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Abstract 

 

In this study, we aimed to predict breast cancer and prostate gland cancer risk among 

healthy individuals by analyzing routine laboratory measurements, vital signs, and age. We 

analyzed electronic medical records of 20,317 healthy individuals who underwent routine 

checkups, encompassing more than 600 parameters per visit, and identified those who later 

developed cancer. We developed a novel ensemble method for risk prediction of 

multivariate time series data using a random forest model of survival trees for left-truncated 

and right-censored data. 

In cross-validation, our method predicted future cancer six months before diagnosis, 

achieving an area under the ROC curve of 0.62±0.05 for prostate gland cancer and 

0.6±0.03 for breast cancer. This performance was better than the standard random forest, 

Cox-regression model, and a single survival tree. Our method can complement existing 

screening tests such as clinical breast examination and mammography for breast cancer, 

and help in detection of subjects that were missed by these tests. We hope that such 

computational analysis of results of routine checkups of healthy individuals can improve 

the detection of those at risk of cancer development. 

. 
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1. Introduction 

Early detection of cancer is crucial for providing appropriate care to the patient and can 

improve both prognosis and survival [1–4]. The current detection strategies use cancer type 

specific screening tests that require substantial resources and their performance is limited, 

e.g., serum Prostate-Specific Antigen (PSA) level for Prostate Gland Cancer (PGC), 

mammography, and clinical breast examination (CBE) for detecting early signs of Breast 

Cancer (BC) [5].  

Machine learning algorithms can improve screening models in two major directions. One 

approach is utilizing advanced algorithms to improve the performance of the existing tests. 

A second approach aims to develop new cancer risk prediction tools based on historical 

medical records of patients, collected as part of routine care in Electronic Medical Records 

(EMR). Moreover, advanced genetic methods are also employed for screening, mostly 

using polygenic risk scores [6].  

Our objective in this thesis was to develop new models for both BC and PGC based on 

EMR data collected from healthy individuals in routine periodic checkups, using 

techniques from machine learning and survival trees. 

Survival trees were first introduced by Gordon and Olsen [7] and their objective is to 

partition the covariate space into smaller and smaller nodes containing observations with 

homogeneous survival outcomes. Later, different ensembles methods for survival trees 

analysis were suggested [8]. 

We considered the problem of predicting survival probability over time. Our objective was 

to create a model based on subjects' time-dependent covariates obtained in routine 

laboratory tests and to predict the fully personalized survival function for each subject 

based on the last available measurement values. We developed a novel method called 

TVsuRF (Time-Varying SUrvival Random Forest) for this goal. TVsuRF is the first 

ensemble method based on survival trees for time-dependent covariates that implements 

the ‘pseudo-object’ concept. Moreover, our method is the first to use the conditional 

inference trees in that setting. We used the new method to predict future BC and PGC risk 

in healthy individuals. Our analysis was conducted on EMRs of 20,317 healthy individuals 
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who underwent routine checkups, encompassing more than 600 parameters per visit. We 

identified those who later developed cancer using the Israel Cancer Registry. We compared 

our method to other extant methods and obtained favorable results. 

Today, screening tests in the healthy population are used to identify individuals with cancer 

without symptoms, but these tests are costly, labor-intensive, and suffer from low accuracy. 

Our method aims to utilize existing clinical measurements of healthy individuals to predict 

the risk of BC and PGC, the most common cancers among females and males, respectively. 

To the best of our knowledge, this is the first risk score that is based on routine laboratory 

measurements proposed for these cancer types. 

 

The thesis is organized as follows: Chapter 2 provides basic background on cancer, and 

Chapter 3 provides the computational background needed for the thesis. Chapter 4 

describes the data sources that we used and the cohort formation process. Chapter 5 

describes the new method that we developed. Chapter 6 contains the results. We conclude 

in Chapter 7 with a discussion.  
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2. Basic background on cancer 

Cancer is a complex disease that encompasses different diseases with diverse risk factors 

and prognosis. It originates in different cell types and organs in the body and caused by 

genetic alterations that accumulate in a normal cell, turning it into a malignant cell. A 

fraction of these malignant cells is characterized by extensive proliferation that leads to the 

formation of tumors that penetrate normal tissues and in some cases form metastases in 

distant tissues [9].  

2.1. Prostate Gland Cancer 

PGC is the most common cancer among males, with more than 190,000 cases in the US 

[10] and more than 2,500 cases in Israel annually [11]. Approximately one out of eight men 

will be diagnosed with prostate cancer at some point during their lifetime, with a median 

age at diagnosis of 66 years. Several risk factors are positively associated with PGC, such 

as age, black ethnicity, and family history of prostate cancer [12]. 

 

Figure 1: An anatomical illustration of the prostate gland tumor location. (Figure source: 

www.jamaicamoves.com/single-post/2020/02/04/All-About-Prostate-Cancer-in-Jamaica) 

The current early detection strategies are based on simple screening tests that require 

substantial resources, e.g., digital rectal examination (DRE) and the prostate‐specific 

antigen (PSA) blood test. Given an abnormal finding in one of these tests, an individual 

may undergo a targeted prostate biopsy [13]. A modern risk score that tries to incorporate 

several risk factors is the Prostate Cancer Prevention Trial Risk Calculator (PCPTRC) [14]. 

It is based on race, age, PSA, family history of PGC, rectal examination result, and prior 

biopsy, but its performance is relatively limited with a median AUC of 0.568 on 
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discriminating between low-grade tumors and no cancer. Another method aims to improve 

the PGC risk score based on longitudinal PCPTRC results [9]. 

Other innovative blood tests aim to assist the physician before the decision of extraction 

biopsy is taken. 4K [15] is a score based on a combination of free, total, intact PSA, and 

human kallikrein 2 (hK2) with age, DRE, and prior biopsies information. The PHI test is a 

formula of pro, free, and total PSA. Other novel urinary based measurements are 

selectMDx, which is based on mRNA levels of the genes HOXC6, DLX1, KLK3, and MiPS 

which is based on the combined risk score of serum PSA with the genes PCA3 and 

TMPRSS2: ERG [16]. 

2.2. Breast Cancer 

BC is the most common cancer among females, with more than 250,000 cases in the US 

[17] and more than 4,500 cases in Israel [11] annually. Approximately one out of eight 

women will be diagnosed with breast cancer at some point during her lifetime, with a 

median age at diagnosis of 62 years. Several risk factors are positively associated with BC, 

such as age, first degree BC family history, early age at menarche, late menopause age, 

BMI, late age at first live birth and, and presence of mutations in the BRCA gene [18].  

The current BC screening tests require substantial resources. The most common tests are 

mammography, an X-ray modality for detecting early signs of BC, and clinical breast 

examination (CBE), a physical examination done by a physician to recognize abnormalities 

in the breast texture [19]. In case of an abnormal finding, usually, another imaging modality 

is required before a biopsy test. The most common modalities are ultrasound, magnetic 

resonance imaging (MRI), or another mammography. Following verification of the 

abnormal finding, a biopsy is taken. 

Another approaches to assess BC risk is Gail’s model [20,21], which is based on several 

parameters: age, age at menarche, age at first live birth, number of previous benign breast 

biopsies, presence of atypical hyperplasia on biopsy, number of affected mother or sisters, 

and race or ethnicity. More advanced approaches for estimation of BC risk encompass 

somatic mutations as part of their risk factors such as BRCAPRO [22], IBIS [23], and 

BOADICEA [24]. 
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Figure 2: An anatomical illustration of the breast tumor location. (Figure source: 

www.mayoclinic.org/diseases-conditions/lobular-carcinoma-in-situ/multimedia/lobular-

carcinoma-in-situ/img-20008459)  

Recently, machine learning algorithms were employed to improve screening models. for 

example, using deep learning models for analyzing mammography [25–27] or using 

machine learning models to optimize Gail’s model parameters [28] achieving AUC 

between 0.55 and 0.6. 

2.3. Early detection of Cancer Using EMR data 

EMRs are the digital version of patients’ paper charts. EMR systems were designed 

originally to store data accurately and to enable a longitudinal overview of patient health. 

The use of EMR has increased dramatically in recent years. The large volume and high-

dimensional clinical patient information captured in EMRs may reflect the characteristics 

of the general population better than those of cohort studies based on a targeted subgroup 

of limited profiles. Therefore, EMRs provide a unique opportunity to understand the health 

status at the population level. Different EMR-based models that utilize routine laboratory 

measurements as part of their input were suggested for cancer risk prediction such as lung 

cancer [29], colorectal cancer [30], acute myeloid leukemia [31], among others. 

