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ABSTRACT

Spatiotemporal gene expression patterns are gov-
erned to a large extent by the activity of enhancer el-
ements, which engage in physical contacts with their
target genes. Identification of enhancer–promoter
(EP) links that are functional only in a specific subset
of cell types is a key challenge in understanding gene
regulation. We introduce CT-FOCS (cell type FOCS),
a statistical inference method that uses linear mixed
effect models to infer EP links that show marked ac-
tivity only in a single or a small subset of cell types
out of a large panel of probed cell types. Analyz-
ing 808 samples from FANTOM5, covering 472 cell
lines, primary cells and tissues, CT-FOCS inferred
such EP links more accurately than recent state-of-
the-art methods. Furthermore, we show that strictly
cell type-specific EP links are very uncommon in the
human genome.

INTRODUCTION

Understanding the effect of the noncoding part of the
genome on gene expression (GE) in specific cell types is a
central genomic challenge (1). Cell identity is, to a large
extent, determined by transcriptional programs driven by
lineage-determining transcription factors [TFs; reviewed in
(2)]. TFs mostly bind to enhancer elements located distally
from their target promoters (3). Furthermore, the expres-
sion of a gene can be regulated by different enhancers in
different cell types. For example, TAL1 transcription is reg-
ulated by three enhancers, two of which are active in differ-
ent cell types (HUVEC and K562) (2). To find enhancer–
promoter (EP) links that are active in only very few cell
types, one has to compare links across multiple and diverse
cell types. We term these links as cell type-specific links (ct-
links). Data based on chromatin conformation capture (3C)
genomic assays, which can identify ct-links, e.g. ChIA-PET

(4), HiChIP (5) and Hi-C (6,7), are still not available for
many cell types and tissues (6–11). Consequently, there is a
high need for computational methods that predict ct-links
based on other data. A key resource for such prediction is
large-scale epigenomic data, which are available for a vari-
ety of human cell types and tissues, and enable quantifica-
tion of both enhancer and promoter activities.

A key challenge is to identify which of the numerous can-
didate EP links (i) are actually functional (or active) and
(ii) show their activity only in a specific small subset of cell
types of interest. Ernst et al. (12) predicted ct-links based
on correlated cell type-specific enhancer and promoter ac-
tivity patterns from nine chromatin marks across nine cell
types. Similarly, the RIPPLE method (13) predicted ct-links
in five cell types. The cell type specificity of the inferred
EP links was quantified by comparison of their occurrence
in other cell types. Additional methods that predicted EP
links that are specifically active in a low number of cell
types are IM-PET (14), EpiTensor (15), TargetFinder (16)
and DeepTACT (17). All these methods used data of se-
quences, chromatin accessibility, multiple chromatin marks
and GE data for the studied cell types. The JEME algorithm
finds global and cell type-active EP links (but not neces-
sarily cell type specific), using one to five different types of
omics data (18). Each EP link reported by JEME is given
a score for its tendency to be active in a given cell type.
JEME reported an average of 4183 active EP links per cell
type, and many of these may show a broad activity profile.
Fulco, Nasser and coworkers (19,20) recently introduced
the activity-by-contact (ABC) score for inferring cell type-
specific functional EP links in 131 human biosamples with
an average of 48 441 EP links per biosample. The ABC score
was calculated using read counts of DNase hypersensitive
site (DHS) and H3K27ac chromatin immunoprecipitation
sequencing (ChIP-seq) at enhancer elements, and Hi-C con-
tact frequency between enhancers and promoters.

Evidence of several sources suggests that while each cell
type manifests tens of thousands of EP links, most of them
are not unique and are shared across cell types. In a recently
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published compendium of EP chromatin interactions across
27 human cell types (21), the number of EP loops that were
unique to a specific cell type was rather low (a median of
630 unique EP links, compared to a median of 31 250 to-
tal EP links per cell type) (see the ‘Materials and Methods’
section). In line with these numbers, comparing 3D genome
architecture between neuronal progenitor cells (NPCs) and
mature neurons, Rajarajan et al. (22) identified 1702 and
442 NPC- and neuron-specific chromatin loops linked to
386 and 385 genes, respectively.

Here, we develop a novel statistical method for inferring
ct-links from large-scale compendia of cell types measured
by a single omics technique. We take advantage of linear
mixed effect models (LMMs) to estimate cell type activity
coefficients based on replicates available for each cell type.
We compared the results to those of extant methods in terms
of concordance with experimentally derived chromatin in-
teractions and cell specificity of GE.

MATERIALS AND METHODS

FANTOM5 and ENCODE data preprocessing

Details on data preprocessing are provided in the ‘FAN-
TOM5 CAGE data preprocessing’ and ‘ENCODE DHS
data preprocessing’ sections in the Supplementary Meth-
ods.

CT-FOCS model implementation

Our model for promoter p (Figure 1) includes its k closest
enhancers. The activity of the promoter across the n samples
is denoted by the n-long vector yp, and the activity level of
the enhancers across the samples is summarized in the ma-
trix Xe of dimensions n × (k + 1), with the first column of
ones for the intercept and the next k columns corresponding
to the candidate enhancers. There are C < n cell types and
each sample is labeled with a cell type. k = 10 was used.

To find ct-links based on the global links identified by
FOCS, CT-FOCS (cell type FOCS) starts with the full (i.e.
nonregularized) promoter model. We use the nonregular-
ized promoter model as regularization reduces the overall
model variance needed for making inferences. In princi-
ple, one could apply ordinary least squares regression with
the cell types as additional coefficients to estimate cell type
specificity. However, such models will perform poorly when
the sample size is not much larger than the number of coef-
ficients (e.g. in FANTOM5 we have 808 samples and a total
of 483 coefficients: 472 cell types + k = 10 enhancers + in-
tercept). By using an LMM, we can treat the cell type group
level as a random effect coefficient, splitting the samples
(replicates) based on their cell type of origin, at the cost of
assuming a random effect distribution.

The application of an appropriate mixed effect model
to the data depends on the distribution of the promoter
and enhancer activities. We observed that FANTOM5 data
have normal-like distribution and ENCODE data have
zero-inflated negative binomial distribution (Supplemen-
tary Figure S1). For FANTOM5, we applied regular linear
mixed effect regression. For ENCODE, we applied general-
ized linear mixed effect regression.

For each promoter, we defined a null model and k + 1
alternative models, each corresponding to a single random
effect (i.e. random slope for enhancer or random intercept
for the promoter). We defined the null model as the sim-
ple linear regression yp = Xeβ + ε, and each of the alter-
native models as the LMM model yp = Xeβ + Zlγ l + ε,
where Xeβ is the fixed effect, Zlγ l is the random effect and
ε is a random error. l ∈ {1, . . . , k + 1} is one of the variables
(enhancer or the intercept). γ l is a C-long vector of random
effects to be predicted. Zl is an n × C design matrix that
groups the samples by their cell types, namely

Zl [i, j ] =
{

Xe[i, l], sample i belongs to cell type j,
0, otherwise.

