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DOMINO: a network-based active module
identification algorithm with reduced rate of false
calls
Hagai Levi1, Ran Elkon2,3,† & Ron Shamir1,*,†

Abstract

Algorithms for active module identification (AMI) are central to
analysis of omics data. Such algorithms receive a gene network
and nodes’ activity scores as input and report subnetworks that
show significant over-representation of accrued activity signal
(“active modules”), thus representing biological processes that
presumably play key roles in the analyzed conditions. Here, we
systematically evaluated six popular AMI methods on gene expres-
sion and GWAS data. We observed that GO terms enriched in
modules detected on the real data were often also enriched on
modules found on randomly permuted data. This indicated that
AMI methods frequently report modules that are not specific to
the biological context measured by the analyzed omics dataset. To
tackle this bias, we designed a permutation-based method that
empirically evaluates GO terms reported by AMI methods. We used
the method to fashion five novel AMI performance criteria. Last,
we developed DOMINO, a novel AMI algorithm, that outperformed
the other six algorithms in extensive testing on GE and GWAS data.
Software is available at https://github.com/Shamir-Lab.
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Introduction

The maturation of high-throughput technologies has led to an

unprecedented abundance of omics studies. With the ever-increas-

ing volume of publicly available genomic, transcriptomic, and

proteomic data (Perez-Riverol et al, 2019), it remains a challenge to

uncover biological and biomedical insights out of it. As data accu-

mulated over the last two decades strongly indicate that the func-

tional organization of the cell is fundamentally modular, a leading

approach to this challenge relies on biological networks, simpli-

fied yet solid mathematical abstractions of complex intra-cellular

systems. In these networks, each node represents a cellular subunit

(e.g., a gene or its protein product) and each edge represents a rela-

tionship between two subunits (e.g., a physical interaction between

two proteins) (reviewed in (McGillivray et al, 2018)). A biological

module is described as a connected subnetwork of—molecules that

take part in a common biological process. As such, modules are

regarded as functional building blocks of the cell (Hartwell et al,

1999; Alon, 2003; Barab�asi & Oltvai, 2004).

The challenge of identifying modules in biological networks,

frequently referred to as network-based module identification or

community detection, has yielded many computational methods (for

a recent comparative study see (Choobdar et al, 2019)), and success-

fully identified molecular machineries that perform basic biological

functions and underlie pathological phenotypes (Ideker & Sharan,

2008; Barab�asi et al, 2011). However, such analysis is limited as it is

based on a static snapshot of an abstract universal cell provided by

the network, while the state of the cell greatly varies under different

physiological conditions. One very powerful way to overcome this

limitation is by integrating the analysis of omics data and biological

networks. This approach overlays molecular profiles (e.g., transcrip-

tomic, genomic, proteomic, or epigenomic profiles) on the network,

by scoring nodes or weighting edges. This additional layer of condi-

tion-specific information is then used to detect modules that are

relevant to the analyzed molecular profile (Mitra et al, 2013). A

prominent class of such algorithms seek subnetworks that show a

marked over-representation of accrued node scores (Ideker et al,

2002; Mitra et al, 2013; preprint: Reyna et al, 2020). Modules

detected by such methods are often called “active modules,” and

following this terminology we refer to nodes’ scores as “activity

scores” and to the task of detecting active modules using such scores

as Active Module Identification (AMI). (The task is sometimes called

community detection with node attributes (Yang et al, 2014)). Here-

after, for brevity, where clear from the context, we refer to active

modules reported by AMI methods simply as modules.

Modules detected by AMI algorithms are expected to capture

context-specific molecular processes that correlate with the specific
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cellular state or phenotype that is probed by the analyzed omics pro-

file (Mitra et al, 2013). Different AMI methods use different scoring

metrics, objective functions, and constraints. For example, activity

scores may be binary or continuous, the objective function could

penalize for including low-scoring nodes, and constraints can limit

the number of “non-active” nodes in a module. While the metrics

by which modules are scored may differ from one method to

another, the activity scores are always derived from the data (e.g.,

log2(fold–change of expression) for transcriptomic data). As the

AMI problem has been proven to be NP-hard (Ideker et al, 2002),

many heuristics were suggested for solving it (Mitra et al, 2013;

Creixell et al, 2015).

Solutions reported by AMI methods comprise a set of active

modules. A common downstream analysis is to ascribe each module

some biological annotations that will point to the biological

processes that it affects (Cerami et al, 2010; Leiserson et al, 2015;

Barel & Herwig, 2018). This is most commonly done by testing

enrichment of the modules for GO terms (The Gene Ontology

Consortium, 2019). AMI solutions would ideally break down

complex biological states into distinct functional modules, each

mediating one or several highly related biological processes. For

example, biological responses to genotoxic stress often comprise the

concurrent activation and repression of multiple biological

processes (e.g., DNA repair, cell-cycle arrest, apoptosis), each medi-

ated by a single or a few dedicated signaling pathways (Ashcroft

et al, 2000; Kyriakis & Avruch, 2012).