 

A prediction model of the 1-year risk of lung cancer was developed based on EMR data of 

873,598 individuals from the Maine Health Information Exchange Network. The model 

was based on 346 features selected based on correlation in addition to known risk factors 

(e.g. COPD, previous cancer, age, etc.) and utilized the XGBoost algorithm to achieve 

AUC of 0.881 [0.873 – 0.889]. The model used EMR data in the preceding six months and 
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found several risk factors to be most associated with a new incident of lung cancer: age, a 

history of pulmonary diseases and other chronic diseases, medications for mental disorders, 

and social characteristics. 

 

A prediction model for colorectal cancer was developed based on the EMR data of the 

Maccabi database, the second largest HMO in Israel with 2 million insured individuals, 

and validated on the United Kingdom (UK) Health Improvement network datasets. The 

cohorts of the study contained 606,403 and 25,613 individuals respectively. The model’s 

input included an individual’s demographics (age and sex) as well as the current complete 

blood count (CBC) and the trends of the various CBC parameters. The output was a 

combined score of Gradient Boosting and Random Forest models. Using blood counts 

obtained 3–6 months before diagnosis, the AUC for detecting colorectal cancer was 

0.826±0.01 for the Maccabi test set and 0.81 for the UK test set, and found the Hemoglobin 

and Mean Corpuscular Hemoglobin (MCH) levels as important features of the model. 

 

Another model for acute myeloid leukemia (AML) was developed based on the Clalit 

database, the biggest HMO in Israel, which contains EMRs of an average of 3.45 million 

individuals per year and collected over 15 years. In this cohort, 875 AML cases were 

identified based on ICD-9 codes. The model incorporated only parameters that were 

routinely documented in EMRs, such as different laboratory measurements, ICD-9 codes 

of different background disease, age, sex, BMI, and weight. In addition, the trend of the 

various CBC parameters was added to the model. Utilizing the Gradient Boosting Trees 

algorithm, the model was able to predict AML 6–12 months before diagnosis with a 

sensitivity of 25.7% and an overall specificity of 98.2%. 
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3. Computational Background 

3.1. Survival Analysis 

Survival analysis is a statistical method for analyzing data on time to a failure event such 

as death, heart attack, device failure, disease onset, etc. It is widely used in the medical 

field. 

Let 𝑋 be a non-negative random variable denoting the time-to-event. The survival function 

𝑆(𝑥) denotes the probability that the event is later than some specified time 𝑥, assuming 

that 𝑆(0) = 1. Let 𝐹(𝑥) be the cumulative distribution function of the event at time 𝑥. Then 

𝑆(𝑥) = ℙ(𝑋 > 𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑥

=  1 − 𝐹(𝑥)  

𝑆 must be a non-increasing function, since survival till a later time is possible only if 

survival was attained for earlier times. An alternative characterization of the distribution 

of 𝑋 is by defining the hazard function, which describes the instantaneous rate of 

occurrence of the failure event at time x, given that the subject survived until that time. 

                 𝜆(𝑥) = lim
Δ𝑥→0

ℙ(𝑥 ≤ 𝑋 < 𝑥 + Δ𝑥|𝑋 ≥ 𝑥)

Δ𝑥

= lim
Δ𝑥→0

1

Δ𝑥
⋅

ℙ(𝑥 ≤ 𝑋 < 𝑥 + Δ𝑥, 𝑋 ≥ 𝑥)

ℙ(𝑋 ≥ 𝑥)

= lim
Δ𝑥→0

ℙ(𝑥 ≤ 𝑋 < 𝑥 + Δ𝑥)

Δ𝑥
⋅

1

ℙ(𝑋 ≥ 𝑥)
  

In contrast, the survival density function satisfies: 

𝑓(𝑥) =  lim
Δ𝑥→0

ℙ(𝑥 < 𝑋 < 𝑥 + Δ𝑥)

Δ𝑥
 

We can take the derivative of the survival function and get: 

𝑆′(𝑥) =
𝜕

𝜕𝑥
𝑆(𝑥) =

𝜕

𝜕𝑥
∫ 𝑓(𝑢)𝑑𝑢

∞

𝑥

=
𝜕

𝜕𝑥
(1 − 𝐹(𝑥)) = −𝑓(𝑥) 

And therefore the two functions are related as: 
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𝜆(𝑥) =  
𝑓(𝑥)

𝑆(𝑥)
=

−𝑆′(𝑥)

𝑆(𝑥)
= −[ln 𝑆(𝑥)]′ 

A key component of survival analysis is the notion of censoring [32]. Suppose the subject 

entered the study at time 0 and was followed until time 𝑡, at which time follow-up was 

terminated. At that time, if an event did not occur yet, we say right censoring (or simply 

censoring) happened. Such termination of follow-up can be due to the end of the study, or 

if the subject dropped out of it. In this case, the exact time the event took place is not 

known, but we assume that the event will happen at some future time after the censoring 

time. A second type of censoring is interval censoring, which means that the failure event 

occurred within some known time interval. 

Another key concept in survival analysis is left truncation. In studies allowing delayed 

entry, subjects may enter the study at different time points and not necessarily at time 0. 

Those subjects entering at 𝑡>0 are called left truncated. Hence, at time t, only individuals 

with entry time >𝑡 are present in the sample (Figure 3).  

 

Figure 3: An illustration of a survival analysis setting for left-truncated and right-

censored data. Squares indicate the left truncation times, crosses indicate failure events, 

and circles indicate right censoring events. Each interval is the time a single subject was 

part of the study. The x-axis can be age or just time since the study started. 
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3.2. The Kaplan-Meier curve  

For a population of individuals, a widely used estimator of the survival function is the 

Kaplan-Meier curve, which is a non-parametric way to assess both the number of failure 

events that have occurred as a function of time and the duration of time until a failure event 

occurs. The survival curve is a step function with jumps at observed failure event times 

and values held constant for the time between two consecutive observed failure events. 

Figure 4 shows a Kaplan-Meier curve. We will present the Kaplan-Meier curve for Left- 

Truncated and Right-Censored (LTRC) with details in section 5.1.  

 

 

 

Figure 4: An illustration of the Kaplan-Meier curve. The Y-axis is the survival probability, 

e.g. the probability to be free of a failure event. X-axis is the age of the subject.  

3.3. Survival Trees 

Survival trees for time-varying covariates: Survival trees were first introduced by 

Gordon & Olsen [7]. The basic concept is to create a decision tree where each node contains 

a survival curve of the corresponding subgroup of individuals. The splitting criterion 

usually aims to maximize the difference in survival between the daughter nodes or the 

within-node homogeneity. Most of the survival tree methods address right-censored data 

and time-independent covariates. Incorporating time-varying covariates in survival trees 

was first introduced by Bacchetti and Segal [33], who suggested the ‘pseudo-object’ 

concept. Several methods of constructing survival trees for time-dependent covariates used 
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this concept [34–37]. Another common approach for analyzing time-dependent covariates 

is the Cox-regression model [38,39]. 

An ensemble of survival trees: Several ensemble methods for survival trees analysis were 

suggested, usually, for time-independent covariates [8,40]. Random survival forests (RSF) 

were introduced by Ishwaran [41] by combining the concept of RFs of Breiman [42,43], 

survival trees and the log-rank test as the splitting criteria. An extension of RSF is the 

utilization of conditional inference trees, which use hypothesis testing to select the splitting 

covariates and also as a stopping criterion [44]. Further improvements of those methods 

were demonstrated by Utkin et al. to optimize the weights of each tree [45] and by 

Steingrimsson et al. using more general weighted bootstrap procedures [46]. 

Analyzing time-varying covariates to predict an individualized survival curve utilizing an 

ensemble of survival trees is an emerging field of research [47]. The first method of this 

kind was for discrete-time data [35]. Another approach utilized martingale equations and 

ROC-driven splitting criteria [48]. A third one used individualized Bayes estimates of 

piecewise-constant hazard rates [49]. 

 

We considered the problem of predicting survival probability (or equivalently, the 

probability to be free of a failure event) over time. Our objective was to create a model 

based on subjects' time-dependent covariates and to predict the fully personalized survival 

function for each subject based on the last available measurement values. We developed a 

novel method called TVsuRF (Time-Varying SUrvival Random Forest) that uses 

longitudinal multidimensional data to predict a personalized survival function. 

