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Abstract

The evolution of species is enabled by the capability of their genomes to mutate. Key

events in genome evolution are large scale mutations called genome rearrangements,

which relocate, duplicate, or delete large DNA segments. Genome rearrangements

can result in dramatic phenotypic consequences and are assumed to play an impor-

tant role in the evolution of species and in cancer. The study of genome rearrange-

ments concentrates on the reconstruction of the history of genome rearrangements

between two or more genomes, and on the understanding of contribution of those

to the evolutionary process. In this thesis we describe our studies of genome rear-

rangements. We focus on the fundamental genomic sorting problem, which seeks for

a shortest sequence of rearrangement events explaining the differences between two

related genomes. We present various computational models for genome rearrange-

ments, focusing on translocations events, and develop combinatorial algorithms for

solving the genomic sorting problem under these models. In cancer, we apply our

algorithms on real data, and perform statistical analyses on the reconstructed re-

arrangement events. We reveal new characteristics of chromosomal rearrangements

in cancer, which may shed light on aberration development mechanisms during car-

cinogenesis.
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Chapter 1

Introduction

1.1 General Background

The genetic instructions used in the development and functioning of all known liv-

ing organisms are encoded in their genomes. Genomes are passed from parents

to offspring during reproduction, and thus contain all the hereditary information.

Genomes are stored in DNA, which in our level of abstraction is a long sequence

of four letters, {A,C,G, T}, called nucleotides. The DNA sequence of a genome

is partitioned into contiguous subsequences called chromosomes. A gene, the basic

unit of heredity, is a specific sequence of nucleotides that, taken as a whole, specifies

a genetic trait. At low resolution, every chromosome can be viewed as a sequence of

genes, where each gene has a direction (forward or backward) along its chromosome.

Genomes can evolve in either local or global manner. Local alterations refer to

point mutations in the DNA sequence, which delete, replace, or insert individual

nucleotides. On the other hand, global mutations, also known as genome rearrange-

ments, relocate, duplicate, or delete large fragments of the DNA. In this thesis we

focus on genome rearrangements. Genome rearrangements can result in dramatic

phenotypic consequences. On the organismal level, certain rearrangements are asso-

ciated with mental retardation and birth defects [55]. On the cellular level, specific

rearrangements were proved to contribute to cancer formation (see Section 1.4).

One of the ambitious projects of the former century was the determination of

the DNA sequence in the human genome. With the advent of sequencing meth-

ods, complete genome sequences are now available for a wide range of organisms,
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2 CHAPTER 1. INTRODUCTION

ranging from various bacteria to different mammals. The current major challenge

is to decipher the genetic code in those genome sequences. A powerful approach to

analyze genome sequences is by their comparison. By examining the differences and

similarities between genomes, we can learn about the way these genomes evolved.

The conserved fractions in genomes of related species, such as human and mouse,

are associated with common similar functions and are likely to be inherited from

their most recent common ancestor. The differences between the genomes are ex-

plained by lineage-specific events occurring after the divergence of the corresponding

species.

1.2 Genome Rearrangements in Evolution

Genomes of related species are very similar. For example, over 90% of the mouse

and human genomes can be partitioned into corresponding regions in which gene

content and order is conserved [112] (see Fig. 1.1). The difference in the ordering

of these blocks along the human and mouse genomes is attributed to rearrangement

events occurring after the divergence of the two lineages. As human and mouse

are believed to have diverged more than 65 millions years ago [112], the number of

conserved blocks in their genomes implies that the rate of genome rearrangement

events in these lineages is relatively low: few events per million years. This makes

the inference of the rearrangement events between human and mouse a potentially

tractable problem.

The phenomenon of genome rearrangements in evolution was discovered more

than 80 years ago. In the 1930’s, Sturtevant and Dobzhansky [98] demonstrated

inversions between genomes of various drosophila species. In the late 1980’s Jeffrey

Palmer and colleagues discovered that mitochondrial genomes of related plants have

essentially the same gene content but different gene ordering [78, 79, 80, 81, 45].

This discovery suggested that the evolution of these plants was driven by genome

rearrangement events. Advances in molecular cytogenetics, mainly comparative

chromosome painting (“Zoo-FISH” [92]), led to the generation of large-scale com-

parative genome maps of more than 80 mammalian species [38]. The development

of bioinformatic methods for locating homolog blocks in different genome sequences

[82, 30, 102], enabled the creation of finer comparative maps based on genomes

sequences.
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Figure 1.1: The mouse genome is comprised of regions with conserved synteny in human.

Taken from [112]. Each color corresponds to a particular human chromosome.

1.3 The Genomic Sorting Problem

The computational study of genome rearrangements during species evolution was

pioneered by Sankoff [90, 91, 88]. This line of research builds on the assumption

that evolution is parsimonious and prefers a shortest path of events. A well studied

problem is genomic sorting, which seeks for a shortest sequence of rearrangement

events between two related genomes. The length of such shortest sequence is the

rearrangement distance between these genomes. Genomic sorting gives rise to a

spectrum of fascinating algorithmic and combinatorial problems, each defined by

the representation of the genomes and the set of allowed rearrangements operations.

For a review of the computational study of various genomic sorting problems see

[18].

In the model we consider, a genome is a collection of chromosomes, where each

chromosome is represented as a sequence of genes. A gene is identified by an (un-

signed) integer. When it appears in a chromosome, a gene is associated with a sign,

plus or minus, representing the direction of the gene along its chromosome. If A is

a genome with N chromosomes, and the k-th chromosome in A contains nk genes,

then

A = {(g11, g12, ⋅ ⋅ ⋅ , g1n1), (g21, g22, ⋅ ⋅ ⋅ , g2n2), . . . , (gN1, gN2, ⋅ ⋅ ⋅ , gNnN
)}
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A reversal of a sequence of genes is the operation of reversing the order of the

genes in the sequence and flipping their signs. For example, the reversal of S =

(g1, g2, . . . , gn) is−S = (−gn,−gn−1, . . . ,−g1). A reversal on an entire chromosome is

called a chromosome flip. As chromosomes have no direction, a flip of a chromosome

does not affect the chromosome it represents and is usually used to move between

the two possible equivalent representations of a chromosome.

Two prominent rearrangement events are inversions and translocations, which

are believed to be most common in mammals. An inversion is a reversal of a

segment of genes in a chromosome. The following example describes an inversion

on the underlined segment of genes:

S1, S2, S3 −→ S1,−S2, S3.

Inversions are commonly referred to as “reversals” in the computational research of

genome rearrangements, as we shall do for the rest of this thesis.

Translocations exchange the ends of two chromosomes as described below. Con-

sider the following two chromosomes:

(X1, X2), (Y1, Y2).

A prefix-prefix translocation on the two chromosomes above results in:

(X1, Y2), (Y1, X2).

Alternatively, a prefix-suffix translocation on these chromosomes results in:

(X1,−Y1), (−X2, Y2).

A translocation is reciprocal if the involved segments (i.e. X1, X2, Y1, and Y2)

are all non-empty. In the following, unless specified otherwise, we consider only

reciprocal translocations.

Sorting by reversals (SBR) and sorting by translocations (SBT) are two instances

of the genomic sorting problem confined to one type of rearrangement events, ei-

ther reversals (SBR), or translocations (SBT). While SBT is defined for multi-

chromosomal genomes, SBR is defined for only uni-chromosomal genomes. The

input genomes to SBR and SBT, say A and B, are required to satisfy the following

two requirements:
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1. A and B have identical gene content (i.e. no loss/gain)

2. Every gene in A (respectively, B) is unique.

While the first requirement follows from the fact that both reversals and translo-

cations do not alter gene content, the latter requirement was made to simplify the

computational analysis. In fact, when duplicate genes are allowed, SBR was proved

to be NP-hard [84, 28].

Following the requirements above, a uni-chromosomal genome is represented by

a signed permutation, which is a permutation on the integers {1, . . . , n}, where a

sign of plus or minus is assigned to each number. The following is an example of a

signed permutations with eight elements:

(1,−3,−2, 4,−7, 8, 6, 5)

A special signed permutation is (1, 2, . . . , n), which we shall refer to as the identity

permutation. Multi-chromosomal genomes are presented by fragmented signed per-

mutation, where each fragment corresponds to a chromosome. Here is an example

of a genome with eight genes partitioned into two chromosomes:

{(1,−3,−2, 4,−7, 8), (6, 5)}

A concatenation of the chromosomes in a multi-chromosomal genome thus results

in a signed permutation. Given the input genomes, A and B, we can assume for

simplicity and without loss of generality that genome B is the identity permutation,

in case of SBR, or a fragmented identity permutation, in case of SBT. The trans-

formation of the “permutated” genome A into the “organized” genome B is thus

viewed as a sorting process.

1.3.1 Sorting by Reversals

SBR was intensively studied in the past two decades. Kececioglu and Sankoff for-

mulated SBR and gave the first constant factor approximation algorithm for this

problem [51]. The problem was further studied by Bafna and Pevzner [9] who in-

troduced the notion of cycle graph (aka breakpoint graph) of a signed permutation

and revealed important links between the cycle decomposition of this graph and the

reversal distance. The cycle graph of a permutation became the foundation of sub-

sequent analyses of SBR. The major breakthrough in the study of SBR was made
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by Hannenhalli and Pevzner [41] who proved that the problem is polynomial. In

[15], Berman and Hannenhalli presented a recursive algorithm for SBR that can be

implemented in O(n2�(n)) time, where �(n) is the inverse of the Ackerman’s func-

tion [2]. The analysis of SBR was greatly simplified by Kaplan, Shamir, and Tarjan

[49] who introduced the notion of overlap graph of a signed permutation. Bergeron

[11] further simplified the analysis by presenting a simple score-based O(n3)-time

algorithm using the overlap graph. An elegant algorithm was given by Tannier and

Sagot [104, 103], which has a relatively simple implementation in O(n2). Using a

clever data structure by Kaplan and Verbin [50], the algorithm of Tannier and Sagot

was shown to have O(n3/2
√

log(n)) implementation [104, 103]. Very recently, Swen-

son et al. [101] modified the data structure of Kaplan and Verbin, and presented

a new algorithm, which based on experimental results, runs in O(n log(n)) on most

signed permutations. The reversal distance of a signed permutation � is computed

in linear time by an algorithm of Bader, Moret, and Yan [7]. Using this algorithm,

the recursive algorithm in [15] can be implemented in O(n2).

1.3.2 Sorting by Translocations

SBT was introduced by Kececioglu and Ravi [52] who gave a 2-approximation al-

gorithm for its solution. Hannenhalli extended the notion of cycle graph for multi-

chromosomal genomes, and showed that SBT is polynomial [39]. Bergeron, Mixtacki

and Stoye [14] pointed to an error in Hannenhalli’s algorithm and presented an al-

ternative modified O(n3) algorithm. The translocation distance can be computed

in linear time, in a similar manner to the computation of the reversal distance [14].

Li et al. [56] gave a linear time algorithm for computing the translocation distance

(without producing a shortest sequence). Wang et al. [111] presented an O(n2) al-

gorithm for solving SBT. However, the algorithms in [56, 111] rely on an erroneous

theorem in [39] and hence provide incorrect results in certain cases.

A genomic sorting problem that integrates both reversals and translocations was

first studied by Kececioglu and Ravi [52]. In this problem, which we will refer as

SBRT, translocations are allowed to be non-reciprocal, and chromosome fissions

and fusions are also allowed. SBRT was proved be polynomial by Hannenhalli and

Pevzner [40], by reducing it to SBR. In particular, it was shown that a translocation

can be mimicked by a reversal on a concatenation of the chromosomes. The theory

and algorithm for SBRT were later corrected and revised by Tesler [105], Ozery-Flato
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and Shamir [68], and Jean and Nikolski [46].

1.3.3 Integrating the Centromeres

Every chromosome contains a special region called centromere, which is essential

to the segregation of the duplicated chromosomes during cell division. An acentric

chromosome, i.e., a chromosome that lacks a centromere, is likely to be lost during

subsequent cell divisions [99]. Therefore, a rearrangement scenario that preserves

a centromere in each chromosome is more biologically probable than one that does

not. Previous computational studies on genome rearrangements have ignored the

existence and role of centromeres, and thus may produce rearrangement scenarios

involving many acentric chromosomes. Due to their highly repetitive content, cur-

rent sequencing methods cannot be applied to centromeres. Therefore, we have no

information about centromere sequences, nor do we have homolog mapping between

centromeres in related genomes. For every centromere, we only know its location

within its chromosome.

1.4 Chromosome Instability in Cancer

Carcinogenesis, the transformation of normal cells into cancer cells, can be viewed

as an evolutionary process in which a normal genome accumulates mutations that

eventually transform it into a cancerous one. Cancer is associated with chromo-

some instability, as most cancer cells show chromosomal abnormalities caused by

genome rearrangements. Acquired chromosome abnormalities were first suggested

to be factors in the origin of cancer by Boveri in 1914 [21]. It remained an attractive

hypothesis until the discovery of the Philadelphia chromosome, an abnormal chro-

mosome that exists in 95% of the people with chronic myelogenous leukemia (CML).

The Philadelphia chromosome was discovered in 1960 by Nowell and Hungerford [67]

who named it after the city in which both labs were located. In 1973, Rowley iden-

tified the mechanism by which the Philadelphia chromosome arises as a reciprocal

translocation between chromosome 9 and 22 [87]. The result of this translocation

is the fusion gene BCR-ABL, composed of the BCR gene from chromosome 22 and

the ABL gene from chromosome 9 [31]. This gene was shown to contribute to the

development of CML, thus becoming a potential target for developing a new drug
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for CML. In the late 1990s the drug imatinib (aka Gleevec/Glivec) was identified

as an inhibitor for BCR-ABL [34], and in 2001 it was approved for treating CML

patients in the United States.

1.4.1 Chromosomal Aberrations

Chromosomal aberrations are disruptions in the normal chromosomal content, com-

monly classified as either numerical or structural. Numerical aberrations refer to

an abnormal copy number of specific chromosomes. This phenomenon, called chro-

mosomal aneuploidy, is caused by chromosome missegregation during cell division,

leading to the loss, or gain, of particular chromosomes [113]. Structural aberra-

tions refer to the existence of chromosomes with abnormal structure. In somatic

cells, and cancer cells in particular, structural aberrations are commonly associated

with mis-repair of double strand breaks (DSBs) in the DNA. DSBs are promoted

by extrinsic (e.g., radiation, chemicals) and intrinsic (e.g., reactive oxygen, stalling

of DNA replication forks) sources. They are estimated to be quite common with

several DSBs per cell cycle [3]. To preserve genomic integrity, elaborate systems for

DNA repair have evolved. As broken chromosome ends appear to be adhesive and

tend to fuse with some other broken ends, a failure in the repair of DSBs may result

in chromosomal rearrangements, including translocations, deletions, and duplica-

tions [53, 3]. Such rearrangement events can lead to carcinogenesis if, for example,

a deleted chromosomal region encodes a tumor suppressor gene, or if an amplified

region encodes an oncogene. Translocations can lead to the formation of new gene

products, such as the BCR-ABL gene in CML, or to the dysregulation of specific

genes caused by the swapping of promoter elements, such as the case of the oncogene

C-MYC in certain lymphomas [29].

1.4.2 Cancer Karyotypes

The classic laboratory methods for detecting chromosomal rearrangements use paint-

ing techniques on chromosomes undergoing mitosis. In the resulting visualized

genome each chromosome is partitioned into continuous genomic regions called

bands, where each band usually spans 5-10 millions of nucleotides (see Fig. 1.2(a)).

Therefore only large rearrangements are detected with these techniques. A karyotype

is a description of the visualized genome in banding resolution. The accuracy of kary-
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otypes can be enhanced by integrating the more modern techniques of FISH and

SKY / M-FISH. FISH (Fluorescence In Situ Hybridization) [83] is a technique that

uses fluorescent tags to locate the position of a specific DNA sequence along the chro-

mosome. SKY (Spectral Karyotyping, [93]) and M-FISH (Multiplex Fluorescence

In Situ Hybridization, [97]) are molecular cytogenetic techniques that permit the si-

multaneous visualization of all the chromosomes in different colors (see Fig. 1.2(b)).

SKY / M-FISH considerably simplify the detection of material exchange between

chromosomes, such as translocations, but cannot detect rearrangements internal to

chromosomes, such as inversions.

Karyotyping have become an increasingly important tool in the management

of cancer patients, helping to establish a correct diagnosis, select the appropriate

treatment and predict outcome [63]. The largest available depository of cancer

karyotypes is the Mitelman database of chromosomal aberrations in cancer [62],

which records cancer karyotypes reported in the scientific literature. Currently, this

database contains almost 60,000 cancer karyotypes, most of which (70%) are from

hematological disorders. This bias toward hematological disorders, which consist

less than 10% of cancer cases, are due to technical difficulties in getting karyotypes

of solid tumors. Array-based comparative genomic hybridization (array-CGH) [96]

is a modern laboratory technique that can provide information on copy number

aberrations (i.e. gain / loss) at high resolution. Alas, array-CGH is incapable of

detecting structural rearrangement such as translocations. Moreover, the number of

currently available cases analyzed by array-CGH and other novel techniques is one

or more orders of magnitudes smaller than the number of cancer karyotypes in the

Mitelman database.

End Sequence Profiling (ESP) [108] is a laboratory technique that provides high

resolution data on structural aberrations as follows. First, the tumor genome is split

into small (100-300 kb), overlapping pieces (clones). Second, both ends (∼ 500bp

each) of each clone are sequenced. Third, the resulting end sequences are mapped to

the human genome sequence. Each clone whose end sequences map uniquely to the

human genome yields a pair (x, y) of locations in the human genome corresponding

to the mapped ends. A pair of locations that are too far to fit a contiguous genomic

segment in the healthy genome indicates a rearrangement. Currently, ESP data

exist for only few cancer samples [108, 107, 17]. In future, with the advent of next

generation sequencing techniques (see [94, 6] for reviews), more ESP data, and even

whole sequence data, are expected to become available for cancer genomes.
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Figure 1.2: Visualization of genomes using cytogenetic techniques. (a) Classical chromosome

painting (G-banding) of a normal male genome. Taken from [1]. (b) Spectral Karyotyping

(SKY) of a normal male genome (left) and of an abnormal breast cancer genome (right).

Taken from [35].

The karyotypes in the Mitleman database are described using the ISCN nomen-

clature [61], and thus can be parsed automatically. In our analyses of cancer kary-

otypes we used the CyDAS ISCN parser [42]. An ISCN description reports on the

chromosomal aberrations observed in a sample, where a sample consists of several

cells. Each aberration reported in a karyotype must be present in at least two cells in

the described sample. In some cases, the cell population may be non-homogeneous,

and contain cells with several distinct aberrations, resulting from the existence of

different cell lineages in the evolution of the cancer. A homogeneous cell sample

is described by a simple karyotype, while a non-homogeneous one has a complex

karyotype, which consists of several simple karyotypes. Karyotypes may contain

missing information (denoted by ’?’), in case the observed aberration could not be

determined. When there is no such missing information, we refer to a karyotype as

well-characterized.

1.4.3 Genome rearrangements with duplications

The model that assumes for reversals and translocations as the only allowed re-

arrangements was commonly used to analyze the different gene/synteny block or-

derings between species (e.g. [82, 20, 65]). Is this model adequate for analyzing

rearrangements in cancer genomes? The answer is probably negative, as this model

does not allow for deletion or duplication events. Moreover, while in evolutionary
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studies the haploid genome is considered (i.e. one representative from every pair of

homologous chromosomes), in cancer studies we need to consider the diploid genome

(i.e. all chromosomes), as every chromosome is free to gain its own mutations. In

other words, when analyzing the evolution of a normal genome into a cancer genome,

we need to consider to two copies of each chromosome. In the past decade there

have been many computational studies of genome rearrangements with duplicate

genes and / or duplication events. Below we briefly review some of the studies that

are more pertinent to our study.

Allowing for duplicate genes and/or duplication events makes the genomic sort-

ing problem much more difficult. For instance, the problem of sorting sequences

by reversals was shown to be NP-hard [84, 28]. Thus, most current approaches for

duplication analysis rely on heuristics, approximation algorithms, or restricted mod-

els of duplication. A heuristic for the sorting sequences by reversals was given in

[28]. Some studies focused on the problem of finding a matching between duplicated

genes in two compared genomes, based on their orderings. Sankoff [89] was the

first to test this idea with the exemplar approach that selects a single gene, called

exemplar, from each gene family (i.e. a set of identical genes in a genome), and

discards the remaining duplicate genes. Given a pair of genomes, the exemplars

are selected so as to minimize the rearrangement distance between the two reduced

genomes. The problem of identifying optimal exemplars was proved to be NP-hard

for the reversal distance, even when one genome contains no duplicate genes [25]. A

divide-and-conquer approach to compute an exemplar-based distance between two

genomes was given in [66].

Marron et al. [58] presented an approximation algorithm for computing a short-

est sequence of reversals, deletions, duplications, and insertions between an arbitrary

genome and the identity permutation. Although their algorithm has a large error-

bound, it was suggested to compute near-minimal solutions based on experimental

results. Later on, Swenson et al. [100] generalized the algorithm in [58] to work on

two arbitrary genomes. The problem of genome halving, which seeks for a shortest

sequence of non-duplicating rearrangements resulting in a perfectly doubled genome

(i.e. a genome after whole-duplication event), was shown to have an exact polyno-

mial solution under different rearrangement models [36, 4, 64]. Models considering

tandem duplications were also studied in [27, 8].Finally, a model for segmental du-

plications in the evolution of mammalian genomes was introduced and studied by

Kahn et al. [48, 47]. Under this model a duplication event copies a substring from
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a fixed source string into an arbitrary location in a target string.

The integration of duplications into rearrangement models poses a major com-

putational challenge. Therefore, many of the studies we reviewed above consider

restricted models for duplications and most of them rely on various heuristics. Fi-

nally, all (duplications-aware) rearrangement models in the works cited above were

designed for analyzing the genomes in the light of evolution. Following the tradi-

tional HP model, most of these models consider reversals as their main, sometimes

only, reordering event. To the best of our knowledge, none of these algorithms was

used to analyze cancer genomes, and cancer karyotypes in particular.

1.4.4 Associations among Chromosomal Aberrations

Cancer karyotypes exhibit a wide variety of chromosomal aberrations. For some

cancers, mainly hematological disorders and sarcomas, certain abnormalities are

highly specific or strongly associated with particular diagnostic entities. Typically,

these abnormalities are reciprocal translocations, such as the Philadelphia translo-

cation mentioned above. For most cancers, notably epithelial tumors, the observed

aberrations appear more sporadically and hence it is more difficult to prove their sig-

nificance to carcinogenesis process. Thus, for the majority of observed aberrations

their importance to the formation and progress of cancer is yet to be determined.

Inspired by the four-step model for colorectal cancer evolution, suggested by

Vogelstein et al. [106], many extant computational studies have focused on the

inference of primary pathways in which chromosomal aberrations are accumulated

in certain cancer types. Some of these methods used tree models [32, 33, 109],

later extended to acyclic networks [85, 44, 43]. These evolutionary models allow

the recognition of aberrations occurring at early stages of cancer. Such aberrations,

often referred to as “primary”, are suspected to contribute to the formation of cancer.

More recently, a statistical method named GISTIC [16] was developed for identifying

copy-number aberrations whose frequency and amplitude are higher than expected.

As all the methods described above were designed to analyze samples from the same

cancer type, they were applied to relatively small datasets, each containing a few

hundred samples.
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1.5 Summary of Articles Included in this Thesis

1. An O(n3/2
√

log(n)) algorithm for sorting by reciprocal translocations.

Michal Ozery-Flato and Ron Shamir.

Published in Proceedings of the 17th Annual Symposium on Combinatorial

Pattern Matching (CPM’06) [69] and Journal of Discrete Algorithms [77].

In this paper we proved that sorting by reciprocal translocations can be done in

O(n3/2
√

log(n)) for a genome with n genes. Our algorithm was an adaptation

of the algorithm of Tannier, Bergeron and Sagot for sorting by reversals. This

improved over the O(n3) algorithm for sorting by reciprocal translocations

given by Bergeron, Mixtacki and Stoye.

2. Sorting by reciprocal translocations via reversals theory.

Michal Ozery-Flato and Ron Shamir.

Published in Proceedings of the fourth RECOMB Satellite Workshop on Com-

parative Genomics (RECOMB-CG’06) [70] and in Journal of Computational

Biology (JCB) [73].

In this paper we focused on sorting a multichromosomal genome by translo-

cations. We revealed new relationships between this problem and the well

studied problem of sorting by reversals. Based on these relationships, we de-

veloped two new algorithms for sorting by reciprocal translocations, which

mimicked known algorithms for sorting by reversals: a score-based method

building on Bergeron’s algorithm, and a recursive procedure similar to the

Berman-Hannenhalli method. Though their proofs were more involved, our

procedures for reciprocal translocations matched the complexities of the orig-

inal ones for reversals only.

3. Sorting Genomes with Centromeres by Translocations.

Michal Ozery-Flato and Ron Shamir.

Published in Proceedings of the 11th Annual International Conference on Com-

putational Molecular Biology (RECOMB’07) [72] and in Journal of Computa-

tional Biology (JCB) [75].

In this paper, we studied for the first time centromere-aware genome rearrange-

ments. We presented a polynomial time algorithm for computing a shortest

sequence of translocations transforming one genome into the other, where all
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of the intermediate chromosomes must contain centromeres. We viewed this

as a first step towards analysis of more general genome rearrangement models

that take centromeres into consideration.

4. Sorting Cancer Karyotypes by Elementary Operations.

Michal Ozery-Flato and Ron Shamir.

Published in Proceedings of the sixth RECOMB Satellite Workshop on Com-

parative Genomics [74] and in Journal of Computational Biology (JCB) [76].

In this study, we proposed a mathematical framework for analyzing chromo-

somal aberrations in cancer karyotypes. We introduced the problem of sorting

karyotypes by elementary operations, which seeks a shortest sequence of el-

ementary chromosomal events transforming a normal karyotype into a given

(abnormal) cancerous karyotype. Under certain assumptions, we proved a

lower bound for the elementary distance, and presented a polynomial-time

3-approximation algorithm for the problem. We applied our algorithm to

karyotypes from the Mitelman database, which records cancer karyotypes re-

ported in the scientific literature. Approximately 94% of the karyotypes in the

database, totaling 58,464 karyotypes, supported our assumptions, and each of

them was subjected to our algorithm. Remarkably, even though the algorithm

is only guaranteed to generate a 3-approximation, it produced a sequence

whose length matched the lower bound (and hence optimal) in 99.9% of the

tested karyotypes.

5. On the frequency of genome rearrangement events in cancer kary-

otypes.

Michal Ozery-Flato and Ron Shamir.

Technical report [71]. Accepted for presentation in the first RECOMB Satel-

lite Workshop on Computation Cancer Biology (RECOMB-CCB’07) (peer-

reviewed, but with no proceedings).

In this study we introduced a new approach for analyzing rearrangement events

in carcinogenesis. This approach built on a new effective heuristic for com-

puting a short sequence of rearrangement events that may have led to a given

karyotype. We applied this heuristic to over 40,000 karyotypes reported in the

scientific literature. Our analysis implied that these karyotypes had evolved

predominantly via four principal event types: chromosomes gains and losses,

reciprocal translocations, and terminal deletions. We used the frequencies of
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the reconstructed rearrangement events to measure similarity between kary-

otypes. Using clustering techniques, we demonstrated that in many cases,

rearrangement event frequencies are an effective means for distinguishing be-

tween karyotypes of distinct tumor classes.

6. A systematic assessment of associations among chromosomal aber-

rations in cancer karyotypes.

Michal Ozery-Flato, Chaim Linhart, Luba Trakhtenbrot, Shai Izraeli, and Ron

Shamir. Submitted.

