LUAD) and spanning 3852
tumor samples, for each gene 25 methylation sites were con-
sidered on average, with a maximum of 1055 sites per gene
(Supplementary Figure S1). Howe v er, the maximal number
of probes for which the r egr ession r esulted with non-zero
coefficients for a specifed gene was only 424, with an aver-
age of 21 sites per gene (Supplementary Figure S2). 

After calculating the prediction function for e v ery gene,
the 2000 genes with the highest R 

2 between predicted and
observ ed gene e xpr ession ar e identified for use in the next
stages of INTEND. For example, using the above training
set, the average R 

2 of all 19 143 genes considered was 0.30,
and the average R 

2 of the top 2000 genes was 0.68 (Supple-
mentary Figure S3). 

Note that w hen a ppl ying the preliminary step to certain
cancer subtypes, the subsequent algorithmic steps use only
data from other subtypes, in order to avoid overfitting. 

The embedding phase. The inputs for the main phase of
the algorithm are DM profiles for one target set of samples,
and GE profiles for a second, disjoint target set of samples.

First, we use the learned prediction functions from the
preliminary step to compute the pr edicted expr ession pro-
files based on the DM input profiles. For each DM profile,
we predict its gene expression levels for each gene in the se-
lected set of 2000 genes from the preliminary step. The ex-
pression of these genes has the highest likelihood to be pre-
dicted accurately by the methylation profile, at least in the
tissue types and states included in the training set. Howe v er,
the target datasets may originate from a different tissue type
or state. Hence, an additional heuristic for feature selection
is employed. 

Genes may be regulated by mechanisms other than DNA
methylation. Thus we assumed that the genes that are most
likely to be regulated by the methylation profile are those
with high variance in both methylation and expression lev-
els. We consider the 2000 genes with the highest expression
variability in the set of input GE profiles to be the set of
genes with high variability in e xpression le v els. We consider
6 July 2023
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he 2000 genes with the highest variance in the predicted ex- 
ression profiles to be the set of genes with high variance in 

ethylation le v els. From the selected set of 2000 genes from 

he preliminary step, we select only the genes that are con- 
ained in both sets of genes with high variability in expres- 
ion and methylation le v els. The size of the selected gene set
aries depending on the training and target datasets. For the 
ext step, we consider only these genes for the input expres- 
ion profiles matrix and predicted expression profiles ma- 
rix. Each feature (gene) of these matrices is centered and 

caled separately so that it has zero mean expression level 
nd unit variance. 

The last step applies CCA to the resulting matrices, and 

roduces the integrated output matrix. CCA is a dimen- 
ion reduction method that finds linear combinations of 
ea tures across da tasets such tha t these combina tions have 
aximum correlation ( 37 ). It was used in computational ge- 

omics to project da tasets tha t share the same samples but 
ave dif ferent fea tures (the MO / SD setting) from a com-
on low-dimensional feature space. CCA has been used in 

his wa y, f or example, in multi-omic clustering ( 15 , 38 ). In
ontrast, here we a ppl y CCA to matrices that cover samples 
rom different datasets but share the same set of selected 

enes (similar to the SO / MD setting). This approach for 
tilizing CCA was introduced in Seurat v2 ( 39 ). 
A complete ma thema tical description of the training and 

mbedding phases can be found in the Supplementary data. 
he code for INTEND is available at https://github.com/ 
hamir-Lab/INTEND . 

ata 

CGA data. To assess performance, we used RNA-seq 

nd DM data from TCGA ( 4 ) covering 11 different can- 
er types. See Table 1 for cancer types, their abbreviations 
nd sta tistics. The da ta were downloaded using the TCGA- 
ssembler software ( 40 , 41 ). We used only 4329 samples for
hich both omics were measured. 
The DM data we used were gathered with Illumina’s In- 

nium HumanMethylation450 BeadChip assay. The le v els 
f > 450 000 methylation sites were reported as �-values. 
he RNA-seq data wer e gather ed with Illumina HiSeq as- 

ay, and quantified using RSEM ( 42 ). In each GE and DM 

ample, the zero counts wer e r emoved, then the raw count 
alues were divided by the 75th percentile of the counts, and 

hen multiplied by 1000. In both omics, we downloaded the 
ata after these transformations from the TCGA w e bsite. 

n additional LUAD gene expression dataset. In addition 

o the TCGA LUAD data, we used RNA-seq profiles from 

72 tumors of LUAD patients from Singapore ( 43 ). GE 

as quantified with RSEM and normalized as done for the 
CGA data. 

ata pr e-pr ocessing. To handle missing values, for each 

a taset, fea tures with > 5% missing values were removed, 
nd then samples with > 5% missing values were removed. 
ubsequently, the missing values per each feature were im- 
uted to the mean of this feature across all samples. The 
umber of features and samples in each dataset we used, be- 
ore and after the handling of missing values, are described 
n Supplementary Table S1. Finally, for GE data from all 
ources and for all purposes, we added one pseudo-count 
o each value and log-transformed the result. 

