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Abstract 

 
The 3-D organization of the genome in the nucleus has an important role in many aspects of cellular life, 
including gene expression control. Recently, several high-throughput methods have been developed 
that allow insights into the chromosomal architecture and chromatin interactions at unprecedented 
resolution.  
 
One of these techniques, Hi-C, is based on chromosome conformation capture. Using Hi-C, several 
genome structures were characterized. At low resolution, there are two different types of 
compartments in every chromosome – type A (gene rich) and type B (gene poor). Each compartment 
can then be divided into sub-compartments using epigenomic features. At higher resolution, topological 
associated domains (TADs) were identified. TADs are chromosomal segments that tend to span most 
interactions within them. Another technique, ChIA-PET, is based on dynamic conformation capture, 
allowing the capture of even higher resolution of chromatin interactions inside TADs. 
 
Gene expression profiles that were recorded in response to a multitude of stresses in different cell types 

showed that a large portion of the transcriptional response to stress is cell-type specific and only a small 

minority is universal. Our goal is to examine to what extent the spectrum of genes induced by stress in 

each cell type is determined by structure constraints that exist before stress was applied. 

In order to do so, we performed a wide examination of 13 different cell types under different 

treatments and analysis (RNA-Seq, GRO-Seq, Chip-Seq, etc.), and checked whether measured response 

correlates with pre-defined chromatin organization. Our results imply that there is a significant 

correlation between cell-type specific response to stress and structure constrains in the untreated cell. 
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1. Introduction 
 

The human genome is highly organized inside the nucleus. The genome is divided into 23 pairs of 

chromosomes, folded and compressed by various mechanisms, which are known to play an important 

role in the regulation of gene expression. Several novel methods made it feasible to measure the 

genome structure itself in addition to understanding the folding mechanisms. This allows us for the first 

time to systematically explore different functions of the 3-D organization of the genome.  

The 3-D structure of the genome has been studied in different resolutions, each reveals another layer of 

gene expression regulation. The lowest resolution divides the chromosomes into open and closed 

regions, defined by dense and sparse interactions [1]. These two types of compartments, A and B, were 

shown to correlate with euchromatin and heterochromatin properties respectively – A compartment is 

gene rich and genes located in A are more highly expressed compared to B. The median size of a 

contiguous A and B segment along the genome is 500Kbp. A compartments cover about 45% of the 

genome, and B compartments cover 48%. The A compartment is enriched with epigenetic markers 

known to be prevalent in euchromatin areas (such as H3k9ac), while B compartment is enriched with 

epigenetic markers known to be prevalent in heterochromatin areas (such as H3k27me3)[1], [2]. 

Analyzing Hi-C data also revealed that segments of the same type, even in distal linear locations, tend to 

physically cluster together, forming A and B regions in the nucleus [1]. This suggests that Hi-C data can 

be useful to obtain a close approximation of euchromatin/heterochromatin areas in the genome. 

At higher resolution, each A or B segment is composed of smaller chromatin structures called 

topological associated domains (TAD) (median size around 200Kbp) [2].  Most of the intrachromosomal 

interactions revealed by Hi-C occur within TADs. TADs have a significant effect on gene expression - 

genes within TADs have lower expression than genes at the borders of TADs [2]. Combined analysis of 

high-resolution Hi-C data (up to 1KB) and ChIA-PET data demonstrated that the borders of TADs are 

demarcated by loops strongly correlating with enhancer-promoter interactions [3]. 

When comparing compartmentalization between cell lines, compartment patterns are similar but there 

are still many discordant loci [1], suggesting that A/B partition is cell line specific. TADs behave 

differently from the larger A and B compartments in this manner - analysis of different cell lines suggests 

that the majority of TADs are consistent across tissues [2]–[4]. TADs can be active or inactive in terms of 

gene expression, and adjacent TADs are not necessarily of opposite chromatin states, suggesting that 

TADs are conserved chromatin features, and groups of adjacent TADs form A and B compartments [5]. 

Multiple gene expression studies demonstrated that much of the transcriptional response to stress is 

cell type specific [6]. Yet, the regulatory mechanisms that dictate the set of target genes that are 

induced in each cell type in response to stress are poorly understood. Previous studies also indicated 

that enhancer-promoter interactions already exist in cells before the binding of stress-induced 

transcription factors, suggesting that transcriptional activation in response to stress triggers relatively 

few changes in the 3-D organization [7].  

In this thesis, we aimed to further explore, on a genomic scale, the relationship between the 3D 

organization of the genome and gene expression in different cell types, and examine whether the 
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spectrum of genes induced by stress in different cell types is also determined by 3D structures and 

enhancer-promoter interactions existing before stress was applied. 

Our goal was to test two main alternative hypotheses: 

1. Preexisting partition into A/B compartments and pre-existing enhancer-promoter interactions in 

the untreated cell have a major role in defining “poised genes” that will be induced by different 

types of stress. 

2. In response to stress, multiple changes occur in the spatial organization of the genome, resulting 

in changes in genes expression. 

To explore the relationship between genome organization and gene expression we analyzed all the 

publicly available Hi-C data that were recorded to date in human cells (13 cell lines) and carried out the 

following analysis: (1) We defined A/B compartments for each cell type. (2) We validated that known 

features of A/B compartments indeed correlate with the output of our compartmentalization. (3) We 

tested for correlation between promoter interactions as measured in Hi-C\ChIA-PET and gene 

expression. (4) We examined publicly available transcription factor binding sites and gene expression 

data recorded on cells with 3D organization data after various treatments, and checked for the 

relationship between gene response and A/B compartmentalization. (5) After observing significant 

correlation, we checked whether the same correlation exists when comparing gene expression data to 

promoter interactions of untreated cells, defined by significant Hi-C interactions and ChIA-PET data for 

RNA pol 2. 
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2. Background 
This chapter lays out the background and terminology required for the thesis. We first introduce basic 

biological definitions and motivation for our research. Next, we present the high-throughput methods 

and data types that were used in this thesis, including discussion of inherent biases in these methods 

and the way they are handled.  Finally, we give background for the computational and statistical tests 

used in the thesis. 

2.1. Biological background 

2.1.1. Biological concepts 
In this section, we present basic concepts in biology and review previous studies relevant to our work.  

2.1.1.1. Gene regulation 

One of the most basic questions in molecular biology is how one genome sequence can give rise to a 
variety of tissues. The answer to this question lies, at least in part, in the ability of distinct cell types to 
express genes, and the proteins they encode, at different levels and combinations, and to react 
differently in response to changes in their environment. The process of generating products from genes 
encoded in the DNA is mainly composed of two steps, also known as the central dogma of molecular 
biology, where each step is regulated by various mechanisms.   

The first step, transcription, copies the data from the DNA to an RNA molecule, a temporary copy of the 

gene data.  The next step, translation, decodes the data in the RNA molecule in order to produce a 

protein (Figure 1).  

 

Figure 1 The central dogma of molecular biology. First DNA is being copied to a temporary RNA molecule called mRNA, inside 
the nucleus. mRNA molecules cross to the cytoplasm of the cell where they are being translated to proteins. [8] 

Regulation of transcription controls the amount of RNA products available for protein translation. It is 

considered the primary regulatory mechanism since there is a strong (although not perfect) correlation 

between RNA amount and protein amount [9]–[12]. The imperfect correlation suggests that features of 

the genome beyond its primary nucleotide sequence must contribute to the cell specific gene regulation 

that underlies cellular identity. Many proteins are involved in transcription regulation – RNA 

polymerase, transcription factors, histone and scaffold proteins, chromatin modulators and many more 

[13], [14].  
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Transcription factors are proteins that bind to the DNA in areas called transcription factors binding sites 

(TFBS) and contribute to the efficiency by which RNA polymerase is recruited to the promoter of a gene. 

Transcription factors and other DNA binding proteins, such as histones, also determine the chromatin 

structure and packaging, influencing genes accessibility. Figure 2 demonstrates how histone side chains 

(also called histone modifications/markers) mark different chromatin states.  

 

 

Figure 2 Chromatin states that allow or restrict access of transcription factors, RNA polymerase II and other proteins. (a) 
Transcription factors can bind open and accessible regions. The transition between different chromatin states is mediated by 
histone modifications and pioneer transcription factors. (b),(c)  Histone markers H3K27ac, H3K4me3 and H3K4me1 are enriched 
in active enhancers and promoters, correlating with active transcription (d) H3K27me3 is a histone marker enriched for 
repressed regions [15].  

Translation regulation controls the amount of protein produced from mRNA using ribosomes. 

Translation is less understood since until recently there were few high-throughput methods to measure 

protein levels. Ribo-seq, a novel method to measure the amount of translated RNA, is beginning to shed 

light on this process. [16] 
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2.1.1.2. Chromatin organization 
Chromatin is a collection of macromolecules in the nucleus of the cell, composed of DNA and DNA-

binding proteins [17].  In order to "package" a large amount of DNA in a compact way that fits the cell's 

nucleus, chromatin is folded in several levels. DNA segments bind and fold around histones, and form 

complex molecules that eventually can be seen as chromosomes under the microscope (Figure 3). 

 

Figure 3 Chromosome organization. Chromosomes are highly complex macromolecules, constructed from DNA molecules 
packed around histone proteins forming nucleosomes. The structures hierarchy is described in the text boxes. [18] 

At the lowest resolution, chromosomes are divided to euchromatin and heterochromatin. These are 

sub-chromosomal structures that can be observed under optical and electron microscope and are 

characterized experimentally as a dense (heterochromatin) and loose (euchromatin) areas in the 

chromosome (Figure 4). Chromatin stain and epigenetic markers are widely used to distinguish between 

these two states. One main group of epigenetic markers are histone side chains, which biochemically 

determining if a certain area in the chromatin will be highly dense and less accessible or less dense and 

therefore more accessible [19]. 

In addition to having similar properties, these structures tend to cluster together in the same areas in 

the nucleus – heterochromatin in areas near the lamina (nucleus envelope), euchromatin near the 

center of the nucleus. (Figure 4) 
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Figure 4 Euchromatin and heterochromatin viewed by electron microscope (right image) and by H&E staining (left image). The 
main cytological differences can be easily observed experimentally – heterochromatin regions are mainly located near the 
lamina, while euchromatin regions are located at the center of the nucleus. Heterochromatin is dense so it looks darker and 
stains better than euchromatin.[20] 

In higher resolution, each compartment can be sub-divided into topological associated domains (TADs), 

chromatin structures with a median length of approximately 200KB (Figure 5). The human genome is 

composed of thousands of TADs covering together more than 90% of the entire genome. These 

structures constrain chromatin interaction such that most of the intrachromosomal interactions occur 

within TADs and very few occur across TAD boundaries[1]–[3], [21]. TADs are relatively stable between 

cell types but can change their compartment, typically as a whole unit [4]. Remarkably, TAD positions 

also highly conserved between mouse and human[3], [4]. Thus, TADs have been shown to play an 

important role in the regulation of gene expression. [2], [22] 

 

 
Figure 5 Illustration of topological associated domains. Each of the two "bundles" is a TAD. Most chromatin interactions are 
spanned within TADs, inter-TAD interactions are relatively rare.[23] 

 
In even higher resolution, many studies suggest that TADs themselves are also subdivided to sub-TAD 

structures, named chromatin loops (Figure 6, 7). These structures, similarly to compartments and in 

contrast to TADs, seem to have cell-type specific properties [3], [7]. Chromatin loops, having a relatively 

small size and highly dynamic nature, can be better evidenced only in higher-resolution assays [3], [24].  
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A large fraction of TADs have chromatin loops in their borders. Moreover, the appearance of a loop is 

usually (in 65% of cases) associated with the appearance of a TAD demarcated by the loop, also referred 

as loop domains (Figure 6). Combined with the fact that highly expressed genes tend to cluster in the 

boundaries of TADs (see details in the next sections), these loops are suggested to have a regulatory 

role. 

  

Figure 6 TADs and loops.  An example of 2.1 Mb region on chromosome 20. The figure demonstrates the relation of the CTCF 
protein marks to loops boundaries and the types of TADs (ordinary and loop) [3] 

The mechanisms involved in TAD establishment are not yet fully understood. Some novel studies [25]–
[27] suggest a model in which a complex, including the proteins CCCTC-binding factor (CTCF) and 
cohesin, mediates the formation of loops by a process of extrusion (Figure 7). TADs form as a byproduct 
of this process. The model was tested on high-resolution spatial proximity maps and showed high 
consistency, using only information about the locations at which CTCF is bound. Disruption of TAD 
borders (by impairment of binding of associated factors)[27] seems to produce different architectural 
and functional effects, indicating the importance of this complex in chromatin organization.  
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Figure 7 Extrusion model for loops formation using CTCF binding sites.  Chromatin is wrapped by the extrusion complex and the 
loop grows until it reaches converging CTCF binding sites. The result is a chromatin loop with CTCF binding sites in its 
boundaries. According to Rao et al., 2014 [3] converging CTCF binding sites exist in more than 90 percent of loops boundaries.  

Figure 8 summarizes sub-chromosomal structures and their hierarchy. 

 

Figure 8 Summary of sub-chromosomal 3D structures. [21] 
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2.1.2. Next Generation Sequencing 
DNA sequencing is the process of determining the sequence of nucleotides within a DNA molecule. Next 

generation sequencing is a general name for several new high throughput methods that were 

implemented in commercial DNA sequencers over the last decade. These methods revolutionized 

genomic research and made DNA and RNA sequencing much faster and cheaper, and therefore a 

widespread and popular tool.  

The large quantities of data produced by these methods made it necessary to develop proper tools and 

programs to handle and analyze it, giving rise and changing the field of bioinformatics. This section 

introduces the relevant techniques used in our work. It also describes the pipeline we used to process 

the data and explore it. 

2.1.2.1. ChIP-Seq 
ChIP-Seq is a method for analyzing protein interactions with the DNA. ChIP-Seq combines chromatin 

immunoprecipitation (ChIP) with DNA deep sequencing to identify binding sites of DNA-associated 

proteins [REFs].  ChIP-Seq data can identify histone markers that characterize different chromatin states. 

Histone modifications are roughly divided into two groups which characterize open and closed 

chromatin states. We used these markers to validate that our partition to A/B compartments indeed 

correlated with corresponding chromatin states. 