3.4. Log-Rank Test 

The log-rank test is a semi-parametric hypothesis test that aims to compare survival 

functions from two groups with right-censored data. This is an adapted version of the 

stratified test for 2 X 2 contingency table presented by Mantel [50] and relies on the 

proportional hazard assumption. Let 𝑆0(𝑡) and 𝑆1(𝑡) be the survival functions of the control 

and case groups, respectively. Define 𝑡𝑙 as the failure time for the 𝑙𝑡ℎ individual and assume  

𝑡1, … 𝑡𝐾 are distinct failure times. 𝑌𝑖,𝑗 denotes the number of individuals who are at risk or 

who had a failure event at time 𝑡𝑖 in group 𝑗. 𝑑𝑖,𝑗 denotes the number of events at time 𝑡𝑖 
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in group 𝑗. 𝑑𝑖 and 𝑌𝑖 denote the sums of 𝑑𝑖,𝑗 and 𝑌𝑖,𝑗 among the two groups. Given these 

variables, for each 𝑡𝑙 we can create a 2 X 2 contingency table showing the number of 

surviving individuals and observed events at that time stratified by group. Assuming that 

under the null hypothesis 𝐻0: 𝑆1(𝑡) = 𝑆0(𝑡), the distribution of 𝑑𝑖,1 given the margins of 

the tables is hypergeometric. Hence the log-rank statistic converges to a normal distribution 

under 𝐻0 and is calculated as follows: 

∑ (𝑑𝑖,1 −
𝑌𝑖,1𝑑𝑖

𝑌𝑖
 )𝑛

𝑖=1  

√∑ (
𝑌𝑖,1

𝑌𝑖
(1 −

𝑌𝑖,1

𝑌𝑖
) (

𝑌𝑖 − 𝑑𝑖

𝑌𝑖 − 1
) 𝑑𝑖  )𝑛

𝑖=1

𝐷
→ 𝒩(0,1) 

 

3.5. Random Survival Forest 

The Random Forest (RF) algorithm was introduced by Breiman [42] for classification and 

regression problems. RF is an ensemble method that trains several decision trees in parallel 

using bootstrapping. Several individual decision trees are trained in parallel on different 

subsets of the training dataset utilizing various randomly selected subsets of features. The 

final predicted outcome is based on an aggregation of the decisions of individual trees (see 

illustration Figure 5). 
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Figure 5: An illustration of the random forest classification algorithm. (Figure source: 

https://medium.com/towards-artificial-intelligence/use-of-decision-trees-and-random-

forest-in-machine-learning-1e35e737b638) 

Random survival forests (RSF) were introduced by Ishwaran [41] by combining the 

concepts of RF, survival trees, and the log-rank test as the splitting criterion for time-

independent variables. An advantage of this approach is that it is almost fully non-

parametric whereas traditional methods assume a distribution for the survival curve. The 

description of the algorithm is as follows: 

1. Draw 𝑛 bootstrap samples from the original data set. 

2. For each bootstrap sample, grow a tree by repeatedly splitting leaf nodes, as 

follows. At each such node, randomly select 𝑚 covariates to split on, and find a 

covariate 𝑐 and threshold 𝑥 value such that splitting the samples of the node 

according to it maximizes the difference between the survival curves of the 

daughter nodes as measured by the log-rank test. In other words, we seek a pair 

(𝑐, 𝑥) that yields a split with the largest log-rank score, corresponding to the 

lowest p-value. Stop splitting when no split produces daughter cells with at least 𝑑 

unique failure events. 

3. Estimate the predicted survival function by averaging the results of the 𝑛 trees 

(e.g. for each time 𝑡, calculate the mean survival probabilities at time 𝑡 over all 

the trees). 

4. Compute the out-of-bag error of the model. 

 

3.6. Cox Proportional Hazard Model 

The Cox proportional hazards model is a regression model commonly used in medical 

research for investigating the association between survival time and categorical or 

continuous predictor (explanatory) variables. Three main assumptions underline the Cox 

model. First, censoring must be non-informative or statistically independent of the failure 

times. Second, the observed failure times are distinct, namely, there are no ties. Third, the 

model assumes a baseline hazard functions called 𝜆0(𝑡) such that all hazard functions 

satisfy: 
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𝜆𝑖(𝑋𝑖)  =  𝜆0(𝑋𝑖) exp(𝛽′𝑍𝑖) 

In other words, the survival curves must have hazard functions that are proportional over 

time. This is called the proportional hazards assumption. Cox introduced the key idea of 

using the partial likelihood approach to estimate the model parameters. 

Suppose we have 𝑛 individuals and we observe data (𝑋𝑖, 𝛿𝑖 , 𝑍𝑖) for individual 𝑖, where 𝑋𝑖 

is the event time (failure/censoring) random variable, 𝛿𝑖 is the failure/censoring indicator 

and 𝑍𝑖 represents a set of covariates. Let ℛ(𝑡) = {𝑖: 𝑋𝑖 ≥ 𝑡} denote the set of individuals 

who are ‘at-risk’ for failure at time 𝑡, called the ‘risk set’ (we assume here no right 

truncation). 𝜆 and 𝑆 are the hazard and survival functions, respectively. It can be shown 

(see REF) that the full likelihood of the model can be described as: 

𝐿 = ∏ 𝜆𝑖(𝑋𝑖)
𝛿𝑖𝑆𝑖(𝑋𝑖)

𝑛

𝑖=1

= ∏ [
𝜆𝑖(𝑋𝑖)

∑ 𝜆𝑗(𝑋𝑖)𝑗∈ℛ(𝑋𝑖)
]

𝛿𝑖
𝑛

𝑖=1

[ ∑ 𝜆𝑗(𝑋𝑖)

𝑗∈ℛ(𝑋𝑖)

]

𝛿𝑖

𝑆𝑖(𝑋𝑖)  

Under the proportional hazard model, the partial likelihood (the first term of the full 

likelihood)does not depend on the underlying hazard function: 

𝐿(𝛽) = ∏ [
exp(𝛽′𝑍𝑖)

∑ exp(𝛽′𝑍𝑗)𝑗∈ℛ(𝑋𝑖)

]

𝛿𝑖
𝑛

𝑖=1

 

Treating the partial likelihood as a regular likelihood function enables estimation of 𝛽 using 

the log transformation, where 𝑙𝑖 is the log-partial likelihood contributed by subject 𝑖: 

𝑙(𝛽) = log ∏ [
exp(𝛽′𝑍𝑖)

∑ exp(𝛽′𝑍𝑗)𝑗∈ℛ(𝑋𝑖)

]

𝛿𝑖

= ∑ 𝑙𝑖(𝛽)

𝑛

𝑖=1

𝑛

𝑖=1

 

See [51] for full derivation of the above formulas. 
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4. Cohort Description 

4.1. Dataset 

We analyzed data from routine checkups of individuals at the Tel-Aviv Medical Center 

Inflammation Survey (TAMCIS), Tel-Aviv Sourasky Medical Center, Israel. Participants 

were men and non-pregnant women with no active malignant or infectious disease who 

chose to be tested and signed an informed consent form. In each visit, the subject underwent 

a comprehensive medical history evaluation, a complete physical examination, blood and 

urine tests, vital signs measurements, an electrocardiogram, an exercise stress test, and a 

respiratory function test. Data were summarized in structured EMR. Some individuals had 

multiple visits during several years. We conducted a retrospective analysis of the TAMICS 

EMR data collected between November 2001 and February 2017. Our study covered 

20,271 adults (age ≥ 18). The study was reviewed and approved by the Institutional Review 

Board (Approval no. 02-049-Tlv).  

4.2. Cancer Registry 

TAMICS participants who later developed cancer were identified (using their national IDs) 

in the Israeli National Cancer Registry (INCR), which records all cancer cases in Israel. 

INCR contains for each case the cancer type (ICD9 code) and diagnosis date, and we used 

all cancer diagnoses until January 1st, 2016. Supplementary Figure 1 shows the number 

of patients in the cohort with each cancer type. We focused on the two cancer types with 

the largest number of cases: BC for females and PGC for males. Patients who had a 

different type of cancer prior to diagnosis of BC or PGC were excluded. 

4.3. Exclusion & Inclusion Criteria 

Inclusion criteria: All individuals surveyed in TAMICS who had birth and visit dates 

documented were included (number of individuals 𝑛𝑝= 20,271, number of visits 𝑛𝑣= 

50,497). Of those, individuals with cancer diagnosis according to INCR were identified 

(𝑛𝑝= 1,547, 𝑛𝑣= 3,999), along with their cancer type (see Figure 6). 

Cases: Females whose cancer type was BC (𝑛𝑝= 293, 𝑛𝑣=730) or males whose cancer type 

was PGC (𝑛𝑝= 182, 𝑛𝑣=566). 

Controls: Individuals who did not have any cancer diagnosis (𝑛𝑝= 18,724, 𝑛𝑣= 46,498).  
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Exclusion criteria: Our analysis was based on data from single visits, so exclusion was 

done per individual and visit. 

Cases: Individuals whose cancer diagnosis date was before their first TAMICS visit (BC: 

𝑛𝑝= 94, 𝑛𝑣=223, PGC: 𝑛𝑝= 39, 𝑛𝑣=127). Visits that occurred after the cancer diagnosis 

date (BC: 𝑛𝑣=87, PGC: 𝑛𝑣=107). Visits where more than 50% of the covariates were 

missing (BC: 𝑛𝑣=44, PGC: 𝑛𝑣=39). Visits that occurred > 730 days before the cancer 

diagnosis date (BC: 𝑛𝑝= 122, 𝑛𝑣=286, PGC: 𝑛𝑝= 84, 𝑛𝑣=229).  