Another key advantage of AMI methods is the amplification of

weak signals, where a reported active module comprises multiple

nodes that individually have only marginal scores, but when consid-

ered in aggregate score significantly higher. This merit of AMI meth-

ods is especially critical for the functional interpretation of Genome-

Wide Association Studies (GWASs) (Carter et al, 2013; Cowen et al,

2017). Numerous GWASs conducted over the last decade have

demonstrated that the genetic component of complex diseases is

highly polygenic (Khera et al, 2018; Musunuru & Kathiresan, 2019;

Sullivan & Geschwind, 2019), affected by hundreds or thousands of

genetic variants, the vast majority of which have only a very subtle

effect. Therefore, most "risk SNPs" do not pass statistical signifi-

cance when tested individually after correcting for multiple testing

(Stringer et al, 2011; Boyle et al, 2017). This stresses the need for

computational methods that consider multiple genetic elements

together, to allow detection of biological pathways that carry high

association signal. As a first step in this challenge, gene-level scores

are inferred from the scores of the genetic variants that map to the

same gene (de Leeuw et al, 2015; Lamparter et al, 2016). These gene

scores then serve as activity scores by AMI methods for integrated

analysis of GWAS data and biological networks. Recently, such

analyses successfully elucidated novel process that are implicated in

the pathogenesis of inflammatory bowel disease, Schizophrenia,

and Type-2 diabetes (Chang et al, 2015; Nakka et al, 2016;

Fern�andez-Tajes et al, 2019).

In this study, we first aimed to systematically evaluate popular

AMI algorithms across multiple gene expression (GE) and GWAS

datasets based on enrichment of the called modules for GO terms.

Remarkably, our analysis revealed that AMI algorithms often

reported modules that showed enrichment for a high number of GO

terms even when run on permuted datasets. Moreover, some of the

GO terms that were often enriched on permuted datasets were also

enriched on the original dataset, indicating that AMI solutions

frequently include modules that are not specific to the biological

context measured by the analyzed omics dataset. To tackle this bias,

we designed a procedure for validating the functional analysis of

AMI solutions by comparing them to null distributions obtained on

permuted datasets. We used the empirically validated set of GO

terms to define novel metrics for evaluation of AMI algorithm

results. Finally, we developed DOMINO (Discovery of active

Modules In Networks using Omics)—a novel AMI method and

showed its advantage in comparison it to the previously developed

algorithms.

Results

AMI algorithms suffer from a high rate of non-specific GO
term enrichments

We set out to evaluate the performance of leading AMI algorithms.

Our analysis included six algorithms—jActiveModules (Ideker et al,

2002) in two strategies: greedy and simulated annealing (abbrevi-

ated jAM_greedy and jAM_SA, respectively), BioNet (Beisser et al,

2010), HotNet2 (Leiserson et al, 2015), NetBox (Cerami et al, 2010),

and KeyPathwayMiner (Baumbach et al, 2012) (abbreviated KPM).

These algorithms were chosen based on their popularity, computa-

tional methodology, and diversity of original application (e.g., gene

expression data, somatic mutations) (Appendix Table S1). As we

wished to test these algorithms extensively, we focused on those

that had a working tool/codebase that can be executed in a stand-

alone manner, have reasonable runtime, and could be applied to dif-

ferent omics data types. Details on the execution procedure of each

algorithm are available in the Appendix. We applied these algo-

rithms to two types of data: (1) a set of ten gene expression (GE)

datasets of diverse biological physiologies (Appendix Table S2)

where gene activity scores correspond to differential expression

between test and control conditions, and (2) a set of ten GWAS data-

sets of diverse pathological conditions (Appendix Table S3) where

gene activity scores correspond to genetic association with the trait

(Methods). Note that for uniformity, we use the term activity also

for the GWAS scores. In our analyses, we mainly used the Database

of Interacting Proteins (DIP; (Xenarios et al, 2002)) as the underly-

ing global network. Although the DIP network is relatively small—
comprising about 3000 nodes and 5000 edges, in a recent bench-

mark analysis (Huang et al, 2018), it got the best normalized score

on recovering literature-curated disease gene sets, making it ideal

for multiple systematic executions.

First, applying the algorithms to the GE and GWAS datasets we

observed that their solutions showed high variability in the number

and size of active modules they detected (Appendix Fig S1 and

Appendix Fig S2). On the GE datasets, jAM_SA tended to report a

small number of very large modules while HotNet2 usually reported

a high number of small modules (Appendix Fig S1). jAM_SA

showed the same tendency for reporting large modules also on the

GWAS datasets (Appendix Fig S2). Next, to functionally character-

ize the solutions obtained by the algorithms, we tested the modules

for enriched GO terms using the hypergeometric (HG) test with the

genes in the entire network as the background set. Specifically, we

used GO terms from the Biological Process (BP) ontology, using

2 of 16 Molecular Systems Biology 17: e9593 | 2021 ª 2021 The Authors

Molecular Systems Biology Hagai Levi et al



only terms with 5-500 genes. To avoid potential bias caused by the

underlying network and datasets, we excluded from each GO class

genes that were included in it based on physical interaction, expres-

sion pattern, genetic interaction, or mutant phenotype (GO evidence

codes: IPI, IEP, IGI, IMP, HMP, HGI, and HEP). Next, as part of our

evaluation analysis, we applied the algorithms also on random data-

sets generated by permuting the original gene activity scores

uniformly at random. Notably, we observed that modules detected

on the permuted datasets, too, were frequently enriched for GO

terms (Fig 1A) Moreover, different algorithms showed varying

degree of overlap between the enriched terms obtained on real and

permuted datasets (Fig 1B). These findings imply that many terms

reported by AMI algorithms do not stem from the specific biological

condition that was assayed in each dataset, but rather from other

non-specific factors that bias the solution, such as the structure of

the network, the methodology of the algorithm, and the distribution

of the activity scores.