In this paper we reported on a systematic study and a database on the char-

acteristics of chromosomal aberrations in cancers, using the largest available

repository of reported karyotypes. Our method was used to analyze chromo-

somal aberrations derived from over 15,000 cancer karyotypes in the Mitelman

database. We compared cancer types by their manifested aberrations, com-

puted scores for their similarity, and used these scores to draw an aberration-

similarity map of cancers. This map was highly concordant with the histolog-

ical classification of cancers. In addition, we revealed some novel similarities

between cancers, e.g. among three embryonic tumors: Wilms’ tumor, Hep-

atobalstoma, and Ewing’s sarcoma. In another analysis we revealed a large

number of significantly co-occurring aberrations, i.e., aberrations that tend

to appear together, which mostly involve chromosome aneuploidy (numerical

aberrations). Interestingly, the co-occurring aberrations were primarily con-

fined to one of two aberration classes: either two chromosome gains or two

chromosome losses, suggesting two separate progression paths for aneuploidy

in cancer. Our results assigned solid statistical foundations to many findings

reported in the literature, and also revealed novel findings that merit further

research. An accompanying database, called STACK (STatistical Associations

in Cancer Karyotypes), summarized all associations that were discovered and

allows easy search, filtering and sifting of the results, as well as direct viewing

of the relevant karyotypes in the Mitelman database.
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An O(n3/2
√

lo g (n)) a lg o rith m fo r so rting b y

re c ip ro c a l tra nslo c a tio ns

M ich a l O z e ry -F la to a R o n S h a m ir a

aThe Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978,
Israel

Abstract

W e p ro v e th at so rtin g b y re c ip ro cal tran slo catio n s can b e d o n e in O(n3/2
√

lo g (n))
fo r an n-g e n e g e n o m e . O u r alg o rith m is an ad ap tatio n o f th e alg o rith m o f T an n ie r,
B e rg e ro n an d S ag o t fo r so rtin g b y re v e rsals. T h is im p ro v e s o v e r th e O(n3) alg o rith m
fo r so rtin g b y re c ip ro cal tran slo catio n s g iv e n b y B e rg e ro n , M ix tack i an d S to y e .

K ey w ord s: tran slo catio n s; re v e rsals; g e n o m e rearran g e m e n ts

1 Intro d u c tio n

In th is p a p e r w e stu d y th e p ro b le m o f so rting b y re c ip ro c a l tra nslo c a tio ns (a b -
b re v ia te d S R T ). Reciprocal translocations e x ch a ng e no n-e m p ty end s b e tw e en
tw o ch ro m o so m e s. G iv en tw o m u lti-ch ro m o so m a l g eno m e s A a nd B, th e p ro b -
le m o f S R T is to fi nd a sh o rte st se q u enc e o f re c ip ro c a l tra nslo c a tio ns th a t
tra nsfo rm s A into B. S R T w a s fi rst intro d u c e d b y K e c e c io g lu a nd R a v i [11]
a nd w a s g iv en a p o ly no m ia l tim e a lg o rith m b y H a nnenh a lli [6]. B e rg e ro n, M ix -
ta ck i a nd S to y e [4] p o inte d to a n e rro r in H a nnenh a lli’s p ro o f o f th e re c ip ro c a l
tra nslo c a tio n d ista nc e fo rm u la a nd c o nse q u ently in H a nnenh a lli’s a lg o rith m .
T h e y p re sente d a ne w O(n3) a lg o rith m , w h ich to th e b e st o f o u r k no w le d g e ,
is th e o nly e x ta nt c o rre c t a lg o rith m fo r S R T 1 .

Reversals (o r inv e rsio ns) re v e rse th e o rd e r a nd th e d ire c tio n o f tra nsc rip tio n
o f th e g ene s in a se g m ent insid e a ch ro m o so m e . G iv en tw o u ni-ch ro m o so m a l
g eno m e s π1 a nd π2, th e p ro b le m o f so rting b y re v e rsa ls (a b b re v ia te d S B R )

1 L i e t al. [1 2] g av e a lin ear tim e alg o rith m fo r c o m p u tin g th e re c ip ro cal tran slo ca-
tio n d istan c e (w ith o u t p ro d u c in g a sh o rte st se q u e n c e ). W an g e t al. [1 6] p re se n te d an
O(n2) alg o rith m fo r S R T . H o w e v e r, th e alg o rith m s in [1 2, 1 6] re ly o n an e rro n e o u s
th e o re m o f H an n e n h ali an d h e n c e p ro v id e in c o rre c t re su lts in c e rtain case s.

Preprint submitted to Elsevier Science 9 June 2009



is to fi nd a sh o rte st se q u enc e o f re v e rsa ls th a t tra nsfo rm s π1 into π2. T h is
p ro b le m h a s b e en intensiv e ly stu d ie d [8, 5, 9, 1, 2, 15]. T a nnie r, B e rg e ro n a nd
S a g o t [15] p re sente d a n e le g a nt a lg o rith m fo r S B R th a t c a n b e im p le m ente d

in O(n3/2
√

lo g (n)) u sing a c le v e r d a ta stru c tu re b y K a p la n a nd V e rb in [10].
T h is is c u rrently th e fa ste st a lg o rith m fo r S B R .

In th is p a p e r w e p ro v e th a t S R T c a n b e so lv e d in O(n3/2
√

lo g (n)) fo r a n n-
g ene g eno m e . O u r a lg o rith m fo r S R T is sim ila r to th e a lg o rith m b y T a nnie r,
B e rg e ro n a nd S a g o t [15] fo r S B R . T h e k e y id e a is to re c a st tra nslo c a tio ns a s
re v e rsa ls, a nd th en e x p lo it th e no v e l th e o re tic a l im p ro v e m ents in S B R th e -
o ry to o b ta in fa ste r S R T a lg o rith m s. (It sh o u ld b e no te d th a t H a nenh a lli a nd
P e v zne r h a v e a lre a d y e sta b lish e d a nd e x p lo ite d th e b a sic c o nnec tio n b e tw e en
tra nslo c a tio ns a nd re v e rsa ls, in th e c o nte x t o f so rting a g eno m e b y re v e rsa ls
a nd tra nslo c a tio ns [7]). O u r a p p ro a ch b u ild s o n g ene ra liz ing th e o v e rla p g ra p h .
M o st stu d ie s o f S B R to d a te re lie d e x p lic itly o r im p lic itly o n th e c o m b ina to -
ria l stru c tu re o f th e o v e rla p g ra p h fo r re p re senting th e re la tio ns b e tw e en tw o
p e rm u ta tio ns. S inc e tra nslo c a tio ns inv o lv e m u ltip le ch ro m o so m e s, w e g ene r-
a liz e th e no tio n o f (u ni-ch ro m o so m a l) o v e rla p g ra p h to inc lu d e ch ro m o so m a l
info rm a tio n, a nd sh o w th a t th e sa m e c o nc e p tu a l a lg o rith m ic fra m e w o rk d e -
v e lo p e d fo r S B R a p p lie s to S R T , v ia th is g ene ra liz e d o v e rla p g ra p h . W h ile o u r
fi na l a lg o rith m is v e ry sim ila r to th a t o f T a nnie r e t a l., th e p ro o fs h a d to b e
c o m p le te ly re d o ne . Ano th e r c o ntrib u tio n o f th is stu d y is in sh o w ing th a t th e
g ene ra l S R T p ro b le m c a n b e re d u c e d in line a r tim e to a sp e c ia l c a se , a nd th u s
tim e c o m p le x ity a na ly sis c a n b e d o ne fo r su ch sp e c ia l c a se s o nly .

T h e p a p e r is o rg a niz e d a s fo llo w s. T h e ne c e ssa ry p re lim ina rie s a re g iv en in
S e c tio n 2. In S e c tio n 3 w e g iv e a line a r tim e re d u c tio n fro m S R T to a sim p le r
re stric te d su b p ro b le m . In S e c tio n 4 w e p ro v e th e m a in th e o re m a nd p re sent
th e a lg o rith m fo r th e re stric te d su b p ro b le m . In S e c tio n 5 w e d e sc rib e a n

O(n3/2
√

lo g (n)) im p le m enta tio n o f th e a lg o rith m . A p re lim ina ry v e rsio n o f

th is stu d y w a s p u b lish e d in th e p ro c e e d ing s o f C P M 2006 [13].

2 P re lim ina rie s

T h is se c tio n p ro v id e s a b a sic b a ck g ro u nd fo r th e a na ly sis o f S R T . It fo llo w s to
a la rg e e x tent th e no m enc la tu re a nd no ta tio n o f [6, 9, 4]. In th e m o d e l w e c o n-
sid e r, a genom e is a se t o f ch ro m o so m e s. A ch rom osom e is a se q u enc e o f g ene s.
A gene is id entifi e d b y a p o sitiv e inte g e r. All g ene s in th e g eno m e a re d istinc t.
W h en it a p p e a rs in a g eno m e , a g ene is a ssig ne d a sig n o f p lu s o r m inu s. F o r
e x a m p le , th e fo llo w ing g eno m e c o nsists o f 8 g ene s in tw o ch ro m o so m e s:

A1 = {(1,−3,−2, 4,−7, 8), (6, 5)}
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T h e reverse o f a se q u enc e o f g ene s I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A
reversal re v e rse s a se g m ent o f g ene s insid e a ch ro m o so m e . T w o ch ro m o so m e s,
X a nd Y , a re id entical if e ith e r X = Y o r X = −Y . T h e re fo re , fl ipping
ch ro m o so m e X into −X d o e s no t a ff e c t th e ch ro m o so m e it re p re sents. F o r
e x a m p le , th e fo llo w ing a re tw o e q u iv a lent re p re senta tio ns o f th e sa m e g eno m e

{(1,−3,−2, 4,−7, 8), (6, 5)} ≡ {(−8, 7,−4, 2, 3,−1), (6, 5)}

L e t X = (X1, X2) a nd Y = (Y1, Y2) b e tw o ch ro m o so m e s, w h e re X1, X2,
Y1, Y2 a re se q u enc e s o f g ene s. A translocation c u ts X into X1 a nd X2 a nd
Y into Y1 a nd Y2 a nd e x ch a ng e s se g m ents b e tw e en th e ch ro m o so m e s. It is
c a lle d reciprocal if X1,X2, Y1 a nd Y2 a re a ll no n-e m p ty . T h e re a re tw o w a y s
to p e rfo rm a tra nslo c a tio n o n X a nd Y . A prefi x-su ffi x tra nslo c a tio n sw itch e s
X1 w ith Y2 re su lting in:

(X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1,−X1)

A prefi x-prefi x tra nslo c a tio n sw itch e s X1 w ith Y1 re su lting in:

(X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2)

T h e fo llo w ing is a n e x a m p le o f p re fi x -p re fi x a nd p re fi x -su ffi x tra nslo c a tio ns
th a t c u t th e g eno m e in th e sa m e p la c e :

{(1,−3,−2, 4,−7, 8), (6, 5)} ⇒ {(6,−7, 8), (1,−3,−2, 4, 5)}

{(1,−3,−2, 4,−7, 8), (6, 5)} ⇒ {(−5,−7, 8), (6,−4, 2, 3,−1)}

R e c a ll th a t ch ro m o so m e fl ip s d o no t a ff e c t th e g eno m e , b u t ra th e r m o v e b e -
tw e en d iff e rent re p re senta tio ns o f th e sa m e g eno m e . T h u s w e c a n m im ic o ne
ty p e o f tra nslo c a tio n b y a fl ip o f o ne o f th e ch ro m o so m e s fo llo w e d b y a tra nslo -
c a tio n o f th e o th e r ty p e .

F o r a ch ro m o so m e X = (x1, . . . , xk) d e fi ne T ails(X) = {x1,−xk}. N o te th a t
fl ip p ing X d o e s no t ch a ng e T ails(X). F o r a g eno m e A d e fi ne T ails(A) =
⋃

X∈A T ails(X). F o r e x a m p le :

T ails(A1) = T ails({(1,−3,−2, 4,−7, 8), (6, 5)}) = {1,−8, 6,−5}.

T w o g eno m e s A′ a nd A′′ a re co-tailed if T ails(A′) = T ails(A′′). In p a rtic u la r,
tw o c o -ta ile d g eno m e s h a v e th e sa m e nu m b e r o f ch ro m o so m e s (re c a ll th a t
a ll g ene s in a g eno m e a re u niq u e ). N o te th a t if A′′ w a s o b ta ine d fro m A′ b y
p e rfo rm ing a re c ip ro c a l tra nslo c a tio n th en T ails(A′′) = T ails(A′). T h e re fo re ,
S R T is d e fi ne d o nly fo r g eno m e s th a t a re c o -ta ile d . F o r th e re st o f th is p a p e r
th e w o rd “ tra nslo c a tio n” re fe rs to a re c ip ro c a l tra nslo c a tio n a nd w e a ssu m e
th a t th e g iv en g eno m e s, A a nd B, a re c o -ta ile d .
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2 .1 T h e C y cle G raph

In th is se c tio n w e p re sent th e c y c le g ra p h o f g eno m e s A a nd B, w h ich w a s
fi rst d e fi ne d in [6]. L e t N b e th e nu m b e r o f ch ro m o so m e s in A (e q u iv a lently ,
B). W e sh a ll a lw a y s a ssu m e th a t b o th A a nd B c o nta in th e g ene s {1, . . . , n}.
T h e cycle graph o f A a nd B, d eno te d G(A,B), is a n u nd ire c te d g ra p h d e fi ne d
a s fo llo w s. T h e se t o f v e rtic e s is

⋃n
i= 1{i

0, i1}. T h e v e rtic e s i0 a nd i1 a re c a lle d
th e tw o end s o f g ene i (th ink o f th e m a s th e end s o f a sm a ll a rro w d ire c te d
fro m i0 to i1). F o r e v e ry p a ir o f g ene s, i a nd j, w h e re j im m e d ia te ly fo llo w s
i in so m e ch ro m o so m e o f A (re sp e c tiv e ly , B) a d d a b la ck (re sp e c tiv e ly , g ra y )
(u nd ire c te d ) e d g e

(i, j) ≡ (ou t(i), in(j))

w h e re

ou t(i) =







i1 if i h a s a p o sitiv e sig n in A (re sp e c tiv e ly , B)

i0 o th e rw ise

a nd

in(j) =







j0 if j h a s a p o sitiv e sig n in A (re sp e c tiv e ly , B)

j1 o th e rw ise

An ex a m p le is g iv en in F ig . 1(a ). T h e re a re n − N b la ck e d g e s a nd n − N
g ra y e d g e s in G(A,B). S inc e g eno m e s A a nd B a re c o -ta ile d , e v e ry v e rte x
in G(A,B) h a s d e g re e 2 o r 0, w h e re v e rtic e s o f d e g re e 0 (iso la te d v e rtic e s)
b e lo ng to T ails(A) (e q u iv a lently , T ails(B)). T h e re fo re , G(A,B) is u niq u e ly
d e c o m p o se d into c y c le s w ith a lte rna ting g ra y a nd b la ck e d g e s.

In th e fo llo w ing w e a ssu m e , w ith o u t lo ss o f g ene ra lity , th a t e a ch ch ro m o so m e
o f B is a n inc re a sing se q u enc e o f c o nse c u tiv e p o sitiv e nu m b e rs. F o r e x a m p le ,
B1 = {(1, 2, 3, 4, 5), (6, 7, 8)}. T h u s e v e ry g ra y e d g e in G(A,B) is o f th e fo rm
(ou t(i), in(i+1) ≡ (i1, (i+1)0) ≡ (i, i+1). As g eno m e s B a nd A a re c o -ta ile d ,
o nc e g eno m e A is g iv en, g eno m e B is fi x e d . T h u s w e c a n d e fi ne G(A) ≡
G(A,B).

L e t c(A) d eno te th e nu m b e r o f c y c le s in G(A). N o te th a t if A = B th en
c(A) = n−N is m a x im a l. W e d eno te b y A · φ th e g eno m e o b ta ine d a fte r th e
tra nslo c a tio n φ is a p p lie d to A. F o r a ny p a ra m e te r ψ, le t ∆ψ b e th e inc re a se in
ψ a fte r a p p ly ing φ, i.e ., ∆ψ = ψ(A ·φ)−ψ(A). T h e fo llo w ing le m m a d e sc rib e s
h o w c is a ff e c te d b y a tra nslo c a tio n.

L e m m a 1 ([1 1 ]) L et φ be a translocation. If φ cu ts tw o b lack ed ges in d iff er-
ent cycles th en th e tw o cycles are m erged into one cycle and ∆c = −1. If φ
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acts on black ed ges belonging tw o th e sam e cycle th en eith er th e cycle is split
into tw o cycles and ∆c = 1, or th ere is no ch ange in th e nu m ber of cycles (i.e.
∆c = 0).

A tra nslo c a tio n is proper if ∆c = 1 (i.e . o ne c y c le sp lits into tw o ). A g ra y e d g e
(i, i+ 1) is external if i a nd i+ 1 b elo ng to tw o d iff e rent ch ro m o so m e s, o th e r-
w ise it is internal. F o r e x a m p le , in F ig . 1(a ), (5, 6) is e x te rna l, w h ile (11, 12)
is inte rna l. An ad jacency is a c y c le w ith tw o e d g e s. T h u s, e v e ry a d ja c enc y
c o rre sp o nd s to a p a ir o f g ene s i, i+ 1, w h e re e ith e r (i, i+ 1) o r (−i+ 1,−i) is
c o nta ine d in o ne o f th e ch ro m o so m e s o f A.

O b se rv a tio n 1 E very external ed ge (i, i+ 1) d efi nes a (proper) translocation
th at creates th e ad jacency (i, i+ 1).

2 .2 T h e O verlap G raph w ith C h rom osom es

T h e o v e rla p g ra p h o f a sig ne d p e rm u ta tio n w a s intro d u c e d in [9]. In th is se c tio n
w e p re sent a n e x tensio n o f th is g ra p h fo r g eno m e A.

A signed perm u tation π = (π1, . . . , πn) is a p e rm u ta tio n o n th e inte g e rs {1, . . .
, n}, w h e re a sig n o f p lu s o r m inu s is a ssig ne d to e a ch nu m b e r. L e t A b e a
g eno m e w ith th e se t o f g ene s {1, . . . , n}. L e t πA b e a n a rb itra ry c o nc a tena tio n
o f th e ch ro m o so m e s in A, in a rb itra ry o rd e r a nd o rienta tio n. T h en πA is a
sig ne d p e rm u ta tio n o f siz e n.

P la c e th e v e rtic e s o f G(A) a lo ng a stra ig h t line a c c o rd ing to th e ir o rd e r in πA.
N o w , e v e ry g ra y e d g e a nd e v e ry ch ro m o so m e is a sso c ia te d w ith a n inte rv a l
o f v e rtic e s in G(A). T w o inte rv a ls overlap if th e ir inte rse c tio n is no t e m p ty
b u t no ne c o nta ins th e o th e r. T h e overlap graph w ith ch rom osom es o f g eno m e
A w .r.t. πA, d eno te d O V C H (A, πA), is d e fi ne d a s fo llo w s. T h e se t o f no d e s
is th e se t o f ch ro m o so m e s in A a nd g ra y e d g e s in G(A). T w o no d e s a re c o n-
ne c te d if th e ir c o rre sp o nd ing inte rv a ls in G(A) o v e rla p . An ex a m p le is g iv en in
F ig . 1(b ). In o rd e r to p re v ent c o nfu sio n, w e w ill re fe r to no d e s th a t c o rre sp o nd
to ch ro m o so m e s a s “ ch ro m o so m e s” a nd re se rv e th e w o rd “ v e rte x ” fo r no d e s
th a t c o rre sp o nd to g ra y e d g e s.

L e t O V (A, πA) b e th e su b g ra p h o f O V C H (A, πA) ind u c e d b y th e se t o f no d e s
th a t c o rre sp o nd to g ra y e d g e s (i.e ., e x c lu d ing th e ch ro m o so m e s’ no d e s). T h is
g ra p h is a n e x tensio n o f th e o v e rla p g ra p h o f a sig ne d p e rm u ta tio n d e fi ne d
in [9]. W e sh a ll u se th e w o rd “ c o m p o nent” fo r a c o nnec te d c o m p o nent o f
O V (A, πA). F o r e x a m p le , in F ig . 1(b ), O V (A2, πA2

) c o nta ins six c o m p o nents:
{(8, 9)}, {(1, 2), (2, 3)}, {(7, 8), (11, 12)}, {(9, 10), (10, 11)}, {(3, 4)}, a nd {(5, 6)
, (6, 7)}.
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A v erte x in O V C H (A, πA) is external if its c o rre sp o nd ing e d g e in G(A) is
e x te rna l, o th e rw ise it is internal. F o r e x a m p le , in F ig . 1(b ), th e v e rte x (5, 6)
is e x te rna l w h ile th e v e rte x (6, 7) is inte rna l. O b v io u sly a v e rte x is e x te rna l iff
it is c o nnec te d to a ch ro m o so m e .

A co m p o nent is external if a t le a st o ne o f th e v e rtic e s in it is e x te rna l, o th e rw ise
it is internal. A co m p o nent is trivial if it is c o m p o se d o f o ne inte rna l v e rte x ,
w h ich c o rre sp o nd s to a n a d ja c enc y . F o r e x a m p le , in F ig . 1, {(8, 9)} is a triv ia l
c o m p o nent, {(7, 8), (11, 12)} is a n inte rna l no n-triv ia l c o m p o nent, a nd {(3, 4)}
is a n e x te rna l c o m p o nent. N o te th a t if A = B th en a ll th e c o m p o nents a re
triv ia l. As w e sh a ll se e la te r, a g eno m e w ith o u t no n-triv ia l inte rna l c o m p o nents
c a n b e so rte d b y a se q u enc e o f p ro p e r tra nslo c a tio ns. In c a se a g eno m e d o e s
h a v e no n-triv ia l inte rna l c o m p o nents, th e se c o m p o nents c a n b e c o m e e x te rna l
a fte r so m e no n-p ro p e r tra nslo c a tio ns a re a p p lie d .

T h e p e rm u ta tio n πA m a tch e s to e v e ry v e rte x v o f O V (A, πA) a n inte rv a l o f
g ene s, I(v) ⊂ πA. F o r e x a m p le , in F ig . 1(b ) th e v e rte x (7, 8) is a sso c ia te d w ith
th e inte rv a l (7,−11, 10,−9,−8). T h e inte rv a l a sso c ia te d w ith a c o m p o nent
M , I(M) ⊂ πA, is th e m inim a l inte rv a l o f g ene s fo r w h ich I(v) ⊂ I(M), fo r
e v e ry v e rte x v ∈ M . F o r e x a m p le , c o nsid e r th e c o m p o nents o f O V (A2, πA2

),
sh o w n in F ig . 1(b ). T h en I({(7, 8), (11, 12)} = (7,−11, 10,−9,−8, 12) a nd
I({(5, 6), (6, 7)}) = (−6, 7,−11, 10,−9,−8, 12, 5). O b se rv e th a t th e inte rv a l o f
th e fo rm e r c o m p o nent is c o nta ine d w ith in a ch ro m o so m e , w h ile th e inte rv a l
o f th e la tte r e x tend s o v e r tw o ch ro m o so m e s.

O b se rv a tio n 2 L et M be a com ponent. T h en M is internal iff I(M) is con-
tained in one ch rom osom e.

O b se rv a tio n 3 T h e set of internal com ponents is ind epend ent of th e specifi c
concatenation πA. In oth er w ord s, th e set of internal com ponents rem ains u n-
ch anged w ith all th e concatenations of A.

In [4] th e te rm “ c o m p o nent” is d e fi ne d in a d iff e rent m a nner. H o w e v e r, a s
w e sh o w b e lo w , th e tw o d e fi nitio ns a re e q u iv a lent w h en th e c o m p o nents a re
inte rna l. N o te th a t th e te rm s ‘inte rna l’ a nd ‘e x te rna l’ c o rre sp o nd to th e te rm s
‘intra ch ro m o so m a l” a nd “ inte rch ro m o so m a l” in [4]. T o m a k e a d istinc tio n, w e
re fe r to th e te rm “ c o m p o nent” d e fi ne d in [4] a s “ B M S -c o m p o nent” . W e no w
d e fi ne th is te rm a nd p ro v e th e e q u iv a lenc e .

F o r a sig ne d p e rm u ta tio n π, w e d eno te b y P (π) th e sig ne d p e rm u ta tio n o b -
ta ine d fro m π b y a d d ing th e fi rst e le m ent 0 a nd th e la st e le m ent n + 1. F o r
e x a m p le , fo r th e p e rm u ta tio n in F ig . 1:

P (πA2
) = (0, 1,−2, 3,−6, 7,−11, 10,−9,−8, 12, 5, 4, 1 3 )

W e re fe r to P (π) a s a pad d ed sig ne d p e rm u ta tio n.
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A B M S -com ponent is a n inte rv a l o f P (π), fro m i to i + j o r fro m −(i + j)
to −i, w h e re j > 0, w h o se se t o f (u nsig ne d ) e le m ents is {i, . . . , i + j}, a nd
th a t is no t th e u nio n o f sm a lle r su ch inte rv a ls. F o r e x a m p le , P (πA2

) c o nta ins
fi v e B M S -c o m p o nents: (1,−2, 3), (3, . . . , 13), (7, . . . , 12), (−11, 10,−9), a nd
(−9,−8). T h e inte rv a l (−11, 10,−9,−8) is no t a B M S -c o m p o nent a s it is th e
u nio n o f (−11, 10,−9) a nd (−9,−8).

T h e o v e rla p g ra p h o f a sig ne d p e rm u ta tio n w a s o rig ina lly d e fi ne d fo r a p a d d e d
p e rm u ta tio n [9]. T h e c o nnec te d c o m p o nents o f th is g ra p h p la y a m a jo r ro le in
th e a na ly sis o f S B R . T h e a na ly sis fo r S B R w a s re v ise d in [3] a nd a n a lte rna tiv e
d e fi nitio n w a s g iv en fo r th e c o m p o nents o f th e o v e rla p g ra p h , na m e ly B M S -
c o m p o nents. It is im p lie d in [3] th a t th e re is a b ije c tiv e m a p p ing b e tw e en th e
se t o f B M S -c o m p o nents o f P (πA) a nd th e se t o f c o m p o nents in O V (P (πA)),
th e o v e rla p g ra p h o f P (πA). M o re sp e c ifi c a lly , I is a B M S -c o m p o nent o f P (πA)
iff I = I(M) fo r so m e c o m p o nent M in O V (P (πA)). A B M S -c o m p o nent I is
internal if I is c o nta ine d in o ne o f th e ch ro m o so m e s o f A.

O b se rv a tio n 4 L et I ⊂ πA. T h en I is an internal B M S -com ponent iff I =
I(M) for som e internal com ponent M .

P R O O F . L e t A′ b e a u ni-ch ro m o so m a l g eno m e w h o se sing le ch ro m o so m e
e q u a ls P (πA), i.e ., A′ = {P (πA)}. T h e im p lie d ta rg e t g eno m e is {(0, 1, . . . , n+
1)}. F o llo w ing [9], H ′ = O V (P (πA)) ≡ O V (A′, P (πA)) . T h u s H = O V (A, πA)
is a su b g ra p h o f H ′, w h e re th e v e rtic e s in H ′ \H c o rre sp o nd to e le m ent p a irs
(i, i + 1) th a t a re no t a d ja c ent in B. (In th e e x a m p le o f F ig . 1, th o se w ill b e
th e p a irs (0, 1), (4, 5) a nd (12, 13)). R e c a ll th a t fo r e v e ry B M S -c o m p o nent I
th e re e x ists a c o m p o nent M in H ′ fo r w h ich I(M) = I. C le a rly if I is inte rna l
th en a ll th e v e rtic e s in M a re inte rna l to o , a nd M is ne c e ssa rily a n inte rna l
c o m p o nent in H.

O b se rv e th a t th e v e rtic e s th a t a re in H ′ \ H c a nno t b e a d ja c ent to inte rna l
v e rtic e s in H, sinc e in G(A′) th e c o rre sp o nd ing g ra y e d g e s a re a d ja c ent to
b la ck e d g e s b rid g ing a c ro ss ch ro m o so m e end s. T h e re fo re , if M is a n inte rna l
c o m p o nent in H th en M is a lso a c o m p o nent o f H ′ a nd h enc e I(M) is a n
inte rna l B M S -c o m p o nent. 2

2 .3 T h e F orest of Internal C om ponents

In th is se c tio n w e p re sent th e fo re st o f inte rna l c o m p o nents, o rig ina lly d e -
fi ne d in [4]. L e t M ′ a nd M ′′ b e tw o inte rna l c o m p o nents. T h en, a s d isc u sse d
in [4], I(M ′) a nd I(M ′′) a re e ith e r d isjo int, ne ste d w ith d iff e rent end p o ints,
o r o v e rla p p ing o n o ne e le m ent. W e d e fi ne a ch ain a s a se q u enc e o f inte rna l
c o m p o nents (M1, . . . ,Mt) in w h ich I(Mj) a nd I(Mj+ 1) o v e rla p in e x a c tly o ne
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g ene fo r j = 1, .., t− 1. F o r e x a m p le , in F ig . 1 le t M ′ = ({(9, 10), (10, 11)} a nd
M ′′ = {(8, 9)}. T h en (M ′,M ′′) is a ch a in, a s I(M ′) a nd I(M ′′) o v e rla p in o ne
e le m ent, w h ich is 9.