unning other algorithms . We evalua ted the performance 
f INTEND by comparing it with four state-of-the-art 
O / MD integration methods: LIGER, Seurat v3, JLMA 

nd MMD-MA. The methods are briefly described in the 
upplementary data. To use LIGER and Seurat, we sup- 
lied the algorithms with an aggregated gene-le v el methy- 

a tion ma trix as input, as they r equir e corr espondence in-
ormation between features across omics. The aggregated 

a trix computa tion process is described in Supplemen- 
ary Figure S4. JLMA and MMD-MA algorithms do not 
 equir e corr espondence information between the features. 
owe v er, empirical results from ( 27 ) showed that JLMA 

ailed to integrate GE and DM using the local geome- 
ry metric as a measure for cross-omic similarity. Hence, 
e computed the cross-omic similarity matrix for JLMA 

ased on the aggregated gene-le v el methyla tion ma trix. For 
MD-MA, we used both the original methylation data and 

ene-le v el methylation matrix as inputs. We denoted the 
uns of JLMA and MMD-MA with the gene-le v el methyla- 
ion matrix as JLMA WFCI (with featur es corr espondence 
nformation) and MMD-MA WFCI. We ran all the algo- 
ithms with their default recommended hyper-parameters 
nd, whene v er applicab le, we used the algorithm’s pipeline 
or feature selection and normalization. Since MMD-MA 

nd JLMA do not include a method for feature selection, 
hen running them in the WFCI mode, we selected the n 

enes with the highest variance in expression, for n = 500 

nd 2000. Further details regarding how each of the algo- 
ithms was applied, including hyper-parameters and addi- 
ional necessary pre-processing steps, are described in the 
upplementary data. 

valuating the quality of the results 

or the TCGA data, we have the true pairing of samples 
hat r epr esent differ ent omic measur ements of the same pa- 
ient. This pairing is not gi v en as input to the integration 

lgorithms and can ther efor e be used to evaluate their re- 
ults. We use the metric defined in Liu et al . ( 27 ) to evaluate
he algorithms. For GE and DM input datasets covering n E 

nd n M 

samples, respecti v ely, each algorithm produces a d - 
ong vector of the projected expression e i for each sample i 
nd a d -long vector of the projected estimated expression m j 
ased on the methylation for each sample j . For patient i , let
 i be the fraction of samples j with projections m j closer to 

 i than m i . We call it the ‘fraction of samples closer than the
rue match’ (FOSCTTM). FOSCTTM ranges from 0 to 1, 
here 0 means that the true match of a sample i is the clos-

st to i in the projected space. We calculate the FOSCTTM 

or e v ery sample in the GE and DM datasets, and average 
hese values. A perfect integration will have a score of 0. For 
 random projection, the expected FOSCTTM is 0.5. 

lustering 

or clustering , we used the k-means algorithm of Hartigan 

nd Wong ( 44 ), with a maximum number of 100 iterations 
6 July 2023
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Table 2. Average FOSCTTM of algorithms for integrating GE and DM data 

Cancer / Alg INTEND LIGER Seurat v3 MMD-MA 

MMD-MA 

WFCI (500) 
MMD-MA 

WFCI (2000) 
JLMA WFCI 

(500) 
JLMA WFCI 

(2000) 

AML 2 .42 (25) 29 .83 (7) 17 .05 (36) 23 .63 (40) 19 .08 (40) 22 .35 (40) 24 .01 (8) 28 .38 (7) 
BLCA 0 .04 (39) 39 .62 (9) 13 .86 (40) 11 .20 (40) 16 .34 (40) 14 .58 (40) 34 .80 (40) 37 .11 (40) 
COAD 0 .02 (37) 26 .84 (19) 19 .14 (40) 12 .59 (40) 12 .19 (40) 12 .92 (40) 32 .98 (5) 34 .73 (4) 
LGG 6 .82 (22) 41 .97 (8) 32 .06 (26) 8 .88 (40) 15 .50 (40) 12 .08 (40) 37 .41 (14) 32 .38 (12) 
LIHC 0 .14 (36) 42 .34 (3) 19 .23 (38) 16 .04 (30) 11 .02 (30) 12 .94 (30) 32 .68 (21) 36 .03 (12) 
LUAD 0 .06 (32) 36 .72 (4) 16 .36 (39) 8 .71 (40) 14 .11 (40) 13 .89 (40) 29 .60 (9) 32 .16 (8) 
PAAD 0 .55 (30) 36 .68 (15) 24 .18 (35) 11 .07 (40) 23 .42 (40) 16 .27 (40) 29 .83 (3) 27 .44 (2) 
PRAD 0 .37 (38) 35 .96 (8) 16 .32 (17) 10 .88 (40) 11 .15 (40) 10 .99 (40) 27 .14 (2) 29 .53 (2) 
SARC 0 .05 (35) 42 .06 (15) 12 .86 (36) 8 .86 (40) 20 .97 (40) 17 .42 (40) 34 .47 (7) 34 .73 (5) 
SKCM 0 .03 (39) 42 .20 (17) 18 .97 (37) 16 .02 (40) 20 .53 (40) 16 .62 (40) 32 .11 (15) 34 .71 (3) 
THCA 3 .07 (11) 32 .58 (7) 15 .96 (36) 6 .71 (40) 7 .78 (40) 6 .65 (40) 30 .95 (2) 27 .52 (5) 
Average (all 
datasets) 

