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GePMI: A statistical model for personal intestinal microbiome

1dentification

Zicheng Wang', Huazhe Lou?, Ying Wang?, Ron Shamir?, Rui Jiang' and Ting Chen?

Human gut microbiomes consist of a large number of microbial genomes, which vary by diet and health conditions and from
individual to individual. In the present work, we asked whether such variation or similarity could be measured and, if so, whether
the results could be used for personal microbiome identification (PMI). To address this question, we herein propose a method to
estimate the significance of similarity among human gut metagenomic samples based on reference-free, long k-mer features. Using
these features, we find that pairwise similarities between the metagenomes of any two individuals obey a beta distribution and that
a p value derived accordingly well characterizes whether two samples are from the same individual or not. We develop a
computational framework called GePMI (Generating inter-individual similarity distribution for Personal Microbiome Identification)
and apply it to several human gut metagenomic datasets (>300 individuals and >600 samples in total). From the results of GePMI,
most of the human gut microbiomes can be identified (auROC = 0.9470, auPRC = 0.8702). Even after antibiotic treatment or fecal
microbiota transplantation, the individual k-mer signature still maintains a certain specificity.
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INTRODUCTION

Recent studies have shown that the human gut microbiome
should be regarded as a second genome independent of, but
interacting with, both the host human genome and the
environment.'” Many diseases are associated with human gut
microbiomes,® including obesity,” diabetes,®? inflammatory bowel
disease,'® liver cirrhosis,'’ cancers,'>"* and mental illness.'® The
human microbiome shows vast genetic diversity, and in spite of
reports that it shares many core microbes among most
individuals,'® the concept that there is a core set of species in
the microbiota is becoming more unlikely.'” Enterotypes, which
classify living organisms based on their bacteriological ecosystem
in the gut microbiome, were previously proposed to cluster
microbiomes into a few groups.'® However, subsequent analysis
demonstrated that enterotypes should not be considered as
distinct clusters but rather as densely populated areas in the
compositional landscape.'®

On the other hand, an individual’s microbiome is dynamic and
constantly changing®®2?*** owing to environmental variables,
such as human health and diet?*?® In general, however, a
microbiome maintains long-term stability.””?® Experimental
results have shown that the taxonomic compositions of two
metagenomic samples from the same person are not always the
same. Moreover, as time between taking the two samples from an
individual increases, the difference tends to increase.’®*° None-
theless, the difference between the microbiomes of any two
individuals is greater than that between two samples from the
same individual>®3' Therefore, we ask if it is possible to
distinguish the microbiome of one unique individual from that
of others. If so, this would indicate the presence of invariants in an
individual’'s microbiome despite its dynamic nature.

To uniquely identify individual microbiomes, Franzosa et al.
proposed the concept of metagenomic codes.>® They constructed
a personal unique code set by using a combination of operational
taxonomic units (OTUs) and species-specific marker genes from
microbial reference genomes. The code set then functions as a
fingerprint to uniquely identify a person. They showed that using
additional appropriate features in a particular population can have
favorable results. However, this approach faces a major challenge:
to extract sufficient sequence information for personal identifica-
tion®? from the huge amount of metagenomic sequences in a
large population.

In this paper, we propose a fast, accurate, and reference-free
method called GePMI (generating inter-individual similarity
distribution for personal microbiome identification) for individual
microbiome identification. GePMI extracts only kilobytes of
sequence information from gigabytes of metagenomic sequences
and uses it to distinguish an individual’'s microbiome from the
others’ with high accuracy.

Our approach recognizes extensive variation in the abundance
of each microbe in a microbiome. However, our hypothesis holds
that genome sequences at strain level, specifically single-
nucleotide polymorphisms,®* indels (insertions and deletions),
and structural variants,''***> remain highly host-specific and
stable. We propose to extract long k-mers as features®® to capture
such genetic diversity in metagenomes instead of following the
time-consuming strategy of genome assembly and read map-
ping,®” essentially because long k-mers are mostly unique in
metagenomes and contain more specific genetic information
compared to short k-mers® Thus we represent each metage-
nomic sequencing sample with a k-mer set, the k-mers that are
present in the sample, and use the MinHash technique® to
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measure the Jaccard similarity between two metagenomic
samples.***> We show that most metagenomic samples from
the same individual are significantly similar to each other but not
to those from different individuals, even after dramatic environ-
mental perturbations, such as antibiotic treatment***> or fecal
microbiota transplant (FMT).*6™*®

