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Abstract

In pattern matching with character classes the goal is to find all occurrences of a

pattern of length m in a text of length n, where each pattern position consists of an

allowed set of characters from a finite alphabet Σ. We present an FFT-based algo-

rithm that uses a novel prime-numbers encoding scheme, which is log n/ log m times

faster than the fastest extant approaches, which are based on boolean convolutions.

In particular, if m|Σ| = nO(1), our algorithm runs in time O(n log m), matching the

complexity of the fastest techniques for wildcard matching, a special case of our

problem. A major advantage of our algorithm is that it allows a tradeoff between

the running time and the RAM word size. Our algorithm also speeds up solutions

to approximate matching with character classes problems — namely, matching with

k mismatches and Hamming distance, as well as to the subset matching problem.
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1 Introduction

Generic pattern matching problems require finding all occurrences of a pat-

tern p in a text t. Throughout this paper, we denote by m and n the length of

the pattern and the text, respectively (m < n). In the classical string match-

ing problem both p and t are strings over a finite alphabet Σ = {a1, . . . , aσ} of

size σ. A myriad of efficient algorithms have been developed over the years, the

fastest of which solve this problem in linear time, such as the Knuth-Morris-

Pratt [1] and Boyer-Moore [2] algorithms.

1.1 Matching with Don’t-Cares

A more general matching problem is obtained when we allow the pattern and

the text to contain don’t-care characters, or wildcards, denoted ’*’, which

match all symbols in Σ. Formally:

Matching with don’t-cares: Given a pattern p and a text t, which may

contain don’t-cares, find all occurrences of p in t. Here, p is said to occur at

location i in t if: ∀1≤j≤m, p[j] = t[i+j−1] or p[j] =’*’ or t[i+j−1] =’*’.

If the number of don’t-cares in the pattern is very small, the problem can be

solved in linear time, for example by building a deterministic finite automaton

(DFA) that detects all possible words that match the pattern. Another ap-

proach is to use the match-count algorithm, which finds the number of match-

ing positions (or, equivalently, the Hamming distance) between the pattern

and every length m substring of the text (see, e.g., [3, ch. 4.3]). The algorithm,

first introduced by Fischer and Paterson [4], computes the contribution of each
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alphabet symbol to the score independently, as follows. For the symbol a ∈ Σ,

each occurrence of a in the text and in the pattern is replaced by the number 1,

and all other symbols are encoded by 0. The number of matching a’s between

the pattern and every substring in the text is obtained by computing the

convolution between the binary-encoded pattern and text. Using Fast Fourier

Transform (FFT), the convolution can be computed in O(n log m) time under

the RAM model of computation, which assumes that arithmetic operations

on numbers with w bits take constant time, where w = O(log N) is the RAM

word size and N is the maximal input size. Thus, the total running time of

match-count is O(σn log m), as it involves σ such convolutions. The algorithm

can easily be extended to cope with wildcards in the pattern and in the text.

Fischer and Paterson further showed that a similar technique can be applied

to solve matching with don’t-cares in time O(log σ · n log m) [4]. Removing

the dependence on σ remained an open problem until recently. Indyk intro-

duced a randomized technique for computing boolean products, which yielded

an O(n log m)-time Monte Carlo algorithm for wildcard matching and other

problems [5]. Kalai gave another elegant Monte Carlo algorithm with the same

time complexity, based on integer codes [6]. Cole and Hariharan were the first

to obtain an O(n log m)-time deterministic algorithm, by encoding each sym-

bol with a pair of rational numbers [7]. A simpler deterministic algorithm

with the same time complexity was presented very recently by Clifford and

Clifford [8]. All of the above algorithms compute convolutions using FFT; the

main differences between them is in the way they encode the pattern and the

text.
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1.2 Matching with Character Classes

Matching with don’t-cares can be generalized by allowing the pattern to con-

tain any non-empty subset, or class, of characters at each position:

Matching with character classes: Given a pattern p with character classes

(p[j] ⊆ Σ), and a text t, which may contain don’t-cares (t[i] ∈ Σ∪ ’*’), find

all occurrences of p in t. Here, p is said to occur at location i in t if:

∀1≤j≤m , t[i+j−1] ∈ p[j] or t[i+j−1] =’*’.