A permutation-based method for filtering false GO terms

The high overlap between sets of enriched GO terms obtained on

real and permuted datasets indicates that the results of most AMI

algorithms tested are highly susceptible to false calls that might lead

to functional misinterpretation of the analyzed omics data. We

looked for a way to filter out such non-specific terms while preserv-

ing the ones that are biologically meaningful in the context of the

analyzed dataset. For this purpose, we developed a procedure

called the EMpirical Pipeline (EMP). It works as follows: Given an

AMI algorithm and a dataset, EMP permutes genes’ activity scores

in the dataset and executes the algorithm. For each module reported

by the algorithm, it performs GO enrichment analysis. The overall

reported enrichment score for each GO term is its maximal score

over all the solution’s modules (Fig 2A). The process is repeated

many times (typically, in our analysis, 5,000 times), generating a

background distribution per GO term (Fig 2B). Next, the algorithm

and the enrichment analysis are run on the real (i.e., non-

permuted) dataset (Fig 2C). Denoting the background CDF obtained

for GO term t by Ft, the empirical significance of t with enrichment

score s is e(t) = 1–Ft(s). EMP reports only terms t that passed the

HG test (q-value ≤ 0.05 on the original data) and had empirical

significance e(t) ≤ 0.05 (Fig 2D). We call such terms empirically

validated GO terms (EV terms). In addition, for each AMI algorithm

solution, we define the Empirical-to-Hypergeometric Ratio (EHR) as

the fraction of EV terms out of the GO terms that passed the HG test

(Fig 2E and F).

The DOMINO algorithm

Our results demonstrated that popular AMI algorithms often suffer

from high rates of false GO terms. While the EMP method is a potent

way for filtering out non-specific GO term calls from AMI solutions,

this procedure is computationally demanding, as it requires several

thousands of permutation runs. In our analyses, using a 44-cores

server, EMP runs typically took several days to complete, depending

on the algorithm and the dataset. Seeking a more frugal alternative

that can be used on a desktop computer, we developed a novel AMI

algorithm called DOMINO (Discovery of active Modules In Networks

using Omics), with the goal of producing highly confident active

modules characterized by high validation rate (that is, high EHR

values).

DOMINO receives as input a set of genes flagged as the active

genes in a dataset (e.g., the set of genes that in the analyzed tran-

scriptomic dataset passed a test for differential expression) and a

network of gene interactions, aiming to find disjoint connected

subnetworks in which the active genes are over-represented.

DOMINO has four main steps:

0 Partition the network into disjoint, highly connected subnet-

works (slices).

1 Detect relevant slices where active genes are over-represented

2 For each relevant slice S

a. Refine S to a sub-slice S’

b. Repartition S’ into putative modules

3 Report as final modules those that are over-represented by

active genes.

Step 0—Partitioning the network into slices
This time-consuming preprocessing step is done once per network

(and reused for any analyzed dataset). In this step, the network is

split into disjoint subnetworks called slices. Splitting is done using a

variant of the Louvain modularity algorithm (Blondel et al, 2008)

(Methods). Each connected component in the final network that has

more than three nodes is defined as a slice (Fig 3A).

Step 1—Detecting relevant slices
Each slice that contains more active nodes than a certain threshold

(see Methods) is tested for active nodes over-representation using

the hypergeometric (HG) test, correcting the P-values for multiple

testing using FDR (Benjamini & Hochberg, 1995). In this initial step,

we use a lenient threshold of q-values < 0.3 to accept a slice as a

relevant one (Fig 3B).

Step 2a—Refining the relevant slices into sub-slices
From each slice, the algorithm extracts a single connected compo-

nent that captures most of the activity signal. The single component

is obtained by solving the Prize Collecting Steiner Tree (PCST) prob-

lem (Johnson et al, 2000) (Methods). The resulting subgraph is

called a sub-slice (Fig 3C).

Step 2b—Partitioning sub-slices into putative active modules
Each sub-slice that is not over-represented by active nodes and

has more than 10 nodes is partitioned using the Newman–Girvan
algorithm (Methods). The resulting parts, as well as all the sub-

slices from step 2a of ≤ 10 nodes, are called putative active

modules (Fig 3D).

Step 3—Identifying the final set of active modules
Each putative active module is tested for over-representation of

active nodes using the HG test. In this step, we correct for multiple

testing using the more stringent Bonferroni correction. Those with

q-value < 0.05 are reported as the final active modules (Fig 3E).

Systematic evaluation of AMI algorithms on gene expression and
GWAS datasets

We next carried out a comparative evaluation of DOMINO, and the

six AMI algorithms described above over the same ten GE and ten
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A

B

Figure 1. Comparison between GO enrichment results derived by AMI algorithms from original and permuted activity scores.

A Comparison of GO enrichment results obtained on the original CBX GE dataset and on one random permutation of the original gene activity scores of this dataset.
The histograms show the distributions of GO enrichment scores obtained for the modules detected on the original and permuted datasets. The Venn diagrams show
the overlap between the GO terms detected in the two solutions.

B Comparison of GO terms reported on the original and permuted datasets. We used 1-Jaccard score to measure the dissimilarity between the GO terms detected on
the two datasets. Values closer to 1 indicate low similarity (that is, lower bias). Each bar shows, per algorithm, this measure on the ten datasets, averaged over 100
random permutations. Datasets are ordered from left to right as in Appendix Tables S2 and S3. Dashed lines show the median score.
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A B

C D

E F

Figure 2. Overview of the EMpirical Pipeline (EMP) procedure.

