
Using syncmers improves long-read mapping

Abhinav Dutta1†, David Pellow2†, Ron Shamir2∗

1Computer Science and Engineering, India Institute of Technology Patna, Patna, India
2Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

†Equal contribution
∗To whom correspondence should be addressed: rshamir@tau.ac.il

Abstract: As sequencing datasets keep growing larger, time and memory efficiency of read

mapping are becoming more critical. Many clever algorithms and data structures were used

to develop mapping tools for next generation sequencing, and in the last few years also for

third generation long reads. A key idea in mapping algorithms is to sketch sequences with

their minimizers. Recently, syncmers were introduced as an alternative sketching method

that is more robust to mutations and sequencing errors.

Here we introduce parameterized syncmer schemes, and provide a theoretical analysis for

multi-parameter schemes. By combining these schemes with downsampling or minimizers

we can achieve any desired compression and window guarantee. We introduced syncmer

schemes into the popular minimap2 and Winnowmap2 mappers. In tests on simulated

and real long read data from a variety of genomes, the syncmer-based algorithms reduced

unmapped reads by 20-60% at high compression while using less memory. The advantage

of syncmer-based mapping was even more pronounced at lower sequence identity. At

sequence identity of 65-75% and medium compression, syncmer mappers had 50-60% fewer

unmapped reads, and ∼ 10% fewer of the reads that did map were incorrectly mapped. We

conclude that syncmer schemes improve mapping under higher error and mutation rates.

This situation happens, for example, when the high error rate of long reads is compounded

by a high mutation rate in a cancer tumor, or due to differences between strains of viruses

or bacteria.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

1 Introduction

As the volume of third-generation, long read sequencing data increases, new computational

methods are needed to efficiently analyze massive datasets of long reads. One of the most

basic steps in analysis of sequencing data is mapping reads to a known reference sequence

or to a database of many sequences. Several long read mappers have been proposed [6, 15],

with minimap2 [8] being the most popular. minimap2 is a multi-purpose sequence aligner

that uses sequence minimizers as alignment anchors. Minimizers, the minimum valued

k-mers in windows of w overlapping k-mers of a sequence, are used to sketch sequences.

They have greatly improved computational efficiency of many different sequence analysis

algorithms (e.g. [2], [7], [17]). A key criterion in evaluating minimizer schemes is their

density, which is the fraction of k-mers selected. The inverse of the density is called the

compression rate of the scheme.

Recent work has shown that minimizers are less effective under high error or mutation

rates. Motivated by this observation, Edgar [4] recently introduced a novel family of k-mer

selection schemes called syncmers. Syncmers are a set of k-mers defined by the position of

their minimum s-long substring (s-minimizer). Syncmers constitute a predetermined subset

of all possible k-mers and, unlike minimizers, they are defined by the sequence of the k-

mer only and do not depend on the rest of the sequence in which they appear. Syncmers

are therefore more likely to be conserved under mutations. In contrast, minimizers are

selected depending on a larger window, which is more likely to contain mutations or errors.

This difference is crucial in long read data, which has much higher error rate than short

reads [3]. Another key difference between syncmer and minimizer schemes is that the latter

guarantee selection of a k-mer in every window of w consecutive k-mers (this is called a

window guarantee), while syncmers do not.

Edgar defined several syncmer variants, including the families of open syncmers, whose s-

minimizer appears at one specific position, and closed syncmers, whose s-minimizer appears

at either the first or the last position in the k-mer [4]. He computed the properties of a range

of syncmer schemes and used them to choose a scheme with a desired compression rate.

Shaw and Yu [16] recently formalized the notions of the conservation of selected positions

and their clustering along a sequence, and provided a broader theoretical analysis.

In this work we generalize syncmer schemes to multiple arbitrary s-minimizer positions.

We call these parameterized syncmer schemes (PSSs), where the parameters are the possible

indices of the s-minimizer in a selected k-mer, and an n-parameter scheme uses n such

indices. An example is a 3-parameter scheme that selects any 15-mer with the minimum

5-mer appearing at position 1, 5, or 9. We analyze the properties of such parameterized

syncmer schemes and determine which schemes perform well for a given compression rate

through theoretical analysis and empirical testing.

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

When using PSSs in practice, the selected k-mers must often be downsampled to achieve

a desired compression rate. We demonstrate that it is possible to retain properties of

syncmers such as minimum and most frequent distances between selected positions by

choosing the correct parameters and downsampling rate of a PSS. We can also have a

window guarantee by combining syncmers and minimizers.

Many read mappers work by indexing seeds in a reference sequence and then finding a

chain of matching seeds, forming a segment with high scoring alignment with the query

sequence. In the long read mapper minimap2 [8], minimizers are used as the seeds, with the

advantage that any identical window of length w will have the same minimizer. However,

for longer reads with a much higher error rate, conservation of the selected k-mers becomes

more important than the window guarantee, especially when there are also mutations. For

example, it was shown that with 90% identity between aligned sequences, only about 30%

of the positions on the sequence will overlap a conserved minimizer in minimap2 [4].

We introduced syncmer schemes into two leading long read mappers: the latest release

of minimap2 [9] and Winnowmap2 [5]. Winnowmap extended minimap2 and re-weighted

the minimizers by frequency to obtain a better distribution of minimizers and improve

mapping, especially in highly repetitive regions [6]. Winnowmap2 achieved even better

performance in repetitive regions by replacing the extension phase of minimap2’s seed-

and-extend alignment algorithm by aligning minimal confidently alignable substrings that

do not contain non-reference alleles. The latest version of minimap2 was reported to have

closed the performance gap between the mappers [9].

We compared minimap2, Winnowmap2, and their modified syncmer-based versions on

both simulated and real long read data. The syncmers increased the number of mapped

reads across a large range of compression rates, resulting in 20-60% fewer unmapped reads

at high compression. Even at lower compression, the syncmer mappers had 2-15% fewer

unmapped reads. The syncmer versions took less memory but had somewhat longer map-

ping times. The most marked improvements were observed when percent identity of the

mapped reads and reference sequences were low. With percent identity of 65 and 75% and

medium compression, syncmer mappers had 50-60% fewer unmapped reads and still had

8-13% fewer incorrectly mapped reads.

While conducting this research, Shaw and Yu released a preprint that modified minimap2

to use open syncmers [16]. That work focused mostly on the theoretical properties of

syncmers and provided a foundation and justification for their use. Our work greatly

extends the practical use of syncmers and builds on these theoretical foundations.

The paper is structured as follows: Section 2 provides background, definitions, and

terminology; Section 3 provides some theoretical analysis of PSSs; Section 4 describes the

practical implementation of PSSs and their integration into minimap2 and Winnowmap2;

Section 5 presents experimental results of the original and PSS-modified mappers; Section 6

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

discusses the results and future work.

2 Definitions and Background

2.1 Basic definitions and notations

For a string S over the alphabet Σ, a k-mer is a k-long contiguous substring of S. The

k-mer starting at position i is denoted S[i, i+k−1] (string indices start from 1 throughout).

We work with the nucleotide alphabet: Σ = {A,C,G, T}.
k-mer order: Given a one-to-one hash function on k-mers o : Σk → R, we say that k-mer

x1 is less than x2 if o(x1) < o(x2). Examples include lexicographic encoding or random

hash. We will denote this as x1 < x2 when o is clear from the context. In this work we use

a random order unless otherwise noted.

Canonical k-mers: Denote the reverse complement of x by x̄. For a given order, the

canonical form of a k-mer x, denoted by Canonical(x), is the smaller of x and x̄. For

example, under the lexicographic order, Canonical(CGGT) = ACCG.

2.2 Selection schemes

Selection scheme: A selection scheme is a function from a string to the indices of posi-

tions in it f : Σ∗ → N. The scheme implicitly selects the k-mers starting at these positions.

For a string S ∈ Σ∗, fk(S) = {i1, i2, ..., in} is the set of start indices of the k-mers selected

by the scheme.

Minimizers: A minimizer scheme chooses the position of the minimum value k-mer in

every window of w consecutive k-mers in S:

Mk,w,o(S) =

|S|−w−k+2⋃
j=1

{
argmin

i:i∈j...j+w−1
Canonical(S[i, i+ k − 1])

}

where the minimum is according to k-mer ordering o. By convention, ties are broken by

choosing the leftmost position. An example of a minimizer selection scheme is shown in

Figure 1A. By definition, minimizers select a k-mer in every window of w k-mers. This

property is called a window guarantee.

