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Abstract

Background: Metagenomic sequencing has led to the identification and assembly of many new bacterial genome
sequences. These bacteria often contain plasmids: usually small, circular double-stranded DNA molecules that may
transfer across bacterial species and confer antibiotic resistance. These plasmids are generally less studied and
understood than their bacterial hosts. Part of the reason for this is insufficient computational tools enabling the
analysis of plasmids in metagenomic samples.
Results: We developed SCAPP (Sequence Contents-Aware Plasmid Peeler)—an algorithm and tool to assemble
plasmid sequences from metagenomic sequencing. SCAPP builds on some key ideas from the Recycler algorithm
while improving plasmid assemblies by integrating biological knowledge about plasmids.
We compared the performance of SCAPP to Recycler and metaplasmidSPAdes on simulated metagenomes, real
human gut microbiome samples, and a human gut plasmidome dataset that we generated. We also created
plasmidome and metagenome data from the same cow rumen sample and used the parallel sequencing data to
create a novel assessment procedure. Overall, SCAPP outperformed Recycler and metaplasmidSPAdes across this
wide range of datasets.
Conclusions: SCAPP is an easy to use Python package that enables the assembly of full plasmid sequences from
metagenomic samples. It outperformed existing metagenomic plasmid assemblers in most cases and assembled
novel and clinically relevant plasmids in samples we generated such as a human gut plasmidome. SCAPP is
open-source software available from: https://github.com/Shamir-Lab/SCAPP.
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Background
Plasmids play a critical role in microbial adaptation,
such as antibiotic resistance or other metabolic capa-
bilities, and genome diversification through horizontal
gene transfer. However, plasmid evolution and ecology
across different microbial environments and populations
are poorly characterized and understood. Thousands of
plasmids have been sequenced and assembled directly
from isolated bacteria, but constructing complete plasmid
sequences from short read data remains a hard challenge.
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The task of assembling plasmid sequences from shotgun
metagenomic sequences, which is our goal here, is even
more daunting.
There are several reasons for the difficulty of plasmid

assembly. First, plasmids represent a very small fraction of
the sample’s DNA and thusmay not be fully covered by the
read data in high-throughput sequencing experiments.
Second, they often share sequences with the bacterial
genomes and with other plasmids, resulting in tangled
assembly graphs. For these reasons, plasmids assembled
from bacterial isolates are usually incomplete, fragmented
into multiple contigs, and contaminated with sequences
from other sources. The challenge is reflected in the title
of a recent review on the topic: “On the (im)possibility of
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reconstructing plasmids from whole-genome short-read
sequencing data” [1]. In a metagenomic sample, these
problems are amplified since the assembly graphs are
much larger, more tangled, and fragmented.
There are a number of tools that can be used to

detect plasmid sequences including PlasmidFinder [2],
cBar [3], gPlas [4], PlasFlow [5], and others. There is
also the plasmidSPAdes assembler for assembling plas-
mids in isolate samples [6]. However, there are currently
only two tools that attempt to reconstruct complete plas-
mid sequences in metagenomic samples: Recycler [7] and
metaplasmidSPAdes [8] (mpSpades). mpSpades iteratively
generates smaller and smaller subgraphs of the assembly
graph by removing contigs with coverage below a thresh-
old that increases in each iteration. As lower coverage
segments of the graph are removed, longer contigs may be
constructed in the remaining subgraph. Cyclic contigs are
considered as putative plasmids and then verified using
the profile of their genetic contents. The main idea behind
Recycler is that a single shortest circular path through

each node in the assembly graph can be found efficiently.
The circular paths that have uniform read coverage are
iteratively “peeled” off the graph and reported as possi-
ble plasmids. The peeling process reduces the residual
coverage of each involved node, or removes it altogether.
We note that these tools, as well as our work, focus on
circular plasmids and do not assemble linear plasmid
sequences.
Here we present SCAPP (Sequence Contents-Aware

Plasmid Peeler), a new algorithm that uses the peeling idea
of Recycler and also leverages external biological knowl-
edge about plasmid sequences. In SCAPP, the assembly
graph is annotated with plasmid-specific genes (PSGs)
and nodes are assigned weights reflecting the chance that
they are plasmidic based on a plasmid sequence classifier
[9]. In the annotated assembly graph, we prioritize peeling
off circular paths that include plasmid genes and highly
probable plasmid sequences. SCAPP also uses the PSGs
and plasmid scores to filter out likely false positives from
the set of potential plasmids.

