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A complete description of protein metabolism requires knowledge
of the rates of protein production and destruction within cells.
Using an epitope-tagged strain collection, we measured the half-
life of >3,750 proteins in the yeast proteome after inhibition of
translation. By integrating our data with previous measurements
of protein and mRNA abundance and translation rate, we provide
evidence that many proteins partition into one of two regimes for
protein metabolism: one optimized for efficient production or a
second optimized for regulatory efficiency. Incorporation of pro-
tein half-life information into a simple quantitative model for
protein production improves our ability to predict steady-state
protein abundance values. Analysis of a simple dynamic protein
production model reveals a remarkable correlation between tran-
scriptional regulation and protein half-life within some groups of
coregulated genes, suggesting that cells coordinate these two
processes to achieve uniform effects on protein abundances. Our
experimental data and theoretical analysis underscore the impor-
tance of an integrative approach to the complex interplay between
protein degradation, transcriptional regulation, and other deter-
minants of protein metabolism.
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The availability of whole-genome sequences and the advent of
microarray technology have made global analyses of mRNA

expression mainstream. However, most biological processes are
mediated by proteins, which are subject to posttranscriptional
regulation that is generally not observable at mRNA levels. A
complete understanding of biological systems requires knowl-
edge of protein properties, which is ultimately the goal of
proteomics.

Despite tremendous technical advances and effort in proteom-
ics, the chemical heterogeneity of proteins and the large dynamic
range of protein abundance make it challenging to establish
global proteomic assays. This obstacle has been circumvented in
the yeast Saccharomyces cerevisiae with the availability of two
collections of yeast strains expressing epitope-tagged fusion
proteins, one by using the tandem affinity purification (TAP) tag
and a second employing the GFP (1, 2). In an initial study, we
analyzed the TAP-tagged strain collection by Western blotting to
quantify steady-state levels of protein abundance in actively
dividing yeast cells. These data augmented previous efforts to
quantify protein abundance by using mass spectrometry and 2D
gel electrophoresis and provided a more comprehensive estimate
of protein levels in a eukaryotic cell (3, 4).

The availability of high-throughput protein abundance data
has facilitated analysis of the relationship between protein
abundance and mRNA levels. Although a statistically significant
correlation is observed between these parameters, individual
genes with similar mRNA levels can produce proteins with very
different abundances. This complication makes it difficult to
extrapolate from mRNA levels and microarray experiments to
protein abundance. Three potential explanations have been
proposed to account for the imperfect correlation between
mRNA and protein levels: (i) translational regulation; (ii) mea-

surement errors in the data sets; and (iii) differences in protein
half-lives (5). Knowledge of protein half-lives is required to
understand how mRNA abundances translate into steady-state
protein levels.

We report a genomewide study in which we measured half-
lives of the proteins in the yeast proteome. This study provides
the final piece of information required for the generation of a
quantitative model for protein metabolism. We have integrated
data from large-scale measurements of mRNA levels, translation
rates, protein abundances, and protein half-life measurements to
reveal higher-order properties of protein metabolism. Our anal-
ysis of a simple dynamic model for protein production reveals a
correlation between transcriptional regulation and protein half-
life, providing evidence that cells coordinate these two processes
to control protein abundance.

Results
Profiling Protein Half-Lives in the Yeast Proteome. As a first step
toward quantifying the influence of protein degradation on
protein abundance, we measured the half-life of proteins in the
yeast proteome. We started with a collection of �4,200 TAP-
tagged strains for which a protein product was detected by
Western blotting (1). This set includes proteins expressed in
exponentially dividing cells grown in standard laboratory con-
ditions. We do not visualize (and therefore cannot obtain
half-life information for) proteins expressed in more specialized
conditions (e.g., sporulation and alternative nutrient condi-
tions). We monitored the abundance of each TAP-tagged pro-
tein by Western blot analysis of cell extracts as a function of time
following inhibition of protein synthesis by cycloheximide (Fig.
1 A and B).