1 .23 (31) 36 .98 (10) 18 .73 (34) 12 .24 (39) 15 .64 (39) 14 .25 (39) 31 .45 (11) 32 .25 (9) 

Average FOSCTTM score (percentge) for each algorithm on each of the 11 cancer datasets. The optimal score is 0%, and the expected score for a random 

projection is 50%. The r equested shar ed space dimension d ranges from 2 to 40 for each algorithm. The score shown is the best across all values of d , and 
the optimal d is gi v en in parentheses. The numbers 500 and 2000 for MMD-MA and JLMA denote the number of selected genes in the WFCI runs. 
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and 100 different starting solutions. We selected the desired
number of clusters using the ‘elbow method’ as described
in Rappoport and Shamir ( 14 ). Let v ( i ) be the total within-
cluster sum of squares for a solution with i clusters, then we
chose i for which the point v ( i ) had the maximum curvature.
Specifically, we chose the i that maximized the following ap-
proximation of the second deri vati v e of v : 

v [ i + 1 

] + v [ i − 1 

] − 2 v [ i ] (1)

RESULTS 

We applied INTEND in se v eral settings. In the first part,
we applied INTEND and four other algorithms in sev-
er al integr a tion tasks of GE and DM da ta, using 11 can-
cer datasets from TCGA. We also demonstrated the util-
ity of the method in identifying SKCM cancer subtypes. In
the second part, we used INTEND for the integration of
datasets from two different sources, co vering tw o popula-
tions of LUAD patients. 

Our first set of analyses compared fiv e algorithms: IN-
TEND, LIGER, Seurat v3 (hereafter: Seurat), MMD-MA
and JLMA. We used 11 datasets of different cancer types
from TCGA. First, we integrated GE and DM data of the
same cancer type, for each of the 11 types. Next, we inte-
gra ted da ta of four cancer types sim ultaneousl y. 

Single cancer dataset integration task 

We first ran the algorithms with input datasets of a sin-
gle cancer subtype. We used the 11 datasets listed in Ta-
ble 1 . For each dataset, we considered only the subset of
samples measured in both omics. The total number of sam-
ples used in these integration tasks was 4329, where dataset
sizes ranged from 170 to 563. For each cancer dataset, we
trained a new r egr ession model in INTEND’s preliminary
phase, using the samples of the remaining 10 cancer datasets
as the training set. To evaluate the results, we used the
pairing information between samples from the two omics
measured on the same tissue to calculate the FOSCTTM
score. 

We ran the algorithms using projected space dimension
d ranging from 2 to 40, and recorded the best integration
scores (average FOSCTTM). The results are summarized
in Table 2 and Supplementary Figure S5. INTEND per-
formed best across all datasets and all d values, and substan-
tially better than the rest, with MMD-MA the second best
performer. In fact, INTEND results were often 1–2 orders
of magnitude better than those of all the other methods. 

We also analyzed the contribution of the last step in IN-
TEND, i.e. a ppl ying CCA for dimension reduction, to its
performance. We measured the average FOSCTTM when
using the original GE data and the imputed GE computed
by INTEND, for the selected gene set (see the Materials
and Methods). Excluding the CCA step resulted in poorer
FOSCTTM scor es. Notably, these scor es wer e better than
all other tested algorithms in all datasets, with only one ex-
ception (Supplementary Table S2). 

In later analyses, we pr eferr ed to use the same space di-
mension d for all algorithms. MMD-MA and JLMA do
not recommend a method for determining d . For Seurat,
the authors originally suggested approaches to select d ( 39 )
but later noted that the identification of this value remains
a challenge ( 20 ). After running all methods for d ∈ [ 2 , 40 ]
for all datasets, we observed that most algorithms reach a
plateau in the FOSCTTM score at around d = 40 (Supple-
mentary Figure S5). Hence, in subsequent runs we set d =
40 for all algorithms, with one exception: LIGER failed to
run on the AML dataset with d = 40 or d = 39, so in that
case we used d = 38. 

Next, we analyzed the FOSCTTM per sample across all
methods and datasets. Figure 2 shows boxplots of the FOS-
CTTM per sample for each algorithm and cancer dataset
using d = 40. INTEND’s advantage was prominent, with
the entir e FOSCTTM inter quartile range (IQR) at zero for
8 of the 11 datasets tested. In 6 of the 11 datasets, the FOS-
CTTM was perfect (zero) for > 90% of the samples. 