Specifically, ChIP-Seq works as follows: 

1. Chromatin immunoprecipitation – (ChIP) is a method to selectively enrich for DNA sequences 
bound by a specific protein. The process enriches for specific cross-linked DNA-protein 
complexes by precipitation with an antibody against the protein of interest. After removing the 
antibodies, oligonucleotides adaptors are ligated to the DNA molecules to enable PCR. 

2. Sequencing – The resulting fragments are sequenced using NGS. Sequenced fragments are 
aligned to the reference genome. 

3. Peak Calling - The last step is to computationally identify areas in the genome that have been 
enriched with aligned reads, indicating protein binding sites. In this work, we used MACS [28], 
which will be further discussed in Data Analysis section.  

Additional details and illustration are found in Figure 9. 

Peaks detected by ChIP-Seq do not necessarily imply functional DNA-protein interactions. In fact, most 

binding sites discovered by ChIP-Seq are not functional. [29] 

https://en.wikipedia.org/wiki/ChIP
https://en.wikipedia.org/wiki/Antibody
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Figure 9 ChIP-Seq overview. In order to find specific protein binding sites on the genome, a cross-linking agent is injected to the 
nucleus resulting in DNA-protein complexes. Sonication is used to shear the DNA. Marked antibodies for the protein of interest 
are added in order to pull down the DNA-protein complexes. DNA is separated from the protein, sequenced and aligned. [30] 

2.1.2.2. RNA sequencing 
RNA sequencing (RNA-Seq) is a technique that uses NGS to measure RNA expression levels in sample. In 

a typical RNA-Seq protocol, cellular RNA is filtered to enrich for transcripts with 3' polyA tails, which 

characterizes the vast majority of mRNAs. Next, reverse transcription is applied to form cDNA libraries 

which are then sequenced (Figure 10). 
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Figure 10 RNA-Seq overview - A typical RNA-Seq experimental workflow involves the isolation of RNA from samples of interest, 
generation of sequencing libraries, use of a high-throughput sequencer to produce hundreds of millions of short paired-end 
reads, alignment of reads against a reference genome or transcriptome, and downstream analysis for expression estimation, 
differential expression, transcript isoform discovery, and other applications [31] 

2.1.2.3. Global Run-On (GRO-Seq) 
RNA-Seq measures mRNA steady state levels, determined by the balance between production and 

degradation rates (that is, by the rate of transcription and transcript stability). The GRO-Seq technique 

focuses on nascent transcription and provides estimates of mRNA production rates on a genomic scale.  

This measurement is achieved by inhibiting RNA-polymerase and simultaneously labeling all RNA 

molecules that are actively transcribed. The labeled RNAs are then isolated, sequenced and aligned. The 

output of the workflow is a list of actively transcribed regions in the genome at the time point when the 

experiment was conducted (Figure 11) 

 



19 
 

 

Figure 11 GRO-Seq overview. The goal of GRO-Seq is to measure active transcription products. In order to do so, Sarkosyl is 
added, inhibiting RNA polymerase from binding to the DNA. Nuclei are incubated with Br-UTP which marks all newly synthesized 
transcripts. When isolating all transcripts that contain Br-UTP, the results are products of RNA polymerases that bound to the 
DNA before Sarkosyl was attached.  The next steps are similar to ChIP-Seq and RNA-Seq  - amplification and reverse 
transcription of the resulting transcripts, generation of  sequencing libraries and alignment to reference genome [32] 
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2.2. High Throughput methods for detecting chromatin 3D interactions 
 

In this section we will describe novel high-throughput methods used to understand how the DNA is 

organized inside the nucleus. First, we will describe Hi-C, chromosome conformation capture combined 

with high-throughput sequencing method, presented by Lieberman-Aiden et al. Next we describe a 

method used to detect dynamic interactions mediated by proteins, ChIA-PET, which identified 3D 

genome-wide functional interactions.  

2.2.1. Hi-C 
Hi-C is a method that probes the three-dimensional architecture of whole genomes by coupling 

proximity-based ligation with high-throughput sequencing [1]. It evolved from a series of assays based 

on chromosome conformation capture – 3C, 4C and 5C [1], [33].  

In order to capture chromatin conformation, formaldehyde is injected into the nucleus. As a result, 

proximal segments are cross-linked. DNA is digested with a restriction enzyme that leaves 5' prime 

overhang. The 5' overhang is filled with biotinylated residue which is ligated under dilute conditions that 

favor ligation between the cross-linked DNA fragments. The resulting DNA sample contains ligation 

products of fragments that were in close spatial proximity when the cell was sampled. These products 

are marked with biotin at the junction. The methods differ in the last step when sequencing of the 

ligation products is done (Figure 12). 

3C and 4C are designed to for studying an individual locus of interest, a gene promoter for example, 

thus generating single interaction profile. In 3C, also called one-vs-one method, we test a genomic 

element of interest versus surrounding chromatin. In order to do so, the interaction between a specific 

pair of loci is measured using PCR with known primers. 

The extreme complexity of the 3C library and the low relative abundance of each specific ligation 

product made it necessary to find less specific methods for large-scale analysis. 4C generates a genome-

wide interaction profile for a single locus (one-vs-all), by performing another step of digestion with a 

different restriction enzyme and self-circularization ligation. Inverse PCR is then performed with primers 

for both ends of the locus of interest, amplifying the sequence of the unknown paired locus [33]. 
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Figure 12 Principles of 3C-derived methods - All the methods derived from the Chromosome Conformation Capture (3C) protocol 
start similarly. First, nuclei are incubated with formaldehyde cross-linking chromatin segments in close spatial proximity. Next, a 
restriction enzyme is used to produce pairs of short cross-linked fragments and a ligation step connects sequence ends that 
remained in proximity. Each method proceeds differentially to generate genomic libraries: secondary digestion with known 
primers for 3C, circularization and inverse PCR in 4C, “carbon copy” amplification in 5C. [34]  

 

Figure 13 Overview of Hi-C - As in 3C-derived methods described above, cells are cross-linked with formaldehyde, resulting in 
links between segments with high linear distance but close spatial proximity. Chromatin is digested with a restriction enzyme 
and the resulting sticky ends are filled in with nucleotides marked with biotin (purple dot). Ligation is performed under extremely 
dilute conditions to create DNA circles composed of two chimeric molecules and DNA binding protein. DNA is sheared and 
separated from the protein, resulting in multiple DNA fragments, where only a subset of them are chimeric products that 
indicate a 3D interaction. Streptavidin binds biotinylated nucleotides and isolates the fragments of interest that are next 
sequenced and aligned. [1] 
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Chromosome conformation capture carbon copy (5C) measures the frequency of interactions between 

all fragments defined by a specific restriction enzyme, within a given region no greater than a mega-base 

(hence this method is called many-vs-many). 5C uses highly multiplexed ligation-mediated amplification 

(LMA) to first copy and then amplify parts of the 3C library. In the next step, 5C performs another 

ligation of constant ends to ligation products and amplifies them using universal products (instead of 

locus-specific primers used in 3C, 4C). This approach is useful for identifying multiple chromatin 

interactions in a specific area but unsuitable for genome-wide interactions.  

In Hi-C, the library is created by identifying the biotin containing fragments, which indicates they are 

ligation products, with Streptavidin bead (also known as all-vs-all). The library is then analyzed by using 

high-throughput DNA sequencing methods, producing pairs of interacting fragments (Figure 14).  

The output of the Hi-C method is a genome contact matrix 𝑀. The genome is divided into bins, where 

bin size varies from 1MB to 1KB depending on sequencing depth. The entry 𝑀𝑖𝑗 is the number of 

interacting fragments between bin 𝑖 and bin 𝑗. This matrix reflects the probability of two loci to interact, 

as the measurement is based on a pool of many cells in different stages of cellular life. In the last eight 

years, significant efforts have been made to obtain Hi-C maps at ever increasing resolutions [3], [4], [7]. 

 

 

Figure 14 Visualizing 3C-based results. 3C and 4C compare one locus to other regions, so they are usually presented as a one 
dimension graph. 5C and Hi-C are presented as two-dimensional heatmaps [33] 
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A main drawback of 3C-derived methods is the fact that they report on the frequency of interaction 

between two loci in the cell population, but they do not distinguish functional from non-functional 

associations, nor do they reveal the mechanisms that led to the co-localization. Functional associations 

are specific contacts between two regions, mediated by proteins that bind them, such as enhancer-

promoter interactions. Non-functional interactions can result from indirect co-localization of two 

regions at the same dense packed area, such as nuclear lamina (in the case of heterochromatin) and 

transcription factories (in the case of euchromatin). In addition, they can be a side effect of specific long-

range interactions involving nearby fragments or other chromatin constraints. Finally, the proportion 

between the length of the long fiber-like chromosomes and the nucleus size makes random collisions an 

abundant phenomena. When analyzing Hi-C data, various methods are used to try and extract functional 

interactions (these methods will be further discussed in the following sections). 

A summary of the type of results of the different 3C methods is shown in Figure 15. Hi-C data reveal 3-D 

structures across the genome and significant long-range interactions. In this thesis, we analyzed 

correlation of this structure and interactions with gene expression.  

 

Figure 15 – Chromosome conformation capture summary. 3C finds interaction degree of one locus against another locus, 4C of 

one locus against all regions, 5C captures all interactions in a limited region, and Hi-C  measures genome-wide associations. [35] 
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2.2.2. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) 
ChIA-PET is a technique that incorporates ChIP-based enrichment (as described above), chromatin 

proximity ligation, Paired-End Tags, and high-throughput sequencing to determine genome-wide long-

range chromatin interactions related to a protein of interest.  

ChIA-PET is used to identify gene regulation made by interactions between the promoters (or gene 

coding regions) and regions far from them, such as transcription factors binding sites and enhancers. 

The technique can identify functional chromatin interactions that involve the target protein, suggesting 

it mediates the interaction. The combination of ChIP-Seq and 3C helps identify specific interactions, 

removing most of the background noise other 3C based methods suffer from. Instead of mapping all 

long range chromatin interactions, like in Hi-C, DNA-protein complexes are enriched for the protein of 

interest. Next, DNA fragments attached to the protein are ligated to form a chimeric ligation product. 

These fragments are identified, sequenced and aligned (Figure 16). The results are pairs of DNA 

fragments with a genomic span bigger than 3KB (less than 3KB is considered a result of self-ligation). 

When ChIA-PET is done with immunoprecipitation (IP) of a certain TF, chromatin interactions mediated 

by that TF are detected. To obtain a more global view of chromatin interaction the cell, RNA polymerase 

II can be used as the protein.      

In our study, we used ChIA-PET data for RNA POL 2 along with Hi-C data to identify enhancer-promoter 

interactions in basal conditions and examined its correlation with genes response to treatment. 
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Figure 16 ChIA-PET overview. (a) ChIP-Seq for the protein of interest (in our case RNA POL 2) is the first step. (b) DNase I is used 
to remove positions not occupied by TFs.  (c) Marked antibodies against the protein of interest are used to pull down DNA-
protein complexes (e) ChIA-PET and chromosome conformation capture based methods can be both used to identify chromatin 
interactions mediated by a protein of interest. All 3C-based methods (described above) can be used, depending on the purpose 
of the experiment. [15] 
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2.3. Relationship between 3D organization and gene expression 
Previous studies have shown a relationship between the 3D organization of the chromatin and gene 

expression.  

2.3.1. Defining 3D structures from Hi-C data 
Methods, including 5C and Hi-C, that map all interactions in a genomic region of interest or in complete 

genomes in an unbiased fashion, can be analyzed in various ways to identify structural features of 

chromosomes. One of the first Hi-C experiments, conducted by Lieberman-Aiden et al. [1], generated 

1MB resolution contact matrix of the human genome. These maps, even at low resolution compared to 

more recent experiments, showed computationally that the nucleus segregates into two compartments 

denoted A and B: 

Normalized intrachromosomal contact matrices present a plaid pattern (Figure 19). This pattern 

suggests that the chromosome is segmented into sub-chromosomal regions, where each segment 

belongs to one of two distinct compartments (A/B), such that most intrachromosomal chromatin 

interactions occur within compartments. We can consider each bin in the contact matrix as both an 

observation (row) and a feature (column) and try to find feature combination that divides the 

observations set into two compartments, by using PCA (see details in the following sections). 

Lieberman-Aiden et al., showed that the first principal component (PC1) corresponded to the plaid 

pattern, giving one compartment a positive sign and negative to the other. In a small fraction of the 

cases, PC1 divided the chromosome to the two chromosome arms. In this cases, PC2 corresponded to 

A/B partition. The compartments demonstrated the previously known features of the two chromatin 

states, euchromatin (arbitrarily labeled A) and heterochromatin (arbitrarily labeled B), such as gene 

density and histone markers (Figure 19)  [1]. 

Comparing A and B to known eu/hetero features  
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Figure 19. PCA and cellular compartments. (a) Compartments cluster together in the nucleus - PCA on chromosome 14 assigned 
markers  L1, L3 to A compartment and L2, L4 to B compartment. FISH assay shows that L1 and L3 (green and blue on left 
examples) are closer to each other than to L2 (red). Same holds for L2 and L4 (green and red on right examples) compared to L3 
(blue). (b) A/B compartments defined by the value of PC1 correlate with eu/hetero features such as (top down) – gene density, 
histone markers and chromatin density measured by DNAse|. [1] 

Further analysis of chromatin interactions revealed sub-compartments called topological associated 

domain (TAD)[2]. Most of the intrachromosomal interactions take place within TADs, while inter-TAD 

interactions are rare [2], [3]. This feature enabled researchers to identify TADs throughout mammalian 

chromatin by analyzing genome-wide Hi-C contact matrices using Hidden Markov Model approach. 

To identify systematically all such topological domains in the genome, the following analysis was 

made[2]: 

1. A directionality Index (DI) was defined for each genomic region as a function of the ratio 

between upstream interactions and downstream interactions involving that region. High DI 

regions have more upstream interactions, while low DI regions have more downstream 

interactions. Hence, at TAD boundary a change in the DI value from negative to positive is 

expected (Figure 20). 

2. Hidden Markov model (HMM) was applied using the DI of adjacent regions, with hidden states 

used to find TADs boundaries.  Boundaries between TADs were defined in loci where a sudden 

inverse in interaction bias was identified (Figure 21). The domains defined by HMM were 

reproducible between replicates, showing that the results are robust. 