Algorithm 1 SCAPP pipeline
Input: Assembly graph G = (V ,E) and read set R of the sample
Output: P: potential plasmids, O: confident plasmid predictions
1: Create annotated graph G′ = (V ′,E′):
2: Initially G′ = G
3: Map R to V ′
4: score(v) ← sequence plasmid probability ∀v ∈ V ′
5: w(v) = (1 − score(v))/(len(v) · cov(v)) ∀v ∈ V ′
6: Vm = {v ∈ V ′|v contains a PSG}, w(v) = 0 ∀v ∈ Vm

7: V ′ ← V ′ \ {v ∈ V ′| deg(v) = 0 ∨ v is probable chromosome node
∨ v is a non-compatible self-loop with indeg(v) = outdeg(v) = 1}

8: P ← {v ∈ V ′|v is a compatible self-loop}
9: for each strongly connected component CC ∈ G′ do

10: for v ∈ Vm ∩ CC in decreasing order by len(v) · cov(v) do
11: Find lowest weight cycle C through v
12: if C meets coverage and paired-end read criteria then
13: P ← P ∪ {C}, G′ ← peel(G′,C)

14: for v ∈ {v ∈ CC| v is a probable plasmid node} in decreasing order by len(v) · cov(v) do
15: Find lowest weight cycle C through v
16: if C meets coverage and paired-end read criteria then
17: P ← P ∪ {C}, G′ ← peel(G′,C)

18: while V ′ changes do
19: S ← {}
20: for v ∈ V ′ ∩ CC in decreasing order by len(v) · cov(v) do
21: Find lowest weight cycle C through v
22: S ← S ∪ C
23: for C ∈ S in increasing order of coefficient of variation do
24: if C meets coverage and paired-end read criteria then
25: P ← P ∪ {C}, G′ ← peel(G′,C)

26: O ← {C ∈ P|(C contains a PSG ∧ plasmid score(C) > 0.5)
∨ (C contains a PSG ∧ C is self-loop ) ∨ (plasmid score(C) > 0.5 ∧ C is self-loop)}
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We tested SCAPP on both simulated and diverse real
metagenomic data and compared its performance to
Recycler and mpSpades. Overall, SCAPP performed bet-
ter than the other tools across these datasets. SCAPP
has higher precision than Recycler in all cases, mean-
ing it more accurately constructs correct plasmids
from the sequencing data. SCAPP also has higher
recall than mpSpades in most cases, and higher preci-
sion in most of the real datasets. We developed and
tested a novel strategy given parallel plasmidome and
metagenome sequencing of the same sample. We show
how to accurately assess the performance of the tools on
metagenome data, even in the absence of known reference
plasmids.

Implementation
SCAPP accepts as input a metagenomic assembly graph,
with nodes representing the sequences of assembled con-
tigs and edges representing k-long sequence overlaps
between contigs, and the paired-end reads fromwhich the
graph was assembled. SCAPP processes each component
of the assembly graph and iteratively assembles plas-
mids from them. The output of SCAPP is a set of cyclic
sequences representing confident plasmid assemblies.
A high-level overview of SCAPP is provided in Table 1

and depicted graphically in Fig. 1; the full algorithmic
details are presented below. For brevity, we describe only
default parameters below; see Additional file 1, Section S1
for alternatives.
SCAPP is available from https://github.com/Shamir-

Lab/SCAPP and fully documented there. It was written in
Python3 and can be installed as a conda package, directly
from Bioconda or from its sources.

The SCAPP algorithm
The full SCAPP algorithm is given in Algorithm 1. The
peel function, which defines how cycles are peeled from
the graph, is given in Algorithm 2.

Algorithm 2 peel(G,C)

Input: Assembly graph G = (V ,E) annotated with node
coverage, cycle C ⊂ G

Output: Updated graph G′ = (V ′ ⊆ V ,E′ ⊆ E) with
cycle C peeled

1: G′ = G
2: μcov′(C) = ∑

u∈C
f (u,C)cov′(u,C), the weighted mean

of the discounted coverage of C in G
3: for v ∈ C do
4: cov(v) ← max{cov(v) − μcov′(C), 0}
5: if cov(v) = 0 then
6: V ′ ← V ′ \ v
7: E′ ← E′ \ {e|e = (u, v) ∪ e = (v,u) ∀u ∈ V }

Table 1

Readmapping
The first step in creating the annotated assembly graph
(Table 1 step 1a) is to align the reads to the contigs in
the graph. The links between paired-end reads aligning
across contig junctions are used to evaluate potential plas-
mid paths in the graph. SCAPP performs read alignment
using BWA [10] and the alignments are filtered to retain
only primary read mappings, sorted, and indexed using
SAMtools [11].

Plasmid-specific gene annotation
We created sets of PSGs by database mining and cura-
tion by plasmid microbiology experts from the Mizrahi
Lab (Ben-Gurion University). Information about these
PSG sets is found in Additional file 1, Section S2. The
sequences themselves are available from https://github.
com/Shamir-Lab/SCAPP/tree/master/scapp/data.
A node in the assembly graph is annotated as contain-

ing a PSG hit (Table 1 step 1b) if there is a BLAST match
between one of the PSG sequences and the sequence cor-
responding to the node (≥ 75% sequence identity along
≥ 75% of the length of the gene).