We analyzed in more detail the results for the colon ade-
nocarcinoma (COAD) dataset. We used UMAP ( 45 ) for
the 2D projection of the samples from the original omic
feature spaces and from the integration shared space. Fig-
ure 3 shows the results for INTEND, LIGER, Seurat and
MMD-MA algorithms. The results for JLMA WFCI and
MMD-MA WFCI versions ar e pr esented in Supplementary
Figure S6. 
6 July 2023
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Figure 2. Distribution of FOSCTTM (%) scores in INTEND results on each cancer type. 
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Figure 3 A and B shows the projections from the original 
eature spaces. One can appreciate that pairwise distances 
re not preserved between the omics. Figure 3 C–F show 

or each algorithm the projections from the shared feature 
pace. It is evident that the level of mixing between the two 

mics is highest for INTEND, intermediate for MMD-MA 

nd lower for Seurat and LIGER. Figure 3G–J show the 
ame projections as in Figure 3 C–F with the 10 samples of 
igure 3 B marked. Evidently, INTEND does a much better 

ob in projecting omics from the same sample to close posi- 
ions. For example, the two points labeled 3 belong to dis- 
inct clusters of samples in both the DM and the GE spaces. 
NTEND was the only method to succeed in projecting the 
oints from both omics into the same cluster in the shared 

pace. A similar advantage of INTEND was obtained for 
ll other cancer types, e v en when the average FOSCTTM 

as higher (Supplementary Figures S7–16). 

oint integration of multiple cancer types 

n a second test, we applied the algorithms on four cancer 
atasets sim ultaneousl y. We used the datasets of COAD, 

i v er hepatocellular carcinoma (LIHC), sarcoma (SARC) 
nd SKCM, covering 1448 GE and DM profiles. We did 

ot supply the cancer type of each sample to the algo- 
ithms. We used the remaining se v en TCGA datasets as the 
raining set in INTEND’s training phase. INTEND per- 
ormed this task with the best FOSCTTM integration score 
Supplementary Figure S17), with perfect FOSCTTM for 
 65% of the samples, and 1–2 orders of magnitude better 
06 July 2023
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Figure 3. Results of integration of GE and DM samples from the COAD dataset by different algorithms. ( A ) UMAP plots of the original data. ( B ) The 
same plots as in (A). To appreciate concordance between omics, 10 samples were randomly selected, and their matching points in both omics were labeled. 
( C–F ) UMAP plots of the samples after they were projected to a shared space by each algorithm. ( G–J ) The same plots as in (C–F) with the selected points 
labeled. In all plots, colors correspond to omics. 
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than the other methods: The mean scor es wer e 0.37% for
INTEND, 41.59% for LIGER, 9.33% for Seurat and 4.01%
for MMD-MA. 

Figure 4 shows 2D projections of the mapping by each of
the algorithms. INTEND, Seurat and MMD-MA projected
the samples from the different cancer datasets into sepa-
rate clusters in the shared space (Figure 4 G–J). In contrast,
LIGER failed to preserve the biological variance among
the tissue types, mapping samples of different types to the
same clusters (Figure 4 I). While INTEND mixed the sam-
ples from both omics in each cancer type cluster, Seurat and
MMD-MA created clusters with substantial separation be-
tween the samples from each omic (Figure 4 C–F). 

To further evaluate the results, we tested the quality of
classifying the DM samples to specific cancer types based
on the types of their neighboring GE samples in the shared
space, as follows. Each DM sample was assigned by major-
ity voting to the cancer type most r epr esented among its fiv e
closest GE samples in the shared space. The confusion ma-
trices between the inferred and true assignments are shown
in Figure 4 K–N. INTEND performed best, with > 97%
of DM samples in each cancer type correctly classified.
MMD-MA performed slightly worse: three cancer types
had high accuracy classification, but the SARC cancer type
had > 9% of the samples misclassified as SKCM. For Seu-
rat, three cancer types had high accuracy classification, but
the SKCM cancer type had > 26% of the samples misclas-
sified as SARC. The LIGER projections led to the lowest
accuracy classification. 

Using INTEND to identify subtypes in skin cutaneous
melanoma 

Clustering of single-omic cancer data is commonly used
to identify subtypes. The quality of the clustering solution
can be evaluated by the significance of separation in sur-
vival among subtypes. It has been observed that for cer-
tain cancer types, one omic may produce much better clus-
tering than another. For example, Rappoport and Shamir
( 14 ) benchmarked eight clustering algorithms on the TCGA
SKCM da ta, and observed tha t GE pr ofile clustering pr o-
duced clusters with a significant difference in survival in all
algorithms, while in DM profile clustering only one algo-
rithm showed such a result. We hypothesized that in such
cases, we could use INTEND to obtain GE predictions
from the DM data, then jointly embed in the shared space
 6 July 2023
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Figure 4. Results of joint integration of GE and DM samples of four cancer datasets: COAD, LIHC, SARC and SKCM. ( A and B ) UMAP plots of the 
original data colored by omic (A) and by cancer type (B). ( C–J ) UMAP plots of the sample projections into the shared space by INTEND, LIGER, Seurat 
v3 and MMD-MA, colored by omic (C–F) and by cancer type (G–J). ( K–N ) Confusion matrices for the classification of the DM sample projections into 
cancer types based on the majority vote among the fiv e nearest GE samples in the shared space. 
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he predictions and a set of GE pr ofiles fr om the same can-
er subtype, and achie v e higher significance of separation in 

