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ABSTRACT

Re-sequencing, the identi®cation of the speci®c
variants in a sequence of interest compared with a
known genomic sequence, is a ubiquitous task in
today's biology. Universal arrays, which interrogate
all possible oligonucleotides of a certain length in a
target sequence, have been suggested for computa-
tionally determining a polynucleotide sequence
from its oligonucleotide content. We present here
new methods that use such arrays for re-sequen-
cing. Our methods are applied to data obtained by
the polymerase signaling assay, which arrays
single-based primer extension reactions for either
universal or partial arrays of pentanucleotides.
The computational analysis uses the spectrum
alignment algorithm, which is re®ned and enhanced
here in order to overcome noise incurred by the use
of such short primers. We present accurate re-
sequencing results for both synthetic and ampli®ed
DNA molecules.

INTRODUCTION

Genomic sequence is now abundant: the genomes of more
than a hundred species including human have already been
sequenced. Despite this profusion of data, sequencing is still a
routine task in laboratory work. This demand for sequencing is
to a large extent targeted at molecules whose nucleic acid
sequences are approximately known in advance. This is the
case in validation of sequences, in cDNA sequencing, and in
detection and typing of polymorphisms or germline/somatic
mutations. All these tasks can be categorized as `re-
sequencing' tasks, i.e. the determination of a nucleotide
sequence which is known to be a variant of some previously
sequenced reference molecule. This promotes re-sequencing
as a key endeavor in today's biology (1).

The identi®cation of millions of human polymorphisms (2)
and the ongoing mapping of all common human haplotypes
(3,4) will lead in the near future to a situation where virtually
all common sequence variations have been mapped.
Nevertheless, due to the more modern expansion of the

human race, much of the observed variation is comprised of
rare polymorphisms and familial mutations. To determine the
correct alleles of a certain locus borne by a speci®c individual
it is thus insuf®cient to type only known single nucleotide
polymorphisms (SNPs) that are abundant in the population:
one would ultimately need to detect sporadic variations as
well, and so, for many studies, complete re-sequencing will
remain a key task in accurate genetic typing of individuals.

Sequencing by hybridization (SBH) was invented as an
alternative to gel-based sequencing (5±7). This method makes
use of a universal DNA microarray, which harbors all
oligonucleotides of length k (called k-mers or `words') as
probes. These oligonucleotides are assayed with an unknown
DNA target fragment, whose sequence we would like to
determine. Under ideal conditions, this target molecule would
hybridize to all words whose Watson±Crick complements
occur somewhere along its sequence. Thus, in principle, one
could determine in a single microarray reaction the set of all
k-long sub-sequences of the target (this set is called the
target's spectrum) and try to infer the sequence from these
data.

SBH is greatly impeded by ambiguity in target reconstruc-
tion. Depending on k and on the target length, there may be
severalÐor manyÐalternative sub-sequences, within any
tested target, that have the same spectrum and are thus
indistinguishable. Hence, spectrum data simply do not contain
suf®cient information to uniquely resolve targets of reason-
able lengths (8,9). Alternative sources of information have
been suggested to complement the spectrum data (10±12).

One possible source of complementary information for
SBH is the reference sequence. Re-sequencing by hybridiza-
tion (RSBH) is the task of reconstructing the target sequence
using its spectrum and a reference sequence to which the target
is similar. We recently developed a computational method,
called spectrum alignment, for RSBH (13). Spectrum align-
ment uses a probabilistic representation for the reference
sequence information and the spectrum signals. It computes
the most likely target sequence given these data. Here we shall
study the adaptation of spectrum alignment to handle real
experimental data, and we validate the theoretical method with
actual re-sequencing results.

An alternative strategy for array-based re-sequencing uses
straight hybridization to speci®c, partial arrays. This strategy
uses the probe array as a massively parallel assay for single
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nucleotide primer extension genotyping, and seeks a mutation
or potential polymorphism at each site along the target. The
probes on such an array are a set of k-mers that tile the target
sequence and its variants. The advantage of this approach is
that it does not require the complete set of k-mers to be used,
allowing the use of fewer and longer oligonucleotides with
reasonable cost. The disadvantage is that such arrays can only
detect the pre-determined sequence variations for which they
were designed. Moreover, a new array needs to be created for
each new re-sequencing reference. Such arrays have been
designed for re-sequencing, among others, the P53 tumor
suppressor gene (14,15), HIV protease (16) the HLA locus
(17) and other genomic regions (18). See Tillib and
Mirzabekov (19) for a review of such methods.