 

 

 

Figure 20 Identifying TAD borders using Hi-C data and HMM – Normalised Hi-C data is presented above ( a short region in 
chromosome 6). Under it domains are marked with blue lines, square marks identify TADs borders. Directionality Index (DI) and 
HMM state are demonstrated, green stands for upstream interaction bias, red for downstream interactions bias.[2] 
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Figure 21 Illustration of TADs revealed by directionality index calculated on Hi-C data [2] 

Different cell lines show similar but not an identical division into compartments. In contrast, TADs are 

much more conserved across cell lines. Broad analysis of Hi-C data demonstrates this difference (Figure 

22) 
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Figure 22 Different cell line have different A/B compartments and similar TADs. (A) Compartmentalization of 31-Mb segment 
from chromosome 14 in cell lines GM06690 and K562, based on 1MB Hi-C data. For each cell line Hi-C contact heatmap, PC1 
values and DNAse1 result is shown. The indicated region (yellow dashes) demonstrated the difference between an alternating 
area in GM06690, corresponding to a stable area in K562. Compartmentalization corresponds to open/closed areas measured 
by DNAse1 [1].  (B) Analyses of different Hi-C data for the same cell line, (a-c) for EBV and (e-f) for IMR90 gives the same 
compartmentalization output as seen by their difference, (d) for EBV and (g) for IMR90. Comparing different Cell lines gives 
much more significant differences in compartmentalization, implying that A/B partition is cell type specific (h) [36]. (C)  Another 
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example for the difference between A/B compartments in different cell lines. K-means clustering (K=20) of PC1 values for Hi-C 
data binned to 40KB resolution. [4] (D) TADs are much more preserved across cell lines than A/B compartments. Compartment 
shifting between cell lines mostly occurs within TAD boundaries, suggesting that TADs are regulatory units. [4] 

2.3.2. Correlation of 3D structures to transcription levels 
In a prominent study, Dixon et al. [4] induced the differentiation of embryonic stem cells (ESCs) into 

different cell types and examined dynamic changes in genome organization and gene expression that 

occurred during the differentiation process. Their analysis showed that genes that changed their 

compartment status (A in ES and B in the differentiated cell or vice versa) had different distribution of 

fold-change of expression: genes whose compartment was changed from 'B to A' were generally up-

regulated during differentiation compared to genes that moved from 'A to B' that were generally down-

regulated (Figure 23).  

 

 

Figure 23 Compartment - expression correlation. Genes are divided into three groups according to compartmet status in hESC 
and in the titled cell. The distribution of fold-change in gene expression, measured by RNA-Seq,  is presented by boxplots. 
Transition from B to A  resulted in upregulation of gene expression while transition from B to A resultd in downregulation in 
gene expression. Genes that remain the same ("Stable") seem to distribute around mean FC = 1. ((***)P < 2.2 × 10−16, P values 
calculated by Wilcoxon test; whiskers correspond to interquartile range). [4] 

This study also stated that these transitions only affect a subset of genes, enriched for lineage-specific 

genes. It implies that compartments switching underlies a mechanism for cell-type specific gene 

expression profile.  

TAD role in gene expression has been investigated in many directions. In mammals, TADs borders are 
enriched with Transcriptional Start Sites (TSS). The epigenetic features of TADs can help understand 
some aspects of their role in gene regulation. Boundaries of TADs are enriched with CTCF, the insulator 
TF, along with activating TFs and histone markers of highly expressed areas (H3K4me3 and H3K36me3). 
Intra-TAD areas are more enriched with gene repressing markers (Figure 24). 
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Figure 24 (a) Active histone markers, TSS, GRO-Seq and SINE elements are enriched in boundary regions in mouse ES cells or 
IMR90 cell while closed histone markers are enriched in the center or spread uniformly.  (b) Enrichment of CTCF at boundary 
regions. .[2] 

It was also observed that genes with high expression tend to be located at the boundaries of TADs 

rather than at the middle (Figure 25). Combined with the findings that TADs borders are mainly 

demarcated by long-range looping interactions anchored with CTCF transcription factor, these loops are 

suggested to be enhancer – promoter contacts, concentrated at the boundaries of TADs [3]. 

 

 

 

Figure 25 Gene expression and location within TADs. In order to unify data from TADs of different sizes, we calculated the 
relative position for each gene in the TAD it is located in where TADs are normalized to (0,100). Genes were divided according to 
their FPKM, and relative location plots are presented for each group. These plots show that expressed genes tend to cluster at 
the boundaries of TADs while genes that are not expressed equally distributed (p<0.0001). 

In addition, when a TAD changes its compartment state from B to A, it has more intra-TAD interactions 

and genes within it are generally up-regulated, while a compartment's change from B to A correlates 

with a decrease in intra-TAD interactions and its genes are generally down-regulated [22].  
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2.3.3. 3D structures and response to stress 
How the high-level 3D organization of the genome is changed in response to stress or treatment is 

largely unknown. One study applied Hi-C to T47D cells before and after progestin and estrogen 

treatment [22]. This study detected changes in intra-TAD interactions, maintaining TADs borders, akin to 

intra-TAD changes that were recorded when cells differentiate from ES. Furthermore, it was noted that 

genes within the same TAD tend to respond in the same direction to stress. This observation suggests 

that TADs form regulatory units. The study suggested that chromatin remodeling as a response to stress 

is an abundant and significant mechanism. Figure 26 shows the strong correlation found between 

hormone-induced changes in intra-TAD interactions and response of gene expression in T47D breast 

cancer cell line treated with progesterone analog.  

 

Figure 26 Expression and interaction within TADs. (A) For each TAD, the average fold change (FC) of its genes expression in 
response to 6h Pg treatment is calculated. Based on this score, the top 100 TADs are defined as Activated TADs, the bottom 100 
TADs are defined as repressed. The boxplots show the difference in fold change distribution between TADs groups. (B) Changes 
in expression correlate with changes in intra-TAD chromatin organization. The boxplots show the Z-score distribution of the 
number of changes in intra-TADs interactions for the groups defined in (A). (***) P < 0.001; (**) P < 0.01; (*) P < 0.05 
 (Bonferroni-corrected Mann-Whitney test) [22] 

However, another seminal study applied Hi-C to examine 3D changes in IMR90 cells after treatment with 

TNF-𝛼.  Importantly, this study observed that  enhancer-promoter interactions of induced genes were 

already in place in the untreated cell line [7].. More specific 3C experiments indeed confirmed that 

genes that were induced by TNF-𝛼 had already enhancer-promoter contacts in the untreated IMR90 

samples (Figure 27). Changes in looping frequency of induced genes upon treatment were minor, unlike 

changes in looping frequency of ES cell-specific genes when comparing ES and IMR90. 
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Figure 27 Topological changes associated with enhancer activation. The blue plot shows the significant topological difference 
associated with enhancers of hESC-specific genes compared to untreated IMR90 cell line. The red plot shows the topological 
difference associated with enhancers of induced genes in IMR90 under TNF-a treatment, which are relatively mild. [7] 

These two studies illuminate different mechanisms that play a role in cell-type specific response to 

treatment or stress: (1) A/B compartmentalization and (2) intra-TAD E-P interactions that are present in 

the cell also in basal (unstimulated) condition. A key open question is the relative importance of these 

two mechanisms: 1) TADs conserved preexisting structure and boundaries, which allow intra-TADs 

modifications to take place only within them, and therefore regulate sets of genes in the same TAD in 

the same direction, and 2) cell specific preexisting enhancer-promoter interactions across TADs that lead 

to cell specific response. 
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2.4. Computational background 
In this chapter, we lay out the computational background of this thesis. Each section deals with a 

different type of computational problem. More details on the computational problems addressed are 

given in the references in each section.  

2.4.1. Hi-C contact matrix normalization 
The results of Hi-C data are pairs of reads, aligned to the genome. The genome is partitioned to bins of 

some size (between 1KB to 1MB), and a contact frequency matrix is computed as described above. Like 

all biological experimental methods, Hi-C has systematic biases that we want to take into consideration 

when calculating the contact probability matrix[37]. 

The main experimental biases are distance related. First, proximal bins along the DNA are 

overrepresented due to incomplete digestion and to a fragment re-ligated to itself 

Additional biases include (Figure 17): 

1. Non-specific fragments – DNA tends to randomly shear non-specifically regardless of restriction 

enzyme. 

2. Fragment lengths – different fragment lengths affect cross-linking and ligation efficiency. 

3. GC content – high/low GC content changes DNA molecule strength and condensation, affecting 

ligation product processing. 

4. Mappability – repetitive regions in the genome are harder to map to, which affects data 

reliability for certain fragments. For example, repetitive or non-sequenced areas (i.e., 

centromeres and telomeres) will not have reliable data, while unique sequences will.   

 

 

Figure 28  Systematic biases in Hi-C as described by Yaffe et al. [37] (c,d) Fragment lengths are determined by the restriction 
sites located on the genome. (e,f) Local GC content varies between chimeric products of the ligation step (g,h) Mappability, as 
measured by the uniqueness of the sequence, is determined by the read length and whether it is located in a repeat locus. The 
biases might affect the results processing. 
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There are different methods for normalizing the matrix according to known biases. These are the ones 

used on the data analyzed in our work: 

1. Matrix balancing methods such as Knight and Ruiz [38]. This method was used in order to 

normalize most of the contact matrices we used [3].  

2. HiCNorm – a method which uses a Poisson regression in order to remove the biases [39].  

3. Naïve approach that calculates the expected probability for two loci to interact, taking into 

consideration sequence depth and distance [40] 

4. Calculating the likelihood of any two fragments using a model that takes into consideration the 

biases above, using numerical optimization[37]. 

5. LOWESS normalization with different parameters[41]. 

In order to account for distance related biases, normalizing methods calculate an expected value for 

each diagonal (i.e., all pairs with same 1D distance) separately. 

 

2.4.2. Principal Component Analysis (PCA) 
PCA is a useful statistical technique for finding patterns in data of high dimension, which has found 

application in many fields. The main purpose of the method is extracting high variance features from the 

data, in order to classify observations with a simple, low dimensional vector. 

The input of PCA is a matrix 𝐺𝑚×𝑛, where 𝑚 is the number of observations and 𝑛 is the number of 

variables. The output is a linear transformation that transforms the data to a new coordinate system. 

The first coordinate, named first principal component (PC1) or first feature, has the greatest possible 

variance out of all the linear combinations over the variables, the second coordinate has the second 

greatest and so on. The number of features can be up to the number of variables, but in vast the 

majority of the cases, low variance components are discarded, leading to lower dimension 

representation of the data. 

 

Figure 29  PCA illustration. [42] 

Finding the feature with the highest variance also minimizes projection error from the new coordinate 

represented by the feature value and the real value, since the sum of the variance and the projection 
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error is constant and equals to the squared distance between the origin of the axis and the original 

coordinate, by Pythagoras theorem.  

We can also define the problem with the following formula: 

Assume that 𝐺, which is centered 𝐺 (i.e., the mean of each observation is 0). The projection of a vector 

𝑣 is given by 𝐺𝑣. The variance of the projection is 
1

𝑛−1
(𝐺𝑣)𝑇 ∙ 𝐺𝑣 = 𝑣𝑇 (

1

𝑛−1
𝐺𝑇𝐺) 𝑣 = 𝑣𝑇𝐶𝑣, where 𝐶 

is the covariance matrix of 𝐺. So, we want to find 𝑣 that maximizes 𝑣𝑇𝐶𝑣. 

According to spectral theorem- since 𝐶 is symmetric, it can be diagonalized by its eigenvector basis 

denoted by {𝑧𝑖}. We can represent each vector 𝑣 by a linear combination of the eigenvector basis 

vectors:  

𝑣 =  ∑ 𝑤𝑖𝑧𝑖  

and calculate its variance as ∑ 𝜆𝑖𝑤𝑖
2.  

Given 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛, assigning 𝑤1 = 1 , 𝑤𝑖 = 0 𝑓𝑜𝑟 𝑖 > 1, resulting in 𝑣 = 𝑧1, will give us the 

feature with maximum variance. 

Lieberman-Aiden et al. (2009) performed PCA on the Hi-C matrix and used PC1 to compute the A and B 

compartments division described before. 

In summary, PCA can be computed as follows: 

1. Center each variable in 𝐺𝑚×𝑛 so it mean in each observation will equal 0. 

2. Calculate the symmetric covariance matrix 𝐶𝑛×𝑛 − 𝐶𝑖,𝑗 is the covariance between variable 𝑖 and 

variable 𝑗.  

3. Compute the matrix of eigenvectors which diagonalizes the covariance matrix C: 

𝑉−1𝐶𝑉 = 𝐷 

4. The 𝐷 diagonal contains the eigenvalues of the corresponding eigenvectors in 𝑉. When sorting 

the eigenvalues in decreasing order, and sorting the eigenvectors accordingly, we get 

𝑃𝐶1. . 𝑃𝐶𝑛. 

5. The product of observation matrix 𝐺 and the vector 𝑃𝐶𝑖 (1 ≤ 𝑖 ≤ 𝑛) is a linear combination on 

each variable, represented by a row in the matrix, defining a new property called feature 𝑖 that 

has the 𝑖𝑡ℎ highest variance out of all linear combinations on the matrix rows. 

 

2.4.3. Data Analysis  
We used a variety of data samples in our work, in order to find genomic features that are common to 

many different cell types under many different treatments. We used several statistical methods in order 

to determine the significance of our findings, described in the following section. 
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2.4.3.1. Chi-square two sampled test 
Chi square two sample test is used to check if two data samples, usually binned data, come from the 

same distribution, especially when the common distribution in unknown. The null hypothesis is that the 

two samples come from a common distribution.  

Since we used it for comparing data divided into 2 bins, we calculated the statistic in the following way: 

Given the following table- 

  

 Bin 1 Bin 2 

Sample 1 𝑂11 𝑂12 
Sample 2 𝑂21 𝑂22 

 

For each cell 𝑂𝑖𝑗, 𝐸𝑖𝑗  is the product of the sum of the row 𝑖 and column 𝑗, divided by the sum of the 

table. For example: 

𝐸11 =
(𝑂11 + 𝑂12) ∗ (𝑂11 + 𝑂21)

𝑂11 + 𝑂12 + 𝑂21 + 𝑂22
 

The statistic is evaluated by one sample chi square test, with the calculated expectation:  

𝜒2 = ∑
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)

2

𝐸𝑖𝑗
 

P-value is derived from Chi square table with DF = 1. 