urvival between clusters of the embedded predictions. 
We used a dataset of 473 SKCM samples from TCGA 

hat had both GE and DM profiles. We created 30 random 

artitions of this set into two equal disjoint groups and, for 
ach partition, we used the first group’s DM profiles and 

he second’s GE profiles. We used INTEND to obtain a pre- 
icted GE matrix (P) from the DM samples and then embed 

 jointly with the GE profiles. Call the embedded P data EP. 
or the training phase of the INTEND model, we used sam- 
les from all TCGA datasets listed in Table 1 but excluded 

he SKCM dataset. 
We first clustered separately the original partitioned DM 

nd GE data. We performed each clustering task using k- 
eans (see the Materials and Methods) after selecting the 
 06 July 2023
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2000 features with the highest variance and normalizing the
features to have zero mean and a standar d de viation of one.
We ran the algorithm for k between 2 and 15, and selected
the desired number of clusters using the ‘elbow method’ (see
the Materials and Methods). We measur ed differ ential sur-
vival between clusters by computing the P -value for the log-
rank test. We estimated the P -values using permutation tests
( 46 ). As we hypothesized, in most cases, the clustering of
the GE data obtained more significant differential survival
between clusters than the clustering of the DM data, with
the log-rank P -value of the first being lower in 27 of the
30 partitions. 

Next, for each of the 30 partitions, we used INTEND’s
joint embedding of the DM and GE samples to classify the
DM samples based on the k-means clustering of the GE
samples. Each DM sample was assigned by majority vot-
ing (with ties broken at random) to the cluster most r epr e-
sented among the fiv e GE embeddings closest to its match-
ing EP r epr esentation in the shar ed space. In 23 of the 30
splits, clustering the DM samples using this method ob-
tained more significant differential survival than using the
k-means clustering of the DM samples. The average log-
rank P -values for the clusterings for all 30 random splits
were: 0.07 for the GE k-means clustering, 0.56 for the DM
k-means clustering and 0.21 for the integration-based DM
clustering, as described above. 

We further investigated one of the 23 partitions for which
the integration-based DM clustering achie v ed more signif-
icant differential survival than the DM clustering. For that
partition, the DM clustering resulted in two clusters with
insignificant differential survival ( P -value = 0.978, Fig-
ure 5 A), whereas the GE clustering resulted in two clus-
ters with significant differential survival ( P -value = 0.018,
Figure 5 B). The integration-based DM clustering also ob-
tained significant differential survival between clusters ( P -
value = 0.036, Figure 5 C). See Supplementary Figure
S18A–E for the UMAP plots and the clusters. 

Next, we tested whether the subtypes obtained by the
integration-based DM clustering were biolo gicall y or clin-
ically more similar to those obtained by the GE k-means
clustering. We found that primary tumor and metastases
samples were represented in each of the DM k-means clus-
ters exactly in their portion of all DM samples (18.26% of
primary tumor samples in both clusters). In contrast, when
looking at the GE clusters, the primary tumor samples were
over-r epr esented in one cluster and under-r epr esented in the
other (28.21% of primary tumor samples in the first cluster,
5.94% in the second, 17.89% in all GE samples). We ob-
served a similar pattern in the integration-based DM clus-
tering: 23.77% of primary tumor samples in one cluster and
11.34% in the other (and 18.26% in all DM samples). This
example shows the potential of transferring biological in-
formation between GE and DM samples measured on dif-
ferent populations, using INTEND’s integration. 

We also compared our results with iCluster, a widely used
algorithm for multi-omic subtype identification ( 9 ). Since
iCluster r equir es multi-omic measur ements from each sam-
ple, in order to make a fair comparison, we used the en-
tire multi-omic SKCM TCGA dataset, which comprises GE
and DM profiles from 473 samples. We used the same fea-
ture selection and normalization as we used for the k-means
clustering. To determine the lower dimension of the data
in iCluster, we used the dimension with the maximal de-
viance ratio as defined by the authors. We ran iCluster for
dimensions between 1 and 14, corresponding to the num-
ber of clusters between 2 and 15. We also ran that same
procedure with k-means and INTEND, on the full set of
473 samples. Specifically, we clustered the 473 GE profiles
using k-means and then obtained a clustering of the DM
profiles based on the GE clustering, by assigning each DM
profile to the cluster most r epr esented amongst the fiv e GE
embeddings closest to its DM embedding. It is important
to note that INTEND did not use the correspondence in-
formation between the GE and DM profiles, but only pre-
dicted the GE profiles from the DM profiles. Surprisingly,
using INTEND’s joint embedding of the DM and GE sam-
ples to classify the DM samples based on the k-means clus-
tering of the GE samples, we achie v ed a significantly better
separation of survival between clusters compared with the
multi-omic clustering provided by iCluster. The log-rank P -
values for the clusterings were 0.39 for the DM k-means
clustering, 0.0014 for the GE k-means clustering, 0.0062
for the integration-based DM clustering and 0.14 for the
iCluster multi-omic clustering. Ther efor e, our r esults sug-
gest that our method outperforms iCluster in multi-omic
subtype identification. 

