Tel-Aviv University
Raymond and Beverly Sackler
Faculty of Exact Sciences

School of Computer Science

The Degenerate Primer

Design Problem

Thesis submitted in partial fulfillment of the requirements for

M.Sc. degree in the School of Computer Science, Tel-Aviv University

by

Chaim Linhart

The research work for this thesis has been carried out at

Tel-Aviv University under the supervision of
Prof. Ron Shamir

NOVEMBER 2002

Acknowledgments

I wish to express my thanks to Prof. Ron Shamir for teaching me practically everything
I know in computational biology and complexity, and helping me realize this dissertation.
I also wish to acknowledge Rani Elkon and Roded Sharan, with whom I worked on sev-
eral interesting projects, including this thesis. I would like to thank our collaborators in
the DEFOG project: Tania Fuchs, Miriam Khen, Gustavo Glusman, Tzachi Pilpel, Doron
Lancet (The Weizmann Institute of Science, Rehovot), Barbora Malecova, Uwe Radelof, John
O’Brien, Ralf Herwig, Hans Lehrach (Max-Planck Institute for Molecular Genetics, Berlin),
and Dmitry Shmulevich (Tel-Aviv University). I thank David Johnson for his remarks on
the Bin Packing problem. I owe special thanks to Prof. Dani Halperin for introducing many
interesting challenges to me and teaching me so much. Last but not least, I thank my wife,

Nami, for her support and love.

This work was partially supported by GIF grant G-0506-183.0396.

Abstract

A PCR primer sequence is called degenerate if some of its positions have several possible
bases. The degeneracy of the primer is the number of unique sequence combinations it
contains. We study the problem of designing a pair of primers with prescribed degeneracy
that match a maximum number of given input sequences. Such problems occur when studying
a family of genes that is known only in part, or is known in a related species. We prove that
various simplified versions of the problem are hard, show the polynomiality of some restricted
cases, and develop approximation algorithms for one variant. Based on these algorithms, we
implemented a program called HYDEN for designing highly-degenerate primers for a set of
genomic sequences. We report on the success of the program in an experimental scheme for
identifying all human olfactory receptor (OR) genes. In that project, HYDEN was used to
design primers with degeneracies up to 10'° that amplified with high specificity many novel

genes of that family, tripling the number of OR genes known at the time.

Contents

1 Introduction

1.1 Summary of Thesis Results

2 Problem Definition

Complexity

3.1 Polynomial-Time Solutions for Restricted Cases

3.1.1
3.1.2
3.1.3

Bounded Length o
Bounded Degeneracy

Bounded Coverage

3.2 Combining MC-DPD and MD-DPD

3.3 NP-Completeness of Variants of DPD

3.3.1
3.3.2
3.3.3
3.3.4

Maximum Coverage DPD
Minimum Degeneracy DPD,
Minimum Degeneracy DPD with Errors

Minimum Primers DPD oo

4 Approximation Algorithms

4.1 Simple Approximations

4.2 Approximating the Number of Unmatched Strings

4.2.1
4.2.2
4.2.3
4.24

The CONTRACTION Algorithm.
The EXPANSION Algorithm
The CONTRACTION-X Algorithm

Non-Binary Alphabets

11
11
11
12
12
13
14
14
16
19
21

5 Implementation: The HYDEN Program

6 Application: Deciphering the Human OR Subgenome

6.1 The OR Subgenome
6.2 The DEFOG Experiment
6.3 The HORDE Test Set e
6.4 Sequencing Efficacyo
6.5 Training-Set Sizeo
6.6 Primers for the OR Subgenome L.
6.7 Short DEFOG e
6.8 The Canine Olfactory Subgenome

7 Summary

7.1 Future Work e

Chapter 1

Introduction

Polymerase chain reaction, or PCR, is a technique which is used to increase the number
of copies of a specific region of DNA, so that enough DNA is produced to be adequately
tested or sequenced. In order to use PCR, one must already know the exact sequences which
lie on either side of the DNA region of interest. These sequences are used to design two
synthetic DNA oligonucleotides, or primers, one complementary to each strand of the DNA
double-helix and lying on opposite sides of the target region. The primers are typically of
length 20-30. Each cycle of the reaction consists of three steps. First, the DNA is heated,
which causes the double strands to separate. Then, the DNA is cooled in the presence of
large excess of the two primers to allow these oligonucleotides to hybridize (bind) to the
complementary sequences in the genomic DNA. In the third step, the annealed mixture is
incubated with DNA polymerase and an abundance of the four nucleotides (A, C, G, T).
The polymerase “reads” the opposing strand’s sequence and extends the DNA—primer pair
by “hooking” complementary nucleotides to the DNA strand. Thus, the regions downstream
from each of the two primers are selectively synthesized, and can serve as DNA templates in
the next cycle. Each PCR cycle therefore doubles the amount of DNA in the region between
the two primers. After 20 cycles, this DNA fragment is amplified a million fold. A typical

PCR experiment involves 3040 cycles and takes several hours.

A PCR primer sequence is called degenerate if some of its positions have several possible
bases [23]. For example, in the primer: GG{C,G}A{C,G,T}A, the third position is C or G
and the fifth is C, G or T. The degeneracy of the primer is the number of unique sequence
combinations it contains. For example, the degeneracy of the above primer is 6. Degenerate
primers are as easy and cheap to produce as regular unique primers, are useful for amplifying
several related genomic sequences, and have been used in various applications. Most extant
applications use low degeneracy of up to hundreds. In this thesis we study the problem of

designing primers of high degeneracy.

In a typical situation, one has a collection of related target sequences, e.g., DNA sequences
of homologous genes, and the goal is to design primers that will match as many of them as
possible. A naive solution would be to align the sequences without gaps, count the number of
different nucleotides in each position along the alignment and seek a primer-length window
(typically 20-30) where the product of the counts is low. Such solution is insufficient because
of gaps, the inappropriate objective function of the alignment, and, most notably, the exceed-
ingly high degeneracy: When degeneracy is too high, unrelated sequences may be amplified
as well, losing specificity. We may have to compromise by aiming to match many but not
necessarily all the sequences. Our goal here is to develop an ad-hoc method for designing
primers that will allow tradeoff between the degeneracy and the coverage (the number of

matched input sequences). We call this objective Degenerate Primer Design (DPD).

There are various reasons for studying DPD. For example, we were involved in a project
with the groups of H. Lehrach (MPI Berlin) and D. Lancet (Weizmann) for finding new
human olfactory receptor (OR) genes. At the outset of the project (which preceded the
publication of the human genome), only 127 OR genes were known, and the goal was to
selectively amplify additional OR genes using degenerate primers. The rationale was that
primers which match many of the known genes, would also amplify many new genes from the
same family as well, whose sequences are closely related. Most OR genes contain conserved
regions, and so the primers would be designed to match such regions. OR genes contain
a single 1000bp coding exon, so amplification can be done on the genomic sequence. In
gene families that contain introns, the same technique can be applied to selectively amplify
cDNAs. The technique can be applied to various families, and to extracting genes from a
particular family in an unsequenced species based on the known sequences of family members
in a related species. In cDNA analysis, one can use degenerate primers for amplifying and

then measuring frequencies of members of a gene family.

DPD is related to the Primer Selection Problem (PSP) [31], in which the goal is to
minimize the number of (non-degenerate) primers required to amplify a set of DNA sequences.
Several algorithms have been developed to solve this problem, and some take into account
various biological considerations and technical constraints (see, e.g., [8]). However, for large
gene families, the number of primers needed to cover a large portion of the genes without
losing specificity is rather large. Furthermore, since the primers are not degenerate, they
do not amplify many of the unknown genes. Traditionally, degenerate primers were usually
designed manually by examining multiple alignments of the target sequences. CODEHOP is
a program for designing degenerate primers for multiply-aligned protein sequences [35]. For
each given multiple alignment, it constructs a pair of primers. Each primer consists of a
degenerate 3’ core region, typically with degeneracy at most 128, and a 5 non-degenerate
consensus sequence that stabilizes annealing. CODEHOP works well for small sets of proteins,

taking into account the codon usage of the target genome, as well as the desired annealing

temperature. However, it is inappropriate for constructing primers with very high degeneracy

on large sets of long genomic sequences.

Since a degenerate primer can be viewed as a motif, DPD is also related to motif find-
ing. However, there are marked differences: Motif algorithms (e.g., MEME [2], Random
Projections [5], CONSENSUS [16], AlignACE [19], Multiprofiler [22], Gibbs Sampler [26],
WINNOWER [32]) usually produce a profile matrix or a HMM, with no constraint on the
maximum degeneracy. Some combinatorial motif finding algorithms do use consensus with
degenerate positions (e.g., ARGO [39]), but their goal is to find a “surprising” motif, i.e., a
pattern that is unlikely given the background sequence probabilities. In DPD, on the other
hand, the “surprise” in a primer is irrelevant, and we care about degeneracy and coverage

instead.

1.1 Summary of Thesis Results

In this work we study the DPD problem from theoretical and practical perspectives. From the
theoretical point of view, we categorize several variants of the problem. In one key variant we
bound the degeneracy and wish to maximize coverage, and in another we wish to minimize
degeneracy while requiring full coverage. We give conditions under which the problem is
polynomial, but prove that the two variants above and some others are in general N'P-Hard.
For the maximum coverage variant, we provide several polynomial approximation algorithms.
We then describe a practical program called HYDEN [1] for producing high degeneracy primers.
The program is a heuristic that builds on ideas analyzed in the theoretical part. HYDEN was
applied in the context of searching for new human OR genes, where it designed primer pairs
with degeneracy as high as 1.4 - 10'°, perhaps the highest ever used. Theses primers were
both very sensitive, leading to a 3-fold increase in the number of known OR genes, and
remarkably specific, amplifying a negligible number of non-OR. sequences. In addition to the
experimental results, we analyze the performance of the primers on a large test set of OR
genes, extracted from the first draft of the human genome [14]. We also report preliminary

results of an experiment for deciphering the canine olfactory subgenome.
Parts of this work appeared in [27] and [11].

The thesis is organized as follows: In Chapter 2 we give formal definitions of the problems.
Chapter 3 gives hardness results and polynomial algorithms for several problem variants. In
Chapter 4 we give approximation algorithms. Chapter 5 describes the HYDEN program, and
Chapter 6 presents the actual performance of HYDEN in the OR project. A summary and

directions for further research are given in Chapter 7.

Chapter 2

Problem Definition

Given a set of DNA sequences, our goal is to design a pair of degenerate primers, so that the
primers match and amplify (in the PCR sense) as many of the input sequences as possible.
In order to obtain primers that match a large number of known genes, and thus have a good
chance to detect new related ones, one should obviously use highly degenerate primers. On
the other hand, in order to reduce the probability of amplifying non-related sequences, the
degeneracy must be bounded. The problem we faced can thus be informally described as
follows. Given a training set of known genes, design a pair of primers, one for the 5 side
and another for the 3’ side, so that the primers would amplify many of the genes and would
have degeneracy that does not exceed a pre-defined limit. For this definition we assume
that amplification of a gene occurs when the two primers match (in terms of ungapped
local alignment) corresponding subsequences in the gene. The region between the matched
subsequences is then amplified. This version is called the Degenerate Primer Design (DPD)

problem (a formal definition is given below).

One can extend the degenerate primer design problem in several ways. First, we may
want to design several primer pairs so that together they cover the whole training set, when
one pair is not enough. Second, we may allow a small number of mismatches between the
primers and each amplified gene, as this usually does not inhibit hybridization. Third, we
can set a lower bound on the length of the amplified regions, since analysis of the genes is

impossible when the amplified fragments are too short.

The following notation will help us formally define the problems. Let > denote a finite
fixed alphabet. In the case of DNA sequences, ¥ ={A,C,G,T}. A degenerate string, or
primer, is a string P with several possible characters at each position, i.e., P = pips2...px,
where p; C 3, p; # 0. k is the length of the primer. The number of possible character sets
at a single position is ¢ = 21”1 — 1. The degeneracy of P is d(P) = Hle |pi|. For example,
the primer P* ={A}{C,GHA,C,G,TH{G}{T} is of length 5 and degeneracy d(P*) = 8. At

non-degenerate positions, i.e., positions that contain a single character, we shall often omit

the brackets. We will sometimes use an asterisk to denote a fully degenerate position, i.e., a
position that includes all possible characters. Hence, P* =A{C,G}*GT. An alternative way
to describe a primer is using the NC-IUB (Nomenclature Committee of the International
Union of Biochemistry) nucleotide code [30], also termed the IUPAC (International Union
of Pure and Applied Chemistry) nucleotide code, shown in Table 2.1. According to this
notation, P* can be written as: ASNGT. Let §(P) be the number of degenerate positions
in P. Since each degenerate position contains between two and |X| possible characters,
2°7) < d(P) < |B|°), or: [logys d(P)] < 8(P) < [logy d(P)].

M = {A,C}
A={A} R={AG} B={CGT}
C={Cl W={AT} D={AGT} N-={ACG,T}
G={Gl S={C,G} H={ACT}
T={T} Y={CT} V={ACG!
K = {G,T}

Table 2.1: NC-IUB nucleotide code. Each of the 15 letters encodes a different subset of the
genetic nucleic acids alphabet: {A,C,G,T}.

A primer P! = pip} .. .p,lc is a sub-primer of a primer P? = p2p3 .. .pz of the same length,
if Vi,1 <4 <k, p! C p?. This relation is denoted P! C P2. Obviously, d(P') < d(P?). The
union of the primers P! and P?, denoted P! U P2, is P2 where pz12 = p% Up?.

A primer P = pipy...pr matches a string S = s189...5, s; € 3, if S contains a
substring that can be extracted from P by selecting a single character at each position,
ie, d5,0< 5 <1l -k st. Vi,1 <i<k, sji; €p;. For example, the primer P* matches the
string TGAGAGTC starting from the third position. A mismatch is a position ¢ at which
Sj+i ¢ pi- In actual PCR, a few mismatches usually do not prevent hybridization. Unless
stated otherwise, we will not allow mismatches. We are now ready to define several problem

variants:

Problem 1 DEGENERATE PRIMER DEsieN (DPD)
Given a set of n strings and integers k, d, and m, is there a primer of length k and degeneracy

at most d that matches at least m input strings?