For example, the pattern a[abcd]r[ab] matches the text abracadadrb at

locations 1 (the substring “abra”) and 8 (“adrb”). W.l.o.g., we may assume

that the text does not contain don’t-cares — otherwise, we can add the don’t-

care symbol to all the character classes in the pattern, and treat it as a regular

symbol in the alphabet. Matching with character classes, as well as with similar

types of patterns, has been studied extensively (e.g., [9,10]). Most algorithms,

however, have the same worst-case running time as the näıve algorithm —

O(nm). Bit-parallelism techniques improve this to O(nm/w), where w is the

RAM word size [11]. In general, the best worst-case performance is attained

by the match-count algorithm — O(σn log m).

We present an FFT-based algorithm, whose running time depends on the para-

meter κ = logσ (log n/ log m). If κ < 1, its time complexity is O(σ1−κn log m),

which is log n/ log m times faster than match-count; if κ = 1, i.e., mσ = n,

our algorithm computes a single convolution, matching the O(n log m) run-

ning time of the fastest wildcard matching algorithms; and when κ > 1, our

method runs in time O(n log (m/κ)), asymptotically converging to the optimal

linear-time performance of classical string matching methods as κ approaches

4



infinity. Notably, in the latter case we obtain an improvement for wildcard

matching. Our algorithm uses a novel encoding scheme that is based on large

prime numbers. The basic idea is to encode the text and the pattern in such

a way that at match locations their convolution is congruent to 0 modulo

some large number M . Unlike other methods, prime code exploits the entire

RAM word, admitting improved performance for a longer word size. Table 1

summarizes the main results presented in this paper.

Table 1

Summary of the main results described in this paper.

Problem Previous complexity Prime-code compleixty

Matching with O(σ1−κn log m) if mσ =nω(1)

character classes
O(σn log m) [4]

O(n log (m
κ
)) if mσ =no(1)

Hamming distance O(nσ(1 + log2 m/ log n)) if mσ =nω(1)

with char. classes
O(σn log m) [4]

O(n(log m + σ)) if mσ =no(1)

Subset matching O(σn log m) if mσ =nω(1)

(Monte Carlo)
O(σn log (σn)) [5]

O(n log n log(m
κ
)/ log m) if mσ =no(1)

1.3 Approximate Matching with Character Classes

In many practical scenarios, one would like to find not only perfect matches,

but also locations at which the pattern approximately matches the text, that

is, matches it up to a specified small distance. A commonly used metric is

the number of mismatched pattern positions, or Hamming distance. Return-

ing to the previous example, the pattern a[abcd]r[ab] matches the text

abracadadrb at location 4 (the substring “acad”) with two mismatches (po-

sitions 3 and 4). Finding all pattern occurrences with at most k mismatches

is often referred to as the k-Mismatches problem. The fastest algorithm for

string matching with k mismatches runs in time O(n
√

k log k) [12]. If the pat-
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tern contains character classes, the most efficient algorithm is match-count,

running in time O(σn log m). In fact, match-count provides more information

than just the k-mismatches — as explained earlier, it computes the num-

ber of mismatches at every text location. We call this the Hamming distance

problem. In the restricted case of a pattern that contains only single symbols

and don’t-cares, but not other classes of characters, Abrahamson [10] showed

that the Hamming distance can be computed in time O(n
√

m log m), which

is faster than match-count when σ >
√

m/ log m. The algorithm we devel-

oped for matching with character classes can also solve the k-mismatches and

Hamming distance problems with small additional cost. This is an asymptotic

improvement over the match-count algorithm.