F o r a ch a in C = (M1, . . . ,Mt) d e fi ne its a sso c ia te d inte rv a l a s I(C) =
⋃t

j= 1 I(Mj).
A ch a in th a t c a nno t b e e x tend e d to th e le ft o r rig h t is c a lle d m axim al. T h e
forest of internal com ponents, d eno te d F (A), is d e fi ne d b y th e fo llo w ing :

1. T h e v e rtic e s o f F (A) a re : (i) th e no n-triv ia l inte rna l c o m p o nents a nd (ii)
m a x im a l ch a ins th a t c o nta in a t le a st o ne no n-triv ia l c o m p o nent.

2. T h e ch ild ren o f a ch a in v e rte x a re th e no n-triv ia l (inte rna l)c o m p o nents it
c o nta ins.

3. A ch a in v e rte x C is a ch ild o f th e no n-triv ia l inte rna l c o m p o nent M w ith
th e sm a lle st inte rv a l I(M) sa tisfy ing I(C) ⊂ I(M). If no su ch c o m p o nent
e x ists th en C is a ro o t o f its tre e .

S e e F ig . 1(c) fo r a n e x a m p le . O b se rv e th a t e a ch tre e in F (A) is c o nta ine d
w ith in o ne ch ro m o so m e . F o r e x a m p le , th e tw o tre e s in F ig . 1(c) a re c o nta ine d
in ch ro m o so m e 1. W e w ill re fe r to a c o m p o nent th a t is a le a f in F (A) a s
sim p ly a leaf. F o r e x a m p le , th e re a re tw o le a v e s in F ig . 1(c) c o rre sp o nd ing to
th e inte rv a ls (1, 2, 3) a nd (−11, 10,−9).

Chromosome 1 Chromosome 2

(1,2), (2,3)

(7,8), (11,12)

(9,10), (10,11)

chromosome 2

(10,11)(9,10)

(11,12)(7,8)

(2,3)(1,2)

e x te rn al
in te rn al

1011 2120 6160 7071 111110 100101 9190 8180 120121 5051 4041

ch ro m o so m e

(c) F (A2)

c o m p o n e n t ch ain

3031

(a) G(A2)

(b) OVCH(A2, πA2)

(8,9) (6,7)(5,6)(3,4)

chromosome 1

F ig . 1 . Auxiliary graphs for A2 = {(1 ,−2, 3,−6, 7,−1 1 , 1 0 ,−9,−8, 1 2), (5, 4)},
B2 = {(1 , . . . , 4), (5, . . . , 1 2)}, πA2

= (1 ,−2, 3,−6, 7,−1 1 , 1 0 ,−9,−8, 1 2, 5, 4). (a)
The cycle graph. Black edges are horizontal; gray edges are curved (b) The overlap
graph with chromosomes. The graph induced by the vertices within the dashed rectan-
gle is OV(A2, πA2

), the same graph without the chromosome vertices. (c) The forest
of internal components.

N o te th a t if A = B th en a ll th e c o m p o nents a re triv ia l a nd h enc e F (A) is
e m p ty . In a d d itio n, F (A) is e m p ty if no no n-triv ia l inte rna l c o m p o nent e x ists.
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W e sa y th a t a no n-triv ia l inte rna l c o m p o nent M is elim inated b y a tra nslo c a -
tio n φ if a fte r φ is a p p lie d th e v e rtic e s in M b e lo ng to e x te rna l c o m p o nents.
A tra nslo c a tio n is c a lle d bad if ∆c = −1 (i.e . tw o c y c le s a re m e rg e d into o ne).
T h e fo llo w ing o b se rv a tio n d e sc rib e s h o w no n-triv ia l inte rna l c o m p o nents c a n
b e e lim ina te d b y b a d tra nslo c a tio ns.

O b se rv a tio n 5 ([6 , 4 ]) A leafM is elim inated by perform ing a translocation
th at cu ts one b lack ed ge incid ent to a gray ed ge in M and one b lack ed ge in
anoth er ch rom osom e of A. T h is translocation is necessarily bad . In ad d ition,
all th e ancestor com ponents of M in F (A) are elim inated as w ell.

An ex a m p le o f a tra nslo c a tio n th a t e lim ina te s tw o le a f c o m p o nents, w ith th e ir
a nc e sto rs, is sh o w n in F ig . 2

Chromosome 1’ Chromosome 2’

Chromosome 1 Chromosome 2

M2M1

1011 9190 5150 6061 7170 101100 3031 8180 111110 1201214041

(b) G(A3 · φ)

2021

M1

1011 9190 5150 6061 7170 8081 2120 100101 111110 1201214041

(a) G(A3)

M4

M3

3130

F ig . 2. An example of a bad translocation that eliminates two leaves.
(a) The cycle graph G(A3) ≡ G(A3, B3) where
A3 = {(1 ,−9, 4,−5, 6,−7, 8,−3), (−2, 1 0 ,−1 1 , 1 2)} and
B3 = {(1 , 2), (3, 4, . . . , 1 2)}). The four internal components are designated by
M1, . . . , M4.
(b) The cycle graph G(A3 · φ), where φ is a prefi x-suffi x translocation cutting the two
black edges pointed by the vertical arrows in (a). In A3 ·φ only one internal component
exists, namely M1. The other internal components, M2, M3, and M4, were eliminated
by φ.
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2 .4 T h e T ranslocation D istance

L e t T (A) a nd L(A) d eno te th e nu m b e r o f tre e s a nd le a v e s in F (A), re sp e c -
tiv e ly . O b v io u sly T (A) ≤ L(A). D e fi ne

f(A) =















2 if T (A) = 1 a nd L(A) is e v en

1 if L(A) is o d d

0 o th e rw ise (T (A) 6= 1 a nd L(A) is e v en)

T h e o re m 2 ([6 , 4 ] 2 ) T h e translocation d istance betw een A and B is d(A) =
n−N − c(A) + L(A) + f(A)

An o p tim a l m o v e , i.e ., a m o v e th a t is p a rt o f a so lu tio n to S R T , is c a lle d valid .

L e m m a 3 ([6 , 4 ]) ∆d = ∆(−c+ L+ f) ≥ −1. A translocation φ is valid iff
∆d = −1.

A p ro p e r tra nslo c a tio ns is safe if it d o e s no t c re a te ne w le a v e s. T h e a na ly sis in
[6, 4] im p lie s th a t v a lid tra nslo c a tio ns a re e ith e r: (i) b a d , o r (ii) p ro p e r a nd

sa fe . B a d tra nslo c a tio ns a re v a lid if ∆(L+ f) = −2. As w a s d e m o nstra te d b y
B e rg e ro n e t a l. [4] a sa fe p ro p e r tra nslo c a tio n m a y b e inv a lid . H o w e v e r, if th e re
a re no le a v e s, w h ich m e a ns th a t th e re a re no no n-triv ia l inte rna l c o m p o nents,
th en a sa fe p ro p e r tra nslo c a tio n is ne c e ssa rily v a lid .

2 .5 A nalogy to S B R

F o r th e re a d e rs fa m ilia r w ith th e th e o ry o f S B R w e no w p o int to th e a na lo g y
w ith th e S R T th e o ry . T h e m inim u m nu m b e r o f re v e rsa ls ne e d e d to so rt a
sig ne d p e rm u ta tio n π (i.e ., tra nsfo rm π into th e id entity p e rm u ta tio n) d e p end s
o n th e nu m b e r o f c y c le s in th e c y c le g ra p h G(π), a nd o n th e “ u no riente d ”
c o m p o nents in O V (π) [8, 9]. U no riente d c o m p o nents w ith m inim a l inte rv a ls
a re c a lle d “ h u rd le s” . T h e so rting o f π re q u ire s th e e lim ina tio n o f a ll h u rd le s
b y bad reversals, w h ich d e c re a se th e nu m b e r o f c y c le s b y o ne . If th e re a re no
h u rd le s, th en π c a n b e so rte d b y proper reversals, w h ich inc re a se th e nu m b e r o f
c y c le s b y o ne . T h u s th e re e x ists a n a na lo g y b e tw e en th e tw o d ista nc e fo rm u la s,
o f S B R a nd S R T . In p a rtic u la r, th e p a ra m e te r L, w h ich ind ic a te s th e nu m b e r
o f le a v e s, is a na lo g o u s to th e p a ra m e te r h, w h ich ind ic a te s th e nu m b e r o f
h u rd le s.

2 T h e fo rm u las in [4] an d [6] are e q u iv ale n t: a leaf c o m p o n e n t is e q u iv ale n t to a
“ m in im al su b p e rm u tatio n ” (m in S P in sh o rt); th e p aram e te r s in [6], w h ich d e n o te s
th e n u m b e r o f m in S P s, is e q u iv ale n t to L; th e te rm (o + 2i) in [6] is e q u iv ale n t to f .
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T h e e lim ina tio n o f a ll h u rd le c o m p o nents c a n b e d o ne line a r tim e [9, 1], a nd
is c o m m o nly p e rfo rm e d a t th e b e g inning o f th e so rting a lg o rith m . T h u s S B R
is line a rly re d u c e d to a sim p le r v a ria nt, “ S B R -no h u rd le s” . M o st a lg o rith m s
fo r S B R fo c u s o n so lv ing th is re d u c e d fo rm o f S B R .

In th e fo llo w ing w e sh o w th a t S R T c a n b e re d u c e d to “ S R T -no le a v e s” in a
sim ila r m a nner, b y e lim ina ting a ll le a v e s in line a r tim e . In a d d itio n, th e a l-
g o rith m w e p re sent in S e c tio n 4 fo r “ S R T -no le a v e s” is a n a d a p ta tio n o f a n
a lg o rith m fo r “ S B R -no h u rd le s” . In [14] w e sh o w th a t tw o a d d itio na l a lg o -
rith m s fo r “ S B R -no h u rd le s” c a n b e a d a p te d to so lv e th e “ S R T -no le a v e s” .

3 A L ine a r R e d u c tio n o f S R T to S R T N L

A la rg e p a rt o f th e d iffi c u lty in a na ly z ing th e tra nslo c a tio n d ista nc e (T h e o -
re m 2) is d u e to le a v e s: w h en th e re a re no le a v e s f(A) = L(A) = 0 a nd th e
d ista nc e fo rm u la is m u ch sim p le r. M o tiv a te d b y th is o b se rv a tio n, w e d e fi ne
S R T N L (“ S R T -no le a v e s” ) a s a sp e c ia l c a se o f S R T w h en th e re a re no le a v e s
(i.e . L(A) = T (A) = 0). In th is se c tio n w e p re sent a g ene ric a lg o rith m fo r
so lv ing S R T , u sing a n a lg o rith m fo r S R T N L . T h is a lg o rith m , a p a rt fro m tw o
c a lls fo r so lv ing a n S R T N L insta nc e , c a n b e im p le m ente d in line a r tim e .

L e t L(X) d eno te th e nu m b e r o f le a v e s in ch ro m o so m e X. L e t NL(A) d eno te
th e nu m b e r o f ch ro m o so m e s o f A c o nta ining a t le a st o ne le a f. E q u iv a lently ,
NL(A) is th e nu m b e r o f ch ro m o so m e s fo r w h ich L(X) > 0. T h e so rting o f
g eno m e A into B re q u ire s th e e lim ina tio n o f a ll le a v e s. T h e fo llo w ing le m m a s
d e sc rib e h o w to e lim ina te le a v e s b y v a lid (b a d ) tra nslo c a tio ns.

L e m m a 4 S u ppose NL(A) ≥ 2. T h en th ere exists a valid bad translocation φ
satisfy ing: (i) ∆L = −2, and (ii) if L(A · φ) ≥ 2 th en NL(A · φ) ≥ 2.

P R O O F . Assu m e NL(A) ≥ 2. F irst, w e p ro v e th a t a ny b a d tra nslo c a tio n φ
sa tisfy ing (i) a nd (ii) is ne c e ssa rily v a lid . T h e p a rity o f L is th e sa m e in A a nd
in A ·φ a nd h enc e ∆f = 0 (f = 1 if L is o d d , a nd f = 0 o th e rw ise ). T h e re fo re
∆d = ∆(−c+ L+ f) = 1− 2 + 0 = −1 a nd φ is v a lid .

W e sh a ll no w p ro v e th a t th e re e x ists su ch a b a d tra nslo c a tio n. C h o o se X1, X2 ∈
A su ch th a t L(X1) + L(X2) is m a x im a l. S u p p o se L(X1) ≥ L(X2).

C a se 1: L(X1) ≥ 2 a nd L(X2) ≥ 2. L e t φ b e a (b a d ) p re fi x -p re fi x tra nslo c a tio n
th a t e lim ina te s th e se c o nd le a f fro m th e le ft in X1 a nd X2 (O b se rv a tio n 5).
T h en e a ch o f th e ne w ch ro m o so m e s in A · φ c o nta ins a t le a st o ne le a f a nd
h enc e NL(A · φ) ≥ 2.
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C a se 2: L(X1) ≥ 2 a nd L(X2) = 1. L e t φ b e a (b a d ) p re fi x -p re fi x tra nslo c a tio n
th a t e lim ina te s th e se c o nd le a f fro m th e le ft in X1 a nd th e le a f in X2. T h en
a t le a st o ne o f th e ne w ch ro m o so m e s in A · φ c o nta ins e x a c tly o ne le a f. If
L(A · φ) ≥ 2 th en th e re m u st b e a no th e r ch ro m o so m e in A · φ th a t c o nta ins
a t le a st o ne le a f a nd h enc e NL(A · φ) ≥ 2.

C a se 3: L(X1) = L(X2) = 1. L e t φ b e a (b a d ) tra nslo c a tio n th a t e lim ina te s
th e tw o le a v e s in X1 a nd X2. C le a rly in A · φ e v e ry ch ro m o so m e c o nta ins a t
m o st o ne le a f. H enc e , if L(A · φ) ≥ 2 th en NL(A · φ) ≥ 2. 2

T h e fo llo w ing le m m a fo llo w s fro m th e p ro o f o f T h e o re m 13 in [6], a nd is p ro v en
h e re fo r c o m p le tio n.

L e m m a 5 S u ppose NL(A) = 1, L(A) ≥ 2, and f(A) > 0. L et φ be a (prefi x-
prefi x) translocation th at elim inates th e second leaf from th e left in A. T h en φ
is valid . In ad d ition, if L(A · φ) ≥ 2 th en NL(A · φ) ≥ 2.

P R O O F . C le a rly ∆(−c+L) = 1− 1 = 0. If L(A · φ) = 1 th en L(A) = 2 a nd
T (A) = 1 a nd th u s ∆f = −1 a nd φ is v a lid .

S u p p o se L(A · φ) ≥ 2. L e t X ′ b e th e ch ro m o so m e c o nta ining a ll th e le a v e s
in A, a nd le t X ′′ b e th e th e se c o nd ch ro m o so m e o n w h ich φ a c ts. T h en in
g eno m e A · φ: L(X ′′) = 1 a nd L(X ′) > 0, th u s NL(A · φ) ≥ 2. In p a rtic u la r
T (A · φ) > 1 a nd L(A · φ) = L(A)− 1, so ∆f = −1 a nd φ is v a lid . 2

S u p p o se th e re a re se v e ra l tre e s th a t a re a ll lo c a te d in o ne ch ro m o so m e , i.e .,
NL(A) = 1, b u t T (A) > 1. T o b e a b le to e lim ina te a p a ir o f le a v e s b y o ne (b a d )
tra nslo c a tio n, w e fi rst ne e d to p e rfo rm a se q u enc e o f (v a lid ) p ro p e r tra nslo -
c a tio ns th a t “ se p a ra te s” th e tre e s (a nd h enc e th e le a v e s) into tw o d iff e rent
ch ro m o so m e s. In th e fo llo w ing w e d e sc rib e h o w to fi nd su ch a se q u enc e . W e
sa y th a t a se q u enc e o f tra nslo c a tio ns sorts a c o m p o nent M , if a fte r p e rfo rm ing
th e se q u enc e e v e ry g ra y e d g e in M b e c o m e s a n a d ja c enc y .

L e m m a 6 T h ere is a sequ ence of safe proper translocations th at sorts all
external com ponents (internal com ponents are u nch anged ).

P R O O F . F o r a n inte rv a l o f g ene s I = (i1, . . . , ik) le t IN (I) = {i2, . . . , ik−1}.
L e t S = {i|i ∈ IN (I), w h e re I is a n inte rv a l c o rre sp o nd ing to a tre e}. F o r e x -
a m p le , in F ig . 1, S = {2, 8, 9, 10, 11}. D e fi ne A′ a nd B′ a s th e g eno m e s o b ta ine d
fro m A a nd B re sp e c tiv e ly a fte r th e d e le tio n o f th e g ene s in S. N o te th a t a fte r
a g ene is d e le te d fro m a g eno m e , its tw o ne ig h b o rs b e c o m e a d ja c ent. T h u s
a ny inte rv a l c o rre sp o nd ing to a tre e o f A is re p la c e d in A′ b y a p a ir o f g ene s
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fo rm ing a n a d ja c enc y . T h e re fo re G(A′) c o nta ins no le a v e s. T h u s th e re is a se -
q u enc e o f sa fe p ro p e r tra nslo c a tio ns th a t so rts A′ into B′ (T h e o re m 2). T h is
se q u enc e ind u c e s a se q u enc e o f sa fe p ro p e r tra nslo c a tio ns o n A th a t so rts a ll
th e e x te rna l c o m p o nents in G(A). 2

W e c a ll a tra nslo c a tio n φ separating if NL(A) = 1 a nd NL(A · φ) = 2. T h e
fo llo w ing le m m a sh o w s h o w to fi nd a se q u enc e o f v a lid p ro p e r tra nslo c a tio ns,
w h o se la st tra nslo c a tio n is se p a ra ting .

L e m m a 7 S u ppose NL(A) = 1 and T (A) > 1. L et S = (φ1, . . . , φk) be a
sequ ence of safe proper translocations th at sorts all th e external com ponents in
G(A). T h en S contains a separating translocation φl, l ∈ {1, . . . , k }. M oreover,
Sl = (φ1, . . . , φl) is a sequ ence of valid translocations.

P R O O F . Ap p ly th e tra nslo c a tio ns in S b y th e ir o rd e r. L e t A0 = A a nd le t Ai

b e th e g eno m e o b ta ine d a fte r a p p ly ing (φ1, . . . , φi) to A. S u p p o se th a t S d o e s
no t c o nta in a se p a ra ting tra nslo c a tio n. T h u s, b y o u r a ssu m p tio n NL(Ai) = 1
fo r i = 1, . . . , k . O b se rv e th a t a ch ro m o so m e th a t c o nta ins tw o tre e s ne c e ssa rily
c o nta ins th e end p o int o f a n e x te rna l e d g e . T h u s T (Ak) = 1, sinc e in Ak th e re
a re no e x te rna l e d g e s a nd a ll th e le a v e s b e lo ng to o ne ch ro m o so m e . S inc e
T (A) > 1, th e re e x ists φt ∈ S su ch th a t T (At−1) > 1 a nd T (At) = 1. N o w ,
φt is a sa fe p ro p e r tra nslo c a tio n a nd h enc e d o e s no t e lim ina te a ny inte rna l
c o m p o nent, th u s At−1 m u st c o nta in tw o tre e s in tw o d iff e rent ch ro m o so m e s.
T h e re fo re NL(At−1) > 1, a c o ntra d ic tio n.

T h u s th e re e x ists i fo r w h ich NL(Ai) > 1. L e t l b e th e fi rst ind e x fo r w h ich
NL(Al) > 1. T h en φl is a se p a ra ting tra nslo c a tio n. As Sl c o nta ins o nly sa fe
p ro p e r tra nslo c a tio ns L(Al) = L(A) a nd th u s f(Al) = f(A). H enc e d(Al) −
d(A) = l a nd th u s e v e ry tra nslo c a tio n in Sl is v a lid . 2

L e m m a s 4-7 m o tiv a te Alg o rith m 1 fo r S R T . T h is a lg o rith m fo c u se s o n th e
e ffi c ient a nd o p tim a l e lim ina tio n o f a ll le a f c o m p o nents. If a ll th e le a v e s b e lo ng
to o ne ch ro m o so m e , th en w e e ith e r u se L e m m a 5 o r L e m m a 7 to se p a ra te th e
le a v e s into tw o ch ro m o so m e s. T h en w e u se L e m m a 4 to e lim ina te p a irs o f
le a v e s. At th e end , e ith e r a ll le a v e s h a v e b e en e lim ina te d , o r w e a re le ft w ith
a sing le le a f, w h ich is e lim ina te d b y o ne (v a lid ) b a d tra nslo c a tio n.

L e m m a 8 A lgorith m 1 , exclu d ing th e tw o calls to a S RT N L algorith m , can
be im plem ented in linear tim e.

P R O O F . T h e c o m p u ta tio n o f a ll th e p a ra m e te rs c a n b e d o ne in line a r tim e ,
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Alg o rith m 1 A n algorith m for solving S RT u sing an algorith m for S RT N L

1 : if NL = 1 a nd L ≥ 2 th en
2: if f > 0 th en
3: E lim ina te th e se c o nd le a f fro m th e le ft b y a p re fi x -p re fi x tra nslo c a tio n

/ * L emma 5 * /

4: e lse
5: C o m p u te a se q u enc e S o f sa fe p ro p e r tra nslo c a tio ns th a t so rts a ll

e x te rna l c o m p o nents / * using an algorithm for SR TN L , L emma 6* /

6: Ite ra tiv e ly p e rfo rm th e tra nslo c a tio ns in S u ntilNL > 1 / * L emma 7* /

7: end if
8: end if
9: L e t Q1 b e th e list o f ch ro m o so m e s c o nta ining e x a c tly o ne le a f

1 0 : L e t Q2 b e th e list o f ch ro m o so m e s c o nta ining a t le a st tw o le a v e s
1 1 : w h ile L > 0 d o
1 2: if L = 1 th en
1 3: E lim ina te th e sing le le a f b y a p re fi x -p re fi x tra nslo c a tio n
1 4: e lse
1 5: fo r i = 1, 2 d o
1 6: if Q2 6= ∅ th en
1 7: Xi ← a n e le m ent fro m Q2. R e m o v e Xi fro m Q2

1 8: li ← th e se c o nd le a f fro m th e le ft in ch ro m o so m e Xi

1 9: e lse
20 : Xi ← a n e le m ent fro m Q1. R e m o v e Xi fro m Q1

21 : li ← th e sing le le a f in Xi

22: end if
23: end fo r
24: E lim ina te l1 a nd l2 b y a p re fi x -p re fi x tra nslo c a tio n / * L emma 4 * /

25: fo r i = 1, 2 d o
26: if L(Xi) ≥ 2 th en
27: a d d Xi to Q2

28: e lse if L(Xi) = 1 th en
29: a d d Xi to Q1

30 : end if
31 : end fo r
32: end if
33: end w h ile / * Invariant: NL ≥ 2 o r L = 1 * /

34: S o lv e S R T N L o n A

in a sim ila r m a nner to th e c o m p u ta tio n o f th e tra nslo c a tio n d ista nc e [4].

S te p s 5 a nd 6 a re im p le m ente d b y c a lling a p ro c e d u re fo r S R T N L . H o w e v e r,
w e ne e d to sto p th is p ro c e d u re w h en a se p a ra ting tra nslo c a tio n is a p p lie d .
W e c a n lo c a te th is se p a ra ting p ro c e d u re in line a r tim e b y a c ting a s fo llo w s.
S u p p o se th a t NL = 1, T > 1 a nd S = (φ1, . . . , φk) is a se q u enc e o f sa fe p ro p e r
tra nslo c a tio ns th a t so rts a ll th e e x te rna l c o m p o nents. B y L e m m a 7 th e re e x ists
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a se p a ra ting tra nslo c a tio n φl in S. L e t I b e th e m inim u m inte rv a l o f g ene s
th a t c o nta ins th e inte rv a ls o f a ll th e le a v e s. W e sa y th a t a tra nslo c a tio n φ
cu ts I if o ne o f th e b la ck e d g e s it c u ts is c o nta ine d in I. N o te th a t sinc e I is
c o nta ine d in a sing le ch ro m o so m e , a tra nslo c a tio n c u ts a t m o st o ne b la ck e d g e
in I. C le a rly φl c u ts I. O n th e o th e r h a nd , th e fi rst tra nslo c a tio n th a t c u ts I
is ne c e ssa rily se p a ra ting . F o r e v e ry tra nslo c a tio n φi in S w e c a n te st in O(1)
tim e w h e th e r it c u ts I.

W e im p le m ent S te p s 11-33 in line a r tim e , a s fo llo w s. F o r e a ch ch ro m o so m e
w e m a inta in its g ene s a nd th e le a v e s it c o nta ins in tw o o rd e re d link e d lists.
W e u se o nly p re fi x -p re fi x (b a d ) tra nslo c a tio ns th a t d o no t ch a ng e th e sig ns o f
th e tra nslo c a te d g ene s. T h u s th e u p d a te o f th e g ene s a nd le a v e s lists o f th e
ch ro m o so m e s a fte r a tra nslo c a tio n is d o ne in O(1). 2

L e m m a 8 im m e d ia te ly im p lie s:

T h e o re m 9 S RT is linearly red u cib le to S RT N L .

4 An Alg o rith m fo r S R T N L

In th is se c tio n w e p re sent a n a lg o rith m fo r S R T N L . W e fi rst d e sc rib e h o w
th e o v e rla p g ra p h is ch a ng e d a fte r p e rfo rm ing a ch ro m o so m e fl ip o r a p ro p e r
tra nslo c a tio n d e fi ne d b y a n e x te rna l v e rte x .

As w a s d e m o nstra te d b y H a nnenh a lli a nd P e v zne r [7], a re v e rsa l o n πA sim u -
la te s a tra nslo c a tio n o n A:

(. . . , X1, X2, . . . , Y1, Y2, . . . ) ⇒ (. . . , X1,−Y1, . . . ,−X2, Y2, . . . ).

T h e ty p e o f tra nslo c a tio n d e p end s o n th e re la tiv e o rienta tio n o fX a nd Y in πA

(a nd no t o n th e ir o rd e r): if th e o rienta tio n is th e sa m e , th en th e tra nslo c a tio n
is p re fi x -su ffi x , o th e rw ise it is p re fi x -p re fi x . T h e se g m ent b e tw e en X2 a nd Y1

m a y c o nta in a d d itio na l ch ro m o so m e s th a t a re fl ip p e d a nd th u s u na ff e c te d .

4 .1 U pd ating O V C H for ch rom osom e fl ips and proper translocations

S u p p o se H1 = O V C H (A, π1) a nd H2 = O V C H (A, π2), w h e re π1 a nd π2 a re
tw o d iff e rent c o nc a tena tio ns a nd o rienta tio ns o f th e ch ro m o so m e s in A. In th is
c a se w e re fe r to H1 a nd H2 a s equ ivalent.
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L e t H = O V C H (A, πA). L e t IN (H) d eno te th e se t o f v e rtic e s th a t a re in no n-
triv ia l inte rna l c o m p o nents. T h u s tw o e q u iv a lent g ra p h s, H1 a nd H2, sa tisfy
IN (H1) = IN (H2) (O b se rv a tio n 3).

L e t v b e a ny v e rte x in H. D eno te b y C H (v) ≡ C H (v,H) th e se t o f ch ro m o -
so m e s th a t a re ne ig h b o rs o f v in H. H enc e if v is e x te rna l th en |C H (v)| = 2,
o th e rw ise C H (v) = ∅ (c o m p a re F ig . 1(b )). F o r a ch ro m o so m e X, le t φ(X)
d eno te a fl ip o f ch ro m o so m e X in πA. L e t H · φ(X) = O V C H (A, πA · φ(X)).
H enc e , in p a rtic u la r H · φ(X) a nd H a re e q u iv a lent.

L e m m a 1 0 ([1 4 ]) H · φ(X) is obtained from H by com plem enting th e su b-
graph ind u ced by th e set {u : X ∈ C H (u)} and fl ipping th e orientation of every
vertex in it.

L e t v b e a n e x te rna l v e rte x in H. D eno te b y φ(v) th e p ro p e r tra nslo c a tio n th a t
th e c o rre sp o nd ing g ra y e d g e d e fi ne s o n A (re c a ll O b se rv a tio n 1). T w o e x te rna l
v e rtic e s v1 a nd v2 in H a re equ ivalent if th e y d e fi ne th e sa m e tra nslo c a tio n,
i.e . φ(v1) ≡ φ(v2).

A v e rte x in th e o v e rla p g ra p h is oriented if its c o rre sp o nd ing e d g e c o nnec ts tw o
g ene s w ith d iff e rent sig ns in πA, o th e rw ise it is u noriented . If v is a n o riente d
e x te rna l v e rte x th en φ(v) c a n b e m im ick e d b y a re v e rsa l, φ̂(v), o n πA.