For each sample, GePMI computes an inter-individual similarity
distribution and uses it to test whether a query sample and the
given sample come from the same individual. We tested GePMI
over a large set of metagenomic data consisting of 612 samples
from 155 individuals with multiple sampling visits and 146
individuals with only one sample. We demonstrated that the
precision of PMI is improved by 10% by using GePMI compared
with directly using samples’ similarity, and if we set a proper
significance threshold for GePMI, we can almost eliminate all false
positives, even for some individuals who underwent medical
treatments, including antibiotic treatment and FMT. Although
these treatments significantly altered the microbial community,
>85% of the samples could still be accurately identified by GePMI.
These results showed that GePMI can characterize the personal
microbiome with accuracy, reliability, and efficiency.

RESULTS
Overview of GePMI

If two metagenomic samples are taken from the same individual
at different times, we hypothesize that their similarity will be much
higher, while samples collected from other individuals at different
times will have lower similarity.”® In GePMI, we use the MinHash
function to approximate the Jaccard similarity for pairwise
similarity calculation, and we fit a beta distribution to determine
the significance of the similarity in order to evaluate whether two
samples originated from the same individual.

For each metagenomic sample, we down-sampled the dataset
to eliminate the impact of different sequence depths and split
reads into k-mers. In general, K= 15 can be regarded as long,*
and here we tested several values of k to balance the auROC (area
under receiver operating characteristic) and auPRC (area under
precision-recall curve). In GePMI, we used sourmash>® for similarity
calculation and showed the effects of different choices of k on the
results.

For each collected sample, we pre-computed its similarity
scores with other samples from unrelated individuals to generate
an inter-individual similarity distribution for this sample, which
was fitted into a beta distribution. For a newly acquired
metagenomic sample, we tested it against the fitted distribution
of a collected sample with the null hypothesis that the two
samples are from unrelated individuals. If the p value is small
enough, we reject this hypothesis, accepting that the test sample
belongs to the same individual. When a sample is queried against
many collected individuals, we control the multiple testing using
the false discovery rate (FDR) (Fig. 1).

Performance of GePMI

We collected 612 metagenomic samples covering 301 individuals
from five datasets, namely, Human Microbiome Project (HMP),
Metagenomics of the Human Intestinal Tract (MetaHIT), micro-
biome reshaping by antibiotics (MRA), FMT, and temporal and
technical variability of human gut metagenomes (TTV) (see
Methods and Supplementary Table 1). For each sample, we
extracted k-mer features, calculated the pairwise Jaccard similarity
scores of this sample against all other samples, except for those
from the same individual, and generated a similarity distribution
for which we fitted four models, including normal, truncated
normal on interval [0,1], gamma, and beta distributions. Under the
Kolmogorov-Smirnov (KS) test, we found that the beta
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distribution performed the best among the four distributions.
(Supplementary Figure 1).

To determine whether two metagenomic samples come from
the same individual, we compared three metrics: (1) MinHash
similarity, (2) GePMI p value, and (3) GePMI g value. From the ROC
curve (Fig. 2a), we observed that GePMI p value outperforms the
other two for any length of k, with the improved ROC values
approximately between 0.05 and 0.06. Since the number of
samples from the same individual was far less than the aggregate
number of samples from different individuals, we also plotted the
precision-recall curve. As shown in Fig. 2b, both GePMI p value and
GePMI g value outperform the MinHash similarity by 0.11 and 0.12
on average. Since a query sample is tested against multiple
samples in GePMI, we need to account for multiple testing and
control the FDR. Here we used Benjamini and Yekutieli's method
(BY)*° for correction of p values and observed that FDR obtained
by BY method was well controlled (Fig. 2c). The results of ROC,
PRC, and FDR suggest that GePMI g value had the overall best
performance, and thus we used the GePMI g values in the
subsequent analysis.