Parameterized syncmers: A parameterized syncmer scheme (PSS) with parameters

0 < x1 < ... < xn−1 < xn ≤ k − s+ 1 selects a k-mer if the minimum s-mer of that k-mer

appears at one of the positions xi in the k-mer:

fk,s,o,{x1,...,xn}(S) ≡ Syk,s,o(x1, ..., xn)(S) = {i|Ms,k−s+1,o(Canonical(S[i, i+ k − 1])) ∈ {x1, ..., xn}}

As o is fixed we will drop it from the notation where possible. An example of a PSS is

shown in Figure 1B. We denote the family of all n-parameter syncmers as Syn. Note that,

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1: Minimizer and syncmer schemes. In both examples the lexicographic order

is used and the underlying sequence is shown at the top. (A) Minimizers. Here w = 3

and k = 5, so the minimizer is the least 5-mer in every window of length 7. The minimizer

of each window is highlighted in yellow; (B) Syncmers. Here we show the 1-parameter

syncmer with k = 5, s = 2 and t = 3, Sy5,2,lex(3). It selects 5-mers if their 2-minimizer

appears at position 3. The 2-minimizer in each 5-mer is underlined in red. 2-minimizers

at position 3 are highlighted in yellow. The start positions of the k-mers in the underlying

sequence that are selected by each scheme appear in red at the top. Sequence positions 6-7

constitute a gap in the syncmer selection as they are not covered by any selected k-mer.

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

unlike minimizers, a PSS may not have a window guarantee since it will only identify a

fixed subset of all k-mers.

Under these definitions, the open and closed syncmer schemes defined in [4] are Sy1 and

Syk,s(1, k − s+ 1), respectively. From here on, we will refer to PSSs simply as syncmers.

Downsampled syncmers: Given a uniformly random hash function h : Σk → [0, H], for

a given string S, downsampling selects syncmers only from the set of |Σ|k/δ k-mers with

the lowest hash values:

DSk,s,o,{x1,...,xn},h,δ(S) = {i|i ∈ Syk,s,o(x1, ..., xn)(S) ∧ h(S[i, i+ k − 1]) < H/δ}

We call δ the downsampling rate.

Windowed syncmers: A syncmer scheme may leave large gaps between selected positions

on some input sequences. Windowed syncmers fill in these gaps using a minimizer scheme,

thus providing a window guarantee. For clarity in the definition below let Sy represent

Syk,s,o(x1, ..., xn)(S).

fk,s,w,o,{x1,...,xn}(S) =
{
i|i ∈ Sy

⋃
i ∈Mk,w,o(S[j, j + w − 1]) ∀j s.t. Sy(S[j, j + w − 1]) = ∅

}
Letting S represent all k-mers that can be syncmers in Syk,s,o(x1, ..., xn), an equivalent

definition would be: Mk,w,o′(S) where o′ is defined such that x ∈ S, x′ ∈ Σk\S =⇒ x < x′.

2.3 Properties and evaluation criteria of schemes

We define some properties of selection schemes and several metrics that will allow us to

compare different schemes.

Density and compression: The density [13] of a scheme is the expected fraction of

positions selected by the scheme in an infinitely long random sequence: d(f) = E[|f(S)|/|S|]
as |S| → ∞. Compression is defined as c(f) = 1/d(f), i.e. the factor by which the sequence

S is “compressed” by representing it using only the set of selected k-mers.

Conservation: Conservation [16] is the expected fraction of positions covered by a selected

k-mer in sequence S that will also be covered by the same selected k-mer in the mutated

sequence S′ where S′ is generated by iid base mutations with rate θ. Define the set of

positions covered by the same selected k-mer in both sequences

B(f, θ, k) = {i | ∃j ∈ {i− k + 1, i− k + 2, ..., i}

s.t. j ∈ f(S) ∩ f(S′) ∧ S[j, j + k − 1] = S′[j, j + k − 1]}

then the conservation of the scheme is defined as Cons(f, θ, k) = E
[
|B(f,θ,k)|
|S|

]
.

Spread and distance distribution: One key feature of a scheme is the distribution of

distances between selected positions. This would tell us the frequency with which selected

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

positions appear close together or far apart. Shaw and Yu studied the probability distri-

bution of selecting at least one position in a window of length α. We refer to the vector

P (f, α) of these probabilities as the spread.

We define the distribution of the distances between consecutive selected positions:

Pr(f) = [Pr(f, 1), P r(f, 2), ...], where Pr(f, n) is the probability that position i + n is

the next selected position given that position i is selected. We refer to this as the distance

distribution of the scheme.

pN metric: The pN metric (N ∈ [0, 100]) is theNth percentile of the distance distribution,

i.e., it is the length l for which N% of the distances between consecutive selected positions

are of length ≤ l.
` and `2 metrics: Let the lengths of the uncovered gaps between k-mers selected by a

scheme on a sequence S be l1, l2, We define ` = 1
|S|
∑
i
li and `2 =

√
1
|S|
∑
i
l2i .

Many of these properties can be determined theoretically in expectation for given se-

quence and mutation models and the selection scheme. They can also be determined

empirically for a specific sequence. Some metrics may also be applied either to all the

positions selected by a scheme in a reference, or only to the selected positions that are

conserved after mutation or sequencing error. We refer to the latter using the subscript

mut, for example, `2,mut.

2.4 Analysis of syncmer schemes – prior work

Edgar recently introduced syncmers as an alternative to minimizers and other selection

schemes with the goal of improving conservation rather than density, arguing that the

latter is dictated by the application and system constraints [4]. He introduced open and

closed syncmers. Rotated variants of syncmers, in which the minimizer is allowed to circle

around from the end of the k-mer to the beginning were also introduced, but we found

they were not useful in practice and do not address them here. Analyses of syncmer

densities, window guarantees, and distributions were provided in [4] for open, closed, and

downsampled syncmers.

Shaw and Yu greatly extended the framework for theoretical analysis of syncmers [16].

They defined the spread and conservation of a scheme. The two are connected through

the number of unmutated k-mers overlapping a given position, α(θ, k), for a given muta-

tion rate, θ. Letting P (f) = [P (f, 1), P (f, 2), ...P (f, k)] be the spread, and P (α(θ, k)) =

[P (α(θ, k) = 1), P (α(θ, k) = 2), ..., P (α(θ, k) = k)], then Cons(f, θ, k) = P (f) · P (α(θ, k)).

Note that there is a closed form expression for calculating P (α(θ, k) = α)), and that

P (f, 1) = d(f). Their theoretical framework allowed Shaw and Yu to obtain expressions

for the spread (and therefore conservation) of open and closed syncmers and other selection

schemes.

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2: Illustration of s-minimizers generating syncmers. A window of α = 5

consecutive 11-mers. A: When s = 5 and t = 3, then the s-minimizer of the entire window

generates a syncmer when its starting index is in the green region. If the s-minimizer

is in one of the red regions then a syncmer may be generated by the s-minimizer of the

remaining part of the window. For a two parameter scheme the s-minimizer creates two

syncmer generating regions that may be disjoint (B) if s > t2 − t1 or overlapping (C) if

s < t2 − t1. In this example, t1 = 3 and t2 = 9 in B and t2 = 6 in C.

3 Analysis of parameterized syncmer schemes

3.1 Recursive expressions for conservation of PSSs

We extend the analysis of [16] to obtain recursive definitions of the spread for general 2-

parameter schemes where the s-minimizer indices can take on any values. We show how to

incorporate downsampling and extend the definitions further to the conservation of schemes

with more parameters. We used these expressions to compute the expected conservation

for all PSSs of k-mer lengths 11, 13, 15, 17, and 19 and mutation rates 0, 0.05, 0.15 and

0.25. These results are provided in Supplementary File 1, Table 1.

Consider a window of α consecutive k-mers. We assume randomly distributed sequence

throughout. Let sβ be the s-minimizer in the window, at position β. Then if t is a

parameter of the syncmer scheme, sβ generates a syncmer if it is not in the first t − 1 or

last k−t positions in the window. If β is not in a position where it generates a syncmer, we

recursively check to the left or right of β to see if a syncmer is generated by the s-minimizer

of that region. See Figure 2 for an example.