The use of SBH in practice raises two con¯icting issues. On
the one hand, short oligonucleotide hybridizations are less
speci®c and less accurate than longer ones. On the other hand,
the number of probes in a universal array grows exponentially
with the probe length, so feasible lengths are severely limited.
While universal arrays of 9mers have been constructed (20),
for universal arrays to be cost-effective for most applications,
they need to be much smaller than these gigantic sets of 49 »
2.5 3 105 oligonucleotides. Other formats of arrays have been
attempted, using the probes sequentially, rather than on one
large array (21), or pooling subsets of the probes (22). The
natural, generic strategy would be to use shorter probes, which
allow the complete set of oligonucleotides to be cost-
effectively used in each array (23). The reader is referred to
reviews on SBH formats (24,25).

Small universal arrays must use very short probes, which
worsen the hybridization speci®city problem. In order to
create a practical assay for re-sequencing by universal arrays
one needs a probing assay which is as speci®c as possible even
for 5mers or 6mers (23), and computational means to
overcome the low speci®city and high noise in the assay. In
this work, we have used the polymerase signaling assay
(PSA), a method for probing a target sequence for the presence
of short oligonucleotides using enzymatic discrimination,
based on single-nucleotide primer extension, giving better
accuracy than hybridization alone (26±28). Even using this
method, noise is a major problem. We therefore develop
algorithms to increase signal speci®city by computational
means, and report the results of applying these algorithms on
partial and universal PSA arrays.

MATERIALS AND METHODS

Target molecules

Target samples included 10 synthetic double-stranded DNA
molecules of length 25±35 bp and 32 PCR amplicons of length
100±140 bp (see Table 1).

PSA

The PSA is an accurate method for parallel re-sequencing
examination of polynucleotides up to several thousand base
pairs long (26±28). PSA uses a glass slide, onto which probes
are spotted in an arrayed fashion. Our plates included 192
spots each, where 16 spots are used as controls, and 176
represent a unique ®ve-base probing sequence, representing
5mers and sequence variations speci®cally related to the target

sequence being tested. Used for analysis of AGT exon 2 and
CFTR exon 11, these experiments simplify the approach from
the true `universal array' of 5mers. A complete universal
array, which may be used for analysis of any arbitrary
sequence, has a unique ®ve-base probe for each of the 45 =
1024 possible pentanucleotide combinations. These larger
arrays were constructed by using several sub-arrays. Each
probe is a 29mer, comprising a capture motif, which is
identical for all probes, and a probe-speci®c oligonucleotide
pentamer. The capture motif, U18, is separated from the
attachment moiety by a spacer amidite (Spacer 18; Glen
Research). The capture and probe motifs are separated by a
segment of six bases of completely random content (i.e. the
amidite source for these synthesis steps is made of a mixture of
25% each of A, C, G and T), such that this segment is a
structural spacer, and should not play any role in the re-
sequencing event. The probe-speci®c nucleotide combinations
are designed to perfectly match every possible 5mer segment
along a target.

Target molecules are PCR amplicons, one short (ideally
100±150 bases) amplicon for each of the target sequence, with
an attached poly(A) tail, appended to the 5¢ end of one of the
PCR primers. Any reasonable set of PCR primers is accept-
able, so long as the short amplicon can be achieved in good
yield. After PCR, the double-stranded amplicons are degraded
to a single strand, using a combination of a phosphorothioated
PCR primer and an exonuclease, as described previously (14).
When applied to the slide at 37°C, these tails bond to the
poly(U) segment of the capture probe, and the entire target
molecule is thus always in the vicinity of the speci®c probe.
Whenever the target sequence contains a sequence that
perfectly matches the speci®c probe, the complementary
sequences can form a transient duplex. PSA also incorporates
DNA polymerase and ¯uorescently labeled terminating
nucleotide triphosphates, which allow single-base extension
of the speci®c probes that have been matched. The presence of
the enzyme stabilized the transient duplexes within a primed
tertiary complex, and thus stabilization and primer extension
occur as a linked biochemical process. The ¯uorescent slide is
then scanned to detect the spots that signal a match between
their probes and the target sequence. Exact details of this assay
are described elsewhere (26±28).