1.4 Subset Matching

In the subset matching problem, both the pattern and the text are composed

of character classes. According to the original definition by Cole and Hariha-

ran [13], the pattern matches the text if every character class in the pattern is

a subset of the corresponding character class in the text. For consistency with

the definition of matching with character classes, we shall switch the roles of

the pattern and the text, and obtain the following equivalent problem:

Subset Matching: Given a pattern p and a text t, both consisting of char-

acter classes (p[j], t[i] ⊆ Σ), find all occurrences of p in t. Here, p is said to

occur at location i in t if: ∀1≤j≤m , t[i+j−1] ⊆ p[j].

Obviously, matching with character classes is a special case of subset match-

ing. Let s be the total number of characters in the pattern and text, i.e.,

s =
∑m

j=1 |p[j]|+ ∑n
i=1 |t[i]|. The most efficient algorithms for subset matching
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are an O(s log s) Monte Carlo algorithm due to Indyk [5], and an O(s log2 s)

deterministic algorithm by Cole and Hariharan [7]. Since s might be as large as

σ(n+m), the above methods have worst-case running times of O(σn log (σn))

and O(σn log2 (σn)), respectively. We develop a randomized variant of our

prime-code technique that yields a Monte Carlo algorithm for subset match-

ing. Assuming σ = O(m), the algorithm runs in time O(σn log m) if κ < 1,

O(n log n) if κ = 1, and O(n log n log (m/κ)/ log m) if κ > 1.

1.5 Motivation

Character classes are commonly used in regular expressions and in many ap-

plications of pattern matching in various fields. We briefly describe here two

such applications in computational biology. The alphabet in both applications

consists of the four DNA bases — Σ = {A,C,G,T}.

Transcription factors (TFs) are specialized proteins that bind to regulatory re-

gions in the DNA and control gene expression. A TF usually binds to many dif-

ferent DNA segments that share a common pattern, or motif, characteristic of

the TF. Such binding-site motifs are often modeled using patterns with charac-

ter classes. For example, p53, the most frequently mutated tumor suppressor in

human cancers, binds to two repeats of [AG][AG][AG]C[AT][AT]G[CT][CT][CT] [14].

In a typical setting, the TF binding pattern is short (10 ≤ m ≤ 20), and the

goal is to efficiently locate all its occurrences in many long regulatory regions

(n ≈ 108).

The second application is in the design of degenerate primers for Polymerase

Chain Reaction (PCR) experiments. PCR is a technique for amplifying a spe-

cific region of DNA, so that enough copies of it are available for testing or
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sequencing. The first step in PCR is to synthesize two DNA segments, or

primers, lying on opposite sides of the target region. A PCR primer is called

degenerate if some of its positions have several possible bases. Thus, a degen-

erate primer can be described as a pattern with character classes. Degenerate

primers can be used to amplify several related genomic sequences in a single

PCR experiment. We studied the computational problem of designing highly

degenerate primers [15], and applied our algorithms in experiments for study-

ing the human and canine olfactory receptor genes [16,17]. A common prob-

lem in the design of degenerate primers is to verify that the primers do not

bind to DNA regions others than those they are meant to amplify. Thus, one

needs to search for all occurrences of a candidate primer, typically of length

20 ≤ m ≤ 30, in the entire genome (n ≈ 6 ·109 in human). One may also want

to allow a small number of mismatches (e.g., k = 3), as the PCR technique

usually tolerates a few mismatches.

Subset matching is applicable in many pattern matching scenarios, such as

geometric pattern matching and general pattern matching. Most notably, Cole

and Hariharan showed that tree pattern matching, an important problem

which has been studied extensively, can be reduced to subset matching in

linear time [13]. In computational biology, subset matching can be applied to

search for conserved TF binding sites in aligned sequences of multiple species.

The straightforward solution is to search for the occurrences of the TF’s motif

in each species separately, as described earlier, and then check which locations

match the motif in all species. An alternative approach is to combine the se-

quences into a single consensus sequence, in which each position contains the

set of bases that appear in that position in one or more species, and apply

subset matching to search for the motif in the consensus sequence.
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2 Preliminaries

All the algorithms described in this paper assume the RAM model, wherein

standard arithmetic on w bit numbers is performed in constant time. Following

standard practice, we shall assume that the word size is w = O(log n) (see,

e.g., [5,6]).