For a 1-parameter scheme f with k-mer length k, s-minimizer length s, and parameter

t let P (α) be the probability of selecting at least one syncmer in a window of α adjacent

k-mers. Then, assuming a uniformly random hash over the s-mers, and conditioning on

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

the position of the s-minimizer of the α-window, β:

P (α) = pβ
∑
β

P (α|β) =
1

k + α− s

 t−1∑
β=1

P (α− β) +
t+α−1∑
β=t

1 +
k+α−s∑
t+α

P (β − k + s− 1)

 .
The probability of any of the k+α− s starting positions being the s-minimizer is denoted

as pβ and assumed to be uniform. If β is in the first t−1 or last k−t starting positions (red

regions in Figure 2A), then a syncmer may be generated by the remaining α− β positions

to the right or β−k+ s−1 positions to the left, respectively. Note we define
j∑
x=i

= 0 when

i > j and P (x) = 0 when x ≤ 0.

When downsampling syncmers, there is a probability of 1/δ that an s-minimizer in the

syncmer generating region (i.e. the green region in Figure 2A) really generates a syncmer. If

it does not, then the left and right regions are considered recursively, yielding the following

expression, where we simplify notation by letting P (α−β) = PR and P (β−k+s−1) = PL:

P (α) =
1

k + α− s

[t−1∑
β=1

PR +
t+α−1∑
β=t

(
1

δ
+ (1− 1

δ
) (PR + PL − PR · PL)

)
+
k+α−s∑
t+α

PL

]
.

In the case of 2-parameter schemes, two syncmers are generated by sβ in regions that

will overlap if the parameters t1 and t2 are within s of each other, and will be disjoint

otherwise (see Figure 2B,C). Combining these two cases into a single recursive expression

yields:

P (α) =
1

k + α− s
·
[t1−1∑
β=1

PR+

min
(t2−1,t1+α−1)∑

β=t1

1+

t1+α−1∑
β=min

(t2,t1+α)

1+

t2−1∑
β=min

(t2,t1+α)

(
PR+PL

)
+

t2+α−1∑
β=max
(t1+α,t2)

1+

k+α−s∑
t+α

PL

]
.

When downsampling is used then the 1 in the second and fifth sums is replaced by
1
δ + (1− 1

δ) (PR + PL − PR · PL) as in the one parameter case. The third sum expresses the

overlapped region where either parameter creates a syncmer, when it exists. When both

generated syncmers are downsampled then the left and right sides are recursively checked,

thus the 1 is replaced by (1− (1− 1
δ)2 + (1− 1

δ)2 (PR + PL − PR · PL).

This expression can be greatly simplified by introducing the notation count(β) that repre-

sents the number of syncmers generated by the s-minimizer sβ. For example, count(β) = 0

in the red region of Figure 2 and count(β) = 2 in the overlapped region when β = 6 or 7

in Figure 2C. The general expression for P (α) for any PSS is:

P (α) =
1

k + α− s
·

k+α−s∑
β=1

(
1− (1− 1

δ
)count(β)

)
+ (1− 1

δ
)count(β) (PR + PL − PR · PL)

 .
Note that this definition relies on the definition P (x) = 0, x ≤ 0 to include the correct

terms for the correct values of β.

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3: ` vs. `2 metric. The selected positions of three different selection schemes S1, S2

and S3 on the same sequence. Selected k-mers are highlighted and underlined. All schemes

have the same number of selected k-mers, but the metrics are different. S1: ` = 0.529,

`2 = 2.974. S2: ` = 0.529, `2 = 1.81. S3: ` = 0.647, `2 = 2.808. While S1 and S2 have

the same ` value, the k-mers selected by S2 are more evenly spread and thus it has much

lower `2. Some of the k-mers selected by S3 overlap, resulting in a higher ` value than the

other schemes. However, because the gaps between covered bases are more evenly spread,

the `2 value is lower than that of S1. Intuitively, it will be easier to map reads using seeds

selected by S3 than S1 despite the lower ` value, suggesting that `2 is a more appropriate

metric.

The value of P (α) can thus be computed efficiently for any PSS and used to calculate

the conservation using the formula from [16].

3.2 Choosing an appropriate metric to compare schemes

While Edgar shows convincingly that conservation is a more appropriate metric for selection

schemes than density, we argue that `2,mut contains additional important information for

the purpose of mapping. Specifically, observe that, for given mutation rate θ, k, and

selection scheme f , we have E [`mut,θ,f,k] = 1 − Cons(θ, f, k). While ` (and conservation)

counts the number of bases that are not covered by conserved selected k-mers, it treats

all gap lengths equally. In contrast, `2,mut penalizes a few large gaps more than many

smaller gaps with the same total length. See the example in Figure 3. When the selected

k-mers are used as seeds for mapping, it is important to avoid large gaps, in order to enable

read mapping across gaps. Thus `2 provides additional salient indication to ` on how the

selection scheme will affect mapping performance.

3.3 Calculating the distance distribution

For a given scheme, the distribution of distances between adjacent syncmer positions is

specified by Pr(d = x), the probability that the distance d is x. To calculate this proba-

bility, we define the new quantities F (α) and L(α) denoting the probability that only the

first or only the last k-mer in a window of α k-mers is a syncmer, respectively. We refer to

these k-mers as K1 and Kα respectively. Note that due to symmetry F (α) = L(α). Note

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

also that 1− P (α) gives the probability that no k-mer in an α-window is a syncmer.

We compute F (α) by conditioning on β as before. For simplicity we divide the sum over

β into cases based on the syncmers that are generated by sβ rather than breaking up the

sum across different values of β. With some abuse of notation, we let Ki represent the

event the that sβ generates Ki as a syncmer.

F (α) =
1

k + α− s

k+α−s∑
β=1

1
δ .(1−

1
δ)count(β)−1 · (1− P (α− β)) K1

(1− 1
δ)count(β) · F (β − k + s− 1) · (1− P (α− β)) otherwise

In the first case we have the probability that K1 is not downsampled, any other syncmer

generated by sβ is downsampled, and there are no other syncmers generated to the right

of β. In the second case we have the probability that any syncmers generated by sβ are

downsampled, no syncmers are generated to the right of β, and the recursive computation

of the probability that the s-minimizer of the segment to the left of β generates a syncmer

at K1.

Similarly, define D(α) to be the probability that in a window of α k-mers only the first

and last k-mers are syncmers. Then

D(α) =
1

k + α− s

k+α−s∑
β=1



(1δ)2 · (1− 1
δ)count(β)−2 K1,Kα

1
δ · (1−

1
δ)count(β)−1 · F (α− β) K1,¬Kα

1
δ · (1−

1
δ)count(β)−1 · F (β − k + s− 1) Kα,¬K1

(1− 1
δ)count(β) · F (β − k + s− 1) · F (α− β) otherwise

3.4 Calculating `2,mut

To compute the desired metric `2,mut we must calculate the metrics from the previous

section but only with conserved syncmers. We add the subscript ‘mut ’ to a value to

indicate that only conserved syncmers are considered. The impact of mutations is similar

to that of downsampling shown in the previous section, except that when a syncmer is

lost due to mutation, the surrounding k-mers are also lost. In this case we consider no

downsampling to make the expressions simpler.

Let Ωβ be the set of syncmers generated by sβ, and ωβi be the members of this set. Note

that |Ωβ| = count(β). Then,

Pmut(α) =
1

k + α− s

k+α−s∑
β=1

(
Pr(∃ conserved ωβi ∈ Ωβ)

+ Pr(@ conserved ωβi ∈ Ωβ, ∃ syncmer to the left or right)

)
For convenience we call the first probability Pconserved and the second Precurse.

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Pconserved is computed using the inclusion-exclusion principle:

Pconserved =
∑
i

Pr(ωi conserved)−
∑
i<j

Pr(ωi, ωj conserved)+
∑
i<j<k

Pr(ωi, ωj , ωk conserved)−...

Every term in this series is calculated as (1 − θ)countBases where θ is the mutation rate

and countBases counts the number of bases covered by the conserved k-mers (i.e. if two

conserved syncmers overlap, the shared bases are counted only once).

Precurse is more complicated. We again sum over all values of β. When Ωβ is empty

(e.g. β is in the red region), then the recursion is similar to the case without mutation.