F o r a n e x te rna l v e rte x v w e d e fi ne H ·φ(v) in th e fo llo w ing w a y . If v is o riente d
th en H ·φ(v) = O V C H (A·φ(v), πA ·φ̂(v)). O th e rw ise , su p p o se C H (v) = {X, Y }
a nd th a t Y a p p e a rs a fte r X in πA. T h en v is a n o riente d e x te rna l v e rte x in
H ′ = H · φ(X) a nd th u s w e d e fi ne H · φ(v) = H ′ · φ(v).

D eno te b y N(v) ≡ N(v,H) th e se t o f v e rtic e s th a t a re ne ig h b o rs o f v, in-
c lu d ing v itse lf (b u t no t inc lu d ing ch ro m o so m e ne ig h b o rs). G iv en tw o se ts S1

a nd S2 d e fi ne S1
⊕

S2 = (S1
⋃

S2) \ (S1
⋂

S2). F ina lly , tw o ch ro m o so m e s in
O V C H (A, πA) a re c a lle d consecu tive if th e y a re c o nse c u tiv e in πA.

L e m m a 1 1 ([1 4 ]) L et v be an oriented external vertex in H and su ppose th e
ch rom osom es in C H (v) are consecu tive. T h en H · φ(v) is obtained from H by
th e follow ing operations. (i) C om plem ent th e su bgraph ind u ced by N(v) and fl ip
th e orientation of every vertex in N(v). (ii) F or every vertex u ∈ N(v) u pd ate
th e ed ges betw een u and C H (u)

⋃

C H (v) su ch th at C H (u) = C H (u)
⊕

C H (v).
In particu lar, th e external/ internal state of a vertex u ∈ N(v) is fl ipped iff u
is internal or C H (u) = C H (v).

L e m m a s 10 a nd 11 d e sc rib e th e ch a ng e in O V C H (A, πA) a fte r p e rfo rm ing
o p e ra tio ns th a t c a n b e m a p p e d to re v e rsa ls o n πA. T h e re fo re , th e d e sc rib e d
ch a ng e in O V C H (A, πA) is sim ila r to th e ch a ng e in O V (π) a fte r p e rfo rm ing a
re v e rsa l [9, O b se rv a tio n 4.1].
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4 .2 T h e M ain T h eorem and A lgorith m

W e no w d e sc rib e th e m a in th e o re m a nd a lg o rith m . O u r a lg o rith m is fo rm a lly
v e ry sim ila r to th e a lg o rith m fo r S B R p re sente d in [15]. Inste a d o f p e rfo rm -
ing re v e rsa ls o n o riente d e d g e s in [15], w e p e rfo rm tra nslo c a tio ns o n e x te r-
na l e d g e s. D e sp ite o f th e g re a t sim ila rity b e tw e en th e a lg o rith m s o u r v a lid ity
p ro o f is c o m p le te ly ne w . W e a na ly z e a n o v e rla p g ra p h w ith ch ro m o so m e s o f
a m u lti-ch ro m o so m a l g eno m e , w h ile [15] a na ly z e th e o v e rla p g ra p h o f a u ni-
ch ro m o so m a l g eno m e . L ik e [15], w e p e rfo rm o p e ra tio ns d e fi ne d b y o riente d
v e rtic e s (i.e . tra nslo c a tio ns). H o w e v e r, in o u r c a se th e se v e rtic e s m u st a lso b e
e x te rna l. If a n e x te rna l v e rte x is u no riente d , w e c a n tu rn it into a n o riente d
v e rte x b y a fl ip o f a ch ro m o so m e . H enc e , w e c o nsid e r tw o ty p e s o f o p e ra tio ns
in o u r a na ly sis.

A se q u enc e o f v e rtic e s S = (v1, . . . , vk) fro m H is legal if vj is e x te rna l in
H · φ(v1) · · ·φ(vj−1) fo r j = 1, .., k . F o r a le g a l se q u enc e S d e fi ne φ(S) =
φ(v1) · · ·φ(vk). A le g a l se q u enc e S is total if H · φ(S) c o nta ins o nly triv ia l
c o m p o nents. F o r a n o v e rla p g ra p h w ith ch ro m o so m e s H1, le t E X T (H1) d eno te
th e se t o f v e rtic e s th a t a re in e x te rna l c o m p o nents. If S is a m a x im a l le g a l
se q u enc e o f v e rtic e s in H th en E X T (H ·φ(S)) = ∅. If in a d d itio n S is no t to ta l
th en IN (H · φ(S)) 6= ∅.

T h e o re m 1 2 L et S = (v1, . . . , vk) be a m axim al legal bu t not total sequ ence of
vertices in H. L et IN = IN (H · φ(S)). L et vl be th e fi rst vertex in S satisfy ing
IN (H · φ(v1, . . . , vl)) = IN , i.e. φ(vl) is th e last u nsafe translocation in φ(S).
L et S1 = (v1, . . . , vl−1) and S2 = (vl, . . . , vk). T h en every m axim al sequ ence
of vertices S ′ = (w1, . . . , wm) in IN th at satisfi es (i) (S1, S

′) is legal and (ii)
vl is not an ad jacency in H · φ(S1, S

′) also satisfi es: (iii) S ′ is not em pty and
(iv) (S1, S

′, S2) is a m axim al legal sequ ence. M oreover, all th e translocations
in φ(S2) are safe.

P R O O F . L e t v = vl, H0 = H ·φ(S1) a nd IN 0 = E X T (H0)∩IN . T h en IN 0 6= ∅
a nd no ne o f th e v e rtic e s in IN 0 is e q u iv a lent to v in H0 (o th e rw ise it w o u ld
b e a n a d ja c enc y in H · φ(S) a nd h enc e no t in IN ). H enc e S ′ is no t e m p ty . L e t
A0 = A · φ(S1) a nd C H (v) = {X, Y }. W e ch o o se π0 to b e a c o nc a tena tio n o f
th e ch ro m o so m e s in A0 in w h ich X a nd Y a re th e fi rst tw o ch ro m o so m e s. W e
c a n a ssu m e w .l.o .g . th a t H = O V C H (A, π0), h enc e H0 = O V C H (A0, π0). F o r
j = 1, ..,m le t Hj = H0 · φ(w1, . . . , wj). L e t IN j = E X T (Hj)

⋂

IN . T h en fo r
j = 1, . . . ,m: (i) wj ∈ IN j−1 a nd (ii) wj is no t e q u iv a lent to v in Hj−1. L e t
E X T = E X T (H0 ·φ(v)). T h e fo llo w ing c o nd itio ns h o ld fo r Hj w h en j = 0 (se e
F ig . 4-(a )):

(1) T h e su b g ra p h s o f Hj · φ(v) a nd H0 · φ(v) th a t a re ind u c e d b y E X T a re
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e q u iv a lent.
(2) E v e ry w ∈ IN j sa tisfi e s: C H (w) = C H (v) = {X, Y }.
(3) If v is o riente d th en N(v)

⋂

IN = IN j.
(4) All th e p o ssib le e d g e s e x ist b e tw e en N(v)

⋂

E X T a nd IN j.
(5) T h e re a re no e d g e s b e tw e en IN \ IN j a nd v e rtic e s o u tsid e IN .
(6) T h e re a re no e d g e s b e tw e en E X T \N(v) a nd v e rtic e s o u tsid e E X T .

W e sh a ll p ro v e b e lo w th a t in Hm v is e x te rna l a nd th a t a ll th e a b o v e c o nd itio ns
a re sa tisfi e d . T h e fi rst c o nd itio n ensu re s th a t (S1, S

′, S2) is le g a l. T h e re st o f th e
c o nd itio ns ensu re th a t Hm · φ(v) sa tisfi e s: (i) th e re a re no e x te rna l v e rtic e s in
IN a nd (ii) th e re a re no e d g e s b e tw e en E X T a nd v e rtic e s o u tsid e E X T . H enc e
(S1, S

′, S2) is m a x im a l a nd e v e ry tra nslo c a tio n in φ(vl+ 1, . . . , vk) is sa fe . φ(vl)
is sa fe in Hm sinc e S ′ is m a x im a l. T h e re fo re , a ll th e tra nslo c a tio ns in φ(S2)
a re sa fe .

Assu m e th a t v is e x te rna l in Hj a nd th a t a ll th e a b o v e c o nd itio ns h o ld fo r a
c e rta in j. S inc e th e se c o nd itio ns a re tru e fo r e v e ry g ra p h th a t is e q u iv a lent
to Hj w e c a n a ssu m e th a t v is o riente d . W e no w p ro v e , u sing ind u c tio n o n j,
th a t th e se c o nd itio ns a re sa tisfi e d fo r e v e ry Hi, i ∈ {1, . . . ,m} in w h ich v is
e x te rna l, a nd th a t v is e x te rna l in Hm.

C a se 1: wj+ 1 is o riente d in Hj. L e t Hj+ 1 = Hj · φ(wj+ 1) (se e F ig . 4-(b )).
T h en IN j+ 1 = N(v,Hj)

⊕

N(wj+ 1, Hj). IN j+ 1 6= ∅, o th e rw ise v is a n iso la te d
inte rna l v e rte x in Hj+ 1 a nd h enc e e q u iv a lent to wj+ 1 in Hj. H enc e m ≥ j + 2.

C a se 1.a: wj+ 2 is o riente d in Hj+ 1. L e t Hj+ 2 = Hj+ 1 · φ(wj+ 2) (se e F ig . 4-(c)).
C le a rly , v is e x te rna l in Hj+ 2. L e t M = N(v,Hj)

⋂

E X T . T h en N(wj+ 2, Hj+ 1)
⋂

E X T = N(wj+ 1, Hj)
⋂

E X T = M . H enc e th e su b g ra p h s o fHj+ 2 a nd Hj th a t
a re ind u c e d b y M a re id entic a l a nd th e fi rst c o nd itio n is sa tisfi e d in Hj+ 2.

C a se 1.b: wj+ 2 is u no riente d in Hj+ 1. L e t H ′

j+ 1 = Hj+ 1 ·φ(X) (H ′

j+ 1 a nd Hj+ 1

a re e q u iv a lent) (se e F ig . 4-(d )). H enc e wj+ 2 is o riente d in H ′

j+ 1. N o te th a t
v is a n inte rna l v e rte x in H ′

j. L e t M ′ = N(wj+ 1, H
′

j+ 1)
⋂

E X T . L e t Hj+ 2 =
H ′

j+ 1 · φ(wj+ 2) (se e F ig . 4-(e)). v is a n o riente d e x te rna l v e rte x in Hj+ 2 a nd
N(v,Hj+ 2)

⋂

E X T = M ′. T h e re fo re , th e tw o su b g ra p h s o f Hj+ 2 · φ(v) (se e
F ig . 4-(f)) a nd H ′

j+ 1 (se e F ig . 4-(d )) th a t a re ind u c e d b y E X T a re id entic a l.
T h e su b g ra p h s o fHj+ 1 a nd Hj ·φ(v) th a t a re ind u c e d b y E X T a re a lso id entic a l.
H enc e , th e fi rst c o nd itio n is sa tisfi e d .

L o o k ing a t F ig s. 4-(c) a nd 4-(e) it is e a sy to v e rify th a t th e re st o f th e c o nd i-
tio ns a re a lso sa tisfi e d fo r Hj+ 2.

C a se 2: wj+ 1 is u no riente d in Hj. W e d e fi ne th e th re e su b se ts o f v e rtic e s
M1,M2,M3 ⊂ E X T in Hj a s fo llo w s:

(1) M1 is th e se t o f ne ig h b o rs o f wj+ 1 (e q u iv a lently , v) th a t a re e ith e r inte rna l
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o r e x te rna l b u t d o e s no t o v e rla p ch ro m o so m e X.
(2) M2 is th e se t o f ne ig h b o rs o f wj+ 1 (e q u iv a lently , v) th a t o v e rla p ch ro m o -

so m e X. H enc e M1
⋃

M2 = N(v,Hj)
⋂

E X T .
(3) M3 is th e se t o f v e rtic e s th a t o v e rla p ch ro m o so m e X b u t a re no t ne ig h b o rs

o f wj+ 1 (e q u iv a lently , v).

F o r a n illu stra tio n o f Hj se e F ig . 4-(g ). L e t H ′

j = Hj · φ(X) (se e F ig . 4-(h )).
In H ′

j: wj+ 1 is a n o riente d e x te rna l v e rte x a nd is no t a ne ig h b o r o f v. L e t
Hj+ 1 = H ′

j · φ(wj+ 1) (se e F ig . 4-(i)). O b v io u sly , v re m a ins inta c t in Hj+ 1. L e t
H ′

j+ 1 = Hj+ 1 · φ(X) (se e F ig . 4-(j)). T h en, th e su b g ra p h s o f H ′

j+ 1 · φ(v) (se e
F ig . 4-(k )) a nd Hj · φ(v) th a t a re ind u c e d b y M1, M2 a nd M3 a re e q u iv a lent
(C o m p a re th e su b g ra p h ind u c e d b y E X T in Hj in F ig . 4 (g ) w ith th e su b g ra p h
ind u c e d b y E X T in H ′

j+ 1 · φ(v) · φ(X) in F ig . 4 (l)). H enc e th e fi rst c o nd itio n
is sa tisfi e d . L o o k ing a t F ig . 4-(i), it is e a sy to v e rify th a t c o nd itio ns (2)-(6)
h o ld fo r Hj+ 1. 2

T h e a lg o rith m in F ig . 2 b u ild s a se q u enc e o f g ra y e d g e s in G(A), (S1, S2),
th a t c o rre sp o nd s to a to ta l le g a l se q u enc e o f v e rtic e s fro m H. T h e se q u enc e
(S1, S2) is b u ilt b y a re p e a te d a p p lic a tio n o f T h e o re m 12. It g re e d ily re m o v e s
e x te rna l e d g e s in G(A) fro m a n a llo w e d su b se t a nd p e rfo rm s th e c o rre sp o nd ing
tra nslo c a tio ns (ste p (2).(a)). W h en th e a llo w e d su b se t c o nta ins o nly inte rna l
g ra y e d g e s, th e a lg o rith m re p e a ts th e la st tra nslo c a tio ns in a re v e rse o rd e r
(th e re b y c a nc e lling th e m ) u ntil a no th e r v e rte x in th e a llo w e d su b se t b e c o m e s
e x te rna l (ste p (2).(b)). F ig u re 3 d e sc rib e s a n e x a m p le o f a ru n o f th e a lg o -
rith m . E v e ry tra nslo c a tio n in th e a lg o rith m is a p p lie d a t m o st tw ic e a nd so
th e a lg o rith m p e rfo rm s a t m o st 2n tra nslo c a tio ns.

5 An O (n3/2
√

lo g (n)) T im e Im p le m enta tio n o f th e Alg o rith m

T h e a lg o rith m in F ig . 2 c a n b e im p le m ente d inO(n2) tim e in a re la tiv e ly sim p le

m a nner. W e p ro v id e b e lo w a n O(n3/2
√

lo g (n)) a lg o rith m . T h e im p le m enta tio n

fo llo w s c lo se ly th e id e a s o f [10] a nd [15].

W e id entify a g ra y e d g e (i, i+ 1) b y i a nd re fe r to (i+ 1) a s th e rem ote end o f
i. T h e d a ta stru c tu re w e u se fo r m a inta ining th e g eno m e A is a s fo llo w s.

(1) A d o u b ly link e d list o fO(
√

n
lo g (n)

) b lo ck s. W e p a rtitio n πA into c o ntinu o u s

b lo ck s su ch th a t th e siz e o f e v e ry b lo ck is a t le a st 1
2

√

n lo g (n) a nd a t m o st

2
√

n lo g (n).

(2) A b a la nc e d se a rch tre e fo r e v e ry b lo ck . T h e tre e c o nta ins th e e d g e s in
th e b lo ck o rd e re d b y th e p o sitio ns o f th e ir re m o te end s. W e u se b a la nc e d
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Alg o rith m 2 A n algorith m for solving S RT N L

1 : L e t V b e th e se t o f g ra y e d g e s in G(A) th a t a re in no n-triv ia l c o m p o nents
2: S1 = S2 = ∅
3: Φ = ∅
4: w h ile V 6= ∅ d o
5: w h ile th e re e x ists a n e x te rna l g ra y e d g e v ∈ V in G(A) d o
6: R e m o v e v fro m V
7: if v is no t e q u iv a lent to th e fi rst e le m ent in S2 th en
8: Ap p end v to S1

9: Ap p end φ(v) to Φ
1 0 : A← A · φ(v)
1 1 : end if
1 2: end w h ile
1 3: if V = ∅ th en
1 4: re tu rn φ(S1, S2)
1 5: end if
1 6: w h ile a ll th e g ra y e d g e s in V a re inte rna l in G(A) d o
1 7: L e t v b e th e la st g ra y e d g e in S1. R e m o v e v fro m S1

1 8: P re p end v to S2

1 9: L e t φ b e th e la st tra nslo c a tio n in Φ . R e m o v e φ fro m Φ
20 : A← A · φ
21 : end w h ile
22: end w h ile

tre e s th a t su p p o rt sp lit a nd c o nc a tena te o p e ra tio ns in lo g a rith m ic tim e ,
su ch a s re d -b la ck tre e s o r 2-4 tre e s. W e u se T [v] to d eno te th e su b tre e
ro o te d a t v a nd c o nta ining a ll its d e sc end a nts.

(3) An n-a rra y o f b lo ck p o inte rs. T h e ith entry in th e a rra y p o ints to th e
b lo ck c o nta ining i.

W e a d d th e fo llo w ing fi e ld s to th e a b o v e d a ta stru c tu re .

(1) F o r e a ch e d g e w e k e e p a n e x te rna l-b it. If th e e x te rna l-b it is on th en th e
e d g e is e x te rna l, o th e rw ise it is inte rna l.

(2) F o r e a ch b lo ck w e k e e p th e fo llo w ing fi e ld s: (i) a c o u nte r o f e x te rna l e d g e s
in V , (ii) a c o u nte r o f ch ro m o so m e s’ le ft ta ils, a nd (iii) a re v e rse -fl a g . If
th e re v e rse -fl a g o f a b lo ck is on th en th e o rd e r a nd sig ns o f th e e le m ents
in th e b lo ck a re re v e rse d .

(3) F o r e v e ry su b tre e T [v] o f e a ch b lo ck ’s se a rch tre e w e k e e p th e fo llo w ing
fi e ld s in its ro o t v: (i) c o u nte rs o f e x te rna l a nd inte rna l e d g e s in V , (ii)
a d ire c tio n-fl ip -fl a g a nd (iii) a n e x te rna l-fl ip -fl a g . If th e e x te rna l-fl ip -fl a g
o f a v e rte x v is on th en in T [v] th e e x te rna l-b its o f a ll th e e le m ents
a re fl ip p e d a nd th e c o u nte rs o f inte rna l a nd e x te rna l e le m ents fro m V
e x ch a ng e th e ir v a lu e s. If th e d ire c tio n-fl ip -fl a g o f a v e rte x v is on th en in
T [v] th e o rd e r o f th e e le m ents is re v e rse d .
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g eno m e A S1 S2 V

(−8,−2, 7, 3), (1, 6, 5,−4) ∅ ∅ 1, 2, 4, 5, 6, 7

(−8,−2,−1), (−3,−7, 6, 5,−4) 1 ∅ 2, 4, 5, 6, 7

(−3,−2,−1), (−8,−7, 6, 5,−4) 1, 2 ∅ 4, 5, 6, 7

(−8,−2,−1), (−3,−7, 6, 5,−4) 1 2 4, 5, 6, 7

(−8,−2,−1), (−3,−7, 6, 5,−4) 1 2 4, 5, 6

(−8,−2, 7, 3), (1, 6, 5,−4) ∅ 1, 2 4, 5, 6

(1, 6, 7, 3), (−8,−2, 5,−4) 6 1, 2 4, 5

(−8,−2, 5, 6, 7, 3), (1,−4) 6, 5 1, 2 4

(−8,−2, 5, 6, 7, 3), (1,−4) 6, 5 1, 2 ∅

(−8,−2,−1), (−3,−7,−6,−5,−4)

(−3,−2,−1), (−8,−7,−6,−5,−4)

F ig . 3. An example for a run of the algorithm on genomes
A = {(−8,−2, 7, 3), (1 , 6, 5,−4)} and B = {(1 , 2, 3), (4, . . . , 8)}. A gray edge
(i, i + 1 ) (vertex of H) is represented by i. The underlined segments denote a
translocation the algorithm chose. The algorithm ends when V = ∅. The top 9 lines
describe the steps of the algorithm. The two bottom lines show the application of
φ(S2) = φ(1 , 2) on the fi nal genome produced by the algorithm, producing B.

W e c a n c le a r th e d ire c tio n-fl ip -fl a g o f a no d e b y re v e rsing th e o rd e r o f its
ch ild ren a nd fl ip p ing th e d ire c tio n-fl ip -fl a g in e a ch o f th e m . W e c a n c le a r th e
e x te rna l-fl ip -fl a g in a no d e b y e x ch a ng ing th e v a lu e s o f th e c o u nte rs o f e x te rna l
a nd inte rna l e d g e s in V , fl ip p ing th e e x te rna l-fl ip -fl a g in e a ch o f its ch ild ren
a nd fl ip p ing th e e x te rna l-b it o f th e e le m ent re sid ing a t th e no d e . O ne c a n
v ie w th is p ro c e d u re a s “ p u sh ing d o w n” th e fl a g s. An d ire c tio n-fl ip -fl a g a nd a n
e x te rna l-fl ip -fl a g th a t a re on a re “ p u sh e d d o w n” w h ene v e r T [v] is se a rch e d .

W e im p le m ent th e a lg o rith m u sing th e a b o v e d a ta stru c tu re s. A se a rch fo r a n
e x te rna l e d g e in V is d o ne a s fo llo w s. W e tra v e rse th e list o f b lo ck s u ntil w e
re a ch a b lo ck th a t c o nta ins e x te rna l e d g e s fro m V . W e th en se a rch th e tre e o f
th e b lo ck fo r a n e x te rna l e d g e i. W e lo c a te e le m ent i + 1 (th e re m o te end o f
e d g e i) u sing th e n-a rra y a nd a se a rch o f its b lo ck .

L e t φ b e a tra nslo c a tio n o n A o p e ra ting o n th e ch ro m o so m e s X = (X1, X2)

a nd Y = (Y1, Y2). T h en φ is p e rfo rm e d in O(
√

n lo g (n)) tim e a s fo llo w s:

(1) S p lit a t m o st six b lo ck s so th a t e a ch o f th e fo u r se g m ents X1, X2, Y1 a nd
Y2 c o rre sp o nd s to a u nio n o f b lo ck s. If φ is a p re fi x -p re fi x tra nslo c a tio n
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e x ch a ng e th e b lo ck s o f X1 a nd Y1. O th e rw ise , re v e rse th e o rd e r a nd fl ip
th e re v e rse -fl a g s o f th e b lo ck s o f X2 a nd Y1 a nd th en e x ch a ng e th e b lo ck s
o f X2 a nd Y1.

(2) W e no w h a v e to m o d ify th e tre e s o f e a ch b lo ck to re fl e c t th e o rd e r a nd
d ire c tio n ch a ng e s. T h is is d o ne a s fo llo w s. T ra v e rse a ll th e b lo ck s a nd fo r
e a ch b lo ck :
(a ) L e t T b e th e b a la nc e d se a rch tre e o f th e b lo ck . If φ is a tra nslo c a tio n

o n a n e d g e i in V a nd i is c o nta ine d in th e b lo ck : d e c re a se b y 1 th e
c o u nte rs o f e x te rna l e d g e s in V o f th e b lo ck a nd o f e v e ry no d e in T
th a t c o nta ins i in its su b tre e .

(b ) S p lit T into a t m o st se v en su b tre e s su ch th a t e a ch o f th e se g m ents
X1, X2, Y1 a nd Y2 h a s a c o rre sp o nd ing su b tre e .

(c ) If th e b lo ck c o rre sp o nd s to a se g m ent o f X1, X2, Y1 a nd Y2 fl ip th e
e x te rna l-fl ip -fl a g a t th e ro o ts o f tw o su b tre e s a c c o rd ing to T a b le 1.

(d ) If φ is a p re fi x -p re fi x tra nslo c a tio n, e x ch a ng e th e su b tre e s o f X1 a nd
Y1. O th e rw ise , e x ch a ng e th e su b tre e s o f X2 a nd Y1 a nd fl ip th e
d ire c tio n-fl ip -fl a g s o f b o th .

(e ) C o nc a tena te th e se v en su b tre e s into T .
(3) If ne c e ssa ry , c o nc a tena te sm a ll b lo ck s a nd sp lit la rg e b lo ck s su ch th a t th e

siz e o f e a ch b lo ck is a t le a st 1
2

√

n lo g (n) a nd a t m o st 2
√

n lo g (n).

T ab le 1
The subtrees for which the external-fl ip-fl ag is fl ipped as a function of translocation
type and block type.

B lo ck X1 X2 Y1 Y2

p re fi x -p re fi x X2, Y2 X1, Y1 X2, Y2 X1, Y1

p re fi x -su ffi x X2, Y1 X1, Y2 X1, Y2 X2, Y1

T h e o re m 1 3 S RT N L can be solved in O(n3/2
√

lo g (n)). 2

Ack no w le d g m ents

T h is stu d y w a s su p p o rte d in p a rt b y th e R a y m o nd a nd B e v e rly S a ck le r ch a ir
in B io info rm a tic s a nd b y th e Isra e l S c ienc e F o u nd a tio n (g ra nt no . 802/ 08).

R e fe renc e s

[1] D .A. B a d e r, B . M .E . M o re t, a nd M . Y a n. A line a r-tim e a lg o rith m fo r
c o m p u ting inv e rsio n d ista nc e b e tw e en sig ne d p e rm u ta tio ns w ith a n e x -
p e rim enta l stu d y . J ou rnal of C om pu tational B iology , 8(5):483– 491, 2001.

22



[2] A. B e rg e ro n. A v e ry e le m enta ry p re senta tio n o f th e H a nnenh a lli-P e v zne r
th e o ry . D iscrete A pplied M ath em atics, 146(2):134– 145, 2005.

[3] A. B e rg e ro n, J . M ix ta ck i, a nd J . S to y e . R e v e rsa l d ista nc e w ith o u t h u rd le s
a nd fo rtre sse s. In P roceed ings of th e 1 5 th A nnu al S y m posiu m on C om bi-
naotrial P attern M atch ing (C P M ), v o lu m e 3109 o f L N C S , p a g e s 388– 399.
S p ring e r, 2004.

[4] A. B e rg e ro n, J . M ix ta ck i, a nd J . S to y e . O n so rting b y tra nslo c a tio ns.
J ou rnal of C om pu tational B iology , 13(2):567– 578, 2006.

[5] P . B e rm a n a nd S . H a nnenh a lli. F a st so rting b y re v e rsa l. In P roceed ings
of th e 7 th A nnu al S y m posiu m C om binatorial P attern M atch ing (C P M ),
v o lu m e 1075 o f L N C S , p a g e s 168– 185. S p ring e r, 1996.

[6] S . H a nnenh a lli. P o ly no m ia l a lg o rith m fo r c o m p u ting tra nslo c a tio n d is-
ta nc e b e tw e en g eno m e s. D iscrete A pplied M ath em atics, 71:137– 151, 1996.

[7] S . H a nnenh a lli a nd P . P e v zne r. T ra nsfo rm ing m en into m ic e (p o ly no m ia l
a lg o rith m fo r g eno m ic d ista nc e p ro b le m s). In P roceed ings of th e 3 6 th
A nnu al S y m posiu m on F ou nd ations of C om pu ter S cience (F O C S ), p a g e s
581– 592. IE E E C o m p u te r S o c ie ty P re ss, 1995.

[8] S . H a nnenh a lli a nd P . P e v zne r. T ra nsfo rm ing c a b b a g e into tu rnip : P o ly -
no m ia l a lg o rith m fo r so rting sig ne d p e rm u ta tio ns b y re v e rsa ls. J ou rnal
of th e A C M , 46:1– 27, 1999.

[9] H . K a p la n, R . S h a m ir, a nd R . E . T a rja n. F a ste r a nd sim p le r a lg o rith m fo r
so rting sig ne d p e rm u ta tio ns b y re v e rsa ls. S IA M J ou rnal of C om pu ting ,
29(3):880– 892, 2000.

[10] H . K a p la n a nd E . V e rb in. S o rting sig ne d p e rm u ta tio ns b y re v e rsa ls, re -
v isite d . J ou rnal of C om pu ter and S y stem S ciences, 70(3):321– 341, 2005.