Plasmid sequence score annotation
We use PlasClass [9] to annotate each node in the assem-
bly graph with a plasmid score (Table 1 step 1c). PlasClass
uses a set of logistic regression classifiers for sequences
of different lengths to assign a classification score reflect-
ing the likelihood of each node to be of plasmid
origin.
We re-weight the node scores according to the sequence

length as follows. For a given sequence of length L and
plasmid probability p assigned by the classifier, the re-
weighted plasmid score is: s = 0.5 + p − 0.5

1 + e−0.001(L−2000) .
This tends to pull scores towards 0.5 for short sequences,
for which there is lower confidence, while leaving scores
of longer sequences practically unchanged.
Long nodes (L > 10 kbp) with low plasmid score (s <

0.2) are considered probable chromosomal sequences
and are removed, simplifying the assembly graph.
Similarly, long nodes (L > 10 kbp) with high plas-
mid score (s > 0.9) are considered probable plasmid
nodes.

https://github.com/Shamir-Lab/SCAPP
https://github.com/Shamir-Lab/SCAPP
https://github.com/Shamir-Lab/SCAPP/tree/master/scapp/data
https://github.com/Shamir-Lab/SCAPP/tree/master/scapp/data
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Fig. 1 Graphical overview of the SCAPP algorithm. (A) The metagenomic assembly graph is created from the sample reads. (B) The assembly graph
is annotated with read mappings, presence of plasmid specific genes, and node weights based on sequence length, coverage, and plasmid
classifier score. (C) Potential plasmids are iteratively peeled from the assembly graph. An efficient algorithm finds cyclic paths in the annotated
assembly graph that have low weight and high chance of being plasmids. Cycles with uniform coverage are peeled. (D) Confident plasmid
predictions are retained using plasmid sequence classification and plasmid-specific genes to remove likely false positive potential plasmids

Assigning node weights
In order to apply the peeling idea, nodes are assigned
weights (Table 1 step 1d) so that lower weights correspond
to higher likelihood to be assembled into a plasmid. Plas-
mid score and PSG annotations are incorporated into the
node weights. A node with plasmid score s is assigned a
weight w(v) = (1− s)/(C · L) where C is the depth of cov-
erage of the node’s sequence and L is the sequence length.
This gives lower weight to nodes with higher coverage,
longer sequence, and higher plasmid scores. Nodes with
PSG hits are assigned a weight of zero, making themmore
likely to be integrated into any lowest-weight cycle in the
graph that can pass through them.

Finding low-weight cycles in the graph
The core of the SCAPP algorithm is to iteratively find
a lowest weight (“lightest”) cycle going through each
node in the graph for consideration as a potential plas-
mid. We use the bidirectional single-source, single-target
shortest path implementation of the NetworkX Python
package [12].
The order that nodes are considered matters since in

each iteration potential plasmids are peeled from the

graph, affecting the cycles that may be found in subse-
quent iterations. The plasmid annotations are used to
decide the order that nodes are considered: first all nodes
with PSGs, then all probable plasmid nodes, and then all
other nodes in the graph (Table 1 step 2). If the light-
est cycle going through a node meets certain criteria
described below, it is peeled off, changing the coverage of
nodes in the graph. Performing the search for light cycles
in this order ensures that the cycles through more likely
plasmid nodes will be considered before other cycles.

Assessing coverage uniformity
The lightest cyclic path, weighted as described above,
going through each node is found and evaluated. Recycler
sought a cycle with near uniform coverage, reasoning that
all contigs that form a plasmid should have roughly the
same coverage. However, this did not take into account
the overlap of the cycle with other paths in the graph (see
Fig. 2). To account for this, we instead compute a dis-
counted coverage score for each node in the cycle based
on its interaction with other paths as follows:
The discounted coverage of a node v in the cycle C is its

coverage cov(v) times the fraction of the coverage on all its
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Fig. 2 Evaluating and peeling cycles. Numbers inside nodes indicate coverage. All nodes in the example have equal length. A Cycles (a, e, f ) and
(c, e, g) have the same average coverage (13.33) and coefficient of variation (CV, 0.35), but their discounted CV values differ: The discounted
coverage of node a is 6, and the discounted coverage of node e is 10 in both cycles. The left cycle has discounted CV=0.22 and the right has
discounted CV=0. By peeling off the mean discounted coverage of the right cycle (10) one gets the graph in B. Note that nodes g, c were removed
from the graph since their coverage was reduced to 0, and the coverage of node e was reduced to 10

neighbors (both incoming and outgoing),N (v), that is on
those neighbors that are in the cycle (see Fig. 2):

cov′(v,C) = cov(v) ·
⎛

⎝
∑

u∈C∧u∈N (v)
cov(u)/

∑

u∈N (v)
cov(u)