We measured the half-life of 3,751 proteins and found the
distribution of half-lives to be approximately log-normal, with a
mean and median half-life of �43 min (Fig. 1C). The distribution
deviates from log-normal in that we observe an unexpected
number of very unstable proteins (161 proteins with a half-life
of �4 min), consistent with the idea that degradation may
determine the abundance of these proteins.

To estimate the repeatability of our measurements, we chose
a random sample of 151 TAP-tagged proteins and independently
measured their half-lives twice (Table 1, which is published as
supporting information on the PNAS web site). We estimate that
our half-life measurements are subject to a multiplicative error
term (�) with �(�) � 1.99 (Fig. 6, which is published as
supporting information on the PNAS web site), indicating that
our half-life measurements are accurate within a factor of 2. This
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measurement suggests that our data can be used for inferring the
general trends in protein degradation when we analyze groups of
proteins and focus on major differences between very stable and
unstable proteins. It should be stressed, however, that because of
the experimental errors in our data, caution should be exercised
when interpreting individual measurements quantitatively. More
experiments are required before the exact degradation kinetics
of individual proteins can be assessed reliably.

One concern with our experimental design is that fusion of the
TAP tag to the C terminus might affect protein half-life. To
estimate this effect, we measured and compared the half-life of
tagged and untagged versions of 24 proteins for which we were
able to obtain antibodies. We find that the differences between
half-life measurements of tagged and untagged proteins are
distributed similarly to the repeat differences (Kolmogorov–
Smirnov test, P � 0.57; Table 2, which is published as supporting
information on the PNAS web site), suggesting that the effects
of the TAP tag on half-life are secondary to other sources of
error in the experiments.

To assess the agreement between our half-life measurements
and those previously reported in the literature, we compared the
two values for 38 yeast proteins. The half-lives reported in the
literature come from different measurement techniques, with
and without cycloheximide treatment (23 without cyclohexi-
mide) and those with no tags or different tags at N- and
C-termini of the proteins. We find that the differences between
these half-life values are distributed similarly to the repeat

differences (Kolmogorov–Smirnov test, P � 0.75; Table 3, which
is published as supporting information on the PNAS web site),
indicating that the difference between our half-life values and
literature data are not different from the inherent variability in
our measurements. These comparisons further suggest that, in
most cases, the effect of cycloheximide on half-life is secondary
to other sources of noise in our experiments.

In summary, we have generated a large-scale collection of
protein half-life measurements. We suggest that caution should
be exercised when using our data to quantitatively study single-
protein dynamics. However, as we shall see below, our measure-
ments are suitable for large-scale quantitative analysis of yeast
protein metabolism. Moreover, we can use the data to reliably
infer qualitative sets of rapidly or slowly degrading proteins.

Clustering Proteins Based on Protein Metabolism Parameters Corre-
lates with Function and Localization. To study the organization of
protein metabolism in yeast, we clustered proteins based on
similarity in their translation rate (mRNA abundance � ribo-
some density), protein abundance, and protein degradation rate
constant (see Data Sources). We then analyzed the enrichment
of protein function and localization in each cluster (see Methods
for details) (Fig. 2 and Tables 4–6, which are published as
supporting information on the PNAS web site).

One cluster consists of proteins that appear to be optimized
for maximum production and maintenance efficiency. Proteins
from this cluster (which we call the ‘‘production’’ cluster) are
produced in large quantities and are generally stable. This cluster
is enriched in proteins that are involved in protein production,

Fig. 1. Determination of protein half-life by using the TAP-tagged strains.
(A) Schematic diagram of the translation shut-off assay used to determine the
half-life of proteins in the yeast proteome. (B) The degradation rate constants
of the TAP-tagged proteins were quantified by measuring the relative inten-
sity of each protein by quantitative Western blotting at 0, 15, and 45 min after
cycloheximide treatment. The intensity data were fit to a first-order decay
function to estimate the degradation rate constant, which then was used to
calculate a half-life. The Western blot shows degradation profiles for five
representative TAP-tagged proteins. (C) Normalized distribution of the half-
lives of the observed yeast proteins. The bins are log2 increments with the
upper boundary indicated.