[11] J . D . K e c e c io g lu a nd R . R a v i. O f m ic e a nd m en: Alg o rith m s fo r e v o lu -
tio na ry d ista nc e s b e tw e en g eno m e s w ith tra nslo c a tio n. In P roceed ings of
th e 6 th A nnu al A C M -S IA M S y m posiu m on D iscrete A lgorith m s (S O D A ),
p a g e s 604– 613. AC M P re ss, 1995.

[12] G . L i, X . Q i, X . W a ng , a nd B . Z h u . A line a r-tim e a lg o rith m fo r c o m p u ting
tra nslo c a tio n d ista nc e b e tw e en sig ne d g eno m e s. In P roceed ings of th e 1 5 th
A nnu al S y m posiu m on C om binatorial P attern M atch ing (C P M ), v o lu m e
3109 o f L N C S , p a g e s 323– 332. S p ring e r, 2004.

[13] M . O z e ry -F la to a nd R . S h a m ir. An O(n3/2
√

lo g (n)) a lg o rith m fo r so rting
b y re c ip ro c a l tra nslo c a tio ns. In P roceed ings of th e 1 7 th A nnu al S y m po-
siu m on C om binatorial P attern M atch ing (C P M ), v o lu m e 4009 o f L N C S .
S p ring e r, 2006.

[14] M . O z e ry -F la to a nd R . S h a m ir. S o rting b y tra nslo c a tio ns v ia re v e rsa ls
th e o ry . J ou rnal of C om pu tational B iology , 14(4):408– 422, 2007.

[15] E . T a nnie r, A. B e rg e ro n, a nd M . S a g o t. Ad v a nc e s o n so rting b y re v e rsa ls.
D iscrete A pplied M ath em atics, 155(6-7):881– 888.

[16] L . W a ng , D . Z h u , X . L iu , a nd S . M a . An o (n2) a lg o rith m fo r sig ne d
tra nslo c a tio n. J ou rnal of C om pu ter and S y stem S ciences, 70(3):284 –
299, 2005.

23



co m p lem en ted s.g .
L

{X, Y }

(c) Hj+ 2

M
EXT

X

u n o rien ted in tern a l

u n o rien ted ex tern a l

IN
INj+ 1

o rien ted ex tern a l

co m p lem eted s.g .

su b g ra p h (s.g .)

s.g .
L

{X, Y }

fu ll cu t (a ll ed g es ex ist)

cu t

co m p lem en ted cu t

in d ica to r fo r o v erla p w ith X

INj+ 2M′

(e) Hj+ 2

EXT IN

v

IN
INj

INj+ 2
IN

v

v

(f) Hj+ 2 · ρ(v)

M′EXT

M2

M1EXT

M3

M
EXT

(a) Hj

X

X

(g) Hj

M

M′

v

EXT

EXT

v

(b) Hj+ 1

IN
INj+ 2

v

IN
INj+ 1

(d) H′
j+ 1

M1 INEXT

M2

(j) H′
j+ 1 = Hj+ 1 · ρ(X)

INj+ 1

M3

v

X

X

(h) H′
j = Hj · ρ(X)

X

X
INEXT

v

M3

M2

M1
INj+ 1

(l) H′
j+ 1 · ρ(v) · ρ(X)

M3

INj+ 1

(i) Hj+ 1 = H′
j · ρ(wj+ 1)

X

X

v

INj
IN

(k) H′
j+ 1 · ρ(v)

IN
M1

M2

EXT

X

X

v

X

X

M1

M2

M3

IN
INj

v

EXT

M2

M3

INj+ 1
M1

v

EXT IN

F ig . 4. Illustrations for the proof of Theorem 1 2 .

24





Chapter 3

Sorting by Reciprocal Translocations via
Reversals Theory

43



JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 14, Number 4, 2007

© Mary Ann Liebert, Inc.

Pp. 408–422

DOI: 10.1089/cmb.2007.A003

Sorting by Reciprocal Translocations via

Reversals Theory

MICHAL OZERY-FLATO and RON SHAMIR

ABSTRACT

The understanding of genome rearrangements is an important endeavor in comparative

genomics. A major computational problem in this field is finding a shortest sequence of

genome rearrangements that transforms, or sorts, one genome into another. In this paper

we focus on sorting a multi-chromosomal genome by translocations. We reveal new relation-

ships between this problem and the well studied problem of sorting by reversals. Based on

these relationships, we develop two new algorithms for sorting by reciprocal translocations,

which mimic known algorithms for sorting by reversals: a score-based method building on

Bergeron’s algorithm, and a recursive procedure similar to the Berman-Hannenhalli method.

Though their proofs are more involved, our procedures for reciprocal translocations match

the complexities of the original ones for reversals.

Key words: genome rearrangement, sorting by translocations, sorting by reversals.

1. INTRODUCTION

FOR OVER A DECADE NOW, much effort has been put into large-scale genome sequencing projects.

Analysis of the sequences that have accumulated so far showed that genome rearrangements play an

important role in the evolution of species. A major computational problem in the research of genome

rearrangements is finding a most parsimonious sequence of rearrangements that transforms one genome

into another. This is called the genomic sorting problem, and the corresponding number of rearrangements

is called the rearrangement distance between the two genomes. Genomic sorting gives rise to a spectrum

of fascinating combinatorial problems, each defined by the set of allowed rearrangement operations and

by the representation of the genomes.

In this paper we focus on the problem of sorting by translocations. We reveal new similarities between

sorting by translocations and the well studied problem of sorting by reversals. The study of the problem

of sorting by translocations is essential for the full comprehension of any genomic sorting problem that

permits translocations. Below we review the relevant previous studies and summarize our results. Formal

definitions are provided on the next section.
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Following the pioneering work by Nadeau and Taylor (1984), reversals and translocations are believed

to be very common in the evolution of mammalian species. Reversals (or inversions) reverse the order and

the direction of transcription of the genes in a segment inside a chromosome. Translocations exchange

tails between two chromosomes. A translocation is reciprocal if none of the exchanged tails is empty.

The genomic sorting problem where the allowed rearrangement operations are reversals (respectively,

reciprocal translocations) is referred to as sorting by reversals, hereafter SBR (respectively, sorting by

reciprocal translocations, hereafter SRT).

Both SBR and SRT use restricted models that allow for a single type of genome rearrangement. Clearly,

a model that allows both reversals and translocations is biologically more realistic than each of these two

restricted models. Still, the study of sorting by reversals only or by translocations only is of great importance

to the understanding of more complex models that allow for several types of genome rearrangements. For

example, the problem of sorting by reversals, translocations, fissions, and fusions is reduced to SBR in

polynomial time (Hannenhalli and Pevzner, 1995; Ozery-Flato and Shamir, 2003; Tesler, 2002a). In many

cases, algorithms for restricted models can be integrated into algorithms for complex models (Ozery-Flato

and Shamir, 2006a; Tesler, 2002a).

SBR and SRT were both proven to be polynomial. Hannenhalli and Pevzner (1999) gave the first poly-

nomial algorithm for SBR; since then, other, more efficient algorithms and simplifications of the analysis

have been presented. Berman and Hannenhalli (1996) presented a recursive algorithm for SBR. Kaplan

et al. (2000) simplified the analysis and gave an O.n2/ algorithm for SBR. Using a linear time algorithm

by Bader et al. (2001) for computing the reversal distance, the algorithm of Berman and Hannenhalli can

be implemented in O.n2/. A score-based algorithm for SBR was presented by Bergeron (2005). Tannier

et al. (2007) presented an elegant algorithm for SBR that can be implemented in O.n3=2
p

log.n// using

a clever data structure due to Kaplan and Verbin (2005).

SRT was first introduced by Kececioglu and Ravi (1995) and was given a polynomial time algorithm

by Hannenhalli (1996). Bergeron et al. (2006a) pointed to an error in Hannenhalli’s proof of the re-

ciprocal translocation distance formula and consequently in Hannenhalli’s algorithm. They presented a

new proof and gave an O.n3/ algorithm for SRT. Recently, we (Ozery-Flato and Shamir, 2006a) proved

that the algorithm of Tannier et al. (2007) for SBR can be adapted to solve SRT in O.n3=2
p

log.n//)

time.

Can the rich theory on SBR be used to solve SRT? It is well known that a translocation on a multi-

chromosomal genome can be simulated by a reversal on a concatenation of the chromosomes (Hannenhalli

and Pevzner, 1995). However, different translocations require different concatenations. In addition, intra-

chromosomal reversals do not have matching translocations. Last but not least, the formulas of the reversal

distance and the reciprocal translocation distance are different. They differ in particular in the parameters

that concern difficult structures for SBR/SRT, which are sometimes referred to as “bad components.”1

Thus, from a first glance the similarity between SRT and SBT is rather superficial.

In Ozery-Flato and Shamir (2006a) we introduced a new auxiliary graph for the analysis of SRT (the

“overlap graph with chromosomes” of two multi-chromosomal genomes, an extension of the “overlap

graph” of two uni-chromosomal genomes) and used it to adapt the fastest extant algorithm for SBR

to SRT (Ozery-Flato and Shamir, 2006a; Tannier et al., 2007). In this paper we reveal new relationships

between SRT and SBR. Based on these relationships we develop two new algorithms for SRT, which mimic

known algorithms for SBR: a score-based method building on Bergeron’s algorithm (2005) and a recursive

procedure similar to the Berman and Hannenhalli (1996) method. Though the proofs of the algorithms

are more involved than those of their counterparts for SBR, our procedures for translocations match the

complexities of the original ones for reversals: the score-based algorithm performs O.n2/ operations on

O.n/-long bit vectors; the recursive algorithm runs in O.n2/ time.

The paper is organized as follows. Section 2 gives the necessary preliminaries. Section 3 presents the

score-based algorithm and Section 4 presents the recursive algorithm. Related genomic sorting problems,

as well as possible applications of our results and future research problems, are discussed in Section 5.

1Hurdles (Hannenhalli and Pevzner, 1999; Kaplan et al., 2000) for SBR, leaves (Bergeron et al., 2006a) (equivalently,

minimal sub-permutations [Hannenhalli, 1996]), for SRT.
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2. PRELIMINARIES

This section provides a basic background for the analysis of SRT. We follow to a large extent the

nomenclature and notation of Hannenhalli (1996) and Kaplan et al. (2000). In the model we consider, a

genome is a set of chromosomes. A chromosome is a sequence of genes. A gene is identified by a positive

integer. All genes in the genome are distinct. When it appears in a genome, a gene is assigned a sign of

plus or minus. For example, the following genome consists of 8 genes in two chromosomes:

A1 D f.1;�3;�2; 4;�7; 8/; .6; 5/g:

The reverse of a sequence of genes I D .x1; : : : ; xl/ is �I D .�xl ; : : : ;�x1/. A reversal reverses a

segment of genes inside a chromosome. Two chromosomes, X and Y , are identical if either X D Y or

X D �Y . Therefore, flipping chromosome X into �X does not affect the chromosome it represents.

A signed permutation � D .�1; : : : ; �n/ is a permutation on the integers f1; : : : ; ng, where a sign of

plus or minus is assigned to each number. If A is a genome with the set of genes f1; : : : ; ng then any

concatenation �A of the chromosomes of A is a signed permutation of size n. In the following, we assume

for simplicity and without loss of generality that there is a concatenation �B of the chromosomes in the

target genome B which is the identity permutation. For example,

B D f.1; 2; : : : ; 5/; .6; 7; 8/g:

Let X D .X1; X2/ and Y D .Y1; Y2/ be two chromosomes, where X1, X2, Y1, Y2 are sequences of

genes. A translocation cuts X into X1 and X2 and Y into Y1 and Y2 and exchanges segments between

the chromosomes. It is called reciprocal if X1, X2, Y1 and Y2 are all non-empty. There are two ways to

perform a translocation on X and Y . A prefix-suffix translocation switches X1 with Y2 resulting in:

.X1; X2/; .Y1; Y2/) .�Y2; X2/; .Y1;�X1/:

A prefix-prefix translocation switches X1 with Y1 resulting in:

.X1; X2/; .Y1; Y2/) .Y1; X2/; .X1; Y2/:

Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation by a flip of one of the

chromosomes followed by a prefix-suffix (respectively, prefix-prefix) translocation. As was observed by

Hannenhalli and Pevzner (1995), a translocation on A can be simulated by a reversal on �A in the following

way:

.: : : ; X1; X2; : : : ; Y1; Y2; : : : /) .: : : ; X1;�Y1; : : : ;�X2; Y2; : : : /:

The type of translocation depends on the relative orientation of X and Y in �A (and not on their order): if

the orientation is the same, then the translocation is prefix-suffix, otherwise it is prefix-prefix. The segment

between X2 and Y1 may contain additional chromosomes that are flipped and thus unaffected.

For an interval of genes I D .i1; : : : ; ik/ define Tails.I / D fi1;�ikg. Note that Tails.I / D Tails.�I /.

For a genome A1 define Tails.A1/ D [X2A1
Tails.X/. For example:

Tails.f.1;�3;�2; 4;�7; 8/; .6; 5/g/D f1;�8; 6;�5g:

Two genomes A1 and A2 are called co-tailed if Tails.A1/ D Tails.A2/. In particular, two co-tailed genomes

have the same number of chromosomes. Note that if A2 was obtained from A1 by performing a reciprocal

translocation then Tails.A2/ D Tails.A1/. Therefore, SRT is defined only for genomes that are co-tailed.

For the rest of this paper, the word “translocation” refers to a reciprocal translocation, and we assume that

the given genomes, A and B , are co-tailed.
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FIG. 1. The cycle graph G.A1; B1/, where A1 D f.1;�3;�2; 4;�7; 8/; .6; 5/g and B1 D f.1; : : : ; 5/; .6; 7; 8/g.

Dotted lines correspond to gray edges. The gray edge .1; 2/ is internal, whereas .4; 5/ is external. .2; 3/ is an adjacency.

2.1. The cycle graph

Let N be the number of chromosomes in A (equivalently, B). We shall always assume that both A

and B contain genes f1; : : : ; ng. The cycle graph of A and B , denoted G.A; B/, is defined as follows.

The set of vertices is [n
iD1fi

0; i1g. For every pair of adjacent genes in B , i and i C 1, add a gray

edge .i; i C 1/ � .i1; .i C 1/0/. For every pair of adjacent genes in A, i and j , add a black edge

.i; j / � .out.i/; in.j //, where out.i/ D i1 if i has a positive sign in A and otherwise out.i/ D i0, and

in.j / D j 0 if j has a positive sign in A and otherwise in.j / D j 1. An example is given in Figure 1.

There are n� N black edges and n �N gray edges in G.A; B/. A gray edge .i; i C 1/ is external if the

genes i and i C 1 belong to different chromosomes of A, otherwise it is internal.

Every vertex in G.A; B/ has degree 2 or 0, where vertices of degree 0 (isolated vertices) belong to

Tails.A/ (equivalently, Tails.B/). Therefore, G.A; B/ is uniquely decomposable into cycles with alternating

gray and black edges. An adjacency is a cycle with two edges.

2.2. The overlap graph with chromosomes

Place the vertices of G.A; B/ along a straight line according to their order in �A. Now, every gray

edge can be associated with an interval of vertices of G.A; B/. Two intervals overlap if their intersection

is not empty but neither contains the other. The overlap graph with chromosomes of A and B w.r.t. �A,

denoted �.A; B; �A/, is defined as follows. There are two types of nodes. The first type corresponds to

gray edges in G.A; B/. The second type corresponds to chromosomes of A. Two nodes are connected if

their associated intervals overlap (Fig. 2). For the rest of this paper we will refer to overlap graphs with

chromosomes as �-graphs.

In order to avoid confusion, we will refer to nodes that correspond to chromosomes as “chromosomes”

and reserve the word “vertex” for the nodes that correspond to gray edges of G.A; B/. Observe that

a vertex in �.A; B; �A/ is external iff there is an edge connecting it to a chromosome. Note that the

internal/external state of a vertex in �.A; B; �A/ does not depend on �A (the partition of the chromosomes

is known from A). A vertex in �.A; B; �A/ is oriented if its corresponding edge connects two genes with

different signs in �A, otherwise it is unoriented.

Let OV.A; B; �A/ be the subgraph of �.A; B; �A/ induced by the set of nodes that correspond to gray

edges (i.e., excluding the chromosomes’ nodes). We shall use the word “component” for a connected

component of OV.A; B; �A/. A component is external if at least one of the vertices in it is external,

otherwise it is internal. A component is trivial if it is composed of one internal vertex. A trivial component

FIG. 2. The overlap graph with chromosomes �.A1; B1; �A1
/, where A1 and B1 are the genomes from Figure 1 and

�A1
D .1;�3;�2; 4;�7; 8; 6; 5/. The graph induced by the vertices within the dashed rectangle is OV.A1; B1; �A1

/.
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corresponds to an adjacency. The span of a component M is the minimal interval of genes I.M/ D Œi; j � �

�A that contains the interval of every vertex in M . If the spans of two components intersect then either

they overlap by at most gene, or one span contains the other. Clearly, I.M/ is independent of �A iff M is

internal. Thus the set of internal components in �.A; B; �A/ is independent of �A. Denote by IN .A; B/

the set of non-trivial internal components in �.A; B; �A/. The following lemma follows from the definition

of “sub-permutations” in Hannenhalli (1996):

Lemma 1. Suppose I is the span of an internal component. Then the genes of I form a continuous

interval I 0 in one of the chromosomes of B and Tails.I / D Tails.I 0/.

2.3. The reciprocal translocation distance

Let c.A; B/ denote the number of cycles in G.A; B/.

Theorem 1 (Bergeron et al., 2006a; Hannenhalli, 1996). The reciprocal translocation distance be-

tween A and B is d.A; B/ D n � N � c.A; B/ C F.A; B/, where F.A; B/ � 0 and F.A; B/ D 0 iff

IN .A; B/ D ;.

Let �c denote the change in the number of cycles after performing a translocation on A. Then �c 2

f�1; 0; 1g (Hannenhalli, 1996). A translocation is proper if �c D 1. A translocation is safe if it does not

create any new non-trivial internal component. A translocation � is valid if d.A � �; B/ D d.A; B/ � 1. It

follows from Theorem 1 that if IN .A; B/ D ;, then every safe proper translocation is necessarily valid.

In a previous study (Ozery-Flato and Shamir, 2006a), we presented a generic algorithm for SRT that uses

a sub-procedure for solving SRT when IN .A; B/ D ;. The algorithm focuses on the efficient elimination

of the non-trivial internal components. We showed that the work performed by this generic algorithm, not

including the sub-procedure calls, can be implemented in linear time. This led to the following theorem:

Theorem 2 (Ozery-Flato and Shamir, 2006a). SRT is linearly reducible to SRT with IN .A; B/ D ;.

By the theorem above, it suffices to solve SRT assuming that IN .A; B/ D ;. Both algorithms that we

describe below will make this assumption.

2.4. The effect of a translocation on the overlap graph with chromosomes

Let �CH � �CH .A; �A/ be the linear order of the chromosomes in A, as defined by �A. Slightly

abusing terminology, we extend the definition of the �-graph to include �CH . In other words, an �-graph

carries also a permutation of its chromosome nodes defined by �A. Two chromosomes in �.A; B; �A/ are

called consecutive if they are consecutive in �CH .

Let H D �.A; B; �A/ and let v be any vertex in H . Denote by N.v/ � N.v; H/ the set of vertices

that are neighbors of v in H , including v itself (but not including chromosome neighbors). Denote by

CH.v/ � CH.v; H/ the set of chromosomes that are neighbors of v in H . Clearly, if v is external then

jCH.v/j D 2, otherwise CH.v/ D ;.

Every external gray edge e defines one proper translocation that cuts the black edges incident to e. (Out

of the two possibilities of prefix-prefix or prefix-suffix translocations, exactly one would be proper.) For

an external vertex v denote by �.v/ the proper translocation that the corresponding gray edge defines on

A. If v is an oriented external vertex then �.v/ can be mimicked by a reversal O�.v/ on �A. For an oriented

external vertex v define H � �.v/ D �.A � �.v/; B; �A � O�.v//. The following two lemmas refine claims in

Ozery-Flato and Shamir (2006a).

Lemma 2. Let v be an oriented external vertex in H and suppose the chromosomes in CH.v/ are

consecutive. Then H � �.v/ is obtained from H by the following operations. (i) Complement the subgraph

induced by N.v/ and flip the orientation of every vertex in N.v/. (ii) For every vertex u 2 N.v/ complement

the edges between u and CH.u/ [ CH.v/. In particular, the external/internal state of a vertex u 2 N.v/

is flipped iff u is internal or CH.u/ D CH.v/.
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Proof. The correctness of (i) follows immediately from Observation 4.1 in Kaplan et al. (2000).

To prove (ii), let u 2 N.v/. Since the chromosomes in CH.v/ are consecutive, u is either internal or

jCH.u/ \ CH.v/j 2 f1; 2g. In each of these cases, CH.u/ is complemented w.r.t. CH.u/ [ CH.v/ (for

illustration, see Fig. 3). Suppose w … N.v/. Let Iv and Iw be the intervals associated with v and w

respectively (see Section 2.2). Then there are three possible cases:

Case 1: Iw � Iv and w is internal. Then Iw is contained entirely in one of the exchanged segments.

Thus w remains internal and hence CH.w; H � �.v// D CH.w; H/ D ;.

Case 2: Iw � Iv and w is external. Then CH.w; H/ D CH.v; H/ and the two endpoints of Iw exchange

their chromosomes after �.v/ is performed. Thus CH.w; H � �.v// D CH.w; H/.D CH.v; H//.

Case 3: Iw \ Iv D ; or Iv � Iw . In these two cases the endpoints of Iw are not affected by �.v/ and

hence CH.w; H � �.v// D CH.w; H/.

We shall sometimes need to change the chromosome order or flip a chromosome. These operations can

be mimicked by reversals on �A but do not correspond to translocations, and thus are not covered by

Lemma 2. For an interval of chromosomes I � �A, let O�.I / denote the flip, i.e., reversal, of I in �A. Let

H � �.I / D �.A; B; �A � O�.I //.

Lemma 3. For an interval of chromosomes I � �A, H � �.I / is obtained from H by the following

operations. (i) Reverse the order of the chromosomes in I . (ii) Complement the subgraph induced by the

set fv W exactly one of the chromosomes in CH.v/ is contained in I g, and flip the orientation of every

vertex in it. In particular, if I is a single chromosome of A then H � �.I / is obtained by complementing

the subgraph induced by the neighbors of I in H , and flipping the orientation of every vertex in it.

Proof. The vertices affected by �.I / are the ones that overlap I . A vertex v overlaps I iff exactly

one of its endpoints belong to I (hence it must be external). The rest of the proof follows directly from

Observation 4.1 in Kaplan et al. (2000).

We refer to two �-graphs of the same pair of genomes A and B , irrespective of the concatenation �A,

as equivalent. Clearly, we can transform an �-graph to any other equivalent graph by a sequence of flips

of chromosomes intervals, as defined by Lemma 3.

FIG. 3. The effect of performing a translocation, mimicked by a reversal, on overlapping intervals. X1, X2, and

X3 are chromosomes, and the dashed lines denote the borders between them in the concatenation .X1; X2; X3/. The

letters x1; : : : ; x8 denote the endpoints of the intervals (the endpoints are vertices of the cycle graph). The interval v

corresponds to an (external) edge on which a translocation is performed.
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Observation 1. Let H and H 0 be two equivalent graphs in which v is an oriented external vertex.

Then the set of internal components is the same for H � �.v/ and H 0 � �.v/.

Proof. We can transform H � �.v/ into H 0 � �.v/ by a sequence of flips of chromosomes intervals. By

Lemma 3, a flip of an interval of chromosomes does not change the internal/external state of any vertex,

and does not affect the neighborhood of any internal vertex. Thus H � �.v/ and H 0 � �.v/ must have the

same set of internal components.

Let v be an external vertex in H , and let H 0 be an equivalent graph to H in which v is oriented,

possibly H D H 0 if v is already oriented in H . A key definition that will be crucial throughout the paper

is the following: �IN.H; v/ is the set of vertices that belong to external components in H (equivalently,

H 0) but are in non-trivial internal components in H 0 � �.v/. By Observation 1, if (i) v is an external vertex

in H , and (ii) H 0 is equivalent to H , then �IN.H; v/ D �IN.H 0; v/. It follows that in order to compute

�IN.H; v/, we can assume without loss of generality that v is oriented and the chromosomes in CH.v/

are consecutive. As we shall see, the additional work required to satisfy this assumption will not change

the overall complexity of the algorithms.

3. A SCORE-BASED ALGORITHM

In this section, we present a score-based algorithm for SRT when IN .A; B/ D ;. This algorithm is

similar to an algorithm by Bergeron (2005) for SBR. Denote by NIN.v/ and NEXT.v/ the neighbors of

v that are respectively internal and external. It follows that NIN.v/ [ NEXT.v/ [ fvg D N.v/. For two

chromosomes X and Y , let VXY D fv W CH.v/ D fX; Y gg.

Lemma 4. Let X and Y be two consecutive chromosomes in H D �.A; B; �A/. Suppose v 2 VXY

is oriented. Let w 2 N.v/. If w has no external neighbors in H � �.v/ then NEXT.w/ � NEXT.v/ and

NIN.v/ � NIN.w/.

Proof. It follows from Lemma 2 that if u 2 .NEXT.w/ n NEXT.v// [ .NIN.v/ n NIN.w// then u is an

external neighbor of w in H � �.v/.

For each vertex v in H D �.A; B; �A/ we define the score of v as jNIN.v/j� jNEXT.v/j. The following

lemma lays the basis for the score-based approach and is used by the implementation of the recursive

algorithm as well.

Lemma 5. Let X and Y be two consecutive chromosomes in H D �.A; B; �A/ for which VXY ¤ ;.

Let O � VXY be a set of oriented (external) vertices and suppose O ¤ ;. Let v 2 O be a vertex with a

maximal score in H . Then O \�IN.H; v/ D ;.

Proof. Assume u 2 O \ �IN.H; v/. Then u 2 N.v; H/, and by Lemma 4 NEXT.u/ � NEXT.v/

and NIN.v/ � NIN.u/. However, since v has the maximal score in O , we get NEXT.u/ D NEXT.v/ and

NIN.v/ D NIN.u/. Therefore, N.u/ D N.v/, and by Lemma 2 it follows that u is an isolated internal

vertex in H � �.v/, a contradiction to the assumption that u 2 �IN.H; v/.

Theorem 3. Let X and Y be two consecutive chromosomes in H D �.A; B; �A/. Let O be the set of

all the oriented external vertices in VXY and suppose O ¤ ;. Let v 2 O be a vertex that has the maximal

score in H . Let S D S.v/ be the set of all the vertices w that satisfy the following conditions in H :

1. w is a neighbor of v,

2. w is an unoriented external vertex and CH.w/ D CH.v/,

3. NEXT.w/ � NEXT.v/,

4. NIN.v/ � NIN.w/, and

5. O \N.v/ � NEXT.w/.
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If S D ; then �.v/ is safe. Otherwise, let w 2 S be a vertex that has a maximal score in H � �.X/, where

X 2 CH.v/. Then �.w/ is safe.

Proof. Suppose S D ; and assume v is unsafe. Let w 2 �IN.H; v/ be a neighbor of v in H . w

satisfies conditions 3 and 4 by Lemma 4, it is external and CH.w/ D CH.v/, by Lemma 2. It follows

from Lemma 5 that O \�IN.H; v/ D ;. Hence w is unoriented in H and the last condition is satisfied

(otherwise w has a neighbor from O in H � �.v/, in contradiction to the choice of w 2 �IN.H; v/).

It follows that w 2 S , a contradiction.

Suppose S ¤ ;. Let H 0 D H � �.X/, where X 2 CH.v/. Let w 2 S be a vertex with maximal score

in H 0. We prove below that if �IN.H 0; w/ ¤ ; then �IN.H 0; w/\ S ¤ ;, in contradiction to Lemma 5.

Let O1 D O \ N.v/ in H . Then in H 0 : (i) all the vertices in S are oriented (condition 2), (ii) O1

contains all the unoriented external vertices with CH D CH.v/ that are not neighbors of v, and (iii) there

are no edges between S and O1 [ fvg (condition 5). It follows that each vertex in O1 [ fvg remains

external after performing a translocation on any vertex in S .