Figure 2.1 shows a small instance of DPD and a corresponding solution. We defined DPD
as a decision problem, rather than an optimization problem. Ideally, one wishes to optimize
each of the parameters k, m and d. Since the value of k is usually predetermined by biological
or technical constraints (e.g., in PCR experiments, k is usually between 20 and 30), we shall

focus on optimizing either m, the coverage of the primer, or d, the primer’s degeneracy. As we

The Degenerate Primer Design Problem
Input: n=5,k=7,d=12, m =4 (X ={A,C,G,T})
S =TCGGCTTGCAAGCGTACT
Sy =GGCTTCCAGGTCTTATAAGTC
S3 =GCTTCCACGGTGCGAATCAGGGCTG

Sy =ATTGCTAGGTTCAGGTA
S5 =GCAAGGTATCTTGCCAGCTTTGA

Solution: P = TT{C,G}C{A,C,T}H{A,G}G

Figure 2.1: Example of DPD: A primer of length 7 and degeneracy 12 that covers 4 of the 5
input strings. Matches between the primer and the strings are marked in bold face. The

string S3 is matched from position 3 with a single mismatch.

will prove later on, these two optimization problems remain difficult to solve even if simplified
further. Specifically, when designing a primer that matches as many strings as possible, we
shall assume that all input strings are of the same length as the primer. When minimizing
the degeneracy of the primer, on the other hand, we will seek a full coverage of the input

strings, i.e., m = n.

Problem 2 MaxmmuMm COVERAGE DPD (MC-DPD)
Given a set of strings of length k and an integer d, find a primer of length k and degeneracy

at most d that matches a mazimum number of input strings.

Problem 3 MINIMUM DEGENERACY DPD (MD-DPD)
Given a set of strings and an integer k, find o primer of length k and minimum degeneracy

that matches all the input strings.

In our practical application, the MD-DPD approach yielded primers with degeneracies
too high for successful experiments. We therefore focused on MC-DPD, and applied it with

a variety of degeneracy limits imposed by technical constraints (Chapters 4-6).

We shall now define several generalizations of MC-DPD and MD-DPD. As mentioned
earlier, a gene is usually amplified even if there are a few mismatches between the primer
and the gene. In fact, mismatches near the 3’ extension site, i.e., close to the part of the gene
that undergoes amplification, are typically more disruptive than mismatches at the 5’ side of
the primer [23]. The following problem takes into account errors (mismatches) between the
primer and the strings, but ignores their position (i.e., we assume that all mismatches are

equally disruptive).

Problem 4 MINIMUM DEGENERACY DPD wiTH ERrRORS (MD-EDPD)
Given a set of m strings and integers k and e, find a primer of length k and minimum

degeneracy that matches all the input strings with up to e errors (mismatches).

Under many circumstances, a single primer might not suffice, i.e., provide satisfactory
coverage, due to its limited degeneracy and the divergence of the input strings. A natural
question is whether one could design several primers that, together, would match all the

strings.

Problem 5 MiNnivuM PriMERS DPD (MP-DPD)
Given a set of n strings of length k and an integer d, find a minimum number of primers
of length k and degeneracy at most d, so that each input string is matched by at least one

primer.

Finally, we may want to construct a pair (or several pairs) of primers, so that many of
the input strings match both primers. In gene terms, we would like to design one primer for
the 5’ side of the genes and another primer for the 3’ side — only genes that match both the
5 (sense) and the 3’ (anti-sense) primers are amplified by the PCR procedure. We require
that an amplified gene matches the primers at separate positions, so that there is no overlap

between the match sites.

Problem 6 MAXIMUM COVERAGE DEGENERATE PRIMER PAIR DESIGN (MC-DPD2)

Given a set of n strings and integers k, d, find two primers — Py, P», each one of length k
and degeneracy at most d, so that a mazimum number of input strings match both primers,
and the match site of Py occurs in all covered strings to the left of the match site of P,

without overlap between them.

The above definition of MC-DPD2 does not take into account the positions at which each
primer matches each gene. In particular, for an effective PCR we should require that the
distance between the 5’ primer match site and the 3’ primer match site is large enough (i.e.,
the amplified region of the gene is sufficiently long for biological study). This additional
constraint does not always pose a problem, as was the case in our application (see Chapter 6)
— if the genes contain well-separated conserved regions, we could simply look for good 5’ and
3’ primers in different, sufficiently far parts of the genes, and thus ensure that the amplified

sequences are long enough.

The real problem of designing degenerate primers combines ingredients from all the afore-
mentioned DPD variants. Namely, given a set of input strings, we would like to construct a
small set of degenerate primer pairs, so that each of the strings matches at least one of the

primer pairs with only a few mismatches. We can also require that each amplified substring

is longer than some specified threshold, and incorporate other factors that influence PCR,
such as the positions of the mismatches, GC content, and more [23]. Our theoretical results
focus on the simple, restricted DPD variants. As we will see in the next chapter, even those

are hard. Our heuristics, though, address most of the realistic issues satisfactorily.

10

Chapter 3
Complexity

In this chapter we shall discuss the computational complexity of the various variants of DPD
we defined earlier. Before we prove the hardness of DPD problems, let’s examine cases, for

which we can suggest a polynomial solution.

3.1 Polynomial-Time Solutions for Restricted Cases

The DPD problem involves several parameters that influence its hardness. We shall now
present polynomial-time algorithms for solving DPD when the primer’s length (k), degener-

acy (d), or coverage (m) are bounded.

3.1.1 Bounded Length

First, let us suppose that k, the length of the primer, is bounded by a constant. Recall
that o = 2/*/ — 1 is the number of possible character sets in each position of the primer
(0 is constant). A straightforward algorithm that checks all the |o|¥ possible primers runs in
time O(kL|o|¥), where L is the sum of the lengths of the input strings (O(kL) is the time it
takes to check a single primer, i.e., count the number of input strings it matches). This naive

algorithm implies:

Theorem 7 DPD is polynomial when k = O(log L). .

Note that real values of k£ are bounded (usually, 20 — 30), but the obtained time bound is

impractical.

11

3.1.2 Bounded Degeneracy

Suppose we bound the degeneracy d of the primer. For the special case of d = 1, the non-
degenerate primer that matches the maximum number of input strings is clearly a substring
of one of the strings. Therefore, we need to check less than L candidate substrings (a string
of length [contains [— k4 1 substrings of length &), and choose the best one. More generally,
if d = O(1), we could consider all < L substrings and continue in one of two ways. First, we
could try to increase the degeneracy of each candidate substring by adding new characters
at various positions. There are no more than § = |log, d| degenerate positions in a primer
whose degeneracy is d or less, since each such position at least doubles the total degeneracy.
At each degenerate position we could try all o possible character sets. Thus, there are a total

of less than L(’g) 0% degenerate primers to check, and the total running time is O(kL? (§)05).

A different approach would be to take each non-degenerate candidate and expand it using
other substrings. Suppose P! is a substring of the input string S'. P! can be viewed as a
non-degenerate primer (d(P') = 1) that matches S*. Let S? be an input string that P! does
not match, and let P? be a substring of $2. Obviously, P! # P2. Let P!> = P UP?. P'?2isa
degenerate primer that matches both S' and S?, and its degeneracy is larger than that of P!
and P2, since it strictly contains them. Now, P'? can be expanded using a third primer, P3,
which is a substring of an input string that is not matched by P'2, and so on. We continue
to expand the primer as long as its degeneracy does not exceed d. In each step we consider
all substrings of the yet un-matched input strings, and add (in terms of the union operation)
each substring to the primer, in its turn. Since the degeneracy of the primer increases in each
step by at least 1 (more accurately, by a factor of at least |X|/(]X| — 1)), the number of steps

is no more than d. Therefore, the running time of the algorithm is O(kLLY). In summary:

Theorem 8 DPD is polynomial when d = O(1). -

In Chapter 4 we shall introduce an efficient approximation algorithm that is a judicious
variant of the first approach we have just described — expanding a primer candidate by

increasing its degeneracy.

3.1.3 Bounded Coverage

Another simple version of DPD is obtained when the number of strings the primer should
match is bounded, i.e., m = O(1). As in the case of limited degeneracy, we could enumerate
the m k-long substrings the primer matches. If their union is a primer with degeneracy d or

less, then it is a valid solution. This algorithm has running time of O(kL™). In particular:

Theorem 9 DPD is polynomial when m = O(1).

12

3.2 Combining MC-DPD and MD-DPD

In the Maximum Coverage DPD problem, we wish to construct a primer the same length
as each of the input strings and degeneracy < d that matches a maximum number of input
strings (Problem 2). This is actually a simplified version of DPD: In the original problem, the
input strings have arbitrary length, whereas in MC-DPD they all have length &, which is also
the length of the primer we seek. Another simplified DPD variant we defined is MD-DPD
(Minimum Degeneracy DPD), where we search for a primer with minimum degeneracy that
matches all the input strings (Problem 3). Here, the extra constraint we impose (with respect

to the original DPD) is that we require a full coverage, i.e., m = n.

As we shall show below, both MC-DPD and MD-DPD are NP-Hard. One may wonder
what happens when we combine the two. In other words, is the DPD problem still difficult to
solve when all the input strings are of length k, and we seek a primer with degeneracy at most d
that covers them all? The answer is no — a trivial polynomial solution is to simply compute
the primer P, which is the union of all the input strings, i.e., prepare the set of characters
that appear at each position in the strings, as shown in Figure 3.1. If d(P) < d, then P is a
feasible solution. Otherwise, there is no such solution. Interestingly, this polynomial variant
of DPD, which we shall denote FCFL-DPD (Full-Coverage Full-Length DPD), regains its N'P-
Hardness when we allow one mismatch between the primer and each string (see Section 3.3.3),

or when we design several primers instead of just one (see Section 3.3.4).

Theorem 10 FCFL-DPD is polynomial.

FCFL-DPD
Input: n=m =5 k=17,d=50 (X ={A,C,G,T})
S1 = TCGTACG
Sy = GCATATG
S3 = GCGAAGG
S, = TCCTAAG
S5 = GCAAATG

Solution: P = {G,T}C{A,C,G}{A,T}A{A,C,G,T}G

Figure 3.1: Example of FCFL-DPD with 5 strings of length 7: P is the primer with the

minimum degeneracy (d(P) = 48) that covers all input strings.

13

3.3 NP-Completeness of Variants of DPD

We shall now study the more difficult cases of DPD, for which exact polynomial-time solutions

are not likely to exist.

3.3.1 Maximum Coverage DPD

Our first hardness proof establishes that MC-DPD is N'P-Complete, even for a binary alpha-
bet. Since MC-DPD is a special case of DPD, we conclude that DPD is also A'P-Complete.

Theorem 11 MC-DPD is N'P-Complete for || > 2.

Proof: Clearly, the decision version of MC-DPD is in N'P. We complete the proof by re-
duction from the Mazimum Clique (CLIQUE, in short) problem, which is NP-Complete ([21],
[13, GT19]). Recall that a clique in a graph is a subset of the vertices, in which every two

vertices are adjacent.
CLIQUE: Given a graph G= (V, E) and a positive integer ¢, is there a clique of size ¢ in G?

Our reduction is illustrated in Figure 3.2. W.l.o.g. we can assume that ¢ > 3. We first
set k = |V| (the length of the primer and the input strings), d = 2¢ (the degeneracy of the
primer), and m = () (the required coverage). Next, we build n = |E| strings over the binary
alphabet ¥ = {0,1}. For each edge in G, we prepare a binary string of length k with 1’s at
the positions that correspond to the two ends of the edge. Formally, let V' = {v,va,...,v;},
and e = {v;,v;} € E. The string S. we construct from e is: S = s152... sy, where s, is "I’

if x € {i,7}, and 0’ otherwise. The reduction is clearly polynomial.

We now prove the correctness of the reduction. Assume there is a clique V' of size ¢ in G —
V' = {vy,v4,...,0,}. Let us examine the primer P that contains degeneracies at the

positions that correspond to the ¢ vertices of the clique and 0’s at the rest of the positions:

{0,1} ’iE{tl,tQ,...,tc}

P = 1P2-.-Pk ;=
pip Phy i 0 otherwise

P has ¢ degenerate positions and two possible characters at each such position, so its degen-
eracy is d = 2¢. The primer matches every string that corresponds to an edge in the clique,
ie., ife = {i,j} and i,j € {ti,ta,...,tc}, then P matches S,. Since there are () edges in

the clique, it follows that P matches at least m strings, as required.

Conversely, suppose there is a primer P = pips ... p, with degeneracy d < 2° that matches
at least m = (g) of the input strings. Since |X| = 2, it follows that each degenerate position

is {0,1}, and that d = 2°, where § < c is the number of degenerate positions in P. Denote by f

14

CLIQUE Minimum Coverage DPD
Input: Graph G= (V, E), Input: n =4,k =5,d =23,

V=5 |E=4,¢=3 m=(3)=3

V2

v — S., = 11000

. S., = 10100

er Ses = 10010

S., = 01010

U1
€3 > 14)
Solution: Clique = {vy,vy,v4} <= Solution: P = %x0%0

Figure 3.2: Illustration of the reduction from CLIQUE to MC-DPD. The primer P covers
the strings Se,, Se, and Se,, which correspond to the edges of the clique. Asterisks in the

primer stand for degeneracies ({0,1}).

the number of 1’s in the non-degenerate positions in P,i.e.: f=|{i|1<i <k, p; =1}/, and

let V' = {vy,,v4y,...,01 } be the set of vertices that correspond to the degenerate positions,

ie, py, =p, =...=p,; ={0,1}.

Claim 12 If ¢ > 3, then f = 0.

Proof: Notice that all the input strings we constructed contain exactly two 1’s. Thus,
if f > 2, then P does not match any input string, i.e., m = 0. Every two vertices in G are
connected by no more than one edge. Hence, if f = 2, we get m < 1 — the primer can
only match the string that corresponds to the edge e = {v;,v;}, where 7 and j are the non-
degenerate 1’s in P (i.e., p; = p; = 1). Finally, if f = 1, and let p; = 1, then P can only
match strings that correspond to edges whose one end is v; and the other end is in V', and
therefore m < |V'| = § < ¢. Thus, we showed that if f > 0, it follows that m < ¢. On the
other hand, m > (5), so we get that if f > 0, then (3) < ¢, which implies that ¢ < 3, a

contradiction. m

We now get back to the proof of Theorem 11: According to Claim 12, if ¢ > 3, all the
non-degenerate positions in the primer P are ’0’. Therefore, every input string covered by P
contains both its 1’s in P’s degenerate positions. In other words, the m strings P matches
correspond to m edges in the subgraph induced by V’. Since a graph with |V'| = ¢ vertices
contains no more than (g) edges, and since m > (;) and § < ¢, we conclude that m = (g)
and ¢ = 0, 1.e., V' is a clique of size ¢, as required. [|

15

MC-DPD can easily be reduced to MC-DPD2, by simply concatenating each input string
to itself. It is not surprising that designing a pair of primers is at least as difficult as finding

a single primer.

Corollary 13 MC-DPDZ2 is N'P-Complete for |Z| > 2.

3.3.2 Minimum Degeneracy DPD

Our next result establishes that MD-DPD is N'P-Complete, too. It is based on a similar
(though simpler) proof in [31] for the problem of finding a minimum number of non-degenerate

primers that cover a given set of sequences.

Theorem 14 MD-DPD is N'P-Complete for |Z| > 3.

Proof: The proof utilizes a reduction from another very famous NP-Complete problem
— Minimum Set Cover (MSC, in short) ([21], [13, SP5]).