Joint analysis of lung adenocarcinoma datasets from different
sources 

Our next goal was to test the utility of INTEND in joint
analysis of two datasets, one of DM profiles and one of GE
pr ofiles, coming fr om differ ent sour ces. We used data from
two studies of LUAD: GE of 172 tumor samples from Chen
et al . ( 43 ), and DM profiles of 477 samples from TCGA. The
datasets were collected in different studies covering disjoint
groups of LUAD patients. 

Integration 

For the training phase of the model, we used samples from
all TCGA datasets listed in Table 1 but excluded the LUAD
da taset. The integra tion r esults ar e summarized in Figur e
6 A and B. As the two target datasets here are disjoint, we
cannot use FOSCTTM to evaluate their mixing in the em-
bedding phase. As a sanity check, we considered for each
sample its closest 32 neighbors (5% of the samples) in the
shared space. We expected that if the local neighborhood of
a sample is well mixed, the number of samples from each
omic in the neighborhood would reflect the relati v e sizes
of the target datasets. For each sample, we measured the
ratio between the observed and expected number of sam-
ples from the other omic in its neighborhood. If the omics
are fully separated, we would expect this ratio to be near
zero, whereas for perfectly mixed samples we would expect
it to be close to 1. The mean computed ratio for all samples
in the shared space was 1.0003 (SD = ± 0.258), and the
IQR was 0.82–1.15, indicating well-mixed samples across
n 06 July 2023
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Figur e 5. Ka plan–Meier plots of clusters of SKCM patients obtained using DM profiles, GE profiles and their INTEND embeddings. ( A ) Plot for clusters 
of the original DM profiles. ( B ) Plot for clusters of the original GE profiles. ( C ) Plot for clusters of the DM profiles obtained by the integration-based 
clustering. See Supplementary Figure S18A–E for the UMAP plots and the clusters. 
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orr elations betw een methylation at specific sites and 

xpression 

ext, we wished to test if INTEND application on the two 

atasets can be used to re v eal connections between specific 
istal DM sites and the regulation of GE in LUAD tumors, 
 v en though the GE profiles and DM profiles used here were 
ollected from disjoint sets of patients. For this task, we ex- 
racted the estimated correlations between methylation lev- 
ls at specific CpG sites and the expression levels of specified 

enes as follows. 
We considered for e v ery gene g , the methylation sites lo-

ated within ± 1 Mb of g (including sites in g ). There was a
otal of ∼10.14 million such gene–site pairs, for which the 
xpression and methylation levels were measured, covering 

8 553 different genes. Recall that the INTEND model was 
rained using proximal sites located only within ± 10 kb 

rom each gene, while here we explore mostly distal methy- 
a tion sites. To estima te the correla tion between the methy- 
ation le v el at site s and the e xpression le v el of gene g , we
sed INTEND projections to get matchings between GE 

nd DM profiles from different patients. First, to match GE 

nd DM profiles, we found the mutual nearest neighbors 
etween the projections of all DM and GE samples in the 
hared space, using the batchelor R package ( 19 ). A pair of 
 GE profile e and a DM profile m was considered a match 

f the projection of m was among the k -nearest neighbors of 
he projection of e , and vice versa (i.e. the projections of e 
nd m are mutual k -nearest neighbors). For k = 5 we ob- 
ained 270 matches between GE and DM profiles (out of 
72 × 477 = 82 044 possible ma tches). The ma tches pro- 
ided an expression vector of length 270 for each gene g , 
nd a corresponding vector of length 270 for each methy- 
ation site s , allowing the examination of the relationship 

etween any gene and methylation site. Next, using the 270 

atches, we computed the Pearson‘s correlation coefficient 
nd tested the statistical significance of the association be- 
ween the expression level and the methylation le v el of each 

onsidered gene–site pair. 
We wished to assess the validity of the estimated correla- 

ions, based on the created 270 matchings of GE and DM 
amples from the two LUAD datasets (from here on: ‘esti- 
a ted correla tions’). We compared the estima tions with the 

orrelations obtained from 477 pairs of GE and DM pro- 
les measured from the same tissue, from the multi-omic 
UAD TCGA dataset. For each of the ∼10 million gene– 

ite pairs previously described, we also computed the corre- 
ation between the expression of the gene and the methy- 
ation le v el of the relevant site, based on the multi-omic 
CGA dataset (from here on: ‘TCGA-observed correla- 