Assume that �IN.H 0; w/ ¤ ;. Let u 2 �IN.H 0; w/ be a neighbor of w in H 0. We shall prove that

u 2 S . Clearly, u is an external vertex in H 0 and CH.u/ D CH.w/ D CH.v/. Since all the vertices in

O1 [ fvg are external and there are no edges between them and w in H 0, u … O1 [ fvg and there are no

edges between u and O1 [ fvg in H 0 (Lemma 4). Since all the unoriented vertices that are not neighbors

of v belong to O1, u must be oriented. It follows that in H , u satisfies conditions 1, 2 and 5. We now

prove that u satisfies conditions 3 and 4 in H as well, thus u 2 S—a contradiction to Lemma 5.

Suppose u does not satisfy condition 4 in H . Let x 2 NIN.v/nNIN.u/ in H . Since w satisfies condition 4

in H , x 2 NIN.w/ n NIN.u/ in H . Since x is internal, all its edges are the same in H and H 0. Hence

x 2 NIN.w/ nNIN.u/ in H 0. It follows from Lemma 4 that u has an external neighbor (x) in H 0 � �.w/, a

contradiction to u 2 �IN.H 0; w/. Thus u must satisfy condition 4 in H .

Suppose u does not satisfy condition 3 in H . Let z 2 NEXT.u/ nNEXT.v/ in H .

Case 1: X … CH.z/. Since w satisfies condition 3, z 2 NEXT.u/ n NEXT.w/ in H . Then in H 0:

z 2 NEXT.u/ n NEXT.w/ (Lemma 3). Then according to Lemma 4, u has an external neighbor (z) in

H 0 � �.w/, a contradiction to u 2 �IN.H 0; w/.

Case 2: X 2 CH.z/. In H : since w satisfies condition 3 and z … NEXT.v/ then z … NEXT.w/. Thus in

H 0: z … N.u/, z 2 N.v/ \ N.w/ (Lemma 3). Therefore, in H 0 � �.w/ the path u; z; v exists (Lemma 2),

a contradiction to u 2 �IN.H 0; w/ (since v is external in H 0 � �.w/).

Theorem 3 immediately implies the following polynomial time algorithm (Algorithm 1) for finding a

safe proper translocation using H D �.A; B; �A/:

Algorithm 1. Find_Safe_Translocation_Using_Scores ( H )

1. Let X and Y be two chromosomes for which there exists a common adjacent (external) vertex u.

2. Flip chromosomes, if necessary, to make X and Y consecutive and to make u oriented.

3. Let v 2 VXY be an oriented (external) vertex with a maximal score.

4. Compute the set of vertices S.v/ defined by Theorem 3.

5. If S.v/ D ; then return �.v/.

6. Otherwise,

a. Flip chromosome X or Y , and recalculate the score of the vertices.

b. Let w 2 S.v/ be a vertex with a maximal score.

c. Return �.w/.

The above algorithm can be implemented in O.n2/ time using O.n/ operations on O.n/-long bit

vectors, in a similar manner to the implementation of the algorithm of Bergeron (2005) for SBR. The

implementation is presented in Figure 4 and uses the following notations. The symbols v, X , ext and
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FIG. 4. An O.n2/ implementation of Algorithm 1 using O.n/-long bit vectors.

o represent bit vectors of size n � N . The vector v corresponds to the vertex v, where vŒu� D 1 iff

u is a neighbor of v. The vector X corresponds to chromosome X , where X Œv� D 1 iff X 2 CH.v/.

The chromosome vectors are ordered according to their order in �A. The vectors ext and o correspond to

the sets of external vertices and oriented vertices respectively. In other words, extŒu� D 1 iff u is external,

oŒu� D 1 iff u is oriented. The score of each vertex is stored in an integer vector score. The symbols ^,

_, ˚ and : respectively denote the bitwise-AND, bitwise-OR, bitwise-XOR and bitwise-NOT operators.

Steps 1–6 in the algorithm in Figure 4 locate a safe proper translocation �.v/. Steps 7 and 8 perform �.v/

and update the above vectors.

Corollary 1. The score-based algorithm solves SRT in O.n3/ time.
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4. A RECURSIVE ALGORITHM

In this section, we present a recursive algorithm for SRT when IN .A; B/ D ;. This algorithm is similar

to the algorithm of Berman and Hannenhalli (1996) for SBR.

4.1. The algorithm

Denote the number of vertices in a graph H by jH j. For two chromosomes, X and Y , let OXY

(respectively UXY ) be the set of oriented (respectively unoriented) vertices in H for which CH D fX; Y g.

Thus OXY [ UXY D VXY .

Theorem 4. Let H D �.A; B; �A/. If H contains an external vertex then it contains an external

vertex v for which �IN.H; v/ � jH j
2

.

Proof. Let X and Y be two chromosomes for which VXY ¤ ;. Assume w.l.o.g. that X and Y are

consecutive and OXY ¤ ;. Let v 2 OXY be a vertex with maximal score in H . If �IN.H; v/ D ; then we

are done since j�IN.H; v/j D 0 � jH j
2

. Suppose �IN.H; v/ ¤ ;. By Lemma 5, �IN.H; v/ \ OXY D ;.

Thus �IN.H; v/\UXY ¤ ;. Let H 0 D H ��.X/ and let u 2 UXY be a vertex with maximal score in H 0.

Let Mv D �IN.H; v/ and Mu D �IN.H 0; u/ D �IN.H; u/. We shall prove that Mu\Mv D ;, and hence

minfjMvj; jMujg �
jH j
2

. Assume x 2 Mv and let x D x0; : : : ; xk; xkC1 D v be a shortest path from x to

v in H . Then by Lemma 2, CH.xk/ D CH.v/ and x0; : : : ; xk�1 are internal. Hence the path x0; : : : ; xk

exists in H 0. Moreover, xk … OXY since the path x0; : : : ; xk exists in H � �.v/ and Mv \ OXY D ;.

Thus xk 2 UXY . If none of the vertices in fx0; : : : ; xkg is in N.u; H 0/ then the path remains intact in

H 0 � �.u/. Otherwise, let xj be the first vertex in x0; : : : ; xk that is in N.u; H 0/. Thus the path x0; : : : ; xj

exists in H 0 � �.v/. If xj 2 fx0; : : : ; xk�1g then xj is external in H 0 � �.u/. If xj D xk then by Lemma 5

Mu \ UXY D ; and hence xk … Mu. Thus in any case x D x0 … Mu.

Theorem 5. Let v be an external vertex in H D �.A; B; �A/. Suppose �IN.H; v/ ¤ ;. Let w 2

�IN.H; v/ be an external vertex in H . Then �IN.H; w/ � �IN.H; v/.

Proof. Assume w.l.o.g. that the chromosomes in CH.v/ are consecutive and v is an oriented (external)

vertex in H . By Lemma 2, w is a neighbor of v in H and CH.v/ D CH.w/ (otherwise it would

remain external in H � �.v/). Let x be a vertex in H such that x … �IN.H; v/. It suffices to prove that

x … �IN.H; w/. Let x D x0; : : : ; xk D y be a shortest path from x to an external vertex in H ��.v/. Then

in H : xj is neighbor of v iff xj is a neighbor of w, for j D 1::k (otherwise there is a path in H � �.v/

from w to the external vertex xk D y).

Case 1: w is oriented in H . Then the subgraphs induced by the vertices fx0; : : : ; xkg in H � �.w/ and

H � �.v/ are the same. Hence in H � �.w/: y is external and the path in x D x0; : : : ; xk D y exists.

Case 2: w is unoriented in H . In H � �.v/ the vertices in fx0; : : : ; xk�1g are internal and xk.D y/ is

external. Therefore xj 2 fx0; : : : ; xk�1g satisfies in H : (i) xj is a neighbor of v iff xj is external and

CH.xj / D CH.w/, and (ii) xj is not a neighbor of v iff xj is internal. Denote by H 0 the graph obtained

from H after flipping one of the chromosomes in CH.w/.

Case 2.a: At least one vertex in fx0; :::; xk�1g is a neighbor of v in H . Choose xj 2 fx0; : : : ; xk�1g
a neighbor of v in H such that fx0; : : : ; xj �1g are not neighbors of v in H . Then in H the following

conditions are satisfied: (i) x0; : : : ; xj is a path, (ii) all the vertices in fx0; : : : ; xj �1g are internal and (iii)

xj is external satisfying CH.xj / D CH.v/. Therefore in H 0 the path x0; : : : ; xj still exists and none of

the vertices in the path is a neighbor of v (equivalently, w). Hence, the path remains intact in H 0 � �.w/.

Case 2.b: None of the vertices in fx0; : : : ; xk�1g is a neighbor of v in H . Then the path x0; : : : ; xk

exists in H 0. v is not a neighbor of w in H 0 hence v remains external in H 0 � �.w/. If xk is a neighbor

of v (and w) in H 0 then the path x0; : : : ; xk; v exists in H 0 � �.w/ and hence x D x0 … �IN.H; w/. If xk

is not a neighbor of v and w in H 0 then xk is necessarily external in H 0 (equivalently, H ). In this case

the path x D x0; : : : ; xk D y remains intact in H 0 � �.w/ and x D x0 … �IN.H; w/.
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Corollary 2. Let v be an external vertex in H . Suppose M D �IN.H; v/ ¤ ;. Let HM be the

subgraph of H induced by the nodes in M [ CH.v/, and let w be an external vertex in HM . Then

�IN.H; w/ � �IN.HM ; w/. In particular, if �IN.HM ; w/ D ; then �IN.H; w/ D ;.

Proof. We assume w.l.o.g. that the chromosomes in CH.w/ are consecutive and w is oriented in H .

Then HM � �.w/ is identical to the subgraph induced by M [ CH.v/ in H � �.w/. It follows that every

component in H � �.w/ contained in M is also a component of HM � �.w/. By Theorem 5 every internal

component in H � �.w/ is contained in M . Thus �IN.H; w/ � �IN.HM ; w/.

The two theorems above are correct for any subgraph H 0 of �.A; B; �A/ that is induced by a set of

vertices and their adjacent chromosomes. By recursive use of Theorem 4 and Corollary 2 we get the

following algorithm for locating a safe proper translocation. Algorithm 2 receives H D �.A; B; �A/ as

an input.

Algorithm 2. Find_Safe_Translocation_Recursive ( H )

1. Choose v from H satisfying �IN.H; v/ � jH j
2

, according to the proof of Theorem 4.

2. M  �IN.H; v/

3. If M ¤ ;:

a. HM  the subgraph of H induced by M [ CH.v/

b. �.v/ Find_Safe_Translocation_Recursive(HM )

4. Return �.v/

4.2. A linear time implementation

We shall now prove that Algorithm Find_Safe_Translocation_Recursive can be implemented in linear

time. We shall use an algorithm of Bader et al. (2001) for the computation of �IN.H; v/. We shall use

an algorithm by Kaplan et al. (2000) for locating an external vertex v satisfying j�IN.H; v/j � jH j
2

.

A difficulty in trying to apply these algorithms is that they operate on signed permutations and not on

�-graphs. To overcome this, the algorithm will be initially called with genomes A and B . Before every

recursive call it will build two appropriate co-tailed genomes AM and BM and pass them as arguments to

the recursive call instead of HM .

Assume w.l.o.g. that there are no adjacencies in G.A; B/ (otherwise, every maximal run of adjacencies

can be replaced by one element in both A and B). Thus G.A; B/ contains no internal components.

4.2.1. Computing �IN.H; v/ in linear time. We apply the translocation �.v/ on A, and then compute

the set of non-trivial internal components. Suppose we want to compute the set of non-trivial internal

components in �.A; B; �A/. We compute the set of components in OV.�A/ in linear time, using an

algorithm by Bader et al. (2001). The output of this algorithm contains the set of components of OV.�A/

along with the span of each. The graph OV.�A/ contains additional vertices that are not in �.A; B; �A/.

These additional vertices correspond to edges between tails of B . Since A and B are co-tailed, the neighbors

of these vertices in OV.�A/ are all external. Therefore the removal of these additional vertices does not

affect the set of internal components in this graph. A component is internal iff the two endpoints of its

span belong to the same chromosome of A. An internal component is non-trivial if its span contains more

than two elements.

4.2.2. Finding an external vertex v satisfying j�IN.H; v/j � jH j
2

in linear time. Let X and Y be two

chromosomes that contain the endpoints of an external edge v. Build a concatenation �A in which X and

Y are consecutive. Let H D �.A; B; �A/ and let H 0 D H � �.X/. If OXY (respectively UXY ) does not

induce a clique in H (respectively H 0) then we can use the following lemma:

Lemma 6. Let v1; v2 2 OXY . If v2 … N.v1/ then minfj�IN.H; v1/j; j�IN.H; v2/jg � jH j
2

.
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Proof. It suffices to prove that �IN.H; v1/ \ �IN.H; v2/ D ;. Assume x 2 �IN.H; v1/ and let

x D x0; : : : ; xk D v1 be a shortest path from x to v1 in H . Since the neighborhood of v2 remains intact

in H � �.v1/ there is no edge from v2 to any vertex in that path. Therefore this path exists in H � �.v2/

and hence u … �IN.H; v2/.

Align the nodes of G.A; B/ according to �A. For two nodes in G.A; B/, p1 and p2, denote p1 < p2

iff p1 is to the left of p2. For a vertex v in H D �.A; B; �A/, denote by Left.v/ and Right.v/ the

left and right endpoints respectively of its gray edge. Suppose OXY D fv1; : : : ; vkg, where Left.vj / <

Left.vj C1/ for j D 1::k � 1. If there exist two consecutive vertices vj and vj C1 such that Right.vj / >

Right.vj C1/, then we found two edges that do not overlap. Thus vj C1 … N.vj ; H/. By Lemma 6

minfj�IN.H; vj /j; j�IN.H; vj C1/jg � jH j
2

. Otherwise, the vertices in OXY form a clique in H . We

can find whether UXY induces a clique in H 0 in a similar manner by aligning the nodes of G.A; B/

according to �A � �.X/.

Suppose OXY induces a clique in H and UXY induces a clique in H 0 (one of which might be empty).

In this case we use the proof of Theorem 4 in order to find a vertex v satisfying j�IN.H; v/j � jH j
2

. We

calculate the score in H for every vertex in OXY and the score in H 0 for every vertex in UXY in the

following way. Let fI1; : : : ; Ikg be a set of intervals forming a clique. Let U D fJ1; : : : ; Jlg be another set

of intervals. Let U.j / denote the number of intervals in U that overlap with Ij . There is an algorithm by

Kaplan et al. (2000) that computes U.1/; : : : ; U.k/ in O.k C l/. We use this algorithm twice to compute

jNEXT.vj /j and jNIN.vj /j, for j D 1::k.

4.2.3. Performing a recursive call Suppose the external vertex v chosen in the first step of the algorithm

satisfies M D �IN.H; v/ ¤ ;. Let H D �.A; B; �A/. Let HM be the subgraph of H induced by

M [CH.v/. We demonstrate below how to build two co-tailed genomes, AM and BM , in linear time, for

which there exists an �-graph H 0
M
D �.AM ; BM ; �AM

/ satisfying: (i) HM � H 0
M

, (ii) jH 0
M
j � jHM jC2,

and (iii) Every u 2 H 0
M
nHM is external and �.u/ D �.v/.

Every internal component in G.A � �.v/; B/ contains in its span one of the new black edges created

by �.v/. A component in M is maximal if its span is maximal. Since there are two new black edges in

G.A � �.v/; B/, there are at most two maximal components in M . Note that for every v 2 M , its two end-

points belong to the span of a maximal component. Construct genomes AM and BM in the following way.

Case 1: There are two maximal components in M . Let I1 and I2 be the spans of the two maximal

components in M (after applying �.v/). I1 and I2 are disjoint since every maximal component belong

to a different chromosome of A � �.v/. By Lemma 1, there exist two intervals I 0
1 and I 0

2 in B , where for

i D 1; 2 Ii and I 0
i have the same set of elements and Tails.Ii / D Tails.I 0

i /. Let BM D fI
0
1; I 0

2g. Let AM

be the result of the translocation on fI1; I2g that cuts the two new black edges in I1 and I2 and recreates

the old black edges that were originally cut by �.v/ (i.e., the translocation inverse to �.v/).

Case 2: There is exactly one maximal component in M . In this case only one of the chromosomes in

A � �.v/ contains components from M . Let I be the span of the maximal component in M . Again, by

Lemma 1 there exists an interval I 0 in B with the same elements as I , satisfying Tails.I / D Tails.I 0/.

Let BM D fI
0; .i1; i2/g, where .i1; i2/ is the new black edge in A � �.v/ that is not contained in any of the

components in M . Let AM be the result of the translocation on fI; .i1; i2/g that cuts the new black edge

in I1 and .i1; i2/ and recreates the old black edges that were originally cut by �.v/ (i.e., the translocation

inverse to �.v/).

Obviously in both cases AM and BM are co-tailed. Each of the two chromosomes in AM (respectively,

BM ) is an interval in A (respectively, B). Moreover, AM (equivalently, BM ) contains the endpoints of

each and every gray edge in M . Let H 0
M
D �.AM ; BM ; �AM

/ where �AM
is a concatenation of the

two chromosomes in AM in which the elements appear in the same order as in �A. It is not hard to see

that the HM is an induced subgraph of H 0
M . H 0

M contains one or two additional vertices that do not

belong to HM . These additional vertices define the same translocation as v (one of which is indeed v)

and correspond to isolated vertices (i.e., trivial internal components) in H 0
M � �.v/. Thus, the (one or two)

additional vertices in H 0
M

are external. Since HM does not contain adjacencies, so does H 0
M

.

The above described implementation implies:

Lemma 7. Algorithm Find_Safe_Translocation_Recursive can be implemented in linear time.
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Proof. We have demonstrated how to implement the first two steps of the algorithm in linear time.

Let v be the vertex chosen in step 1 of the algorithm. Suppose M D �IN.H; v/ ¤ ;. In this case we

presented a way to construct two co-tailed genomes, AM and BM , whose �-graph is almost identical to

HM (there are one or two additional external vertices in H 0
M

that define the same translocation as v).

Obviously this construction can be done in linear time. It is only left to prove that the number of elements

in the genomes decreases by a constant factor in every call.

Let n and nM be the number of genes in A and AM , respectively. In every recursive call, the number

of chromosomes involved is 2. Hence jH j D n � N (i.e., gray edges in G.A; B/) and jH 0
M j D nM � 2.

Suppose jHM j �
jH j
2

(step 1), then jHM j �
n�N

2
� n

2
� 1. Now nM D jH

0
M
j C 2 � jHM j C 4 � n

2
C 3.

Thus for n � 18, nM �
2n
3

. We update the algorithm as follow. At the beginning, we verify that the

number of genes is at least 18. In this case a recursive call (if needed) will be made with genomes with at

most 2
3

of the genes in A and B . Otherwise, we simply search for a proper safe translocation by computing

�IN.H; v/ for every external vertex v.

Corollary 3. The recursive algorithm solves SRT in O.n2/ time.

5. DISCUSSION

The fundamental observation of Hannenhalli and Pevzner (1995) that translocations can be mimicked by

reversals was made over a decade ago, but until recently the analyses of SRT and SBR had little in common.

Here and in Ozery-Flato and Shamir (2006a), we tighten the connection between the two problems, by

presenting a new framework for the study of SRT that builds directly on ideas and theory developed for

SBR. Using this framework we show here how to transform two central algorithms for SBR, Bergeron’s

score-based algorithm and the Berman-Hannenhalli’s recursive algorithm, into algorithms for SRT. These

new algorithms for SRT maintain the time complexity of the original algorithms for SBR. These results

improve our understanding of the connection between the two problems. Still, deeper investigation into

the relation between SRT and SBR is needed. In particular, providing a reduction from SRT to SBR or

vice versa is an interesting open problem.

Algorithms for SRT can only be applied to a pair of genomes having the same set of chromosome

ends. This requirement is removed if SRT is extended to allow for non-reciprocal translocations, including

fissions and fusions of chromosomes, and the latter can be viewed as translocations involving empty

chromosomes (Hannenhalli and Pevzner, 1995). This more general problem of sorting by translocations

can be reduced in linear time to SRT, as we intend to prove in a future work.

The problem of sorting by reversals, translocations, fissions, and fusions (SBRT) was studied (Han-

nenhalli and Pevzner, 1995; Ozery-Flato and Shamir, 2003; Tesler, 2002a) and proven to be polynomial.

An algorithm solving SBRT is used by the applications GRIMM (Tesler, 2002b) and MGR (Bourque and

Pevzner, 2002), which analyze genome rearrangements in real biological data (Bourque et al., 2004; Mur-

phy et al., 2005; Pevzner and Tesler, 2003). The first step in the current algorithm for SBRT generates two

co-tailed genomes, say A and B , with the same distance as the two input genomes (Tesler, 2002a). In the

following steps, genome A is sorted into genome B using reciprocal translocations and internal reversals

that do not alter the set of chromosome tails. In other words, SBRT is solved by a reduction to a more

constrained problem that allows only for reciprocal translocations and internal reversals. We refer to this

constrained problem as SBRTC. SBRTC is currently solved by a reduction to SBR, where each reversal

simulates either a reciprocal translocation or an internal reversal. We believe that an algorithm for SBRTC

that explicitly treats translocations and reversals as distinct operations would be more natural and powerful

than one that does not. In a future work, we intend to prove that each of the algorithms presented here

and in (Ozery-Flato and Shamir, 2006a) can be extended to solve SBRTC, even when reversals are given

priority over translocations (i.e., a “good” reversal move have a higher priority than a “good” translocation

move).

In an optimal solution to SRT, SBR, and SBRT, every move is safe, i.e., it does not create “bad

components.” Thus the algorithms for these problems mainly focus on finding safe moves. Finding safe

moves is conceptually and algorithmically the hardest part in all these algorithms. In a ground-breaking

paper, Yancopoulos et al. (2005) proposed a new formulation that bypasses the need for safe reversals/
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translocations by introducing a new genome rearrangement operation called double-cut-and-join (DCJ).

Translocations, reversals, fissions, and fusions can all be viewed as special cases of the DCJ operation.

Unlike all the above operations, a DCJ operation can “loop out” a circular chromosome, which can be

later reabsorbed by another operation. Thus the problem of sorting by DCJ operations (SDCJ) allows for

the creation of intermediate circular chromosomes. Looping out a circular chromosome followed by its

reabsorption can also simulate a block interchange of two blocks in the same chromosome. The problem

of sorting by block interchanges was studied in Christie (1996) and Lin et al. (2005). The ability of DCJs

to create and reabsorb circular chromosomes yields a powerful rearrangement model, for which no “bad

components” exist. This makes the analysis, distance formula, and algorithms of SDCJ (Bergeron et al.,

2006b; Yancopoulos et al., 2005) much simpler and very elegant, in comparison with SRT, SBR, and SBRT.

While circular chromosomes are quite common in prokaryotes cells, they have been found sporadically

in eukaryotes cells, and with some rare exceptions, they are usually not inherited (Ishikawa and Naito,

1999). Thus for the evolution of eukaryotes species, it is reasonable to assume a minimal use, if any, of

circular chromosomes. In particular, when there are no bad components, any algorithm for SBRT solves

SDCJ without creating circular intermediates.

In the future we intend to study SBRT with additional restrictions that will make its solutions more

biologically acceptable. An example for an additional constraint is the exclusion of translocations that

create acentric chromosomes (i.e., chromosomes that lack a centromere), since these chromosomes are

likely to be lost during subsequent cell divisions (Sullivan et al., 2001). As a first step towards solving

this problem, we recently provided a polynomial time algorithm for the constrained problem where only

reciprocal translocations that do not create acentric chromosomes are allowed (Ozery-Flato and Shamir,

2007). Another interesting variant of SBRT we wish to study considers a model in which one type of

operation is preferable over the other. We believe that the study of SRT and its alignment with SBR theory

will assist in the study of these variants of SBRT.
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ABSTRACT

A centromere is a special region in the chromosome that plays a vital role during cell division.

Every new chromosome created by a genome rearrangement event must have a centromere

in order to survive. This constraint has been ignored in the computational modeling and

analysis of genome rearrangements to date. Unlike genes, the different centromeres are

indistinguishable, they have no orientation, and only their location is known. A prevalent

rearrangement event in the evolution of multi-chromosomal species is translocation (i.e., the

exchange of tails between two chromosomes). A translocation may create a chromosome with

no centromere in it. In this paper, we study for the first time centromeres-aware genome

rearrangements. We present a polynomial time algorithm for computing a shortest sequence

of translocations transforming one genome into the other, where all of the intermediate

chromosomes must contain centromeres. We view this as a first step towards analysis of

more general genome rearrangement models that take centromeres into consideration.

Key words: sorting by translocations, genome rearrangements, comparative genomics, combi-

natorics.

1. INTRODUCTION

GENOMES OF RELATED SPECIES tend to have similar genes that are, however, ordered differently.

The distinct orderings of the genes are the result of genome rearrangements. Inferring the sequence

of genome rearrangements that took place during the course of evolution is an important question in

comparative genomics. The genomes of higher organisms, such as plants and animals, are partitioned into

continuous units called chromosomes. Every chromosome contains a special region called a centromere,

which plays a vital role during cell division. An acentric chromosome (i.e., one that lacks a centromere)

is likely to be lost during subsequent cell divisions (Sullivan et al., 2001). Thus, a rearrangement scenario

that preserves a centromere in each chromosome is more biologically realistic than one that does not.

The computational studies on genome rearrangements to date have ignored the existence and role of

centromeres. Hence, the rearrangement scenarios for multi-chromosomal genomes produced by current

algorithms may include genomes with non-viable chromosomes. In this study, we begin to address the

centromeres in the computational analysis of genome rearrangements.

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
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FIG. 1. An example of legal and illegal translocations for a certain cut of two chromosomes. The black circles

denote the location of the centromeres; the broken line indicates the positions where the two chromosomes were cut.

Since sequencing a centromere is almost impossible due to the repeated sequences it contains, the only

information we have on a centromere is its location in the genome. Therefore, in the model we define,

centromeres appear as anonymous and orientation-less elements. We say that a genome is legal if each of

its chromosomes contains a single centromere. A legal rearrangement operation results in a legal genome

(Fig. 1). The legal rearrangement sorting problem is defined as follows: given two legal genomes A and

B , find a shortest sequence of legal rearrangement operations that transforms A into B . The length of this

sequence is the legal distance between A and B .

A reciprocal translocation is a rearrangement in which two chromosomes exchange non-empty ends.

A reciprocal translocation results in an illegal genome if exactly one of the exchanged ends contains a

centromere. In this paper, we focus on the problem of legal sorting by reciprocal translocations (LSRT).

This problem is a refinement of the “sorting by reciprocal translocations” problem (SRT), which ignores

centromeres. SRT was studied in Hannenhalli (1996), Bergeron et al. (2006), and Ozery-Flato and Shamir

(2006a,b), and is solvable in polynomial time. Clearly, a solution to SRT may not be a solution to LSRT,

since 50% of the possible reciprocal translocations are illegal (Fig. 1). Indeed, in many cases, more

rearrangements are needed in order to legally sort a genome.

In this study we present a polynomial time algorithm for LSRT. The basic idea is to transform LSRT

into SRT, by replacing pairs of centromeres in the two genomes by new unique oriented elements. Our

algorithm is based on finding a mapping between the centromeres of the two given genomes such that

the solution to the resulting SRT instance is minimum. We show that an optimal mapping can be found

in polynomial time. To the best of our knowledge, this is the first rearrangement algorithm that considers

centromeres. While a model that permits only reciprocal translocations is admittedly quite remote from

the biological reality, we hope that the principles and structure revealed here will be instrumental for

analyzing more realistic models in the future. One additional advantage of centromere-aware models is

that they restrict drastically the allowed sequences of operations, and therefore are less likely to suffer

from high multiplicity of optimal sequences.

The paper is organized as follows. Section 2 gives the necessary preliminaries. In Section 3, we model

LSRT and present some elementary properties of it. Section 4 describes an exponential algorithm for LSRT,

which searches for an optimal mapping between the centromeres of A and B (i.e., one that leads to a

minimum SRT solution). In Section 5, we take a first step towards a polynomial time algorithm for LSRT by

proving a bound that is at most two translocations away from the legal translocation distance. In Section 6,

we present a theorem leading to a polynomial time algorithm for computing the legal translocation distance

and solving LSRT.

A preliminary version of this study appeared in the proceedings of RECOMB 2007 (Ozery-Flato and

Shamir, 2007).

2. PRELIMINARIES

This section provides the needed background for SRT. The definitions follow previous literature on

translocations (Hannenhalli, 1996; Bergeron et al., 2006; Ozery-Flato and Shamir, 2006a, 2006b). In the

model we consider, a genome is a set of chromosomes. A chromosome is a sequence of genes. A gene is
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identified by a positive integer. All genes in the genome are distinct. When it appears in a genome, a gene

is assigned a sign of plus or minus. The following is an example of a genome with two chromosomes and

six genes: f.1;�5/; .�4;�3;�2; 6/g:

The reverse of a sequence of genes I D .x1; : : : ; xl/ is �I D .�xl ; : : : ;�x1/. Two chromosomes, X

and Y , are called identical if either X D Y or X D �Y . Therefore, flipping chromosome X into �X does

not affect the chromosome it represents.