There are three parameters to be considered in PMI: (a) the
sequencing depth, denoted as s, the number of sequenced bases
per sample, (b) the length of k-mer, denoted as k, (c) the size of
hash table used for MinHash, denoted as n.>°> We compared the
GePMI g values for different values of k (15, 18, 21, 24, 27, and 30
because there are few common k-mers within genera when k>
15°"), 5 (10, 100, and 1000 millions), and n (1000 and 10,000) on
PMI. It should be noted that we down-sample the bases of a
sample from original “All” bases into 1000, 100, and 10 million
bases. As shown in Table 1, the ROC value tends to improve with
the increase of s except for the case of k=15, and when K> 18,
the increase of k has little effect on the results. Another
observation is that when s equals 1 billion, n = 1000 and 10,000
give similar results. We could have increased n = 100,000, but the
cost of computational time and space is too big to be practical. If
we increase s, many samples would not have enough bases to be
included in the study. Considering the above observations, we set
s =1 billion, k=18, and n = 10,000 as default parameters.

PMI before and after antibiotic treatment

We next investigated whether individuals could be identified after
medical treatments that are known to alter microbiomes. To
accomplish this, we analyzed the MRA dataset consisting of 18
individuals taking drug Cefprozil (a cephalosporin antibiotic) and 6
controls.** Each subject in this dataset had three sampling visits,
right before treatment (E0), 7 days later (end of treatment, E7), and
90 days after the treatment (E90). Data from the same three time
points (without treatment) was collected for the controls. In Fig.
3a, we plot the average pairwise similarity scores (intra-individual)
among sampling visits from the same individual for the control
and case groups, respectively, and those (inter-individual) among
sampling visits from different individuals without distinguishing
control and treated samples. Previous studies using resistant
gene-related k-mers as features showed that the Jaccard intra-
individual similarities in the control group were higher than those
in the antibiotic treatment. In contrast, our results showed that
sample pairs of the same individual, irrespective of the treatment,
were much more similar to each other than the inter-individual
pairs, indicating the effectiveness of the GePMI metric for PMI. In
the inter-individual group, unrelated samples had consistently low
similarity scores, irrespective of medical treatment.

We then pooled all five datasets together (612 samples in total)
and applied GePMI to query each sample against all other samples
for identification. Setting the g value cutoff to 0.001, we
constructed a pairwise similarity network (Supplementary Figure
1). It should be noted that the edges in the network are directed
because testing sample a against sample b may yield different
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2) Each k-mer set is hashed into a subset

of size m using the MinHash function so that the Jaccard similarity of the two k-mer sets can be approxmated by MinHash similarity. (3) Each
sample is then compared with other samples from unrelated individuals to generate a similarity distribution, which can be fitted by a beta
distribution. (4) A query sample can be tested against each distribution. If its p value is below a threshold, it will be assigned to the sample
with that distribution. (5) When testing in multiple distributions, p values are adjusted to control the false discovery rate

result from testing sample b against sample a. Figure 3b shows
the sub-network of the MRA dataset for an individual with three
sampling visits; we can propose an ideal situation in which testing
any sample against the other two in the same individual (intra-
individual) shows significance, whereas testing any sample against
the other two from other individuals (inter-individual) shows no
significance. Since each individual has three samples, there will be
six directed edges for each subject. 14 out of the 18 subjects from
the antibiotic-treated group were correctly connected with g
values <0.001, except for four subjects, MRA_P4, MRA_P5,
MRA_P11, and MRA_P12 (Fig. 3b), where some sample connec-
tions were not detected. In total, we were able to predict 98
connections out of 108 within the antibiotic-treated group,
achieving 90.74% accuracy, with no false positives. In comparison,
the network constructed by the MinHash similarity scores with an
optimal cutoff threshold (0.199) gave 2 false positives and missed
18 connections (83.3% accuracy) compared to GePMI (Fig. 3c).
Although it is well known that antibiotics can disrupt gut
microbial communities,>>>> GePMI's results indicate that most
samples could still be correctly assigned to the original subjects
after antibiotic treatment with no false positives. We noticed that
some treated samples were no longer similar to the original
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samples. For example, for subject MRA_P4 (Fig. 3d), sample
MRA_P4E90 was not significantly similar to either MRA_P4EO or
MRA_P4E7, showing that the antibiotic treatment, or other
potential perturbations, had a significant impact on the subject,
most likely transforming the microbiota into another state. In the
study by Raymond et al,* samples MRA_P4EO and MRA_P4E7
were both clustered into a subgroup that was dominated by
Prevotellaceae, while MRA_P4E90 belonged to another subgroup
with low diversity of Bacteroidaceae.”® Such changes could also be
observed in subjects MRA_P5, MRA_P11, and MRA_P12. Overall,
the results show that GePMI can robustly perform PMI.