A The AMI algorithm and the GO enrichment analysis are applied on multiple (typically, n = 5,000) permuted activity scores.
B A null distribution of enrichment scores (-log10(pval)) is produced per GO term.
C The AMI algorithm is applied to the original (un-permuted) activity scores, to calculate the real GO enrichment scores.
D For each GO term, the real enrichment score is compared to its corresponding empirical null distribution to derive an empirical score. In this example, GO_3 passed

the HG test, but failed the empirical test and thus was filtered out.
E, F Distributions of HG enrichment scores for all the GO terms that passed the HG test and for the subset of the EV terms obtained on the SHEZH GE dataset by

jActiveModules with greedy strategy (E) and NetBox (F). EHR measures the ratio between the number of EV terms and the number of GO terms that passed the HG
test. The high EHR obtained by NetBox (close to 1.0) demonstrates the advantage of this algorithm in avoiding false terms.
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GWAS datasets. This evaluation task is challenging as there are no

“gold-standard” solutions to benchmark against. To address this dif-

ficulty, we introduce five novel scores as evaluation criteria of AMI

algorithms. These scores are based on the EMP method and the GO

terms that pass this empirical validation procedure. The scores are

described in Methods, and the results on all algorithms are summa-

rized in Figs 4–6.

EHR (Empirical-to-Hypergeometric Ratio)
EHR summarizes the tendency of an AMI algorithm to capture biologi-

cal signals that are specific to the analyzed omics dataset, i.e., GO terms

that are enriched in modules found on the real but not on permuted

data. EHR has values between 0 and 1, with higher values indicating

better performance. In our evaluation, DOMINO and NetBox scored

highest on EHR. In both GE and GWAS datasets, DOMINO performed

A B

C

E

D

Figure 3. Schematic illustration of DOMINO.

A The global network is partitioned by the Louvain modularity algorithm into slices (encompassed in purple line).
B A slice is considered relevant if it passes a moderate HG test for enrichment for active nodes (FDR q ≤ 0.3).
C For each relevant slice the most active sub-slice is identified using PCST (red areas).
D Sub-slices are further partitioned into putative active modules using the Newman–Girvan (NG) modularity algorithm.
E Each putative active module that passes a strict over-representation test for active nodes (Bonferroni qval ≤ 0.05) is included in the final solution.
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best with an average above 0.8. (Fig 4A and B). Importantly, these high

EHR levels were not a result of reporting low number of terms:

DOMINO reported on average more enriched GO terms than the other

algorithms, except NetBox on GE datasets (Fig 4C and D).

Module-level EHR (mEHR)
While the EHR characterizes a solution as a whole by considering

the union of GO terms enriched on any module, biological insights

are often obtained by functionally characterizing each module

A

C D

B

Figure 4. EHR and number of reported terms.

A Average EHR for the GE datasets.
B Average EHR for the GWAS datasets.
C The number of EV terms reported for the GE datasets.
D The number of EV terms reported for the GWAS datasets.

Data information: The gray dots indicate results for each dataset (n = 10, each representing a different biological condition). Error bars indicate SD across datasets.
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individually. We therefore next evaluated the EHR of each module

separately. Specifically, for each module, we calculated the fraction

of its EV terms out of the HG terms detected on it (Methods).

Modules with high mEHR score are the biologically most relevant

ones, in the context of the analyzed omics dataset, while modules

with low mEHR mostly capture non-specific signals. The compar-

ison between mEHR scores obtained by the different AMI algorithms

is summarized in Fig 5A. Notably, solutions can have a broad range

of mEHR scores (for example, in NetBox solution on the IEM

dataset, the best module has mEHR = 0.78 while the poorest has

mEHR = 0). To summarize the results over multiple modules, we

averaged the k top scoring modules (from k = 1 to 20; Fig 6A). In

this criterion, DOMINO scored highest, followed by NetBox. The

results for GWAS datasets are shown in Figs EV1 and EV2A.

A B

Figure 5. AMI algorithms evaluated by the module-level EHR (mEHR) criterion on GE datasets.

A mEHR scores for each algorithm and dataset. Up to ten top modules are shown per dataset, ranked by their mEHR. Dot size represents module’s size. The EHR
column in green shows the number of EV terms and the number of significant terms found.

B An example of a module from the solution reported by NetBox on the ROR dataset (mEHR = 0.88). The nodes’ color indicates expression fold change (log scale) in the
dataset. The black nodes are the network neighbors of the module’s nodes. Nodes with purple border have significant activity scores (that is, significant differential
expression; qval < 0.05). The EV terms for this module are shown in red and those that did not pass the empirical validation in blue.
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Figure 6.
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Furthermore, the EMP procedure enhances the functional inter-

pretation of each module by distinguishing between its enriched GO

terms that are specific to the real data (i.e., the EV terms) and those

that are recurrently enriched also on permuted ones. This utility of

EMP is demonstrated, as one example, on a module detected by

NetBox on the ROR GE dataset (Fig 5B). This study examined roles

of the ROR2 receptor in breast cancer progression, and the GO terms

that passed EMP validation are highly relevant for this process (e.g.,

GO terms related to steroid hormone-mediated signaling pathways).

In contrast, GO terms that failed passing this validation procedure

represent less specific processes (e.g., “DNA-templated transcrip-

tion, initiation”).

Biological richness
This criterion aims to measure the diversity of biological processes

captured by a solution. Our underlying assumption here is that

biological systems are complex and their responses to triggers typi-

cally involve the concurrent modulation of multiple biological

processes. For example, genotoxic stress concurrently activates

DNA damage repair mechanisms and apoptotic pathways and

suppresses cell-cycle progression. However, merely counting the

number of EV terms of a solution would not faithfully reflect its

biological richness because of the high redundancy between GO

terms. This redundancy stems from overlaps between sets of genes

assigned to different GO terms, mainly due to the hierarchical struc-

ture of the ontology. We therefore used REVIGO (Supek et al, 2011)

to derive a non-redundant set of GO terms based on semantic simi-

larity scores (Resnik, 1999; Lord et al, 2003). We defined the biologi-

cal richness score of a solution as the number of its non-redundant

EV terms (Methods). The results in Fig 6B show that on the GE data-

sets, DOMINO, and NetBox performed best. On the GWAS datasets,

DOMINO performed best (Fig EV2B). Note that the interpretation of

this criterion is condition dependent: High biological richness can

be revealing or an indication of spurious results.