MSC: Given a finite set U = {ey,...,e,}, a collection C of subsets of U, and an integer t,
are there ¢ members of C' whose union is U? (i.e., is there a subset C' C C such that |C'| = ¢,

and every element in U belongs to at least one member of C'?)

Suppose we are given an instance of MSC, and denote: C' = {C,...,C.}. Let u = |U|.
As in [31], for each element of U we construct an input string for MD-DPD that encodes
its subset membership information, i.e., which subsets in C' contain it. Let us first define a
large alphabet: ¥ = {0,1,a1,...,ac,b1,...,b.} (later, we shall show that a ternary alphabet
suffices). The characters ’0’ and '’ will encode the subsets in C, and the a;’s and b;’s will
serve as separators, as described henceforth. Define the following strings: A = ajas...a.
and B = b1by...b.. We encode each subset C; € C' by a string G of length ¢ that is entirely
made up of 0’s, except for a single '1’ at the j-th position. For example, if ¢ = 4, then Gy is
1000 and G5 is 0100. We now show how to construct » = u + 1 input strings for MD-DPD.
Given an element e¢; € U (1 < i < u), we construct a string S;, which is a concatenation of
strings of the form AG;B for each subset C that contains e; (w.l.o.g. there is at least one
subset C; that contains e;, otherwise there is no solution to MSC). Formally, let Cj,,...,C},
be all the subsets in C' that contain e;, then, S; = AG;, BAG;,B ... AG;,B. In addition to
the above u strings, we define an auxiliary string Sy = AGyB, where G| is a string with ¢ 0’s.

Finally, we set & = 3¢ and d = 2!. Clearly, the reduction is polynomial.

The following simple example clarifies the reduction. Consider an instance of MSC with
U ={ei,es,e3,es}, C ={Cq,Cy,C3}, the following subsets: C; = {ey,ez,e3}, Co = {e1,e3}
and C3 = {ej,eq}, and ¢ = 2. This instance of MSC has a solution, since C; U C3 = U.

16

The reduction constructs five input strings for MD-DPD: Sy = A000B (the auxiliary string),
S1 = A100BA010BA001B (encoding of e1), So = A100B (e3), S3 = A100BA010B (e3) and
Sy = A001B (e4). The separators are: A = ajasas and B = b1bybs. The MD-DPD instance
asks whether there is a degenerate primer of length £ = 3 -3 = 9 and degeneracy at most
d = 22 = 4 that matches all five input strings. The primer P = A{0,1}0{0,1}B satisfies
these conditions. It is easy to observe how P corresponds to the aforementioned solution
of MSC.

It is quite clear from our construction how to obtain an adequate primer given a solution
to MSC. Suppose Cj,,...,C}, is a set cover, ie., Ule Cj, = U. As demonstrated in the
example, the primer P = Sy U U';:l AG;,B is a valid solution to the MD-DPD instance.
The degeneracies in P are all due to the union of Gj,’s. In other words, we could write:
P = Agig2...9.B, where g; = {0,1} if i € {j1,...,5¢}, and ¢g; = 0 otherwise. Hence,
there are exactly ¢ degenerate positions of the form {0,1} in P (one per subset in the set
cover). Thus, d(P) = 2!, as required. For 1 < i < u, let C;, be a subset in the set cover
that contains e;. Then, the corresponding string S; contains the substring AG;, B, which P

matches. Since P obviously matches Sy, it follows that it matches all the input strings.

To complete the proof, we now tackle the less obvious task of constructing a solution to MSC
given a solution to the corresponding instance of MD-DPD. Let P = pips...pr (k = 3¢) be
a primer of degeneracy d that matches all the input strings (in this reduction d = 2¢, but for
reasons we shall convey later, we show how to construct a set cover of size |log, d| given a
primer P of degeneracy d, for any d). W.l.o.g. d < 2¢, since the primer A{0,1}{0,1}...{0,1}B
(i.e., A followed by c¢ degeneracies of the form {0, 1}, followed by B) matches all the input
strings, and its degeneracy is 2. Sy C P, since P matches the auxiliary string Sy, and they
have the same length. Consider a match between P and an input string S;, 1 <7 < wu. Sup-
pose P matches the substring M = X AY in S;, where X and Y are substrings, and | X| > 0.
From the way S; was constructed, we know that X terminates with the character b.. There-

fore, P contains at least ¢+ 1 degenerate positions — the positions of the substring b.A in M:

S[) = a1l ...vn aCOO
M =b.ay Ao v

Thus, the degeneracy of P is at least 2°T!, which disagrees with d. We get a similar con-
tradiction if M is of the form Y BX, where X is, again, a non-empty substring. The only
way P can have degeneracy not larger than 2¢ is if it matches a substring M = AG;, B in §;
(i.e., the match is aligned with the separators). Of course, this must be true for all S;’s, that
is, P matches substrings AG;, B,...,AGj, B in Si,...,Sy, respectively. Hence, w.l.o.g. all the
degeneracies in P are of the form {0, 1} (other degeneracies do not contribute to the coverage
of the primer, so we can omit them), and d = 2°, § < ¢. The solution to MSC is clear now —
it is the set C' = {C},,...,C},}. C' covers U, since for each 1 < i < u, P matches S;, and so

17

e; € Cj,. Finally, |C'| = 6, since each unique member Cj, in C’ corresponds to a degeneracy
at position j, in P. Specifically, given that d(P) = 2, there are exactly ¢ distinct subsets of

U in C', as required.

We shall now show that MD-DPD is N'P-Complete even if we limit the size of the alphabet
to 3. In the above reduction, |X| = 2c¢ + 2, so we can therefore transform any character
in ¥ to a unique binary string of length [= [logy(2c + 2)]. Define ¥’ = {0,1,2}, and
transform the strings the reduction constructs to strings over ¥, by replacing each character
by [+ 1 characters as follows. Replace the character 0’ by '200...0" (a ’2’, followed by [
0’s), replace ’1’ by ’2100...0’ (a ’2’, followed by a 'l’, and then [— 1 0’s), and replace every
other character in 3 by 2z1zo...x;", where ’z12o...2; is a distinct string of 0’s and 1’s,
and ’z1xsy ... x;" is neither ’000. . .0’ nor '100...0’. In this ternary encoding, the input strings
are [+ 1 times longer, and so is the length of the primer we seek: k' = k(I + 1) = 3¢(l + 1).
Notice that the Hamming distance between the string that represents a ’0’ and the string
that represents a '1’ is one. Thus, the degeneracy of the primer we construct in the proof
remains unchanged: d' = d = 2!, since all the degeneracies we had were of the type {0,1}
(in the ternary encoding, these degeneracies become '2{0,1}00...0’). In addition, a match
between a valid primer P’ of degeneracy 2° (§ < ¢) and an input string must be aligned
according to the 2’s at the beginning of each character encoding — otherwise, the primer has
a degeneracy at least 2% (the reason is that Sy C P’, so if the 2’s are not aligned, P’ contains
a degenerate position wherever it matches a '2’ in the input string), but 2¥ > 2¢, which is
a contradiction. Consequently, the proof of the correctness of the reduction applies for the

Y'-encoded strings, as well. [|

Note that the theorem implies in particular that MD-DPD remains NP-Complete in case
of the 4-nucleotides genomic alphabet. Using the reduction above, we can apply a known
hardness result of MSC to show that MD-DPD is hard to approximate, as well (though on
a different scale). Denote by ¢, the value of an optimal solution to an instance of MSC.
Given this instance, our reduction builds an instance of MD-DPD with an optimal degener-
acy d, = 2. Suppose there exists a polynomial approximation algorithm for MD-DPD that
guarantees a solution with degeneracy d < dS, for some a > 1. As we have shown in the
proof, given a primer of degeneracy d that covers all the input strings, we can construct a
solution to MSC of size |log, d|. Since d < d¥ = 2% we get a set cover of size at most at,.
However, unless P = NP, MSC is not approximable in polynomial time within ¢ - logu, for
some ¢ > 0 [28], and, therefore, @ > c¢-log(n—1). In other words, it is difficult to approximate

the number of degenerate positions, denoted §(P), within some logarithmic factor.

Corollary 15 Assuming P # NP, there exists a constant ¢ > 0 such that there is no
polynomial-time algorithm for MD-DPD, which is guaranteed to create a solution in which

the number of degenerate positions is within a factor of c¢-logn of the optimum. -

18

3.3.3 Minimum Degeneracy DPD with Errors

In Section 3.2, we saw that combining MC-DPD and MD-DPD results in a simple polynomial
problem, designated FCFL-DPD (Theorem 10). If we generalize this problem by allowing
up to one mismatch between the primer and every input string, we get a special case of
MD-EDPD, which is N'P-Complete, as we shall now prove.

Theorem 16 MD-EDPD is N'P-Complete for |X| > 2, even if e = 1 and all input strings
are of length k.

Proof: This time, we shall show a reduction from Minimum Vertexz Cover (MVC, in
short) ([21], [13, GT1]).

MVC: Given a graph G= (V, E) and a positive integer ¢, is there a vertex cover of size ¢
in G? (i.e., is there V! C V such that |V'| = ¢, and every edge in E has an endpoint in V'?)

Given an instance of MVC, we construct an instance of MD-EDPD over ¥ = {0, 1} as follows.
For each edge e € E, we prepare a binary string S, of length |V| 4+ 1. The string S, begins
with a ’0’, followed by an encoding of the endpoints of e, as in Section 3.3.1, namely, 1’s
in the two positions that corresponds to the endpoints, and 0’s elsewhere. In addition, we
construct an auxiliary string Sp = 100...00 (a ’1’ followed by |V| 0’s). For example, if
|V| =4, and G contains two edges: e; = {v1,v2} and ez = {v1,v4}, then we construct three
input strings for MD-EDPD: Sy = 10000 (the auxiliary string), S; = 01100 (encodes e;), and
S = 01001 (e2). Finally, we set k = |V |+ 1, d = 2% m = |E| + 1 (full coverage), and e = 1.

Suppose V' is a vertex cover of size c. Let P be a primer that contains degeneracies at the
positions that correspond to the vertices of V', and 0’s elsewhere. In our example, V' = {v;}
is a vertex cover of size ¢ = 1, and P = 0{0, 1}000 is its corresponding primer. The degeneracy
of P is exactly 2°. For every edge e € E, P matches S, with one mismatched position (if
only one endpoint of e is in V') or with no mismatches at all (if both endpoints are in V).
There is also only one mismatch between P and Sy, occurring at the first character. Thus, P

matches each of the m input strings with no more than one mismatch, as required.

Conversely, suppose the primer P = popi ... p)y| is a solution to MD-EDPD with degeneracy
d = 2°. We shall prove that G has a vertex cover of size c. The following claim is needed for

the proof of the theorem.
Claim 17 If the MD-EDPD instance we constructed has a solution P, then it has a so-

lution P’ that begins with a ’0’ and does not contain 1’s, i.e., P' = Op’l...pfv‘, and p) is
either {0} or {0,1}.

19

Proof: To prove the claim, denote by ¢; (¢;) the number of mismatches between P (P')
and the i-th input string (0 < i < |F|). Let us examine py, the first position in P. First,
if po = 0, then P cannot contain 1’s — otherwise, it would have at least two mismatches
with the auxiliary string Sy, i.e., g > 2. Thus, in this case we simply set P’ = P. Sec-
ond, if pg = 1, then P may contain another 1’ (but not more than one, due to Spy), and
V1 <i < |E|, t; =1 (a mismatch at the first position). If py is the only ’1’ in P, then we can
set pj, = 0 and V1 < i < |V|, p} = p; (i.e., we only change the first position in P from 1’ to
'0’), and we get: t, = 1 (P’ has a mismatch with Sy at the first position), and V1 < i < |E|,
t; = 0, as required. If, on the other hand, P contains an additional ’1’, say p; = 1, then we
change it to ’0’, too, and it is easy to see that: VO < ¢ < |E|, t; = 1 (in Sp, the mismatch
was moved from position [to position 0; in all other S;’s, the mismatch was moved from
position 0 to position 7). Finally, if py = {0,1}, then, as in the previous case, there could be
only a single additional '1” in P. Again, we set pj) = 0 and V1 < ¢ < |V, p} ={0,1} if p; =1,
and, otherwise, p; = p;. In other words, we set the first position to ’0’ (instead of a degen-
eracy), and we change the single "1’ if it exists, to a degeneracy. Notice that d(P') = d(P)
or d(P') = d(P)/2 (the latter is true if P does not contain 1’s). Comparing the number
of mismatches of both primers shows that tf] =1land Vl <i < |E|, t; < t;. In any case,
we obtained a primer P’ that covers all the strings with up to one mismatch, and whose
degeneracy is not higher than that of P. Hence, P’ is a valid solution, p{; = 0 and P’ does

not contain 1’s, as required. [|

We now complete the proof of Theorem 16. According to the claim above, MD-EDPD
has a solution P’ with degeneracy 2, s.t. pg is ’0’ and P’ does not contain 1’s (that is, P’ is
entirely made up of 0’s and {0, 1}’s). We can now construct a vertex cover of size ¢ for G by
simply choosing all the vertices that correspond to degenerate positions in P’. It is easy to
see why this is indeed a vertex cover: for each edge ¢ € E, P’ matches S, with zero or one
mismatches, and, therefore, P’ contains a degeneracy at least in one of the positions that

correspond to the endpoints of e. [|

Using Theorem 16 we can establish an inapproximability result for MD-EDPD, even in
the special case of e = 1. Hastad has shown that, unless P = NP, MVC is not approximable
within a factor of 1.1666, or more accurately, within 7/6 — ¢, for any € > 0 [18]. Very recently,
this hardness bound was improved to 1.36, or 10y/5—21 [7]. Given a primer with ¢ degenerate
positions, our reduction constructs a vertex cover of size ¢ for the corresponding instance of
MVC. Hence, we deduce that the number of degeneracies cannot be approximated within a

constant factor of 1.36.

Corollary 18 Assuming P # NP, the number of degenerate positions in MD-EDPD, when
we allow one mismatch between the primer and each input string, is not approrimable within

a factor of 1.36 in polynomial time, even when all strings are of length k. -

20

3.3.4 Minimum Primers DPD

In the previous section we studied the complexity of a variant of MD-EDPD, which is a
generalization, by allowing mismatches, of FCFL-DPD. Another possible generalization of
this problem is the MP-DPD problem, in which we seek several primers, rather than just one
primer, that together cover the whole set of input strings. In this section we prove that this

problem is N'P-Complete.
Theorem 19 MP-DPD is N'P-Complete for |3| > 2.

Proof: Our proof is based on a reduction from Minimum Bin Packing (MBP, in short) ([13,
SR1)).

MBP: Given [positive integers ai,...,a; (the items), and two additional integers c¢ (the
capacity) and b (the number of bins), can the items be partitioned into b subsets, each with

a total sum of at most ¢?