Convolution: The convolution, or cross-correlation, of two vectors a, b is the

vector a⊕ b such that (a⊕ b)[i] = Σ
|a|
j=1a[j]b[i+j−1] for 1 ≤ i ≤ |b|−|a|+1.

Given a pattern p of length m and a text t of length n (m < n), both encoded

using numbers with w bits, the convolution p⊕t can be computed in O(n log m)

time, as follows. First, the text is split into n/m pieces of length 2m, with

overlap m between consecutive pieces. The convolution between the pattern

and each piece of the text is then computed using FFT in time O(m log m)

per piece (as in [4]).

3 Matching with Character Classes

In this section we describe our encoding scheme and how it can be applied to

solve pattern matching with character classes. Since our algorithm is based on

computing convolutions on segments of length 2m, we may assume w.l.o.g. that

σ ≤ 2m, as each 2m-long piece of text contains at most 2m distinct symbols.
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3.1 Prime Code

A prime code assigns to each symbol ai ∈ Σ a distinct prime number pi,

where p1 < p2 < . . . < pσ (notice that we use pi to denote the i-th prime

number, whereas p[i] is the character class at position i in the pattern). Denote

M = p1 · . . . · pσ. We further require that all primes are larger than m (i.e.,

p1 > m). We first describe how such prime numbers can be found, and then

explain how to encode the pattern and the text.

Finding Prime Numbers p1, . . . , pσ > m: Following are well known bounds on

the number π(x) of primes less than or equal to x [18]:

∀x ≥ 17
x

ln x
< π(x) < 1.26

x

ln x

Using these bounds, for m ≥ 17 we get:

π(5m ln m)− π(m) >
5m ln m

ln(5m ln m)
− 1.26

m

ln m
>

5m ln m− 2.6m

2 ln m
> 2m ≥ σ

Thus, if we search for prime numbers between m+1 and 5m ln m, we are

guaranteed to find at least σ prime numbers, as required. Since testing for pri-

mality takes polynomial time (i.e., testing whether x is prime takes polylog(x)

time) [19], the prime numbers we seek can be found in O(m ·polylog(m)) time.

Alternatively, we could apply Eratosthenes’ sieve to obtain all the primes up

to 5m ln m in time O(m log m log log m). This can be improved to o(m log m)

time using modern sieves, such as the sieve of Atkin [20]. Notice that each of

the primes we obtain is a number with at most log2(5m ln m) < 2 log2 m bits.

The prime numbers depend only on m — if we are given a list of equal-length

patterns, this step of the algorithm needs to be performed only once.
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Text Code: The symbol ai in the text is encoded by the integer M/pi.

Pattern Code: A character class [ai1 , . . . , aic ] in the pattern is encoded by an

integer nS , where S = {i1 , . . . , ic}, s.t.:

nS ≡





0 (mod pi) ∀i ∈ S

1 (mod pj) ∀j 6∈ S
(1)

The Chinese Remainder Theorem (CRT, in short) guarantees that such inte-

gers exist (see, e.g., [21, ch. 31.5]). In fact, for each subset S ⊆ {1, . . . , σ} there

exists a single integer 0 ≤ nS < M , for which Equation 1 holds. Moreover,

this integer can be found using the CRT, as follows. For each j (1 ≤ j ≤ σ),

we obtain a pair of integers rj, qj s.t.: rjpj + qj(M/pj) = 1. These integers

can be computed using Euclid’s gcd algorithm in time O(log pj). Denoting

cj = qj(M/pj), it follows from the CRT that:

nS = Σj 6∈S cj = 1− Σj∈S cj mod M

Hence, given the coefficients c1 , . . . , cσ, a character class with c symbols is

encoded in linear time. Let sp denote the total number of characters in the

pattern, i.e., sp = Σm
j=1|p[j]|. Encoding the entire pattern takes O(sp) time,

plus O(σ log pσ) = O(m log m) (since σ ≤ 2m and pσ ≤ 5m ln m) for com-

puting the cj’s, which can be done in pre-processing, as they do not depend

on the content of the pattern. The attentive reader may have noticed that we

ignored a crucial problem — the numbers we are dealing with might be too

large to fit into a single RAM word. We will address this issue in the next

section.
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3.2 The PMCC Algorithm

Our basic algorithm for pattern matching with character classes, called PMCC,

is outlined in Figure 1.