Intra-module homogeneity
While high biological diversity (richness) is desirable at the solution

level, each individual module should ideally capture only a few

related biological processes. Solutions in which the entire response

is partitioned into separate modules where each represents a distinct

biological process are easier to interpret biologically and are

preferred over solutions with larger modules that represent several

composite processes. To reflect this preference, we introduced the

intra-module homogeneity score, which quantifies how functionally

homogeneous the EV terms captured by each module are (Methods;

Appendix Fig S3). For each solution, we take the average score of

its modules. On the GE datasets, NetBox performed best (Fig 6C).

On the GWAS datasets, DOMINO scored highest (Fig EV2C).

Robustness
This criterion measures how robust an algorithm’s results are to

subsampling of the data. It compares the EV terms obtained on the

original dataset with those obtained on randomly subsampled data-

sets. Running 100 subsampling iterations and using the EV terms

found on the original dataset as the gold-standard GO terms, we

compute AUPR and average F1 scores for each solution (Methods).

On the GE datasets, solutions produced by DOMINO and

NetBox showed the highest robustness over a wide range of

subsampling fractions (Fig 6D and E). On the GWAS datasets,

DOMINO’s solutions scored highest (Fig EV2D and E).

A breakdown of the evaluation criteria by their properties is

shown in Fig 6F.

Table 1 summarizes the benchmark results. DOMINO performed

best on the GE datasets in five of the six criteria, and in all six crite-

ria on the GWAS datasets. NetBox came second, performed best or

timed for best in two criteria and second in the rest.

In addition, DOMINO ran much faster than the other algorithms,

taking 1-3 orders of magnitude less time (Appendix Tables S4–S6).
This speed allows to run DOMINO and the EMP procedure in

reasonable time on a desktop machine. We also noticed that

runtimes were markedly shorter on permuted datasets, probably

since after permutation activity scores are spread more uniformly

across the network, producing smaller modules.

Analysis of large-scale networks

Our benchmark used the highly informative but relatively small DIP

network (~3k nodes and ~ 5k edges) in order to allow systematic

evaluation of multiple AMI methods on many datasets. Yet, much

larger networks are currently available. To examine how DOMINO

performs on larger network, we applied it on two state-of-the-art

human networks: the HuRI network (8,272 nodes and 52,549 edges)

(Luck et al, 2020) and STRING (with > 18K nodes and > 11M

edges) (Szklarczyk et al, 2017). We also tested NetBox, the second-

best performer in our benchmark, on these larger networks. The

edges of the STRING network are weighted with a confidence score,

ranging from 0 to 1000, based on the strength of their supporting

evidence. To make the execution of the EMP feasible, we kept only

edges with score > 900. The resulting network had 11,972 nodes

and 243,385 edges. Setting a running time limit of 5 hrs, DOMINO

◀ Figure 6. Evaluation results for the GE datasets.

A Module-level EHR scores. The plot shows the average mEHR score of the k top modules, as a function of k in each solution. Modules were ranked, for each solution,
by their mEHR score. Then, for each solution with n modules we calculate the average mEHR of the top min(k, n) modules. Finally, we averaged the results and got
the average mEHR of an algorithm.

B Biological richness. The plot shows the median number of non-redundant terms (richness score) as a function of the Resnik similarity cutoff (Methods).
C Intra-module homogeneity scores as a function of the similarity cutoff.
D Robustness measured by the average AUPR over the datasets, shown as a function of the subsampling fraction.
E Robustness measured by the average F1 over the datasets shown as a function of the subsample fraction. In (D, E), 100 samples were drawn and averaged for each

dataset and subsampling fraction.
F A breakdown of the evaluation criteria by their properties. Richness, EHR, and robustness score solutions based only on the whole set of the reported GO terms,

without taking into account the results for individual modules. In contrast, mEHR and intra-module homogeneity score solutions in a module-aware fashion. From
another perspective, biological richness and intra-module homogeneity consider the relations among the reported GO terms, while EHR, mEHR, and robustness do
not.
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completed all runs on both the HuRI and STRING networks, while

NetBox did so on these two network for 8/10 and 2/10 of the GE

datasets and for 9/10 and 9/10 of the GWAS datasets, respectively.

Notably, DOMINO consistently outperformed NetBox on 23 of the

24 criteria on both networks and both types of datasets (Table 2).

DOMINO also performed overall better when using different HG q-

value thresholds (Table EV1). Taken together, these results demon-

strate that DOMINO maintains high performance when applied to

large networks as well.

Analyzing the network contribution to non-specific GO
enrichment bias

Understanding the causes for over-reporting of enriched GO terms is

a key question that arises from our study. One prominent potential

cause is the network topology, as the modules sought are connected

subnetworks, and connectivity also reflects functional similarity. To

explore the contribution of the network to the GO enrichment bias,

we next detected modules in the underlying DIP network without

Table 1. Summary of the benchmark analysis.