MBP is Strongly NP-Complete, i.e., there exists a polynomial p, s.t. MBP remains N P-
Complete even if any instance of length [is restricted to contain integers of size at most p(l).

We shall assume this restriction in our reduction.

Given an instance of MBP, we construct an instance of MP-DPD over ¥ = {0, 1} as follows.
Let A = Zézlai. For each item a; we prepare a binary string S; of length A. Let A; be the
sum of the first ¢ — 1 items, i.e., A; = 2;;%%. The string S; consists of a prefix of A; 0’s,
followed by «a; 1’s and a suffix of 0’s:
Sizsﬁsé...sf‘], s =

J

1 A <j<A;i+a;
0 otherwise

Finally, we set k = A, d = 2¢, and the target number of primers p = b, i.e., we ask whether
there are b primers of length A and degeneracy 2¢ that match all [input strings. Figure 3.3
illustrates the reduction for a small example. Note that the reduction is polynomial, since
all the integers in the input of MBP are bounded by p(l).

Given a solution to MBP — By, ..., By, we construct a solution Py,..., P, to MP-DPD as
follows. Let T; be the set of positions at which S; contains 1’s, i.e., T; = {4; +1,..., A+ a;}.
For bin B; = {a;,,...,a;,}, we construct the primer P; that matches the corresponding

strings S;,,...,S;,:

o . 0,1 €T, UT;, U...UT;
By =pipy-- Pl s p;-z{{ b e VT, '

0 otherwise

21

Minimum Bin Packing Minimum Primers DPD
Input: | =4, ¢c=5,b=2 Input: n =4,k =10,d =25 p=2

a1 =2 S1 = 1100000000

as =1 = So = 0010000000

az =3 S3 = 0001110000

ag =4 Sy = 0000001111

U

Solution: Solution:

Bin 1: aq, a3 — P = xx0xxx0000

Bin 2: a9, a4 Py = 005000 %%

Figure 3.3: Illustration of the reduction from MBP to MP-DPD.

The number of degenerate positions in P; is |T;, |+...+|T;,| = ai, +...+ai, < ¢, as required.
Obviously, since every item belongs to one of the bins, every string S; is covered by one of

the primers.

Conversely, let P, ..., P, be a solution to MP-DPD. Suppose F; contains the character "1 at
position 7, and j € T,,. Then, P; matches only the string S,,, since all other strings contain
a ’0" at position j. W.lLo.g., a,y < ¢ (otherwise, there is clearly no solution to MBP), so we

can replace P; by a different primer — P/

', which consists of degeneracies at positions T,

and 0’s at the rest of the positions. The degeneracy of P/ is at most 2° and it matches Sy,
just like P;. Therefore, we can assume w.l.o.g. that the primers Py, ..., P, consist only of 0’s
and degeneracies. It is now clear how to construct a solution for MBP. For each primer P,
we create a bin B;. If positions T} are degenerate in the primer P;, then we add item a; to
bin B;. The sum of the items we insert into a single bin B; is at most ¢, as each degenerate
position in P; contributes at most 1 to this sum. Finally, since each string is covered by at

least one primer, it follows that the bins we obtain contain all the given items. [|

Suppose we describe MBP and MP-DPD as optimization functions, rather than decision
problems, where the number of bins and the number of primers, respectively, are to be
minimized. Then, the above reduction is, in effect, an L-reduction that preserves the target
value — a solution with b bins to an instance of MBP is transformed into a solution with b
primers to the corresponding instance of MP-DPD, and vice versa. MBP is not poly-time
approximable within a factor of 3/2 — € for any € > 0 [13]. Unfortunately, this result does not
hold when the input to MBP consists of integers bounded by a fixed polynomial — there are
no nontrivial inapproximability results for the strongly NP-Hard version of Bin Packing [20].

Therefore, we cannot apply the L-reduction to prove that MP-DPD is hard to approximate.

22

As noted earlier, if p = 1, MP-DPD becomes FCFL-DPD, which is a polynomial problem
(see Section 3.2). For d = 1, that is, when no degeneracies are allowed, MP-DPD is the Primer
Selection Problem, which is NP-Complete if the input strings are of arbitrary length [31],
and polynomial if they are all of length & — the number of primers required is simply the

number of unique input strings. Several hardness and inapproximability results for variants

of PSP are given in [8].

23

Chapter 4

Approximation Algorithms

In the previous chapter we proved that many DPD variants, certainly the most interesting
ones, are N'P-Complete. Thus, unless P = NP, there are no efficient exact deterministic
algorithms for these problems. Even if we apply sophisticated optimization techniques, such
as branch and bound, the algorithms will still not have a polynomial running time, and will
thus practically be limited for small instances. In order to handle large inputs, we must
compromise, either on the exactness of the solution, or on the deterministic nature of the
algorithm, or both. We can develop an efficient approximation algorithm that guarantees
good, though not optimal, solutions. Hopefully, we could also compute its approximation
ratio, i.e., give a lower bound on the quality of the solution with respect to the optimal one.
Alternatively, we can employ a randomized algorithm, which gives the optimal solution in high
probability. Finally, a common approach is to design heuristics to improve the performance

in practice. While lacking theoretical basis, heuristics often yield satisfactory results.

In this chapter we focus on MC-DPD. We developed polynomial approximation algo-
rithms with provable approximation ratios for MC-DPD, when |X| = 2. We implemented
a heuristic for the general DPD problem, which is based on our approximation algorithms,
and applied it to experimental data (see Chapters 5 and 6). Before exploring the proper-
ties of these algorithms, we shall discuss a couple of simple approximation methods. Unless
stated otherwise, we shall assume the binary alphabet ¥ = {0,1}, for which the number of
degenerate positions in a primer is always 6(P) = log, d(P). An algorithm is said to yield an
approximation ratio r (r > 1) if the primer it constructs is guaranteed to match at least m,/r

input strings, where m,, is the coverage of an optimal solution.

24

4.1 Simple Approximations

Denote by M (P) the set of input strings matched by a primer P. Let P° be an optimal
solution with degeneracy d to an instance of MC-DPD. Like any other primer with degener-
acy d, P° is a union of d non-degenerate primers (strings of length k): P? = ngl P', where
P'....,P?% constitute all the non-degenerate sub-primers of P°, and M (P°) = Ufl:l M(PY).
Let P™ be a sub-primer with the largest coverage, i.e., |M(P™)| = max?_, {|M(P?)|}. Then,
obviously, |M(P°)| < d-|M(P™)|. It is now clear how one can obtain a d-approximation
to P: Simply traverse all k-long substrings of the input strings, and choose a substring Py that
matches a maximum number of input strings. Since |[M(P™)| < |M(P)|, we get: |M(Py)| >
|M(P°)|/d. The algorithm runs in time O(kL?), where L is the sum of the lengths of the
input strings (in MC-DPD, L = nk). The running time can be reduced to O(kL) using a
hash table to store the number of strings matched by each substring. Notice that the output
of the above algorithm is an optimal non-degenerate primer Py, and its approximation ratio
is d. We can improve the algorithm by finding the optimal primer P, with « degenerate
positions (1 < a < logyd). P, approximates MC-DPD within a factor of d/2%, since the
optimal primer P° can be represented as a union of d/2“ sub-primers, each one with degen-
eracy 2°, s.t. the set of strings covered by P is the union of the sets of strings that match

the sub-primers. Unfortunately, finding P, takes exponential time with respect to a.

We now describe another algorithm, which starts with a completely degenerate primer,
and gradually “contracts” it. Let P* be a completely degenerate primer of length % and
degeneracy 2F. P* covers all the input strings: |[M(P*)] = n. We shall now reduce the
degeneracy of P* to d, by replacing k — ¢ (§ = log,d) degenerate positions with simple
characters. Denote by PF (i € {0,1}) the primer that begins with the character i, followed
by k — 1 degeneracies. For example, if & = 3, then Pé“ = 0xx and Pllc = 1xx. Clearly,
M(P*) = M(PF)u M (PF), so by choosing either PF or P we get a primer whose coverage is
at least n/2. Similarly, we can de-degenerate, or refine, the second position in the primer, i.e.,
replace it with either ’0’ or ’1’, whichever is better, and obtain a primer with degeneracy 2¥—2
that matches at least n/4 input strings, etc. After k — § steps we have a primer with the
required degeneracy d, whose coverage is at least n/2¥~9, and therefore at least m,/2F 9.
The total running time of the algorithm is O((k — d)n), as it suffices to examine the first

(k — §) characters in each input string.

Combining the two approximation algorithms we have just described, we can approximate
MC-DPD within a factor of 25/2: if § < %, we run the first algorithm; otherwise, we execute

the second algorithm. In summary:

Proposition 20 MC-DPD can be approzimated within a factor of 28/% in time O(kL).

25

4.2 Approximating the Number of Unmatched Strings

In this section we describe three approximation algorithms — CONTRACTION, EXPANSION and
CONTRACTION-X. Unlike the previous algorithms we studied, these algorithms approximate
the number of unmatched strings. In other words, instead of expressing MC-DPD as a
maximization problem, we now treat it as a minimization problem, designated MC-DPD*, in
which the goal is to minimize the number of input strings that the primer does not match,
rather than maximizing the number of strings it does match (we now look at the empty half
of the glass). This does not alter the optimization problem, only the way in which we measure
the quality of the approximation. We say that an algorithm approximates MC-DPD* within
ratio r (r > 1) if the number of strings not covered by the primer it designs is no more

than ru,, where u, is the optimal solution value.

The CONTRACTION and EXPANSION algorithms construct the column distribution ma-

triz D(b, 1) that holds the number of appearances, or count, of each character at each position.

Formally, denote by S7 = 3{3‘% . si the j-th input string, 1 < 5 < n , then:

VbeS, 1<i<k D(bi)=|{j]|s] =0}

Let P° = p9p$...py be an optimal primer of degeneracy d, with 0 = logyd degenerate
positions. Suppose P° covers m, input strings. Denote by u, the number of strings that P°
does not match, u, = n — m,. Clearly, Vb ¢ p¢ , D(b,7) < u,, and for each non-degenerate
position i in P°, D(p?,i) > m,. Since P° contains k — § non-degenerate positions, it follows
that there are £ — § (or more) columns in D with a value at least m,. Given a column
distribution matrix D, we define the leading value of column 4, denoted v(7), as the largest
value in that column: v(7) = max{D(b,%) | b € £}. Similarly, the leading character of column i
is a character c¢(4), whose count is the leading value: D(c(i),i) = v(4). Let v(i1) > v(iz) >
... > v(ig) be the leading values in D, sorted from largest to smallest. The following lemma

follows from the discussion above.

Lemma 21 If P° covers m, strings, then v(ix—g) > m,.

4.2.1 The CONTRACTION Algorithm

The first algorithm we describe is called CONTRACTION. The algorithm selects the k — §
largest leading values in D, and sets the output primer P to contain the k — ¢ corresponding

leading characters, and degeneracies at the rest of the positions, i.e.:

C(Z) 1€ {il,...,ik_(g}

Vi<i<k , pf=
- b { {0,1} otherwise

26

An alternative way to describe CONTRACTION is as follows. The algorithm starts with a
fully degenerate primer, and contracts it iteratively (hence, its name). In each iteration, the
algorithm discards the character with the smallest count. In other words, it examines all
the remaining degenerate positions, chooses a position ¢ that contains a character b, whose
count D(b,i) is smallest, and removes b from position ¢ in the primer. The algorithm stops
once the degeneracy of the primer reaches d. In a sense, this is a smart variation of the

simple 2F—0

-approximation algorithm we saw in the previous section — CONTRACTION uses
the column distribution matrix to guide it in selecting good positions to refine, instead of

choosing them arbitrarily. Figure 4.1 illustrates an execution of CONTRACTION.

Input: n =8, k=09,d=2*
S1: 011010101 Column distribution matrix D:
S2: 010010000 — 4 21 6 05 3 7 4
S3: 111010100 4 67 2 8 3 5 1 4
S4: 011111001
S%: 111010101)
S6: 001111100
S7: 101011110 Output:
S8: 111010001 P x 1 1 0 1 * % 0 x

Figure 4.1: Example of an execution of CONTRACTION on eight strings. The five (= k — ¢)

largest leading values in D are marked in bold face. The primer P€ covers four input strings —
St, 83, 8% and S8.

The running time of CONTRACTION is linear in the length of the input — O(nk), since
this is the time it takes to compute the column distribution matrix D, and the k& — § largest
leading values can be found in time O(k) [3, 9]. It remains to prove the approximation
ratio. At each degenerate position, the primer P¢ has no mismatches with the input strings.
Therefore, these positions do not affect the coverage of the primer, and we can ignore them in
our analysis. According to Lemma 21, v(i1),...,v(ig—s) > m,. Thus, at each non-degenerate
position P¢ has a mismatch with at most u, input strings. The total number of strings P¢
does not match cannot exceed the sum of the number of mismatches at each position, which

is bounded by (k — d)u,. In conclusion:

Theorem 22 CONTRACTION approzimates MC-DPD* within a factor of (k—9) in time O(nk).

27

4.2.2 The EXPANSION Algorithm

The second algorithm, called EXPANSION, performs n iterations. In each iteration, it expands

(degenerates) an input string. In the j-th iteration, EXPANSION computes the matrix D;-:

0 sl =0

vbe{0,1}, 1<i<k , D.(bi)=
0.1} - (.9 {D(b,i) otherwise

Intuitively, D;-(b,i) is the number of strings that will be mismatched due to setting the

i-th position in the primer to sg while their ¢-th position is b. EXPANSION then selects
!
] J
create a primer P/ = p] ...p;, as follows:

v1gigk,pi:{{0’1} i € {i1,...,is}

(2 .
s’ otherwise

2

the ¢ largest leading values in D} — wj(i1),...,v;(i5), and uses them to expand SJ and

The output of the algorithm, P¢, is the best primer P/ it found in the n iterations.

Input: n=8,k=9,d=2%

S1: 011010101 Column distribution matrix D:
S2: 010010000 — 4 21 6 0 5 3 7 4
S$3: 111010100 4 6 7 2 8 3 5 1 4
... (as in Figure 4.1) (8
Starting string: S' = D 0 0 30

0 1 0

Starting string: S = D: 0 2 0 0 0 0 0 0 0

P2« 1 %« 01 0 % 0 =x

Figure 4.2: Illustration of the first two iterations of EXPANSION on the eight strings from
Figure 4.1. The four (= 4) largest leading values in D" are marked in bold face. The expansion
of S' (P') covers four strings, and is identical to the primer constructed by CONTRACTION.
The expansion of S? (P?) covers five input strings — S!, §2, 3, §°, and S®.

28

Denote by m. and m, the number of strings covered by the primers P¢ and P¥¢, respec-
tively. Lemma 23 establishes that P¢ is at least as good as P¢, and, therefore, EXPANSION also
guarantees a (k—d)-approximation to MC-DPD*. In fact, as the lemma implies, in some cases
EXPANSION may find a better primer than CONTRACTION, as demonstrated in Figure 4.2. On
the down side, EXPANSION is slower — its running time is O(n?k), dominated by the coverage

computation of the n primers it constructs.