INPUT: Pattern p with character classes, text t over alphabet Σ, σ= |Σ|

OUTPUT: All occurrences of p in t

Algorithm PMCC:

1. Pre-processing:

1a. Find σ prime numbers — p1, . . . , pσ > m

1b. Set M ← p1 · . . . · pσ

1c. Compute coefficients c1 , . . . , cσ using the CRT:

ci ≡ 1 (mod pi) and ci ≡ 0 (mod pj) for j 6= i

2. Encode the pattern and the text using a prime code:

2a. Text: Replace the symbol ai by M/pi

2b. Pattern: Replace the character class [ai1 , . . . , aic ] by n{i1 ,...,ic}:

n{i1 ,...,ic} = 1− (ci1 + . . . + cic) mod M

3. Compute the convolution p⊕ t using FFT

4. Report a match at location i iff (p⊕ t)[i] ≡ 0 (mod M)

Fig. 1. Algorithm PMCC for pattern matching with character classes.

Theorem 1 If mσ = nO(1), algorithm PMCC solves pattern matching with

character classes using a single convolution in time O(n log m).

Proof: We first prove that PMCC produces the correct output. Let us com-

pare the pattern to the substring at location i in the text. The value of the

convolution at this location is: (p⊕ t)[i] = Σm
j=1p[j]t[i+j−1]. Let [ai1 , . . . , aic ]
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be the character class at position j in the pattern, and let ak be the symbol

at position i+j−1 in the text. It is easily seen that:

p[j]t[i+j−1] = n{i1 ,...,ic} ·M/pk ≡





0 , if ak ∈ {ai1 , . . . , aic}

M/pk , otherwise

(all congruences are modulo M). Denote by ek the number of times the sym-

bol ak in the text does not match the corresponding character class in the pat-

tern, when the pattern is aligned against text location i. Thus, (p⊕ t)[i] ≡ R,

where R = Σσ
k=1 ek·(M/pk). Since pk > m for all k, we get R < M/m ·Σσ

k=1ek.

Obviously, Σσ
k=1ek ≤ m, so R < M . Of course, R ≥ 0, and this inequality

strictly holds iff ∃k, ek > 0. The correctness of the algorithm immediately

follows.

We now analyze the running time of PMCC. As explained in Section 3.1,

step 1 can be performed in time O(m log m), and encoding the text and the

pattern in step 2 takes O(n+ sp) time. Step 4 takes O(n) time. Henceforth we

shall ignore these pre-processing and linear-time phases of the algorithm, and

focus on step 3, which determines the overall time complexity. Since we showed

that log2 pi < 2 log2 m (Section 3.1), it follows that log2 M = Σσ
k=1 log2 pk <

2σ log2 m. Thus, for mσ = nO(1), we get log2 M = O(log n), i.e., M fits into

a single machine word, so the convolution in step 3 can be computed in time

O(n log m), as required.

We now show how to adjust the PMCC algorithm so that it could solve in-

stances with mσ = nω(1), and how to improve its performance when mσ = no(1).
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Theorem 2 Pattern matching with character classes can be solved in time:



O(σ1−κn log m) , if 0 ≤ κ ≤ 1

O(n log m) , if κ = 1

O(n log(m/κ)) , if κ ≥ 1

where κ = logσ (log n/ log m), or, more generally, κ = logσ (w/ log m), where w

is the RAM word size.

Proof: The Case mσ = nω(1): In order to ensure that all the numbers the al-

gorithm computes do not exceed O(log n) bits, we apply a standard trick — we

partition Σ into smaller alphabets, Σ =
⋃

Σj, each of size at most log n/ log m.