Controls: Visits where more than 50% of the covariates were missing (𝑛𝑝= 113 individuals 

and 𝑛𝑣=6,040 visits excluded). Visits that occurred after the last day of reports in INCR 

(𝑛𝑝= 934, 𝑛𝑣=4,214). We split the cancer-free group into male (𝑛𝑝= 11,360, 𝑛𝑣=24,503), 

and female (𝑛𝑝= 6,347, 𝑛𝑣=11,741) subgroups. 

 

Figure 6: Study design. The bold number is the number of TAMICS visits; the number of 

individuals appears in parentheses. 

4.4. Data Extraction and Feature Choices 

We used only features that were available for more than 80% of the individuals. The 

missing values were imputed using Predictive-Mean-Matching on age [52] using the mice 

package [53].  

For BC risk prediction we used 20 covariates (Table 1) that include demographic 

parameters such as age and BMI, along with Complete Blood Count (CBC), since BC is a 

systemic disease that affects the immune system and its progression is expected to be 
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reflected in the CBC results. For PGC risk prediction, we added 28 covariates that include 

the Basic Metabolic Panel (BMP), Lipids, Vital Signs, and more. (Table 2) 

  

BC BC-Free Matched BC-Free 

BC vs. BC-

Free 

P-value 

BC vs. 

Matched  

BC-Free P-

value 

Parameter Visits Sub 

jects 
Mean±STD Visits Sub 

jects 
Mean±STD Visits Sub 

jects 
Mean±STD T-test MW T-test MW 

Baso (%) 90 77 0.63±0.33 11,739 6,347 0.58±0.29 5,883 3,635 0.59±0.3 1 1 1 1 

Eos (%) 90 77 2.61±1.73 11,738 6,347 2.5±1.84 5,882 3,635 2.54±1.78 1 1 1 1 

Hmt (%) 90 77 39.06±2.62 11,741 6,347 38.59±2.81 5,884 3,635 38.88±2.86 1 1 1 1 

Hgb (g/dL) 90 77 13.2±0.96 11,740 6,347 13.15±0.96 5,883 3,635 13.24±0.96 1 1 1 1 

Lym (%) 90 77 30.71±8.26 11,739 6,347 30.75±7.17 5,883 3,635 30.99±7.2 1 1 1 1 

Lym (K/𝜇𝐿) 90 77 2.13±0.76 11,734 6,347 2.04±0.57 5,880 3,635 2.01±0.56 1 1 1 1 

MCH (pg) 90 77 29.8±2.27 11,740 6,347 29.95±2.04 5,884 3,635 30.04±2.06 1 1 1 1 

MCHC(g/dL) 90 77 33.85±0.86 11,740 6,347 34.11±0.98 5,884 3,635 34.08±1.05 0.114 0.049 0.344 0.159 

MCV (fl) 90 77 87.99±5.62 11,741 6,347 87.75±5.06 5,884 3,635 88.1±5.09 1 1 1 1 

Mono (%) 90 77 6.88±1.45 11,739 6,347 6.97±1.91 5,883 3,635 7.12±1.71 1 1 1 1 

Mono (K/𝜇𝐿) 90 77 0.48±0.16 11,734 6,347 0.46±0.15 5,880 3,635 0.46±0.13 1 1 1 1 

MPV (fl) 87 74 9.19±0.97 11,312 6,234 9.01±1.07 5,688 3,559 9.01±1.08 1 1 1 1 

Neu (K/𝜇𝐿) 90 77 4.23±1.42 11,734 6,347 4.06±1.37 5,880 3,635 3.95±1.33 1 1 1 0.739 

RBC (M/𝜇𝐿) 90 77 4.45±0.35 11,740 6,347 4.4±0.34 5,883 3,635 4.42±0.35 1 1 1 1 

Neu (%) 90 77 59.16±8.63 11,739 6,347 59.21±8.17 5,883 3,635 58.75±8.16 1 1 1 1 

PLT (K/𝜇𝐿) 90 77 262.67±52.95 11,740 6,347 263.17±61.56 5,884 3,635 261.35±61.31 1 1 1 1 

RDW (%) 90 77 13.42±1.26 11,741 6,347 13.25±1.06 5,884 3,635 13.29±1.02 1 1 1 1 

WBC (K/𝜇𝐿) 90 77 7.07±1.84 11,741 6,347 6.77±1.7 5,884 3,635 6.63±1.66 1 1 0.538 0.379 

BMI (kg/𝑚2) 83 71 25.9±4.74 11,273 6,057 25.45±4.72 5,574 3,445 26.23±4.63 1 1 1 1 

Age (Years) 90 77 53.46±7.97 11,741 6,347 47.16±10.56 5,884 3,635 53.2±7.66 < 0.0001 < 0.0001 1 1 

 

Table 1 Characteristics of the BC, BC-free, and Matched BC-free groups. Values are 

mean ± SD. MW: p-value of the Mann–Whitney test, T-test: p-value of the Student t-test. 

All p-values were Bonferroni corrected for multiple hypotheses. Baso – basophils; EOS – 

eosinophils; Hmt – hematocrit, Hgb – hemoglobin; Lym – lymphocytes; MCH- mean 

corpuscular hemoglobin; MCHC- mean corpuscular hemoglobin concentration; MCV – 

mean corpuscular volume; Mono-monocytes; MPV- mean platelet volume; Neu – 

neutrophils; RBC – red blood cells; PLT – platelets; RDW - red cell distribution width; 

WBC – white blood Cells; BMI – body mass index. 
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PGC PGC-Free Matched PGC-Free 

PGC vs. 

PGC-

Free P-

value 

PGC vs. 

Matched  

PGC-

Free P-

value 

Parameter Visits Subjects Mean+STD Visits Subjects Mean+STD Visits Subjects Mean+STD T-test MW T-test MW 

Baso (%) 64 56 0.57±0.26 24,382 11,344 0.54±0.27 6,080 3,320 0.54±0.27 1 1 1 1 

Eos (%) 64 56 2.51±1.32 24,382 11,344 2.86±1.87 6,080 3,320 2.92±1.86 1 1 0.809 1 

Hmt (%) 64 56 43.65±2.8 24,390 11,344 43.73±2.7 6,083 3,320 43.71±2.87 1 1 1 1 

Hgb (g/dL) 64 56 14.93±0.97 24,390 11,344 14.94±0.94 6,083 3,320 14.9±1 1 1 1 1 

Lym (%) 64 56 27.52±6.89 24,382 11,344 29.79±6.74 6,080 3,320 28.58±6.78 0.537 1 1 1 

Lym (K/𝜇𝐿) 63 55 1.8±0.53 24,369 11,269 1.98±0.56 6,079 3,290 1.93±0.59 0.597 0.748 1 1 

MCH (pg) 64 56 30.33±1.67 24,389 11,344 30.17±1.66 6,083 3,320 30.46±1.76 1 1 1 1 

MCHC (g/dL) 64 56 34.23±0.79 24,389 11,344 34.21±0.89 6,083 3,320 34.13±0.92 1 1 1 1 

MCV (fl) 64 56 88.57±4.14 24,390 11,344 88.18±4.28 6,083 3,320 89.25±4.46 1 1 1 1 

Mono (%) 64 56 8.06±1.97 24,382 11,344 7.99±1.8 6,080 3,320 8.21±1.86 1 1 1 1 

Mono (K/𝜇𝐿) 63 55 0.54±0.17 24,370 11,269 0.53±0.16 6,079 3,290 0.56±0.16 1 1 1 1 

MPV (fl) 63 55 8.87±1.22 23,498 11,257 8.85±1.02 5,899 3,289 8.84±1.05 1 1 1 1 

Neu (K/𝜇𝐿) 63 55 4.18±1.37 24,368 11,269 4.01±1.28 6,078 3,290 4.14±1.29 1 1 1 1 

RBC (M/𝜇𝐿) 64 56 4.93±0.38 24,387 11,344 4.97±0.36 6,083 3,320 4.9±0.38 1 1 1 1 

Neu (%) 64 56 61.34±8.05 24,382 11,344 58.82±7.52 6,080 3,320 59.75±7.52 0.767 1 1 1 

PLT (K/𝜇𝐿) 64 56 244.08±80.53 24,389 11,344 238.68±55.85 6,083 3,320 233.5±55.56 1 1 1 1 

RDW (%) 64 56 13.34±0.86 24,389 11,344 13.01±0.79 6,083 3,320 13.2±0.84 0.190 0.138 1 1 

WBC (K/𝜇𝐿) 64 56 6.71±1.66 24,390 11,344 6.75±1.64 6,083 3,320 6.87±1.67 1 1 1 1 

Pulse (bpm) 59 53 69.95±14.05 23,053 10,896 68.68±11.86 5,591 3,155 68.14±11.7 1 1 1 1 