Lemma 23 m, > m..

Proof: Let S7 be a string covered by P°. We shall prove that EXPANSION expands S7
into P¢, i.e., P/ = P, which implies m, > m.. Let v(i1),...,v(it_s) be the k — § largest
leading values in . CONTRACTION sets positions ¢y, ..., %,_gs in P¢ as the corresponding char-
acters in S/, and the rest J positions in P¢ are degenerate. Since |S| = 2, each column in D
has two entries, whose sum is n. Therefore, the complement characters of ¢(i1), ..., c(ix_g)
have the smallest count in D, so the § largest counts in D;- cannot be in those columns. In
other words, the § leading values selected in the j-th iteration of EXPANSION are from the
columns: {1 <4 <k |i#11,...,i, s} Thus, P/ is exactly P¢. Note that if different charac-
ters have equal counts, the proof does not hold. We can easily fix this, by modifying the sort
functions of the algorithms, so that leading values with equal counts are sorted according to

their column index in ascending (descending) order in CONTRACTION (EXPANSION).]

Corollary 24 EXPANSION approzimates MC-DPD* within a factor of (k—6) in time O(n?k).

4.2.3 The CONTRACTION-x Algorithm

We now present an improved version of CONTRACTION, called CONTRACTION-X, that yields
better approximations at the expense of longer running times. A similar improvement could
be developed for the EXPANSION algorithm, as well. The main idea we employ is to examine
several positions simultaneously, and decide which are best to refine (i.e., de-degenerate),
instead of checking the distribution at each position separately. Formally, let = be a pre-

defined integer, 1 < x < k — §. For simplicity, assume z | (k — §). Denote by b= (by,...,b,)

a binary vector of length z, or z-tuple, and denote by i = (i,...,iz), 1 < ij < k, a set
of z distinct positions. Define the multi-column distribution matriz M D(b,4) as the count of
the z bits of b at positions 41,...,%, in the input strings, i.e.:

MD((b,...,bz),(01,..-,iz)) = {7 | S‘ZI =by, ..., ng = by }|

29

Let P° be an optimal primer, and denote by wu, the number of input strings it does
not match. CONTRACTION-x starts with a completely degenerate primer, P* = p7...py,
pj = {0,1}, and iteratively refines it. In the first iteration, it selects an z-tuple with the
largest count and sets the x corresponding positions in the primer to contain the bits of the
z-tuple. In other words, if MD(¥/,4') = max{M D(b,7)}, then: V1 < j < z , pp = b5 In
the next iteration, CONTRACTION-X continues to refine P”* in a similar fashion. It examines
all z-tuples in positions that are still degenerate, i.e., that were not refined in the first

iteration, selects an z-tuple with the largest count, and sets the corresponding positions

in P? accordingly. The algorithm performs % iterations, as above, and reports the obtained
primer P*. Since in each iteration it refines £ new positions, the output primer contains
exactly d degeneracies, as required. If z { (k — J), and denote r = (k — d) mod z, then
CONTRACTION-X performs Lka‘sj iterations as above, and an additional iteration, in which
it refines only r positions, that is, it computes the count of every r-tuple at each subset
of r positions that are still degenerate, selects the largest one, and refines those positions

accordingly.

A sample execution of CONTRACTION-X on seven input strings, with £k = 7, 6 = 3 and
x = 2, is illustrated in Figure 4.3. Notice that for x = 1, CONTRACTION-X is identical to
CONTRACTION. In the other extreme case, when x = k£ — §, CONTRACTION-X effectively
considers all k-long primers with § degeneracies, and it therefore always yields an optimal
primer. The multi-column distribution matrix is also utilized in Multiprofiler, a motif finding

algorithm that has recently been reported to detect particularly subtle motifs [22].

Theorem 25 CONTRACTION-X approximates MC-DPD* within a factor of [?] in time
O((5)n(k = 8)) and space O((%)n).

Proof: Suppose that x | (k — 0). Let us examine the j-th iteration of CONTRACTION-X.
At the beginning of the iteration, the primer P* contains at least § + x degenerate positions
(actually, it contains exactly k& — (5 — 1)z degeneracies). W.lLo.g., P° contains exactly §
degeneracies (otherwise, we can add degeneracies to it, without changing its coverage). Thus,
there are at least x degenerate positions in P* that are not degenerate in P°. Denote them

i1,...,%z. P° does not match u, input strings, hence:

max{MD(l_),{)} > MD((p7,...,05.), (i1y. . iz)) >0 — U,

Therefore, in each iteration, CONTRACTION-X refines x positions, s.t. the z-tuple it sets at
these positions has mismatches with at most u, input strings. The total number of strings
P7? does not match is, in the worst case, the sum of the number of mismatched strings in each
iteration, which is at most ?uo. If z 4 (k —0), the algorithm performs {?J + 1 iterations,

so the number of strings P* does not cover is at most [kT“s]uo.

30

Input: n=7k=7d=23

St 1100101 Bi-column distribution matrix M D:
§?%: 1100000 = 121314]... [36]...]67
S$3: 0111000 001 0 0 0 1|...] 5 4
S%: 1000100 021 1| 1] 11]...70 2
§%: 1110111 0l 2|56 /]...]1 0
S6: 1000001 114110 1 1
S7: 1100100

I Tteration 1
Pr: 1 % %« 0 % x %
I Iteration 2

Output: Pr: 1 % 00 x 0 x

Figure 4.3: Example of an execution of CONTRACTION-X (z = 2) on seven strings. The largest
bi-column count is M D((1,0),(1,4)) = 6, so the first iteration refines positions 1, 4 to ’1’, ’0’,
respectively. Ignoring positions 1 and 4, the largest remaining count is M D((0,0), (3,6)) = 5.
Thus, in the second iteration positions 3 and 6 are set to ’0’. The output primer covers five
input strings — S', §2, %, S% and S7.

The matrix M D contains 2% (’;) entries, and can be computed in time O(2” (’;)nx) Since
M D might be sparse, especially when z is relatively large, a more efficient representation of
MD in terms of time, as well as space, is an array A of (];) hash tables — the entry A(7)
in the array contains a hash table with the counts of all z-tuples that appear at positions
in the input strings. For each 7 C {1,...,k},|i| = z, and for each input string, we add the
z-tuple at positions 4 in the string to the hash table A(i) (with an initial count of 1), or
increment the count of the z-tuple if it already exists in A(:). A contains the count of a
total of O((i)n) z-tuples. The construction of A takes O((’;)nm) time and space. In each
iteration of CONTRACTION-X we find a pair (b,%) with the maximum count in the sub-matrix
of M D induced by the degenerate positions in P (i.e., we ignore a column i = (i1, ..., i)
if 37, s.t. pfj # {0,1}). A single iteration can be performed in time linear in the size of A,
or O((’;)nx) — for each of the O((’;)n) entries in A, we check in time O(z) whether its x
positions are still degenerate in P*, and find the largest count among all those entries. The
total running time is, thus, O((k)n(x + 2[£=97)), or O((];)n(k —9)).

T T

31

4.2.4 Non-Binary Alphabets

So far, we have discussed several approximation algorithms for MC-DPD when |¥| = 2. How-
ever, in many real-life applications the alphabet is not binary, as is the case when designing
primers for genomic sequences (|X| = 4). The simple approximations described in Section 4.1
are easily generalized to large alphabets, as we shall now show. Let P° be an optimal primer
of length k and degeneracy d for a given set of n strings over ¥. Let m, be the coverage
of P°. The primer P?° is a union of d non-degenerate primers, and the number of strings
covered by P° is at most the sum of the coverage of these non-degenerate primers. Hence,
an optimal non-degenerate primer, which is simply a k-long substring that appears in the

largest number of input strings, covers at least m,/d strings.

As in the binary case, we can also devise a simple contraction algorithm for non-binary
alphabets. For convenience, denote o = ||, and ¢’ = |[log, d|. A completely degenerate
primer of length & has degeneracy o and coverage n. By replacing the first degeneracy in
the primer with a simple character (one that gives the largest coverage) we get a primer with
degeneracy o' that covers at least n/a strings. We similarly refine positions 2,...,k — &',
and obtain a primer with degeneracy at most d and whose coverage is at least n/ af9"and

therefore at least m,/a*=% .

Both algorithms we have just outlined run in time O(kL), as explained in Section 4.1.
Combining them, we get a |S|[*/2l-approximation algorithm for MC-DPD: if d > |x|/%/21,
then o= < |B|l#/21 so we run the second algorithm; otherwise, we run the first algorithm

(compare to Proposition 20). In general:

Proposition 26 When |X| > 2, MC-DPD can be approzimated within a factor of |%|/k/?]
in time O(kL).
|
Unfortunately, the results we obtained in Section 4.2 for the CONTRACTION and EXPAN-
SION algorithms do not hold for non-binary alphabets. There are two complications in large
alphabets. First, there is more than one possibility for a degenerate position. When |X| = 2,
every degenerate position in the primer is {0, 1}, whereas when |¥| > 2 we need to choose
one among several possible degeneracies (subsets of ¥ with more than one character) at each
degenerate position. Second, there is the additional complexity in deciding how to partition
the degeneracy between the positions. In the binary case, the degeneracy is always of the
form 29, where ¢ is the number of degenerate positions. However, when |¥| > 2, the number
of degenerate positions could be any one of many values. For example, if d = 16 and |X| = 4,
there may be four degenerate positions (each one with degeneracy 2), three (4,2,2), or only
two (4,4). In the next chapter, we describe heuristics for MC-DPD with non-binary alphabets
that are based on CONTRACTION and EXPANSION, and perform well in practice.

32

Chapter 5

Implementation:

The HYDEN Program

We developed and implemented an efficient heuristic, called HYDEN [1], for designing highly
degenerate primers. The input to HYDEN is a list of DNA sequences and a set of integers that
specify the length of the primer, its maximum degeneracy, and the number of mismatches it is
allowed to have with every sequence it covers. HYDEN constructs a primer with the specified
length and degeneracy that covers many of the given sequences. It does so by running
a 3-phase algorithm, outlined in Figure 5.1. In the first phase, HYDEN locates conserved
regions in the DNA sequences by finding ungapped local alignments with a low entropy
score. In the second phase, it designs primers using variants of the CONTRACTION and
EXPANSION algorithms. Finally, it uses a greedy hill-climbing procedure to improve the
primers, and selects the one with the largest coverage as the output. HYDEN is written in

C++, and runs under Windows and Linux.

HYDEN (I ={S',...,S";k;d;e}):
Phase 1: Ay,..., Ay, < H-Align(I).
Phase 2: Foreach alignment A4;, i =1,...,N, do:

P¢ < H-Contraction(I; A;).

P¢ «+ H-Expansion([; 4;).

Sort primers {Pf, Pf | i=1,...,N,} acc. to coverage.

Phase 3: Foreach primer P € {best N, primers} do:

P+ H-Greedy(I; P).
Output the primer with the largest coverage found in Phase 3.

Figure 5.1: The HYDEN algorithm.

33

Formally, let I = {S',...,S™; k;d;e} be the input to HYDEN, where S' ..., S™ are n
strings over ¥ ={A,C,G,T} with a total length of L characters, and k, d, and e are the
length, degeneracy, and mismatches parameters, respectively. Let N,, Ny, N, and Nj be
additional integer parameters, whose roles will be explained soon. Denote by A an ungapped
local alignment (alignment, in short) of the input strings, that is, a set of n substrings of
length k (actually, A is a multi-set, since it may contain several copies of a substring). Denote
by D, the column distribution matrix of the substrings in A. In order to determine how
well-conserved the alignment is, and thereby estimate how likely we are to construct a good

primer from it, we compute its entropy score, H 4:

k . .

Hae — Da(b,1) 1o D (b, 1)

A Z:ZI bezz o 82 T
The lower the entropy score is, the less variable are the columns of A, and, intuitively, the
greater the chances are for finding a primer that covers many of the substrings in A. The
first phase of HYDEN, called H-ALIGN, exhaustively enumerates all substrings of length k
in the input strings, and generates an alignment for each one, as follows (see Figure 5.2).
Let T = tito ...t} be a substring of length k. In each input string S/, H-ALIGN finds the best
match to 7' in terms of Hamming distance, i.e., the k-long substring 77 of S’ that has the
smallest number of mismatched characters with 7. The substrings T, ...,7™ (one of which
is T itself) form the alignment Ap. After considering all O(L) different substrings in the
input, H-ALIGN obtains O(L) alignments. The N, alignments with the lowest entropy score
are passed to the second phase. H-ALIGN runs in time O(kL?). Fortunately, a few simple
heuristics, which we describe below, reduce the running time considerably with marginal

impact on the quality of the results.

H-Align (I):
Foreach k-long substring 7" of S',...,S" do:
Ar 0.
Foreach string §7, j = 1,...,n do:
Add to Ag the best match in S7 to T.
D 4, <+ Column distribution matrix of Ar.
H 4, < Entropy score of D 4,,.

Output N, alignments with lowest entropy score.

Figure 5.2: The basic alignment phase in HYDEN.

Let A, C A be an arbitrary subset of an alignment A, |A,| = Nj. Provided that Nj
is not too small, we can use Aj in order to estimate how well-conserved A is, or, in other
words, we may assume that H,, ~ H,. Thus, a more efficient version of H-ALIGN iterates

all k-long substrings, and aligns only N}, input strings to each one. Then, the N, substrings,

34

whose alignments received the lowest (partial) entropy scores, are re-aligned against all n
input strings, their full entropy score, H 4, is computed, and the best N, (< N,/) alignments
are passed to the next stage. If all input strings have approximately the same length, then
this efficient version of H-ALIGN runs in time O(kL(%L + Ng)). Another improvement we
applied exploits the fact that alignments obtained from highly overlapping substrings are very
similar. Therefore, if the alignment we get from a substring s;...s;1x 1 has a high entropy
score, there is no point in checking the next substring: s;41 ... S;4k, as it is highly unlikely to
yield good results, too. In fact, if the entropy score is very poor, we may decide to skip more
than one substring. In practice, this simple idea reduced the running time of H-ALIGN by

another factor of 2-4.