For each of these d(log m/ log n)σe alphabets, we solve the problem using

PMCC, ignoring all symbols that are not in the active alphabet — such

symbols in the text are replaced by the symbol ’*’, which is also added to

all the character classes in the pattern, as well as to the alphabet. Finally,

we report a match at each location for which a match was found over all

the alphabets. Denoting κ = logσ (log n/ log m), the total running time is

O(σ log m/ log n · n log m) = O(σ1−κn log m).

The Case mσ = no(1): In this case, PMCC utilizes only a small part of the

RAM word. We can improve its running time by avoiding this waste, as follows.

The main idea is to work on κ-tuples. We first rename the pattern using the

alphabet Σκ, padding the pattern with character classes that consist of the

entire alphabet, if required. The new pattern is a pattern with character classes

over the new alphabet (notice that this trick does not work for a pattern with

don’t-cares — renaming it with Σκ results in a pattern with character classes,

not only single symbols and don’t-cares). Next, we rename the text using Σκ,

each time starting at a different offset 0 ≤ i < κ. For each offset, we run
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PMCC and report the matches. Since the text and the pattern are of length

n/κ and m/κ, respectively, and all the numbers involved fit into a RAM

word (log2 M < 2σκ log2 (m/κ) = O(log n)), each offset is handled in time

O(n/κ · log(m/κ)). The total time complexity is therefore O(n log(m/κ)).

3.3 Approximate Matching

In this section we describe simple post-processing procedures that can be

applied to our PMCC algorithm in order to solve two approximate matching

with character classes problems — Hamming distance and matching with k

mismatches.

3.3.1 Hamming Distance

Interestingly, the prime-code convolution vector p⊕ t contains more informa-

tion than merely the locations of the matches. As we shall now show, the

number of mismatches at every location in the text can easily be derived from

it, thus computing the Hamming distance for patterns with character classes

more efficiently than match-count.

Theorem 3 The Hamming distance for patterns with character classes can

be computed in time:




O(n(σ1−κ log m + σ)) = O(nσ(1 + log2 m/ log n)) , if 0 ≤ κ < 1

O(n(log m + σ)) , if κ ≥ 1
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Proof: Recall that for a fixed location i in the text: (p⊕ t)[i] ≡ R (mod M),

where R = Σσ
k=1 ek(M/pk), and ek is the number of mismatches for the

symbol ak in the text. Since R ≡ ek(M/pk) (mod pk), we get: ek = R ·
(M/pk)

−1 mod pk. (Notice that the modular inverse (M/pk)
−1 is the integer qk

we computed earlier for encoding the pattern). As described in Section 3.2,

if mσ = nO(1) all the numbers computed by our matching algorithm fit into

a machine word, so we can compute ek from (p ⊕ t)[i] in constant time. If

mσ = nω(1), the algorithm performs a separate convolution for each partial al-

phabet Σj; we thus calculate ek from the convolution vector we computed for

the partial alphabet that contains ak. Therefore, in both cases the Hamming

distance Σkek at every text location can be calculated in total time O(σn),

given the convolution vector(s). In fact, we can compute a weighted Ham-

ming distance — Σk wkek, where each mismatched text symbol is assigned a

pre-defined weight wk.

3.3.2 k-Mismatches

We would now like to find all text locations at which there are at most k

mismatches (1 ≤ k < m). Obviously, we could compute the Hamming distance

and solve the problem in O(σn) time. However, when k is small, as is often

the case in practice, there is a more efficient alternative.

Theorem 4 Matching with k mismatches for patterns with character classes

can be solved in time:




O(σ1−κn log m) , if 0 ≤ κ < 1

O(n log m) , if κ ≥ 1





+ O(n ·min{σ, k(1 + log
σ

k
)})
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Proof: The idea is to identify which symbols have mismatches when the

pattern is compared to a substring in the text. To this end, for every text

location we perform a binary search using boolean queries on the value of R

modulo subsets of the prime numbers, as follows.