ions’). Figure 6 C shows for each gene–site pair the esti- 
a ted correla tion versus the T CGA-observed corr elation. 
 pproximatel y 5.08% of the considered gene–site pairs were 
etected with significant correlation ( P -value < 0.01), ei- 
her positi v e or negati v e, accor ding to both methods. For
5.63% of these significant pairs, the estimated correlation 

oefficient had the same sign as the TCGA-observed cor- 
elation. We also tested, for each of the considered genes, 
he correlation between the estimated correlation and the 
 CGA-observed corr elation, for all sites r elevant for that 
ene. Out of the 18 553 considered genes, there was a signifi- 
ant positi v e correlation between the estimated and TCGA- 
bserved correlations ( P -value < 0.05) for 14 693 of the 
enes. The correlation between the estimated and TCGA- 
bserved correlations was > 0.8 for 1041 of the genes, and 

 0.9 for 180 of them (Figure 6 D). This demonstrates the 
otential of the INTEND integration method to uncover 
onnections between DNA methylation and the regulation 

f gene expression, for both proximal and distal methy- 
a tion sites. Repea ting the same procedure with the inte- 
ration results of LIGER, Seurat and MMD-MA for the 
arget LUAD datasets gave inferior results (Supplementary 

able S3). 

n in-depth look at the regulation of Thymidine Kinase 1 

e chose to look in detail at the distal methylation sites of 
he gene Thymidine Kinase 1 (TK1). High expression of 
K1 was recorded in many solid tumors, and was associ- 
ted specifically with poor prognosis of patients with LUAD 

 47–49 ). We computed the correlation between the methy- 
ation le v els in 964 sites within ± 1 Mb from TK1, and its
  06 July 2023
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Figure 6. INTEND results on LUAD GE profiles from Chen et al . ( 43 ) and DM profiles from TCGA. ( A and B ) UMAP plots of the original data 
(A) and of the projections into the shared space (B), colored by omic. ( C ) Scatterplot of the estimated correlations based on the matching of INTEND 

projections versus the observed correlations from the multi-omic TCGA dataset, for each of the considered 10.14 million gene–site pairs. The pairs for 
which the site is within 10 kb from the gene are colored in orange. These gene–site pairs were considered in the INTEND training phase on the TCGA 

datasets (excluding LUAD). ( D ) Histogram of the correlation between the estimated and TCGA-observed gene–site correlations, per gene. ( E ) Correlation 
coefficients between TK1 expression and methylation le v els, a t 964 sites loca ted ± 1 Mb from TK1. y -axis: correlations when TK1 expression is based on 
INTEND projections; x -axis: correlations when both the GE and the paired DM data were taken from TCGA. Correlations with P -value < 1e-5 based 
on both methods ar e color ed in dar k b lue. ( F ) Estima ted correla tion coef ficients based on INTEND projections in sites located ± 100 kb from TK1. The 
x -axis shows their genomic location (build GRCh37 / hg19). Correlations with P -value < 1e-5 are colored in dark blue; TK1 location is marked by the green 
arrow. The highlighted yellow regions indicate enhancer regions supported by at least four GeneHancer sources. 
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 xpression le v el. The estima ted correla tions based on the
atching of GE and DM profiles from INTEND projec- 

ions were highly concordant with the correlations com- 
uted using the multi-omic TCGA dataset ( R 

2 = 0.824, Fig- 
re 6 E). 
Methyla tion pa tterns in enhancer r egions ar e known to 

e altered in cancer and are closely linked to changes 
n expression of cancer-related genes ( 34 ). Therefore, we 
hecked if strong expression–methylation correlations ex- 
racted from INTEND projections can indicate potential 
istal enhancer regions. We used the GeneHancer database 
f enhancers and their inferred target genes ( 50 ) for infor- 
ation on TK1 enhancers. Ther e wer e eight enhancer re- 

ions supported by at least four GeneHancer sources, se v en 

f them within a 100 kb range from TK1. Figure 6 F shows 
he enhancer regions located ± 100 kb from TK1, and the 
orrela tions between methyla tion and TK1 expression, for 
ites located in this range. A total of 14 out of the 15 sites
n this range with strong negati v e correlation ( P -value < 1e-
), are located in one of the documented enhancer regions. 
ote that all but two of them fall outside the ± 10 kb used 

or the training phase. 
Out of the 964 sites in the 1 Mb range from TK1, we in-

estigated the 10 sites with the strongest negati v e estimated 

orrelations (full details in Supplementary Table S4). Eight 
f them are located in two of the enhancer regions shown 

n Figure 6 F (se v en of them in a short interval of < 500
ases). The other two sites, cg11868461 and cg05110391, 
re located ∼350 kb downstream and 400 kb upstream of 
he TSS, respecti v ely. They were not in one of the regions 
arked by GeneHancer as TK1 enhancers. Ne v ertheless, 

oth cg11868461 and cg05110391 were identified as ‘en- 
ancer probes’ (not specifically related to TK1) by Mullen et 
l . ( 51 ), using H3K27ac ChIP-seq data from normal and tu-
or lung tissue samples to identify lung-relevant enhancer 

egions. 