The second phase constructs two primers from each of the IV, alignments. Given an align-
ment A with a column distribution matrix D 4, HYDEN runs two heuristics — H-CONTRACTION
and H-EXPANSION. These algorithms are generalizations of the CONTRACTION and EXPAN-
SION approximation algorithms, respectively, to non-binary alphabets. H-CONTRACTION
starts with a fully degenerate primer, and discards characters at degenerate positions with the
smallest count in D 4 until the primer reaches the required degeneracy, as shown in Figure 5.3.
H-EXPANSION employs an opposite approach. It uses the substring T' € A, from which A was
constructed, as an initial non-degenerate primer, and repeatedly adds to it a character with
the largest count as long as its degeneracy does not exceed the threshold d, as detailed in
Figure 5.4. Notice that the original EXPANSION algorithm repeats this procedure for each
substring in A. However, early experiments demonstrated that if many of the input strings
can be covered by a single primer, there is very little difference between primers obtained by
expanding different substrings in A (data not shown). Therefore, in H-EXPANSION we chose
to expand only one substring from each alignment. Finally, the second phase of HYDEN com-
putes the coverage of the 2N, primers it constructed, and selects the N, (< 2N,) primers
that match the largest number of input strings (with up to e mismatches). The running time
of the second phase of HYDEN is O(N,kL).

H-Contraction (I;A):
Sort the counts: D 4(by,i1) < Da(be,iz) < ... < Dy(byg,iar)-
P <« Fully degenerate primer ; j < 1.
While d(P) > d and j < 4k do:
P' «— P without character b; at position i;.
If d(P') # 0 then P « P'.
j—J+1L
Output P.

Figure 5.3: The H-CONTRACTION algorithm used by HYDEN.

35

H-Expansion (I; A):
Sort the counts: D 4(by,i1) > Da(ba,iz) > ... > Da(byk,iax)-
Let T be the substring from which A was constructed.
P&T; 5+ 1.
While j < 4k do:

P' <~ P with character b; added at position ;.

If d(P') < d then P «+ P'.

j—gj+1
Output P.

Figure 5.4: The H-EXPANSION algorithm used by HYDEN.

The final phase of HYDEN tries to improve the NN, primers found in the previous phase
using a simple hill-climbing procedure, called H-GREEDY. Given a primer P, H-GREEDY checks
whether it can remove a character in a degenerate position in P and add a different character
in any position instead, so that the coverage of the primer increases. This process is repeated
as long as coverage is improving (see Figure 5.5). Denote by r the number of iterations
performed until a local maximum is reached. Then, the running time of H-GREEDY is O(rk3L).
In our experiments, r was almost always below 5. In order to limit the running time in the
general case, one could fix an upper bound 7 on the number of improvement iterations the
algorithm performs, thereby setting the total running time of the third phase of HYDEN
to O(N,7k3L).

H-Greedy (I;P):
P* + P, improved < “yes”.
While improved = “yes” do:
improved < “no”.
Foreach degenerate character (b,7) in P do:
P’ + P without character b at position 1.
Foreach degeneracy (¥',4') not in P do:
P" «+ P’ with character b’ added at position 4’
m(P") < Coverage of P".
If d(P") < d and m(P") > m(P*) then P* < P".
If m(P*) > m(P) then P < P*, improved + “yes”.
Output P.

Figure 5.5: The greedy hill-climbing procedure used by HYDEN. m(P) denotes the coverage

of primer P.

36

HYDEN runs in total time of O(kL(%L + Ng + N,y7k?)). Notice that the input param-
eters d and e are missing from the formula — the reason is that the performance depends
linearly on log d and e, both of which are accounted for in the O(k) factor. As we shall demon-
strate in the next chapter, HYDEN is sufficiently fast for designing a primer of length &£ < 30
for a set of hundreds of DNA sequences, each 1Kbp long. Moreover, by modifying the various
parameters, one can control the tradeoff between the running time of the program and the
quality of the solution it provides. We report concrete running times and parameters in the

next chapter.

HYDEN is a generalization of the (k — d)-approximation of MC-DPD* that we presented
in Section 4.2. If a set of binary strings of length k is supplied to the program, and e¢ = 0,
the alignment phase does nothing (the strings are already aligned), the second phase yields
the approximation (H-CONTRACTION is identical to CONTRACTION when |X| = 2), and the
final greedy phase may further improve the solution. We have no theoretical guarantee on
the performance of HYDEN in the general case, and, specifically, for genomic sequences of
arbitrary length. Nevertheless, as we shall see, the results it produced in practice for the OR

subgenome were highly satisfactory.

37

Chapter 6

Application: Deciphering the

Human OR Subgenome

In this chapter, we describe an experiment for revealing the genomic sequences of many
human olfactory receptor (OR, in short) genes. We shall focus on the role of HYDEN in this
experiment, and analyze its performance. We first acquaint ourselves with a few basic facts
on the OR subgenome, then describe the experimental setup and the results, and finally

provide various analyses of the performance of HYDEN.

6.1 The OR Subgenome

The human sense of smell can detect millions of different odorants — volatile ligands with
diverse chemical structures. Olfaction occurs when odorants bind with receptors of olfac-
tory sensory neurons in the nose. The genes encoding odorant receptors form the largest
super-family in the vertebrate genome, encompassing some 2%-3% of all human genes (see,
e.g., [25]) — roughly 900 OR sequences were found in the first draft of the human genome, of
which more than 50% are considered pseudogenes [14, 42]. Olfactory receptor genes are found
in most human chromosomes [10, 36], and many of them are organized in large clusters [14, 42].
OR genes have a single coding exon of about 1Kbp, and code for seven-transmembrane do-
main proteins [4]. They have several highly conserved regions, primarily in transmembrane
(TM) segments 2 and 7. By contrast, TM segments 4 and 5 show a high degree of variabil-

ity — a crucial feature for recognizing a huge variety of odorants [33].

38

6.2 The DEFOG Experiment

HYDEN was studied and implemented as part of DEFOG — an experimental scheme for DEci-
phering Families Of Genes. DEFOG provides a powerful means for analyzing the composition
of a large family of genes with conserved regions, and is thus especially useful in species for
which little genomic data is available. In addition, DEFOG can be applied to analyze cDNA
libraries of gene families. Given a subset of known gene sequences, HYDEN is used to design
degenerate primer pairs. The primers are then used in PCR procedures to amplify fragments
of genes, known as well as unknown, of the same family. The fragments are cloned, and an
oligofingerprinting (OFP) process [6, 17, 29, 34] characterizes the clones by their patterns of
hybridization with a series of very short (8-mer) oligonucleotides. The hybridization pattern
of a clone is called its fingerprint. Another novel algorithm, called cLICK [37], clusters the
clones into groups corresponding to the same gene according to their fingerprints. Finally,
representatives from each cluster are sequenced and compared to the existing OR database.

The DEFOG scheme is illustrated in Figure 6.1.

The newly revealed sequences can be used to design primer pairs for another cycle of
DEFOG. Note, however, that only the region between the 5’ and 3’ primers is revealed by
DEFOG — the part of a gene upstream (downstream) the 5 (3’) primer is not amplified
by the PCR, and the subsequences matched by the primers themselves are only partially
informative, since all mismatch information is lost during PCR (the original gene subsequence
is not amplified, but rather the primer sequence that matched it). Hence, sequences revealed
by DEFOG convey new information only downstream (upstream) the 5’ (3’) primer, so primers
for the next cycle of DEFOG are designed based on this region. Thus, with each round of

DEFOG, the length of the amplified gene sequences decreases.

We applied the DEFOG scheme on the human OR subgenome. In a single experiment, it
almost tripled the size of our initial OR repertoire, from 127 genes (the number of known OR
genes when the experiment began) to 358. The extremely degenerate primers we designed
proved very effective: They achieved high sensitivity, amplifying 300 unique OR. genes, and
extremely high specificity, yielding only 0.4% (4 out of 924) non-OR products. The com-
bination of the OFP process and the CLICK clustering software allowed a low-redundancy
sequencing — cluster analysis partitioned the 13,580 clones we obtained into 239 clusters
and 121 singletons (single clone clusters), from which we sequenced only 924 (6.8%) clones.
The full experimental details and results are reported elsewhere [11]. The DEFOG project is
joint work with the groups of H. Lehrach (MPI Berlin) and D. Lancet (Weizmann). The rest

of this section describes the execution of HYDEN as part of this project.

Our experiment began with an initial collection of 127 OR genes, whose full DNA se-
quences of size 1Kbp were known at the time [10]. This collection comprised our training set,

on which HYDEN designed the primers. As explained earlier, the first phase of HYDEN con-

39

New set Initial set
of genes of genes _\-\\
358 OR. genes 127 OF. genes 5.
Sequencing of Degenerate primers

target clones design (HYDEN)

024 clones of length ~ 700k 20 prirner paj.r'?s with "
\ degenerary 2.1-10°- 1.4-10

i
4

Clustering (CLICK) PCRand
and target selection fragment cloning
239 clusters, 121 singletons 13,580 clones

* A
N Oligofingerprinting /

193 B-rner oligos

Figure 6.1: The DEFOG scheme. Starting with an initial set of known genes, DEFOG defines
a series of computational and experimental steps that eventually allow low-redundancy se-
quencing of many new genes of the same family. The numbers beneath the boxes summarize

the actual parameters in our DEFOG experiment on the human OR subgenome.

structs an alignment for each k-long substring in the input strings and computes its entropy
score. Figure 6.2 shows the average entropy score for k = 26 at each position along the genes.
The value at position p is an average of the entropy scores of the 127 alignments constructed
for the substrings at position p in the genes. The local minima at positions 160 and 850
correspond to the conserved regions in TM2 and TMY, respectively. These positions make
excellent sites for designing PCR primers that amplify a large portion of each gene — almost
700bp. The two other local minima, at positions 350 (TM3) and 700 (TM6), are more interior

and a little less conserved.

In order to design both 5" and 3’ primers, we ran HYDEN separately on the first and last
300bp of each OR gene. Altogether, we designed 13 primers, listed in Table 6.1 — 6 for the
5’ side and 7 for the 3’ side, of lengths k& = 26,27 and various degeneracies between 4,608
and 442,368. The primers on each side are quite similar to one another, and differ mainly
in their degeneracy, except for four special primers — one pair (L9 and R110) was designed
at different positions, closer to the 5’ and 3’ ends of the genes, and another pair (L20 and

R20) was designed on a subset of genes that were poorly matched by the other primers.

40

(2]
o

S
o

™6
™2 ™3 ™7

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
position (bp)

entropy (H)
]
T
1

N
o
T

=
o

Figure 6.2: Average entropy score along the 127 OR genes in the training set. Transmembrane

(TM) segments 2, 3, 6 and 7 contain highly conserved regions.

These four primers were constructed in order to “fish out” genes that, for some reason, are
not amplified by the other primers. A typical run of HYDEN on 300bp segments of the 127
OR genes, with & = 26, d = 20,000, and e = 2 (and N, = 50, N, = 8,000, N, = 3,000,
N, = 100), takes approximately 10 minutes, distributed evenly among the three phases of
the program, on a P4 1.4GHz PC with 256 MB RDRAM. Except for the special primers, each

primer matches 76% — 90% of the training-set genes with up to two mismatched bases.

From the 13 primers we designed, we selected 20 different pairs (see Table 6.2), and used
them in PCR reactions. The degeneracy of a pair of primers (5 and 3’) is defined as the
product of the degeneracies of both primers. The degeneracy of the pairs we selected ranged
between 2.1 - 107 and 1.4 -10'%. To the best of our knowledge, this is the highest degeneracy
ever used successfully in PCR reactions — extant applications usually use degeneracies lower
than 10%. We also experimented with even higher degeneracies (up to 2.2 - 10!!), but their
yield was usually very poor, perhaps since the concentration of each individual primer is too
low to allow successful PCR, amplification. Most primer pairs covered 70% — 80% of the
training-set genes with up to three mismatched bases in both sides combined (we used a
threshold of three mismatches, since early experiments have shown that it predicts successful

PCR amplification reasonably well — see Section 6.7).

6.3 The HORDE Test Set

After the publication of the first draft of the human genome, we analyzed the performance of
the primers on all full-length OR. sequences that were computationally detected in the draft.
This set consisted of 719 genes [14] 1. These genes served as a test set, with which we checked
how well the coverage of our primers extends from the training set to a larger collection of

genes. Note that 125 of the training-set genes are also in the test set, with slight changes.

!Sequences are available in the HORDE database at http://bioinformatics.weizmann.ac.il/HORDE

41

Side Name Primer sequence Degeneracy Coverage

5 L) CTNCAHWCNCCHATGTAYTTYYTYCT 4,608 107 (84%)
L9 f ACNNTGVTNGGVAAYCTNCTCATYAT 9,216 59 (46%)
L10 CTBCAYDNNCCHATGTAYTTYTTBCT 10,368 112 (88%)
L20 + CTYCANDVHCCCATGTAYYWYTTYBT 20,736 110 (87%)
L31 CTBCAYDNNCCHATGTAYTTBTTBYT 31,104 114 (90%)
L131 CTNCANWCNCCNATGTAYTTNYTNCTN 131,072 110 (87%)
3 Rb TTYCTCARRSTRTADATNADNGGGTT 4,608 97 (76%)
R20 f TGKGABVHACANGTGBWRARRGCYTT 20,736 79 (62%)
R28 TTBCKNARRSTRTADATVARRGGRTT 27,648 105 (83%)
R73 TTBCKNARRSTRTADATNANRGGRTT 73,728 109 (86%)

R110 f YNCAGDRCHCYYTTNAYDTCYYTRTT 110,592 57 (45%)
R147 RTTBCKNARNSTRTADATNARNGGGTT 147,456 105 (83%)
R442 TTBCKNARRSTRTADATNANDGRRYT 442,368 113 (89%)

Table 6.1: Degenerate primers designed by HYDEN on the training set of 127 OR genes. The
primer sequences are specified using the NC-IUB nucleotide code (see Table 2.1). The last
column shows the number (percentage) of genes (out of 127) that each primer matches with
up to two mismatched nucleotides. L9 and R110 were designed at different positions (TM1
and the end of TM7) than the other primers (TM2 and TM7). L20 and R20 were designed

on a subset of genes that were poorly matched by all the other primers.

Figure 6.3 shows the 3-mismatches coverage of several primer pairs, both for the training set
and the test set (Table 6.2 contains the full data). We excluded pairs that contain a special
primer, in order to allow a fair comparison between pairs with different degeneracies. For the
same reason, we included only pairs, in which the 5 and the 3’ primers are of length 26 and
have comparable degeneracy (to ensure that in all the pairs we compare the degeneracy is
divided similarly between the two primers). The pairs that match these criteria are L5/R5,
L10/R5, L5/R28, L10/R28, L31/R73, and L31/R442. The figure also shows the coverage of

additional primers that were designed by HYDEN but were not used in the experiment.

As expected, primers with higher degeneracy have a larger coverage in both sets. Also ap-
parent is the sharp and steady increase in the test-set coverage as the degeneracy increases —
from 10% coverage for non-degenerate primers to 50%—65% for the primers we used and 74%
for a pair with degeneracy 4 - 10'2. In practice, one cannot use arbitrarily high degeneracies,
for two reasons. First, highly degenerate primers have low specificity, and so they might
amplify many non-related sequences. This did not prove to be a problem even with the high
degeneracies that we used — only 0.4% (4 out of 924) of the clones we sequenced were not

OR genes. Second, as mentioned earlier, PCR gives a poor yield when the degeneracy is

42

very high, which is what limited us to use primer pairs with degeneracy not higher than
1.4 - 10'°. Another conclusion from the above analysis is that the basic premise behind the
DEFOG scheme proved valid: The training set was indeed a good representative set of the
full set, in terms of primer properties, and facilitated the design of primers that matched

hundreds of additional unknown genes.