Fig. 2. Clustering genes by similarity in protein metabolism parameters
correlates with function and localization. The 3,751 yeast proteins were
clustered based on protein production rate [mRNA abundance (M) x ribosome
density (R)], protein abundance (P), and degradation rate constant (D). See
Data Sources in Methods for details on the data sets used. Clusters with similar
profiles were grouped together and graphically visualized by using colors to
represent the direction and measure of the attribute (see Supporting Methods
for details). A high attribute value is shown in shades of yellow, and a low
attribute value is indicated with shades of blue. The black pie slices indicate
the relative numbers of proteins belonging to each cluster. Clusters were
analyzed for functional enrichment and localization categories. A represen-
tative list of significantly enriched GO terms is indicated in black. The entire list
of significant GO terms and localization categories obtained in the analysis is
described in Tables 4 and 5.
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including ribosomal proteins and others involved in protein
biosynthesis, and enzymes involved in amino acid metabolism
(see Table 5 for P values). In accordance with the functional
evidence, this group is enriched in cytoplasmic proteins (P �
1e�14). The metabolism of a second large group of proteins
appears to be optimized for regulatory flexibility. Proteins from
this cluster (which we call the ‘‘regulation’’ cluster) are rapidly
degrading and not abundant. Interestingly, the cluster is enriched
in cell cycle proteins and in proteins involved in transcriptional
regulation (see Table 5 for P values).

The dominant patterns revealed by clustering suggest that at
steady state, during exponential growth, two main regimes
control the metabolism of yeast proteins. One regime is opti-
mized for efficient production, and the other is optimized for
regulatory flexibility. The production and regulation clusters are
much larger than expected by chance (P � 1e�50).

To further investigate the global effects of function on protein
metabolism, we assessed the degree of enrichment of essential
proteins in each of the clusters described above. We discovered
that the production cluster is enriched in essential genes (hy-
pergeometric P � 1e�5) and that the regulation cluster is
enriched in nonessential genes (hypergeometric P � 1e�5). We
hypothesize that genes in the regulation cluster are important for
growth in nonlaboratory conditions and, therefore, contain
fewer genes essential for growth in optimal laboratory conditions
than expected.

To refine our understanding of the behavior of specific
biological functions, we computed the distribution of protein
half-lives and other attributes for classes of proteins annotated
with particular Gene Ontology (GO) terms (see Methods). This
type of analysis provides more resolution than the global cluster
analysis and serves as a general resource to characterize the
metabolic mode of proteins with particular functions, processes,
and localization. As noted above, ribosomal proteins and en-
zymes are generally stable, and transcription factors and cell
cycle proteins are more rapidly degraded than expected by
chance. Smaller functional groups with statistically significant
distributions of half-lives include proteins involved in the deg-
radation machinery (that are more stable than the average) and
cell wall proteins (that are less stable than the average).

To determine whether protein sequence or physical properties
of proteins correlates with half-life, we analyzed short and
long-lived proteins for enrichment of various physical attributes
(see Supporting Methods, which is published as supporting in-
formation on the PNAS web site). We observe a significant
enrichment of serine density in short-lived proteins and an
enrichment of valine density in stable proteins (Fig. 7A, which is
published as supporting information on the PNAS web site). The
enrichment of serine in short-lived proteins might arise because
this amino acid is commonly found in sequences known to target
proteins for degradation (e.g., the PEST sequence). However, we
do not observe enrichment of threonine, proline, or glutamic
acid in unstable proteins. Finally, we find that there is a highly
significant negative correlation between protein length and
half-life (Fig. 7B; Spearman R � �0.23, P � 3e�38); this
correlation has been reported in ref. 6, but its mechanistic origins
are unclear.

Half-Life and Protein Production Rate Influence Protein Abundance.
To visualize the influence of protein degradation and protein
production on steady-state protein abundance, we plotted the
experimentally determined degradation rate constant (this
study), protein production rate, and protein abundance mea-
surements for �3,700 proteins (see Data Sources in Methods) on
a ‘‘heat map’’ (Fig. 3A). The map shows that proteins with similar
protein production rates can have very different degradation
rate constants, leading to differences in protein abundances. This
simple observation underscores the contribution of degradation

to steady-state protein abundance. Also, as seen in the 2D plots,
which show the moving average of 100 genes, the protein
production rate and protein degradation rate constant both
influence protein abundance (Fig. 3B).