Computational analysis: enhancements to spectrum
alignment

Computational analysis is based on the spectrum alignment
algorithm (13). We outline this method in brief and then
describe the improvements made in this study in order to
transform spectrum alignment into a useful, practical method,
which could handle the real PSA signals.

The input to spectrum analysis comprises of a reference
sequence in the form of a hidden Markov model (HMM) for a
polynucleotide sequence, as well as the results of the array
experiment. HMMs are a powerful method for describing
sequence pro®les and variations (29). Intuitively, it can be
thought of as a sequence of states that describe match/
mismatch, insertion, or deletion in the target with respect to
the genomic reference sequence. The HMM registers prob-
abilities for transition between those states, as well as
probabilities of producing each nucleotide at each state.
Results of the arrayed probing reactions are formulated as a
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probabilistic spectrum, i.e. a pair P1(x) and P2(x) for each
k-mer x, where:

P1(x) = Prob(observed signal for probe x | x matches the target)

and

P0(x) = Prob(observed signal for probe x | x does not match the
target)

Evaluation of P1(x) and P0(x) from x's ¯uorescence signals
is discussed below. For probes y that are absent from the array,
P1(y) and P0(y) are set to re¯ect occurrence probability of y

along putative targets that are randomized variants of the
reference sequence.

The enhanced algorithm applies spectrum alignment
iteratively. Each iteration re-evaluates the putative target
sequence of a speci®c region along this sequence, assuming
correctness of the rest of the reconstructed sequence. Putative
incorrect regions are identi®ed by their lower likelihood. This
is done in order to correctly interpret probe signals which are
positives, but are due to a match that occurred outside the
focus region. For re-sequencing a speci®c, focus region we
need to ®nd the most likely chain of HMM states which starts
and terminates with the oligonucleotides that match the ends
of that region. This is computed by a dynamic program (30).

Table 1. List of targets

Data set Experiment Target
Typea Locus Fromb Tob Mutantc

1 1 A AGTd 4078 4177 W
2 A AGT 4078 4177 ATG281ACG
3 A AGT 4078 4177 W
4 A AGT 4078 4177 ATG281ACG
5 A AGT 4078 4177 W
6 A AGT 4078 4177 ATG281ACG

2 1 A CFTRe 107766 107863 GGA542TGA
2 A CFTR 107782 107891 GGT551G[G/A]T
3 A CFTR 107782 107891 CGA553TGA
4 A CFTR 107810 107917 AGG560ACG
5 S CFTR 107803 107827 GGA542TGA
6 S CFTR 107803 107827 W
7 S CFTR 107858 107881 W

3 1 A CFTR 107766 107863 GGA542TGA
2 A CFTR 107782 107891 GGT551G[G/A]T
3 A CFTR 107782 107891 CGA553TGA
4 A CFTR 107810 107917 AGG560ACG
5 S CFTR 107834 107856 W
6 S CFTR 107834 107856 GGT551GAT + CGA553TGA
7 S CFTR 107858 107881 AGG560ACG

4 1 A CFTR 107782 107891 GGA542TGA
2 A CFTR 107782 107891 GGT551G[G/A]T
3 A CFTR 107825 107914 CGA553TGA
4 A CFTR 107825 107914 AGG560ACG
5 A CFTR 107795 107893 CGA553TGA
6 A CFTR 107766 107863 W
7 A CFTR 107810 107917 GGT551G[G/A]T
8 A CFTR 107766 107863 GGA542TGA

5 1 A CFTR 107766 107863 GGA542TGA
2 A CFTR 107766 107863 W
3 A CFTR 107782 107891 GGT551G[G/A]T
4 A CFTR 107782 107891 W
5 A CFTR 107825 107914 CGA553TGA
6 A CFTR 107825 107914 W
7 A CFTR 107810 107917 AGG560ACG
8 A CFTR 107810 107917 W