DBP (mmHg) 59 53 81.05±8.26 23,331 10,896 78.66±8.63 5,672 3,155 80.71±8.55 1 1 1 1 

SBP (mmHg) 59 53 131.44±15.59 23,326 10,896 125.1±14.32 5,671 3,155 131.08±15.48 0.142 0.099 1 1 

Spirometry (Score) 56 50 0.34±0.48 22,563 10,716 0.39±0.49 5,435 3,080 0.4±0.49 1 1 1 1 

Temp. (𝐶°) 59 53 36.34±0.33 22,104 10,947 36.35±0.34 5,397 3,184 36.33±0.33 1 1 1 1 

BUN (mg/dL) 61 55 16.34±3.75 24,056 11,003 15.36±3.67 6,027 3,195 16.37±4.15 1 1 1 1 

Chloride (mmol/L) 60 54 104.05±2.53 24,015 10,920 103.52±2.42 6,023 3,160 103.64±2.56 1 1 1 1 

Creatinine(mg/dL) 60 54 1.15±0.12 24,019 10,920 1.14±0.15 6,026 3,160 1.16±0.16 1 1 1 1 

GGT (U/L) 60 54 27.57±23.54 23,993 10,920 25.07±22.42 6,018 3,160 26.36±22.21 1 1 1 1 

Glucose (mg/dL) 61 55 100.18±21.96 24,059 11,003 92.58±16.83 6,030 3,195 97.51±19.7 0.457 0.002 1 1 

Potassium(mmol/L) 60 54 4.45±0.35 24,019 10,920 4.35±0.37 6,025 3,160 4.37±0.38 1 0.511 1 1 

Albumin (g/L) 60 54 44.8±2.13 24,014 10,920 45.52±2.32 6,022 3,160 44.82±2.27 0.599 1 1 1 

Globulin (g/L) 60 54 27.12±3.67 23,995 10,920 28.12±3.2 6,017 3,160 27.98±3.25 1 1 1 1 

Phosphorus(mg/dL) 60 54 3.16±0.39 24,012 10,920 3.23±0.44 6,022 3,160 3.16±0.43 1 1 1 1 

Calcium(mg/dL) 60 54 9.35±0.43 24,011 10,920 9.32±0.42 6,021 3,160 9.27±0.43 1 1 1 1 

Uric Acid (mg/dL) 60 54 6.19±1.12 23,995 10,920 6.09±1.1 6,016 3,160 6.17±1.14 1 1 1 1 

Sodium (mmol/L) 60 54 141.82±2.91 24,019 10,920 141.19±2.53 6,025 3,160 141.09±2.58 1 1 1 1 

Protein (g/L) 60 54 71.92±4.18 24,005 10,920 73.64±3.91 6,020 3,160 72.8±3.89 0.118 0.049 1 1 

Bilirubin (𝜇mol/L) 60 54 0.81±0.37 24,014 10,920 0.83±0.37 6,023 3,160 0.81±0.33 1 1 1 1 

ALP (U/L) 59 53 63.85±17.3 23,214 10,840 64.64±17.54 5,850 3,131 64.48±17.57 1 1 1 1 

LDH (U/L) 60 54 323.6±44.04 24,013 10,920 317.76±55.91 6,022 3,160 324.77±55.11 1 1 1 1 

Triglycerides(mg/dL) 63 56 126.63±56.12 24,207 11,260 123.48±73.12 6,044 3,289 127.33±70.01 1 1 1 1 

HDL (mg/dL) 63 56 47.42±11.16 24,182 11,260 49.81±10.67 6,036 3,289 50.63±11.54 1 1 1 0.810 

LDL (mg/dL) 63 56 114.54±28.54 24,095 11,260 115.78±29.83 6,023 3,289 113.03±30.3 1 1 1 1 

Cholesterol (mg/dL) 63 56 188.27±35.1 24,204 11,260 190.14±34.74 6,043 3,289 189.01±35.08 1 1 1 1 

Troponin (ng/dL) 63 56 4.11±1.04 24,141 11,260 3.94±0.97 6,026 3,289 3.86±0.9 1 1 1 1 

Urine PH 64 56 6.14±0.89 24,134 11,344 6.13±0.82 6,014 3,320 6.1±0.81 1 1 1 1 

Urine SG 64 56 1.01±0.01 24,112 11,344 1.01±0.05 6,005 3,320 1.01±0.05 1 1 1 1 

BMI (kg/𝑚2) 62 54 27.34±3.29 23,543 11,177 26.88±3.74 5,729 3,266 27.74±3.65 1 1 1 1 

Age (Years) 64 56 59.61±6.33 24,471 11,344 47.13±10.78 6,102 3,320 59.24±5.77 
< 

0.0001 

< 

0.0001 
1 1 
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Table 2. Characteristics of the PGC, PGC-free, and Matched PGC-free groups. 

Values are mean ± SD. MW: p-value of the Mann–Whitney test, T-test: p-value of the 

Student t-test. P-values are Bonferroni corrected for multiple hypotheses. DBP – diastolic 

blood pressure; SBP – systolic blood pressure; Temp – body temperature; BUN – blood 

urea nitrogen; GGT – gamma-glutamyl transferase; ALP – alkaline phosphatase; LDH – 

lactate dehydrogenase; Urine SG – urine specific gravity; Urine PH – PH stick for a urine 

test. 
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5. The TVsuRF Method 

5.1. Preliminaries 

Consider a dataset of 𝑁 subjects, where for each of them data from one or more visits were 

recorded. Subject 𝑖 had 𝑀𝑖 visits at times 𝑡1
𝑖 <  … < 𝑡

𝑀𝑖
𝑖  . The 𝑑 covariates measured at 

time 𝑡𝑗
𝑖 are denoted by the vector 𝑥𝑖(𝑡𝑗

𝑖) (For simplicity, we assume that all covariates were 

recorded in every visit). Note that covariates can be either time-dependent or time-

independent (static). Hence, 𝒳𝑖 = (𝑥𝑖 (𝑡1
𝑖 ), …, 𝑥𝑖 (𝑡𝑀𝑖

𝑖 )) summarizes the longitudinal data 

of subject 𝑖. The last time point subject 𝑖 was at risk, which can be either failure or censoring 

time, is 𝜏𝑖 > 𝑡
𝑀𝑖
𝑖 . 𝛿𝑖 ∈ {0,1} denotes if the subject experienced a censoring (𝛿𝑖 = 0) or 

failure event (𝛿𝑖 = 1) at time 𝜏𝑖. Hence, the full data can be summarized by the set of 

triplets 𝒟 = {(𝒳𝑖 ,  𝜏𝑖 , 𝛿𝑖)}
𝑖=1

𝑁
 (Supplementary Figure 2A). 𝒳𝑖(𝑡) denotes the data of 

subject 𝑖 that were measured until time 𝑡, i.e., 𝒳𝑖(𝑡) = {𝑥𝑖(𝑡𝑗
𝑖): 0 ≤ 𝑡𝑗

𝑖 ≤ 𝑡 } . We assume 

time homogeneity so that w.l.o.g. we can shift times per subject to set ∀𝑖: 𝑡1
𝑖 = 0, i.e., all 

first visits were at time 0 (Supplementary Figure 2B). We also assume that the age of the 

subject at each visit is one of the covariates.  

 

Our model aims to estimate the probability for being free of the failure event (the cancer 

diagnosis) at least until time 𝑡 based on the patient’s covariates at the latest visit before that 

time. That is, let 𝑡∗
𝑖 = max{𝑡𝑗

𝑖 < 𝑡|𝑗}. We wish to estimate the survival function:  

𝑆 (𝑡|𝑥𝑖(𝑡∗
𝑖)) = ℙ(𝜏𝑖 > 𝑡|𝑥𝑖(𝑡∗

𝑖), 𝜏𝑖 > 𝑡∗
𝑖)     

In order to model the time-dependent covariates, we transform the data following [33]. We 

split the data of each subject into disjoint intervals [𝑡𝑗
𝑖 , 𝑡𝑗+1

𝑖 ) and we assume that the 

covariates 𝑥𝑖(𝑡𝑗) are constant in the interval (Supplementary Figure 2C). In that manner, 

we consider 𝑡𝑗 as the left truncation time. If [𝑡𝑗
𝑖 , 𝑡𝑗+1

𝑖 ) is not the last interval of subject 𝑖 

then we view time 𝑡𝑗+1
𝑖  as censoring time. We denote the pseudo-object of the 𝑗𝑡ℎ interval 

of subject 𝑖 as [𝐿𝑗
𝑖 , 𝑅𝑗

𝑖) where: 
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𝐿𝑗
𝑖 = 𝑡𝑗

𝑖; 𝑅𝑗
𝑖 = {

tj+1
i      ,     if 1 ≤ j < Mi 

τi        ,     othetwise
; 𝛿𝑗

𝑖 = {
0     ,     if 1 ≤ j < Mi 

𝛿𝑖     ,     othetwise
 

 