⎞

⎠

A node v in cycle C with contig length len(v) is assigned
a weight f corresponding to its fraction of the length of
the cycle: f (v,C) = len(v)/

∑

u∈C
len(u). These weights are

used to compute the weighted mean and standard devia-
tion of the discounted coverage of the nodes in the cycle:
μcov′(C) = ∑

u∈C
f (u,C)cov′(u,C),

STDcov′(C) =
√∑

u∈C
f (u,C)(cov′(u,C) − μcov′(C))2

The coefficient of variation of C, which evaluates its
coverage uniformity, is the ratio of the standard deviation
to the mean:

CV (C) = STDcov′(C)

μcov′(C)

Finding potential plasmid cycles
After each lightest cycle has been generated, it is evalu-
ated as a potential plasmid based on its structure in the
assembly graph, the PSGs it contains, its plasmid score,
paired-end read links, and coverage uniformity. The pre-
cise evaluation criteria are described in Additional file 1,
Section S3. A cycle that passes them is defined as a poten-
tial plasmid (Table 1 steps 3–5). The potential plasmid

cycles are peeled from the graph in each iteration as
defined in Algorithm 2 (see also Fig. 2).

Filtering confident plasmid assemblies
In the final stage of SCAPP, PSGs and plasmid scores
are used to filter out likely false-positive plasmids from
the output and create a set of confident plasmid assem-
blies (Table 1 step 6). All potential plasmids are assigned
a length-weighted plasmid score and are annotated with
PSGs as was done for the contigs during graph annota-
tion. Those that belong to at least two of the following sets
are reported as confident plasmids: (a) potential plasmids
containing a match to a PSG, (b) potential plasmids with
plasmid score > 0.5, (c) self-loop nodes.

Results
We tested SCAPP on simulated metagenomes, human
gut metagenomes, a human gut plasmidome dataset
that we generated and also on parallel metagenome and
plasmidome datasets from the same cow rumen micro-
biome specimen that we generated. The test settings and
evaluation methods are described in Additional file 1,
Section S5.

Simulated metagenomes
We created seven read datasets simulating metagenomic
communities of bacteria and plasmids and assembled
them. Datasets of increasing complexity were created
as shown in Table 2. We randomly selected bacterial
genomes along with their associated plasmids and used
realistic distributions for genome abundance and plasmid
copy number. Further details of the simulation can be
found in Additional file 1, Section S4, and in Additional
file 2. 5M paired-end reads were generated for Sim1 and
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Table 2 Performance on simulated metagenome datasets. The number of covered plasmids (# covered) reports the number of the
simulation plasmids that were covered by reads along at least 95% of their length. The set of covered plasmids is used as the gold
standard in calculating the performance metrics. The numbers in parentheses are the median plasmid lengths (in kbp). F1 score is
presented as a percent

Recycler mpSpades SCAPP

Sample # genomes # plasmids # covered # plasmids F1 # plasmids F1 # plasmids F1

Sim1 10 9 (5.9) 9 (5.9) 7 (5.6) 50.0 1 (4.3) 20.0 5 (5.6) 57.1

Sim2 50 47 (19.3) 37 (13.5) 20 (3.8) 40.1 9 (5.0) 39.1 23 (5.5) 43.3

Sim3 200 210 (22.4) 136 (9.6) 61 (3.6) 32.8 27 (7.0) 32.3 48 (5.8) 42.9

Sim4 200 177 (25.4) 132 (12.7) 62 (4.1) 40.8 29 (6.0) 36.5 51 (6.2) 48.9

Sim5 300 318 (23.9) 253 (9.6) 115 (3.6) 35.2 53 (5.1) 33.8 100 (6.5) 47.5

Sim6 400 480 (13.5) 368 (9.1) 138 (3.0) 28.5 59 (5.5) 27.1 118 (5.5) 36.5

Sim7 500 571 (17.3) 410 (8.7) 132 (3.5) 31.1 69 (5.3) 28.1 141 (5.2) 40.5

Sim2, 10M for Sim3 and Sim4, and 20M for Sim5, Sim6,
and Sim7.
Table 2 presents features of the simulated datasets

and reports the performance of Recycler, mpSpades, and
SCAPP on them. For brevity we report only F1 scores;
precision and recall scores are reported in Supplemen-
tary Table 1, Additional file 1 (Section S6). Here, and
throughout, all scores are adjusted to percent. SCAPP had
the highest F1 score in all cases, followed by Recycler.
SCAPP consistently achieved higher precision than Recy-
cler, allowing it to perform better overall. mpSpades had
the highest precision, but assembled far fewer plasmids
than the other tools and gained lower recall and F1 scores.
In fact, most of the plasmids assembled bympSpades were
also assembled by the other tools (see Figure S1 in Addi-
tional file 1), suggesting that these plasmids were easier to
capture.
All of the tools assembled mostly shorter plasmids

as reflected in the median plasmid lengths. This is
likely due to the higher coverage and simplicity in the
assembly graph of these plasmids, as also evidenced by the
shorter lengths of the covered plasmids. SCAPP assem-
bled many more long plasmids (> 10 kbp) than the other
tools, achievingmuch higher recall and higher F1 score for
these longer plasmids than the other tools, at the cost of
some precision (see Supplementary Table 2 in Additional
file 1, Section S6 for results broken down by short and long
plasmids).