Suppose k < σ, and let T be a balanced binary tree, whose leaves, ordered

from left to right, are the alphabet symbols a1, . . . , aσ. Each node in T corre-

sponds to a subset of Σ, comprised of the symbols at the leaves of its subtree.

An example is illustrated in Figure 2. We further assume that (p ⊕ t)[i] fits

into a single RAM word, so mσ = nO(1). We start at the root of T , and check

R mod p1p2 . . . pdσ/2e — If it is 0, then there are no mismatches for the sym-

bols a1, . . . , adσ/2e, and we prune the left branch; otherwise, at least one of these

symbols has mismatches, so we continue the search in the left subtree of the

root. Similarly, if R mod pdσ/2e+1 . . . pσ 6= 0, we continue to the right subtree.

In this manner we traverse T breadth-first, pruning some of the branches along

the way. Each non-pruned branch contains one or more mismatched symbols

(that is, at least one of the leaves in its subtree has mismatches). Thus, if the

number of non-pruned branches exceeds k, there are more than k mismatched

symbols, which clearly implies that there are more than k mismatches at the

current text location, so we stop the search. Otherwise, we end up with at

most k leaves that correspond to the mismatched symbols. We calculate the

exact number of mismatches for each of these symbols, as we have done for

the Hamming distance computation, and report a match if their sum does not

exceed k. In the example illustrated in Figure 2 there are three mismatched

symbols — a1, a2 and a4, and a total of four mismatches. The total time

required for the above search is proportional to the number of branches we

traverse, which is O(k + k log σ
k
).
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Fig. 2. Illustration of the k-Mismatches algorithm for σ = 8. For every text location,

the algorithm traverses the alphabet tree T breadth-first, continuing the search only

in edges with mismatches (thick arrows).

If mσ = nω(1), we cannot perform the above search, since we do not have the

value (p⊕ t)[i]. Instead, the alphabet is partitioned into partial alphabets —

Σ1, . . ., of size at most log n/ log m, and the matching algorithm computes

d(log m/ log n)σe convolutions, one for each partial alphabet. Thus, we can

implement the same breadth-first binary search as for the case mσ = nO(1),

except that rather than starting at the root of T , we begin the search from

the level in the tree that contains the nodes that correspond to the par-

tial alphabets Σ1, . . . (or the next level if d(log m/ log n)σe is not an inte-

ger power of 2). For example, if (log m/ log n)σ = 2, the matching algo-

rithm computes two convolutions (one for Σ1 = {a1, . . . , aσ/2}, and one for

Σ2 = {aσ/2+1, . . . , aσ}), so we start the breadth-first search at the second

level of T (whose nodes correspond to Σ1 and Σ2); in order to check whether

R mod p1p2 . . . pdσ/2e is 0, we use the values (p ⊕ t)[i] computed in the first

convolution, and for R mod pdσ/2e+1 . . . pσ we use the output of the second
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convolution. Searching for the mismatched symbols at a given location takes

in this case O(k + k log σ
k

+ (log m/ log n)σ) = O(k(1 + log σ
k
) + σ1−κ) time.

4 Subset Matching

In the subset matching problem, both the pattern and the text consist of

subsets of Σ (see Section 1.4 for the definition of the problem). Unlike in the

previous problem, here a 2m-long piece of text may contain more than 2m

different symbols. However, we shall still assume that σ = O(m); we shall

not analyze the performance of the algorithm for larger alphabets. We now

describe a randomized version of the prime code technique for solving subset

matching. The difference lies in the way we encode the text; the pattern is

encoded as in Section 3.1.

Randomized Text Code: A non-empty character class [bj1 , . . . , bjd
] in the text

is encoded by an integer r ·M/pSt , where pSt = Πd
k=1pjk

, and r is a random

totative 1 of pSt ; in other words: (i) 1 ≤ r < pSt , (ii) r is relatively prime to

pSt , (iii) r is chosen uniformly among the numbers that fulfill (i) and (ii). An

empty character class in the text is encoded by 0.