PMI before and after FMT

FMT is an operation that can restore healthy microbiota in
patients. In this study, we obtained an FMT dataset containing
samples from five patients (metabolic syndrome) transplanted
with healthy donors’ microbiota (allogenic FMT).*’**® Samples
were taken prior to transplantation (Day-0) and at multiple time
points (Day-2, Day-14, Day-42, Day-84) afterwards. Three of the
patients recovered (FAT_006, FAT_008, and FAT_020) and two
retrogressed to disease (FAT_012 and FAT_015). Three of the five
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Fig.2 Overview the accuracy of GePMI using different values of k. a ROC curves of the three evaluation criteria: MinHash similarity, GePMI p
value, and GePMI g value. b Precision-recall curves of the three criteria. ¢ False discovery rate of using GePMI p values and g values FDR-
corrected for PMI. MinHash was used with 10,000 hashes in all cases and 1 billion of sequenced bases were used per sample

Table 1. The impact of three parameters on performance based on FDR-corrected g values generated by GePMI
slk (of bases) 15-mer 18-mer 21-mer 24-mer 27-mer 30-mer
Area under ROC curve (n = 1000/10,000 hashes)
10 millions 0.7049/0.7741 0.6661/0.7370 0.6610/0.7486 0.6219/0.7446 0.6008/0.7508 0.6085/0.7553
100 millions 0.8146/0.8383 0.8274/0.8486 0.8150/0.8477 0.8064/0.8442 0.8176/0.8448 0.8067/0.8616
1 billion 0.7394/0.7417 0.8762/0.8818 0.8640/0.8818 0.8664/0.8812 0.8792/0.8871 0.8915/0.8897
All 0.6663/0.6773 0.8524/0.8625 0.8488/0.8623 0.8455/0.8665 0.8728/0.8714 0.8577/0.8762
Area under precision-recall curve (n = 1000/10,000 hashes)
10 millions 0.3657/0.4324 0.3731/0.4074 0.3609/0.4212 0.3358/0.4192 0.4094/0.4262 0.3639/0.4337
100 millions 0.7875/0.8052 0.8049/0.8243 0.7977/0.8230 0.7923/0.8202 0.7990/0.8203 0.7872/0.8322
1 billion 0.7348/0.7378 0.8637/0.8679 0.8528/0.8680 0.8518/0.8674 0.8297/0.8726 0.8755/0.8746
All 0.6505/0.6725 0.8014/0.8294 0.7854/0.7949 0.7779/0.7574 0.7117/0.7559 0.7468/0.7412
The two values per cell are results for n = 1000 /10,000 hashes in MinHash. Bold markers correspond to the results used in Fig. 2. The ‘All' rows show results
with all available data for each sample

patients, FAT_006, FAT_008, and FAT_015, were transplanted with
while the other two were
transplanted with different donors’ microbiota. Another five
control patients, FAT_010, FAT_014, FAT_017, FAT_023, and

the same

donor’'s microbiota,
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FAT_024, were transplanted with their own microbiota (placebo-
treated), and all of them remained unhealthy after FMT. For this
dataset, we asked (1) whether the microbiome of an allogenic FMT
recipient after treatment could be identified as that of the original,
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(2) whether samples of an allogenic-treated patient could be
assigned to the donor, and (3) whether recipients transplanted
with the same microbiota of the same donor could be matched.