Hence, the transformation is: 

(𝒳𝑖,  𝜏𝑖 , 𝛿𝑖) → {(𝑡1
𝑖 , 𝑡2

𝑖 , 𝛿1
𝑖 , 𝑥𝑖(𝑡1

𝑖 )) , (𝑡2
𝑖 , 𝑡3

𝑖 , 𝛿2
𝑖 , 𝑥𝑖(𝑡2

𝑖 )) , … , (𝑡
𝑀𝑖
𝑖 , 𝜏𝑖 , 𝛿𝑖, 𝑥𝑖(𝑡

𝑀𝑖
𝑖 ))}

≡ {(𝐿1
𝑖 , 𝑅1

𝑖 , 𝛿1
𝑖 , 𝑥𝑖(𝑡1

𝑖 )) , (𝐿2
𝑖 , 𝑅2

𝑖 , 𝛿2
𝑖 , 𝑥𝑖(𝑡2

𝑖 )) , … , (𝐿
𝑀𝑖
𝑖 , 𝑅

𝑀𝑖
𝑖 , 𝛿𝑖, 𝑥𝑖(𝑡

𝑀𝑖
𝑖 ))} 

 

Each pseudo-interval is therefore possibly left-truncated and/or censored.   

The standard Kaplan-Meier (KM) estimator of the survival function can now be 

generalized for left truncation right-censored (LTRC) data [32], as follows. Assume that 

there were 𝐷 failure events and they occurred at distinct times 𝑡1 < ⋯ < 𝑡𝐷. We denote by 

𝑌𝑗 the number of pseudo-objects at risk at time 𝑡𝑗, 𝑌𝑗 = ∑ ∑ 𝕀(𝐿𝑖
𝑘 ≤ 𝑡𝑗 ≤ 𝑅𝑖

𝑘)
𝑀𝑖
𝑘=1  𝑁

𝑖=1  i.e., the 

number of individuals who entered the study before time 𝑡𝑗 and did not experience a failure 

or censoring event until 𝑡𝑗. 𝑑𝑗 is defined as the number of patients that experienced a failure 

event at time 𝑡𝑗 and due to our prior assumption 𝑑𝑗 = 1. The KM estimator is defined as a 

step function with jumps at observed failure times: 

�̂�(𝑡) = {
1              ,     𝑖𝑓 𝑡1 > 𝑡

∏ [1 −
𝑑𝑗

𝑌𝑗
]𝑡𝑗≤𝑡 ,     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

The survival probability will be calculated in a step ahead prediction manner - we calculate 

the probability of a patient in time 𝑡 to experience failure in the next time window Δ𝑡 given 

its covariates at time 𝑡, namely ℙ (𝜏𝑖 < 𝑡 + Δ𝑡, 𝛿𝑖 = 1|𝜏𝑖 > 𝑡, 𝑥𝑖(𝑡)).  

5.2. Survival Tree Construction 

We now describe the construction of the survival tree for pseudo-objects data. For 

simplicity, we will just call them objects (Figure 7A). Suppose we have the set of samples 

along with their covariates as described above, and we wish to use the survival information 

to build a decision tree. We use the framework of conditional inference trees [44], a class 

of decision trees that employs a statistical hypothesis test based on permutations in order 

to select optimal variables and their thresholds. This process is different from common 
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decision tree construction (see Supplementary Material 3), which usually selects the 

variable that maximizes an information measure (e.g., Gini or entropy). 

A covariate and a threshold value at a node, split the node's samples into two subsets, and 

each subset induces a survival curve. To compare the survival curves of the two subsets we 

use Pan's permutations based hypothesis test [54], as suggested also in [37]. In every node, 

we test all possible covariates and thresholds, and the one that produces the split with the 

lowest p-value is selected. Notice that pseudo-objects created from the same subject can 

end in distinct sub-nodes.  

The hypothesis test is based on creating an influence function that maps an object's 

quadruplet (𝐿𝑖, 𝑅𝑖, 𝛿𝑖 , 𝑥𝑖) into a scalar 𝑈𝑖 which represents the contribution of sample 𝑖 to 

the test statistic. We assume that (𝑙𝑖, 𝑟𝑖) is the interval in which the true event lies, and 

denote its contribution to the statistic: 

𝑈𝑖 =  
�̂�(𝑙𝑖)𝑙𝑜𝑔 �̂�(𝑙𝑖)− �̂�(𝑟𝑖)𝑙𝑜𝑔 �̂�(𝑟𝑖)

�̂�(𝑙𝑖)−�̂�(𝑟𝑖)
−  𝑙𝑜𝑔 �̂�(𝐿𝑖)      

One can show that for failure event at time 𝑡 (𝛿𝑖 = 1)  

𝑈𝑖 = log (�̂�(𝑡)) + 1 

  

and for a right-censored observation at time 𝑡 (𝛿𝑖 = 0), assuming �̂�(∞) = 0 

 

𝑈𝑖 = log (�̂�(𝑡)) 

 

Now let 𝑈1, … , 𝑈𝑁 be the scores of the samples corresponding to the parent node, and 

suppose 𝑛 samples reside in the left child and 𝑁 − 𝑛 in the right. Write 𝑋 = ∑ 𝑈𝑗𝑙𝑒𝑓𝑡 . There 

are (𝑁
𝑛

) ways of choosing 𝑛 out of the 𝑁 scores and if 𝑘 of these have a sum ≤ 𝑋, then 

assuming all partitions are equi-probable, the probability of obtaining a score of 𝑋 is 

𝑃𝑣𝑎𝑙𝑢𝑒 =
𝑘

(𝑁
𝑛) 

. We estimate it using 1,000 permutations. 

The survival function �̂�𝑙(𝑡) for node 𝑙 is the Kaplan-Meier curve for the samples 

corresponding to that node. Let 𝐶𝑙 be the set on indices of samples in node 𝑙, then: 
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�̂�𝑙(𝑡) = ∏ (1 −
𝑑𝑙(𝑡𝑖)

𝑌𝑙(𝑡𝑖)
)

𝑖∈𝐶𝑙:𝑡𝑖≤𝑡

 

Where 𝑑𝑙(𝑡𝑖) is the number of failure events that occurred at time 𝑡𝑖 in node 𝑙 and 𝑌𝑙(𝑡𝑖) is 

the total number of objects at risk just before 𝑡𝑖 in node 𝑙 (Figure 7B, Figure 8). 

 

Figure 7: Model construction and evaluation. An illustration of the different parts of our 

model construction. [A] For each subject we transformed its data into pseudo-objects and 

change the time axis to time from first visit. [B] An illustration of single survival tree 

construction [C] Generating 500 survival trees. [D] The trees are combined into a single 

unified model. Risk score calculation per each sample is based on averaged survival curve. 
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Figure 8: Algorithm 1: BuildTree Algorithm. Algorithm 2: TVsuRF Algorithm. 

 

5.3. Ensemble Model 

We create 𝑀 = 500 survival trees. In each tree, at each internal node, we select at random 

𝐾 = √# 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 of the features and split the node according to the feature and threshold 

giving the least p-value for difference in survival, if that difference is significant (Figure 

8). The predicted survival curve for a new subject 𝜔 is based on the data in all the leaves 

that 𝜔 ended in all the trees. Let 𝐶(𝑙𝑖
𝑘) represent the set of indices of the subjects that are 

in the 𝑖𝑡ℎ leaf of the 𝑘𝑡ℎ tree and let 𝐶𝐹 =∪ {𝐶(𝑙𝑖
𝑘)| 𝜔 ∈ 𝑙𝑖

𝑘} be the multiset of all the 
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subjects in these leaves. If 𝑑𝑖(𝑡𝑖) is the number of failure events in 𝐶𝐹 at time 𝑡𝑖 and 𝑌𝑖(𝑡𝑖) 

is the number of objects in 𝐶𝐹 in risk at time 𝑡𝑖, then the survival function of 𝜔 is (Figure 

7C): 

�̂�(𝑡) = ∏ (1 −
𝑑𝑖(𝑡𝑖)

𝑌𝑖(𝑡𝑖)
)

𝑖∈{𝐶𝐹}:𝑡𝑖≤𝑡

 

Our model constructs a Kaplan-Meier curve per each subject, producing a continuous risk 

score (RS) over time. 

5.4. Variable Importance 

We assessed the importance of each covariate in our model in two ways. In the first, we 

counted the fraction of internal nodes in all the trees that were associated with the covariate 

(i.e. the covariate was used to split these nodes). We call this fraction Vprop; higher Vprop 

indicates more importance. In the second approach, for each object, we replaced the values 

of the covariate by random values sampled independently from its original distribution, 

while keeping the other covariates in their true values, and recomputed the performance 

with the new data. The difference in the area under the receiver-operator characteristic 

curve (AUROC) between the original and the modified data was computed and averaged 

over ten random assignments per each covariate on every fold of the 4-fold cross-validation 

[41]. We repeated this process 20 times and defined VIMP as the mean difference obtained. 