6 1 S Ch 18f 44 78 Base 19 A®G
2 S Ch 18 44 78 W
3 A Ch 18 1 109 Base 62 A®G
4 A Ch 18 1 109 W
5 S CFTR 107803 107827 W
6 S CFTR 107803 107827 GGA542TGA

aSynthetic (S)/amplicon (A).
bOffset (bp) from translation start site (coding sequences) or from segment start (non-coding).
cEither the wild type (W) or a mutant, which is denoted by the original codon, codon number and new codon
(coding sequences) or bp number with base change (non-coding). Samples that are heterozygous for a
mutation are denoted by, e.g. [A/G].
dGenomic sequence at positions 769274±780916 of GI:27477742.
eGenomic sequence at positions 42296576±42485274 of GI:22050628.
fGenomic sequence at positions 136976±137084 of GI:18677476.
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Per-probe training

P1(x) is evaluated as follows. When we have suf®cient
examples of ¯uorescent signals for the probe x with known
positive match to some known target, we can evaluate the
mean signal m1(x) for the matched probe, and its standard
deviation s1(x). A goodness-of-®t test does not reject the
hypothesis that samples are normally distributed (data not
shown). P1(x) is then set to the P-value for signal s(x) to be
drawn from a normal distribution with mean m1(x) and
standard deviation s1(x). Evaluation of P0(x) is done similarly.
(In practice, we assume s(x) = s1(x) = s0(x) and evaluate s(x)
based on the two sets of samples.)

When we do not have suf®ciently many samples of positive/
negative matches to the probe x, we enrich the occurrence
count of positive/negative matches to the probe x by adding to
it the count of another probe y, whose signals are similarly
distributed, but whose counts are not sparse. For each
candidate probe y we use its computed normal distributions,
N[m1(y), s2(y)] and N[m0(y), s2(y)], to evaluate the likelihood
of the observed (matched and unmatched, respectively)
signals for x. The probe y = y* that maximizes this likelihood
is chosen and its counts are added to those of x. The combined
count is used to evaluate expectancies m1, m0 and standard
deviation s for x that together de®ne the normal distributions
of its matched/unmatched signals.

Probe-independent training

For learning the distribution in an unsupervised manner we
employ an alternative strategy, which does not build on
experience with previous assays, and does not ®t the
distribution for each probe. Instead, we utilize the distributions
of signals with positively and negatively matched probes in
the current data set.

Obviously, we do not know in advance for the current data
set whether a probe is perfectly matched by the target or not, as
the target is yet unknown. However, we can evaluate the
probability of that event with respect to a random target that is
similar to the reference sequence as much as the true target is
assumed to be. Such random targets can be drawn using the
HMM, which models the probabilistic space of such sequences.
We thus generate N = 100 candidate targets, and average the
matched/unmatched status of the probe x as follows. We
empirically estimate the probability of a perfect match, based
on all randomized targets, as the fraction of probes attaining a
certain signal among perfectly matched probes:

P1�x� �

P
random target t

�N<�t; s�x�� � 0:5N��t; s�x���P
random target t

N<�t;1�

P0(x) is analogously estimated.

RESULTS

The ultimate goal of this research is to establish the
practicality of universal arrays for re-sequencing. The ques-
tion that we address is whether one can make complete yet
reasonably small arrays of probes, by limiting probe length, to
accurately re-sequence DNA sequences of practical length.
We thus performed a series of blind tests, in which the target
sequence was unknown. One set of assays comprised of simple
genotyping tests, where the target sequence was either the wild
type or a single-nucleotide mutant thereof. Other assays were
re-sequencing tests, wherein the target could have been any
variant of the known reference sequence.

We ®rst constructed partial, tiling arrays. Some of these
arrays consisted of probes that tile variants of exon 2 of
angiotensinogen, while others tile exon 11 of CFTR. We then
constructed and tested complete, universal arrays. We used
arrays of 5mer probes, for which only 1024 different
oligonucleotides are needed (see Table 2 for the list of arrays
used). Various target molecules were re-sequenced (Table 1).
To obtain as much speci®city as possible from these short
probes, we applied the PSA protocol (see Materials and
Methods). The image, a confocal ¯uorescence scan, of one
such universal array is presented in Figure 1.