Otherwise, all of the syncmers are lost due to mutation, and we additionally sum over the

possible positions of the first and last points of mutation in Ωβ, named f and l, respectively.

k+α−s∑
β=1

1

k + α− s


Pmut(α− β) + Pmut(β − k + s− 1)− Pmut(α− β) · Pmut(β − k + s− 1) Ωβ = ∅∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ, f, l)×

(Pmut(left) + Pmut(right)− Pmut(left) · Pmut(right))
otherwise

Here left = max(0,min(f − k, β − k+ s− 1)) and right = max(0,min(α− l, α− β)). We

expand the joint probability as

Pr(@ conserved ωβ ∈ Ωβ, f, l) = θy · (1− θ)x · Pr(@ conserved ωβ ∈ Ωβ|f, l)

where y is 1 if l = f and 2 otherwise, and x is the number of unmutated bases that is fixed

by the given values of f and l. The conditional probability is written as

Pr(@ conserved ωβ ∈ Ωβ|f, l) = 1− Pr(∃ conserved ωβ ∈ Ωβ|f, l)

and is computed using the inclusion-exclusion principle as above.

F (α) and D(α) are extended to the case of mutation similarly:

Fmut(α) =
1

k + α− s
×

k+α−s∑
β=1



∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ \K1,K1 conserved, f, l) · (1− Pmut(right|b)) K1,Ωβ \K1 6= ∅

Pr(K1 conserved) · (1− Pmut(α− β|b)) K1,Ωβ \K1 = ∅∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ, f, l) · (1− Pmut(right|b)) · Fmut(left|b′) ¬K1,Ωβ 6= ∅

Fmut(β − k + s− 1) · (1− Pmut(α− β)) otherwise

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Dmut(α) =
1

k + α− s
×

k+α−s∑
β=1



∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ \K1,K1 conserved, f, l) · Fmut(right|b) K1,¬Kα,Ωβ \K1 6= ∅

(1− θ)k · Fmut(α− β|b) K1,¬Kα,Ωβ \K1 = ∅∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ \Kα,Kα conserved, f, l) · Fmut(left|b) Kα,¬K1,Ωβ \Kα 6= ∅

(1− θ)k · Fmut(β − k + s− 1|b) Kα,¬K1,Ωβ \Kα = ∅∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ \ {K1 ∪Kα}, {K1 ∪Kα} conserved, f, l) K1,Kα,Ωβ \ {K1 ∪Kα} 6= ∅

Pr({K1 ∪Kα} conserved) K1,Kα,Ωβ \ {K1 ∪Kα} = ∅∑
f≤l

Pr(@ conserved ωβ ∈ Ωβ, f, l) · Fmut(right) · Fmut(left|b) ¬K1,¬Kα,Ωβ 6= ∅

Fmut(α− β) · Fmut(β − k + s− 1) ¬K1,¬Kα,Ωβ = ∅

Here we again divide into cases depending on whether there are syncmers that can be

lost. We have also used recursive expressions that are similar to the above except we

are given that b bases to the left or right of the defined region are conserved. These are

calculated using similar techniques as above.

Finally, we can use these expressions to compute:

`mut =
∞∑

x=k+1

(x− k) ·Dmut(x+ 1)

`2mut =

√
∞∑

x=k+1

(x− k)2 ·Dmut(x+ 1)

Note that, unlike P (α), which can be computed efficiently, the computation of these

metrics includes an infinite sum. The sum can be truncated at an appropriate distance x,

however there are still many more terms than in the computation of the conservation. In

practice, simulating a very long sequence, selecting syncmers, and simulating mutations to

determine these metrics empirically is much less time consuming and yields results that

are very close to the true values. We used this simulation method to compute `2,mut for

k = 11, 13, 15, 17 and 19, mutation rates 0.05, 0.15 and 0.25. and all 2- and 3-parameter

schemes, presented in Supplementary File 1, Table 2 (note that for 1-parameter schemes

the best `2 and ` are the same, and thus already known from [16]).

3.5 Achieving the target compression

A simple extension of the expression for compression of open and closed syncmers yields

that the compression of an n-parameter PSS is ≈ k−s+1
n , where we assume that s is long

enough relative to k that the s-minimizer is likely to be unique. As we show in Supple-

mentary File 1, Table 4, it is preferable to achieve a specific compression with minimal

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

downsampling. For example, the `2 of the best 2-parameter scheme with a downsampling

rate of 2 is an order of magnitude worse than that of the best 1-parameter scheme with-

out downsampling. Thus, to choose the best PSS for a given target compression, we can

choose the one with compression closest to, but below, the desired compression and then

downsample to reach the desired compression.

4 Methods

We modified the code of minimap2 (v2.22-r1105-dirty) and Winnowmap2 (v2.03) to select

our syncmer variants as seeds instead of minimizers. The code is available from https:

//github.com/Shamir-Lab/syncmer_mapping.

4.1 Syncmer schemes implementation

The implementation of the syncmer schemes defined in Section 2 is straightforward. Se-

quences are scanned from left to right, the canonical k-mer at each position is identified

using a random hash h1, and the index of the minimum s-mer under another random hash

h2 is determined.

For downsampled schemes, syncmers are selected if their hash value normalized between

0 and 1 is below the downsampling rate. Note that a different hash function than h1

must be used to ensure random downsampling. Windowed schemes are integrated into

the minimizer selection scheme of the mappers except that syncmers are selected in each

window first. If no syncmer is present, then the minimizer is selected.

Pseudocode describing these implementations is presented in Algorithms 1 and 2.

Algorithm 1 Syncmer selection (regular, downsampled)

Input: Sequence S, syncmer parameters x1,x2, ...xn, k-mer length k, s-mer length s, down-

sampling rate δ (default: 1)

Output: P , a list of selected positions.

1: P ← {}
2: for j ∈ 1 to |S| − k + 1 do

3: m = argmin
t∈[0,k−s]

h1(Canonical(S[j + t, j + t+ s]))

4: if m ∈ {x1, x2..., xn} and h2(S[j, j + k − 1]) < 1/δ then

5: P ← P ∪ {j}

6: return P

Additional implementation and optimization details are presented in Supplementary

section S1

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://github.com/Shamir-Lab/syncmer_mapping
https://github.com/Shamir-Lab/syncmer_mapping
https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Algorithm 2 Windowed syncmer selection

Input: Sequence S, syncmer parameters x1,x2, ...xn, k-mer length k, s-mer length s, win-

dow w, downsampling rate δ (default: 1)

Output: P , a list of selected positions.

1: P ← {}
2: for j ∈ 1 to |S| − w + 1 do

3: hasSync← FALSE

4: for l ∈ 0 to w − k do

5: m = argmin
t∈[0,k−s]

h1(Canonical(S[j + l + t, j + l + t+ s]))

6: if m ∈ {x1, x2..., xn} and h2(S[j + l, j + l + k − 1]) < 1/δ then

7: P ← P ∪ {j + l}
8: hasSync← TRUE

9: if hasSync is FALSE then

10: m = argmin
l∈[0,w−k]

h3(Canonical(S[j + l, j + l + k − 1]))

11: P ← P ∪ {j +m}

12: return P

5 Results

We evaluated different PSSs on real genomes and compared them to theoretical results from

Section 3. We also evaluated PSS-based mapping compared to the original minimizer-based

versions of minimap2 and Winnowmap2 on simulated and real read data.

The sequences used for these experiments were: human GRCh38.p13 [14], human chro-

mosome X from CHM13 (v1.0), E. coli K12 [1], and a microbial sample BAC containing

assemblies of 15 microbes for which PacBio long read data is available [12] (three of the

microbes were used in [16], see Supplementary Section S3 for more details on the samples

selected). Information about the sequences is presented in Table 1 .

We simulated PacBio and ONT reads from Chromosome X and from BAC with a depth

of 10. Details of simulation parameters are found in the Supplement Section S2. For real

datasets we selected a random set of 10K ONT reads of the NA12878 cell line with read

length capped at 10kb (SRA accession ERR3279003), and 1K PacBio reads for each of the

BAC microbes [12]. Details are available in Table 2.

5.1 Properties of parameterized syncmer schemes

Our theoretical analysis of PSS properties (Section 3) relies on a number of assumptions.