We applied a likelihood ratio test between the residuals of
the k + 1 alternative models and the null model, and got k +
1 P-values. Such P-values were calculated for each of the |P|
promoters, and corrected together for multiple testing using
false discovery rate (23), with the number of tests performed
|P| · (k + 1).

Each predicted random effect vector γ l = (γ l
1, . . . , γ

l
C)

of the alternative models was normalized using the MAD,
i.e. γ ′l

i = ∣∣γ l
i − median(γ l )

∣∣ /mad(γ l ), where mad(γ l ) =
median(|γ l − median(γ l )|) is calculated over all cell types
together. If γ ′l

i > 2.5, then enhancer l (or the promoter, if
l = 1) was regarded as having an outlier activity in cell type
i . We chose a moderately conservative MAD threshold, 2.5,
as suggested in (24). We chose to use the MAD statistic since
the mean and the standard deviation are known to be sen-
sitive to outliers (24).

Finally, we defined ct-links as those that had (i) signifi-
cant random effect intercept of the promoter and (ii) sig-
nificant random effect slope of the enhancer, both with q-
value <0.1, and (iii) enhancer and promoter random effect
values were identified as outliers in the same cell type ac-
cording to the MAD criterion.

MAD-FOCS model

MAD-FOCS takes the global EP links predicted by FOCS
(25). Then, for every global EP link, MAD-FOCS calculates
the enhancer and promoter median activity values across
the multiple replicates per cell type. Last, it normalizes the
median activities across cell types using the MAD method.
EP links are identified as ct-links in a certain cell type if
both enhancer and promoter activities are positive outliers
in that cell type using MAD cutoff >2.5.

Filtered EP link sets

To validate the cell type specificity of predicted EP links,
we use experimental 3D loops as a benchmark (see the next
section). The very small number of cell types assayed does
not allow us to identify true cell type-specific loops and
exclude those common to many cell types. Therefore, the
benchmark does not provide a gold standard of positive and
negative ct-links (validations against all experimentally de-
tected loops without considering the cell type specificity of
predicted EP links are available in the Supplementary Re-
sults and Supplementary Figures S2 and S3). To allow a fair
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Figure 1. Outline of the CT-FOCS algorithm. Let yp denote the observed activity of promoter p, and Xe be the activity matrix of the k = 10 closest
enhancers to p. If l ∈ {1, . . . , k + 1} is one of the variables (enhancer or promoter, i.e. the intercept), then Zl [i, j ] is equal to Xe [i, l] if sample i belongs to
cell type j and 0 otherwise (see the ‘Materials and Methods’ section). First, a robust global promoter model is inferred by applying the leave-cell-type-out
cross-validation step in FOCS [see (25) for details]. Second, an LMM is built on all samples using yp, Xe and Zl . The LMM includes the component Zlγ l ,
where γ l is a vector of the predicted random effect values for each variable (i.e. enhancer or promoter) per cell type. Then, the algorithm performs two
tests for every l: (1) log-likelihood ratio test (LRT) to compare the simple linear regression and the LMM model. The test is carried out 11 times (testing
the 10 enhancers and the intercept). The P-values for these LRTs are adjusted for multiple testing (q-values). (2) The γ l values produced by the LMM are
standardized using the median absolute deviation (MAD) technique and positive outliers (red dots) are identified. A ct-link is called if (i) both enhancer
and promoter (i.e. the intercept) have q-value <0.1 (marked in red), and (ii) the enhancer and the promoter are found as positive outliers in the same cell
type. In the FCRLA gene given as an example, the promoter p and enhancers e1 and e10 are significant and are commonly found as positive outliers in B
cells. Therefore, e1 p and e10 p are called by CT-FOCS as B-cell-specific EP links.

comparison between the performance of prediction meth-
ods that produce very different numbers of links, for each
method and cell type, if CT-FOCS gave n links, then we took
the subset of n top scored links predicted by that method.
We call these subsets CT-X, where X is the method’s name.

CT-JEME. JEME reports a classification score (between
0.3 and 1) for every EP link representing how active the EP
link is in each cell type. We created a subset of the original
JEME EP links called CT-JEME. For cell type j in FAN-
TOM5 with n CT-FOCS ct-links, we chose the top n scor-

ing EP links of JEME as the CT-JEME subset for that cell
type. For cell types in which JEME had a lower number of
EP links than CT-FOCS, we included all JEME EP links
for that cell type in CT-JEME. Supplementary Figure S4A
shows that the number of EP links per cell type is similar
between CT-FOCS and CT-JEME. In addition, the average
number of cell types sharing an EP link is 2.9 in CT-JEME
compared to 11 in JEME (Supplementary Figure S4B).

CT-MAD-FOCS. To allow a fair comparison between the
predictions of CT-FOCS and MAD-FOCS, we created a
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subset of MAD-FOCS EP links called CT-MAD-FOCS, as
described for CT-JEME earlier. We sorted the EP links by
their log EP signal.

CT-TargetFinder and CT-ABC. Data for the ABC model
were taken from ftp://ftp.broadinstitute.org/outgoing/
lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.
minus150.ForABCPaperV3.txt.gz. Among the 131 biosam-
ples analyzed in ABC, 75 were taken from ENCODE and
Roadmap epigenomic consortia (26,27) and 8 of them were
also present in the CT-FOCS database and used for com-
parison (GM12878, HeLa-S3, K562, HCT-116, HepG2,
A549 and H1-hESC). As for TargetFinder, we applied the
program (https://github.com/shwhalen/targetfinder) on five
cell types from ENCODE (GM12878, HeLa-S3, HUVEC,
NHEK and K562) for which preprocessed multi-omics data
were available on the TargetFinder website, using as input
candidate DHS sites representing enhancers and promoters
from ENCODE DHS data. For each cell type in ENCODE
with n CT-FOCS ct-links, we chose the top n scoring EP
links of TargetFinder (by classification score) and of the
ABC model (by ABC score) as the predicted ct-links for
that cell type for the two models, and called these subsets
CT-TargetFinder and CT-ABC, respectively. Statistics on
the analyzed data are summarized in Supplementary Table
S1A.

External validation of predicted EP links using ChIA-PET,
HiChIP and PCHi-C loops

We used 3C loops to evaluate the performance of CT-FOCS
and of other methods for EP linking. We downloaded
ChIA-PET data of GM12878 cell line (GEO accession:
GSE72816; ∼100 bp resolution) assayed with POLR2A
(11), HiChIP data of Jurkat, HCT-116 and K562 cell
lines (GEO accession: GSE99519; 5 kb resolution) assayed
with YY1 (28), and promoter-capture Hi-C (PCHi-C) data
across 27 tissues (GEO accession: GSE86189; 5 kb resolu-
tion) (21). Each loop identifies an interaction between two
genomic intervals called its anchors. In ChIA-PET data, to
focus on high-confidence interactions, we filtered out loops
with anchors’ width >5 kb or overlapping anchors. Loop
anchors were resized to 1 kb (5 kb in HiChIP and PCHi-
C) intervals around the anchor’s center position. We fil-
tered out loops crossing topologically associated domain
(TAD) boundaries, as functional links are usually confined
to TADs (8,29–31). For this task, we downloaded 3019
GM12878 TADs (32), which are largely conserved across
cell types (7), and used them for filtering ChIA-PET and
PCHi-C loops from all cell types.