Given the primes pj1 , . . . , pjd
, each totative of pSt is uniquely characterized by

its set of residues rj1 , . . . , rjd
modulo pj1 , . . . , pjd

, respectively. Therefore, in

order to uniformly select a random totative r, we choose random residues, and

then compute the corresponding r using the CRT. Similarly to the analysis of

1 A totative of x is a positive integer smaller than and relatively prime to x.
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the pattern code in Section 3.1, encoding the text takes O(st) time, where st is

the total number of characters in the text, plus O(m log m) for pre-processing.

4.1 The SSM Algorithm

We now give a randomized algorithm, called SSM, for solving subset matching.

The algorithm, outlined in Figure 3, is a variant of PMCC that uses the

randomized text code described above.

INPUT: Pattern p and text t with character classes, alphabet Σ, σ= |Σ|

OUTPUT: All occurrences of p in t

Algorithm SSM:

1. Pre-processing: Same as in algorithm PMCC (Figure 1)

2. For k = 1, . . . , 2 log2 n/ log2 m:

3. Encode the pattern and the text using a randomized prime code:

3a. Text: Replace the character class [bj1 , . . . , bjd
] by r ·M/pSt :

pSt = pj1 · . . . · pjd

r is a random totative of pSt (i.e., 1≤r<pSt , gcd(r, pSt)=1)

3b. Pattern: Replace the character class [ai1 , . . . , aic ] by n{i1 ,...,ic}:

n{i1 ,...,ic} = 1− (ci1 + . . . + cic) mod M

4. Compute the convolution Ck = (p⊕ t) mod M using FFT

5. Report a match at location i iff ∀k Ck[i] = 0

Fig. 3. Algorithm SSM for subset matching.
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Theorem 5 Algorithm SSM is a Monte Carlo algorithm for solving subset

matching. If σ = O(m) then with probability at least 1 − 1
n

the algorithm

reports no false matches in time:




O(σn log m) , if 0 ≤ κ ≤ 1

O(n log n) , if κ = 1

O(n log n log(m/κ)/ log m) , if κ ≥ 1

where κ = logσ (w/ log m) and w is the RAM word size.

Proof: We first analyze a single iteration k of steps 3 and 4. The convolution

Ck at location i in the text is: (p⊕t)[i] = Σm
j=1p[j]t[i+j−1]. Let Sp = [ai1 , . . . , aic ]

be the character class at position j in the pattern, and let St = [bj1 , . . . , bjd
]

be the character class at position i+j−1 in the text. If St ⊆ Sp, then:

p[j]t[i+j−1] = n{i1 ,...,ic} · rM/(pj1 · . . . · pjd
) ≡ 0 (mod M)

Thus, if the pattern matches the text at location i, the above holds for all

1 ≤ j ≤ m, and we get Ck[i] = 0. Conversely, suppose there is a mismatch

at position j in the pattern, and let ak ∈ St − Sp. In this case, n{i1 ,...,ic} ≡ 1

(mod pk), and r modulo pk is a random totative of pk (since it is a random

totative of pSt), so:

p[j]t[i+j−1] mod pk ∼ U(1, . . . , pk − 1)

Fixing the remaining variables, the congruence (p ⊕ t)[i] ≡ 0 (mod M) has

a unique solution for p[j]t[i+ j−1] mod pk. Therefore, the probability that

the congruence holds is at most 1/(pk− 1) ≤ 1/m. In other words, if the

pattern does not match the text at location i, then Ck[i]=0 with probability
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at most 1/m.

If we perform (log2 n+ c)/ log2 m iterations of steps 2 and 3, each time encod-

ing the text using new random residues, the probability of having any false

matches at any position is at most n/m(log2 n+c)/ log2 m = 1/2c. Specifically,

for c = log2 n the probability for failure is at most 1/n, and the entire al-

gorithm is Θ(log n/ log m) times slower than the deterministic algorithm for

pattern matching with character classes (Theorem 2).
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