Human gut microbiomes
We tested the plasmid assembly algorithms on data of
twenty publicly available human gut microbiome sam-
ples selected from the study of Vrieze et al. [13]. The
true set of plasmids in these samples is unknown. Instead,
we matched all assembled contigs to PLSDB [14] and
considered the set of the database plasmids that were cov-
ered by the contigs as the gold standard (see Additional
file 1, Section S5 for details). All tools were evaluated

according to the same gold standard. We note that this
limits the evaluation to known plasmids, potentially over-
counting the number of false positive plasmids. We chose
the human gut microbiome in this experiment and the
next, as it is one of the most widely studied microbiome
environments so plasmids in gut microbiome samples are
most likely to be represented in the database.
Table 3 presents the results of the three algorithms aver-

aged across all twenty samples. The detailed results on
each of the samples are presented in Supplementary Table
2 and Figure S2, Additional file 1 (Section S7). SCAPP
performed best in more cases, with mpSpades failing to
assemble any gold standard plasmid in over half the sam-
ples. We note that all of the cases where SCAPP had recall
of 0 occurred when the number of gold standard plasmids
was very small and the other tools also failed to assemble
them. On the largest samples with the most gold standard
plasmids SCAPP performed best, highlighting its supe-
rior performance on the types of samples most likely to
be of interest in experiments aimed at plasmid assembly.
SCAPP consistently outperformed Recycler by achieving
higher precision, a result that is consistent with the other
experiments.

Human gut plasmidome
The protocol developed in Brown Kav et al. [15] enables
extraction of DNA from isolate or metagenomic samples

Table 3 Performance on the human gut metagenomes. Number
of plasmids, themedian plasmid length (in kbp), and performance
measures for all tools are averaged across the twenty samples.
The average number of plasmids and median length of the gold
standard sets of plasmids were 4.8 and 12.4 respectively

Tool # plasmids Median length Precision Recall F1

Recycler 15.9 3.6 7.1 36.4 10.9

mpSpades 6.5 5.0 7.9 17.4 10.3

SCAPP 9.8 4.4 11.5 36.4 16.1
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with the plasmid content highly enriched. The sequence
contents of such a sample is called the plasmidome of the
sample. This enrichment for plasmid sequences increases
the chance of revealing the plasmids in the sample. The
protocol was assessed to achieve samples with at least 65%
plasmid contents by Krawczyk et al. [5].We sequenced the
plasmidome of the human gut microbiome from a healthy
adult male according to the plasmid enrichment protocol.
18,616,649 paired-end reads were sequenced with the Illu-
mina HiSeq2000 platform, read length 150bp and insert
size 1000.
The gold standard set of plasmids, determined as for

the gut metagenome samples, consisted of 74 plasmids
(median length = 2.1 kbp). Note that the plasmidome
extraction process over-amplifies shorter plasmids, as
reflected in the shorter median plasmid length. Perfor-
mance was computed as in the metagenomic samples and
is shown in Table 4. SCAPP achieved best overall perfor-
mance, while mpSpades had lower precision and much
lower recall than the other tools.
Notably, although the sample was obtained from a

healthy donor, some of the plasmids reconstructed by
SCAPP matched reference plasmids found in poten-
tially pathogenic hosts such as Klebsiella pneumoniae,
pathogenic serovars of Salmonella enterica, and Shigella
sonnei. The detection of plasmids previously isolated from
pathogenic hosts in the healthy gut indicates potential
pathways for transfer of virulence genes.
We used MetaGeneMark [16] to find potential genes in

the plasmids assembled by SCAPP. Two hundred ninety-
four genes were found, and we annotated them with the
NCBI non-redundant (nr) protein database using BLAST.
Forty-six of the plasmids contained 170 (58%) genes with
matches in the database (> 90% sequence identity along
> 90% of the gene length), of which 77 (45%) had known
functional annotations, which we grouped manually in
Fig. 3A. There were six antibiotic and toxin (such as heavy
metal) resistance genes, all on plasmids that were not in
the gold standard set, highlighting SCAPP’s ability to find
novel resistance carrying plasmids. Sixty of the 77 genes
(78%) with functional annotations had plasmid-associated
functions: replication, mobilization, recombination, resis-
tance, and toxin-antitoxin systems. Twenty-nine out of the
33 plasmids that contained functionally annotated genes
(88%) contained at least one of these plasmid associated