ISCUSSION 

e presented the INTEND algorithm for integrating gene 
xpression and DNA methylation from different datasets. 
e tested it on multiple multi-omic cancer datasets and 

ompared it with extant multi-omic integration algorithms. 
NTEND showed significantly superior results on all tested 

atasets when integrating data from single and multiple 
ancer types, in terms of both FOSCTTM score and clas- 
ification to cancer types according to the integration re- 
ults. We demonstrated the potential of INTEND to trans- 
er biological information between GE and DM samples 
easured on non-overlapping populations of SKCM pa- 

ients. Clustering DM samples achie v ed higher significance 
f separation in survival between clusters when using the 

ntegration results of the DM and GE data than using 

he original DM data only. In another typical use case, 
e tested INTEND in joint analysis of two lung adeno- 

arcinoma datasets from different sources. Here INTEND 

emonstrated its potential to uncover connections between 

NA methylation and the regulation of gene expression. 
INTEND’s novelty mainly resides in the incorporation 

f the prediction of a GE profile from a DM profile of a 

ample, into the MO / MD integration problem. Unlike al- 
orithms such as LIGER and Seurat, which were de v eloped 

ainly to solve the SO / MD problem and then were ex- 
ended to solve the MO / MD problem, INTEND suggests 
nother method to generate the correspondence informa- 
ion between features –– a paramount part of the integration. 
NTEND presents a data-dri v en approach to generate a 

redicted GE matrix, thus effecti v ely reducing the MO / MD 

roblem of integrating GE and DM profiles to the simpler 
O / MD problem of integrating multiple GE datasets. Im- 
ortantly, the data necessary for the training phase of IN- 
END can r epr esent differ ent popula tions from the da ta 

sed for the embedding phase. In all cases presented herein, 
he used training da ta origina ted from samples from can- 
er types other than those r epr esented in the target datasets 
or integration. It is important to note that the goal of IN- 
END is not to predict expression from methylation for in- 
ividual genes, but rather to enable integrated analysis. In 

he embedding phase, INTEND uses prediction data for a 

elected set of genes. Although only a small portion of the 
enes is selected, the integrated analysis allows the examina- 
ion of the relationship between any gene and methylation 

ite, as we demonstrated in the lung cancer analysis. 
Se v eral questions regarding the performance of IN- 

END merit additional study. How does the performance 
f the method depend on the size of the training dataset? 
ow does it depend on the heterogeneity (in our case, the 

umber of different cancer types) in the training set? The 
nalyses above provide anecdotal evidence that both size 
nd heterogeneity make a marked difference (see Supple- 
entary Table S5), but a systematic study is called for. As 

ll our de v elopment was done on TCGA, and methylation 

atterns of tumors may differ from those of normal tissues, 
ow would INTEND work on normal tissues? 
INTEND has se v er al limitations. First, the tr aining 

hase r equir es multi-omic data measur ed on the same set 
f samples, which is not r equir ed for the other algorithms 
e tested. While the training data are not required to be 

rom a similar population to the target data, it is neces- 
ary that the omics will be measured in the same method on 

he training and target datasets. Obtaining multi-omic mea- 
urements may be harder in several scenarios, e.g. single- 
ell multi-omic data. Due to the lack of appropriate single- 
ell training data, we applied INTEND only on bulk data, 
hich may bias the comparison against single-cell integra- 

ion methods. Further testing would be needed as such data 

merge. Second, the final step in the embedding, a ppl ying 

CA, may be less effecti v e when the target datasets contain 

on-overlapping sample populations (e.g. when one of the 
arget datasets contains a group of samples from a cancer 
ype which is not present in the second). Stuart et al . ( 20 )
ddressed this limitation of using CCA as a final step and 

ntroduced a method to overcome it, using the concept of 
utual nearest neighbors to identify anchors between the 

arget datasets. 
Lastly, we note two possible directions of extending this 

ork. The first is the integration of other pairs of omics, 
n addition to GE and DM, in a similar method. Here we 
sed an established, simple biological observation, namely 

he relationship between the state of proximal methylation 

ites and the gene’s expression to build a model and uncover 
6 July 2023



14 Nucleic Acids Research, 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad566/7217038 by Tel Aviv Sourasky-Ichilove M

edical C
enter - Soraski - Ichilove M

edical C
enter Library Tel Aviv user on 06
multi-omic data. This concept may be extended to other
pairs of omics with available data measuring both on the
same set of samples. Another futur e r esear ch dir ection is
the incorporation of methods from algorithms tackling the
SO / MD integration problem, after the first step in IN-
TEND’s embedding phase, which results in the predicted
GE matrix. 

DA T A A V AILABILITY 

The code for INTEND is available at https://github.
com/Shamir-Lab/INTEND or at https://zenodo.org/badge/
latestdoi/539148741 . 

SUPPLEMENT ARY DA T A 

Supplementary Data are available at NAR Online. 
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