800
700} .
600} — .
—— training set
test set o ®
500 ° i
3 5K
T 400}]
300 .. |
]
)
200} °]
.
o
L ° L] i
100‘W
<
O | | | | | |
0 2 4 6 8 10 12 14

Ioglo(degeneracy)

Figure 6.3: Training-set and test-set 3-mismatches coverage of primer pairs with various
degeneracies. Primers that were actually used in the DEFOG experiment are marked by

asterisks. The horizontal lines mark the size of the training and test sets.

6.4 Sequencing Efficacy

Table 6.2 summarizes the performance of the 20 primer pairs we used in the DEFOG experi-
ment. Most of the primer pairs yielded a satisfactory number of clones (several hundreds).
Exceptions are L131/R28 (181 clones) and L31/R442 (131 clones). The latter was the most
degenerate primer pair for which we could obtain a reasonable yield. Since only 6.8% of the
clones were sequenced, we do not know the full number of distinct genes each primer pair
amplified. Thus, in order to evaluate how well the primers performed in practice, we com-
puted their sequencing efficacy — the percentage of distinct genes that were obtained by each
primer pair, out of the total number of clones sequenced for that pair (the seventh column
in Table 6.2 divided by the sixth column). For 10 out of 12 primer pairs with degeneracy
over 107, sequencing efficacy was 79% — 93%, whereas for all 8 primers with lower degeneracy,
it was 57% — 79%.

Figure 6.4 shows the sequencing efficacy of several of the primer pairs we used, as a

function of the degeneracy. As in the previous section, in order to allow a fair comparison

43

between the primers, we depict only the pairs L5/R5, L10/R5, L5/R28, L10/R28, L31/R73,
and L31/R442. Also shown in the figure is the number of new genes (with respect to the
training-set) sequenced from each primer pair, as a percentage of the total number of clones
sequenced for that pair. The correlation between this number and the sequencing efficacy is
very apparent — for most primers, 70% — 90% of the genes we sequenced were new; for the
six pairs shown in Figure 6.4, the ratio is much less variant — 72% — 75% of the genes were

new.

Note that the sequencing efficacy, according to the way we compute it, depends not only
on the performance of the primers, in terms of the number of genes they amplified, but also on
the clustering and target selection procedures. For example, if CLICK assigned the clones of a
certain gene to two or more clusters, instead of just one, then we may have sequenced multiple
copies of that gene and the sequencing efficacy would have dropped. Furthermore, the 924
sequenced clones include 140 clones from six clusters, which we sequenced exhaustively in
order to obtain statistics on the quality of the clustering analysis. The measured sequencing

efficacy we report here is therefore lower than the true efficacy of the primers.

100

90

80

70

60 -

50 . ' . o T

40 5
_— all genes
301 new genes B

% of sequenced clones

20 T

10 - B

0 ! ! ! ! ! ! !
7 7.5 8 8.5 9 9.5 10 10.5

Ioglo(degeneracy)

Figure 6.4: Sequencing efficacy of several primer pairs in the DEFOG experiment. The dotted
line shows the number of new genes, i.e., genes that were not in the training set, as a percent

of the number of sequenced clones.

6.5 Training-Set Size

An important question regarding the applicability of DEFOG in general, and HYDEN specif-
ically, is their sensitivity to the size of the initial training set. In many projects, a large
training set might not be available. Will HYDEN design good primers in such cases? Obvi-

ously, the answer depends on the characteristics of the set of genes, e.g., whether they contain

44

Primer Degeneracy 3-mismatches coverage Number of clones Number of genes

pair (x10°) training-set test-set total sequenced total new
L5/R5* 21 73 % 50 % 1,730 173 98 73
L10/R5* 48 4 % 51 % 838 42 31 24
L5/R28* 127 74 % 52 % 901 75 50 36
L9/R20 191 31 % 13 % 431 43 25 14
L10/R28* 287 74 % 53 % 740 57 39 28
L5/R73 340 7% 60 % 966 34 27 17
L5/R110 510 51 % 30 % 998 31 22 19
L31/R20 645 66 % 47 % 352 65 45 40
L9/R110 1,019 29 % 11 % 621 19 15 11
L9/R147 1,359 48 % 21 % 973 42 34 20
L10/R147 1,529 7% 55 % 660 53 42 34
L5/R442 2,038 79 % 63 % 649 46 38 32
L31/R73* 2,293 80 % 62 % 1,033 27 25 18
L20/R147 3,058 7% 51 % 747 67 43 34
L31/R110 3,440 55 % 31 % 426 25 21 19
L131/R28 3,624 76 % 57 % 181 14 12 11
L9/R442 4,077 54 % 26 % 748 28 20 14
L31/R147 4,586 78 % 56 % 564 28 26 18
L10/R442 4,586 80 % 63 % 691 46 37 26
L31/R442* 13,759 82 % 65 % 131 9 8 6
Total — 93 % 76 % 13,580 924 300 231

Table 6.2: Primer pairs used in the DEFOG experiment on the human OR subgenome. The
second column specifies the combined degeneracy of the two primers, in millions. The third
and fourth columns are the percentage of genes, out of the training set (127 genes) and
the test set (719 genes) respectively, that match the primer pair with up to 3 mismatched
bases. The fifth column specifies the number of clones we obtained from the amplified PCR
fragments, and the sixth column is the number of representative clones that were selected and
successfully sequenced. The last two columns are the number of distinct genes each primer
pair yielded — total number of genes, and new genes (that are not in the training set).
* Pairs in which both primers were of length 26 with roughly equal degeneracy, and neither
one of them is a special primer. The performance of these primer pairs is compared in
Figures 6.3 and 6.4.

45

conserved regions for 5’ and 3’ primers, and how the similarity in those regions is distributed
between the different genes. It also depends on the degree by which the training set repre-
sents the whole set, i.e., whether we are lucky enough to have representatives of many types

of genes in the set.

In order to determine whether DEFOG would have yielded satisfactory results on the human
OR subgenome if the initial set of known genes was substantially smaller, we tested how well
HYDEN performs for different sizes of training sets. Given a size s, we selected a random
training set of s genes from the test set of 719 currently known OR genes. We then used
HYDEN on this subset to design primers of length 26, and computed their test-set coverage,
i.e., the number of test-set genes that are matched by the primers with up to 3 mismatches in
both sides combined. For each s, we repeated this test 20 times, and computed the average
coverage and its standard deviation. Figure 6.5 shows the results for various values of s
between 20 and 719, and two degeneracies: 2.1-107 (4,608 in both sides) and 2-10° (27,648
in the 5 side, 73,728 in the 3’ side). For both degeneracies, there is a sharp increase in
the coverage as s grows from 20 to 60, and a very small improvement for values of s larger
than 100. Even for s = 30 (merely 4% of the test set), HYDEN provides good primers with
degeneracy 2 - 10%, covering 54% of the test set, on average. In comparison, when HYDEN is
given all 719 genes as its training set, it designs primers with the above degeneracy that

cover 64% of the genes.

In our DEFOG experiment, the training set was fairly large (s = 127), and we would
probably not have achieved significantly better results had it been larger. Not surprisingly,
the standard deviation of the coverage diminishes as s increases. For small values of s, there
is a high probability that the training set contains representatives of only some of the types
of OR genes, preventing HYDEN from designing primers that match other types. Still, the
standard deviation is quite small, and similar for both degeneracies we checked: 22 — 30
(3% — 4% of 719) for 30 < s < 60, and 13 — 14 (1.9% of 719) for s = 100. Thus, in the case of
the human OR genes, DEFOG would have probably produced satisfactory results even if the
training set consisted of only 30 genes; for a training set of 60 genes, the results would have
been similar to those we obtained. In general, we believe that DEFOG can be successfully
applied to any gene family, for which a small training set exists, provided that the genes

exhibit high conservation in sites that are appropriate for 5’ and 3’ primers.

A caveat that applies both to the analysis above regarding the OR genes and to other
families is that it is based on the assumption that the training set is obtained by random
sampling from the family. In practice, that set is not completely random. The training set
of OR. genes, for example, was obtained by a combination of detection of ORs in papers and
in large-scale sequencing databases (which yield a roughly random sample), and small-scale

collection of ORs based on low-degeneracy primers (which is highly non-random).

46

700 b

(o2}
o
o
T
|

a1

o

o
T

deg. 2.0710° 4

H

o o
==

deg. 2.1*10°

test-set coverage
w B
o o
o o
T T
=y
=
H
1

N
o
o
T
|

100 T

0 I I I I I I I
0 100 200 300 400 500 600 700

training—set size

Figure 6.5: Test-set coverage as a function of the size of the training set. Random subsets
of various sizes were selected from the 719 test-set genes. HYDEN was run on each subset to
design primer pairs of degeneracies 2.1 - 107 and 2 - 10°. Each experiment was repeated 20
times. The graphs show the average 3-mismatches test-set coverage of the primers, and the
standard deviation (vertical bars indicate £1 std.). The horizontal line marks the size of the

test set.
6.6 Primers for the OR Subgenome

We ran HYDEN on the 719 fully-known OR genes that were extracted from the human genome
draft, and assembled a new list of primer pairs with various degeneracies. The primers are
listed in Table 6.3. In accordance with the results from the previous section, the coverage of
these primers is larger by only 2% than that of primers with similar degeneracy designed on
the original training set of 127 genes — indeed, the new primers are very similar to those
we used in the OR experiment (compare Tables 6.1 and 6.3). We recommend that the new
primers be used in future PCR procedures on olfactory genes in the human genome or in

related species.

5’ primer 3’ primer Degeneracy Coverage
CTNCAYDMNCCCATGTAYTTYYTBCT TTYCTCARDSTRTAGATNANDGGRTT 2.1-107 52 %
YTNCAYHMNCCHATGTAYTWYTTBCT KTYCTNAVRSTRTARATNANDGGRTT 2.0 -10° 64 %
CTBCAYNVNCCHATGTAYTWYYTYCT TTYYKNAVRSTRTADAYNANDGGRTT 1.2-10'0 67 %

Table 6.3: Degenerate primer pairs for the human OR subgenome. Primers of length 26
were designed by HYDEN on the test set of 719 OR genes. Sequences are specified using the
NC-IUB nucleotide code. The third column shows the combined degeneracy, and the last

column is the percent of test-set genes that are covered with up to 3 mismatches.

47

In some experiments, a full, or nearly-full coverage of the family of genes is particularly
important. In such cases, several degenerate primer pairs need to be used (recall the MP-
DPD problem). To assist in the design of a small set of primers that together cover a very
large portion of a given training set, we added an external loop to HYDEN. After the first pair
of primers is computed, all the input sequences that are covered by the primers are discarded,
and the program uses the remaining sequences as the training set for designing another pair
of primers, and so on. Applying this procedure to the 719 human OR. genes, we designed 10
primer pairs with combined degeneracy ~ 10°, shown in Table 6.4. We observed a very
sharp decrease in the coverage of the primers — while the first pair covers 62% of the whole
set, the second pair covers only 33% of the remaining 276 genes, and the third pair covers
merely 13% of the remaining 184 genes. The accumulated coverage of all 10 primer pairs
is 88%), somewhat disappointing given the coverage of the first pair. In other gene families,

the situation might be different, and fewer primers may suffice for almost full coverage.

5’ primer 3’ primer Coverage
1 CTBCAYDVNCCHATGTAYTTYYTYCT TTYCKNARRSTRTANATNANDGGRTT 443 62 %
2 CCCATGTAYTWYTTBCTBDSYAWBYT TGDGARVYRCADGTRBHRARDGCYTT 92 74 %
3 YTNCACHCVCCHATGTAYTTYYTBYT TCYTTRTTYCWNARRSTDTARAYNAN 23 "%
4 GSCTGYMTBRYHCAGMTSTWYTTCWT SYRTARAYNAKRGGRTTNADCANWGG 22 81 %
5 ATGTACTWYTTCCTBNSYHWYYTSTC TGRGAGVYRCARGTRVHVADVRCYTT 14 82 %
6 YTBCRCNMVCCCATGTWYTWYTTYCT TTGGTBYKVABVCYRTWRAYRAWRGG 10 84 %
7 TTGGTBYKVABVCYRTWRAYRAWRGG RKMRKNKARRATGAVHMCATAGGARR 7 8%
8 CYCRYYTBCAYWVMCCYATGTAYTTY YSTCYBYRKTYYTCADRCTGTADAYV 6 86 %
9 CTBCAYAYWCCHATGTAYYWHTTBYT RTGGGMGVHRCAVGTVGARWARGYYT 9 87 %
10 TGTACHWCYTCCTBDGVMWYYTSTCC CACAGCTVBCAGRAYVANRDTRWMRR 7 88 %

Table 6.4: Degenerate primer pairs of length 26 and combined degeneracy 10° designed by
HYDEN to cover together the test set of 719 OR genes. The fourth column shows the number
of genes that are covered by each primer pair (with up to 3 mismatches) and not covered by

the previous primers. The last column is the cumulative percent of covered test-set genes.

6.7 Short DEFOG

The DEFOG scheme comprises four laboratory procedures — PCR, cloning, oligofingerprinting
(OFP) and sequencing. The fingerprints obtained in the third stage are fed to the clustering
program, CLICK, and representatives of each cluster are selected for sequencing. As we have

shown, this scheme results in a low-redundancy sequencing — in our DEFOG experiment, we

48

sequenced 924 clones and revealed 300 (32.5%) distinct OR genes. The sequencing efficacy

of many of the primer pairs was 80% or more.

An interesting question is to what extent do the OFP and clustering processes contribute
to the low sequencing redundancy. Perhaps in some cases, when the primers amplify many
genes evenly, we could apply a simpler scheme, without the OFP and clustering phases.
In this simplified version of DEFOG, which we call “Short-DEFOG”, clones are selected for
sequencing arbitrarily, rather than based on the fingerprints clustering. The advantage of
this scheme is clear — it skips the OFP phase. On the down side, we might sequence many
copies of the same gene (or a small set of genes) again and again, which will require us to
sequence a very large number of clones in order to get a reasonable coverage of the target set

of genes.

Prior to the full DEFOG experiment, we ran a small round of Short-DEFOG on the human
OR subgenome together with the group of D. Lancet (Weizmann). As in the full experiment,
we used the 20 primer pairs that were designed on the 127 training-set genes. A total of 227
fragments were successfully cloned and sequenced. This set contained 102 unique ORs, of
which 70 were new (i.e., not in the training set). Table 6.5 contains detailed statistics for each
primer pair separately. Analysis of the sequences of the known genes and the primers that
amplified them revealed that in roughly 50% of the cases there were no mismatches between
the gene sequences and the primers, in 40% there was exactly one mismatch, and only in 3%

there were more than three mismatches (in both sides combined).