We next wished to test whether different sources of high-
throughput information can be used in the context of a unified
quantitative model for protein metabolism (see Data Sources).
To this end, we used an equation derived from a simplified model
of protein metabolism to predict protein abundance from trans-
lation rate, mRNA abundance, and protein half-life (Fig. 4A and
Methods). We find that the Spearman correlation between the
predicted log protein concentration (Fig. 4 B and C) and the
experimental measurement was 0.6, better than the correlation
of mRNA abundance combined with ribosome density data
alone (0.57). Although the increase in correlation is modest, it
is highly significant as confirmed by both residual analysis
(Methods, P � 1e�18) and correlation increase analysis (P �
1e�4) (7). These results show that although mRNA abundance
plays a major role in determining protein abundance, the
incorporation of protein degradation information improves our
ability to predict protein abundance. Moreover, the available
data, although generated by using strikingly different methods
and subject to significant errors, can be integrated in the context
of a principled quantitative model, without applying sophisti-
cated normalization (except for multiplicative factors).

Correlation Between Protein Half-Life and Changes in mRNA Levels.
Regulation of protein networks is thought to occur at all levels
from transcription to protein degradation. Gene expression
studies have revealed that transcriptional networks are orga-
nized into transcription modules, consisting of genes that are
coexpressed (8, 9). The organization of transcriptional programs
into modules facilitates the coordination of large-scale responses
of functionally related genes to changes in the environment or to
other regulatory needs. However, the half-lives of proteins in a
transcriptional module influence the propagation of changes in

Fig. 3. Protein half-life and production rate influence protein abundance.
(A) Heat map illustrating the functional relationship between protein pro-
duction rate (mRNA abundance � ribosome density; y axis), degradation rate
constant (x axis), and protein abundance (color-coded). See Data Sources in
Methods for details on the data sets used. Each point represents a 2D bin,
including all proteins with a degradation rate constant and protein produc-
tion rate in a defined range. The color of the bin represents the average
abundance of the proteins contained within it. Higher values are indicated in
shades of red, and lower values in shades of blue. Empty and near-empty bins
are colored black. (B) Two-dimensional plot of the relationship between
protein abundance and protein production (Upper) or degradation rate con-
stant (Lower). The plots are generated by using a moving average of a window
of 100 genes.
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mRNA to changes in protein abundances. For example, repres-
sion of mRNAs coding for stable proteins will take longer to
produce changes in protein abundance as compared with similar
changes in mRNAs coding for rapidly degrading proteins
(Fig. 5A).

If the cell is striving to maintain the relative ratio of protein
abundances within a transcriptional module, then genes within
the module must be differentially regulated to compensate for
differences in protein half-lives. We analyzed the predictions of
a dynamic model of protein production to evaluate the nature of
such compensatory effects (see Methods). We assumed that
transcription temporally changes and that half-life and transla-
tion rate are fixed. The model predicts a negative correlation
between protein half-life and mRNA log expression fold change
in modules that are repressed (meaning more repression of genes
encoding stable proteins within the module as compared with
those coding for unstable ones) and a positive correlation in
induced modules (meaning a stronger induction of genes en-
coding stable proteins within the module as compared with those
coding for unstable proteins) (Fig. 5A and Supporting Methods).
The model predicts that transcriptional compensation will be
transient and holds as long as the module has not reached the
new steady state.

To test the idea that cells buffer differences in half-life by
repressing and activating genes coding for stable proteins more
strongly than genes coding for rapidly degrading ones, we
examined the correlation between half-life and fold repression or
activation in two transcriptional modules (Fig. 5B). Genes in the
RNA processing module are repressed after osmotic stress,
whereas genes in the oxidoreductase module are activated after
DTT treatment (8, 14). For both modules, we chose to work with
the time point corresponding to peak mRNA repression�
activation. In both cases, we observed significant correlation in

the predicted direction between log mRNA fold change and
half-life.