Let X D .X1; X2/ and Y D .Y1; Y2/ be two chromosomes, where X1, X2, Y1, Y2 are sequences of

genes. A translocation cuts X into X1 and X2 and Y into Y1 and Y2 and exchanges segments between

the chromosomes. It is called reciprocal if X1,X2 , Y1 and Y2 are all non-empty. There are two types of

translocations on X and Y . A prefix-suffix translocation switches X1 with Y2:

.X1; X2/; .Y1; Y2/) .�Y2; X2/; .Y1;�X1/:

A prefix-prefix translocation switches X1 with Y1:

.X1; X2/; .Y1; Y2/) .Y1; X2/; .X1; Y2/:

Note that we can mimic one type of translocation by a flip of one of the chromosomes followed by a

translocation of the other type.

For a chromosome X D .x1; : : : ; xk/, define Tails.X/ D fx1;�xkg. Note that flipping X does not

change Tails.X/. For a genome A, define Tails.A/ D
S

X2A Tails.X/. For example:

Tails.f.1;�3;�2; 4;�7; 8/; .6; 5/g/D f1;�8; 6;�5g:

Two genomes A1 and A2 are co-tailed if Tails.A1/ D Tails.A2/. In particular, two co-tailed genomes have

the same number of chromosomes. Note that if A2 was obtained from A1 by performing a reciprocal

translocation, then Tails.A2/ D Tails.A1/. Therefore, SRT is solvable only for genomes that are co-tailed.

For the rest of this paper, the word “translocation” refers to a reciprocal translocation, and we assume that

the given genomes, A and B , are co-tailed. Denote the set of tails of A and B by Tails.

2.1. Cycle graph

Let n and N be the number of genes and chromosomes in A (equivalently, B), respectively. We shall

always assume that both A and B consist of the genes f1; : : : ; ng. The cycle graph of A and B , denoted

G.A; B/, is defined as follows. The set of vertices is
Sn

iD1fi
0; i1g. The vertices i0 and i1 are called the two

ends of gene i (think of them as ends of a small arrow directed from i0 to i1). For every two genes, i and

j , where j immediately follows i in some chromosome of A (respectively, B) add a black (respectively,

gray) edge .i; j / � .out.i/; in.j //, where out.i/ D i1 if i has a positive sign in A (respectively, B)

and otherwise out.i/ D i0, and in.j / D j 0 if j has a positive sign in A (respectively, B) and otherwise

in.j / D j 1. An example is given in Figure 2a. There are n � N black edges and n � N gray edges

in G.A; B/. A gray edge .i; j / is external if the genes i and j belong to different chromosomes of A,

otherwise it is internal. A cycle is external if it contains an external edge, otherwise it is internal.

Every vertex in G.A; B/ has degree 2 or 0, where vertices of degree 0 (isolated vertices) belong to

Tails. Therefore, G.A; B/ is uniquely decomposed into cycles with alternating gray and black edges. An

adjacency is a cycle with two edges. A breakpoint is a black edge that is not part of an adjacency.

2.2. Overlap graph with chromosomes

A signed permutation � D .�1; : : : ; �n/ is a permutation on the integers f1; : : : ; ng, where a sign of

plus or minus is assigned to each number. If A is a genome with the set of genes f1; : : : ; ng then any

concatenation �A of the chromosomes of A is a signed permutation of size n.

Place the vertices of G.A; B/ along a straight line according to their order in �A. Now, every gray

edge and every chromosome is associated with an interval of vertices in G.A; B/. Two intervals overlap

if their intersection is not empty but none contains the other. The overlap graph with chromosomes of

A and B w.r.t. �A, denoted OVCH.A; B; �A/, is defined as follows. The set of nodes is the set of gray
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FIG. 2. Auxiliary graphs for A1 D f.1;�2; 3;�6; 7;�11; 10;�9;�8; 12/; .5; 4/g, B1 D f.1; : : : ; 4/; .5; : : : ; 12/g

(�A1
D .1;�2; 3;�6; 7;�11; 10;�9;�8; 12; 5; 4/). (a) The cycle graph. Black edges are horizontal; gray edges are

curved. (b) The overlap graph with chromosomes. The graph induced by the vertices within the dashed rectangle is

OV.A1; B1; �A1
/. (c) The forest of internal components.

edges and chromosomes in G.A; B/. Two nodes are connected if their corresponding intervals overlap.

An example is given in Figure 2b. This graph is an extension of the overlap graph of a signed permutation

defined in (Kaplan et al., 2000). Let OV.A; B; �A/ be the subgraph of OVCH.A; B; �A/ induced by the set

of nodes that correspond to gray edges (i.e., excluding the chromosomes’ nodes). We shall use the word

“component” for a connected component of OV.A; B; �A/.

In order to prevent confusion, we will refer to nodes that correspond to chromosomes as “chromosomes”

and reserve the word “vertex” for nodes that correspond to gray edges. A vertex is external (resp. internal)

if it corresponds to an external (resp. internal) gray edge. Obviously a vertex is external iff it is connected

to a chromosome. A component is external if it contains an external vertex, otherwise it is internal.

A component is trivial if it is composed of one (internal) vertex. A trivial component corresponds to

an adjacency. Note that the internal/external state of a vertex in OVCH.A; B; �A/ does not depend on

�A. Therefore, the set of internal components in OVCH.A; B; �A/ is independent of �A. The span of a

component M is the minimal interval of genes I.M/ D Œi; j � � �A that contains the interval of every

vertex in M . Clearly, I.M/ is independent of �A iff M is internal. The following lemma follows from A

and B being co-tailed and (Corollary 2.2 in Kaplan et al., 2000):

Lemma 1. Every internal component corresponds to the set of gray edges of a union of cycles in

G.A; B/.

The set of internal components can be computed in linear time using an algorithm in Bader et al. (2001).

2.3. Forest of internal components

.M1; : : : ; Mt/ is a chain of components if I.Mj / and I.Mj C1/ overlap in exactly one gene for j D

1; : : : ; t � 1. The forest of internal components (Bergeron et al., 2006), denoted F.A; B/, is defined as

follows. The vertices of F.A; B/ are (i) the non-trivial internal components and (ii) every maximal chain

of internal components that contains at least one non-trivial component. Let M and C be two vertices
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in F.A; B/ where M corresponds to a component and C to a chain. M ! C is an edge of F.A; B/ if

M 2 C . C ! M is an edge of F.A; B/ if I.C/ � I.M/ and I.M/ is minimal (Fig. 2c). We will refer

to a component that is a leaf in F.A; B/ as simply a leaf.

2.4. Reciprocal translocation distance

The reciprocal translocation distance between A and B is the length of a shortest sequence of reciprocal

translocations that transforms A into B . Let c.A; B/ denote the number of cycles in G.A; B/. Let jF.A; B/j

and l.A; B/ denote the number of trees and leaves in F.A; B/, respectively. Obviously jF.A; B/j �

l.A; B/. Define

ı.A; B/ � ı.F.A; B// D

8

ˆ

<

ˆ

:

2 if jF.A; B/j D 1 and l.A; B/ is even

1 if l.A; B/ is odd

0 otherwise (jF.A; B/j ¤ 1 and l.A; B/ is even)

Theorem 1 (Bergeron et al., 2006; Hannenhalli, 1996). The reciprocal translocation distance between

A and B is n�N � c.A; B/C l.A; B/C ı.A; B/:

Let �c denote the change in the number of cycles after performing a translocation on A. Then �c 2

f�1; 0; 1g (Hannenhalli, 1996). A translocation is proper if �c D 1, improper if �c D 0 and bad if

�c D �1.

Corollary 1. Every translocation in a shortest sequence of translocations transforming A into B is

either proper or bad.

Proof. An improper translocation cannot decrease the translocation distance since it does not affect

any parameter in its formula.

3. INCORPORATING CENTROMERES INTO A GENOME

We extend the model described above by adding the requirement that every genome is legal (i.e., every

chromosome contains exactly one centromere). We denote the location of a centromere in a chromosome

by the element �. The element � is unsigned and thus does not change under chromosome flips. The

following is an example of a legal genome: f.1; 2; 3; �; 4/; .�; 5; 6/g: The set of tails is defined for regular

elements, thus Tails.�; 5; 6/ D f5;�6g. We assume that a cut of a chromosome does not split a centromere.

Clearly, for every cut of two chromosomes one translocation is legal while the other is not (Fig. 1).

3.1. A new precondition

We present here a simple condition for the solvability of LSRT. If this condition is not satisfied then A

cannot be transformed into B by legal translocations. For chromosome X D .x1; : : : ; xi ; �; xiC1; : : : ; xk/

define Elements.X/ D fx1; : : : ; xi ;�xiC1; : : : ; �xkg. Note that Elements.X/ D Elements.�X/. For

genome A we define Elements.A/ D
S

X2A Elements.X/: For example:

Elements.f.1; 2; �; 3; 4/; .�; 5; 6/g/D f1; 2;�3;�4;�5;�6g:

Observation 1. Let A and B be two legal genomes. If A can be transformed into B by a sequence of

legal translocations then Elements.A/ D Elements.B/.

We will see later that this condition is also sufficient. Thus, for the rest of this paper we assume that

the input to LSRT is co-tailed genomes A and B satisfying Elements.A/ D Elements.B/ D Elements. The

cycle graph of A and B , G.A; B/, ignores the � elements.
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FIG. 3. Pericentric edges and peri-cycles. A2 D f.1; 3; 2; �; 6/; .�; 5; 4/g, B2 D f.1; 2; 3; �; 4/; .�; 5; 6/g . (a) The

cycle graph G.A2; B2/. Pericentric edges are denoted by dotted lines. (b) The peri-cycle of the single cycle in

G.A2; B2/. The labels of the edges denote the set of gray edges in the corresponding paths.

3.2. On the gap between the legal distance and the “old” distance

Let d.A; B/ denote the legal translocation distance between A and B . Let dold.A; B/ denote the

translocation distance between A and B when the � elements are ignored. Obviously d.A; B/ � dold.A; B/.

Consider the genomes A2 and B2 in Figure 3. It can be easily verified that dold.A2; B2/ D 3 and

d.A2; B2/ D 4. This example is easily extendable to two genomes A2k and B2k, with 2k chromosomes

each, such that dold.A2k ; B2k/ D 3k and d.A2k ; B2k/ D 4k.

3.3. Telocentric chromosomes

A chromosome is telocentric if its centromere is located at one of its endpoints. For example the

chromosome .�; 5; 6/ is telocentric.

Lemma 2. Let A and B be co-tailed genomes satisfying Elements.A/ D Elements.B/. Then A and B

have the same number of telocentric chromosomes. Moreover, the set of genes adjacent to the centromeres

in the telocentric chromosomes is the same.

Proof. Let i be a gene adjacent to the centromere in a telocentric chromosome in A. Thus i is a tail

of A and hence a tail of B (since A and B are co-tailed). Suppose w.l.o.g. that i is the leftmost gene in

its chromosome both in A and in B and that the centromere is located to the left of i in A. In this case,

since genomes A and B are co-tailed, i has the same sign in A and B . Since Elements.A/ D Elements.B/

it follows that the centromere is located to the left of i also in B . Thus, i is adjacent to the centromere in

B and its chromosome is telocentric.

Let � denote the number of non-telocentric chromosomes in A and B . We shall show later how mapping

between centromeres in non-telocentric chromosomes in A and B can help us to solve LSRT.

3.4. Pericentric and paracentric edges

A gray (respectively, black) edge in G.A; B/ is said to be pericentric if the two genes it connects flank

a centromere in genome B (respectively, A). Otherwise it is called paracentric (Fig. 3a). For a gene i we

define:

cent.i0/ D

(

�1 if i has a positive sign in Elements,

1 otherwise.
cent.i1/ D �cent.i0/

In other words, the sign of the end closer to the centromere (in both A and B) is positive, and the sign of

the remote end is negative. The legality precondition (Section 3.1) implies the following key property:

Lemma 3. Let .u; v/ be an edge in G.A; B/. If .u; v/ is pericentric then cent.u/ D cent.v/ D 1.

Otherwise cent.u/cent.v/ D �1.

Proof. The nodes u and v are the ends of two adjacent genes i and j , respectively, in one of the

genomes. Suppose .u; v/ is pericentric. Then i and j flank a centromere in one of the genomes. Thus u is
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the end of i closer to j and hence closer to the centromere (i.e., cent.u/ D 1). Using similar arguments,

cent.v/ D 1.

Suppose .u; v/ is paracentric. Then there is no centromere between i and j . W.l.o.g. assume that i is

closer to the centromere than j . Then u is the end of i distant from the centromere and v is the end of j

closer to the centromere. Therefore, cent.u/cent.v/ D �1.

3.5. Peri-cycles

Let C be a cycle in G.A; B/. The peri-cycle of C , C P , is defined as follows. The vertices of C P are

the pericentric edges in C . A vertex in C P is colored gray (respectively, black) if the corresponding edge

in C is gray (respectively, black). A path between two consecutive pericentric edges in C is translated to

an edge between the two corresponding vertices in C P (Fig. 3). Note that if C contains no pericentric

edges then its peri-cycle is a null cycle (i.e., a cycle with no vertices).

Lemma 4. Every peri-cycle has an even length and its node colors alternate along the cycle.

Proof. Let C be a cycle that contains a black pericentric edge .u1; v1/. Suppose u1; v1; : : : ; uk ; vk is a

path between two consecutive black pericentric edges in C . In other words, .uk ; vk/ is a black pericentric

edge (possibly u1 D uk and v1 D vk ) and there are no other black pericentric edges in this path. Then

according to Lemma 3 cent.v1/ D cent.uk/ D 1. There is an odd number of edges in the path between

v1 and uk and thus there must be an odd number of pericentric edges between v1 and uk (Lemma 3).

It follows that there must exist at least one gray pericentric edge between any two consecutive black

pericentric edges. The same argument for a pair of consecutive gray pericentric edges implies that between

two such edges there must be at least one black pericentric edge.

It follows that every vertex/edge in a peri-cycle has an opposite vertex/edge. Removing two opposite

vertices/edges from a peri-cycle results in two paths of equal length. We define the degree of a cycle as the

number of gray (equivalently, black) vertices in its peri-cycle. For example, the single cycle in Figure 3 is

of degree 1.

4. MAPPING THE CENTROMERES

This section demonstrates how mapping between the centromeres of A and B can be used to solve

LSRT. We shall first see that trying all possible mappings and then solving the resulting SRT gives an

exact exponential algorithm for LSRT. Later we shall show how to get an optimal mapping in polynomial

time. Let CEN D fn C 1; : : : ; n C �g. For a genome A, let PA be the set of all possible genomes

obtained by the replacement of each � element in the non-telocentric chromosomes by a distinct element

from CEN. Each i 2 CEN can be added with either positive or negative sign. Thus j PAj D �Š2�. For

example, if A1 D f.1; 2; �; 3; 4/; .�; 5; 6/g then PA1 consists of the genomes f.1; 2; 7; 3; 4/; .�; 5; 6/g and

f.1; 2;�7; 3; 4/; .�; 5; 6/g. Note that every PA 2 PA satisfies Tails. PA/ D Tails. For each i 2 CEN we define

cent.i0/ D cent.i1/ D �1. A pair PA 2 PA and PB 2 PB defines a mapping between the centromeres in

non-telocentric chromosomes of A and B .

Observation 2. Let PA 2 PA and PB 2 PB. Then every edge .u; v/ in G. PA; PB/ is paracentric and satisfies

cent.u/cent.v/ D �1.

The notion of legality is easily generalized to partially mapped genomes: a genome is legal if each

of its chromosomes contains either a single � element or a single, distinct element from CEN (but not

both). Since A and PA 2 PA differ only in their centromeres, there is a trivial bijection between the set

of translocations on PA and the set of translocations on A. This bijection also preserves legality: a legal

translocation on PA is bijected to a legal translocation on A.

Lemma 5. Let PA 2 PA and PB 2 PB. Then every proper translocation on PA is legal and d. PA; PB/ D

dold. PA; PB/.
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Proof. Let k D dold. PA; PB/. If k D 0 then PA D PB and hence d. PA; PB/ D 0. Suppose k > 0. Let �

be a translocation on PA satisfying dold. PA � �; PB/ D k � 1. According to Corollary 1, � is either proper or

bad. Suppose � is bad. Then there is another bad translocation �0 that cuts the exact positions as �, thus

satisfying dold. PA ��
0; PB/ D k�1, and either � or �0 is legal. Suppose � is proper. We shall prove that each

of the new chromosomes contains a centromere and hence � is legal. Let X be a new chromosome resulting

from the translocation � and let .u; v/ be the new black edge in it. Since � is proper, G. PA � �; PB/ contains

a path between u and v where all the edges existed in G. PA; PB/. This path contains an odd number of

edges. Following Observation 2 for G. PA; PB/, cent.u/cent.v/ D �1. X is composed of two old segments,

Xu and Xv , that contain u and v respectively. If cent.u/ D �1 then Xu contains an element from CEN,

otherwise Xv contains one. In either case X contains an element from CEN.

Theorem 2. Let PA 2 PA. Then d.A; B/ D minfdold. PA; PB/j PB 2 PBg.

Proof. By Lemma 5, d. PA; PB/ D dold. PA; PB/ for every PA 2 PA and PB 2 PB. Obviously a legal sorting of PA

into any PB 2 PB induces a legal sorting sequence of the same length, of A to B . Thus, minfdold. PA; PB/j PB 2
PBg � d.A; B/. On the other hand, every sequence of legal translocations that sorts A into B induces a

legal sorting of PA into some PB 2 PB, thus minfdold. PA; PB/j PB 2 PBg � d.A; B/.

A pair of genomes, PA 2 PA and PB 2 PB, define an optimal mapping between the centromeres of A and

B if d.A; B/ D dold. PA; PB/. Theorem 2 and Lemma 5 imply the following algorithm for LSRT:

Algorithm 1. Sorting by legal translocations

1: Choose PA 2 PA arbitrarily.

2: Compute PB D arg minfdold. PA; RB/j RB 2 PBg.

3: Solve SRT on PA and PB—making sure that every bad translocation in the sorting sequence is legal.

It can be shown, by a minor modification of the algorithm in (Ozery-Flato and Shamir, 2006a),

that solving SRT with the additional condition that every bad translocation is legal can be done in

O.n3=2
p

log.n//. Step 2 can be performed by enumerating all possible mappings and computing the SRT

distance for each. This implies:

Lemma 6. LSRT can be solved in O.�Š2�nC n3=2
p

log.n//:

Our goal in the rest of this paper is to improve this result by speeding up Step 2 (i.e., finding efficiently

an optimal mapping between the centromeres of A and B).

5. CENT-MAPPINGS

Our general strategy will be to iteratively map between two centromeres in A and B and replace them

with a regular element until all centromeres in non-telocentric chromosomes are mapped. The resulting

instance can be solved using SRT, but the increase in the number of elements may have also increased

the solution value. The main effort henceforth will be to guarantee that the overall increase is minimal.

For this, we need to study in detail the effect of each mapping step on the the cycle graph G.A; B/. Our

analysis uses the SRT distance formula (Theorem 1). We shall ignore for now the parameter ı, and focus

on the change in the simplified formula n� c C l (N is not changed by mapping operations).

A mapping between two centromeres affects their corresponding black and gray pericentric edges. Let

.i; i 0/ and .j; j 0/ be pericentric black and gray edges in G.A; B/ respectively. Suppose cen 2 CEN is

added between i and i 0 in PA and between j and j 0 in PB . In this case, .i; i 0/ and .j; j 0/ in G.A; B/ are

replaced by the four (paracentric) edges .i; cen/, .cen; i 0/, .j; cen/ and .cen; j 0/ in G. PA; PB/. (The first two

edges are black, the latter are gray.) We refer to the addition of cen 2 CEN between .i; i 0/ and .j; j 0/ as a

cent-mapping since it maps between two centromeres. Note that for each pair of centromeres in A and B
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FIG. 4. The effect of a cent-mapping on peri-cycles. Each of the cycles is a peri-cycle with black and gray nodes

corresponding to centromeres (pericentric edges) in A and B , respectively. In all cases, a cent-mapping on b and g in

the top peri-cycles is performed, and the bottom peri-cycles are the result. Dotted lines denote new edges. (a,b) Two

alternative cent-mappings of a pair of pericentric edges in the same cycle. (c) Each of the two alternatives generates

a single cycle.

there are two possible cent-mappings (corresponding to the relative signs of the added elements). Given
PA 2 PA, every PB 2 PB defines � disjoint cent-mappings and vice versa. Obviously, every cent-mapping

increases the number of genes by one (�n D C1).

Lemma 7. Every cent-mapping satisfies �c 2 f�1; 0; 1g.

Proof. Let .i; i 0/ and .j; j 0/ be black and gray pericentric edges in G.A; B/, respectively. Let cen 2

CEN be the element between i and i 0 in PA. If .i; i 0/ and .j; j 0/ belong to the same cycle before the

cent-mapping then �c 2 f0; 1g. If .i; i 0/ and .j; j 0/ belong to different cycles before the cent-mappings

then �c D �1.

In the rest of the paper, we will analyze the effect of a cent-mapping using peri-cycles. A peri-cycle can

be viewed as a compact representation of a cycle focused on pericentric edges, which are the only edges

affected by cent-mappings. A cent-mapping is called proper, improper, bad if �c D 1; 0;�1 respectively.

For illustrations of the three types of cent-mappings, see Figure 4. We say that a cent-mapping operates on

a cycle C if C contains at least one of the mapped pericentric edges. Proper and improper cent-mappings

always operate on one cycle in G.A; B/; a bad cent-mapping always operates on two different cycles in

G.A; B/.

Observation 3. Every proper cent-mapping satisfies �l 2 f0; 1g. An improper cent-mapping satisfies

�l D 0. A bad cent-mapping satisfies �l 2 f0;�1;�2g.

It follows that a proper cent-mapping satisfies �.n� cC l/ D 0 iff �l D 0; An improper cent-mapping

satisfies �.n � c C l/ D 1; a bad cent-mapping satisfies �.n � c C l/ D 0 iff �l D �2. A proper

cent-mapping is safe if it satisfies �l D 0. In the following sections we present two classes of cycles,

“annoying” and “evil” for which any set of proper cent-mappings that eliminates all their pericentric edges

is unsafe.

5.1. Annoying cycles

In this section we focus on cycles in leaves. The degree of every cycle in a leaf is at most 1 (otherwise

it must be external). Moreover, a leaf can contain at most one cycle of degree 1 (for the same reason).



802 OZERY-FLATO AND SHAMIR

FIG. 5. Examples of cycles in Cann, Cnona, and Cevil. In all the figures, the target genome B is a fragmented identity

permutation (i.e., every gray edge is of the form .i; i C 1/); pericentric edges are denoted by dotted lines.

A cycle is called annoying if: (i) it is contained in a leaf, (ii) its degree is 1, and (iii) a proper cent-mapping

on its two pericentric edges satisfies �l D 1 (i.e., one leaf is split into two leaves) (Fig. 5a). Thus a proper

cent-mapping on an annoying cycle satisfies �.n � c C l/ D 1. On the other hand, any bad cent-mapping

on a cycle contained in the span of a leaf (annoying or not) results in the elimination of that leaf. Thus,

a cent-mapping on any two cycles in (two different) leaves satisfies �.n � c C l/ D 1C 1 � 2 D 0. Let

Cann denote the set of annoying cycles and let ann D jCannj. Let Cnona be the set of non-annoying cycles

of degree 1 that are contained in the span of a leaf (Fig. 5b). Let nonaD jCnonaj.

5.2. Evil cycles

In this section we focus on cycles that are not in leaves. Let C be a cycle of degree at least 1 that is not

in a leaf and let C P be its peri-cycle. Let .b; g/ be an edge in C P . Denote by V.b; g/ the set of gray edges

in the corresponding path between b and g in C . The edge .b; g/ is bad if after a proper cent-mapping

on b and g the edges in V.b; g/ belong to a leaf, otherwise it is good. For example, in Figure 3, the edge

.b; g/ where V.b; g/ D f.1; 2/; .2; 3/g is bad.

Lemma 8. The “badness” of edge .b; g/ in a peri-cycle is unchanged by cent-mappings not involving

b and g.

Proof. Clearly the order in which we perform cent-mappings does not affect the final cycle graph. Let

M be the component containing V.b; g/ in the cycle graph resulting from a proper cent-mapping on .b; g/.

If M does not contain any pericentric edge in its span, then clearly it is not affected by later cent-mappings.

Suppose M contains a pericentric edge in its span. Thus, M must be external since it contains in its span

centromeres of two different chromosomes in A. If M is not split by other cent-mappings, then clearly

V.b; g/ remains in an external component. Suppose M is split into two components by a cent-mapping

on pericentric edges b0 and g0. In this case, each of the two new components contains in its span one of

the two new black edges replacing b0. Hence, the component that contains V.b; g/ is guaranteed to remain

external, since it contains in its span two different centromeres in A (corresponding to b and b0).

Lemma 9. Let C be a cycle satisfying: (i) deg.C / > 0, and (ii) C contains a new gray edge, gnew, that

was created by a cent-mapping. Let .b; g/ be an edge in the peri-cycle of C such that V.b; g/ contains

gnew. Then .b; g/ is good.

Proof. The edge gnew is adjacent to a vertex of a previously mapped centromere, cen1 2 CEN. On the

other hand, after a cent-mapping on .b; g/, the path V.b; g/ will be adjacent to a vertex of a new mapped

centromere, cen2 2 CEN. These two centromeres belong to different chromosomes of A. Thus V.b; g/

must contain an external edge after any cent-mapping of b and g and hence .b; g/ is good.

A path in a peri-cycle is bad if all the edges in it are bad. For a path P , let len.P / denote the number of

vertices in P . A cycle C is called evil if its peri-cycle contains a bad path P such that len.P / > deg.C /.

For example, the single cycle in Figure 3 is evil since it contains a bad edge, which is a bad path of length

2, and its degree is 1. An example of an evil cycle with only bad edges in its peri-cycle is presented in

Figure 5. Let Cevil denote the set of all evil cycles that are not in leaves. Define evil D jCevilj.

Lemma 10. Let C be a cycle that does not belong to a leaf. There is a set of safe proper cent-mappings

of all the pericentric edges in C iff C is not evil.
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Proof. Let C P be the peri-cycle of C and let k D deg.C /. Suppose C is evil. Then P C contains a bad

path P with kC1 vertices. There are 2k vertices in C P , thus any proper cent-mapping of all the pericentric

edges in C must match two vertices from P . It follows that there must be a proper cent-mapping on the

two ends of an edge in P . Hence, by definition this cent-mapping is unsafe.

Suppose C is not evil. If k D 1 then the two edges in C P are good and the proper cent-mapping of the

two pericentric edges in C is safe. Suppose k > 1. Let C P D P1; P2 where P1 is a longest bad path in C P .

Let u be the first vertex in P1 and let v be the last vertex in P2. Then .u; v/ is a good edge in C P . Let C1 and

C2 be the two cycles created by the proper cent-mapping on u and v, where C1 contains V.u; v/. Obviously

this proper cent-mapping is safe, deg.C1/ D 0 and deg.C2/ D k�1. It suffices to prove that C2 is not evil.

Let C P
2 be the peri-cycle of C2. Then C P

2 D P 0
1P 0

2 where len.P 0
1/ D len.P1/�1, len.P 0

2/ D len.P2/�1, and

P 0
1 and P 0

2 are connected by good edges (Lemma 9). Let p be the length of the longest bad path in C P
2 . Then

(i) p � len.P1/ � k (since P1 is a longest bad path in C ), (ii) p � max.len.P 0
1/; len.P 0

2// D len.P 0
2/,

and (iii) len.P1/ C len.P2/ D 2k. It follows that p � k � 1 D deg.C2/. Thus by definition C2 is not

evil.

Corollary 2. Every proper cent-mapping satisfies �.l C evil/ � 0.

We partition Cevil into three classes:

� C1
evil: Cycles of even degree and only bad edges in their peri-cycle.

� C2
evil: Cycles of odd degree and only bad edges in their peri-cycle.

� C3
evil: Cycles with at least one good edge in their peri-cycle.