For PMI, we counted a total of 206 (10*A2 + A32) intra-individual-
directed comparisons between samples, 200 from 10 subjects,
each with 5 time-series samples, and 6 from comparing the three
samples from the same donor. We set g value <0.001, and we
found 128 related pairs and 5 donor pairs, including 86 out of the
100 pairs (86%) in the placebo-treated group but only 42 out of
the 100 pairs (42%) in allogenic FMT group. The difference shows
that the FMT had a noticeable impact on the microbiome.

Compared with the placebo-treated group, microbiomes of the
allogenic FMT recipients were most similar to those of the
corresponding donors, which posed a great challenge to
individual identification.*® At Day-2 after FMT, four out of the five
recipient samples were more similar to those of the corresponding
donors than to their own baseline samples before FMT (Fig. 4a).
However, by Day-84, all five recipient samples were more similar
to their own baseline samples than to their corresponding donors.
We observed that the samples from both FAT_012 and FAT_015,
representing the retrogressed patients, at Day-2, right after
transplant, had higher similarities to their original samples than
those from the three recovered patients.

According to GePMI, on day 2, the first visit after FMT, the
baseline samples from both FAT_012 and FAT_015 matched those
of their corresponding recipients (q value <0.001, Table 2).
However, these two samples also matched the donor’s samples.
In other words, the posttransplanted samples at day 2 were
mixtures of two microbiomes; as such, these samples were similar
to both the original and donor samples. Analysis of species-level
OTUs also showed that FAT_012 and FAT_015 shared more
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species proportionally with those of the donors at day 2 when
compared to the other three FMT subjects. In contrast, on the first
visit after FMT, the microbiomes of the three recovered were not
identified by GePMI to be significantly similar, either to their own
or their donors’ microbiome; however, at later visits, their samples
did match the baseline samples but did not match those of the
donors, which can be explained as donor-specific strains that
gradually disappeared in the recipients over time.*® As expected,
samples of the placebo-treated subjects were not similar to those
of the donors (Fig. 4b).

In summary, transplantation with other person’s microbiota
does, indeed, affect the recipient’s microbiome. To our surprise,
the results of data analysis using GePMI show (1) that samples
from failed transplantation initially matched samples of both
recipients and donors but deviated from both at the end, and (2)
that samples from successful transplantations did not initially
match those of either recipients or donors, but similarity to the
recipient’s original samples did return at the end of the
experiment.

Robustness of PMI: technical variability and complex treatment

The TTV dataset consists of 69 metagenomic samples of 7
individuals (Alien, Bugkiller, Daisy, Halbarad, Peacemaker, Scaven-
ger, Tigress) from Voigt et al.?' who investigated the impact of
temporal sampling and DNA storage methods on metagenomic
sequencing. Time series and replication data were produced for
each person. Analysis of this dataset by GePMI showed that DNA
sampling and storage methods had very little influence on PM, as
all samples from the same individual at the same time matched.
As an example, alien-11, alien-12, and alien-13 all came from the
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Fig. 4 Dynamics of temporal changes of fecal microbiota transplant (FMT) sample similarity (using MinHash). a Change of sample similarity
over time for the allogenic treatment group where five patients were transplanted with donor microbiota. The pink lines represent the
similarities of transplanted samples with the sample before FMT. The indigo lines represent the similarities of transplanted samples with the
donor’s sample. b Change of sample similarity over time for the autologous treatment group where five subjects were transplanted with their
own microbiota. The pink lines represent similarities to the first sample, while the indigo lines represent the average similarity the samples of

five separate donors, using FAT_DON as an average

Table 2. GePMl similarity g values of FMT samples to self-baseline sample and to donor sample

GePMl (g value) d2-do d14-do d42-do d84-do dO-dn d2-dn d14-dn d42-dn d84-dn
FAT_006 0.5119 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0
FAT_008 1.0 0.0510 0.0064 0.0372 1.0 0.1051 0.1156 1.0 1.0
FAT_020 0.0031 4.752e-13 1.584e-13 1.583e-8 1.0 0.0362 1.0 1.0 1.0
FAT_012 1.517e-4 3.450e-4 1.0 0.0613 1.0 7.509e-4 1.0 1.0 0.4693
FAT_015 2.039e-4 0.0844 1.0 0.1182 1.0 9.532e-4 1.0 1.0 1.0
FAT_010 0.0 0.0 0.0 0.0 n/a n/a n/a n/a n/a
FAT_014 9.754e-7 8.483e-5 2.563e-4 3.275e-9 n/a n/a n/a n/a n/a
FAT_017 0.0 0.0 0.0 0.0 n/a n/a n/a n/a n/a
FAT_023 0.0 0.0 0.0 0.0 n/a n/a n/a n/a n/a
FAT_024 2.113e-5 1.558e-4 0.0068 0.1560 n/a n/a n/a n/a n/a