To more systematically test the theoretical prediction for
half-life transcriptional compensation, we examined the behav-
ior of a large set of yeast modules (10) in a series of time-
dependent gene expression experiments (Methods). For each
transcriptional module in a given condition, we computed the
correlation between protein half-life and log-fold expression
change. We then plotted the correlation versus the average fold
expression change for all module-condition pairs that exhibit
significant correlation (Fig. 5C). According to the theory, in-
duced modules (log-fold expression change �0) should exhibit a
positive correlation between half-life and fold expression change
and repressed modules (log-fold expression change �0) should
exhibit a negative correlation. Indeed, the distribution of cor-
relations for cases of induction is significantly different from
those of repression (Fig. 5C; Kolmogorov-Smirnov test, P �
1e�32). As expected, this correlation is not observed for every
module in every condition. There are many causes for lack of a
correlation: (i) requirement for a stoichiometric response may
be secondary to other regulatory constraints; (ii) the half-lives
of proteins in the module may be regulated; (iii) the half-lives of
proteins in the module may be very similar; or (iv) there may be
errors in the data sets that obscure a correlation. Nevertheless,
the trend we observe implies that the magnitude of transcrip-
tional response can be used to buffer differences in half-lives and
generate coherent behavior at the protein level. Our results
therefore suggest a highly integrated view of the regulation of
functional modules, where regulatory effects on different levels
(e.g., transcription and degradation) influence each other to
generate a combined cellular response.

Discussion
A complete understanding of protein metabolism requires quan-
tification of the rates of protein production and protein destruc-
tion. Although microarray-based approaches have yielded large-
scale data sets relevant for the estimation of protein production
rates, relatively little is known regarding the rates of protein
degradation. Such data are essential to the development of
quantitative models of protein metabolism. If successful, such
models could be used to understand how changes in mRNA
levels propagate to affect changes in protein abundance. For
example, changes in the abundance of mRNAs coding for stable
proteins will take significant time to propagate to affect changes
in protein abundance. Therefore, transient changes in such
mRNAs may result in little detectable change in protein abun-
dance. Such an effect of protein half-life complicates the ability
to extrapolate from microarray data to changes in the abundance
of the corresponding proteins.

In an attempt to fully characterize the parameters from which
we can understand the regulation of protein abundance, we
combined our half-life measurements with existing measure-
ments of other aspects of protein metabolism (mRNA abun-
dance and translation and protein abundance). Two major issues
arise while attempting to perform such integration: (i) the
compatibility of different technologies and experimental proce-
dures used to measure each of the parameters and (ii) the
numerous sources of experimental artifacts and inaccuracies that
we are unable to control. We were surprised by our ability to
validate a simple dynamic model governing protein metabolism
by using data from multiple sources without applying any
sophisticated normalization (except for multiplicative factors).
We argue that the integrative quantitative approach holds great
promise for the study of complex biological processes, because
no single regulatory mechanism can explain such processes
faithfully. Future studies might benefit from an approach that
integrates transcriptional and protein level data and could

Fig. 4. A simple model for protein metabolism. (A) Schematic of a model for
protein metabolism and the corresponding steady-state prediction for protein
abundance, where M is absolute mRNA abundance, P is protein concentration,
R is the rate of translation per mRNA molecule (approximated by experimental
data on ribosome density), D is protein degradation rate constant, and V is
growth rate (volume increase factor per unit time). See Data Sources in
Methods for details on the data sets used. (B) Correlation between observed
and predicted protein abundance. Bar graph shows the P value (y axis) of
rejecting the independence hypothesis by using the Spearman test [the Spear-
man rank correlations (rs) are indicated on the bars], between observed and
predicted protein abundance, when using M, only mRNA abundance; M�D,
mRNA abundance and degradation rate constant including growth correc-
tion; M�R, mRNA abundance and ribosome density; or all of the parameters
described in the steady state protein metabolism equation. (C) Scatter
plot showing the relationship between the observed and predicted protein
abundances.
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enable testing of regulatory hypotheses from the protein me-
tabolism point of view.