To overcome the sparseness of the ChIA-PET loops, and
the 8 kb minimum distance between loop anchors (10,11),
we combined loops into two-step loop sets (TLSs) as fol-
lows: for every reference loop, x, its TLS is defined as the set
of anchors of all loops that overlap with at least one of x’s
anchors by at least 250 bp (Figure 2A). We used the igraph
R package (33) for this analysis.

To evaluate whether a ct-link is confirmed by the ChIA-
PET data, we checked whether both the enhancer and the
promoter fall in the same TLS. Specifically, we defined 1
kb genomic intervals (±500 bp upstream/downstream; 5

kb genomic intervals: ±2.5 kb upstream/downstream in
HiChIP and PCHi-C) for the promoters (relative to the cen-
ter position; relative to the TSS in the FANTOM5 dataset)
and the enhancers (relative to the enhancer’s center posi-
tion) as their genomic positions. Both inter- and intra-TAD
predicted EP links were included in the validation. An EP
link was considered supported by a TLS if the genomic in-
tervals of both its promoter and enhancer overlapped dif-
ferent anchors from the same TLS (Figure 2B and Supple-
mentary Figure S5).

We used randomization in order to test the significance
of the total number of EP links supported by ChIA-PET
single loops. We denoted that number by Nt. We performed
the test as follows: (i) For each predicted EP link, we ran-
domly matched a control EP link, taken from the set of all
possible EP pairs that lie within 9274 GM12878 TADs from
(7), with similar linear distance between enhancer and pro-
moter center positions. We restricted the matching to the
same chromosome in order to account for chromosome-
specific epigenetic state (34). The matching was done using
MatchIt R package (method = ‘nearest’, distance = ‘logit’,
replace = ‘FALSE’) (35). This way, the final set of matched
control EP links had the same set of linear interaction dis-
tances as the original EP links. (ii) We counted Nr, the num-
ber of control EP links that were supported by ChIA-PET
single loops. We repeated this procedure for 1000 times. The
empirical P-value was P = #(Nr ≥ Nt)/1000, or P < 0.001
if the numerator was zero. A similar empirical P-value was
computed for the validation rate obtained by using single
loops and TLSs.

We used the following formula to calculate the GM12878
ChIA-PET TLS support ratio:

ratio
(

GM12878
CellType

)
= %GM12878-specific EPs in GM12878 TLS

%CellType-specific EPs in GM12878 TLS
.

Calling cell type-specific active EP loops reported in a capture
Hi-C study

We wished to identify ct-links reported in capture Hi-C data
(21). We downloaded 906 721 promoter–other (PO) cap-
ture Hi-C loops generated across 27 tissues (GEO acces-
sion: GSE86189) (21). These loops involve a known gene’s
promoter and a nonpromoter region, which may be an en-
hancer. To define a set of strictly ct-specific loops, we re-
tained PO loops that were detected in exactly one cell type.
We set the PO anchors to 1 kb intervals around their center
positions. This analysis detected a median of 630 EP loops
that were unique to a specific cell type.

To call promoter and enhancer regions, we downloaded
474 004 enhancer and 33 086 promoter regions predicted
by a 15-state ChromHMM model on Roadmap epigenetic
data across 127 tissues (https://personal.broadinstitute.
org/meuleman/reg2map/HoneyBadger2-intersect release/
DNase/p10/enh/15/state calls.RData; https://personal.
broadinstitute.org/meuleman/reg2map/HoneyBadger2-
intersect release/DNase/p10/prom/15/state calls.RData)
(27). We kept the enhancers of state Enh or EnhG (genic
enhancers) in any of 127 Roadmap tissues. Similarly, we
kept the promoters of state TssA (active TSS) or TssAFlnk
(flanking active TSS). Then, we resized each region to
a 1 kb interval around its center position. We called the
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A

B

Figure 2. ChIA-PET TLSs support predicted ct-links. The TLS of a reference loop x is defined as the set of all loops that have an anchor overlapping one
of x’s anchors including loop x. (A) Examples of TLSs. Loop x’s anchors overlap with at least one of the anchors of loops A, B, C and E; therefore, the
TLS of x is composed of loops x, A, B, C and E. Similarly, the TLS of y is composed of loops B, y and D. Loop E overlaps anchors of both B and D, but
is not part of TLS(y) as it does not overlap y’s anchors. (B) (1) A 70 kb region of chromosome 1 showing ChIA-PET loops detected in GM12878. (4) A
ct-link predicted by CT-FOCS. (2) The same region showing only loops that have anchors overlapping the anchors of the ct-link. Pink: loops overlapping
the enhancer; blue: loops overlapping the promoter. (3) A TLS that supports the predicted ct-link. The ct-link in (4) is validated by the TLS, but not by
any single ChIA-PET loop. (5) Gene annotations. (6) GE (RNA-seq) and epigenetic signals (DHS-seq and selected histone modifications) for the region.
Tracks are shown using UCSC Genome Browser for data from GM12878 and K562 cell lines. The data indicate that this link is active in GM12878 but
not in K562.

resulting sets active promoters and enhancers. A retained
PO loop whose promoter and other anchors had at least
250 bp overlap with active ChromHMM promoter and
enhancer, respectively, was considered as cell type-specific
active EP loop.

Cell type specificity score

We quantified the intensity of an EP link in a given sample
by log2a + log2b, where a and b are the enhancer and pro-
moter activities in that sample. The EP signal of the link for
a particular cell type is the average of the signal across the

samples from that cell type. Define xc = (xc1, . . . , xcn) as the
vector of signals in cell type c, where n is the total number
of EP links discovered in cell type c, and define dc,i as the
Euclidean distance between the vectors of cell types c and i ,
both with the same EP links from cell type c. Following the
definition of (36), the specificity score of EP links predicted
in cell type c is

Sc = 1∑
i �=c dc,i

∑
i �=c

dc,i

n∑
k = 1

(xc,k − xi,k) .
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Similarly, cell type specificity can be computed for the ex-
pression values of the genes annotated with EP links, or on
the overrepresentation factors of TFs found at enhancers
and promoters.

Motif finding on ct-links

We examined the occurrence of TF binding site motifs in
sequences of ct-links’ promoters and enhancers. Finding
all TF motif occurrences (hits) in a large set of promoter
and enhancer sequences, each hundreds of bases long, is
prone to high false-positive rate. We therefore limited the
search for hits to digital genomic footprint (DGF) regions,
very short segments that are more likely to contain genuine
TF binding sites. We downloaded ∼8.4 million DGF se-
quences inferred from DNase-seq in ENCODE (37). The
mean DGF length was L ≈ 20 bp, with a maximum length
of 68 bp.