The overall sequencing efficacy of the Short-DEFOG round was 45% (102 distinct genes
out of 227 clones), much higher than the efficacy of the full DEFOG experiment, in which it
was 32.5% (300 out of 924). Obviously, the comparison is not fair, since the sequencing efficacy
decreases with the number of clones sequenced. Moreover, as mentioned in Section 6.4, some
of the clones we sequenced in the DEFOG experiment were selected merely to obtain data
for clustering analysis, so the real efficacy is higher than 32.5%. Nevertheless, the results of
the Short-DEFOG round indicate that the primers HYDEN designed were not biased towards
any specific set of genes, allowing for low-redundancy sequencing even without the OFP and
clustering procedures. Figure 6.6 shows a histogram of the number of copies we sequenced
of each gene. Although targets for sequencing were chosen arbitrarily, 92% of the genes were
sequenced at most four times. It is therefore not surprising that in the full DEFOG experiment,
CLICK partitioned the 13,580 fingerprints into many small clusters, namely, 360 clusters
(including singletons), of which about % had a size of at most 20, and 86% contained no more

than 100 members.

We recommend applying Short-DEFOG when partial coverage of the target set of genes
suffices. If nearly-full coverage is required, or if the primers are biased towards a small subset

of genes, then the complete DEFOG cycle should be carried out.

49

Primer Degeneracy 3-mismatches coverage Number of clones Number of genes

pair (x108) training-set test-set sequenced total new
L5/R5 21 3% 50 % 36 30 23
L10/R5 48 4 % 51 % 15 13 8
L5/R28 127 4 % 52 % 10 8 6
L9/R20 191 31 % 13 % 2 2 1
L10/R28 287 74 % 53 % 29 22 15
L5/R73 340 % 60 % 6 5 2
L5/R110 510 51 % 30 % 7 4
L31/R20 645 66 % 47 % 6 5 5
L9/R110 1,019 29 % 11 % 12 8 4
L9/R147 1,359 48 % 21 % 12 10 6
L10/R147 1,529 % 55 % 9 5 3
L5/R442 2,038 9 % 63 % 11 10 7
L31/R73 2,293 80 % 62 % 11 11 8
L20/R147 3,058 7% 51 % 6 6 5
L31/R110 3,440 55 % 31 % 8 5 4
L131/R28 3,624 76 % 57 % 3 2
L9/R442 4,077 54 % 26 % 14 12 6
L31/R147 4,586 8 % 56 % 15 11 4
L10/R442 4,586 80 % 63 % 9 6 4
L31/R442 13,759 82 % 65 % 6 6 6
Total — 93 % 76 % 227 102 70

Table 6.5: Primer pairs used in the Short-DEFOG experiment on the human OR subgenome.
The second, third and fourth columns are identical to Table 6.2. The fifth column specifies
the number of fragments that were successfully cloned and sequenced. The last two columns
are the number of distinct genes each primer pair yielded — total number of genes, and new

genes.

50

50
45 {1 =
40 -
35 - 32
20 -
25 -
20 -
15 -

Mumber of genes

10

10 4 7
. Il
1] T T

3

1 2

2 1 3 1 1
4 a] 7
Mumber of copies

g 14

Figure 6.6: Histogram of the number of copies sequenced per gene in the Short-DEFOG ex-
periment. Although target clones for sequencing were chosen arbitrarily (and not by their
fingerprints, as in the full DEFOG scheme), most genes were sequenced very few times, indi-

cating that the primers were unbiased.
6.8 The Canine Olfactory Subgenome

Encouraged by the results we obtained for the human OR subgenome, we recently launched a
project with the group of D. Lancet (Weizmann) for analyzing the canine OR subgenome. We
use two approaches: data mining in the Celera x1 sequence coverage of the dog genome, and
Short-DEFOG. Since very few canine OR genes were fully known at the time, we ran HYDEN on
the set of 719 human ORs, and designed several primer pairs with degeneracy between 6.4-107
and 2.2 - 10'°. Despite the significant differences between the human and canine olfactory
systems, the human-based primers amplified many ORs from the dog genome. Preliminary
results indicate that the 1200 clones we sequenced contain 246 (20.5%) unique canine OR
genes (the full dog OR repertoire is estimated to contain some 1300 genes). About 15%
of these genes are pseudogenes, similar to the ratio in mouse (20%) [40, 41], but far from
the ratio in human (> 50%) [14, 42]. This reflects the fact that both dog and mouse are
macrosmatic animals, i.e., have a very acute sense of smell, whereas human is microsmatic.
The full details of our work on the canine olfactory subgenome appear in [12]. We believe
that this project demonstrates that DEFOG can be applied to study an unsequenced genome

using degenerate primers designed according to a related species.

ol

Chapter 7
Summary

In this thesis, we introduced DPD — a combinatorial optimization problem aiming for opti-
mal design of degenerate primers. We defined several variants of the problem, and studied
their computational complexity. We developed approximation algorithms for MC-DPD, a
simplified version of DPD, with binary input strings, and implemented HYDEN, an efficient
heuristic for the general case. We executed HYDEN as part of an experiment for sequencing
the human olfactory subgenome. HYDEN proved quite effective in designing highly degenerate

and yet highly specific primers.

7.1 Future Work

On the theoretical side, one may wish to design better approximation algorithms for MC-
DPD in order to obtain a better approximation ratio and/or faster running time. Tighter
inapproximability bounds could close the gap from the other, less desirable, direction. An-
other important advance would be to generalize the algorithms to cope with arbitrary length
input strings over non-binary alphabets and allow mismatches between the primer and the
strings. Approximation algorithms for other DPD variants we defined, namely MD-DPD and
MP-DPD, could also have practical contribution.

On the practical side, a more realistic primer-gene matching model, which takes into
account biological aspects of the PCR procedure, could yield primers with greater sensitivity.
It is known that mismatches at the 3’ terminus are more detrimental to PCR than internal
mismatches [23], and that different types of mismatches have different effects on the reaction,
e.g., A:C is less disruptive than A:G [24]. In addition, a situation where one primer is
complementary to itself or to another primer should be avoided, since it leads to a competition
among the primers and the sequences and greatly reduces the efficiency of the PCR. Other

factors that should be considered are the GC content and melting temperature of the primers.

92

The first phase of HYDEN locates many conserved blocks in the given sequences. In-
stead, we could perform this step using some other available software for computing un-
gapped local multiple alignments, such as ClustalW [38] or BlockMaker [15]. For each block
found in the first phase, HYDEN designs primers using heuristics based on the CONTRAC-
TION and EXPANSION approximation algorithms. It would be interesting to implement the
CONTRACTION-X algorithm (or, for practical applications, a generalization of it to non-binary
alphabets) and compare its performance to that of CONTRACTION. Theoretically, at least,
CONTRACTION-X should produce primers with larger coverage.

We hope to exploit the utility of degenerate primers on other gene families and other
species. In addition to the aforementioned experiment for extracting OR genes from the dog
genome, we are currently involved in a project that uses degenerate primers for identifying a
subfamily of tyrosine kinases from ¢cDNA libraries. HYDEN is also being employed by several

other labs for various tasks.

93

Bibliography

[1]
2]

3]

The HYDEN homepage: http://www.math.tau.ac.il/~rshamir/hyden/HYDEN.htm.

T.L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using

expectation maximization. Machine Learning, 21(1-2):51-80, 1995.

M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448-461, 1973.

L. Buck and R. Axel. A novel multigene family may encode odorant receptors: A
molecular basis for odor recognition. Cell, 65:175-187, 1991.

J. Buhler and M. Tompa. Finding motifs using random projections. Journal of Compu-
tational Biology, 9(2):225-242, 2002.

M.D. Clark, G.D. Panopoulou, D.J. Cahill, K. Bussow, and H. Lehrach. Construction
and analysis of arrayed ¢cDNA libraries. Methods in Enzymology, 303:205-233, 1999.

I. Dinur and S. Safra. The importance of being biased. In Proc. 3/th ACM Symp. on
the Theory of Computing (STOC 2002), pages 33—42, Montredl, Canada, 2002.

K. Doi and H. Imai. Greedy algorithms for finding a small set of primers satisfying cover
length resolution conditions in PCR experiments. In Proc. 8th Workshop on Genome

Informatics, pages 43-52, Tokyo, Japan, 1997.

D. Dor and U. Zwick. Selecting the median. STAM Journal on Computing, 28(5):1722—
1758, 1999.

T. Fuchs, G. Glusman, S. Horn-Saban, D. Lancet, and Y. Pilpel. The human olfactory

subgenome: From sequence to structure and evolution. Human Genetics, 108:1-13, 2000.

T. Fuchs, B. Malecova, C. Linhart, R. Sharan, M. Khen, R. Herwig, D. Shmulevich,
R. Elkon, M. Steinfath, J.K. O’Brien, U. Radelof, H. Lehrach, D. Lancet, and R. Shamir.
DEFOG: A practical scheme for deciphering families of genes. Genomics, 80(3):295-302,
2002.

o4

[12]

[13]

[14]

[15]

23]

[24]

T. Fuchs, Z. Olender, M. Khen, C. Linhart, R. Shamir, F. Kalush, and D. Lancet. The

canine olfactory subgenome. Manuscript, 2002.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

G. Glusman, I. Yanai, I. Rubin, and D. Lancet. The complete human olfactory
subgenome. Genome Research, 11:685-702, 2001.

S. Henikoff, J.G. Henikoff, W.J. Alford, and S. Pietrokovski. Automated construction and
graphical presentation of protein blocks from unaligned sequences. Gene, 163:GC:17-26,
1995.

G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences. Bioinformatics, 15(7/8):563-577, 1999.

R. Herwig, A.O. Schmidt, M. Steinfath, J. O’Brian, H. Seidel, S. Meier-Ewert,
H. Lehrach, and U. Radelof. Information theoretical probe selection for hybridisation
experiments. Bioinformatics, 16:890-898, 2000.

J. Hastad. Some optimal inapproximability results. In Proc. 29th ACM Symp. on the
Theory of Computing (STOC 1997), pages 1-10, El Paso, Texas, 1997.

J.D. Hughes, P.W. Estep, S. Tavazoie, and G.M. Church. Computational identifica-
tion of cis-regulatory elements associated with groups of functionally related genes in
saccharomyces cerevisiae. J. Mol. Biol., 296(5):1205-1214, 2000.

D.S. Johnson, 2002. Private communication.

R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of Computer Computations, pages 85—103. Plenum Press,
New-York, 1972.

U. Keich and P.A. Pevzner. Finding motifs in the twilight zone. In Proc. 6th Annual
International Conference on Research in Computational Molecular Biology (RECOMB
2002), pages 195-204, 2002.

S. Kwok, S.Y. Chang, J.J. Sninsky, and A. Wang. A guide to the design and use of
mismatched and degenerate primers. PCR Methods and Appl., 3:539-47, 1994.

S. Kwok, D.E. Kellogg, N. McKinney, D. Spasic, L. Goda, C. Levenson, and J.J. Snin-
sky. Effects of primer-template mismatches on the polymerase chain reaction: Human
immunodeficiency virus type 1 model studies. Nucleic Acids Research, 18:999-1005,
1990.

95

[25]

[26]

[27]

[28]

[29]

[30]

[33]

[34]

[35]

D. Lancet and N.R. Ben-Arie. Olfactory receptors. Current Biol., 3:668—674, 1993.

C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and J.C. Wootton.
Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.
Science, 262:208-214, 1993.

C. Linhart and R. Shamir. The degenerate primer design problem. Bioinformatics, 18,
Suppl. 1:5172-S180, 2002.

C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
In Proc. 25th ACM Symp. on the Theory of Computing (STOC 1993), pages 286—293,
San Diego, California, 1993.

S. Meier-Ewert, J. Lange, H. Gerst, R. Herwig, A. Schmitt, J. Freund, T. Elge, R. Mott,
B. Herrmann, and H. Lehrach. Comparative gene expression profiling by oligonucleotide
fingerprinting. Nucleic Acids Research, 26:2216-2223, 1998.

Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Nomen-
clature for incompletely specified bases in nucleic acid sequences — recommendations
1984. Biochemical Journal, 229:281-286, 1985.

W.R. Pearson, G. Robins, D.E. Wredgs, and T. Zhang. On the primer selection problem
in polymerase chain reaction experiments. Discrete Applied Mathematics, 71:231-246,
1996.

P.A. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in DNA
sequences. In Proc. 8th International Conference on Intelligent Systems for Molecular
Biology (ISMB 2000), pages 269278, 2000.

Y. Pilpel and D. Lancet. The variable and conserved interfaces of modeled olfactory

receptor proteins. Protein Science, 8:969-977, 1999.

U. Radelof, S. Hennig, P. Seranski, M. Steinfath, J. Ramser, R. Reinhardt, A. Poustka,
F. Francis, and H. Lehrach. Preselection of shotgun clones by oligonucleotide finger-
printing: An efficient and high throughput strategy to reduce redundancy in large-scale
sequencing projects. Nucleic Acids Research, 26:5358-5364, 1998.

T.M. Rose, E.R. Schultz, J.G. Henikoff, S. Pietrokovski, C.M. McCallum, and
S. Henikoff. Consensus-degenerate hybrid oligonucleotide primers for amplification of
distantly related sequences. Nucleic Acids Research, 26:1628-1635, 1998.

S. Rouquier, S. Taviaux, B.J. Trask, V. Brand-Arpon, G. van den Engh, J. Demaille,
and D. Giorgi. Distribution of olfactory receptor genes in the human genome. Nature
Genetics, 18:243-250, 1998.

o6

[37]

[38]

[40]

[41]

[42]

R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to gene
expression analysis. In Proc. 8th International Conference on Intelligent Systems for
Molecular Biology (ISMB 2000), pages 307-316, 2000.

J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, positions-specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673—-4680, 1994.

0O.V. Vishnevsky, O.A. Podkolodnaya, and V.N. Babenko. Search for degenerate oligonu-
cleotide motifs in transcription factor binding sites and eukaryotic promoters (computer
system ARGO). In Proc. 1st International Conference on Bioinformatics of Genome
Regulation and Structure, pages 144-146, 1998.

J.M. Young, C. Friedman, E.M. Williams, J.A. Ross, L.. Tonnes-Priddy, and B.J. Trask.
Different evolutionary processes shaped the mouse and human olfactory receptor gene
families. Human Molecular Genetics, 11(5):535-546, 2002.

X. Zhang and S. Firestein. The olfactory receptor gene superfamily of the mouse. Nature
Neuroscience, 5(2):124-133, 2002.

S. Zozulya, F. Echeverri, and T. Nguyen. The human olfactory receptor repertoire.
Genome Biology, 2:RESEARCH0018, 2001.

o7