Specifically, it assumes uniform iid sequences and mutations, assumes only substitution

mutations, and treats the sequence as a single forward strand. We therefore examined the

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Dataset

name

Species Source #

scaffolds

Total

length (nt)

GRCh Human GRCh38 [14] 639 3.111G

CHM13X Human CHM13 X chromosome [10] 1 154.3M

BAC Microbial (see S3) PacBio [12] 24 59.1M

ECK12 E. coli K-12 GCF 000005845.2 [1] 1 4.6M

Table 1: Genome information. Basic information about the reference genomes used in

our experiments. # scaffolds is the number of individual sequences present in the reference

genome fasta file and can include unplaced scaffolds, alternates, etc. Total length counts

the length of all of the scaffolds together, excluding ambiguous bases.

Dataset name Read type Source # reads Mean length (std)

pbsim x PacBio simulated CHM13X 173891 8871.1 (5570.1)

pbsim bac PacBio simulated BAC 66428 8894.2 (5617.4)

ns chm13 ONT simulated CHM13 1000 8722.8 (7030.7)

pb bac PacBio BAC 15000 9488.3 (5207.2)

ont na12878 ONT ERR3279003 10000 7131.6 (2348.5)

Table 2: Reads information. The long read datasets used in our experiments. Some

source names are from Table 1.

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Dataset Scheme Compression ` `2 p90 p100 # conserved

ECK12

M15,10 76.929 0.859 13.758 211 1092 60,337

Sy15,5(3, 9) 63.085 0.845 12.99 183 1078 73,577

M15,19 154.13 0.9139 17.845 378 1981 30,115

Sy15,6(6) 116.038 0.896 16.175 303 1542 40,001

CHM13X

M15,10 54.339 0.8113 11.695 153 1202 2,838,860

Sy15,5(3, 9) 45.647 0.796 11.132 133 1293 3,379,427

M15,19 107.907 0.88 15.119 270 1946 1,429,555

Sy15,6(6) 83.199 0.859 13.83 219 1927 1,854,097

Table 3: Properties of conserved k-mers in minimizer and syncmer schemes

under mutation. Substitutions were introduced in the references at a rate of 15%. The

values shown are for the conserved selected k-mers.

properties of PSSs on real genomes where these assumptions do not necessarily apply, and

compared them to minimizer schemes.

We used k = 15 and selected the best syncmer schemes (based on `2,mut) with theoretical

compression 5.5 and 10. The default minimizer scheme of minimap2 uses k = 15, w = 10

yielding the theoretical compression of 5.5. A theoretical compression of 10 is achieved by

minimap2 with w = 19. The properties of these schemes on the ECK12 and CHM13X

sequences without mutation are shown in Supplementary section S4, Table S1. For unmu-

tated reference genomes, minimizers outperformed syncmers, with much lower `2 and p100

values for schemes with the same compression.

To test the schemes on mutated sequences, we selected k-mers using the different schemes,

simulated iid substitutions to the CHM13X sequence at a rate of 15%, and computed the

properties of the conserved k-mers selected by the schemes. The performance is summarized

in Table 3. Under mutation the advantage of syncmers is clear: syncmers have 19-33%

more conserved positions and better performance in all metrics.

The windowed and downsampled variants are shown in Supplementary Tables S3 and S2.

As expected, shorter window lengths require more selected positions to be filled by minimiz-

ers and have markedly lower `2 than the unwindowed versions.With mutations, windowed

syncmers with short window lengths do even better than the unwindowed PSSs, even with

relatively few conserved minimizer positions (see Table S3).

Figure 4 shows the distribution of distances between selected positions for Sy15,5(3, 9)

on CHM13X. Figure 4A shows the distance distribution of syncmers selected only using

forward strand k-mers. It matches the theoretical distribution from Section 3 closely, with

a minimum distance of 3 and a sharp peak at 6. In mapping, the read orientation is

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

A B

Figure 4: Distribution of distances in syncmer scheme. The distribution of distances

between consecutive selected positions of syncmer scheme Sy15,5(3, 9) on the CHM13X

reference is shown. A. The distribution of syncmers selected only in the forward orientation.

B. Canonical syncmers. For visualization purposes the distribution is shown only for

distances with frequency > 10−6. The true maximum distance is 161 for canonical k-mers

(see Supplementary Table S1) and 76 for the forward k-mers, but the frequency of the

longer distances is extremely low.

unknown and canonical syncmers are used. Figure 4B shows the results using canonical

syncmers. The distance distribution still retains the peak at 6 and a local maximum at

3, but now adjacent positions are selected, and it has a much longer tail of distances, as

reflected also in the p100 values shown in Supplementary Table S1.

5.2 The fraction of unmapped reads

We mapped reads using minimap2 and Winnowmap2 with M15,10 (low compression),

M15,50 (medium), and M15,100 (high) on 4 datasets. For each dataset, the syncmer-

minimap and syncmer-winnowmap parameters were selected to have the best performance

based on theoretical `2,mut for the same compression achieved by minimap2. In all cases this

resulted in Sy15,5(3, 9) matching the low compression, and Sy15,4(6) matching the medium

and high compression. The other scheme parameters were manually selected to closely

match the real compression. The exact compression, window length, and downsampling

rates are given in the table in Supplementary File 1, Table 5.

Figure 5 shows the percentage of unmapped reads achieved by each of the mappers for

simulated PacBio and ONT reads mapped to the human reference genome. See Supple-

mentary Figure S7 for additional results, including windowed mappers. Syncmer variants

performed essentially the same or better than the original mappers in all cases, with a

marked advantage at high compression. All mappers did much better on the PacBio reads

than on ONT reads, which have a higher proportion of deletions and substitutions. The

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to ChrX of GRCh (B) ONT reads mapped to GRCh

Figure 5: Percentage of unmapped reads – simulated datasets. The percentage

of unmapped reads is plotted for two simulated read datasets mapped to their reference

sequences. Results are shown for low, medium and high compression. (A) PacBio reads

simulated from the CHM13X sequence mapped against ChrX sequences from GRCh38.

(B) 1000 ONT reads simulated from CHM13 mapped against GRCh38.

jump in the fraction of unmapped reads between medium and high compression may indi-

cate that in order to overcome the large fraction of non-conserved seeds, existing mappers

need to use a lower compression with many redundant seeds.

We compared the performance of all mappers on real data (Table 2) across a range

of compression values. The ONT reads were mapped against the reference GRCh and

the PacBio bacterial reads were mapped against the BAC reference. See Figure 6. The

syncmer variants consistently outperformed the original minimizer-based mappers, with

syncmer-winnowmap performing the best across the larger part of the range. Full results

and scheme parameters are given in Supplementary File 1, Table 6. For high compression,

the minimizers had 20-40% more unmapped reads than the syncmers. At low compression

rates of 5.5− 11, minimizers had 2-15% more unmapped reads than syncmers.

5.3 Mapping correctness

We evaluated the mapping correctness for PacBio simulated reads as done in [6] (see Sup-

plementary section S2 for details). The percentage of incorrectly mapped reads simulated

from CHM13X and the BAC genomes are shown in Figure 7. Winnowmap consistently

performed better than minimap, and the syncmer variants of Winnowmap performed best

overall.

Although we cannot evaluate the mapping correctness on the real datasets, the mapping

quality scores can be used to compare the different mappers. On the four real datasets,

reads mapped by syncmer-minimap but not by minimap2 generally had higher mapping

quality than those mapped by minimap2 and not syncmer-minimap. For example, for the

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Figure 6: Percentage of unmapped reads – real datasets. Results are shown across a

broad range of compression rates. Syncmer parameters were chosen to achieve the desired

compression with lowest `2,mut. (A) Pooled PacBio bacterial reads. (B) ONT human

cell-line reads.

(A) PacBio reads mapped to CHM13X (B) PacBio reads mapped to BAC

Figure 7: Percentage of incorrectly mapped reads –simulated data. The percentage

of incorrectly mapped reads is plotted for two simulated read datasets and their reference

sequences, for mappers using low, medium, and high compression. (A) PacBio reads

simulated from the CHM13 ChrX sequence mapped against CHM13X. (B) PacBio reads

simulated from the 15 bacterial species in BAC pooled together and mapped against the

union of their references.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) % unmapped reads (B) % incorrectly mapped reads

Figure 8: Impact of percent sequence identity on mapping quality. We varied the

mutation rate of 1000 PacBio simulated reads from CHM13X. The figures present the %

unmapped and incorrectly mapped for each of the tools.(A) % unmapped reads. (B) %

of the mapped reads that were incorrectly mapped.

human cell line ONT reads, comparing minimap2 with M15,50 to corresponding syncmer-

minimap, 39 minimap-only reads had average mapping quality 31.4 (median 27), while

94 syncmer-minimap-only reads had an average quality score of 38.7 (median 42.5). Full

results for different compression rates are presented in Supplementary File 1, Table 7.