Alg. EHR mEHRa Robustness (F1)b Robustness (AUPR)b Biological Richnessc Intra-module homogeneityc

GE datasets

jAM_greedy 0.052 � 0.137 0.048 0.046 � 0.117 0.062 � 0.123 2.5 � 9.837 0.325 � 0.748

jAM_SA 0.236 � 0.25 0.228 0.174 � 0.188 0.204 � 0.229 22 � 18.02 1.335 � 1.097

Bionet 0.398 � 0.4 0.422 0.182 � 0.15 0.321 � 0.322 20 � 23.819 1.929 � 1.302

NetBox 0.719 � 0.425 0.602 0.438 � 0.266 0.632 � 0.417 24 � 32.301 2.575 � 1.453

KPM 0.149 � 0.296 0.177 0.13 � 0.241 0.159 � 0.297 8 � 15.621 0.698 � 0.983

DOMINO 0.891 � 0.129 0.868 0.486 � 0.192 0.776 � 0.174 30.5 + 12.69 2.376 � 0.754

HotNet2 0.424 � 0.429 0.378 0.183 � 0.158 0.288 � 0.23 9 � 6.004 0.951 � 0.791

GWAS datasets

jAM_greedy 0.151 � 0.2 0.133 0.105 � 0.138 0.125 � 0.171 3.5 � 15.481 1.165 � 1.287

jAM_SA 0.053 � 0.155 0.032 0.046 � 0.134 0.058 � 0.173 0 � 11.83 0.327 � 0.736

Bionet 0.298 � 0.466 0.318 0.138 � 0.21 0.267 � 0.407 2 � 8.634 0.857 � 1.211

NetBox 0.694 � 0.497 0.794 0.335 � 0.298 0.617 � 0.456 11 � 8.485 1.172 � 1.338

KPM 0.134 � 0.312 0.148 0.144 � 28 0.16 � 0.324 0 � 9.073 0.438 � 0.719

DOMINO 0.844 � 0.307 0.867 0.452 � 0.268 0.673 � 0.291 11 � 9.55 2.085 � 1.61

HotNet2 0.081 � 0.241 0.031 0.016 � 0.037 0.061 � 0.183 0 � 0.843 0.036 � 0.115

Per algorithm, average score over the ten datasets is shown. Best score in each criterion is in bold.
aResults are average over the top 10 modules.
bResults shown for subsampling fraction = 0.8.
cResults shown for Resnik cutoff = 3.

Table 2. Performance of DOMINO and NetBox on the larger networks.

Network Alg. EHR mEHRa
Robustness
(F1)b

Robustness
(AUPR)b

Biological
richnessc

Intra-module
homogeneityc

GE datasets

HURI NetBox 0.505 � 0.482 0.41 0.223 � 0.228 0.458 � 0.416 10 � 25.738 1.084 � 1.694

DOMINO 0.881 � 0.313 0.528 0.3 � 0.289 0.642 � 0.38 6.5 � 17.515 1.354 � 1.48

STRING NetBox 0.18 � 0.38 0.18 0.144 � 0.305 0.177 � 0.374 0 � 39.314 0.477 � 1.019

DOMINO 0.939 � 0.046 0.9 0.547 � 0.282 0.788 � 0.285 43 � 43.818 2.326 � 0.687

GWAS datasets

HURI NetBox 0.3 � 0.483 0.28 0.08 � 0.144 0.234 � 0.399 0 � 3.9 0.165 � 0.371

DOMINO 0.939 � 0.585 0.419 0.547 � 0.251 0.506 � 0.447 4.5 � 9.878 2.445 � 0.533

STRING NetBox 0.425 � 0.438 0.367 0.328 � 0.342 0.422 � 0.438 12 � 27.683 1.392 � 1.371

DOMINO 0.692 � 0.371 0.782 0.389 � 0.231 0.532 � 0.346 13 � 18.093 1.986 � 1.629

Per algorithm, average score over the ten datasets is shown. Best score in each criterion is in bold.
aResults are average over the top 10 modules.
bResults shown for subsampling fraction = 0.8.
cResults shown for Resnik cutoff = 3.
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use of any condition-specific activity profile and identified the GO

terms these modules were enriched for. Overall, 2,450 out of 6,573

(37%) BP GO terms were detected by this analysis, and we refer to

them as net-terms. Notably, while net-terms were in general highly

over-represented among the GO terms reported by AMI solutions

(Fig 7A and B), these terms did not show higher rejection rate by

the EMP procedure than the other BP GO terms (Fig 7C and D) (see

Appendix for full details of this analysis). These results show that

simple exclusion of GO net-terms from AMI analyses cannot replace

the empirical validation to lessen over-reporting of non-specific GO

terms. Better understanding of the bias origin is required.

Discussion

The fundamental task of active module identification (AMI) algo-

rithms is to identify active modules in an underlying network based

on context-specific gene activity profiles. The comparison of AMI

A B

C D

Figure 7. Comparison of the GO terms identified by each benchmarked algorithm to the terms identified by using the network only (net-terms).

A, B Average number of net-terms and other terms. Only terms reported in four datasets or more were included. Note that no terms were reported in more than four
GWAS datasets by DOMINO and NetBox, which obtained the best overall results (Table 1). (A) GE; (B) GWAS.

C, D Average rejection ratio of net-terms and other terms. The rejection ratio of a GO term in an algorithm is the fraction of datasets in which the term appeared as
significant but was not empirically validated (see Appendix). (C) GE; (D) GWAS. P-values were calculated by comparing the rejection ratios between net-terms and
other terms using Mann–Whitney U one-sided test.
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algorithms is challenging due to the complex nature of the solutions

they produce. Algorithms differ markedly in the number, size, and

properties of the modules they detect. Although AMI algorithms

have been extensively used for almost two decades (Ideker et al,

2002), there is no accepted community benchmark for this task and

no consensus on evaluation criteria. As active modules are often

used to characterize the biological processes that are most relevant

in the context of the profiled activity, we analyzed the solutions

produced by AMI algorithms from the perspective of enrichment for

GO terms annotating biological processes.