Arrayed PSA reactions produce data sets of raw ¯uorescent
signals. When reconstructing a target sequence using spectrum
alignment, the quantity of interest for each probe is the
likelihood of a perfect match. More precisely, given the raw
signal s(x) for a probe x, one needs to compute the
probabilities P1(x) = Prob[s(x) | x is perfectly matched by
the target] and P0(x) = Prob[s(x) | x is not perfectly matched by
the target]. Although PSA provides cleaner signals than
hybridization, signals are still very noisy. The observed noise
might be due either to stochastic effects, causing variation in
replicate observations of the same intensity, or to hidden
variables that distinguish between signals. As seen below,
both factors contribute to the signal distribution, and we can
exploit our knowledge of some hidden variables, such as
individual probe differences, to improve signal analysis.
Overall distributions of signals are presented in Figure 2.

Table 2. Summary of data sets analyzed

Probe set Number of probes Experiments per
data set

Data sets Total number
of experiments

Angiotensinogen tiling 176 unique 6 1 6
CFTR tiling 176 (166 unique) 7/8 2±5 30
Universal 1119 (1024 unique) 6 6 6

Figure 1. The ¯uorescence confocal microscope scan of a reacted universal
array (data set 6, experiment 6). The array has 992 different unique probes,
32 duplicated probes and 96 positive and negative control probes.
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These distributions, though obviously different, have a broad
range of overlap. Consequently, a simple threshold value
cannot effectively distinguish between matched probes and
unmatched ones. Furthermore, even if we use the probabilities
in Figure 2, for most of the signal range, the matched and
unmatched probabilities are of the same order of magnitude.
Thus, the log-likelihood term log[P1(x)/P0(x)] contributed by
most probes is approximately zero, rendering the model
statistically weak.

The weak separation of the P0 and P1 distributions can have
two causes: either the individual per-probe distributions are
separated weakly for most probes, or they are separated, and
their superposition causes the weak separation. Fortunately, as
exempli®ed by Figure 3, the latter case is in effect. For
example, T-rich probes produce very high signals, due to the
poly(A) capture probes used in PSA (see Materials and
Methods). Therefore, negative signals for such probes would
be deemed positive according to the overall signal distribu-
tion, which is a mixture of many different per-probe distri-
butions (see Fig. 2). This suggests empirically estimating P0

and P1 on a per-probe basis. For each probe x, for each signal
level s, we estimate the probability of observing a signal s(x)
under the assumption of a perfect match in the target sequence.
We assume such signals are normally distributed, with a
probe-speci®c mean and variance, providing the distribution
of P1(x). The distribution of P0(x) is analogously estimated.

We study and test two scenarios. First, we present a method
to estimate P0 and P1 from a single array only. Each of these
two distributions is assumed to be the same for all probes, for
lack of better information. We call this method probe-
independent training. Secondly, in cases in which we have
several arrays that were assayed using the same protocol, but
with different target molecules, better analysis is possible: we
estimate individual signal distributions for each probe under
the approximate assumption that these arrays are replicates of
the same experiment. We call this method per-probe training.

In probe-independent training, in the absence of any prior
information on the signal distributions, we use the following
approximation: we generate in simulations many random
targets, which are variants of the reference sequence, and
collect statistics on the signal distributions of matched and

unmatched probes. In this manner, we attempt to model the
statistical properties of the actual target sequence used in the
assay, without having any further information about the actual
biochemical outcome of known target variants (see Materials
and Methods).

In per-probe training, one has several arrays that were
assayed using a similar reference, but with different mutations.
This is the case, for example, for each individual data set in
Table 2, which used several arrays. This is also the case for all
the data sets of the CFTR arrays that together constitute a
much richer set. Thus, a number of experiments with extensive
perfect match data are available. In order to resolve the target
in a speci®c array, we train each probe using all other arrays
with match/mismatch for the current probe. We pool the
matched/unmatched signal levels for each probe from all
arrays and obtain a richer distribution. When that distribution
is not based on suf®ciently many probe occurrences, we enrich
that distribution by that of another, similar probe (see
Materials and Methods). As samples accumulate, richer and
richer training sets can be built and exploited this way, and the
statistical con®dence of any single experiment will increase.

The two training methods present a trade-off. Probe-
independent training uses a rich, yet coarse, set of observa-
tions, and forms a distribution that may be not representative
of the speci®c probe. The per-probe method uses a ®ner set of
observations, which may be too small a sample, and thus
over®t the estimated distribution. We also consider a similar
trade-off with respect to the experiments used to learn the per-
probe distribution. We compare results of analysis based on
learning this distribution from the current data set only, with
learning based on all data sets, or on all other data sets except
the current one.