5.4 Impact of sequence identity level

We examined the impact of the level of identity between the sequenced reads and the

reference to which they are aligned. Differences between the sequences can be due to high

sequencing errors rate in long reads, mutations in the sequenced organism, or differences

between sequenced and reference strains. We simulated 1000 PacBio reads from CHM13X

at percent identity 65%, 75%, and 95% in addition to the default 87% used above. The

results are shown in Figure 8 and S3. For minimap2 and Winnowmap2 we used M15,50,

and in the syncmer variants we used Sy15,4(6) with the other parameters selected as above

to match the compression of minimap2.

The syncmer variants outperformed the original tools in terms of fraction of reads

mapped, with larger gains as percent identity decreases. This highlights the impact of

the increased conservation of syncmers. All tools performed very well at higher percent

identity, indicating that more than enough seeds were selected and conserved to adequately

map all reads (and thus perhaps compression could be increased). Winnowmap2 performed

noticeably worse at lower percent identity, leaving almost all reads unmapped at 65% iden-

tity. Syncmer-minimap outperformed minimap2 on the fraction of correctly mapped reads

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

in all cases. Winnowmap2 correctly mapped a larger fraction of the mapped reads at 75%

identity, but mapped only 35% of the reads, compared to ≥ 95% for the other variants. At

95% identity the syncmer variants had fewer incorrectly mapped reads.

5.5 Performance of windowed syncmer schemes

Windowed schemes combine syncmers and minimizers, allowing for a syncmer scheme to

have a window guarantee with a relatively short window. In practice the windowed variants

of our syncmer mappers were very similar or slightly worse than the variants without

windowing for the same compression. Supplementary section S5 presents all of the results

on the windowed variants of the mappers.

5.6 Runtime and memory

We compared the runtime and memory usage of the six tested mappers on the PacBio and

ONT simulated reads from bacteria and human. Table 4 shows the performance for three

different tasks. The third task maps bacterial reads against the human genome, to show

the effect on timing of many unmapped reads. All experiments were performed on a 44-

core, 2.2 GHz server with 792 GB of RAM, using 50 threads. Peak RSS (in GB) and real

time (in seconds) as measured by the tools are reported. For minimap2 and Winnowmap2

M15,10 were used, for syncmer variants Sy15,5(3, 9) was used with the same parameters

matched to the minimizers as above.

In all cases, syncmer-winnowmap used the least RAM, at the cost of higher runtimes,

and minimap2 achieved the fastest mapping, at the cost of higher RAM usage. Syncmer-

minimap achieved a balance with the second fastest runtime and second or third lowest

memory usage among the six tools.

We also looked at the runtimes and memory usage of all runs of the continuous com-

pression experiment shown in Figure 6. Results are shown in Figures 9 and 10 (see also

Supplementary Figures S5 and S6 for the windowed variants). minimap2 was consistently

the fastest, followed by syncmer-minimap, which took 50-100% longer. Interestingly, the

two datasets show exactly opposite trends in memory usage (Figure 10). This is because

the bacterial reference genomes are relatively short, and thus the memory bottleneck is in

the mapping stage, while for the human reference genome the memory bottleneck is in the

indexing stage. Increasing compression lowers index size but results in longer alignments

between anchors, requiring more memory in the mapping phase. Thus, when indexing is

the bottleneck, increasing compression reduces memory, while when mapping is the bottle-

neck it increases memory. Winnowmap2 and its variants used less memory in the mapping

phase while minimap2 and its variants used less memory in the indexing phase. In the

case that indexing is the bottleneck, the syncmer variants had lower memory usage than

the original mappers across most of the range of compression values (Figure 10B).

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Task Method Index time Index mem Map time Map mem

bacterial

reads vs

BAC

minimap2 4.81 0.318 23.4 2.886

Syncmer minimap 3.73 0.307 29.96 2.793

Winnowmap2 4.98 0.31 40.1 2.855

Syncmer winnowmap 6.14 0.301 54.53 2.691

ChrX

reads vs

CHM13X

minimap2 10.41 1.009 56.71 6.277

Syncmer minimap 9.51 0.99 74.03 6.104

Winnowmap2 11.51 0.995 90.243 6.226

Syncmer winnowmap 16.44 0.95 138.16 5.925

bacterial

reads vs

CHM13X

minimap2

As

above

As

above

23.1 2.878

Syncmer minimap 31.08 2.787

Winnowmap2 36.54 2.845

Syncmer winnowmap 55.34 2.668

Table 4: Runtime and memory. Time (in seconds) and RAM (in GB) needed to index

the reference and map the simulated reads by each of the tools. The best performing tool

in each column is indicated in bold. The second and third dataset use the same reference.

(A) PacBio reads mapped to BAC (B) ONT reads mapped to Human Genome

Figure 9: Runtime vs. compression – real data. The figures show runtime in seconds

to index the reference and map reads by each method. (A) PacBio bacterial reads. (B)

ONT human cell-line reads.

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to BAC (B) ONT reads mapped to Human Genome

Figure 10: Memory usage vs. compression – real data. Peak RAM usage in GB to

index the reference and map reads for the different methods. (A) PacBio bacterial reads.

(B) ONT human cell-line reads.

6 Discussion

In this study we generalized the notion of syncmers to PSSs and derived their theoretical

properties. We incorporated PSSs into the long read mappers minimap2 and Winnowmap2.

Our syncmer mappers outperformed minimap2 and Winnowmap2 and succeeded in map-

ping more long reads across a range of different compression values for multiple real and

simulated datasets.

As our results show, the advantage of using syncmers is most marked at high compression

and high error rate, as is expected due to their higher conservation. Yet the advantage is

present at the lower compression used by existing mappers. For large genomes, such as

the human genome, using the higher compression enabled by syncmers also leads to lower

RAM usage. Syncmer-minimap is slower than the highly optimized minimap2, taking 50-

100% longer to map reads, but it is faster than Winnowmap2. Future work should focus

on lowering the runtime by further optimizing the syncmer mapping implementation.

There are a number of issues and questions that this work leaves open, particularly in the

theoretical analysis. First, the analysis of windowed schemes and downsampled schemes

under mutation remains to be completed. Second, an expression for `2 for minimizer

schemes could also be obtained. Third, can the theory be expanded to canonical k-mers?

Fourth, it may be possible to obtain more robust definitions of conservation and `2 that do

not depend on preserving indices between sequences, thereby allowing indels to be included

in the theoretical analysis.

Another possible avenue to explore is in the definition of the selection scheme itself. Is

it possible to select k-mers in a biased way to increase the compression but still retain the

beneficial distance distribution of syncmer schemes? The quest for an “optimal” scheme is

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

not over.

Acknowledgement

Study supported in part by the Israel Science Foundation (grant No. 3165/19, within

the Israel Precision Medicine Partnership program, and grant No. 1339/18) and by Len

Blavatnik and the Blavatnik Family foundation. DP was supported in part by a fellowship

from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University.

References

[1] F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley,

J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, et al. The complete

genome sequence of Escherichia coli K-12. Science, 277(5331):1453–1462, 1997.

[2] R. Chikhi, A. Limasset, and P. Medvedev. Compacting de Bruijn graphs from se-

quencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.

[3] J. C. Dohm, P. Peters, N. Stralis-Pavese, and H. Himmelbauer. Benchmarking of long-

read correction methods. NAR Genomics and Bioinformatics, 2(2):lqaa037, 2020.

[4] R. Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers

in biological sequences. PeerJ, 9:e10805, 2021.

[5] C. Jain, A. Rhie, N. Hansen, S. Koren, and A. M. Phillippy. A long read mapping

method for highly repetitive reference sequences. bioRxiv, 2020.

[6] C. Jain, A. Rhie, H. Zhang, C. Chu, B. P. Walenz, S. Koren, and A. M. Phillippy.

Weighted minimizer sampling improves long read mapping. Bioinformatics, 36(Sup-

plement 1):i111–i118, 2020.

[7] M. Kokot, M. D lugosz, and S. Deorowicz. KMC 3: counting and manipulating k-mer

statistics. Bioinformatics, 33(17):2759–2761, 2017.