Previous works reported that the scheme used by the popular

jActiveModule algorithm to score active modules is biased toward

large modules and suggested ways to alleviate this bias (Nikolayeva

et al, 2018) (preprint: Reyna et al, 2020). Our study reports on a dif-

ferent bias that is prevalent in AMI solutions: their tendency to

report non-specific GO terms. Early on in our analysis, we observed

that many enriched GO terms also appear on permuted datasets,

suggesting that such enrichment stems from some proprieties of the

network, algorithm, or the data that bias the results. To overcome

this bias, we developed the EMP procedure, which empirically cali-

brates the enrichment scores and filters out non-specific terms. This

procedure can be applied to any AMI algorithm.

To exemplify their merits, studies that present a novel AMI method

usually report a collection of enriched gene sets (e.g., GO terms or

pathways) obtained on the algorithm’s solution and are biologically

relevant to the analyzed condition. While this approach is valid for

demonstrating capabilities of an algorithm, it is problematic for a

systematic evaluation of algorithms, due lack of gold-standard bias-

free set of biologically relevant GO terms for a given condition. An

additional difficulty is the hierarchical structure of GO ontology. A

previous benchmark of AMI algorithms used as an evaluation crite-

rion the fold enrichment of the output genes using a single set of

biologically relevant genes (He et al, 2017). In our work, we defined

five novel evaluation criteria based on the GO terms enriched in a

solution, each emphasizing a different aspect of the solution (Fig 6F).

We used these criteria to benchmark six popular AMI algorithms

and DOMINO, a novel algorithm we developed, on ten GE and ten

GWAS datasets, which collectively cover a very wide spectrum of

biological conditions. Overall, DOMINO performed best, indicating

its ability to produce “clean,” stable, and concise modules.

NetBox also scored high in our evaluation. Interestingly, both

DOMINO and NetBox use binary gene activity scores. One may

expect that binarizing measured activity scores could degrade rele-

vant biological signals. However, at least on our benchmark, bina-

rizing the data helped in reducing noise and detecting modules that

are specifically relevant for the analyzed conditions. Further study

of this observation is needed.

Notably, the algorithms that we tested substantially differ in their

empirical validation rates. Some algorithms produced solutions with

very low EHR (< 0.5), and therefore running the EMP on them was

critical. While empirical correction is desirable and adds confidence

to the reported results, it is computationally highly demanding even

with a relatively small network such as DIP. Naturally, using larger

networks makes this procedure even slower (Appendix Tables S4–-
S6). A notable advantage of DOMINO is the high validation rates:

On our benchmark, its average EHR and mEHR were above 0.84,

suggesting that DOMINO can be confidently run without empirical

validation when computational resources are limited.

A common caveat in any report comparing a novel method to

extant ones is that the new method may be better tuned to the data

than the other methods. This may introduce a bias in the reported

results. In our case, we could not tune each of the other AMI meth-

ods due to the long running time of EMP. Community efforts like

the DREAM challenges (Choobdar et al, 2019) help reduce potential

bias by allowing authors to calibrate their own methods on a

common set of test datasets. To enable additional testing, the code

of DOMINO, EMP, and the evaluation criteria is freely available at

https://github.com/Shamir-Lab/.

In summary, in this study we (i) reported on a highly prevalent

bias in popular AMI algorithms, which leads to non-specific calls of

enriched GO terms, (ii) developed a procedure to allow for the

correction of this bias, (iii) introduced novel criteria for evaluation

of AMI solutions, and (iv) developed DOMINO—a novel AMI algo-

rithm with low rate of non-specific calls and better performance

across most of the criteria.

Materials and Methods

The Louvain algorithm in DOMINO

The Louvain algorithm is a fast community detection method for

large network (Blondel et al, 2008). This method aims to optimize

an objective function by iteratively moving nodes between commu-

nity to improve the objective function and fusing together the nodes

of each community. In our benchmark, we used a variant (Lam-

biotte et al, 2008) that incorporates a resolution parameter denoted

r, which we set to 0.15.

Threshold for testing relevant slices

Slices that contain only a few active nodes are unlikely to be rele-

vant. Testing multiple such slices would diminish the significance of

genuine relevant slices. Therefore, we test for relevance only slices

that satisfy either.

#active nodes in slice

#active nodes in network
≥ 0:1:

or

#active nodes in slice

# nodes in slice
≥ α:

where

α¼ min 0:7,
#active nodes in network

# nodes in network

� �
∗ 1þ 100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

# nodes in network
p

� �
:

The PCST application in DOMINO

In PCST (Johnson et al, 2000), nodes have values called prizes, and

edges have values called penalties. All values are non-negative. The

goal is to find a subtree T that maximizes the sum of the prizes of

nodes in T minus the sum penalties of the edges in it, i.e.,

∑v∈TpðvÞ�∑e∈TcðeÞ where p(v) is the prize of node v, and c(e) is

the cost of edge e.