Table 4 Performance on the human gut plasmidome. Number
of plasmids, the median plasmid length (in kbp), and
performance measures for all tools

Tool # plasmids Median length Precision Recall F1

Recycler 93 2.1 15.1 37.8 21.5

mpSpades 53 3.0 11.3 9.4 10.3

SCAPP 82 2.4 17.1 35.9 23.1

functions. This provides a strong indication that SCAPP
succeeded in assembling true plasmids of the human gut
plasmidome.
We also examined the hosts that were annotated for the

plasmid genes and found that almost all of the plasmids
with annotated genes contained genes with annotations
from a variety of hosts, which we refer to here as “broad-
range” (see Fig. 3B). Of the 40 plasmids with genes from
annotated hosts, only 10 (25%) had genes with annotated
hosts all within a single phylum. This demonstrates that
these plasmids assembled and identified by SCAPP may
be involved in one stage of transferring genes, such as the
antibiotic resistance genes we detected, across a range of
bacteria.

Parallel metagenomic and plasmidome samples
We performed two sequencing assays on the same cow
rumen microbiome sample of a four-month old calf.
In one subsample total DNA was sequenced. In the
other, plasmid-enriched DNA was extracted as described
in Brown Kav et al. [15] and sequenced (see Fig. 4).
27,127,784 paired-end reads were sequenced in the plas-
midome, and 54,292,256 in the metagenome. Both were
sequenced on the Illumina HiSeq2000 platform with read
length 150bp and insert size 1000.
This parallel data enabled us to assess the plasmids

assembled on the metagenome using the plasmidome,
without resorting to PLSDBmatches as the gold standard.
Such assessment is especially useful for samples from non-
clinical environments such as the cow rumen, as PLSDB
likely under-represents plasmids in them.
Table 5 summarizes the results of the three plasmid dis-

covery algorithms on both subsamples. mpSpades made
the fewest predictions and Recycler made the most. To
compare the plasmids identified by the different tools, we
considered two plasmids to be the same if their sequences
matched at > 80% identity across > 90% of their length.
The comparison is shown in Figure S3, Additional file 1
(Section S8). In the plasmidome subsample, 50 plasmids
were identified by all three methods. Seventeen were
common to the three methods in the metagenome. In
both subsamples, the Recycler plasmids included all or
almost all of those identified by the other methods plus a
large number of additional plasmids. In the plasmidome,
SCAPP and Recycler shared many more plasmids than
mpSpades and Recycler.
We also evaluated the results of the plasmidome and

metagenome assemblies by comparison to PLSDB as was
done for the human gut samples. The metagenome con-
tained only one matching PLSDB reference plasmid, and
none of the tools assembled it. The plasmidome had
only seven PLSDB matches, and mpSpades, Recycler, and
SCAPP had F1 scores of 2.86, 2.67, and 1.74, respectively.
The low fraction of PLSDB matches out of the assem-
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Fig. 3 Annotation of genes on the plasmids identified by SCAPP in the human gut plasmidome sample. A Functional annotations of the plasmid
genes. B Host annotations of the plasmid genes. “Broad-range” plasmids had genes annotated with hosts from more than one phylum

bled plasmids suggests that the tools can identify novel
plasmids that are not in the database.
In order to fully leverage the power of parallel samples,

we computed the performance of each tool on themetage-
nomic sample using the reads of the plasmidomic sample,
without doing any contig and plasmid assembly on the lat-
ter. The rationale was that the reads of the plasmidome
represent the full richness of plasmids in the sample in a
way that is not biased by a computational procedure or
prior biological knowledge.
We calculated the plasmidome read-based precision by

mapping the plasmidomic reads to the plasmids assem-
bled from the metagenomic sample (Fig. 4). A plasmid

with > 90% of its length covered by more than one
plasmidomic read was considered to be a true positive.
The precision of an algorithm was defined as the fraction
of true positive plasmids out of all reported plasmids. The
plasmidome read-based recall was computed by mapping
the plasmidomic reads to the contigs of the metagenomic
assembly. Contigs with > 90% of their length covered by
plasmidomic reads at depth > 1 were called plasmidic
contigs. Plasmidic contigs that were part of the assembled
plasmids were counted as true positives, and those that
were not were considered false negatives. The recall was
defined as the fraction of the plasmidic contigs’ length
that was integrated in the assembled plasmids. Note that