2.4.3.2. Nonparametric statistical tests  
Nonparametric statistics tests are used when we do not want to rely on any assumptions regarding the 

probability distribution of our data. We encountered such situation when using gene expression and 

chromatin interaction data. 

2.4.3.2.1 Wilcoxon test 

We used Wilcoxon test when checking whether two sets of genes, 𝐺1, 𝐺2 , have the same mean gene 

expression. Let us denote the distributions of gene expressions for the sets as 𝐷1, 𝐷2. The null 

hypothesis is that when sampling  𝑑1~𝐷1, 𝑑2~𝐷2 → the probability of 𝑑1 > 𝑑2 equals the probability 

that 𝑑2 > 𝑑1 (𝑃(𝑑1 > 𝑑2) = 𝑃(𝑑2 > 𝑑1). The null hypothesis will be rejected when the mean of the 

two distributions is significantly different.  

The test involves the calculation of a statistic usually called 𝑈, whose distribution under the null 

hypothesis is known. 𝑈 is calculated in the following way: 

Join both observation sets to one set. Sort this set and give each observation its ranking in the group 

(starting with 1 for the minimal value). For each set we get: 

𝑈𝑖 = 𝑅𝑖 −
|𝐺𝑖|(|𝐺𝑖| + 1)

2
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𝑅𝑖 is the sum of ranks of observations in  𝐺𝑖. We can choose 𝑈1 𝑜𝑟 𝑈2 since they completely derived 

from each other. In order to calculate the significance of 𝑈, we assume that for a large set (>20), the 

distribution of 𝑈 under the null hypothesis approximates a normal distribution. 

2.4.3.2.2. Permutation test 

We used a permutation test when checking whether a group of genes 𝐺, has a significant mean and 

median number of chromatin interactions at their transcription start site (TSS). We performed this test 

both for ChIA-PET data and significant chromatin interactions from Hi-C data. 

Given a set of genes 𝐺, we performed the following: 

1. Calculate the mean and median, 𝐺𝑚𝑒𝑎𝑛, 𝐺𝑚𝑒𝑑𝑖𝑎𝑛 of the number of chromatin interactions at the 

genes TSS. 

2. Generate 𝑛 random sets of |𝐺| genes (we used 𝑛 = 10000). We maintained that the number of 

genes taken from each chromosome will be the same as in 𝐺. 

3. The empirical P-value for 𝐺𝑚𝑒𝑎𝑛 is the fraction of sets with higher or equal mean than 𝐺. 

4. The empirical P-value for 𝐺𝑚𝑒𝑑𝑖𝑎𝑛 is the fraction of sets with higher or equal median than 𝐺. 
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3. Results 
 

Our analyses were based on public datasets of two high-throughput methods for profiling the 3D 

organization of the genome:  

1. Hi-C, a method based on chromosome conformation capture, measuring the frequency of 

interactions between DNA segments in the sampled cells. The frequency, as explained in the 

background section, represents the probability of interactions between any two chromatin 

segments. We mainly used intrachromosomal interactions in order to divide each chromosome 

to different compartments as described below. We used Hi-C data for 13 cell lines with bin size 

40Kbp and 100Kbp. Supplementary Table 1 reports the source study and resolution for each.  

 

2. ChIA-PET, a method that measures dynamic interactions between DNA segments mediated by a 

specific protein. We mainly used ChIA-PET data for RNA Pol2 in order to get enhancer-promoter 

interactions. We used ChIA-PET data from the ENCODE project for three cell lines, with mean 

chromatin segment size 3Kbp. Supplementary Table 2 reports the source study and mean 

resolution for each. 

3.1 Chromosome compartmentalization 
 

First, we defined A/B compartments for 13 human cell lines for which Hi-C data are available 

(Supplementary Table 1). We normalized each Hi-C matrix (as described in the background section) and 

performed principal component analysis (PCA) for each intrachromosomal matrix separately. The first 

principal component partitions the chromosome into two compartments, A and B, according to the sign 

of the elements. As seen in previous studies[1], the A compartment is gene rich and its chromatin is less 

dense (showing correlation with known areas and markers of euchromatin in the genome), while the B 

regions are gene poor and their chromatin is denser (correlating with known areas and markers of 

heterochromatin in the genome).  For each chromosome separately, we determine whether positive or 

negative values of PC1 correspond to A or B based on genes richness – the compartment with higher 

gene density was labeled as A compartment. Centromeric regions were not included in the A/B 

partitions since no chromatin interactions are identified by Hi-C in such regions. 

Table 1 shows summary statistics for the size and number of genes for the A and B compartments for 

each cell line. Figure 30 shows the compartments in chromosome 1 for each of the cell lines. Lines are 

organized hierarchically using agglomeration single – linkage clustering. Profile similarity was computed 

using Jaccard coefficient. The mean similarity between profiles was 0.75. 

 

Cell line A Total size 
(Mbp) 

Genes in A B Total size 
(Mbp) 

Genes in B 

GM12878 1322 15184 1410 3958 

K562 1376 15401 1356 3741 

HUVEC 1382 15116 1350 4022 

HMEC 1317 14593 1415 4543 
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NHEK 1433 14864 1300 4276 

IMR90 1310 13569 1423 5577 

T47D 1372 14114 1350 4979 

MCF7 1384 15056 1450 4758 

MCF10 1386 15090 1451 4772 

LNCAP 1433 14112 1299 5021 

PC3 1395 13341 1313 5692 

KBM7 1301 14506 1431 4631 

PrEC 1327 13994 1387 5041 
Table 1 Compartment size and genes distribution in compartments in 13 human cell lines for which Hi-C data is available 

 

A/B compartments in chromosome 1 based on Hi-C data 

 

Figure 30 – A/B partition of chromosome 1 for different cell lines based on Hi-C data in 100KB resolution. Dark blue indicates A 
compartments and white indicates B compartments. Light blue indicates areas which Hi-C could not measure interactions for, 
e.g., centromeres. The hierarchy graph represents the similarity between A/B compartments in different cell lines calculated by 
single-linkage clustering. The colored links indicate the most similar pairs. 
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3.1.1. Gene expression correlations with A/B compartmentalization  
 

A compartments are known to generally correlate with higher transcriptional activity. We therefore first 

performed several sanity checks on our A/B partitions, in order to confirm that they are consistent with 

this known feature. Using RNA-Seq data from the same cell lines for which Hi-C data were available, we 

verified that gene expression in A compartment is indeed significantly higher than in B compartment, for 

each cell line separately (Figure 31)   

Comparison of gene expression in A/B compartments

 

 

Figure 31 – Comparison of gene expression in A and B compartments for each cell line. The number below each cell type is the 
log (base 10) p-value for the significance of the difference between the two means computed using Wilcoxon test. The plots 
show that genes in A compartment are significantly more expressed than genes in B compartment 

The previous analysis was done on each cell line separately. Next, we examined the correlation between 

differences in A/B compartmentalization and gene expression across different cell lines. Specifically, for 

each pair of cell lines, we examined whether genes located in A compartment in one cell line and in B 

compartment in the other cell line show higher expression in the former. For each pair of cell lines, we 

divided the genes into four groups – A in both cell lines (AA), B in both cell lines (BB), A in cell line 1 and 

B in cell line 2 (AB) and B in cell line 1 and A in cell line 2 (BA). Next, we calculated gene-expression ratios 

between cell line 1 and 2 and compared the distribution of these ratios between the four gene groups.  

As expected, genes in the group AB tend to be more highly expressed in cell line 1, genes in the group 

BA tend to be more expressed in cell line 2 and genes in AA or BB have a mean ratio close to 1 (Figure 

32a). All pair-wise tests gave significant p-value (<0.0001) for comparison between AB and BA gene sets 

(Figure 32b). 
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Relation of A/B compartments and expression for cell lines GM12878 and K562 

 

Figure 32a - Compartmentalization-expression relation between cell lines GM12878 and K562. The genes are divided into four 
groups.In the figure AA and BB are united. P-value (Wilcoxon) between gene expression ratio distributions in AB and BA  is 10−40  
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Relation of A/B compartments and expression for all cell line pairs 

 

Figure 32b – Compartmentalization-expression relation between all cell lines. For each pair of cell lines, we calculated the 
significance of the difference between expression ratio for genes in AB and mean expression ratio for genes in BA using Wilcoxon 
rank-sum test. For all pairs, the p-values are highly significant (p < 0.0001) besides HMEC and NHEK. 

3.1.2. Correlation between A/B compartmentalization and TF binding.  
 

As mentioned before, epigenetic markers such as transcription factors binding sites and histone 

modifications related to euchromatin are enriched for A compartments, while heterochromatin 

epigenetic markers are more prevalent in B compartments. We next examined the correlation between 

A/B compartmentalization and TF binding. In this analysis, we included 122 TFs that had ChIP-Seq data 

recorded by the ENCODE project for cell lines with Hi-C data (Supplementary Table 3). 

First, we tested TFBS enrichment for A compartments. For each transcription factor and cell line we 

computed density factor, 𝐷, defined as follows: Let the number of observed binding sites in region 𝑆 be 

𝑂(𝑆) and number of expected binding sites in region 𝑆 be 𝐸(𝑆): 

𝐷 =
𝑂(𝐴)/𝑂(𝐵)

𝐸(𝐴)/𝐸(𝐵)
 

𝐷 > 1 implies that binding sites are enriched for A compartment and 𝐷 < 1 implies that binding sites 

are enriched for B compartment. For TF binding sites, 𝐸(𝐴)/𝐸(𝐵) is the size ratio between the 

compartments. 
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For example, we compared the number of CTCF binding sites (Table 2) in A and in B to their total size 

(Table 1) and calculated the p-value using chi-squared test: 

Cell line Observed A Observed B total Expected A Expected B D log 10 p-value 

K562 48141 15524 63665 32056 31599 3.06 <-300 

HUVEC 35329 12544 47873 24216 23656 2.75 <-300 

NHEK 45665 16701 62366 32700 29665 2.48 <-300 

HMEC 36469 18135 54604 26322 28281 2.16 <-300 

IMR90 29184 14880 44064 21121 22942 2.13 <-300 

GM12878 42295 17575 59870 28970 30899 2.57 <-300 

 

Table 2 CTCF BS in A and B compartments in six cell lines. The columns Expected A/B gives the expected number of binding sites 
based on the relative sizes of A and B compartments.  

Indeed, CTCF BS are highly enriched for A compartment in all the cell lines we tested (p-value<10−300), 

even though compartments sizes are almost equal. 

Next, we wanted to see if A-B transitions between cell lines are also reflected in TF binding sites. For 

each pair of cell lines, we segmented the genome into four regions according to A/B assignment in the 

two cell lines as described above. For a given TF, we divided the TF binding sites into three groups: 

binding sites common to cell line 1 and 2, binding sites detected only in cell line 1 and binding sites 

detected only in cell line 2. We then tested for a relationship between the two divisions. Specifically, we 

tested whether TFBSs that are specific to a cell line tend to occur more often in genomic regions 

assigned to A compartment in that cell line and to B in the other cell line. We also computed the 

occupancy enrichment ratio R, defined as follows: Let the number of cell line 𝑖 only BSs in region S be 

𝑛(𝑖, 𝑆). Then  

𝑅 =
𝑛(1, 𝐴𝐵) + 𝑛(2, 𝐵𝐴)

𝑛(1, 𝐵𝐴) + 𝑛(2, 𝐴𝐵)
 

(The ratio of the sum of numbers in blue to the sum of numbers in orange in Table 3). Table 3, as an 

example, the results obtained for CTCF binding sites in HMEC and HUVEC cell lines. 

HMEC HUVEC AA AB BA BB total R p-val 

HMEC_only_BSs 7241 1655 947 4775 14618 2.34 10−168 

HUVEC_only_BSs 4516 264 1180 1524 7484   

Common_BSs 24986 2587 4647 9750 41970   

Table 3 CTCF binding sites are divided into 3 groups and each group is divided according to A/B assignment in HUVEC and 
HMEC. R is the occupancy enrichment ratio (see text). P-value is calculated based only on AB/BA division. 

As expected, we observed that CTCF BSs specific to HMEC (HUVEC) were significantly enriched in AB (BA) 

genomic regions. R for this comparison was 2.34 (p-value= 10−168; chi-square test between 

n(1,AB),n(1,BA) and n(2,AB), n(2,BA)).  
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As CTCF ChIP-Seq data is available for 6 cell lines with Hi-C data, we could carry out a wide comparison 

for this factor. For all comparisons, we got a significant association (p<0.001) between CTCF binding and 

A (Figure 33a).   

Relation between A/B partition and CTCF binding site occurrence for 6 cell lines  

 

Figure 33a – Relation between A/B partition and CTCT binding site occurrence for 6 cell lines. Each cell contains the p-value of 
chi-square test between (AB, BA) count of cell line 1 only binding sites and (AB, BA) count for cell line 2 only binding sites. All p-
values are significant (<0.001).  

To study the relation of binding sites and compartments across many TFs, we focused on GM12878 and 

K562, which have ChIP-Seq data for 49 common TFs. For each TF we calculated the p-value and the 

occupancy enrichment factor. Strong TFBS-compartment relationship was observed for the vast majority 

of TFs (Figure 33b).  
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TFBS occupancy and A/B compartments in GM12878 and K562 

 

Figure 33b - TFBS occupancy and A/B compartments in GM12878 and K562. 49 TFs are sorted by p-value calculated by chi-
square test as described above (y-axis is -log10(p-value)). TF with p-value above the horizontal line (marked in red) have 
significant p-value (p<0.05). The occupancy enrichment ratio is calculated for each TF and represented by the grey  bars. 

We obtained a significant enrichment for 44 out of 49 TFs (FDR < 0.05). The strongest effect was 

observed for EP300, a transcriptional activator that marks active enhancers. For three out of the five TFs 

with non-significant p-value, the reason for the non-significant result is that one of the groups is too 

small, a basic problem when using the chi-square test (Supplementary Table 4) shows an example of 

ZNF274). 

We performed another test that calculates the ratio between cell line specific binding sites to common 

binding sites. This test was made to distinguish between cell line enrichment of binding sites to A 

compartment presented by 𝐷, to transition enrichment presented by 𝑅. 