The node prizes are computed by diffusing the activity of the

nodes using influence propagation with the linear threshold model
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(Kempe et al, 2015). The process is iterative: Initially, the set of

active nodes is as defined by the input. In each iteration, an inactive

node is activated if the sum of the influence of its active neighbors

exceeds θ = 0.5. The influence of a node that has k neighbors on

each neighbor is 1
k. Activated nodes remain so in all subsequent

iterations. The process ends when no new node is activated. If v

became active in iteration l then p(v) = βl where

β¼ max 0,1�3 ∗ #active nodes in network
#nodes in network

� �
. We define the penalty of

edge e as c(e) = 0 if it is connected to an active node, and

cðeÞ ¼ 1� ɛ otherwise (we used ɛ ¼ 10�4). PCST is NP-hard but

good heuristics are available. In DOMINO, we used FAST-PCST

(Hegde et al, 2014). The resulting subgraph obtained by solving

PCST on each slice is called its sub-slice. See Fig 3C.

The Newman–Girvan algorithm in DOMINO

The Newman–Girvan (NG) algorithm is a community detection

method (Girvan & Newman, 2002). This method iteratively removes

edges using the Betweenness-centrality metric for edges and recom-

putes the modularity score for each intermediate graph. Let Mi be

the modularity score for the graph in iteration i. The process contin-

ues until a stopping criterion is met. The stopping criterion we used

in step (2b) is log # of nodes in sub�sliceð Þ
log # of nodes in networkð Þ ≤Mi.

Derivation of P-values and q-values for the GE and GWAS datasets

For the GE datasets, we calculated P-values for differential expres-

sion between test and control conditions using edgeR (Robinson

et al, 2010) for RNA-seq and Student’s t-test for microarray datasets.

We computed q-values using Benjamini–Hochberg FDR method

(Benjamini & Hochberg, 1995). For GWAS, we used SNP-level P-

values for association with the analyzed trait to derive gene-level

association P-values using PASCAL (Lamparter et al, 2016), using

the sum chi-square option and flanks of 50k bps around genes. We

computed q-values using Benjamini–Hochberg FDR method (Ben-

jamini & Hochberg, 1995).

Criteria for evaluating AMI solutions

We defined five novel criteria to allow systematic evaluation of solutions

provided by AMI algorithms. For a specific solution, we considered

the list of BP GO terms that passed the HG enrichment test (HG terms)

and the terms that passed the EMP validation procedure (EV terms).

Solution-level criteria

Empirical-to-Hypergeometric Ratio (EHR)
We define the Empirical-to-Hypergeometric Ratio (EHR) as the ratio

between the number of EV terms and reported HG terms. EHR

summarizes the tendency of an algorithm to report non-specific GO

terms, with values close to 1.0 indicating good solutions while

values close to 0 indicating poor ones. EHR reflects the precision

(true-positive rate) of a solution.

Biological richness
This criterion quantifies the biological information collectively

captured by the solution’s EV terms. As there is high redundancy

among GO terms—mainly due to the hierarchical structure of the

GO ontology—we use the method implemented in REVIGO (Supek

et al, 2011) to derive a non-redundant set of EV terms. This method

is based on a similarity matrix of GO terms, which is generated

using Resnik similarity score (Resnik, 1999). The biological richness

score is defined as the number of non-redundant EV terms in a solu-

tion. We calculated this measure using different similarity cutoffs

(1.0 to 4.0 in REVIGO).

Solution robustness
This criterion evaluates the robustness of a solution to incomplete

gene activity data. It compares the EV terms obtained on the original

dataset with those obtained on randomly subsampled datasets,

where non-sampled gene levels are treated as missing. We repeated

this procedure for subsampling fractions 0.6, 0.7, 0.8, and 0.9, iter-

ating each fraction 100 times. Using the EV terms of the full dataset

as the positive set, we computed average precision, recall and F1

scores across these iterations. Another perspective is provided by

the examination of the frequency by which GO terms are detected in

the subsampled datasets: higher frequency for a specific EV term

implies higher robustness. We measured this robustness aspect of a

solution using AUPR, in which EV terms are ranked according to

their frequency across iterations (again, using EV terms detected on

the full dataset as the positive instances). Note that cases in which

an algorithm results in many empty solutions (that is, solutions with

no enriched GO terms) and a few non-empty ones that are enriched

for true EV terms can yield a high but misleading AUPR score.

Therefore, we validated that the fraction of non-empty solutions

obtained by the algorithms on the subsampled runs is high: All the

algorithms achieved around 60% or more non-empty solutions on

GE data (Appendix Fig S4).

Module-level criteria

Module-Level EHR (mEHR)
This criterion calculates a single module’s EHR. We define the

module-level EHR (mEHR), as the ratio between the number of a

module’s EV terms and HG terms (Appendix Fig S3). We score each

solution by averaging the mEHR of its k top-ranked modules (k

values ranging from 1 to 20).

Intra-module homogeneity
This index measures the homogeneity of the biological signal that is

captured by each module compared to the biological signal in the

entire solution. For its calculation, we build a (complete) graph for

the solution’s EV terms (GO graph) in which nodes represent the EV

terms and the weights on the edges are the pairwise Resnik similar-

ity score (Appendix Fig S3B). Next, edges whose weight is below a

cutoff are removed. The intra-module homogeneity is defined as the

module’s relative edge-density in this GO graph:

of edges in module0s GO graph
# of edges in a complete graph of that size

� �
# of edges in the solution0s GO graph

# of edges in a complete graph of the same size

� �

We calculate the intra-module homogeneity score for a solution

by averaging its modules’ scores (Appendix Fig S3B). We repeat this

test for a range of similarity cutoffs—from 1.0 to 4.0. This criterion

provides a complementary view on top of the one captured by the
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biological richness criterion, by characterizing the biological coher-

ence of the reported modules.
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