Fig. 4 Outline of the read-based performance assessment. Plasmidome (I) and metagenome reads (II) are obtained from subsamples of the same
sample. (III) The metagenome reads are assembled into a graph. (IV) The graph is used to detect and report plasmids by the algorithm of choice. (V)
The plasmidome reads are matched to assembled plasmids. Matched plasmids (red) are used to calculate plasmid read-based precision. (VI) The
plasmidome reads are matched to the assembly graph contigs. Covered contigs (red) are considered plasmidic. The fraction of total length of
plasmidic contigs included in the detected plasmids gives the plasmidome read-based recall
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Table 5 Number of plasmids assembled by each tool and their
median lengths (in kbp) for the parallel metagenome and
plasmidome samples

metagenome plasmidome

Tool # plasmids median
length

# plasmids median
length

Recycler 60 4.3 147 1.7

SCAPP 25 5.8 110 1.8

mpSpades 26 6.2 65 2.0

the precision and recall here are measured using different
units (plasmids and base pairs, respectively) so they are
not directly related. For mpSpades, which does not out-
put ametagenomic assembly, wemapped the contigs from
themetaSPAdes assembly to thempSpades plasmids using
BLAST (> 80% sequence identity matches along > 90%
of the length of the contigs).
There were 293 plasmidic contigs in the metagenome

assembly graph, with a total length of 146.6 kbp. The plas-
midome read-based performance is presented in Fig. 5A.
All tools achieved a similar recall of around 12. SCAPP
and mpSpades performed similarly, with SCAPP having
slightly higher precision (24.0 vs 23.1) but slightly lower
recall (11.9 vs 12.2). Recycler had a bit higher recall (13.1),
but at the cost of far lower precision (11.7). Hence, a much
lower fraction of the plasmids assembled by Recycler in
the metagenome were actually supported by the parallel
plasmidome sample, adding to the other evidence that the
false positive rate of Recycler exceeds that of the other
tools.
We also compared the plasmids assembled by each tool

in the two subsamples. For each tool, we considered the
plasmids it assembled from the plasmidome to be the gold
standard set, and used it to score the plasmids it assem-

bled in the metagenome. The results are shown in Fig. 5B.
SCAPP had the highest precision. Since mpSpades had a
much smaller gold standard set, it achieved higher recall
and F1. Recycler output many more plasmids than the
other tools in both samples, but had much lower preci-
sion, suggesting that many of its plasmid predictions may
be spurious.
Next, we considered the union of the plasmids assem-

bled across all tools as the gold standard set and recom-
puted the scores. We refer to them as “overall” scores.
Figure 5C shows that overall precision scores were the
same as in Fig. 5B, while overall recall was lower for all the
tools, as expected. mpSpades underperformed because of
its smaller set of plasmids, and SCAPP had the highest
overall F1 score. Recycler performed relatively better on
recall than the other tools as expected, as it reports many
plasmids and has significant overlap with the plasmids
reported by the other tools.
We detected potential genes in the plasmids assem-

bled by SCAPP in the plasmidome sample and annotated
them as we did for the human gut plasmidome. The gene
function and host annotations are shown in Figure S4,
Additional file 1 (Section S8). Out of 242 genes, only
34 genes from 17 of the plasmids had annotations, and
only 18 of these had known functions, highlighting that
many of the plasmids in the cow rumen plasmidome are
as yet unknown. The high percentage of genes of plas-
mid function (15/18) indicates that SCAPP succeeded
in assembling novel plasmids. Unlike in the human gut
plasmidome, most of the plasmids with known host anno-
tations had hosts from a single phylum.

Performance summary
We summarize the performance of the tools across all the
test datasets in Table 6. The performance of two tools was

Fig. 5 Performance on the parallel datasets. A Plasmidome read-based performance. B Performance of each tool on the plasmids assembled from
the metagenome using as gold standard the plasmids assembled from the plasmidome by the same tool. C Overall performance on the plasmids
assembled from the metagenome compared to the union of all plasmids assembled by all tools in the plasmidome
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Table 6 Summary of performance. Comparison of the
performance of the tools on each of the datasets. When multiple
samples were tested, the number of samples appears in
parentheses, and average performance is reported. For the
parallel samples results are for the evaluation of the
metagenome based on the plasmidome, and precision and recall
are plasmidome read-based. Unless otherwise stated, F1 score is
used. Note that in the simulations, SCAPP  mpSpades

Test Ranking

Simulations (7) SCAPP > Recycler > mpSpades

Human gut metagenomes (20) SCAPP  mpSpades > Recycler

Plasmidome SCAPP > Recycler  mpSpades

Parallel: within tool mpSpades > SCAPP  Recycler

Parallel: “overall”, across tools SCAPP > Recycler > mpSpades

Parallel: precision SCAPP ≈ mpSpades  Recycler

P arallel: recall Recycler > mpSpades ≈ SCAPP

considered similar (denoted ≈) if their scores were within
5% of each other. Performance of one tool was considered
to be much higher than the other () if its score was >

30% higher (an increase of 5 − 30% is denoted by >).
We see that in most cases SCAPP was the highest

performer. Furthermore, in all other cases SCAPP per-
formed close to the top performing tool.