We have theoretically demonstrated and validated how tightly
coupled transcriptional and degradation-based regulatory mech-
anisms are by analyzing the transcriptional regulation of groups
of coregulated genes. This analysis suggests that transcriptional
regulation may be used by cells to buffer the half-life differences
among proteins encoded by a group of coregulated genes. We
hypothesize that transcriptional control may be easier for evo-
lution to tinker with, standardizing the response of a gene
module at the protein level by fine-tuning the transcriptional
response. Understanding the changes in protein levels caused by
transcriptional changes remains a challenge. One parameter that
needs to be studied is the degree of regulation of the half-life of
proteins under different conditions. If such regulation is insig-
nificant, then computational prediction of protein abundance by
using gene expression profiles and steady-state protein half-lives
will be possible. Otherwise, measurement of protein half-lives
under the conditions of interest is unavoidable.

Our understanding of regulatory mechanisms is gradually
shifting from smaller, qualitative models to larger and more
quantitative models. One major obstacle facing attempts to
model biological regulatory processes at the systems level is that
such processes operate at all stages of a protein’s lifecycle,
starting from transcription regulation through to protein deg-
radation. The results and analysis we present here add to an
increasing body of evidence that demonstrates the importance of
a unified approach to the study of biological regulation. Future
studies may benefit from the combination of data on all aspects
of regulation, including proteomic as well as transcriptional
levels, building our understanding of complex processes from a
more realistic standpoint than previously was possible.

Methods
Quantification of Protein Half-Life. Three parallel cultures (1.7 ml)
of each TAP-tagged strain were grown in separate 96-well plates
in yeast extract�peptone and dextrose medium to log phase.
Cycloheximide, a translation inhibitor, was added to a final
concentration of 35 �g�ml to terminate protein synthesis. After
cycloheximide treatment, equal numbers of cells were collected
at 0, 15, and 45 min, and cell lysates were prepared as described
in ref. 1 with minor modifications. The extracts were analyzed by
SDS�PAGE and Western blotting. The bands corresponding to
TAP-tagged proteins were detected by using chemiluminescence
at three exposure times (30 sec, 1 min, and 5 min) by using a CCD
camera (FluorChem 8800; Alpha Innotech, San Leandro, CA).
Custom software (QuantiAction) was developed and used to
quantify the intensity of bands on the Western blots (Supporting
Methods).

We assume that protein degradation follows first-order decay
kinetics (see Supporting Methods for additional evidence), as

Fig. 5. Correlation between mRNA changes and protein half-life. (A) Model
for buffering protein stability differences in regulated transcription modules.
Schematic of a transcription module made up of three genes with different
protein degradation rate constants shown at steady state (Left) and during
the transition to a repressed state (Right). The three coregulated genes
produce mRNA (shown in pink) coding for proteins (in purple) of different
stabilities as indicated by the different kdeg (1 is least stable, and 3 is the most
stable protein). When the genes in the module are transcriptionally repressed
(Right) and the cell is aiming to maintain the same relative ratios of protein
abundance as in steady state, mRNAs coding for stable proteins will be
repressed more than mRNAs coding for unstable ones (indicated by the
relative extent of pink filling). The same is true for cases of induction (data not
shown). (B) Relationship between fold change in expression and protein
half-life in the genes belonging to two transcription modules. The profile of
the RNA processing module in osmotic stress (51 genes; ref. 9) (Upper) and the
oxidoreductase module (44 genes; ref. 7) in response to DTT (Lower) are
shown. The mRNA data come from the time point of maximum mRNA repres-
sion (for osmotic stress, 20 min) or activation (for oxidoreductase, 45 min)

during time courses after a stress. The lines give the least-square fit to the data
points. (C) Global correlation between protein half-life and fold change in
gene expression in transcription modules. For 1,200 previously described
transcription modules (10), we analyzed 27 different time courses of mRNA
expression after a stress (8, 11–14). For each module and each condition, we
tested whether the magnitude of transcription induction or repression cor-
relates with the half-life of the protein encoded by the module’s genes. To
that end, we calculated the Spearman rank correlation between fold change
in gene expression and protein half-life and collected all module-condition
pairs for which the correlation was significant (P � 1e�3). The scatter plot
shows the average fold change in expression (x axis) and Spearman rank
correlation (y axis) for significant pairs The plot reflects distinct behaviors for
induced (red) and repressed (green) modules, suggesting that, in agreement
with our theoretical prediction, in cases where correlation between half-life
and expression is observed, it increases the uniformity of the module’s re-
sponse at the protein level.
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described by Eq. 1. The measured protein intensity data (de-
noted by N in the following equations) was initially log-
transformed and then a linear least-squares fit was used to
determine the decay rate constant (k). From the decay rate
constant, the half-life (T1/2) was calculated.