Last five subject did not transplant any donor’s microbiota

d2-d0 day 2 to baseline for the same individual, d2-dn individual to the donor, n/a not applicable

same individual at the same sampling time, but different sampling
methods were carried out. Nevertheless, their pairwise similarities
were high and GePMI test statistics were significant (Fig. 5).
However, temporal variation does have some impact on PMI. As
shown in Fig. 5, excluding samples from subject Alien, GePMI
identified 410 out of the 480 sample pairs (91.52%) using g value
<0.001, but for Alien, only 119 out of the 420 sample pairs could
be identified. The metagenomic samples of Alien not only
reflected technical variability, using different DNA extraction
methods, but also contained samples with antibiotic treatment
(Ceftriaxone, a broad-spectrum antibiotic) and bowel cleansing.
We had previously shown in the MRA dataset that antibiotic
treatment did not change PMI for most individuals, but alien’s
post-antibiotic treatment samples could not be matched to pre-
antibiotics samples because the adjusted GePMI g values were all
>0.001 (Fig. 5 and Supplementary Figure 4). However, the samples
after bowel cleansing (days 600-773) could be matched to those
before bowel cleansing but not after antibiotic treatment, a
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finding that was not discovered in the original study. This suggests
that GePMI is more accurate than the standard distance/similarity
metrics.

It should be noted that GePMI produces two asymmetric values
for each pair of samples. Sample a may be statistically similar to
sample b, but the reverse may not be true. In this dataset, the
Alien sample at day 600 was statistically similar to the sample at
day 392, but the sample at day 392 was not statistically similar to
the sample at day 600 because the same similarity value was
tested against two different distributions, thus producing two
different results (Supplementary Figure 4). The samples collected
at day 392 were most likely still in the recovery/transition status
after antibiotic treatment, while samples at day 600 had regained
their stability.?’ Moreover, since samples at the first 60 days were
not statistically similar to the samples at later days, we conclude
that the treatment did change the genome composition of the
microbial community.
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Some extensions of GePMI applied to individual identification

Besides the TTV dataset, the samples listed are from different DNA
processing methods. A few of the metagenomic sequencing data
that we collected were sequenced by multiple sequencing
platforms, with different read length and using different DNA
extraction methods. For example, two subjects, s159490532 and
$159591683 from the HMP dataset, were sequenced by both 454
GS FLX Titanium and lllumina Genome Analyzer Il. The read length
and error models were different for these two sequencing
platforms. However, both resulted in p values close to zero when
testing 454 samples of s159490532 against the inter-individual
distribution of lllumina’s samples and the same was true for the
reverse test. Therefore, we can confidently say that they were from
the same subject. We obtained a similar result for subject
s159591683. Although it was a small test, it suggests that
sequencing platforms did not affect the accuracy of the
identification if the error rates were small. As we have shown in
the TTV dataset, DNA extraction methods had little effect on PMI.

For comparison with read-based similarity measures, we
mapped the all 612 down-sampled reads of 5 collected datasets
to the NCBI microbes non-redundant database using DIAMOND
blastx,>* computed the species abundance, and calculated
similarities based on Bray-Curtis metric>> The accuracy of
species-based similarity is 0.8308 (auROC), worse than that of
the k-mer-based GePMI method (0.8818). However, the difference
measured by auPRC was much larger (0.3759 vs. 0.8679). Hence,
using species as features for PMI appears to have a larger false
positive rate. Meanwhile, we also assembled these reads by
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MEGAHIT*® and computed each sample’s contig similarity using
GePMI with 18-mers and 10,000 hashes. The accuracy, shown in
supplementary Figure 5a, is slightly lower with auPRC =0.7513.
Compared to applying GePMI on the raw reads directly (Fig. 2),
assembling the reads first does not help GePMI, since a lot of
sequence variations are lost during assembly.