We computed transition enrichment ratio 𝑇, defined as follows: 𝑛(𝑖, 𝑆) is defined as described above,     

𝑖 = 3 refers to common binding sites: 

𝑇1 =
𝑛(1, 𝐴𝐵)/𝑛(1, 𝐵𝐴)

𝑛(3, 𝐴𝐵)/𝑛(3, 𝐵𝐴)
, 𝑇2 =

𝑛(2, 𝐵𝐴)/𝑛(2, 𝐴𝐵)

𝑛(3, 𝐵𝐴)/𝑛(3, 𝐴𝐵)
  

For the example in Table 3, we get 𝑇1 =   3.14, p-value= 10−133; chi-square test between 

n(1,AB),n(1,BA) and n(3,AB), n(3,BA)), 𝑇2 =   2.49, p-value= 10−38; chi-square test between 

n(2,BA),n(2,AB) and n(3,BA), n(3,AB)). 

We obtained a significant enrichment for 42 out of 49 TFs (FDR < 0.05) for both T1 and T2.  
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Transition enrichment for GM12878 specific TFBS compared to common TFBS with K562 

 

Figure 33c - 49 TFs are sorted by p-value calculated by chi-square test as described above (y-axis is -log10(p-value)). TF with p-
value above the horizontal line (marked in red) have significant p-value (p<0.05). The transition enrichment ratio for GM12878, 
T1, is calculated for each TF and represented by the grey bars. 

 

Figure 33d - 49 TFs are sorted by p-value calculated by chi-square test as described above (y-axis is -log10(p-value)). TF with p-
value above the horizontal line (marked in red) have significant p-value (p<0.05). The transition enrichment ratio for K562, T2, is 
calculated for each TF and represented by the grey bars. 
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Next, we carried out similar tests for selected epigenetic marks. First, we examined H3k9ac, which marks 

active regions. Here too, as expected, we found a significant correlation between cell type specific 

H3K9ac signal and cell type specific compartmentalization. An example is shown in Table 4 (p-value < 

10−300, chi-square test). 

 

GM12878 NHEK AA AB BA BB total R  p-value 

GM12878_only_BSs 14695 3111 596 1708 20110 4.54 <10−300 

NHEK_only_BSs 19997 1401 5949 4154 31501   

Common_BSs 21594 2036 1078 2911 27619   
Table 4 – H3k9ac sites in A and B compartments for cell lines GM12878 and NHEK    

The opposite trend was observed for epigenetic repressive marks. As an example, we tested H3k27me3 

and found that cell type specific signal is enriched for cell type-specific B compartments. An example is 

shown in Table 5 (p-value < 10−300)) 

 

MCF7 GM12878 AA AB BA BB total R p-value 

MCF7_only_BSs 5213 1751 3637 9712 20313 0.54 10−122 

GM12878_only_BSs 7176 1765 1145 3608 13694   

Common_BSs 318 95 118 317 848   

Table 5 – H3k27me3 sites in A and B compartments for cell lines GM12878 and NHEK    

 

3.2. Correlation between gene expression level and extent of promoter interactions 
 

We next examined the relationship between gene expression level and chromatin interactions involving 

gene promoters. We hypothesized that promoters of highly expressed genes are more likely to be 

engaged in chromatin interactions than lowly expressed genes. To test this hypothesis, we analyzed only 

genes located within the A compartment.   

 

3.2.1. Promoter-chromatin interactions are correlated with gene expression 
  

The A compartment is generally characterized by high transcriptional activity. Yet, genes within this 

compartment show high expression variability and many of them are not expressed at detectable levels. 

We used promoter interactions inferred from both Hi-C and ChIA-PET data to test whether gene 

expression level is correlated with promoter-chromatin interactions. We reasoned that most promoter-

chromatin interactions presumably reflects promoter-enhancer interactions, and thus are expected to 

correlate with higher expression of the involved gene.  

For Hi-C, we used PSYCHIC [43], a tool that removes intra-TAD signal biases in Hi-C data and finds 

significant contacts between promoters and other chromatin segments. In accordance with our 
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hypothesis, we indeed observed that the number of interactions in which a gene promoter is involved is 

positively correlated with the gene’s expression level. Figure 34a shows the distribution of the 

expression levels for five groups of genes in A compartment distinguished by their number of 

interactions. Figure 34b displays the same data but dividing the promoters into only two groups: those 

with no interactions and those with one or more interactions. Here too, the expression level of genes in 

A compartment whose promoter was not engaged in any chromatin interaction was significantly lower 

than the expression of those who were engaged.    

Gene expression vs Hi-C promoter interactions 
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Figure 34a - Gene expression and promoter interactions. 
Genes in A compartment were partitioned into three groups 
according to their expression levels. For each group, the 
distribution of the number of genes with 0,1 … 4 interactions in 
their promoter is shown. Interactions are extracted from Hi-C 
data using PSYCHIC.  P-value is calculated using Wilcoxon test 
comparing the distributions in the least and most abundant 
expression groups.  

 

 

 

 

Figure 34b - Genes in A compartment were partitioned into two groups according to number of interactions of their promoters. 
For each group, the distribution of the gene expression levels measured by RNA-Seq is shown. P-value is calculated using 
Wilcoxon test. 
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Next, we applied a similar test, using ENCODE’s ChIA-PET data for RNA POL2. Here too, we found the 

same correlation, albeit with stronger significance (Figure 34c, 34d). The reason for the higher 

significance is that while Hi-C data measures all chromatin interactions, ChIA-PET measures interactions 

mediated by RNA POL2, so it emphasizes transcription related interactions. 

 

ChIA-PET promoter-chromatin interactions vs gene expression 

 

Figure 34c – ChIA-PET promoter-chromatin interactions vs. gene expression. Genes in A compartment were partitioned into four 
groups according to their expression levels. For each group, the distribution of the number of genes with 0,1 … 8 interactions in 
their promoter is shown. Interactions are extracted from ChIA-PET RNA POL2 data. P-value is calculated using Wilcoxon test 
comparing the distributions in the least and most abundant expression groups. 
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Gene expression vs ChIA-PET promoter-chromatin interactions 

 

Figure 34d – Gene expression vs ChIA-PET promoter-chromatin interactions. Genes in A compartment were partitioned into 
three groups according to number of promoter-chromatin interactions measured by ChIA-PET RNA POL2. For each group, the 
distribution of the gene expression levels measured by RNA-Seq is shown. P-value is calculated using Wilcoxon test comparing 
the distributions of genes with no interactions to genes with at least one interaction. 

 

3.2.2. Changes in promoter interactions across cell lines correlate with changes in gene 

expression levels 
 

Having observed correlation between promoter contacts and expression for each cell line separately, we 

turned to examine differences between cell lines. We asked if the difference in expression of a gene in 

different cell lines is associated with difference in the number of interactions in which the gene’s 

promoter is involved in these cell lines. This analysis too was confined to genes located within A 

compartment in both cell lines (AA genes). For each pair of cell lines, we divided the genes into four 

groups: no promoter interactions in both cells ("00" group; promoter interactions only in cell line 1 

("01"); promoter interactions only in cell line 2 ("10") and promoter interactions in both ("11"). We used 

Pol2 ChIA-PET data for this analysis. Figure 35 shows the results of this analysis applied to MCF7 vs. 
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K562. The analysis strongly demonstrates that genes were more highly expressed in the cell line in which 

their promoter was more highly engaged in chromatin interactions (Figure 35).    

 

Figure 35 Relation between Gene expression and ChIA-PET promoter-chromatin interactions between cell lines. AA genes were 
divided into four groups according to the involvement of their promoters in chromatin interactions in each of the cell lines in the 
examined pair (00, 01, 10, 11. 00) and expression levels were compared between the two cell lines. Genes were placed on the 2D 
plot according to their expression in both cell lines, clustered (with overlaps) using KDE. The color of a cluster stands for its gene 
density. The results show that there is a correlation between different gene expression in the examined cell lines and the number 
of promoter’s chromatin contacts. 

We next calculated fold-change in gene expression between any pair of cell lines and, for each pair, 

compared the distribution of these ratios between the four groups of genes. Difference in expression 

level was significantly associated with difference in promoter involvement in chromatin interactions 

(Figure 36).    
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Figure 36 Gene expression ratio between cell lines partitioned into groups depending on promoter interactions. The groups are 
as described in Figure 35. Top: GM12878 and K562, middle: MCF7 and K562, bottom: GM12878 and MCF7. In all tests,  p-value 

< 10−300  between group 10 and group 01. 
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3.3. Correlation between basal chromatin interactions and gene induction upon treatment 
 

Many transcriptomic studies observed that a large portion of the transcriptional response to various 

challenges is cell-type specific. We next sought to examine the role of chromatin interactions in the cell-

type response to treatment.   

In this section, we examine if chromatin interactions that are already in place in the cells prior to the 

treatment affect the set of genes that respond to the treatment. Specifically, we test the relationship 

between preexisting, basal chromatin interactions and cell’s transcriptional response to treatment. To 

allow us to draw some general conclusions, we analyzed a variety of cell lines and multiple treatments 

covering diverse biological processes. 

3.3.1. Chromatin compartmentalization and induction of TF binding upon treatment  
In this analysis, we analyzed 110 publicly available Chip-Seq datasets from GEO that recorded TF binding 

profiles in cells (for which Hi-C data are available) before and after the application of treatment/stress. 

Overall, we analyzed 21 TFs in 7 cell lines in response to 22 treatments. (Supplementary Table 5 

summarizes the analyzed conditions). To ensure analysis uniformity, we downloaded raw sequence 

reads and detected TF peaks ourselves. Briefly, for each ChIP-Seq experiment, reads were aligned to the 

human genome (hg19) using bowtie2. Control and treated samples were then compared using MACS2 

[44] to identify TF peaks that were induced or repressed upon treatment. 

First, per experiment, we  divided the induced sites into A/B compartments and examined their 

enrichment towards A. P-value was calculated using chi-squared test, comparing the counts of induced 

sites in A and in B to the number of base pairs in A and in B. We get very significant p-values in the vast 

majority of experiments, indicating that the preexisting A/B compartmentalization within a cell line 

constrains the TF-chromatin interactions induced in response to stress. The results are summarized in 

Figure 37 and the full results are shown in Supplementary Table 5. 
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Relation of post-treatment TF peaks and pre-treatment chromatin compartments 

 

Figure 37 –. Enrichment of TF BSs induced by various treatments to the A compartment (as exist in the cells before treatment) 
Experiments are sorted by p-value, occupancy enrichment ratios are represented by bars. Red line stands for p-value = 0.01 and 
orange line stands for occupancy enrichment ratio = 1. 
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3.3.2. Chromatin compartmentalization and induction of TF binding upon treatment; Comparison 

between cell lines 
 

Next, we sought to further examine the relationship between cell-type specific chromatin organization 

and response to treatment. To carry out such analysis, we searched for ChIP-Seq datasets that profiled 

chromatin binding of the same TF upon the same treatment in two different cell lines (for which Hi-

C/ChIA-PET data are also available). For each such pair, we again divided the induced TF binding sites 

into three groups: binding sites induced upon treatment only in cell line 1, binding sites induced only in 

cell line 2 and binding sites induced in both. Induced TFs in each group were then divided into four 

categories – AA, AB, BA, BB as before. Our hypothesis was that TFBSs induced only in cell line 1 (2) 

would be enriched in region AB (BA). We found a significant relation for all comparisons (Table 6).  

 

  
Table 6 description of 5 comparisons of cell specific induced TFBSs and their relationship to A/B division. P-value is calculated by 
chi-square test for AB/BA in first 2 rows (cell 1/2 only BS) 
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Notably, we observed that despite the significant association between cell-type specific induced TFBSs 

and chromatin organization (preexisting in the cells prior to the application of the challenge), most of 

the cell-type specific induced TFBSs were located in AA regions (Table 6), indicating that other factors 

besides A/B compartmentalization underlie most of the cell-type specific transcriptional response.  

3.3.3. Stress-induced genes are enriched for A compartment 
At this point, we returned to our main question: to what extent the spectrum of genes induced by stress 

in each cell type is determined by the A/B structure constraints that exist in the cells before stress was 

applied? Here, we analyzed 36 gene expression datasets (Supplementary Table 6). Briefly, we 

downloaded raw sequence reads from GEO/SRA DB, mapped them to the human genome (hg19) using 

tophat2, counted the number of reads that mapped to each annotated gene using HTSeq-counts and 

GENCODE annotations and normalized gene expression estimates to RPKM. We compared expression 

profiles between treated and control samples and defined the genes whose expression was changed by 

at least 1.5-fold as differential genes. (To avoid inflation of lowly expressed genes among the called 

genes we used a floor level of 1.0 RPKM.) Then, for each cell line and treatment, we tested whether the 

set of induced genes was over-represented in the A compartment. In most conditions that we tested, 

the induced genes were enriched for the A compartment (Figure 38), meaning occupancy enrichment 

ratio was above 1 with p-value < 0.01 (chi-square test).  

 

Compartmentalization- induced genes relation 

 

Figure 38 - Summary plot of post-treatment RNA-Seq data (supplementary table 6) - experiments are sorted by p-value, 
enrichment factor is represented by bars. Red line stands for p-value = 0.01 and orange line stands for occupancy enrichment 
ratio = 1. 
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This analysis resulted in less significant results than TFBS analysis because while there are thousands of 

induced TFBS measured by ChIP-Seq, the number of responsive genes measured by RNA-Seq is much 

lower (less than 10 in some cases). Nevertheless, 28 out of 36 experiments had a significant p-value, FDR 

< 0.05, and the fact that 34 out of 36 experiments have enrichment factor larger than 1 indicates this is 

not a random feature (p-val < 3 ∗ 10−5). 

 

3.3.4. Promoters of induced genes have more basal chromatin interactions prior to treatment 
In this section, we tested if promoters of induced genes have a higher number of chromatin interactions 

prior to stress than non-induced ones. If this holds, it would suggest that the induced genes in each cell 

type are to a certain extent predetermined by the structural organization of the chromatin prior to the 

application of the treatment.  

We analyzed the gene expression experiments described in section 3.3.3 and examined if the promoters 

of the induced genes are engaged in a significantly higher number of chromatin interactions. We 

estimated significance using permutation test with 10000 iterations, in each iteration selecting a random 

set of genes of the same size as the induced genes set (Figure 39). We obtained significant p-values 

(p<0.05) for all conditions but one (Table 7). That particular experiment (MCF7 E2 + ICI) had very few 

induced genes in A compartment (Supplementary Table 6). 