Resource usage
The runtime and memory usage of the three tools are
presented in Table 7. Recycler and SCAPP require assem-
bly by metaSPAdes and pre-processing of the reads and
the resulting assembly graph. SCAPP also requires post-
processing of the assembled plasmids. mpSpades requires
post-processing of the assembled plasmids with the plas-
midVerify tool. The reported runtimes are for the full
pipelines necessary to run each tool – from reads to
assembled plasmids.
In almost all cases assembly was the most memory

intensive step, and so all tools achieved very similar peak

Table 7 Resource usage of the three methods. Peak RAM of the
assembly step (metaSPAdes for Recycler and SCAPP,
metaplasmidSPAdes for mpSpades) in GB. Runtime (wall clock
time, in minutes) is reported for the entire pipeline including
assembly and any pre-processing and post-processing required.
Human metagenome results are an average across the 20
samples

Runtime (minutes)

Dataset RAM (GB) Recycler mpSpades SCAPP

Human metagenomes 21 115 103 130

Plasmidome 30 907 548 909

Parallel metagenome 148 2118 2132 2230

Parallel plasmidome 26 881 684 884

memory usage (within 0.01 GB). Therefore, we report the
RAM usage for this step.
The assembly step was also the longest step in all cases.

SCAPP was slightly slower than Recycler as a result of
the additional annotation steps, and mpSpades was 5–
40% faster. However, note that mpSpades does not output
a metagenomic assembly graph, so users interested in
both the plasmid and non-plasmid sequences in a sam-
ple would need to run metaSPAdes as well, practically
doubling the runtime.
Performance measurements were made on a 44-core,

2.2 GHz server with 792 GB of RAM. Sixteen processes
were used where possible. Recycler is single-threaded, so
only one process was used for it.

Discussion
Plasmid assembly from metagenomic sequencing is a
very difficult task, akin to finding needles in a haystack.
This difficulty is demonstrated by the low numbers of
plasmids found in real samples. Even in samples of the
human gut microbiome, which is widely studied, relatively
few plasmids that have matches in the extensive plasmid
database PLSDB were recovered. Despite the challenges,
SCAPP was able to assemble plasmids across a number
of clinically relevant samples. SCAPP significantly outper-
formed mpSpades in simulation and on a range of human
gut metagenome and plasmidome samples. In simulation
mpSpades achieved very high precision at the expense of
low recall, and SCAPP had higher combined F1 score.
The high precision was not observed in real data, which
is more difficult than the simulations. SCAPP was also
consistently better than Recycler across almost all tests.
Though SCAPP and Recycler share the idea of cycle peel-
ing, SCAPP was shown to have higher precision, due to
incorporating additional biological information and better
edge weighting.
Another contribution of this study is the joint analy-

sis of the parallel metagenome and plasmidome from the
same sample. We show that this enables a novel way to
evaluate plasmid assembly algorithms on themetagenome
data, by using the coverage information from the plas-
midome. This novel approach bypasses the need to rely
on known plasmids for evaluation, which is biased due
to research focus. We developed several evaluation met-
rics for such data, and think they can be useful for future
plasmid studies, especially in non-clinical and non-human
samples where plasmid knowledge is scarce.
A key difficulty in evaluation of performance of plasmid

discovery algorithms is the lack of gold standard. The veri-
fication of reported plasmids is done either based on prior
biological knowledge, which is biased, or by experimental
verification, which is slow and expensive. Moreover, such
verification evaluates precision but does not give infor-
mation on the extent of missed plasmids, or recall. While
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simulations can evaluate both parameters accurately, they
are inherently artificial, and necessitate many modeling
assumptions that are not fully supported by experimental
data. For that reason we chose here to focus primarily on
real data, and preferred diversity in the real data types over
extensive but artificial simulations. The parallel samples
strategy is another partial answer to this problem.
SCAPP has several limitations. Like the other de Bruijn

graph-based plasmid assemblers, it may split a cycle into
two when a shorter cycle is a sub-path of a longer cycle.
It also has difficulties in finding very long plasmids,
as these tend to not be completely covered and frag-
mented into many contigs in the graph. Note however
that it produced longer cycles than Recycler. Compared
to mpSpades, each algorithm produced longer cycles in
different tests. Another limitation is the inherent bias in
relying on known plasmid genes and plasmid databases,
which tend to under-represent non-clinical samples. With
further use of tools like SCAPP, perhaps with databases
tailored to specific environments, further improvement is
possible.

Conclusions
We introduced SCAPP, a new plasmid discovery tool
based on combination of graph theoretical and biolog-
ical considerations. Overall, SCAPP demonstrated bet-
ter performance than Recycler and metaplasmidSpades
in a wide range of real samples from diverse con-
texts. By applying SCAPP across large sets of samples,
many new plasmid reference sequences can be assem-
bled, enhancing our understanding of plasmid biology and
ecology.
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