[8] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,

34(18):3094–3100, 2018.

[9] H. Li. New strategies to improve minimap2 alignment accuracy. arXiv preprint

arXiv:2108.03515, 2021.

[10] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko, M. R.

Vollger, N. Altemose, L. Uralsky, A. Gershman, et al. The complete sequence of a

human genome. bioRxiv, 2021.

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

[11] Y. Ono, K. Asai, and M. Hamada. PBSIM: PacBio reads simulator—toward accurate

genome assembly. Bioinformatics, 29(1):119–121, 2013.

[12] PacificBiosciences. Microbial Multiplexing Data Set 48 plex:

PacBio Sequel II System, Chemistry v2.0, SMRT Link v8.0 Anal-

ysis. https://github.com/PacificBiosciences/DevNet/wiki/

Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,

-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis, 2019. Accessed: 15-10-2021.

[13] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for docu-

ment fingerprinting. In Proceedings of the 2003 ACM SIGMOD international confer-

ence on Management of data, pages 76–85, 2003.

[14] V. A. Schneider, T. Graves-Lindsay, K. Howe, N. Bouk, H.-C. Chen, P. A. Kitts,

T. D. Murphy, K. D. Pruitt, F. Thibaud-Nissen, D. Albracht, et al. Evaluation of

GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality

of the reference assembly. Genome Research, 27(5):849–864, 2017.

[15] F. J. Sedlazeck, P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. Von Haeseler,

and M. C. Schatz. Accurate detection of complex structural variations using single-

molecule sequencing. Nature methods, 15(6):461–468, 2018.

[16] J. Shaw and Y. W. Yu. Theory of local k-mer selection with applications to long-read

alignment. bioRxiv, 2021.

[17] D. E. Wood, J. Lu, and B. Langmead. Improved metagenomic analysis with Kraken

2. Genome Biology, 20(1):1–13, 2019.

[18] C. Yang, J. Chu, R. L. Warren, and I. Birol. NanoSim: nanopore sequence read

simulator based on statistical characterization. GigaScience, 6(4):gix010, 2017.

Supplementary information

S1 Syncmer based mapping implementations

Modifications to the mappers were minimal. Only the code that selects the k-mers to use

as seeds to index the reference sequence and as anchors from the query reads was modified.

Here we describe implementation details and optimizations in the code that differ from the

high-level descriptions in Algorithm 1 and 2.

In minimap2 the most frequent minimizers (0.02% by default) are dropped to reduce

spurious matches and lower the runtime and memory usage. We also drop the most frequent

selected k-mers as the last stage of all minimap syncmer variants for consistency. In

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis
https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis
https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis
https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Winnowmap, the most frequent k-mers (also 0.02% by default) are re-weighted in the

minimizer order so they are less likely to be selected as minimizers. In the syncmer-

winnowmap variant, we do not consider k-mer weighting, and thus we simply drop these

k-mers if they are selected. However, in the windowed syncmer-winnowmap variant we do

re-weight the frequent k-mers before selecting minimizers in empty windows.

We use several different hashes in our syncmer variants of the mappers: hcan to select

canonical k-mers, hs to select s-minimizers, hmin to select minimizers for windowed variants

and hdown for downsampling. We require that hcan 6= hdown to maintain random downsam-

pling. In minimap syncmer variants we use hash64 from minimap2 for hmin and a variant

of MurmurHash2 that ensures murmur2(0) 6= 0 to ensure randomness for the other hashes.

Thus hmin = −hash64/UINT64 MAX, hs(x) = murmur2(x), hdown(x) = murmur2(x),

and hcan(x) = murmur2(x << 1 + 5) to ensure that it has a different value than hdown.

For winnowmap variants we use hcan(x) = lexicographic(x) as this is what is used by

the k-mer counter Meryl, hmin(x) = −(murmur2(x)/UINT64 MAX)8 in the case that the

minimizer is one of the most frequent and −murmur2(x)/UINT64 MAX otherwise. The

other hashes are as in the minimap variants.

In all windowed variants, downsampling occurs before filling in empty windows with

minimizers.

ONT reads were mapped using the map-ont option in all mappers, while PacBio reads

were mapped using the map-pb option (map-pb-clr in Winnowmap and variants). The

latter uses homopolymer compression (HPC) and thus has a real compression (on the

non-HPC sequence) that is above the theoretical one.

S2 Simulation parameters and details

PacBio reads were simulated using PBSim [11] with error rates and read lengths roughly

matched to the statistics observed in a recent benchmark of long read correction methods [3]

unless otherwise indicated.

PacBio reads were simulated using PBSim with the CLR model and the following param-

eter settings: depth 10, mean length 9000, length std 6000, minimum length 100, maximum

length 40000, mean accuracy 0.87, accuracy std 0.02, minimum accuracy 0.85, maximum

accuracy 1, and difference ratio 10:48:19.

ONT reads were simulated using NanoSim [18] with default parameters and the human

pre-trained model for Guppy base calls.

To evaluate mapping correctness for the PacBio simulated data we used the mapeval

utility of paftools packaged with minimap2. In this tool, reads are considered correctly

mapped if the overlap between the read alignment and the true read location is ≥ 10%

of the combined length of the true read and aligned read interval. This criterion was also

used in [6].

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

S3 Bacterial species used

We chose a single representative assembly of each strain from [12] with the fewest, longest

and most highly covered contigs and concatenated all references into a single fasta file.

Reads from the same samples were downloaded. Assemblies and reads from following

samples were used:

• bc1019, Bacillus cereus 971 (ATCC 14579)

• bc1059, Bacillus subtilis W23

• bc1101, Burkholderia cepacia (ATCC 25416)

• bc1102, Enterococcus faecalis OG1RF (ATCC 47077D-5)

• bc1111, Escherichia coli K12

• bc1087, Escherichia coli W (ATCC 9637)

• bc1018, Helicobacter pylori J99 (ATCC 700824)

• bc1077, Klebsiella pneumoniae (ATCC BAA-2146)

• bc1082, Listeria monocytogenes (ATCC 19117)

• bc1043, Methanocorpusculum labreanum Z (ATCC 43576)

• bc1047, Neisseria meningitidis FAM18 (ATCC 700532)

• bc1054, Rhodopseudomonas palustris

• bc1119, Staphylococcus aureus HPV (ATCC BAA-44)

• bc1079, Staphylococcus aureus subsp. aureus (ATCC 25923)

• bc1052, Treponema denticola A (ATCC 35405)

S4 Properties of syncmer schemes on real genome sequences without

mutation

The theoretical properties measured on real genomes (without mutation) are shown in

Table S1.

S5 Windowed syncmer scheme results

Tables S2 and S3 present the properties of windowed syncmer schemes on real genome

sequences with and without mutation, respectively.

Figures S1 and S2 present the number of unmapped reads and wrongly mapped reads

for simulated datasets. These correspond to Figures 5 and 7 and include the results for

windowed variants. Figure S3 presents the impact of percent sequence identity on the

windowed variants as well, corresponding to Figure 8.

Results on the real human and bacterial reads are presented in Figure S4, and the

runtimes and RAM usage for these runs are in Figures S5 and S6. The runtime and

memory usage on different tasks for the windowed variants is presented in Table S4.