N � N0e�kt [1]

ln�N	 � ln�N0	 � �kt T1/2 �
ln�2	

k

Data Sources. Gene annotations were downloaded from the GO
site (www.genomeontology.org, March 2005 version). For each
GO term, we assembled the group of genes annotated with the
term or with a specialization of it. Data sources are as follows:
protein localization (2), absolute mRNA abundance (15, 16)
from the combined dataset for ribosome density (17, 18), and
absolute protein abundance (1). We analyzed the yeast proteome
(Saccharomyces Genome Database version, www.yeastgenome.
org, March 2005) to generate statistics on amino acid frequency
and protein length. For analysis of transcriptional modules, we
used a large compendium of gene expression data as in ref. 10.

A Model Relating Protein Half-Life and Transcriptional Control. The
rate of change in protein concentration can be modeled by using
the following differential equation:

P�t	
•

�
dP�t	

dt
� M�t	 � R � P�t	 � �D � V	, [2]

where P is the protein concentration, M is the absolute mRNA
concentration, R is the rate of translation per mRNA molecule
(corresponding to the ribosome density), D is the protein
degradation rate constant, and V is the growth rate (volume
increase factor per unit time). At steady state, the protein
concentration is constant over time, or, mathematically, at t � 0:

P�0	
•

� M�0	 � R � P�0	 � �D � V	

P�0	 �
M�0	 � R

D � V
.

[3]

To test the compatibility of the various data sources and their
adequacy for quantitative modeling, we used experimentally
determined data for P, M, R, and D. We set v � 2

1�90 because the
doubling time is �90 min.

We assume that a set of proteins constitutes a functional
module and that the goal of a transcriptional program is to
regulate the activity of the module at the protein level via
regulation of the mRNA levels. For each protein in the module,

the degradation rate constant may be different, resulting in
different protein level dynamics. At steady state, Eq. 2 defines
the relationship between mRNA abundance, translation rate,
and degradation rate constant. We analyze the case where all
genes in the modules are jointly regulated, such that P(t) � P(0) �
�(t) (where �(t) is identical for all genes in the module and
represents the joint response profile of the module at the protein
level). To generate such a regulated response, the following
constraint should hold for all of the proteins in the module at any
time (t):

P�t	
•

P�t	
�

�P�0	 �
•

��t		
P�t	

�
P�0	 � ��t	

•

P�t	
�

��t	
•

��t	
. [4]

Using Eqs. 1 and 2 we derive (see Supporting Methods):

M�t	
M�0	

�
��t	

•

�D � V	
� ��t	. [5]

According to Eq. 5, parameter D weakens the magnitude of
the transcription response: Smaller D values (more stable pro-
teins) will require stronger induction at the mRNA level when
�(t)• � 0, and stronger repression at the mRNA level when
�(t)• � 0. This simple model predicts a positive correlation
between the degradation rate constant and log-fold expression
change in the case of modules containing transcriptionally
repressed genes and a negative correlation in the case of induced
modules. The model also shows that upon convergence to a new
steady state, �(t)•

� 0, the mRNA expression fold change equals
the protein fold change, �(t), predicting that the correlation is a
transient property. Although the model is clearly an oversim-
plification, it does provide insight into the interplay between
different mechanisms of regulation.

Supporting Information. Detailed methods appear in Supporting
Methods. The complete data set appears as a Data Set, which is
published as supporting information on the PNAS web site.
Additional supporting information can be found in Fig. 8 and
Tables 7–9, which are published as supporting information on
the PNAS web site.
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