Again, higher VIMP indicates more importance.  

5.5. Comparison to BC Screening Tests 

For a subset of the TAMICS females, we had data concerning BC screening. 

Mammography was available for 6,526 women and Clinical Breast Exam (CBE) was 

available for 17,958. We excluded women with mutated BRCA genes, those who refused 

to conduct a CBE, lacked ID, had more than one record per visit, or were diagnosed with 

another type of cancer (see Supplementary Figure 4 for study design).  

The result of the mammography was provided in free text written by the physician and 

transformed by us into binary labels (normal/abnormal) by natural language processing of 

the physician's notes (see Supplementary Material 5 for details). The CBE result was 

available as free text written by a physician and four binary values that represent an 
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abnormal finding in the left/right breast or axilla. We considered the CBE result abnormal 

if one of the binary values was positive. In case that no values were reported, a breast 

cancer surgeon reviewed the physician's text and decided if there was a positive finding. 

We compared the recommendations of these screening tests to our predictions, in order to 

evaluate the added value of our approach. We binned the risk scores into deciles and the 

average risk score was calculated for each subject.  

5.6. Evaluation Approach 

We used TVsuRF and several other models to predict BC and PGC risk on our cohorts. If 

a subject's covariates were measured at time 𝑡, we aimed to predict cancer at time 𝑡 + Δ𝑡, 

for values of Δ𝑡 ranging between 183 and 730 days. Since there might be a delay between 

the cancer diagnosis time and the time it was reported to the cancer registry, we added 

𝜖 =31 days to Δ𝑡. The risk for patient 𝑖 is thus: 

𝑅𝑆𝑖(𝑡, Δ𝑡) = 1 −  �̂�(𝑡 + Δ𝑡 + 𝜖 | 𝑥𝑖(𝑡)) 

To evaluate the performance of this score for classification, we calculated AUROC, where 

the positive class is the set of individuals that were diagnosed with cancer during the next 

Δ𝑡 + 𝜖 days as suggested in [55] (but excluding patients censored in [𝑡, 𝑡 + Δ𝑡 + 𝜖]). We 

also estimated the area under the precision-recall (AUPR) curve.  

We performed 20 iterations of 4-fold cross-validation, where in each iteration the partition 

of patients into folds was done at random. For each of the above measures, we calculated 

the average and standard deviation.  

We compared our method to three others: (1) Cox regression model adapted to time-

varying covariates [38,39], (2) single LTRC survival tree as in [37] (denoted LTRCIT), 

and (3) RF model [42]. Since RF is a classification model, training for prediction was done 

separately for each time interval Δ𝑡, and the class of a subject was positive if the diagnosis 

of cancer occurred during the next Δ𝑡 + 𝜖 days, and negative otherwise. We used 500 trees, 

and the Gini index as a splitting rule, with the rest of the parameters at the default values 

in the ranger package [56] (Figure 7D).  
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In addition, we compared our method to a RSF model that predicts a survival curve per 

sample. Since RSF was originally designed for handling time-independent covariates, we 

adapted it to our setting.  
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6. Results 

 

6.1. Breast Cancer 

Dataset: Our cohort contained data on 6,424 women with a total of 11,831 visits to 

TAMICS. Out of those, 77 were diagnosed with breast cancer and had one or more visits 

less than 730 days before the diagnosis date (90 visits in total). These constituted the 

positive (BC) group. The covariates that were included in the model were CBC (18 

parameters), age, and BMI. The statistics of these values are summarized in Table 1. 

 

Women in the positive group were significantly older on average than in the BC-free group 

and had significantly lower levels of mean corpuscular hemoglobin concentration 

(MCHC). To reduce the effect of age on our model, we created an age-matched cohort 

(‘Matched BC-Free’) using the approach of [57] (3,635 subjects, 5,884 visits). When 

comparing the BC and the Matched BC-free group (Table 1) none of the parameters was 

significantly different between the groups. 

 

Prediction accuracy: The performance of each of the methods tested, for different time 

ranges, is summarized in Figures 9A and 9B. We also marked the AUROC of Gail’s breast 

cancer risk estimation for 5 years horizon as reported in [58]. TVsuRF had the highest 

AUPR on every time interval, and the highest AUROC on all intervals except one (though 

differences were not statistically significant) for 730 days, where Gail’s score was best. We 

also tested two versions of RSF and our model was better for time windows until 273 days 

in terms of AUPR and AUROC (Supplementary Figure 6).  
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Figure 9: BC risk prediction and variable importance. [A] Performance (AUROC 

mean±SD) of five prediction models for different time intervals. The grey dashed line 

represents the (time-independent) AUROC reported for Gail’s Risk factor model [13]. [B] 

AUPR. The numbers below the x-axis labels are the average number of BC patients that 

were available across the cross-validation folds for each time interval. [C] Variable 

importance for model prediction in a 183-day window. Points indicate the different 

variables. The y-axis presents VIMP, the decrease in AUROC following random 

assignment of values to the variable. The x-axis plots Vprop, the variable's inclusion 

frequency in the trees of the model. For both measures, higher values indicate more 

importance. The color of a point represents the category of the parameter. Features of low 

importance (Vprop <0.05 and VIMP<0.5) are not shown. 

 

Variable importance: Figure 9C summarizes the importance of variables in TVsuRF BC 

risk prediction model for a time window of 183 days. The most important variables in the 

TVsuRF model were mean corpuscular volume (MCV), monocytes (MONO), mean 

platelet volume (MPV), mean corpuscular hemoglobin concentration (MCHC), and age. 
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The importance of immune system-related covariates such as MONO might correlate to 

the fact BC is an inflammatory and systemic disease. 

 

Comparison to mammography and CBE: For every woman who underwent 

mammography or CBE in her checkup visits, we compared the results of the 730-day 

predictor, computed using data only from her latest visit. CBE had 29.1% sensitivity and 

93.7% specificity, while TVsuRF had 12.5% sensitivity for the same specificity. 

Mammography sensitivity and specificity were 58.3% and 66.1%, and TVsuRF had 41.7% 

sensitivity for similar specificity (Note that the results are not directly comparable, as 

mammography and CBE identify current malignancy and TVsuRF computes future disease 

risk). The results in Supplementary Figure 7 show the three predictions for women that 

were subsequently diagnosed with BC. Remarkably, the three women with the highest risk 

score estimated by our model were not detected by CBE, and one of them tested negative 

in mammography as well. In contrast, some of the women had lower risk scores but were 

detected by other screening tests.  

 

6.2. Prostate Gland Cancer 

Dataset: This cohort consisted of 11,416 males who made a total of 24,567 visits to 

TAMICS. Out of them 56 were subsequently diagnosed with PGC and had 64 visits less 

than 730 days before the PGC diagnosis. We call this group the PGC subset. The covariates 

included in the model were CBC (20 parameters), basic metabolic panel data (BMP, 16 

parameters), lipids (4 parameters), vital signs (5 parameters), urine tests (2 parameters), 

troponin, age and BMI. The characteristics of the covariates are summarized in Table 2. 

Since PGC individuals were significantly older than the PGC-free individuals, to reduce 

the effect of age on our model, we created an age-matched cohort (‘Matched PGC-Free’) 

of 3,320 subjects (6,083 visits) using the approach of [57] (Table 2). None of the covariates 

showed significant difference between the PGC and the Matched PGC-Free groups. 

 

Prediction accuracy: Figures 10A and 10B show the results of five prediction methods, 

using the same comparison metrics as in the BC section. Our model had the highest 

AUROC in prediction window of 0-183 days and similar performance for intermediate size 
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time windows. For windows of 547 days and longer, RF had the highest AUROC. In terms 

of AUPR, our model performed best in until 547 days and the advantage was significant in 

the windows of up to 273 days. When testing variants of RSF, TVsuRF had better 

performance on the prediction windows of 0-183 days, but less for longer time windows 

(Supplementary Figure 8). 

 

 

 

Figure 10: PGC risk prediction and variable importance. [A] Performance (AUROC 

mean±SD) of five prediction models for different time windows. The grey dashed line 

represents the (time-independent) AUROC previously reported for the PCPTRC model. 