  
Figure 39- Evaluating the significance of the number of interactions of induces genes using permutation tests. The histogram 
shows the mean number of chromatin interactions in 10000 randomizations for GM12878 cell line treated with TNF-𝛼. The 
arrow shows the number for the real set of induced genes. 
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Cell line Description Data type Mean number of promoter interactions p-val 

HUVEC IFN Hi-C 1.46 <10E-04 

HUVEC TNFa Hi-C 1.57 <10E-04 

K562 SAHA ChIA-PET 5.44 <10E-04 

K562 SAHA Hi-C 1.12 <10E-04 

K562 NaBut ChIA-PET 5.27 <10E-04 

K562 NaBut Hi-C 1.03 <10E-04 

HMEC TNFa Hi-C 1.4 <10E-04 

MCF7 IL1B ChIA-PET 7.91 <10E-04 

MCF7 E2 + ICI ChIA-PET 4.75 0.41 

MCF7 E2+TOT+TNFa ChIA-PET 7.16 <10E-04 

MCF7 E2+TOT ChIA-PET 4.94 0.04 

MCF7 E2+TOT+IL1b ChIA-PET 7.51 <10E-04 

MCF7 E2 ChIA-PET 8.16 <10E-04 

MCF7 IL1b+ICI ChIA-PET 7.67 <10E-04 

MCF7 TNFa ChIA-PET 7.27 <10E-04 

MCF7 estradiol ChIA-PET 10.63 <10E-04 

MCF7 TNFa+ICI ChIA-PET 6.89 <10E-04 

IMR90 Nutlin-3a Hi-C 1.21 <10E-04 

IMR90 TNFa Hi-C 1.25 <10E-04 

IMR90 TNFa+cycloheximide Hi-C 1.24 <10E-04 

GM12878 TNFa ChIA-PET 3.91 <10E-04 

GM12878 TNFa Hi-C 1.77 <10E-04 

Table 7 - Significance of the relation between the number of chromatin interactions and gene expression. Empirical p-values 
were calculated by permutation test. 

 

 

3.3.5. Correlation between chromatin compartmentalization and gene induction upon treatment 

between cell lines  
 

Finally, we examined if cell-specific gene induction correlates with pre-existing chromatin 

compartmentalization. In order to do so, we repeated the steps in section 3.3.2 with the set of induced 

genes instead of transcription factors binding sites for five cell lines treated with TNF-𝛼. Here too, for all 

cases, we found that genes induced specifically in cell line 1 (2) were significantly enriched for AB (BA) 
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regions (Table 8). Yet, here too, the majority of cell type specific responsive genes were located in AA 

regions, again indicating that other factors (e.g., cell-type specific basal chromatin interactions within 

the A region) play critical roles in determining the specific spectrum of genes that respond to a challenge 

in each cell type.     

 

Table 8 Correlation between cell-type specific A/B compartmentalization and response to TNFa  

  



62 
 

4. Discussion 
 

In this thesis we examined the relationship between pre-defined genome structures in the nucleus and 

changes in the levels of gene expression in response to stress. Our goal was to perform a broad analysis 

in order to obtain insight into how pre-stress structure affects gene regulation in the cell in response to 

stress.  

First, we collected Hi-C data of 13 cell lines from six different studies. We normalized these data sets and 

performed compartmentalization of the genome in each cell line, partitioning it into two compartments, 

A and B, which correlate with euchromatin and heterochromatin, respectively. We saw that different 

cell lines have similar but far from identical A/B partition (Figure 30). We validated what previous 

studies have shown on A/B compartments using ChIP-Seq and RNA-Seq data from hundreds of studies. 

RNA-Seq analysis demonstrated that genes in A compartments are highly expressed compared to genes 

in B compartments in all cell lines. In addition, ChIP-Seq data for transcription factor binding sites 

validated that the vast majority of TFBS are enriched for A compartment (Table 2). Following this results, 

we checked whether differences in gene expression and cell type-specific binding sites correlate with 

differences in A/B compartments. We showed that transition from A to B or B to A between cell lines 

has a significant correlation with changes in gene expression and in TFBS density (Figure 33-34). 

Next, we used Hi-C and ChIA-PET data of three cell types from two studies for estimating the number of 

gene promoter interactions with distal chromatin segments. Combining these data with RNA-Seq, we 

showed that high promoter-chromatin interactions correlate with high expression levels, suggesting that 

the data reflect enhancer-promoter interactions. When comparing between cell lines, we also 

demonstrated that differences in promoter-chromatin interactions are accompanied by differences in 

gene expression between cell lines (Figure 35). 

After analyzing untreated cells data, we collected data (ChIP-Seq, RNA-Seq and GRO-Seq) on cell 

response to different treatments. These data spanned 85 experiments performed on the set of cell lines 

that we analyzed. In order to make the analysis of data from diverse sources as coherent as possible, we 

processed the reads from the experiments using our own pipeline and avoided using binding sites and 

expression levels as computed and reported in each study. In order to check the relationship between 

cell response and A/B compartmentalization, we first calculated the enrichment of induced TFBSs to A 

compartment and revealed a significant enrichment in 44 out of 49 ChIP-Seq data sets (Figure 37). 

Following this result, we made five comparisons between induced binding sites of the same 

transcription factor under the same treatment between different cell lines. The output of this 

comparisons revealed that predefined compartment state transitions correlate with cell specific induced 

binding sites (Table 6). Following induced TFBSs, we checked for enrichment in A compartment for 

genes with induced transcript level as measured by RNA-Seq and GRO-Seq. We revealed a significant 

enrichment in 28 out of 36 experiments (Figure 38). When comparing different cell lines under the 

treatment of TNF𝛼, we detected that transition in compartment state shows a significant correlation 

with cell specific induced genes (Table 8). 

Having observed these correlations, our last step compared gene expression data after treatment to 

promoter interactions of the untreated cells, extracted from Hi-C and ChIA-PET data. We showed that 
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for 20 out of 22 data sets, the mean number of promoter-chromatin interactions in the untreated cells 

for induced genes after treatment was highly significant (Table 7). 

The results described above suggest that basal genome structures affect the cell-specific response to 

stress. In low resolution, A/B partition varies between cell lines and our analysis shows that these 

transitions correlate with induced protein-DNA complexes and with the induced level of gene 

transcription. At a much higher resolution, we show the enrichment of higher resolution promoter-

chromatin interactions in induced genes, suggesting that some genes are "poised" well in advance of the 

stress, making them readier to respond to stress. Previous studies have shown that the compartments 

can be divided into topological associated domains (TADs) that are much more conserved between cell 

lines. Recent work demonstrated that TADs function as a regulatory structure, changing all of its gene 

expression levels in the same direction as a response to stress. We have not explored the role of these 

domains in cell response to stress, but the combination of our work with these insights suggests that 

poised genes tend to be in the same TAD. This might explain one of the differences between expressed 

genes and poised genes. 

Our work emphasizes the assumption implied by previous studies, that a critical stage in the genome 

organization takes place during differentiation. The lack of Hi-C data and ChIA-PET data of cells after 

treatment did not allow us to perform a broad comparison of 3D organization in basal and induced cells. 

Such analysis might shed light on the importance of the predefined structural constraints and on the 

ability of the cell to additionally modify it in response to stress.  

Throughout our research we noticed that the same features of induces genes exist for repressed genes 

as well. Since most of the expressed genes that were repressed in response to stress are in A 

compartment and have a high number of promoter-chromatin interactions, we did not focus on this 

enrichment in the thesis.  Understanding whether there is a pre-existing long range interactions profile 

that characterizes repressed genes will add support to the hypothesis that the basal spatial organization 

has an important role in gene regulation. 

An interesting future direction of future research can be using different methods in order to modify cells 

3D organization, and testing whether it affects cell response to stress. Such study will help prove that 

the correlation that we see between the 3D organization and gene expression is indeed a mechanism 

that has a significant role in gene regulation.  

 

 

 

 

 

 

 

 



64 
 

 

 

References 
[1] E. Lieberman-Aiden et al., “Comprehensive Mapping of Long-Range Interactions Reveals Folding 

Principles of the Human Genome,” Science (80-. )., vol. 326, no. 5950, 2009. 

[2] J. R. Dixon et al., “Topological domains in mammalian genomes identified by analysis of 
chromatin interactions.,” Nature, vol. 485, no. 7398, pp. 376–80, Apr. 2012. 

[3] S. S. P. Rao et al., “A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of 
Chromatin Looping,” Cell, vol. 159, no. 7, pp. 1665–1680, Dec. 2014. 

[4] J. R. Dixon et al., “Chromatin architecture reorganization during stem cell differentiation.,” 
Nature, vol. 518, no. 7539, pp. 331–6, Feb. 2015. 

[5] J. H. Gibcus and J. Dekker, “The Hierarchy of the 3D Genome,” Mol. Cell, vol. 49, no. 5, pp. 773–
782, Mar. 2013. 

[6] E. de Nadal, G. Ammerer, and F. Posas, “Controlling gene expression in response to stress,” Nat. 
Rev. Genet., vol. 12, no. 12, p. 833, Nov. 2011. 

[7] F. Jin et al., “A high-resolution map of the three-dimensional chromatin interactome in human 
cells,” Nature, vol. 503, no. 7475, pp. 290–4, Oct. 2013. 

[8] “Hasan H. Otu From Sequence to Function to Network: Analysis Issues in Bioinformatics BIDMC 
Genomics CenterHarvard Medical School. - ppt download.” [Online]. Available: 
http://slideplayer.com/slide/10711347/. [Accessed: 24-Jul-2017]. 

[9] D. Greenbaum, C. Colangelo, K. Williams, and M. Gerstein, “Comparing protein abundance and 
mRNA expression levels on a genomic scale.,” Genome Biol., vol. 4, no. 9, p. 117, 2003. 

[10] D. Greenbaum, R. Jansen, and M. Gerstein, “Analysis of mRNA expression and protein abundance 
data: an approach for the comparison of the enrichment of features in the cellular population of 
proteins and transcripts,” Bioinformatics, vol. 18, no. 4, pp. 585–596, Apr. 2002. 

[11] M. P. Washburn et al., “Protein pathway and complex clustering of correlated mRNA and protein 
expression analyses in Saccharomyces cerevisiae,” Proc. Natl. Acad. Sci., vol. 100, no. 6, pp. 
3107–3112, Mar. 2003. 

[12] D. U. Gorkin, D. Leung, and B. Ren, “The 3D genome in transcriptional regulation and 
pluripotency,” Cell Stem Cell, vol. 14, pp. 762–775, 2014. 

[13] N. D. Heintzman et al., “Histone modifications at human enhancers reflect global cell-type-
specific gene expression,” Nature, vol. 459, no. 7243, pp. 108–112, May 2009. 

[14] D. T. Odom et al., “Control of Pancreas and Liver Gene Expression by HNF Transcription Factors,” 
Science (80-. )., vol. 303, no. 5662, 2004. 

[15] D. Shlyueva, G. Stampfel, and A. Stark, “Transcriptional enhancers: from properties to genome-
wide predictions,” Nat. Rev. Genet., vol. 15, no. 4, pp. 272–286, Mar. 2014. 

[16] L. Calviello et al., “Detecting actively translated open reading frames in ribosome profiling data,” 



65 
 

Nat. Methods, vol. 13, no. 2, pp. 165–170, Dec. 2015. 

[17] A. T. Annunziato, “DNA Packaging: Nucleosomes and Chromatin,” Scitable. 

[18] “Niveles de empaquetamiento del ADN | Biologia 508_07 | Pinterest | Búsqueda.” [Online]. 
Available: https://es.pinterest.com/pin/497647827560940648/. [Accessed: 24-Jul-2017]. 

[19] A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications.,” Cell Res., 
vol. 21, no. 3, pp. 381–95, Mar. 2011. 

[20] “profobr.club - Chromatin In Mitosis.” [Online]. Available: http://profobr.club/jpgcpng-
chromatin-in-mitosis.html. [Accessed: 24-Jul-2017]. 

[21] V. Ea, M.-O. Baudement, A. Lesne, and T. Forné, “Contribution of Topological Domains and Loop 
Formation to 3D Chromatin Organization,” Genes (Basel)., vol. 6, no. 3, pp. 734–750, Jul. 2015. 

[22] F. Le Dily et al., “Distinct structural transitions of chromatin topological domains correlate with 
coordinated hormone-induced gene regulation.,” Genes Dev., vol. 28, no. 19, pp. 2151–62, Oct. 
2014. 

[23] “Genomics: Think Global, Act Local,” Cell, vol. 149, no. 7, pp. 1413–1415, Jun. 2012. 

[24] Z. Tang et al., “CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for 
Transcription,” Cell, vol. 163, no. 7, pp. 1611–1627, Dec. 2015. 

[25] S. Sofueva et al., “Cohesin-mediated interactions organize chromosomal domain architecture,” 
EMBO J., vol. 32, no. 24, pp. 3119–3129, Dec. 2013. 

[26] J. Zuin et al., “Cohesin and CTCF differentially affect chromatin architecture and gene expression 
in human cells.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 3, pp. 996–1001, Jan. 2014. 

[27] A. L. Sanborn et al., “Chromatin extrusion explains key features of loop and domain formation in 
wild-type and engineered genomes.,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 47, pp. E6456-
65, Nov. 2015. 

[28] J. Feng, T. Liu, B. Qin, Y. Zhang, and X. S. Liu, “Identifying ChIP-seq enrichment using MACS,” Nat. 
Protoc., vol. 7, no. 9, pp. 1728–1740, Aug. 2012. 

[29] S. G. Landt et al., “ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.,” 
Genome Res., vol. 22, no. 9, pp. 1813–31, Sep. 2012. 

[30] “Wikipedia - ChIP-Seq.” . 

[31] M. Griffith et al., “Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud,” 
PLOS Comput. Biol., vol. 11, no. 8, p. e1004393, Aug. 2015. 

[32] L. J. Core, J. J. Waterfall, and J. T. Lis, “Nascent RNA Sequencing Reveals Widespread Pausing and 
Divergent Initiation at Human Promoters,” Science (80-. )., vol. 322, no. 5909, pp. 1845–1848, 
Dec. 2008. 

[33] J. Dekker, M. A. Marti-Renom, and L. A. Mirny, “Exploring the three-dimensional organization of 
genomes: interpreting chromatin interaction data.,” Nat. Rev. Genet., vol. 14, no. 6, pp. 390–403, 
Jun. 2013. 