We intersected the DGFs with enhancer and promoter
regions of predicted ct-links. We call the resulting set of
sequences the target set. We looked for hits of 402 HO-
COMOCO V11 (38) TF core motifs [taken from MEME
suite database (39); http://meme-suite.org/meme-software/
Databases/motifs/motif databases.12.18.tgz] in the target
sets. Hits were found using FIMO (40) with a zero-order
Markov model as background created using fasta-get-
markov command from MEME suite (39). For each TF,
matches with FIMO q-value <0.1 were considered hits. To
evaluate the statistical significance of the findings, we re-
peated the search on a control set from matched regions
(one per target region) having similar distribution of sin-
gle nucleotides and dinucleotides. Matching was done us-
ing MatchIt R package (35) (method = ‘nearest’, distance
= ‘mahalanobis’). For each TF, we used a one-sided hyper-
geometric test to compare between the prevalence of its hits
in the target and background (target + control) sets. Motifs
having q-value <0.1 were selected.

If a k-long TF motif had lt hits on a target set containing
mtpossible k-mers in total (in both strands) and the same
motif had lbhits in the background set containing mb possi-
ble k-mers, then the overrepresentation factor of the TF is de-
fined as (lt/mt)/(lb/mb). To avoid division by zero, we used
the Laplace correction (adding +1 to all four terms). If lt
was zero, then we set the overrepresentation factor as 1.

Statistical methods, visualization and tools

All computational analyses and visualizations were done
using the R statistical language environment (41). To cor-
rect for multiple testing, we used the p.adjust() function
(method = ‘BY’). We used ‘GenomicRanges’ package (42)
for finding overlaps between genomic intervals. We used
‘rtracklayer’ (43) and ‘GenomicInteractions’ (44) packages
to import/export genomic positions. Linear mixed effect re-
gression models were created using lme R function from
nlme package (45). Generalized linear mixed effect with
zero-inflated negative binomial models were created us-
ing glmmTMB R function from glmmTMB package (46).
Counting of reads in genomic intervals was done using
BEDTools (47). Graphs were created using graphics (41),
ggplot2 (48), gplots (49), ComplexHeatmap (50) and the
UCSC Genome Browser (https://genome.ucsc.edu/).

RESULTS

The CT-FOCS algorithm

We developed a novel method called CT-FOCS for infer-
ring ct-links. The method utilizes a single type of omics data
[e.g. cap analysis of gene expression (CAGE) or DHS] from
large-scale datasets.

The input to CT-FOCS is enhancer and promoter activity
profiles for a set of cell types. The output is the set of ct-links
called for each cell type. Note that the enhancers or promot-
ers involved in ct-links can be broadly active separately. In
contrast to methods that seek global correlations between
the activity profiles of enhancers and promoters, the aspect
emphasized and detected by CT-FOCS is the specificity of
the link between the two elements; that is, links reported by
CT-FOCS highlight the few cell types in which the enhancer
and promoter are predicted to functionally interact.

CT-FOCS builds on FOCS (25), which discovers global
EP links showing correlated enhancer and promoter activ-
ity patterns across many samples. FOCS performs linear re-
gression on the levels of the 10 enhancers that are closest to
the target promoter, followed by two nonparametric statis-
tical tests for producing initial promoter models, and reg-
ularization to retrieve the most informative enhancers per
promoter model. CT-FOCS starts with the full (nonregular-
ized) FOCS promoter model (see the ‘Materials and Meth-
ods’ section), and uses an LMM, utilizing groups of repli-
cates available for each cell type to adjust a distinct regres-
sion curve per cell type group in one promoter model (Fig-
ure 1; see the ‘Materials and Methods’ section). We call a
ct-link in a certain cell type if it meets the following crite-
ria: (i) both the enhancer and the promoter show markedly
positive activity levels in that cell type compared to other
cell types, and (ii) both promoter and enhancer have sig-
nificantly high random effect coefficients, reflecting an ad-
vantage of the LMM over the global FOCS model (see the
‘Materials and Methods’ section). The second criterion in-
creases our confidence that the high activity detected by the
first is specific to this cell type.

To demonstrate the difference between the linear and
LMM predictions, Supplementary Figure S6 shows, for the
same promoter (P), two links involving distinct enhancers
(E1 and E2), one predicted by CT-FOCS (E1P) and the
other by FOCS (E2P). The link between E1 and P is active
only in neurons, while the link between E2 and P is active
over a wider range of cell types of distinct lineages (amniotic
membrane cells, whole blood cells, fibroblasts, endothelial
cells and preadipocytes).

Note that choosing links by setting a threshold only on
the log EP value would produce many false-positive calls,
as the signals in promoters tend to be higher than those in
enhancers (51) (see the examples in Supplementary Figure
S6A and B).

We applied CT-FOCS on FANTOM5 CAGE profiles,
which include 808 samples from 225 cell lines, 157 primary
cells and 90 tissues (51) (see the ‘Materials and Methods’
section). CAGE quantifies the activity of both enhancers
and promoters, and overall this dataset covers 42 656 en-
hancers and 24 048 promoters (mapped to 20 597 En-
sembl protein-coding genes). For some analyses, we also
applied CT-FOCS to ENCODE’s DHS profiles (26,52),
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which cover 106 cell types, each with typically two repli-
cates. This dataset includes measurements for 36 056 pro-
moters (mapped to 13 464 Ensembl protein-coding genes)
and 658 231 putative enhancers (see the ‘Materials and
Methods’ section). Unlike the FANTOM5 dataset, which
builds on the expression of enhancer RNAs as a robust
readout for enhancer activity, open genomic regions iden-
tified by DHS do not necessarily mark functionally active
enhancers and promoters. Thus, EP maps inferred using the
ENCODE dataset may be less reliable, and we focus our
analyses mainly on the FANTOM5 dataset.

Overall, CT-FOCS identified 195 232 ct-links in
the FANTOM5 dataset (Table 1), with an average of 414
ct-links per cell type (median 94; Table 1 and Supple-
mentary Figure S4A). These results are in line with the
low number of ct-links observed experimentally by the
above-mentioned studies, including for NPCs and neurons
(22,53), and further indicate that the EP links specific to
a cell type constitute only a small portion of the EP links
that are active in it. The EP links called by CT-FOCS were
on average shared across 2.5 cell types (Supplementary
Figure S4B). CT-FOCS predicted both proximal and
distal interactions, with an average EP distance of ∼160
kb (median ∼110 kb; Supplementary Figure S4C). The
complete set of predicted ct-links for each cell type is
available at http://acgt.cs.tau.ac.il/ct-focs.

Since EP links are expected to function mostly within
TADs (54,55), we next tested whether ct-links detected
by CT-FOCS are enriched for intra-TAD genomic inter-
vals. As TADS are largely cell type invariant (7), we used
for these tests the 9274 TADs reported by Rao et al. in
GM12878 (7). Indeed, comparison with randomly matched
EP links demonstrated that predicted ct-links tend to lie
within TADs (Supplementary Figure S7).