[B] AUPR. The numbers below the x-axis labels are the average number of individuals 

with PGC that were available across the cross-validation folds for each time interval. [C] 

Variable importance for model prediction in a 183 day window. Points indicate the 

different variables. Axis definitions are as in Figure 9. The color of a point represents the 

variable's category. Features of low importance (Vprop <0.025 and VIMP<1.5) are not 

shown. 
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Variable importance: Figure 10C summarizes the importance of the variables used by 

TVsuRF in PGC risk prediction, for the 183-day window. The covariates alkaline 

phosphatase (ALP), low-density lipoprotein (LDL), age, calcium, and glucose had the 

largest impact on the model. Most of the lipids that were measured - LDL, high-density 

lipoprotein (HDL), cholesterol and triglycerides - had high importance risk according to at 

least one criterion, in agreement with previous reports [59]. 
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7. Discussion 

In this article, we introduced a method for survival prediction based on time-varying 

covariates utilizing an ensemble of survival trees, and applied it for predicting future 

emergence of breast and prostate cancer. Our method outperformed traditional prediction 

methods in breast cancer and for short-term prediction also in prostate cancer. While 

traditional survival analysis methods use prior assumptions concerning the distribution of 

the data [60], our method relies only on the proportional-hazard assumption. 

 

Our work has several limitations. First, we do not directly address the issue of size 

imbalance between the negative (here, the majority) and positive classes. That could affect 

the splitting criteria and produce nodes with a small number of samples or nodes without 

failure events, especially in datasets with high-dimensional feature space. Methods such as 

synthetic minority sampling might address this point [61]. Second, since our dataset did 

not record the existing clinical models for cancer risk (Gail’s model for BC, and PCRTRC 

model for PGC), we could not compare performance to them on individual patients in our 

cohort. Incorporating them as additional features in our models may improve prediction. 

Third, the small number of visits per patient did not allow us to incorporate into the model 

time-related features, as suggested, e.g., in [30,62] engineered features that capture 

interactions [63], or to model per-patient random effects across pseudo-intervals. Other 

model extensions such as competing risks (e.g. death) and accounting for cardiovascular 

background were not possible for lack of data. Moreover, the limited cohort size made it 

difficult to evaluate the calibration of our model. 

 

Future work should examine different imputation methods, as those might affect the 

performance of classifiers when modeling EMR data [64], and investigate sequential 

models that incorporate the full history in predicting the personalized survival curve [65]. 

In addition, ‘out-of-bag’ approaches may improve the evaluation of the prediction, as 

previously suggested [66]. Moreover, the robustness of the approach is yet to be 

demonstrated on EMR data from other medical centers. Predictions for additional types of 

cancers should also be tested, given sufficient data. Finally, a prospective clinical study 

would provide a more accurate evaluation of the performance.  
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In conclusion, our models demonstrate the potential of using common laboratory tests of 

healthy individuals to assess cancer risk. They can serve as additional screening tests and 

complement the existing BC screening methods. 
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9. Supplementary Material 

 

 

Supplementary Figure 1: Number of patients per cancer type. 

Bar plot of the number of individuals who were surveyed in TAMICS and later diagnosed 

with cancer, categorized by gender and type of cancer. 

 

 

 

10.  

Supplementary Figure 2: Presenting longitudinal data of multiple visits.  

[A] Longitudinal measurements and survival analysis setting. Squares indicate the times of 

the longitudinal measurements, Crosses indicate failure events, and circles indicate 
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censoring events. [B] The data after shifting all first visit times to 0. [C] The same data 

after transforming into pseudo-objects. 

 

Supplementary Material 3: Decision tree basics 

Binary trees: 

A rooted tree 𝑇 is a connected acyclic graph with a designated node 𝑟 called the root. Other 

nodes of degree 1 are called leaves. In such a tree there is a single simple path from 𝑟 to 

every node and the number of edges in the path is the depth of the node. If there exists a 

simple path from 𝑟 to 𝑣 that passes through 𝑢 then 𝑢 is called an ancestor of 𝑣. If also 

(𝑢, 𝑣) is an edge then 𝑢 is the father of 𝑣 and 𝑣 is child of 𝑢. If every non-leaf has two 

children then 𝑇 is called a binary tree. 

Decision trees: 

A binary rooted tree can be used as a decision tree for classification as follows: Each 

internal (non-leaf) node is associated with a certain covariate and a threshold value. 

Samples with the covariate value above the threshold are assigned to the right child, and 

the rest are assigned to the left. This way, a sample starts at the root and descends left or 

right depending on the corresponding covariate values until it is associated with a leaf. If 

leaves are assigned with a class label (e.g. case/control), the tree assigns a class for the 

sample. Similarly, a set of samples can be partitioned into disjoint subsets corresponding 

to the leaves. Note that in our case the samples are the LTRC pseudo-intervals. 
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Supplementary Figure 4: The CBE and mammography cohorts. Effect of exclusion 

criteria on the members of the TAMICS cohort who conducted a mammography screening 

test for BC and CBE. 

 

Supplementary Material 5: Cohort of subjects with CBE and Mammography tests. 

We removed all the visits that occurred less than 31 days after the previous one. We 

excluded all subjects with two or more types of cancer unless the only other type was skin 

cancer. In case of more than one BC diagnosis we considered only the first one. 

We used natural language processing to classify each subject who was recommended to 

conduct any BC-related follow-up test as positive (abnormal mammography). The 

extraction of the recommendation from the physician's notes was done using a pattern 

detection script. All phrases after an action verb, such as ‘is required’; ‘recommend’; were 

extracted and a dictionary of words that indicate BC follow-up test (ultrasound, biopsy, 

trucut etc.) was created. We manually reviewed the mammography results and added more 
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action verbs and recommendations in several iterations. Finally, we randomly sampled and 

manually reviewed 100 cases to confirm the efficacy of our pattern recognition script.  

 

 

 

Supplementary Figure 6: BC risk prediction – comparison of TVsuRF to random 

survival forest. Two versions of RSF were applied: Each Visit: All pseudo-intervals were 

used. First Visit: Every visit creates an interval starting at the visit time and ending at the 

time of failure or censoring of the subject. In the two versions, all pseudo-intervals were 

linearly shifted to start at time t=0 since the RSF models are time-independent. The 
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numbers below the x-axis labels are the average number of BC patients that were available 

across the cross-validation folds for each time interval. 

 

 

Supplementary Figure 7: TVsuRF risk score and BC screening tests results for 

women who subsequently were diagnosed with BC. Green: a normal result; Red: an 

abnormal test; Grey: test unavailable. 1s line: CBE result; 2nd line: mammography result; 

3rd line: the risk score calculated by the TVsuRF model. Patients were ordered from high 

(dark blue) to low (light blue) risk score. 4th line: time from visit to cancer diagnosis. 
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Supplementary Figure 8: PGC risk prediction – comparison of TVsuRF to random 

survival forest. The same two RSF variants in SFig. 6 were used. The grey dashed line 

represents the (time-independent) AUROC previously reported for the PCPTRC model. 
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 תקציר 

בריאה ע"י ניתוח בדיקות מעבדה רוטיניות,  בקרב אוכלוסיהערמונית : לנבא סיכון לסרטן שד וסרטן מטרות

 מדדים חיוניים וגיל.

אנשים בריאים אשר עברו בדיקות תקופתיות  20,317ניתחנו רשומות רפואיות אלקטרונית של שיטות: 

ו את האנשים ינפרמטרים. בעזרת רשם הסרטן הישראלי, זיה 600-נאספו יותר מכזו בכל בדיקה . שגרתיות

. המודל זמן-מימדי ותלוי-מתבסס על מידע רבה ,ניבוי הסיכוןלהבדיקה. פיתחנו מודל  סרטן לאחרבאשר חלו 

מבוסס על שיטת אלגוריתם הו עבור נתונים שמצונזרים מימין וקטומים משמאלבעצי הישרדות  משתמש

Random Forest. 

ניבוי ב  AUROC 0.62±0.05תוצאות של השיגה השיטה שפיתחנו  cross-validationבמבחני תוצאות: 

. ממועד הבדיקה שישה חודשיםלאירוע שיתרחש תוך  ,שדבניבוי סרטן  0.6±0.03 -והסיכון לסרטן ערמונית 

 Randomואלגוריתם  Coxהביצועים הללו היו טובים יותר מביצועים של עץ הישרדות בודד, רגרסיית 

Forest ממוגרפיה, בדיקת מישוש  משלימה לבדיקות הסקר הקיימות. להערכתנו, השיטה שלנו עשויה להיות(

 ללו.הע"י הבדיקות לא זוהו שד( ולסייע בזיהוי של פציינטים אשר 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

 

 
 

 אוניברסיטת תל אביב

 הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

 בית הספר למדעי המחשב ע"ש בלווטניק

 

סקר נתוני בדיקות  בסיס לוערמונית עזיהוי מוקדם של סיכון לסרטן שד 

 עצי הישרדות מותאמים לנתונים מצונזרים מימין וקטומים משמאל בעזרת 

 

 חיבור זה הוגש כעבודת גמר לתואר 'מוסמך אוניברסיטה' 

 על ידי בבית הספר למדעי המחשב

 דן קוסטר

 

 בהנחיית

 פרופ' רון שמיר

 שבט תשפ"א