We also tested our approach on a 16S rRNA dataset. In general,
different projects may sequence different 16S rRNA gene
hypervariable regions, making it difficult to compare across
different projects. Nevertheless, we obtained the HMP gut
dataset,?® which consists of 325 samples for 222 individuals, 121
with one visit, 99 with two, and 2 with three. We used a 97%
similarity threshold for OTU definition (11,752 OTUs in total). To
identify samples from the same individuals, we applied both
Bray-Curtis similarity metric (auROC = 0.9401, auPRC =0.4715)
and GePMI (auROC = 0.9604, auPRC = 0.5282) on this dataset, and
the results showed that GePMI performed slightly better.
However, the precision value for a fixed recall rate was worse
than that using metagenome sequencing data. This is because
16S rRNA gene sequences contain much less information than
genome sequences. However, considering that 16S rRNA sequen-
cing costs less, it could serve as a cheaper alternative for some
special application scenarios.

We also tested GePMI on data collected from tongue dorsum in
the HMP project.?® The dataset consists of 48 subjects with only
one sample visit, 38 subjects with two, and 4 subjects with three,
for a total of 136 samples. Applying GePMI to this dataset using
the same parameters as those in the gut dataset (see
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Supplementary figure 5b), we obtained auROC score 0.8749 and
auPRC score 0.8584. Using threshold g value <0.1, 52% of the
samples could be correctly identified with 2% false positives. The
results were not as good as those for the gut datasets. A possible
explanation is that microbiome of tongue dorsum has much
bigger variation than that of the guts. However, oral samples are
easy to obtain and can be used to explain some oral diseases,
which provide potential possibilities for individual identification
through oral metagenomic samples.

DISCUSSION

In this paper, we demonstrated that a personal microbiome could
be uniquely identified with high accuracy across several different
metagenomic data sets. We used Jaccard similarity, implemented
with MinHash approximation,®® to measure pairwise similarity. In
GePMI, Jaccard similarity was tested against the target sample’s
inter-individual distribution under the null hypothesis that
pairwise similarity arises from the target sample’s inter-individual
similarity distribution. The final score is an adjusted g value for
PMI. We proved that most metagenomic samples can be
identified, even after clinical treatments, such as antibiotic
treatment and FMT, although we saw some cases where the
microbiome had moved to a new state no longer similar to the
original one. In summary, the human microbiome has obvious
personal characteristics, and individual samples can be uniquely
identified in most cases.

For the MinHash strategy, length of k-mers and the number of
minimum hash values can influence similarity calculations. In
general, longer k-mers would be more sensitive to strain
variations, but they could also be more affected by sequencing
errors. On the other hand, the number of features increases
exponentially with k, meaning that we would need to store a
larger hash table. Before the similarity calculation, we do
subsampling to ensure that the samples have the same number
of k-mers. However, without the microbial genome references, it is
hard to identify strains underlying each microbiome.”” In general,
our results indicate that k-mers of size >18 were specific enough
to characterize a microbiome.

Temporal and microbiome variability can interfere with
individual identification. Our study showed that temporal variation
had a major impact on the consistency of our identification. As an
extreme example, human gut microbiota during infancy is
completely different from that of older age®®; therefore, it is
unlikely an adult's gut microbiome can be matched to his/her
infant gut microbiome. Inter-individual microbiome variation may
come many sources.’**® We demonstrated that clinical treatments
could change microbial communities such that some individuals’
samples might become, in effect, a new “subject” similar to neither
self nor to others.

We compared GePMI to Metagenomic Codes that used
sequence markers as the features for 50 individuals with two
visiting stool samples and obtained a true positive rate
(individuals who were identified) of 86%, that is, 43 individuals
could be uniquely identified by 6-8 marker-based codes.° For
GePMI, each sample was tested against the other 99 samples.
Following the same definition of Metagenomic Codes judgment
rules, GePMI with g value <0.1 produced 97% true positive rate
with no false positive (Supplementary figure 5c¢), better than that
using the Metagenomic Code. While the idea behind the
Metagenomic Code is quite elegant, the proposed “body site-
specific metagenomic codes” could be very hard to define as more
samples are added into the pool. On the other hand, because
human intestinal microbiome may experience significant changes
due to growth, antibiotic treatment, and FMT, defining metage-
nomic codes could be very challenging.