Inferred ct-links correlate with cell type-specific GE

To evaluate the specificity of the CT-FOCS predictions, we
compared the activity of the set of ct-links inferred for a
particular cell type with their activity in all other cell types.
We defined the activity of an EP link in a cell type as the
logarithm of the product of the enhancer and promoter ac-
tivities in that cell type. We used these measures to com-
pute the cell type specificity for the set of ct-links detected
in each cell type, using a score akin to (36) (see the ‘Materi-
als and Methods’ section). As an example, CT-FOCS called
340 ct-links on the GM12878 lymphoblastoid cell line. We
scored the cell type specificity of these 340 ct-links for each
cell type. Reassuringly, GM12878 was the top scoring cell
type, and other high scoring cell types were enriched for re-
lated lymphocyte cells (other B cells and T cells; Figure 3A
and C). GM12878 was also ranked first in cell type speci-
ficity scores calculated separately for the promoters and en-
hancers of these 340 ct-links (Supplementary Figure S8).

Next, we examined how the effect of ct-links is reflected
by cell type-specific expression of the linked genes (see the
‘Materials and Methods’ section). The 340 ct-links called
by CT-FOCS in GM12878 involve 197 genes. We examined
their expression profiles over 112 cell types using an inde-
pendent GE dataset (56). In this analysis, we now scored
each of the 112 cell types for the specificity in the expres-

sion of these 197 genes. Notably, here too, the lymphocyte
group (B and T cells) showed the highest expression levels
(Figure 3B) with GM12878 ranking first by GE specificity
(Figure 3D). Overall, these results show that for GM12878,
the ct-links predicted by CT-FOCS based on CAGE data
are correlated with lymphocyte-specific GE programs. Sup-
plementary Figure S9 shows similar results for neuron
cells.

Comparison of CT-FOCS to other methods

We compared CT-FOCS predictions on the FANTOM5
dataset with those made by four alternative methods: (i)
JEME (18), which predicts EP links that are active in a par-
ticular cell type but are not necessarily cell type specific. (ii)
A naı̈ve variant of FOCS, which takes the shrunken pro-
moter models from FOCS, and predicts ct-links by detect-
ing cell types in which the promoter and any of the model’s
enhancers show exceptionally high activity, based on the
MAD index. We call this variant MAD-FOCS (see the ‘Ma-
terials and Methods’ section). (iii, iv) To overcome large dif-
ferences among methods in the numbers of predicted links,
we created subsets of the solutions of JEME and MAD-
FOCS by filtering of their reported links to produce sets of
links of the same size as the ones detected by CT-FOCS
(see the ‘Materials and Methods’ section). We call these
subsets cell-type-JEME (CT-JEME) and cell-type-MAD-
FOCS (CT-MAD-FOCS), respectively.

Supplementary Figure S4 shows basic properties of the
solutions provided by the five methods. EP links predicted
by JEME and MAD-FOCS were, on average, shared across
11 and 12 cell types (median = 3 and 13, respectively; Sup-
plementary Figure S4B). In contrast, the CT-FOCS, CT-
MAD-FOCS and CT-JEME EP links were, on average,
shared across <4 cell types (median = 2, 2 and 1, respec-
tively), demonstrating that they identified EP links that are
more specific. The same number of predicted links allows
fair comparison between CT-FOCS, CT-MAD-FOCS and
CT-JEME.

Next, we calculated cell type specificity scores for the EP
links called by CT-FOCS, CT-MAD-FOCS and CT-JEME
on the 276 FANTOM5 cell types. For each cell type, we used
the ct-links called on it to calculate its specificity score on
all cell types, and ranked the cell types by their scores. We
expect the given cell type to score the top. In this analysis,
CT-MAD-FOCS and CT-FOCS performed similarly, and
significantly better than CT-JEME (Supplementary Figure
S10A). In terms of GE of the genes associated with the
EP links, examining the four cell types (GM12878, K562,
HepG2 and MCF-7) that were present in both FANTOM5
and the independent GE dataset of Sheffield et al. (56), CT-
FOCS was the only method that ranked first all the four cell
types (Supplementary Figure S10B). Overall, these three
methods seem to capture ct-links with highly specific EP
and GE signals.

Then, we ranked the cell types according to cell type
specificity scores obtained when considering separately the
signals of the linked enhancers and promoters. Using ct-link
enhancer signals, the median rank of the ‘root’ cell type (the
cell type in which the link was found) was first by all meth-
ods, possibly because enhancers tend to be cell type specific.
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Table 1. Statistics on the number of CT-FOCS predictions per cell type

Dataset
Average
ct-links

Average
enhancers

Average
promoters

Average
genesa

Total
ct-links

Cell type with maximum
ct-links

FANTOM5 414 318 146 134 195 232 Temporal lobe (13 354)
ENCODE 167 158 86 82 17 672 Caco-2 (1572)

aEnsembl protein-coding genes.

A

C D

B

Figure 3. Specificity of ct-links predicted for GM12878 cell line. (A) Heatmap of EP signals for 340 ct-links predicted on GM12878 cells. Rows, EP links;
columns, cell types; color, z-score of EP signal. Cell types related to lymphocytes (B/T cells) are highlighted in color. (B) Heatmap of GE for 197 genes
involved in the predicted ct-links. Rows, genes; columns, cell types; color, z-score of GE. (C) Cell type specificity scores based on the EP signals. (D) Cell
type specificity scores based on expression for the gene set in panel (B) (see the ‘Materials and Methods’ section). In panels (A) and (C), 109 cell types with
at least three replicates are included in the analysis; in panels (B) and (D), 112 cell types with ENCODE GE data are included (56).

However, when using ct-link promoter signals, the median
rank of the root cell type obtained by CT-JEME was only
23rd, while reassuringly it was 1st for CT-FOCS and CT-
MAD-FOCS. The low ranks of CT-JEME’s linked promot-
ers can explain why its predicted ct-links ranked lower com-
pared to CT-FOCS and CT-MAD-FOCS.

Last, we compared the CT-FOCS predictions on EN-
CODE’s DHS dataset with those obtained by six other

methods: (i, ii) CT-MAD-FOCS and MAD-FOCS; (iii)
TargetFinder (16), which predicts EP links based on fea-
tures in enhancer, promoter and the window between
them using GradientBoosting trees; (iv) ABC score model
(19,20), which inferred cell type-specific functional EP links
in 131 human biosamples; and (v, vi) subsets of Tar-
getFinder and ABC model solutions having, for each cell
type, a similar number of predictions to CT-FOCS (see
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the ‘Materials and Methods’ section). We call these sub-
sets CT-TargetFinder and CT-ABC, respectively. Note that
while our evaluation of the different methods using the
FANTOM5 data was done on 276 cell types (that had at
least 50 predicted EP links in all methods), the evaluation
using the ENCODE dataset is done only on 5–10 cell types
(see the ‘Materials and Methods’ section). Overall, consid-
ering the specificity scores of the ct-links calculated based
on DHS signals, CT-FOCS, CT-MAD-FOCS and ABC
ranked the root cell type first for most cell types, better than
the other three methods. On the basis of GE specificity, CT-
FOCS, ABC and CT-ABC ranked the root cell type first
for most cell types, performing better than the other three
methods (Supplementary Table S1B).