[34] “Chromosome Conformation Capture, Contact Mapping Market Intelligence.” [Online]. Available: 



66 
 

https://citalytics.com/inside-contact-mapping-research-a-global-view-of-top-labs-and-authors/. 
[Accessed: 24-Jul-2017]. 

[35] “Chromatin And Chromosomes.” [Online]. Available: 
http://h3.danieledance.com/index.php?q=chromatin-and-chromosomes. [Accessed: 24-Jul-
2017]. 

[36] J.-P. Fortin and K. D. Hansen, “Reconstructing A/B compartments as revealed by Hi-C using long-
range correlations in epigenetic data.,” Genome Biol., vol. 16, no. 1, p. 180, Aug. 2015. 

[37] E. Yaffe and A. Tanay, “Probabilistic modeling of Hi-C contact maps eliminates systematic biases 
to characterize global chromosomal architecture,” Nat. Genet., vol. 43, no. 11, pp. 1059–1065, 
Oct. 2011. 

[38] P. A. Knight and D. Ruiz, “A fast algorithm for matrix balancing,” IMA J. Numer. Anal., vol. 33, no. 
3, pp. 1029–1047, Jul. 2013. 

[39] M. Hu, “HiCNorm: removing biases in Hi-C data via Poisson regression,” Bioinformatics, vol. 28, 
pp. 3131–3133, 2012. 

[40] S. Heinz et al., “Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities.,” Mol. Cell, vol. 38, no. 4, pp. 
576–89, May 2010. 

[41] A. R. Barutcu et al., “Chromatin interaction analysis reveals changes in small chromosome and 
telomere clustering between epithelial and breast cancer cells,” Genome Biol., vol. 16, no. 1, p. 
214, Dec. 2015. 

[42] “Ph.D. thesis - Matthias Scholz - Max Planck Institute of Molecular Plant Physiology.” [Online]. 
Available: http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-
scholz.de/. [Accessed: 11-Jul-2017]. 

[43] G. Ron, D. Moran, and T. Kaplan, “Promoter-Enhancer Interactions Identified from Hi-C Data 
using Probabilistic Models and Hierarchical Topological Domains,” bioRxiv, 2017. 

[44] J. S. Carroll et al., “Genome-wide analysis of estrogen receptor binding sites,” Nat. Genet., vol. 
38, no. 11, pp. 1289–1297, Nov. 2006. 

[45] P. C. Taberlay et al., “Three-dimensional disorganization of the cancer genome occurs coincident 
with long-range genetic and epigenetic alterations.,” Genome Res., vol. 26, no. 6, pp. 719–31, 
2016. 

[46] M. Malinen, E. A. Niskanen, M. U. Kaikkonen, and J. J. Palvimo, “Crosstalk between androgen and 
pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the 
prostate cancer cell transcriptome.,” Nucleic Acids Res., vol. 45, no. 2, pp. 619–630, Jan. 2017. 

[47] M. A. Sammons, J. Zhu, A. M. Drake, and S. L. Berger, “TP53 engagement with the genome occurs 
in distinct local chromatin environments via pioneer factor activity,” Genome Res., vol. 25, no. 2, 
pp. 179–188, Feb. 2015. 

[48] J. D. Stender et al., “Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine 
Resistance in Human Breast Cancer Cells,” Mol. Cell, vol. 65, no. 6, p. 1122–1135.e5, Mar. 2017. 

[49] E. Swinstead et al., “Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin 



67 
 

Transitions,” Cell, vol. 165, no. 3, pp. 593–605, Apr. 2016. 

[50] ENCODE, “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489, 
no. 7414, pp. 57–74, Sep. 2012. 

  



68 
 

Supplementary Tables 
 

Cell line Description Hi-C data resolution 
(Kbp) 

Source study 

MCF10A Non-tumorigenic epithelial breast cell 
line 

40,250 [41] 

MCF7 Breast cancer cell line with 
overexpression of estrogen receptor 

LNCAP Androgen sensitive prostate 
adenocarcinoma cell line 

40,100 [45] 

PrEC Prostate epithelial cell line 40 

PC3 Androgen insensitive prostate cancer 
cell line 

HUVEC Human umbilical vein endothelial cell 
line 

5,10,100,250,500,1000 
 

[3] 

NHEK Primary normal human epidermal 
keratinocytes cell line  

IMR90 Fetal lung fibroblasts cell line 

K562 Myelogenous leukemia cell line 

KBM7 Chronic myelogenous leukemia cell 
line 

HMEC Human mammary epithelial cell line 

GM12878 Lymphoblastoid cell line 1,5,10,100,250,500,1000 

T47D Breast cancer cell line with mutated 
p53  

100 [22] 

Supplementary Table 1 – Hi-C datasets source study and resolution 

Cell line Description ChIA-PET data 
resolution (Kbp) 

Source study 

MCF7 Breast cancer cell line with 
overexpression of estrogen receptor 

3.2 ENCODE - GSE39495 

K562 Myelogenous leukemia cell line 3.1 

GM12878 Lymphoblastoid cell line 1.2 [24] 
Supplementary Table 2- ChIA-PET datasets source study and resolution 
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Transcription factor  Cell lines with available ChIP-Seq dataset in ENCODE 

ZBTB33 K562, GM12878 

CTCF K562, HUVEC, NHEK, HMEC, IMR90, GM12878 

EGR1 K562, GM12878 

RUNX3 GM12878 

MAZ K562, GM12878 

RAD21 K562, GM12878, IMR90 

SMC3 K562, GM12878 

MAFK K562, IMR90 

MAFF K562 

E2F6 K562 

MAX K562, GM12878, HUVEC 

PAX5 GM12878 

POLR2A K562, HUVEC, GM12878, IMR90, NHEK 

PHF8 K562 

PML K562, GM12878 

YY1 K562, GM12878 

TAF1 K562, GM12878 

SIN3AK20 K562 

GTF2F1 K562 

ATF2 GM12878 

MYC K562, GM12878, HUVEC 

MXI1 GM12878, K562 

JUND K562, GM12878 

POU2F2 GM12878 

KDM5B K562 
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Transcription factor  Cell lines with available ChIP-Seq dataset in ENCODE 

TBP K562, GM12878 

EP300 K562, GM12878 

ELK1 GM12878, K562 

RFX5 K562, GM12878 

CHD2 K562, GM12878 

ATF3 K562, GM12878 

BRCA1 GM12878 

NFYA K562, GM12878 

NFYB K562, GM12878 

JUN K562, HUVEC 

GABPA K562, GM12878 

E2F4 K562, GM12878 

SP1 K562, GM12878 

SRF K562, GM12878 

ELF1 K562, GM12878 

USF1 K562, GM12878 

ATF1 K562 

SIX5 K562, GM12878 

USF2 GM12878, K562 

FOS K562, HUVEC, GM12878 

TBL1XR1 K562, GM12878 

ZNF143 K562, GM12878 

SP2 K562 

EBF1 GM12878 

CTCFL K562 
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Transcription factor  Cell lines with available ChIP-Seq dataset in ENCODE 

TEAD4 K562 

THAP1 K562 

ZEB1 GM12878 

CEBPB K562, IMR90, GM12878 

PBX3 GM12878 

UBTF K562 

CBX3 K562 

BCLAF1 K562, GM12878 

RBBP5 K562 

RCOR1 K562, GM12878 

FOSL1 K562 

GATA2 K562, HUVEC 

BHLHE40 K562, GM12878 

TAL1 K562 

BCL3 GM12878, K562 

NFATC1 GM12878 

MEF2A GM12878, K562 

MEF2C GM12878 

ZNF263 K562 

CCNT2 K562 

HDAC2 K562 

TCF3 GM12878 

TCF12 GM12878 

ZNF274 K562, GM12878 

STAT1 GM12878 
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Transcription factor  Cell lines with available ChIP-Seq dataset in ENCODE 

BATF GM12878 

HMGN3 K562 

SETDB1 K562 

TAF7 K562 

SPI1 K562, GM12878 

ETS1 K562, GM12878 

REST K562, GM12878 

ZBTB7A K562 

EZH2 NHEK, HMEC, K562, HUVEC, GM12878 

JUNB K562 

NR2F2 K562 

TRIM28 K562 

GTF3C2 K562 

SAP30 K562 

CHD1 K562, GM12878 

STAT5A K562, GM12878 

HDAC1 K562 

NRF1 K562, GM12878 

NR2C2 GM12878, K562 

SIN3A GM12878 

GATA1 K562 

NFIC GM12878 

IRF4 GM12878 

BCL11A GM12878 

MTA3 GM12878 
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Transcription factor  Cell lines with available ChIP-Seq dataset in ENCODE 

FOXM1 GM12878 

RXRA GM12878 

KAP1 K562 

BACH1 K562 

HDAC8 K562 

NFE2 K562, GM12878 

ARID3A K562 

WRNIP1 GM12878 

GTF2B K562 

HDAC6 K562 

SMARCA4 K562 

BRF2 K562 

IKZF1 GM12878 

SMARCB1 K562 

STAT3 GM12878 

BDP1 K562 

RPC155 K562 

SIRT6 K562 

RDBP K562 

ZZZ3 GM12878 

POLR3G K562, GM12878 

BRF1 K562 

Supplementary Table 3 - 122 TFs that had ChIP-Seq data recorded by the ENCODE project for cell lines with Hi-C data 
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GM12878 K562 AA AB BA BB total 

Cell1_only_BSs 5 0 1 11 17 

Cell2_only_BSs 869 67 218 236 1390 

Common_BSs 47 6 50 54 157 
Supplementary Table 4 - Comparing GM12878 and K562 ZNF274 BS. Chi-square test yields p-value = 0.51 since there are only 17 
specific BS for GM12878 

 

Cell line treatment antibody 
induced 
in A 

induced 
in B 

log p-
value 

source 

IMR90 
TNF-a (10ng/mL) 
1hr p300  312 113 -25.05 

[7] 

IMR90 
TNF-a (10ng/mL) 
1hr H3K4me3  487 104 -62.27 

IMR90 
TNF-a (10ng/mL) 
1hr 

H3K36me3 
(Abcam ab9050) 170 45 -19.06 

IMR90 
TNF-a (10ng/mL) 
1hr 

PolII (Santa Cruz 
sc-899) 7613 1837 -300 

IMR90 
TNF-a (10ng/mL) 
1hr 

flavopiridol 
(1ÂµM, 1hr) 9154 1655 -300 

HUVEC 
TNF-a (10ng/mL) 
1hr 

H3K27ac (Abcam, 
ab4729) 5711 490 -300 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-AR  4380 2816 -45.48 

[46] 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-AR  4277 2751 -44.34 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-AR  4611 3084 -38.47 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-AR  4437 2943 -38.89 

LNCAP DHT (100nM, 2h) anti-AR  5301 3527 -45.45 

LNCAP DHT (100nM, 2h) anti-AR  5223 3550 -39.4 

LNCAP DHT (100nM, 2h) anti-AR  5475 3698 -42.89 

LNCAP DHT (100nM, 2h) anti-AR  5356 3662 -38.9 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-AR  0 0 -0.02 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-AR  0 0 -0.02 
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Cell line treatment antibody 
induced 
in A 

induced 
in B 

log p-
value 

source 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-AR  0 0 -0.02 

[46] 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-AR  0 0 -0.02 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-FOXA1  4197 3270 -10.03 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-FOXA1  3623 2858 -7.52 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-FOXA1  6278 4755 -19.99 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-FOXA1  6011 4524 -20.43 

LNCAP DHT (100nM, 2h) anti-FOXA1  181 157 -0.16 

LNCAP DHT (100nM, 2h) anti-FOXA1  146 138 -0.14 

LNCAP DHT (100nM, 2h) anti-FOXA1  6789 5540 -8.14 

LNCAP DHT (100nM, 2h) anti-FOXA1  6760 5385 -11.76 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-FOXA1  222 168 -1.1 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-FOXA1  189 147 -0.78 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-FOXA1  506 404 -1.23 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-FOXA1  502 402 -1.18 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  2444 1751 -13.24 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  2419 1749 -12.23 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  832 622 -3.54 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  843 637 -3.27 
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Cell line treatment antibody 
induced 
in A 

induced 
in B 

log p-
value 

source 

LNCAP DHT (100nM, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  1061 763 -5.96 

[46] 

LNCAP DHT (100nM, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  1022 751 -4.89 

LNCAP DHT (100nM, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  2556 1713 -21.48 

LNCAP DHT (100nM, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  2478 1686 -19.05 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  97 69 -0.89 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  86 66 -0.5 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  880 460 -21.4 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) 

anti-
PIAS3+PIAS1+PIA
S2  810 485 -12.41 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-p65  21 6 -1.93 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-p65  21 7 -1.66 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-p65  180 80 -7.14 

LNCAP 
TNF-alpha (1000 
U/ml, 2h) anti-p65  168 76 -6.47 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-p65  2075 1004 -61.01 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-p65  2015 961 -61.49 

LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-p65  2127 1041 -60.68 
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Cell line treatment antibody 
induced 
in A 

induced 
in B 

log p-
value 

source 

 
 
LNCAP 

DHT (100nM, 2h) + 
TNF-alpha 
(1000U/ml, 2h) anti-p65  2008 1011 -53.12 

[46] 

HUVEC 
TNF-alpha (10 
ng/ml, 30min) anti-Pol3 867 50 -155.12 

GSE34
500 

HUVEC 
TNF-alpha (10 
ng/ml, 30min) anti-p65 15779 1040 -300 

IMR90 DMSO H3 ChIP 0 0 -0.02 [47] 

IMR90 Nutlin-3a H3 ChIP 1 0 -0.29 

IMR90 DMSO H3K4me3 ChIP 15429 4242 -300 

IMR90 Nutlin-3a H3K4me3 ChIP 14800 3896 -300 

IMR90 DMSO H3K4me1 ChIP 13573 2528 -300 

IMR90 Nutlin-3a H3K4me1 ChIP 1967 286 -300 

IMR90 DMSO H3K27ac ChIP 15455 3236 -300 

IMR90 Nutlin-3a H3K27ac ChIP 13167 2666 -300 

IMR90 DMSO H4K16ac ChIP 3098 550 -300 

IMR90 Nutlin-3a H4K16ac ChIP 1303 211 -192.97 

IMR90 DMSO RNAPII ChIP 13161 2757 -300 

IMR90 Nutlin-3a RNAPII ChIP 9070 1713 -300 

IMR90 DMSO p53 ChIP 97 65 -2.62 

IMR90 Nutlin-3a p53 ChIP 1637 734 -93.36 

IMR90 DMSO H3K4me2 ChIP 27136 7113 -300 

IMR90 Nutlin-3a H3K4me2 ChIP 25274 6516 -300 

MCF7 E2 for 45m ERa 20417 8637 -300 [48] 