Figure 4 presents a comparison of the results obtained by
each of the training methods. Per-probe analysis based on all
other arrays is superior to probe-independent analysis based
on the current data set only. In per-probe methods, there is a
trade-off between training which is based only on the same
data set and training on all data sets: the more re®ned, but
sparser training per data set makes more false calls at known
SNP sites, but reports less spurious false positives due to
over®tting.

Figure 2. Signal level distributions for matched and unmatched probes. For
each level of the ¯uorescent signal, the black curve displays the fraction of
matched probes that produced at least this level of signal. The gray curve
displays the fraction of unmatched probes that produced at most this level
of signal. Any signal level set as threshold between positive and negative
matches will incur a high error rate. Data were collected from data sets 2±6.

Figure 3. Different probes may have very different distributions. This ®gure
shows signals of two speci®c probes: TTAGC, whose signals are extremely
high, and CGTGA, whose signals are extremely low. For each level of the
¯uorescent signal, the number of matched (black bars) or unmatched (gray
bars) probes that produced this level of signal is displayed. Every threshold
rule for calling matched/unmatched by ¯uorescent signal level would either
label all TTAGC probes as matched or all CGTGA probes as unmatched.
Nevertheless, analysis of each probe individually separates positive versus
negative signals much better. Data were collected from data sets 2±6.
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The estimated probabilities serve as input to the spectrum
alignment computational engine. Table 3 presents results for
blind tests of genotyping and for re-sequencing tests. For
angiotensinogen exon 2, targets were either wild type or
mutated for a speci®c polymorphism. The algorithm was not
calibrated beforehand with any prior information regarding
the identity of this polymorphic site, i.e. the reference
sequence model was considered to have an equal likelihood
to contain a mutation at any point along the target sequence.
The genotype call on this site was correct for six out of six
samples, and no spurious calls were made (although permitted
by the algorithm). Analysis for arrays in this data set was
carried out using probe-independent training. Although each
of the 5mer probes may not necessarily give an entirely
speci®c assay signal, their joint analysis using the spectrum
alignment algorithm (13) utilizes all the statistical information
available to produce a strong, combined signal.

Figure 5 presents results for the CFTR exon 11. For re-
sequencing this target (with either partial or universal arrays),
we used as reference not only the genomic sequence, but also
known mutations from the Human Genome Mutation
Database (www.hgmd.org). Altogether, in 30 arrays, we re-
sequenced 2.6 kb of DNA. Out of 64 known polymorphisms,
60.5 were correctly typed (see Fig. 4 for details on the
counting procedure), and two additional spurious mutations
were falsely detected. This true-positive rate of 95% is to be
contrasted with the 30% error rate introduced by pentamer
biochemistry (Fig. 2). Observe that this analysis was carried
out without any attempt to detect heterozygocity. While

genotyping does require the detection of heterozygotes (see
Discussion), we employed a ®rst, simple approach to test the
feasibility of our methodology, which ignored heterozygocity,
and therefore technically counted heterozygotes as errors. Out
of the 56 homozygotes, we had only one error.

A non-coding region on chromosome 18 was also re-
sequenced by universal arrays (data set 6, arrays 1±4). For this
target sequence we had no prior knowledge of the mutant sites.
For this segment we missed one of the mutations in four re-
sequenced targets of total length of 300 bp. Both CFTR targets
assayed with universal arrays (data set 6, arrays 5 and 6) were
successfully re-sequenced.

Although we account for per-probe signal effects by per-
probe training, the major source of remaining error appears to
be systematic bias, rather than stochastic effects between
replicates: most of the failed genotypes involve the
GGT551G[G/A]T mutation. Thus, apparently, averaging
many experiments will not be helpful in eliminating such
errors, but further understanding and modeling of the causes of
such systematic bias may solve the problem.

The spectrum alignment algorithm was implemented on
both Windows and Unix platforms. The implementation
incorporates a re®ned analysis of heterozygote samples,
although the results presented were analyzed without this
feature. The heterozygotes analysis would obviously need to
be added for full functionality. In addition, we implemented a
visualization tool, called SNP-o-gram, for presentation of re-
sequencing results. This Windows application displays the
reference and re-sequenced target, along with plots that
indicate the likelihood of each base call, similar to standard
traces of gel-based sequencing machines. Figure 6 displays the
SNP-o-gram of two re-sequenced targets.