Introducing ‘two-step connected loop sets’ in 3C assays to im-
prove the evaluation of ct-links

We validated the ct-links predicted on GM12878 using em-
pirical loops that were detected in this cell type by both
POLR2A ChIA-PET and PCHi-C (11,21). The direct way
to validate a predicted ct-link is to check whether the en-
hancer and promoter regions overlap the two anchors of
the same loop. However, as loops indicate 3D proximity
of their anchors, overlapping anchors of different loops
indicate proximity of their other anchors as well (57,58).
Furthermore, predicted ct-links that span a linear distance
of <20 kb, a range where ChIA-PET loops perform poorly
(59), may not be directly supported by that assay. Thus, for
the validation of ct-links, we broadened the set of anchors
that are considered to be proximal as follows: We define the
‘two-step connected loop set’ of a loop as the set of anchors
of all loops that overlap with at least one of its anchors
(Figure 2A). We consider a predicted ct-link as validated
if its enhancer and promoter regions overlap different an-
chors from the same TLS (Figure 2B; see Supplementary
Figure S5 for an additional example; see also the ‘Materi-
als and Methods’ section). To increase our confidence that
TLSs indeed represent genuine chromatin interactions, we
checked for each TLS if there is a loop from the same assay
that is not part of the TLS but has both anchors overlap-
ping TLS anchors (e.g. in Figure 2A, loop E and the TLS
of loop y). In the POLR2A ChIA-PET (from GM12878)
and YY1 HiChIP (from K562), 54% and 64% of the TLSs
were supported by such loops, respectively.

Out of the 340 ct-links inferred by CT-FOCS in
GM12878, 10% were supported by ChIA-PET single loops,
and 33% were supported by TLSs. Using loops from PCHi-
C in GM12878, validation rates were 7.6% and 15%, respec-
tively. (Although these rates might seem low, in the next sec-
tion we show that most methods predicting EP links have a
low support from 3D conformation data.) To test the sig-
nificance of the observed validation rate, we generated ran-
dom sets of 340 intra-TAD links having the same linear dis-
tances between enhancer and promoter regions as the ct-
links predicted by CT-FOCS (see the ‘Materials and Meth-
ods’ section). In 1000 random sets, TLSs supported, on av-
erage, 9.4% (32 out of 340) and at most 14% (46 out of
340) (Supplementary Figure S11A), and the number of pre-
dicted ct-links supported by ChIA-PET data was significant
with P < 0.001. Similar significance was achieved when val-

idating the predicted ct-links directly against single loops
(Supplementary Figure S11C). The same tests for PCHi-C
loops gave an average overlap of matched random loops
with PCHi-C TLSs of 8.5% (29 out of 340) and at most
12.4% (42 out of 340), with P = 0.003 for TLS (Supplemen-
tary Figure S11B) and P = 0.048 for single loops (Supple-
mentary Figure S11D).

Validating predicted links by 3D conformation data

We compared the links predicted by CT-FOCS, CT-JEME
and CT-MAD-FOCS to experimentally measured 3D chro-
matin loops, defined as the positive set. We chose the CT
versions of these algorithms, which make the same number
of calls, in order to allow fair comparison. In GM12878,
using POLR2A ChIA-PET, CT-JEME achieved the best
precision (21%) followed by CT-MAD-FOCS (19%) and
CT-FOCS (10%). In K562, using YY1 HiChIP, CT-FOCS
achieved the best precision (17.5%) followed by CT-MAD-
FOCS (14%) and CT-JEME (3.45%). The low precision
shows that single loops do not support the majority of the
links predicted by any method.

Repeating the comparison using TLSs instead of single
loops resulted in 2–3-fold increase in precision compared to
single-loop validation in all methods. On GM12878 loops,
precision was 54%, 50% and 30% in CT-JEME, CT-MAD-
FOCS and CT-FOCS, respectively. On K562 loops, preci-
sion was 33%, 28% and 22% in CT-FOCS, CT-MAD-FOCS
and CT-JEME, respectively. Again, the precision obtained
by TLS validation for all methods was still low.

We repeated the same analysis on the ENCODE DHS
dataset, comparing CT-FOCS to CT-TargetFinder and CT-
ABC. Here, CT-FOCS performed markedly better in val-
idation based on both single loops and TLSs. For exam-
ple, on GM12878 with single-loop validation, CT-FOCS
achieved 31% precision, while CT-TargetFinder and CT-
ABC model achieved 10% and 13%, respectively. With
TLS validation, CT-FOCS had 66% precision, while CT-
TargetFinder and CT-ABC model achieved 30% and 47%,
respectively. Similarly, on K562 with single-loop valida-
tion, CT-FOCS had 54% precision, CT-ABC 30% and CT-
TargetFinder 1.4%. With TLS validation, CT-FOCS had
74% precision, CT-ABC 43% and CT-TargetFinder 3.7%.

Overall, ct-links predicted by all methods had relatively
low support from 3D chromatin loops. CT-FOCS tended
to achieve higher precision than the other tested methods.

Assessing cell type specificity via 3D experimental loops

As an additional test, we checked to what extent ct-
links called on different cell types are supported by TLS
loops that are called from GM12878’s POLR2A ChIA-PET
data. If ct-links called by a certain prediction method on
GM12878 are indeed highly specific, we expect GM12878
to show the highest support rate in this analysis. To quan-
tify this, we defined for each cell type the logarithm of the
ratio between the validation rate observed in GM12878 and
the validation rate observed for that cell type. For most cell
types, we expect to obtain values >0. Indeed, CT-FOCS ct-
links predicted for GM12878 showed significantly higher
support rate compared to the ct-links that were predicted
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in most other cell types (median log2(ratio) ∼ 1.7; Figure
4A). Moreover, the six cell types that showed higher val-
idation rate than GM12878 (i.e. had log2(ratio) < 0; Fig-
ure 4A, CT-FOCS boxplot) were all biologically related to
GM12878 (e.g. B cell line and Burkitt’s lymphoma cell line).
CT-MAD-FOCS and MAD-FOCS performance was sig-
nificantly lower (median log2(ratio) ∼ 1.1), followed by CT-
JEME (∼0.7) and JEME (∼0.6). Note that in this analysis
too, the comparisons between CT-FOCS, CT-MAD-FOCS
and CT-JEME are more proper, since these methods have a
similar number of predictions per cell type (and thus com-
parable recall). The results for MAD-FOCS and JEME are
added only for reference. The results were more significant
in favor of CT-FOCS when considering only TLS anchors
overlapping GM12878 H3K27ac peaks downloaded from
ENCODE (Supplementary Table S2A). We obtained simi-
lar results when validating against ChIA-PET single loops
(Figure 4B), and when using HiChIP from K562 (Figure
4C). When using PCHi-C, HiChIP and ChIA-PET for eight
individual tissues, CT-FOCS performed best overall (Figure
4D and Supplementary Table S2A).