Whether PMI is based on the uniquely recognizable “finger-
prints”*® or based on the fact that samples from intra-individual
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are significantly more similar than those from inter-individuals, we
believe that the personalized microbiome era has already arrived.
In the past decades, scientists have focused on defining the core
microbiota for each environment'®°-%%; however, the focus has
been shifted to the study of specific features of each individual's
microbiota and their relationship with the environment??2246:63.64
and the study of evolution of microbial communities over time
through time-series samples.*33%5%¢ A healthy individual’s
microbial community is robust against external perturbations,
demonstrated by its ability to maintain homeostasis and to
recover from disease.’>*%” However, the exact process and path
of its moving between a healthy state and a disease state remains
a mystery, although we can distinguish the microbiota in an
individual's health state from that in the disease state. PMI may be
applied to such cases to help us to understand this process and to
design efficient intervention methods to cure the disease. If we
observe that an individual's two metagenomic samples can no
longer be linked through our method, this indicates that the
microbial community has changed its state. Although we cannot
determine whether or not the changes may lead to disease, GePMI
can serve as a monitoring tool (independent of obvious clinical
manifestations) for further examination of potential diseases.
Overall, GePMI provides a computational framework to measure
personalized microbiota, and we believe that it can be applied to a
wider range of applications in precision medicine.

METHODS
Data

DNA sequencing reads from 634 human fecal samples were downloaded
from the HMP,?® MetaHIT,'® MRA,** FMT,*” and TTV.?" After quality control
by FaQC®® to remove low quality reads, we mapped reads to hg19 genome
reference ®° to remove human genome reads. Samples with at least 1
billion bases were selected, and as a result, 612 samples were retained for
further analysis, including 248 samples from 138 individuals in HMP,
168 samples from 119 individuals in MetaHIT, 72 samples from 24
individuals in MRA, 55 samples from 13 individuals in FMT, and 69 samples
from 7 individuals in TTV. Details can be found in Supplementary Table 1.

GePMI: personal microbiome identification

MinHash is a locality-sensitive hashing method for rapid calculation of
similarity between two sets based on Jaccard similarity. In this paper, we
used khmer’® for removing low abundance k-mers and we computed
approximated Jaccard similarity for every pair of samples by using
sourmash®’; they were run as:

® k-mers error trimming: trim-low-abund.py -k 18 -C 2 sample.fa>
subject-sample.fa

® creating signatures: sourmash compute -k 18 -n 10000 subject-sample.
fa -o subject-sample.sig

® building distance matrix: sourmash compare -k 18 --csv output.csv -o
output *.sig

Similarity values between a sample and those of all other individuals
form an inter-individual similarity distribution for this specified sample. We
set the null hypothesis that the similarity value of a test sample to a target
sample is drawn from the target sample’s inter-individual similarity
distribution, i.e., the test and target samples came from different subjects.
The rejection of the null hypothesis means that the test and the target
samples are from the same subject.

The similarity values range from zero to one. We checked which of the
following distributions best fit the data: (1) a truncated normal distribution,
(2) a gamma distribution (because the Jaccard similarity for low diversity
samples is usually near zero), and (3) a beta distribution. We performed KS
test for these three distributions. Let X be the set of inter-individual
similarities. Under one sample’s distribution, the p value that the test
sample similarity to the target sample is equal to

p =Pr(X > s|Ho)

where Hj is the null hypothesis. By using the p value, we can determine
whether two samples are from the same subject or not. To control the FDR
in multiple testing, Benjamini and Yekutieli's method was used to
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transform p values to g values.>® By combining both the p and g values, we
can determine the subject to which a test sample belongs in the database.
GePMI script can be run as:

® python GePMl.py -i output.csv -p 0.001 -g 0.01 -s 0 -o outputDir -t
® -p, -q, -s are the parameters (p values, g values, and similarity) to set
thresholds for hypothesis testing in the final results.
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