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

Dataset Scheme Compression ` `2 p90 p100 # positions

ECK12

M15,10 5.503 3.23× 10−6 0.005 9 10 843,408

Sy15,5(3, 9) 5.490 0.0191 0.377 10 53 845,419

M15,19 9.989 0.0527 0.398 18 19 464,660

Sy15,6(6) 9.986 0.133 1.375 19 99 464,810

CHM13X

M15,10 5.489 5.83× 10−8 0.0005 9 10 28,099,399

Sy15,5(3, 9) 5.523 0.0205 0.412 10 161 27,930,897

M15,19 9.977 0.0526 0.3974 18 19 15,461,458

Sy15,6(6) 10.055 0.137 1.419 20 735 15,342,238

Table S1: Properties of minimizer and syncmer schemes on real sequences – no

mutation. The best syncmer schemes with theoretical compression of 5.5 and 10 were

chosen. The table shows the actual compression and other metrics on the real sequences,

positions is the number of positions that were selected by the scheme.

w δ c ` `2 p90 p100 # positions # syncmer # minimizer

10 1 4.775 2.59×10−8 0.000255 9 10 32,309,357 27,969,919 4,339,438

15 1 5.322 2.59×10−8 0.000255 10 15 28,987,572 27,969,919 1,017,653

20 1 5.464 0.01047 0.1862 10 20 28,230,846 27,969,919 260,927

25 1 5.501 0.0167 0.3014 10 25 28,040,255 27,969,919 70,336

50 1 5.515 0.0197 0.3899 10 50 27,970,312 27,969,919 393

100 1 5.515 0.01973 0.3915 10 99 27,969,930 27,969,919 11

10 2 5.463 6.48×10−8 0.000729 9 10 28,238,334 14,002,723 14,235,611

15 2 7.435 6.48×10−8 0.000729 14 15 20,748,902 14,002,723 6,746,179

20 2 8.812 0.0493 0.4201 17 20 17,505,813 14,002,723 3,503,090

25 2 9.706 0.10495 0.8324 20 25 15,892,867 14,002,723 1,890,144

50 2 10.93 0.1986 1.788 23 50 14,112,958 14,002,723 110,235

100 2 11.015 0.2067 1.9811 23 100 14,003,934 14,002,723 1211

Table S2: Properties of windowed syncmers on CHM13X. Properties of windowed

and down-sampled variants of Sy15,5(3, 9) are shown for a range of window lengths w on

the human chromosome X sequence of CHM13. δ is the downsampling rate and c is the

actual compression. The theoretical compression of the PSS (not downsampled) is 5.5.

positions is the number of positions that were selected by the scheme, # syncmers is

the number of those that were selected by the PSS and # minimizers is the number of

minimzers added to fill in gaps of length ≥ w.

28

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

w δ c ` `2 p90 p100 # conserved conserved

syncmers

conserved

minimizers

10 1 41.745 0.7826 10.713 122 1221 3,695,319 3,378,302 317,017

15 1 45.008 0.7928 11.041 131 1221 3,427,368 3,378,302 49066

20 1 45.558 0.7951 11.1125 132 1221 3,386,019 3,378,302 7717

25 1 45.646 0.7955 11.126 132 1221 3,379,466 3,378,302 1164

50 1 45.662 0.7956 11.129 133 1274 3,378,304 3,378,302 2

100 1 45.662 0.7956 11.128 133 1274 3,378,302 3,378,302 0

10 2 52.34 0.8062 11.515 147 1221 2,947,249 1,692,160 1,255,089

15 2 71.027 0.8397 12.898 190 1691 2,171,847 1,692,160 479,687

20 2 81.734 0.8572 13.774 216 1703 1,887,340 1,692,160 195,180

25 2 86.999 0.8655 14.257 230 1736 1,773,121 1,692,160 80961

50 2 91.104 0.8722 14.709 242 1736 1,693,222 1,692,160 1062

100 2 91.161 0.8723 14.718 242 1736 1,692,160 1,692,160 0

Table S3: Properties of conserved windowed syncmers under mutation. Properties

of windowed and down-sampled variants of Sy15,5(3, 9) are shown for a range of window

lengths w on CHM13X after simulating substitutions at a rate of 15%. w is the window size

and δ is the downsampling rate. Properties of the conserved selected k-mers are reported.

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to ChrX of GRCh (B) ONT reads mapped to GRCh

Figure S1: Percentage of unmapped reads – simulated datasets. The percent-

age of unmapped reads is plotted for two simulated read datasets mapped to their refer-

ence sequences. Results are shown for low, medium, and high compression. (A) PacBio

reads simulated from the CHM13 ChrX sequence mapped against ChrX sequences from

GRCh38. Window sizes of windowed syncmer-minimap were w = 13, 77, 175 for the low,

medium, and high compression variants, respectively. For windowed syncmer-winnowmap

the window sizes were w = 14, 75, 170, respectively. (B) 1000 ONT reads simulated from

CHM13 mapped against GRCh38. Window sizes of windowed syncmer-minimap were

w = 13, 75, 175 for the low, medium, and high compression variants, respectively and

w = 13, 75, 170 for the corresponding windowed syncmer-winnowmap variants.

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to CHM13X (B) PacBio reads mapped to BAC

Figure S2: Percentage of incorrectly mapped reads – simulated data. The percent-

age of incorrectly mapped reads is plotted for two simulated read datasets and their refer-

ence sequences, for mappers using low, medium, and high compression. (A) PacBio reads

simulated from the CHM13 ChrX sequence mapped against CHM13X. Window sizes of

windowed syncmer-minimap were w = 13, 80, 165 for the low, medium, and high compres-

sion variants, respectively. For windowed syncmer-winnowmap they were w = 14, 75, 170,

respectively. (B) PacBio reads simulated from the 15 bacterial species in BAC mapped

against the union of their references. Window sizes of windowed syncmer-minimap were

w = 13, 75, 175 and in windowed syncmer-winnowmap they were w = 16, 75, 170 for the

low, medium, and high compression variants, respectively.

(A) % unmapped reads (B) % incorrectly mapped reads

Figure S3: Impact of percent sequence identity. We varied the mutation rate of

1000 PacBio simulated reads from CHM13X. The figures present the % unmapped and

incorrectly mapped for each of the tools. (A) % unmapped reads. (B) % of the mapped

reads that were incorrectly mapped.

31

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Figure S4: Percentage of unmapped reads – real datasets. Results are shown across

a broad range of compression rates. (A) Pooled PacBio bacterial reads. (B) ONT human

cell-line reads.

(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Figure S5: Runtime vs. compression – real data. The figures show runtime in seconds

to index the reference and map reads by each method. (A) PacBio bacterial reads. (B)

ONT human cell-line reads.

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Figure S6: Memory usage vs. compression – real data. Peak RAM usage in GB to

index the reference and map reads for the different methods. (A) PacBio bacterial reads.

(B) ONT human cell-line reads.

Task Method Index time Index mem Map time Map mem

pbsim bac

vs BAC

Windowed syncmer

minimap

4.41 0.316 36.75 2.824

Windowed syncmer

winnowmap

6.53 0.305 58.75 2.742

pbsim

chm13x

vs

CHM13X

Windowed syncmer

minimap

11.51 1.007 92.164 6.224

Windowed syncmer

winnowmap

17.23 0.992 148.988 6.115

pbsim bac

vs

CHM13X

Windowed syncmer

minimap As

above

As

above

36.69 2.846

Windowed syncmer

winnowmap

59.52 2.8

Table S4: Runtime and memory. Time (in seconds) and RAM (in GB) needed to index

the reference and map reads by each of the tools. The best performing tool in each column

is indicated in bold. The second and third dataset use the same reference and therefore

have the same indexing results.

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

(A) pbsim x vs CHM13X (B) pb bac vs BAC

Figure S7: Percentage of unmapped reads – additional data. The percentage of un-

mapped reads is plotted for one simulated and one real read dataset mapped to their corre-

sponding references. (A) PacBio reads simulated from the CHM13 ChrX sequence mapped

against CHM13X. Window sizes of windowed syncmer-minimap were w = 13, 80, 165 for

the low, medium, and high compression variants, respectively, and for windowed syncmer-

winnowmap they were w = 14, 75, 170, respectively. (B) 1000 PacBio reads sampled from

each of the 15 bacterial species in BAC mapped against their reference genomes. Win-

dow sizes of windowed syncmer-minimap were w = 13, 75, 175 and in windowed syncmer-

winnowmap they were w = 16, 75, 170 for the low, medium, and high compression variants,

respectively.

S6 Supplemental performance results

Figure S7 shows additional results for the number of unmapped reads at low, medium, and

high compression rates.

34

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Definitions and Background
	Basic definitions and notations
	Selection schemes
	Properties and evaluation criteria of schemes
	Analysis of syncmer schemes – prior work

	Analysis of parameterized syncmer schemes
	Recursive expressions for conservation of PSSs
	Choosing an appropriate metric to compare schemes
	Calculating the distance distribution
	Calculating 2,mut
	Achieving the target compression

	Methods
	Syncmer schemes implementation

	Results
	Properties of parameterized syncmer schemes
	The fraction of unmapped reads
	Mapping correctness
	Impact of sequence identity level
	Performance of windowed syncmer schemes
	Runtime and memory

	Discussion
	Syncmer based mapping implementations
	Simulation parameters and details
	Bacterial species used
	Properties of syncmer schemes on real genome sequences without mutation
	Windowed syncmer scheme results
	Supplemental performance results