We repeated the analysis of CT-FOCS, CT-MAD-FOCS,
CT-TargetFinder and CT-ABC, now using ct-link predic-
tions derived from the ENCODE dataset (Supplementary
Table S2B). Interestingly, CT-MAD-FOCS obtained the
highest precision and TLS support on GM12878. On K562,
all methods had rather low performance (log2(ratio) 	 0).
Note, however, that the number of cell types compared was
very low (5–10 cell types, compared to 276 for FANTOM5),
so these results are anecdotal.

Overall, for the FANTOM5 dataset, the particularity of
the links of CT-FOCS was higher than those of CT-MAD-
FOCS and CT-JEME.

Predicted ct-links drive cell type-specific gene regulation

We next asked whether the enhancers and promoters in
the ct-links inferred by CT-FOCS demonstrate signals of
cell type-specific transcriptional regulation, as shown previ-
ously for lineage-determining TFs (60) and in K562 (53). To
this end, we searched for occurrence of 402 known TF mo-
tifs (position weight matrices) within the enhancers and pro-
moters of the inferred links. To lessen false discoveries, we
restricted our search to DGFs (see the ‘Materials and Meth-
ods’ section), which are short genomic regions (∼20 bp on
average) identified by DHS that tend to be stably bound by
TFs (61). We used ∼8.4 million reported DGFs in the hu-
man genome, covering 41 diverse cell and tissue types de-
rived from ENCODE DHS data (37). For each TF and cell
type, we calculated the overrepresentation factor of the TF
motif in the target set (enhancers or promoters of the in-
ferred ct-links) compared to a matched control set harbor-
ing a similar nucleotide distribution (see the ‘Materials and
Methods’ section).

We first applied this test to the ct-links predicted on
GM12878 using the ENCODE DHS dataset. Thirteen over-
represented TFs were identified in promoters, and a differ-
ent set of 13 TFs was identified in enhancers. These TFs
showed on average higher overrepresentation in both en-
hancers and promoters compared to their occurrence in the
ct-links inferred for other cell types (Figure 5A and B). In

terms of the specificity score of the TF overrepresentation
factors, GM12878 ranked first in both enhancers and pro-
moters (Figure 5C and D).

Many of the TFs whose motifs were detected as overrep-
resented on GM12878 ct-links have known roles in regu-
lation of B-cell lineage commitment (62,63). Among them
are the EBF TF 1 (EBF1) and the interferon regulatory fac-
tor 4 (IRF4) (which had, respectively, the 2nd and 8th high-
est overrepresentation factors in GTM12878 ct-link pro-
moters), and the paired box 5 (PAX5) and the interferon
regulatory factor 8 (IRF8) (ranked 7th and 11th in en-
hancers, respectively). Furthermore, EBF1, SPI1, BATF,
RUNX3, IRF4 and PAX5, detected by our analysis, were
shown to cooperate with the STAT5A–CEBPB–PML com-
plex, predicted to be involved in chromatin looping. Since
these cofactors exhibit GM12878-specific expression (Sup-
plementary Figure S12), they define highly specific chro-
matin binding profile for the STAT5A–CEBPB–PML com-
plex in GM12878, which does not appear in the related
K562 cell line (64). Note that while Zhang et al. (64) used
ChIP-seq data from multiple TFs as well as Hi-C data to
identify TF complexes involved in chromatin looping in
GM12878 and K562 cell lines, our method requires data
generated by only a single omics technique to pinpoint pu-
tative TF complexes that mediate EP chromatin looping for
hundreds of cell types.

Next, we applied this TF motif overrepresentation anal-
ysis and specificity ranking on the ct-links inferred from
ENCODE DHS data for 68 cell types that had at least 50
predicted EP links. The analysis identified an average of 12
overrepresented TF motifs in enhancers and 19 in promot-
ers, per cell type (Supplementary Table S3). Calculating cell
type specificity scores based on the set of overrepresented
TFs detected on the ct-link’s enhancers in each cell type
ranked the studied cell type as the top one in 57 out of the
68 cell types. Similarly, using the set of overrepresented TFs
detected on the ct-link’s promoters ranked the studied cell
type as the top one in 58 out of 68 cell types.

Last, we applied this analysis on 276 FANTOM5 cell
types that had at least 50 predicted EP links in all meth-
ods. CT-FOCS analysis identified an average of 16 TFs in
enhancers and 25 in promoters per cell type (Supplemen-
tary Table S4). JEME identified 33 and 69 TFs, CT-JEME
identified 17 and 35, MAD-FOCS identified 9 and 20, and
CT-MAD-FOCS identified 9 and 5, respectively. CT-FOCS
ranked the studied cell types first in ∼57% and ∼61% of the
cases for enhancers and promoters, respectively, while the
other methods ranked first ∼1–37% in enhancers and 2–
53% in promoters, with CT-MAD-FOCS showing the low-
est numbers. Overall, CT-FOCS tended to find TFs that are
more cell type specific.

DISCUSSION

In this study, we investigated the cell type specificity of pre-
dicted EP links by state-of-the-art methods and introduced
CT-FOCS, a novel method for inferring ct-links based on
activity patterns derived from a single type of omics data.
The novelty of CT-FOCS is in detection of ct-links that
are active in only very few cell types among hundreds of
cell types, by utilizing an LMM. We applied CT-FOCS on
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Figure 4. The particularity of each algorithm’s predictions as measured by ChIA-PET, HiChIP and PCHi-C assays. (A, B) Each algorithm was applied
to each cell type, and the predicted links were benchmarked against GM12878 ChIA-PET loops and TLSs. Comparison included 276 FANTOM5 cell
types that had at least 50 predicted EP links in CT-FOCS, MAD-FOCS, CT-MAD-FOCS, JEME and CT-JEME. The plots show, for the indicated cell
type, the distribution of the ratios between the percentage of predicted EP links on GM12878 that had GM12878 ChIA-PET support and the percentage
of predicted links in that cell type that had GM12878 ChIA-PET support (see the ‘Materials and Methods’ section). (A) ChIA-PET TLS support. (B)
ChIA-PET single loop support. (C) The same analysis as in panel (A) for K562 cell line compared to TLSs derived from K562 HiChIP assay. (D) The
same analysis as in panel (A) but here using TLSs derived from PCHi-C in four additional cell types and tissues. All comparisons are summarized in
Supplementary Table S2. P-values are based on one-sided Wilcoxon paired test.

CAGE profiles from FANTOM5 (51). The resulting com-
pendium of 195 232 ct-links for 472 cell types and the pro-
gram are available for use at http://acgt.cs.tau.ac.il/ct-focs
and enable further inquiry on gene regulation.