DISCUSSION

Re-sequencing genomic information is a major task in today's
biology, providing essential data for various research and
diagnostics applications. The term `re-sequencing' implies
that one has signi®cant information on the reference, thus
determination of the target sequence should avoid complete
sequence determination de novo. A promising strategy for re-
sequencing is the use of arrayed short probes. An array
containing all possible probe sequences of a particular length
can serve as a universal assay for all possible target sequences.
In order to be economical, one should minimize probe
number, and therefore probe length. However, shorter probes
can reduce the accuracy of the assay, so robust assay
conditions and analytical processes need to be developed in
concert with this simpli®ed array approach.

This study shows the practicality of re-sequencing by an
array of probes and detection by polymerase-mediated single-
base extension. A combination of the polymerase, which
imparts a much higher speci®city than DNA hybridization
alone, and enhanced computational methods of the resulting
data from the DNA array assay, make it possible to handle
noisy signal incurred by the use of short probes. Our method is
suf®ciently versatile to handle different sequences, yet utilize
the information from the reference sequence. The analytical
method is applied here to actual assay data for the ®rst time.

We report successful re-sequencing of 100 bp fragments
using pentanucleotide probes. This suits several key applica-

Figure 4. Re-sequencing performance using different training procedures.
The training procedures are used for generating probe signal distributions in
the spectrum alignment algorithms. Tests were performed on all the CF
arrays (data sets 2±5). Bars represent the success rate of genotype calls. For
a genomic bi-allelic amplicon target, we count a polymorphism as success-
fully typed if both predicted alleles match those present in the sample. Half
an error is reported for each allele mismatch. Mono-allelic synthetic targets
(arrays 5±7 in data sets 2 and 3) were all successfully typed and counted as
one success each. (A) Probe-independent training based on the current
experiment only (no prior data). (B) Per-probe training, using the current
data set for probes with three or more matched and unmatched examples
observed. For probes with fewer examples, an enrichment procedure is
applied (see Materials and Methods). (C) Per-probe training using all data
sets. (D) Per-probe training using all data sets except the data set that
contains the target.
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tions for re-sequencing, in which the sequence of a target
exon, for example, may differ from its reference at many
polymorphic or mutable sites. Such applications include

genetic, diagnostic tests for highly polymorphic genes like
CFTR that has over a thousand known mutations, many of
them treatable upon proper diagnosis. An additional applica-
tion involves detecting somatic mutations in onco-related
genes. Accurate typing of pathogens can be also be achieved,
by re-sequencing genes that are common to all candidate
pathogens (e.g. 16S RNA).

This work uses mere 5mer probes, and achieves 100 bp of
sequence. Practical prospects for universal arrays in large-
scale re-sequencing probably depend on the ability to
sequence fragments longer by an order of magnitude. One
possibility would be to scale the probe length to include all-
8mers, or even all-9mers, arrays that are feasible with some
current industrial technologies. Indeed, our simulation studies
(13) indicate that the feasible target length for re-sequencing
approximately doubles when increasing by one the probe
length in a universal array, even without taking into account
the potential increase in accuracy due to longer probes. This
increased accuracy is expected to enable improvement of the
overall ®delity of the re-sequencing process.

Figure 5. Summary of re-sequencing results for CFTR. The wild-type refer-
ence sequence is displayed along with call-outs for statistics on the typing
of sites with potential mutations found at speci®c nucleotides. In total, 60.5
out of 64 mutations were correctly typed in common SNP sites (white call-
outs). Two mutations were called in spurious sites (gray call-outs).