MCF7 E2 for 45m ERa 4268 1069 -300 

MCF7 IL1b for 45m ERa 2813 911 -232.08 

MCF7 IL1b for 45m ERa 62 7 -10.75 

MCF7 TNFa for 45m ERa 5196 1538 -300 

MCF7 TNFa for 45m ERa 45 15 -4.19 

MCF7 IKK7 ERa 1280 240 -166.56 

MCF7 IL1b+IKK7 ERa 19 6 -2.06 

MCF7 IKK7 ERa 57 42 -1.07 

MCF7 IL1b+IKK7 ERa 24 46 -1.78 

MCF7 E2+ICI ERa 3739 540 -300 

MCF7 IL1b+ICI ERa 1564 435 -151.48 [48] 

MCF7 E2+ICI ERa 4 2 -0.36 

MCF7 IL1b+ICI ERa 3328 1129 -259.85 

MCF7 E2+ICI ERa 587 114 -75.34 
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Cell line treatment antibody 
induced 
in A 

induced 
in B 

log p-
value 

source 

MCF7 IL1b+ICI ERa 4520 819 -300 [48] 

MCF7 E2+ICI ERa 25 79 -6.26 

MCF7 IL1b+ICI ERa 1203 228 -155.61 

MCF7 E2 for 45m p65 190 46 -21.49 

MCF7 E2 for 45m p65 2 0 -0.53 

MCF7 IL1b for 45m p65 244 50 -30.78 

MCF7 IL1b for 45m p65 1560 322 -190.96 

MCF7 TNFa for 45m p65 1534 437 -145.27 

MCF7 TNFa for 45m p65 3175 1029 -261.56 

MCF7 Dexamethasone 
GR E-20X sc-1003 
Santa Cruz 8474 4131 -300 

[49] 

MCF7 Dexamethasone 
GR E-20X sc-1003 
Santa Cruz 6377 4410 -100.34 

MCF7 17ÃŸ-estradiol 

ER cocktail: Ab-10 
Thermo Scientific 
Lab Vision, HC-20 
sc-543 Santa Cruz 4375 861 -300 

MCF7 17ÃŸ-estradiol 

ER cocktail: Ab-10 
Thermo Scientific 
Lab Vision, HC-20 
sc-543 Santa Cruz 11153 4080 -300 

MCF7 Dexamethasone FoxA1  6315 4018 -136.68 

MCF7 Dexamethasone FoxA1  238 97 -15.29 

MCF7 17ÃŸ-estradiol FoxA1  9178 7561 -53.4 

MCF7 17ÃŸ-estradiol FoxA1  845 215 -89.05 

MCF7 
Dexamethasone 
and 17ÃŸ-estradiol FoxA1  112 916 -129.88 

T47D Dexamethasone 
GR E-20X sc-1003 
Santa Cruz 570 91 -74.81 

T47D Dexamethasone 
GR E-20X sc-1003 
Santa Cruz 451 85 -54.06 

[49]  

T47D 17ÃŸ-estradiol 

ER cocktail: Ab-10 
Thermo Scientific 
Lab Vision, HC-20 
sc-543 Santa Cruz 2854 654 -293.27 

T47D 17ÃŸ-estradiol 

ER cocktail: Ab-10 
Thermo Scientific 
Lab Vision, HC-20 
sc-543 Santa Cruz 3052 741 -299 

T47D Dexamethasone FoxA1  244 46 -29.61 

T47D Dexamethasone FoxA1  156 34 -17.44 
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Cell line treatment antibody 
induced 
in A 

induced 
in B 

log p-
value 

source 

T47D 17ÃŸ-estradiol FoxA1  303 42 -42.94 [49]  

T47D 17ÃŸ-estradiol FoxA1  3266 903 -283.95 

T47D 
Dexamethasone 
and 17ÃŸ-estradiol FoxA1  12949 2332 -300 

K562 IFNa30 pol2 739 73 -117.62 [50] 

K562 IFNa6h pol2 838 86 -131.65 

K562 IFNg30 pol2 1342 152 -203.26 

K562 IFNg6h pol2 1113 116 -173.65 

K562 IFNa30 cjun 2788 409 -300 

K562 IFNa6h cjun 922 112 -136.38 

K562 IFNg30 cjun 2518 331 -300 

K562 IFNg6h cjun 1583 232 -215.33 

K562 IFNa30 cmyc 3188 287 -300 

K562 IFNa6h cmyc 5150 489 -300 

K562 IFNg30 cmyc 21370 2329 -300 

K562 IFNg6h cmyc 11871 1181 -300 

GM1287
8 TNF NFKB 4952 610 -300 

 

Supplementary Table 5 – Summary of A/B distribution of TF induced binding sites   for different cell lines under different 

treatments, as measured by ChIP-Seq. Datasets were downloaded from GEO and analyzed as described above. 
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Cell line treatment 
induced 
in A 

induced 
in B 

Log p-
value enrichment 

source 

GM12878 TNF-a 3866 267 -101.57 3.76 PRJNA30709 

IMR90 TNF-a (10ng/mL) 1hr 439 103 -6.43 1.74 [7] 

IMR90 TNF-a (10ng/mL) 1hr 105 23 -2.12 1.82 

IMR90 

cycloheximide 
(5Âµg/mL) pretreat 
30min 254 46 -6.61 2.23 

IMR90 

TNF-a (10ng/mL) 1hr; 
cycloheximide 
(5Âµg/mL) pretreat 
30min 389 77 -8.39 2.06 

IMR90 TNF-a (10ng/mL) 1hr 80 27 -0.37 1.19 

HUVEC IFN-? (50ng/mL) 2hr 124 10 -3.65 3.02 

MCF7 
ÃŸ-estradiol (100nM) 
160min 121 13 -3.73 2.75 

IMR90 

GSM1418973: PolyA+ 
RNAseq (DMSO); 
Homo sapiens; RNA-
Seq 1733 555 -155.48 1.25 

IMR90 

GSM1418974: PolyA+ 
RNAseq (Nutlin-3a); 
Homo sapiens; RNA-
Seq 1771 558 -161.62 1.27 

MCF7 E2 for 3h 131 16 -3.49 2.45 [48] 

MCF7 E2 for 3h 129 12 -4.51 3.16 

MCF7 IL1b for 3h 166 20 -4.4 2.51 

MCF7 IL1b for 3h 172 27 -3.07 1.95 

MCF7 IL1b+ICI for 3h 204 31 -3.79 2.02 

MCF7 IL1b+ICI for 3h 182 32 -2.56 1.75 

MCF7 TNFa for 3h 338 62 -3.99 1.7 

MCF7 TNFa for 3h 348 78 -2.12 1.4 

MCF7 TNFa+ICI for 3h 895 235 -1.82 1.2 

MCF7 TNFa+ICI for 3h 1045 382 -1.76 0.86 

MCF7 E2 252 31 -6.31 2.5 

MCF7 E2 421 35 -15.06 3.7 

MCF7 E2+TOT 511 62 -12.42 2.57 
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Cell line treatment 
induced in 
A 

induced 
in B 

log p-
value enrichment 

 

MCF7 E2+TOT 62 2 -3.67 6.64 [48] 

MCF7 E2+TOT+IL1b 469 62 -10.19 2.36 

MCF7 E2+TOT+IL1b 495 57 -12.87 2.7 [48] 
[46] MCF7 E2+TOT+TNFa 471 50 -13.45 2.92 

MCF7 E2+TOT+TNFa 404 56 -8.26 2.25 

LNCAP TNF-alpha (1000 U/ml, 2h) 148 47 -0.26 1.1 

LNCAP TNF-alpha (1000 U/ml, 2h) 158 47 -0.49 1.18 

LNCAP 
DHT (100nM, 2h) + TNF-
alpha (1000U/ml, 2h) 161 49 -0.42 1.15 

[46] 

LNCAP 
DHT (100nM, 2h) + TNF-
alpha (1000U/ml, 2h) 175 59 -0.11 1.04 

LNCAP DHT (100nM, 2h) 64 8 -2.22 2.57 

LNCAP DHT (100nM, 2h) 65 14 -0.94 1.57 
Supplementary Table 6 - Gene expression data sets. P-value is calculated using chi-square test between induced genes in each 
compartment and number of genes in each compartment (considering A is gene rich and B is gene poor) 
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 AA AB BA BB total R log10 p-value 

HMEC GM12878        

Cell1_only_BSs 17789 6309 1708 5087 30893 4.48 <-300 

Cell2_only_BSs 15292 567 3880 1779 21518   

Common_BSs 21558 1201 2319 3613 28691   

HUVEC 
GM12878 

       

Cell1_only_BSs 16635 6747 651 3805 27838 7.64 <-300 

Cell2_only_BSs 16046 612 2900 1844 21402   

Common_BSs 20606 1173 966 2614 25359   

HUVEC HMEC        

Cell1_only_BSs 14992 4292 468 3168 22920 4.16 <-300 

Cell2_only_BSs 16370 1369 3341 4301 25381   

Common_BSs 27220 2629 984 4031 34864   

K562 GM12878        

Cell1_only_BSs 21793 4294 1019 3916 31022 4.56 <-300 

Cell2_only_BSs 14158 580 2994 1849 19581   

Common_BSs 24463 1239 1350 2762 29814   

K562 HMEC        

Cell1_only_BSs 21915 5083 982 3672 31652 4.15 <-300 

Cell2_only_BSs 17015 1667 5907 5110 29699   

Common_BSs 23268 2498 1285 3435 30486   

K562 HUVEC        

Cell1_only_BSs 22645 3551 1140 3770 31106 5.37 <-300 

Cell2_only_BSs 15827 627 5944 3772 26170   

Common_BSs 22627 1193 1300 2594 27714   

NHEK GM12878        

Cell1_only_BSs 19997 5949 1401 4154 31501 4.54 <-300 

Cell2_only_BSs 14695 596 3111 1708 20110   

Common_BSs 21362 1192 2042 3023 27619   

NHEK HMEC        

Cell1_only_BSs 11680 1082 471 2402 15635 1.52 -26 

Cell2_only_BSs 7559 688 678 2879 11804   

Common_BSs 42741 2511 2267 7437 54956   

NHEK HUVEC        

Cell1_only_BSs 18223 3364 1152 3363 26102 3.91 <-300 

Cell2_only_BSs 14273 584 3426 3056 21339   

Common_BSs 26132 1241 2646 3560 33579   

NHEK K562        

Cell1_only_BSs 18782 5447 1599 3903 29731 3.46 <-300 

Cell2_only_BSs 21127 1132 3998 3561 29818   

Common_BSs 23818 1357 2117 3026 30318   

Supplementary table 7 - H3k9ac sites in A and B compartments for all cell lines with available ChIP-Seq data 
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 AA AB BA BB total R p-value 

GM12878 NHEK        

Cell1_only_BSs 7244 1099 2136 3306 13785 0.73 1.16E-18 

Cell2_only_BSs 4369 1026 1215 3272 9882   

Common_BSs 350 71 62 288 771   

GM12878 K562        

MCF7 NHEK        

Cell1_only_BSs 5682 1460 4114 9381 20637 0.45 8.56E-113 

Cell2_only_BSs 4902 1066 904 3355 10227   

Common_BSs 129 64 55 168 416   

MCF7 GM12878        

Cell1_only_BSs 5213 1751 3637 9712 20313 0.54 2.04E-122 

Cell2_only_BSs 7176 1765 1145 3608 13694   

Common_BSs 318 95 118 317 848   

Supplementary table 8 - H3k27me3 sites in A and B compartments for three cell lines 
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 תקציר
 

התא, לרבות בקרה על ביטוי גנים.  חיילמבנה המרחבי של הגנום בגרעין יש תפקיד חשוב באספקטים רבים של 

את הארכיטקטורה  חסר תקדים  בדיוקלאחרונה פותחו מספר שיטות בהיקף גדול המאפשרות לחקור 

 הכרומוזומלית ואת האינטראקציות בין מקטעי כרומטין.

 chromosome conformation) ל מדידת הקונפורמציה של הכרומוזומים, מבוססת עHi-Cאחת מהשיטות, 

capture .)ה נמוכה, כל כרומוזום מחולק למקטעים משני אופיינו מספר מבנים בגנום. ברזולוצי בעזרת שיטה זו

מדורים על בסיס -לתת מקטעניתן לחלק כל )דל בגנים(.  B)עשיר בגנים( וסוג  Aסוג  – (compartments)סוגים 

 ,topological associated domainsסמנים אפיגנטיים. ברזולוציה יותר גבוהה, זוהו תחומים בעלי קשר טופולוגי )

TADs .)וב האינטראקציות המרחביות. שיטה תחומים מוגדרים על ידי אזורים כרומוזומליים המכילים את רה

, מאפשרת למדוד אינטראקציות של הכרומוזום , המבוססת על מדידת הקונפורמציה הדינמיתChIA-PETנוספת, 

 ברזולוציה גבוהה יותר בתוך תחומים אלו.

ונים מדגימה שחלק משמעותי מתגובת מדידת רמת השעתוק של גנים בתגובה לתנאי עקה מגוונים בסוגי תאים ש

היא לבחון עד כמה התגובה האופיינית מטרתנו ממנה הוא כללי. לסוג התא ורק חלק קטן ספציפית  ופייניא התא

 לעקה מושפעת מהארגון המרחבי של הגנום בסוג התא במצב הבזאלי.

 ,RNA-Seq, GRO-Seqסוגי תאים שונים תחת טיפולים ומדידות שונות ) 13לצורך כך, ביצענו אנליזה רחבה של 

ChIP-Seq  .וכו'(, ובדקנו האם התגובה שנמדדה בניסויים קורלטיבית לארגון המרחבי הראשוני של הגנום בתא

התוצאות מצביעות על כך שישנו קשר מובהק בין התגובה האופיינית של תא לעקה לבין אילוצים מבניים בתא 

 במצב הבזאלי.
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