We compared the cell type specificity of links predicted by
each method on FANTOM5 data. We computed cell type
specificity scores by using either EP signals or target GE
(Supplementary Figure S10 and Supplementary Table S1A
and B; see the ‘Materials and Methods’ section). We found
that CT-FOCS and CT-MAD-FOCS achieve similar and
slightly better cell type specificity ranks compared to CT-
JEME on EP signal and target GE (Supplementary Figure
S10). Additionally, we introduced the TLS support ratio for
benchmarking predicted ct-links against chromatin interac-
tion datasets (Figure 4 and Supplementary Table S2; see
the ‘Materials and Methods’ section). Using this criterion,
we showed that the cell type particularity of ct-links pre-
dicted by CT-FOCS was significantly higher than those of
CT-JEME and CT-MAD-FOCS in five to six out of eight
examined cell types with available 3D conformation data
(Figure 4 and Supplementary Table S2A).

Several comments are in place regarding our inferred ct-
links. First, a common naı̈ve practice is to map enhancers
to their nearest gene. Among the CT-FOCS predicted EP
links, on average per cell type, only ∼10% of the enhancers
mapped to the nearest gene. While this proportion is lower
than that observed in previous reports [∼74% in FOCS and
∼40% in FANTOM5 (51)], it may have been affected by the
relatively low number of enhancers reported by FANTOM5
(∼43 000) due to lower sensitivity of detecting enhancers
using CAGE data (65). FANTOM5 enhancers tend to be
located in intergenic regions, possibly reducing the correla-
tion of the enhancers with the nearest gene, which is more
apparent for intragenic enhancers located within introns of
the target genes. As a result, fewer EP links are identified
using correlation-based techniques (e.g. linear regression).
On the other hand, low-distance links were reported to have
poor validation results in ChIA-PET and Hi-C 3D loops
and eQTL data (18). Second, an average of ∼60% of the
predicted ct-links involve intronic enhancers, similar to the
report by FOCS (70%). Third, the average number of pre-
dicted ct-links per cell type was rather modest: 414 in FAN-
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Figure 5. Overrepresented TF motifs in enhancers and promoters of GM12878 ct-links. Heatmaps of TF motif overrepresentation factor (after z-score
transformation) in promoters (A) and enhancers (B) of GM12878-specific EP links identified by CT-FOCS on ENCODE DHS data. TFs shown had
q-value <0.1 (hypergeometric test). Cell type specificity score ranks based on GM12878-specific TF overrepresentation factors in promoters (C) and
enhancers (D) compared to other cell types.

TOM5 (Table 1). This relatively low number is in line with
the small number of ct-links reported previously in experi-
ments on NPCs, neurons and K562 cells (22,53), suggesting
that only a small portion of the EP links that are active in a
cell type are specific for it. Fourth, on average, per cell type,
promoters were linked by ct-links to ∼2 (and a maximum
of 9) enhancers.

In terms of methodology, CT-FOCS uses LMMs to ac-
count for two effects. The first is the joint contribution
of multiple enhancers to the promoter activity, which was
shown to predict GE more accurately than to pairwise
enhancer–gene correlations (18). The second is the contri-
bution of distinct cell type groups to promoter activity. By
considering the cell type effect, prediction of promoter ac-
tivity can be done separately for each cell type group. Thus,
the estimated regression coefficient will not be the same for
all samples but rather adjusted according to their cell type.
In this way, ct-links are inferred based on the difference in
the regression coefficients estimated for different cell type
groups.

FOCS predictions are based on leave-cell-type-out cross-
validation. As such, by design, it cannot infer models that
are strictly cell type specific (25) (i.e. EP pairs that are ac-
tive in only one specific cell type and have completely null
activity in all the rest). As CT-FOCS is built upon FOCS
predictions, this limitation is true for CT-FOCS predictions
as well. However, we confirmed in the broad epigenomic
datasets that we analyzed that cases in which an enhancer
is active in only one cell type are very rare (Supplemen-
tary Results––‘Loops involving enhancers active in a sin-
gle cell type’ and Supplementary Table S5). Nevertheless,
CT-FOCS EP links show very high cell type specificity:
they were shared, on average, by not more than three cell
types (Supplementary Figure S4B), and >44% of them were
called in a single cell type. The links identified by CT-FOCS
correspond to much more prevalent (and therefore biologi-
cally more relevant) cases, in which an enhancer shows ac-
tivity in several (typically, highly related) cell types, but its
impact on the activity of the target promoter is markedly
more prominent in one or very few of them.
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A limitation of CT-FOCS is that it considers only the 10
closest enhancers to each promoter when building the mod-
els. A possible future improvement to CT-FOCS is to in-
clude all enhancers within a window of 1 Mb around each
promoter, e.g. by using Bayesian hierarchical models, con-
sidering possible confounders and a priori information such
as ChIA-PET and PCHi-C loops and eQTLs.

Another limitation of CT-FOCS is the need for cell type
replicates. Cell types with at least two replicates provide
variance estimate for the random effects. Cell types with
a single replicate are also included in our LMM model
as they can contribute to estimating the fixed effect coef-
ficients. In FANTOM5, 179 out of 472 cell types had at
least two replicates. When CT-FOCS was applied only on
these 179 cell types, performance in terms of TLS support
ratios improved (Supplementary Results; properties of the
CT-FOCS solutions on the 179 cell types are summarized
in Supplementary Figure S13). We therefore provide these
predictions as well, and recommend to use them when avail-
able.

CT-FOCS can be useful for multiple genomic inquiries.
It can improve identification of known and novel cell type-
specific TFs and enhance our understanding of key tran-
scriptional cascades that determine cell fate decisions (Fig-
ure 5). Furthermore, integration of protein–protein inter-
actions (PPIs) with TF identification in predicted ct-links
may help identify cell type-specific PPI modules (66). These
modules may contain additional new proteins (e.g. cofac-
tors and proteins that are part of the mediator complex) that
shape the 3D chromatin in a cell type-specific manner. Over-
all, the new method we introduced and the compendium of
ct-links can advance our understanding of cell type-specific
genome regulation.
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Ramamoorthy,S., Diefenbach,A. and Grosschedl,R. (2013)
Transcription factor EBF1 is essential for the maintenance of B cell

identity and prevention of alternative fates in committed cells. Nat.
Immunol., 14, 867.

63. Wang,H., Lee,C.H., Qi,C., Tailor,P., Feng,J., Abbasi,S., Atsumi,T.
and Morse,H.C., III (2008) IRF8 regulates B-cell lineage
specification, commitment, and differentiation. Blood, 112,
4028–4038.

64. Zhang,K., Li,N., Ainsworth,R.I. and Wang,W. (2016) Systematic
identification of protein combinations mediating chromatin looping.
Nat. Commun., 7, 12249.

65. Core,L.J., Martins,A.L., Danko,C.G., Waters,C.T., Siepel,A. and
Lis,J.T. (2014) Analysis of nascent RNA identifies a unified
architecture of initiation regions at mammalian promoters and
enhancers. Nat. Genet., 46, 1311.

66. Duren,Z., Chen,X., Jiang,R., Wang,Y. and Wong,W.H. (2017)
Modeling gene regulation from paired expression and chromatin
accessibility data. Proc. Natl Acad. Sci. U.S.A., 114, E4914–E4923.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac048/6517947 by Tel Aviv U

niversity user on 01 February 2022