Table 3. Genotyping results

Data set Experiment Re-sequencing calla Correct Log-likelihoods
genotypes Wild type Mutant

1 1 W 1 ±205.847 ±221.579
2 ATG281ACG 1 ±206.34 ±204.01
3 W 1 ±206.37 ±220.155
4 ATG281ACG 1 ±206.953 ±198.819
5 W 1 ±205.631 ±220.109
6 ATG281ACG 1 ±207.039 ±198.845

2 1 GGA542TGA 1 ±181.304 ±175.85
2 W 1/2 ±204.646 ±199.807
3 CGA553TGA 1 ±193.649 ±192.389
4 AGG560ACG 1 ±213.685 ±210.591
5 GGA542TGA 1 ±240.386 ±236.305
6 W 1 ±216.133 ±232.219
7 W 1 ±153.507 ±171.118

3 1 GGA542TGA 1 ±183.781 ±177.255
2 W 1/2 ±219.014 ±218.487
3 CGA553TGA 1 ±202.959 ±197.73
4 AGG560ACG 1 ±208.909 ±200.895
5 W 1 ±203.153 ±224.416
6 GGT551GAT + CGA553TGA 2 ±186.667 ±156.294
7 AGG560ACG 1 ±155.797 ±141.592

4 1 W 0 ±258.733 ±261.182
2 W 1/2 ±198.028 ±195.828
3 CGA553TGA 1 ±197.348 ±193.998
4 AGG560ACG 1 ±203.601 ±200.474
5 CGA553TGA 1 ±194.639 ±192.439
6 W 1 ±178.632 ±191.412
7 W 1/2 ±205.818 ±246.755
8 GGA542TGA 1 ±243.99 ±238.935

5 1 GGA542TGA 1 ±248.925 ±239.479
2 W 1 ±211.087 ±222.238
3 W 1/2 ±246.786 ±255.151
4 W 1 ±236.699 ±248.77
5 CGA553TGA 1 ±212.363 ±209.091
6 W 1 ±208.375 ±208.806
7 AGG560ACG 1 ±221.538 ±220.552
8 CGA553CAA + AGA555AGC 0 ±258.038 ±255.874

6 1 Base 19 A®G 1 ±1190.56 ±1181.98
2 W 1 ±885.905 ±906.477
3 W 0 ±907.967 ±912.53
4 W 1 ±883.603 ±899.166
5 W 1 ±766.15 ±781.939
6 GGA542TGA 1 ±691.528 ±686.091

aMost likely sequence haplotype. See Table 1 for details.
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In these early studies, it was important for the biochemical
process to maximize signal intensity over background. The
potential use of longer probes could also go together with
more stringent hybridization/extension conditions that would
have the potential of reducing spurious biochemical outcomes.
Newer, more intense and more sensitive detection molecules
and scanning technologies would help access these likely
weaker signals, and could push sensitivity well beyond the
simple method of incorporation of singly labeled ¯uorescent
nucleotides. Any of these alternatives could be used to
increase accuracy, and would enable improvement of the
overall ®delity of the re-sequencing process.

A different alternative is to use the 5mer re-sequencing
technique to explore the small number of differences that
might be the more likely goal in some re-sequencing studies.
In this case, detection of small variations with respect to the
reference sequence becomes far more important.

The important issue of detecting heterozygotes in this same
manner was not addressed in this study. It is possible to
achieve these goals within the spectrum alignment framework,
in the following manner. In theory, one needs to ®nd a pair of
sequences, corresponding to a pair of paths in the spectrum
alignment graph, that maximize the likelihood of the signals
under the assumption of the two corresponding haplotypes.
This likelihood is an expression which sums up individual
edge contributions, very similarly to the standard homozygous
score. In practice, the two haplotypes are expected to be quite
similar to each other. Therefore, the two corresponding paths

are intertwined, and often overlap in many edges. The
resolution of one haplotype can be performed as in the
homozygous case. We propose to continue and resolve regions
where the two paths are distinct in a segment by segment
fashion. When examining such a segment, one can look for
potential heterozygocity by using the distilled spectrum
machinery to ®lter out the spectrum of the ®rst haplotype
(13). As the current data set focuses on homozygote targets (37
out of 42), we could not adequately test this approach in this
study, and this will be done in a future study.

The computational developments presented here are driven
by the nature of errors incurred by the biochemical assay.
Nevertheless, these methods are general, and apply also to
data obtained by other kinds of assays. In particular, as
probing technology improves in quality, cost and throughput,
re-sequencing of longer DNA segments is expected to be
practical soon. Computational methods such as the ones
presented in this work may provide the means to handle such
assays in the future.
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Figure 6. Visualization of re-sequencing results by SNP-o-gram. (Top) A synthetic short target, with two known mutations (array 6, data set 3). (Bottom) A
genomic target which is heterozygous for a single known mutation (array 2, data set 4).
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