Let evil1 D jC
1
evilj, evil2 D jC

2
evilj and evil3 D jC

3
evilj. If C 2 Cevil is of degree 1 then C 2 C3

evil (since

otherwise it would be in a leaf). Every new evil cycle (i.e., an evil cycle created by a cent-mapping)

contains a good edge (Lemma 9) and hence belongs to C3
evil. Let C 2 C3

evil and let .b; g/ be an edge

opposite to a good edge in the peri-cycle of C . A proper cent-mapping on b and g satisfies �l D 1,

�evil D �1 and hence �.n � c C l C evil/ D 0. Such a cent-mapping can be viewed as a replacement of

an evil cycle with a leaf. On the other hand, every proper cent-mapping on a cycle in C1
evil[C2

evil satisfies

�.n � c C l C evil/ D �.l C evil/ D 1. Thus by applying proper cent-mappings, a cycle in C2
evil [ C1

evil

can be replaced by two leaves, where each leaf belongs to a different chromosome.

Lemma 11. Let C 2 Cevil. There exists an improper cent-mapping on C for which �evil D �1 iff

C … C1
evil.

Proof. Let C 2 Cevil and let C P be its peri-cycle. Suppose that C … C1
evil.

Case 1: deg.C / is odd. Let u and v be two opposite vertices in the peri-cycle of C . Thus u and v have

opposite colors. Let C1 be the cycle obtained from C after an improper cent-mapping between u and v.

Then the peri-cycle of C1 contains two opposite good edges (Lemma 9) and thus C1 is not evil.

Case 2: deg.C / is even. Then C 2 C
3
evil. Let .b; g/ be an edge opposite to a good edge in the peri-cycle

of C . Let C1 be the cycle obtained from C after performing an improper cent-mapping between b and g.

Then the peri-cycle of C1 has two opposite good edges and thus C1 is not evil.

Suppose C 2 C1
evil. Then deg.C / D k is even and every edge in its peri-cycle is bad. Let C1 be the

result of an improper cent-mapping on C . Then deg.C1/ D k � 1 and the peri-cycle of C1 must contain a

bad path with at least k vertices. Thus C1 is evil.

In other words: for every cycle in C2
evil [C3

evil there exists an improper cent-mapping satisfying �.n �

c C l C evil/ D 0; Every improper cent-mapping on a cycle in C1
evil satisfies �.n � c C l C evil/ D 1.

It follows that a cent-mapping on C 2 C
1
evil [ Cann satisfies �.n � c C l C evil/ D 0 only if it is bad.

Therefore, Corollary 2 and Lemma 11 imply:

Corollary 3. For every cent-mapping �.n � c C l C evil/ � 0.

5.3. A polynomial algorithm using at most optC 2 translocations

In this section we present upper and lower bounds for the legal translocation distance. These bounds

provide an intuition for the rather complicated formula for the legal translocation distance presented in the
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next section. The proof of the upper bound implies an approximation algorithm that sorts A into B using

at most d.A; B/C 2 legal translocations.

Lemma 12. Let C1; C2 2 Cevil [ Cann, where deg.C1/ � deg.C2/. If deg.C1/ D deg.C2/ then every

bad cent-mapping on C1 and C2 satisfies �.l C evil/ D �2. If deg.C1/ < deg.C2/ there exists a bad

cent-mapping on C1 and C2 satisfying �.l C evil/ D �2 iff C2 2 C
3
evil.

Proof. If deg.C1/ D deg.C2/ then any bad cent-mapping on C1 and C2 results in a cycle whose peri-

cycle contains two opposite good edges and hence non-evil. Suppose k1 D deg.C1/ < deg.C2/ D k2 and

let C P
1 and C P

2 denote the peri-cycles of C1 and C2 respectively.

Case 1: C2 2 C3
evil. Let .b; g/ be the opposite edge of a good edge in C P

2 . Let C3 be a result of a

(bad) cent-mapping of the b and a vertex of an opposite color in C P
2 . Let P 0 be a longest bad path in the

peri-cycle of C3. Then len.P 0/ � maxfk2; 2k1 � 1g � k2 C k1 � 1 D deg.C3/.

Case 2: C2 … C3
evil. In this case all the edges in C P

2 are bad. Let C3 be the result of a bad cent-

mapping on C1 and C2. Then the peri-cycle of C3 contains a bad path with 2k2 � 1 vertices, while

deg.C3/ D k1 C k2 � 1 < 2k2 � 1. Thus C3 is evil.

The bad cent-mappings graph, BCM, is defined as follows. It is a bipartite graph whose two parts are

DEG and CYC, where:

DEG D fi W jfC W C 2 C
1
evil [ Cann; deg.C / D igj is oddg CYC D C

3
evil [Cnona

For example, if the degrees of the cycles in C1
evil [Cann are f1; 2; 2; 2; 4; 4; 6; 8g then DEG D f1; 2; 6; 8g.

Vertices i 2 DEG and C 2 CYC are connected by an edge if deg.C / � i (Fig. 6). Thus an edge .i; C /

represents a bad cent-mapping operating on C and C 0 2 C1
evil [ Cann, where deg.C 0/ D i , for which

�.n � c C l C evil/ D 0 and �jDEGj D �1.

A matching in a graph is a collection of edges no two of which share a common vertex. The size of a

matching M , denoted jM j, is the number of edges in it. Finding a maximum matching in BCM is an easy

task that can be completed in linear time by a greedy algorithm that iteratively matches vertices from CYC

in increasing order of their degrees. Define fbadD jDEGj � jM j, where M is a maximum matching. For

a matching M let FM be the forest of internal components after performing a bad cent-mapping on every

C 2 Cann [M . In other words, FM is obtained from F by the deletion of every component containing a

cycle from either Cann or Cnona\M in its span. In the following we prove that the cent-mappings produced

by Algorithm 2 lead to a sorting scenario of at most d.A; B/C 2 legal translocations.

Observation 4. Every cent-mapping satisfies �dfbad=3e 2 f�1; 0; 1g.

Proof. Every cent-mapping involves at most three cycles (old and new). Hence �fbad 2 Œ�3; 3�.

Lemma 13. Every cent-mapping satisfies �.n � c C l C evil C dfbad=3e/ � 0:

Proof. Let � � �.n � c C l C evilC dfbad=3e/. By Observation 4, if �.n � c C l C evil/ > 0 then

� � 0. Suppose �.n � c C l C evil/ D 0. We shall prove that �fbad � 0:

FIG. 6. An example for a bad cent-mappings (BCM) graph. DEG D f1; 2; 6; 8g, CYC D fC1; C2; C3; C4g. The degree

of each cycle in CYC appears in brackets below the cycle.
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Algorithm 2. Get_Mapping (a 2-additive approximation)

1: M  a maximum matching in BCM

2: Perform a bad cent-mapping on every C1; C2 2 C1
evil [ Cann, where deg.C1/ D deg.C2/.

/* Now jC1
evil [Cannj D jDEGj */

3: for all .i; C / 2M do

4: Perform a bad cent-mapping on C and C 0 2 C1
evil[Cann, where deg.C 0/ D i , such that �.lCevil/ D

�2 (Lemma 12).

5: end for

6: while jDEGj � 3 do

7: C1; C2; C3  3 cycles in C1
evil [Cann, where deg.C1/ is minimal.

8: Perform a bad cent-mapping on C2 and C3 and let C4 be the new evil cycle.

9: Perform a bad cent-mapping on C1 and C4 such that �.l C evil/ D �2 (Lemma 12).

10: end while

11: if jDEGj D 2 then

12: Perform a bad cent-mapping on C; C 0 2 C1
evil [ Cann. /* DEG D 2! DEG D 1 */

13: end if

14: if jDEGj D 1 then

15: Perform an improper cent-mapping on C 2 C
1
evil [Cann.

16: end if

/* Now jC1
evilj D ann D 0 */

17: Perform an improper cent-mapping on every C 2 Cevil such that �evil D �1 (Lemma 11).

/* Now evil D 0 */

18: Perform safe proper cent-mappings on every cycle of degree at least 1 (Lemma 10).

19: Perform a proper cent-mapping on every C 2 Cnona.

Case 1: �.n � c/ D 0 (i.e., proper cent-mapping). Then �.l C evil/ D 0 and thus either �l D 1 and

�evil D �1, or �l D �evil D 0. Hence DEG is unchanged and �jCYCj � 0. Therefore, �fbad � 0.

Case 2: �.n � c/ D 1 (i.e., improper cent-mapping). Then �l D 0 and �evil D �1. Therefore DEG is

unchanged, �jCYCj � 0, and hence �fbad >D 0.

Case 3: �.n � c/ D 2 (i.e., bad cent-mapping). Then �.l C evil/ D �2. Let C1 and C2 be the cycles

on which the cent-mapping was performed. If C1 and C2 belong to the same class (e.g., C1
evil, C3

evil) then

clearly DEG is unchanged and �jCYCj � 0, hence �fbad � 0. If C1 and C2 belong to different classes,

then w.l.o.g. C1 2 C1
evil [Cann and C2 2 C3

evil [Cnona. Hence, �fbad � 0.

Lemma 14. Every cent-mapping performed by Algorithm 2 satisfies �.n�cClCevilCdfbad=3e/ D 0.

Theorem 3. Let d D d.A; B/ and let f D n�N � c C l C evil C dfbad=3e. Then d 2 Œf; f C 2�. In

particular, Algorithm 2 produces PA 2 PA and PB 2 PB for which d. PA; PB/ � d C 2.

Proof. Let PA 2 PA. For every PB 2 PB, evil. PA; PB/ D fbad. PA; PB/ D 0 and thus by Theorem 1,

dold. PA; PB/ D f . PA; PB/Cı. PA; PB/. By Lemma 13, f .A; B/ � min PB2PBff . PA; PB/g. By Theorem 2, d.A; B/ D

minff . PA; PB/ C ı. PA; PB/ W PB 2 PBg. Hence f .A; B/ � d.A; B/. Let PB be the genome defined by the

cent-mappings produced by Algorithm 2. By Lemma 14, f .A; B/ D f . PA; PB/. Therefore, d.A; B/ �

dold. PA; PB/ D f .A; B/C ı. PA; PB/ � f .A; B/C 2.

6. A POLYNOMIAL ALGORITHM FOR THE LEGAL

TRANSLOCATION DISTANCE

In this section we present an exact formula for the legal translocation distance, which leads to a

polynomial algorithm for the problem. The proof, and subsequently the algorithm, is focused on finding an
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optimal mapping between the centromeres of genomes A and B (Step 2 in Algorithm 1). This requires an

involved case analysis, which is deferred to an appendix. Let M be a maximum matching in the BCM graph.

Denote by lM be the number of leaves in FM . Define fgood.M/ D jC3
evilnM j. Define mbadD fbad mod 3.

Define ı0 2 f0; 1; 2g as follows. ı0 D 2 iff all the following conditions are satisfied:

� C
2
evil D C

3
evil D DEG D ;

� jF;j D 1
� l and ann are even. If ann > 0 then nona D 0

If ı0 ¤ 2 then ı0 D 1 iff for every maximum matching M all the following conditions are satisfied:

� fgood.M/ 2 f0; 1g
� lM is even ) FM D 1
� (lM is odd and fgood.M/ D 1/) C 2 C3

evil nM cannot be replaced by a leaf such that jFM j > 1.
� mbad D 1) DEG D f1g, jF j D 1, and (l; is odd) evil2 D 0)
� mbad D 2) lM is even and fgood.M/ D 0

If ı0 ¤ 1; 2 then ı0 D 0. Note that if ı0 D 1 and mbad 2 f1; 2g then jFM j D 1.

Theorem 4. The legal translocation distance between A and B is d.A; B/ D n � N � c.A; B/ C

l.A; B/C evil.A; B/C dfbad.A; B/=3e C ı0.A; B/.

The proof of Theorem 4, which appears in the appendix, is by a case analysis of the change in each

of the parameters, n� c, l , evil, fbad and ı0, for each cent-mapping, and hence is quite involved. It leads

to a polynomial time algorithm for finding an optimal mapping between the centromeres of A and B .

This algorithm, which can be viewed as an extension of Algorithm 2, has the same time complexity as

Algorithm 2.

Theorem 5. LSRT can be solved in O.�nC n3=2
p

log.n// time.

Proof. Finding an optimal mapping between the centromeres of A and B can be done in O.�n/ in

the following manner. The set of peri-cycles can be computed in O.n/. For every edge in a peri-cycle we

compute its “badness” in O.n/ by simply performing the corresponding proper cent-mapping. Computing

the badness of all the edges thus takes O.�n/. Computing C1
evil, C2

evil, C3
evil, Cann, Cnona, and DEG requires

a simple traversal of all the edges in every peri-cycle. Hence, it can be done in O.�/. Overall the algorithm

performs O.�/ operations where each can be implemented in O.n/ time.

7. CONCLUSION

Computational studies in genome rearrangements have overlooked centromeres to date. In this study,

we presented a new model for genomes that accounts for centromeres. Using this model, we defined

the problem of legal sorting by reciprocal translocations (LSRT) and proved that it can be solved in

polynomial time. Unfortunately, the legal translocation distance formula appears to be quite complex and

it is an interesting open problem whether it or its proof can be simplified.

A solvable LSRT instance requires the two input genomes to be co-tailed and with the same set of

elements (see Section 3.1). This requirement is a rather strong and unrealistic. Allowing for reversals,

non-reciprocal translocations, fissions and fusions will cancel these restrictions. Under a centromere-aware

model, fissions and fusions are legal if they are centric (Perry et al., 2004; Searle, 1998). In future work,

we intend to study an extension of LSRT that allows for reversals, (centric) fusions and fissions. We expect

an exact algorithm for this extended problem to bring us nearer to realistic rearrangement scenarios than

can be done today.
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8. APPENDIX

Proof of Theorem 4

The proof follows directly from Lemmas 15 and 16 below: Lemma 15 provides a lower bound for the

legal distance while Lemma 16 proves this bound is tight.

Lemma 15. Let � D �.n � c C l C evilC dfbad=3e C ı0/. For every cent-mapping � � 0.

Proof. In the following “before” and “after” are used to define the state before and after the current

cent-mapping respectively. However, unless specified otherwise, every condition refers to the state before

the cent-mapping. For example, “lM is odd” means “lM is odd before.” Let Cgood be the set of cycles that

are not in Cevil [ Cann [ Cnona. Following Lemma 13, if �ı0 � 0 then � � 0. Thus it suffices to prove

� � 0 only for ı0 2 f1; 2g.

Case 1: ı0 D 2. Then �fbad � 0, since DEG D ;.

Case 1.1: �.n � c/ D 0. Let C be the cycle on which the cent-mapping was performed. Since ı0 D 2

then C … C3
evil [ C2

evil.
� C 2 Cnona. Then no other parameter is affected and �ı0 D 0.
� C 2 C1

evil [ Cann. Then �.l C evil/ D 1, �dfbad=3e D 1, and hence � � 0.
� C 2 Cgood. If �.l C evil/ D 0 then no other parameter is affected and � D 0. If �.l C

evil/ D 2 then clearly � � 0. Suppose �.l C evil/ D 1. Note that DEG is unchanged (i.e.,

DEG D ; after). Hence mbad D 0 after. If �l D 1 then after: l; is odd and CYC D ;. If

�evil D 1 then after l; is even and F j;j D 1 (since F is unchanged). Thus, in either case

� D 0.

Case 1.2: �.n � c/ D 1 (i.e., an improper move). Let C be the cycle on which the cent-mapping was

performed.
� C 2 C1

evil [ Cann. Then �.l C evil/ D 0, �dfbad=3e D 1, and hence � � 0.
� C 2 Cnona. Then no other parameter is affected and hence � D 1.
� C 2 Cgood. Then �l D 0, �evil 2 f0; 1g and in either case � D 1.

Case 1.3: �.n�c/ D 2. Let C1 and C2 be the two peri-cycles on which the cent-mapping was performed.

If deg.C1/ D deg.C2/ then C1 and C2 belong to the same class (either C1
evil or Cann) and

clearly �ı0 D 0. Suppose deg.C1/ < deg.C2/.
� C1; C2 2 Cgood. Then � D 2.
� C1 2 Cgood, C2 2 C

1
evil [ Cann. Then �.l C evil/ 2 f0;�1g. If �.l C evil/ D 0 then

C2 2 C1
evil and hence �fbad D 0. If �.l C evil/ D �1 then �fbad D 1. Hence, in either

case, � � 0.
� C1 2 Cgood, C2 2 Cann [ Cnona. Then �l D �1, �evil D 0 (the new cycle is in Cgood). If

C2 2 Cann then �fbad D 1 and hence � � 0. Suppose C 2 Cnona. Then �fbad D 0, and

after: mbad D 0, l; is odd, and fgood.;/ D evil3 D 0. Hence ı0 D 1 after and thus � D 0.
� C1 2 C

1
evil, C2 2 C

1
evil [Cann (different degrees). Then �.l C evil/ D �1, �dfbad=3e D 1

and hence � � 0.
� C1 2 C1

evil, C2 2 Cnona. Then �l D �1, and the new resulting cycle, C3 satisfies C3 2 C3
evil

and deg.C3/ D deg.C1/. Hence �evil D 0, �fbad D 0, and �ı0 D �1. Hence � D 0.

Case 2: ı0 D 1. If �.n � c C l C evil C dfbad=3e/ � 1 then clearly � � 0. We shall prove that if

�.n � c C l C evil C dfbad=3e/ D 0 then �ı0 � 0 and thus � � 0.

Case 2.1: �.n� c/ D 0. Then �.l C evil/ � 0 (Corollary 2), �.l C evilCdfbad=3e/ � 0 (Lemma 13).

If �.l C evilC dfbad=3e/ > 0 then clearly � � 0. Suppose �.l C evilC dfbad=3e/ D 0.
� Suppose �.lCevil/ D 0. Then �dfbad=3e D 0, C1 2 Cgood[C3

evil[Cnona. If C 2 Cgood then

no parameter is affected and hence � D 0. Suppose C 2 C
3
evil[Cnona. Then �fbad 2 f0; 1g

and mbad 2 f0; 2g.

—Suppose fbadD 0, �l D 1. Then C 2 C3
evil and �evil D �1. Thus for every maximum

matching M after, there exists a maximum matching M 0 before satisfying fgood.M 0/ D
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fgood.M/ C 1 and lM 0 D lM � 1. Since ı0 D 1 before it follows that mbad D 0 and

�ı0 � 0.

—Suppose fbad D 0, �l D 0. If C 2 Cnona then every maximum matching after is a

maximum matching before, with the same properties. Suppose C 2 C3
evil. Then C is

replaced with an evil cycle C 0 of a smaller degree. Hence for every maximum matching

M 0 after there exists a maximum matching M before, where C 0 is replaced by C , and

which has the same properties as M . Hence in both cases �ı0 � 0.

—Suppose fbad D 1. Then mbad D 2 before and mbad D 0 after.

* Suppose C 2 C3
evil. If �l D 1 (and hence �evil D �1) then every maximum matching

M after satisfies lM is odd and fgood.M/ D 0. If �l D 0 then every maximum

matching M after satisfies either (lM is even and jFM j D 1) or (lM is odd and

fgood.M/ D 0). Hence, in any case �ı0 � 0.

* Suppose C 2 Cnona. Then every maximum matching M after satisfies lM is odd and

fgood.M/ is even. Hance ı0 D 1 after.
� Suppose �.l C evil/ D 1. Then �dfbad=3e D �1.

—Suppose �fbad D �1. Then mbad D 1 before and thus evil3 D nona D 0 and C 2

Cgood [ C2
evil. It follows that every maximum matching M after satisfies either (lM is

even and jFM j D 1) or (lM is odd and fgood.M/ D 0). (The later happens only if

C 2 C
2
evil and �l D 1.) Hence �ı0 � 0.

—Suppose �fbad D �2. Then mbad D 2 before and C 2 C2
evil [ C1

evil. Moreover, if

C 2 C1
evil then deg.C / 2 DEG. Then for every maximum matching M after either (lM

is even and jFM j D 1) or (lM is odd and fgood.M 0/ D 0). (The latter case may happen

only if C 2 C1
evil.) Hence �ı0 D 0.

—Suppose �fbad D �3. Then C 2 C1
evil and for every maximum matching M after there

exists a maximum matching M 0 before with the same properties. Hence �ı0 D 0.

Case 2.2: Suppose �.n�c/ D 1. Then �l D 0 and �.evilCdfbad=3e/ � �1. If �.evilCdfbad=3e/ � 0

then clearly � � 0. Suppose �.evil C dfbad=3e/ D �1. Let C the cycle on which the cent-

mapping was performed.
� Suppose �evil D �1. Then �dfbad=3e D 0, C 2 C3

evil[C2
evil, F is unchanged. If C 2 C2

evil

then clearly �ı0 � 0. Suppose C 2 C
3
evil. Then �fbad 2 f0; 1g.

—Suppose �fbad D 0. Then for every maximum matching M after there exists a maximum

matching M 0 before such that FM D FM 0 and fgood.M/ D fgood.M 0/ � 1. Hence

�ı0 � 0.

—Suppose �fbad D 1. Then before mbad D 2. It follows that after: mbad D 0 and every

maximum matching M satisfies jFM j D 1 and lM is even. Hence ı0 D 1 after.
� Suppose �evil D 0. Then �dfbad=3e D �1, C 2 C2

evil [C1
evil [Cann.

—Suppose C 2 C2
evil. Then before mbad D 1 and hence after: mbad D 0 and the single

maximum matching satisfies lM is even and jFM j D 1. Hence ı0 D 1 after.

—Suppose C 2 C1
evil. Then deg.C / 2 DEG, F is unchanged, and mbad D 2 before. Hence

after: mbad D 0 and every maximum matching M satisfies lM is even and jFM j D 1.

Hence ı0 D 1 after.

—Suppose C 2 Cann. Then mbad D 1 before. Therefore after DEG D ; and �ı0 � 0.

Case 2.3: �.n�c/ D 2. Let C1 and C2 be the cycles on which the cent-mapping was performed. In this

case �jF j � 0, �.lCevil/ � �2, �.lCevilCdfbad=3e/ � �2. If �.lCevilCdfbad=3e/ � �1

then clearly � � 0. Suppose �.l C evilC dfbad=3e/ D �2.
� Suppose �.l C evil/ D �1. Then �dfbad=3e D �1.

—Suppose �fbad D �1. Then mbad D 1 before, C1 2 Cann, C2 2 Cgood [ C2
evil. Hence

after: mbad D 0, DEG D ;, jF;j D 1 (F; is unchanged). If l; is even then clearly

�ı0 � 0. Suppose l; is odd. Then C 2 Cgood and hence fgood.;/ D 0 after. Therefore

�ı0 � 0.

—Suppose �fbad D �2. Then mbad D 2 before and mbad D 0 after. Note that before

FM is fixed for every maximum matching M (i.e., FM D F 0). Let M be a maximum

matching after. Then either FM D F 0 (i.e., as before), or lM is odd and fgood.M/ D 0.
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(The latter may happen only if nona > 0 and C1 2 Cann [ Cnona.) In both cases ı0 D 1

after.

—Suppose �fbad D �3. Then C1; C2 2 C
1
evil [ Cann, deg.C1/; deg.C2/ 2 DEG, and for

every maximum matching M after, there exists a maximum matching M 0 before, such

that FM D FM 0 and fgood.M/ D fgood.M 0/, hence ı0 D 1 after.
� Suppose �.lCevil/ D �2. Then �dfbad=3e D 0 and only the following cases are possible.

—C1 2 C3
evil, C2 2 C2

evil. Then �fbad 2 f0; 1g. If �fbad D 0 then for every maximum

matching M after there exists a maximum matching M 0 before such that FM D FM 0 and

fgood.M/ D fgood.M 0/ � 1, hence �ı0 � 0. Suppose �fbad D 1. Then �mbad D 2

before. Hence after: mbad D 0, and every maximum matching satisfies lM is even and

jFM j D 1, hence �ı0 D 0.

—C1 2 C3
evil, C2 2 C1

evil [Cann.

* deg.C2/ 2 DEG. Then �fbad 2 f0; 1g. If �fbad D 0 then clearly � � 0. Suppose

�fbad D 1. Then mbad D 2 before and after: mbad D 0, and either (lM is even and

jFM j D 1, or (lM is odd and fgood.M/ D 0). Hence �ı0 D 0.

* deg.C2/ … DEG. Then �fbad 2 f0; 1g again. In both cases C2 2 Cann, and after

mbad D 0 and every maximum matching M after satisfies .1; C 0/ 2 M , where

C 0 2 Cnona, lM is odd and fgood.M/ D 0 (since ı0 D 1 before). Hence �ı0 D 0.

—C1 2 C
3
evil, C2 2 Cnona. Then �fbad 2 f0; 1g.

* �fbad D 0. Then if 1 2 DEG then nona � 2. Hence for every maximum matching

M after there exists a maximum matching M 0 before such that lM D lM 0 � 1 and

fgood.M/ D fgood.M 0/ � 1. Thus before: mbad D 0 and every maximum matching

M 0 for which fgood.M 0/ D 1 satisfied lM is even. Thus �ı0 � 0.

* �fbad D 1. Then before: mbad D 2 and thus nona D 1. It follows that 1 … DEG

and hence after: mbad D 0, and every maximum matching M satisfies lM is odd and

fgood.M/ D 0. Thus ı0 D 1 after.

—C1; C2 2 C2
evil, or C1; C2 2 C1

evil, or C1; C2 2 Cann. Then clearly �ı0 � 0.

—C1 2 Cann, C2 2 Cnona. If 1 2 DEG then clearly �ı0 � 0. Suppose 1 … DEG. Then

�fbad 2 f0; 1g and for every maximum matching before FM D F 0 and fgood.M/ D

fgood 0 are fixed (i.e., independent of M ).

* nona > 1 before. Then jF 0j > 1 and hence mbad D 0, l.F 0/ is odd and fgood 0 D

0. Thus after, every maximum matching M satisfies: lM D l.F 0/ � 2 is odd and

fgood.M/ D fgood 0 D 0, and thus ı0 D 1.

* nonaD 1 before. Then after: nona D 0 and for every maximum matching M , FM D

F 00 (i.e., independent of M ) and l.F 00/ D l.F 0/ � 1. There there are two possible

cases. In the first case fgood 0 D 0 before, and then �fbad D 1, and hence mbad D 2

before. In the second case fgood D 1, and then �fbad D 0, mbad D 0 and l.F 0/

is even (since F 0 contains a non-annoying leaf). It follows that in both cases after:

mbad D 0, fgood 00 D 0 and l.F 00/ is odd. Hence ı0 D 1 after.

—C1; C2 2 Cnona. If 1 … DEG or nona > 2 then clearly �ı0 � 0. We shall prove that no

other case is not possible. Suppose 1 2 DEG and nona D 2. It follows that before for

every maximum matching M , .1; C / 2 M where C 2 Cnona, lM is odd and fgood.M/ D

0. Hence mbad D 0 before and �fbad D 1, a contradiction to �dfbad=3e D 0.

Lemma 16. Let � D �.n� c C lC evilCdfbad=3eC ı0/. There exists a sequence of � cent-mappings

where each satisfies � D 0.

Proof. Below we present Algorithm 3, which satisfies � D 0 for every cent-mapping. Moreover, after

the run of this algorithm the following conditions are satisfied: (i) DEG D ;, (ii) ı0 D 0 ) l; is even

and F; ¤ 1, and (iii) ı0 D 1) l; is odd. It follows that if we apply Algorithm 2 after Algorithm 3, then

every cent-mapping performed by the latter algorithm satisfies � D 0. (Note that in this case Steps 3–16

in Algorithm 2 are skipped, since DEG D ;.)
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Algorithm 3. Improve ı0

1: if mbad D 2 then

2: Let M be a maximum matching, let C1; C2 2 C1
evil [ Cann, where deg.C1/; deg.C2/ … M , and

deg.C1/ ¤ deg.C2/. Perform a bad cent-mapping on C1 and C2

3: else if mbad D 1 then

4: i  maxfj W j 2 DEGg

5: if i > 1 then

6: Let M be a maximum matching where i is not matched. Let C 2 C1
evil satisfying deg.C / D i

7: if lM is even then

8: Perform 2 proper cent-mapping on C such that �l D 2 and �evil D �1

9: else

10: Perform an improper cent-mapping on C followed by a proper cent-mapping satisfying �l D 1,

�evil D �1 and �jFM j > 1 after

11: end if

12: else

13: if l; D 0 then

14: Let C 2 Cann, let C1 ¤ C be any other cycle satisfying deg.C1/ > 0.

15: if C1 2 Cgood [ C
2
evil then

16: Perform a bad cent-mapping on C and C1

17: else

18: Then C1 2 C1
evil[Cann. Let C2 be a cycle of the same class as C1, different from C and C1,

satisfying deg.C2/ D deg.C1/. Perform a bad cent-mapping on C1 and C2. Let C3 be new

cycle. Perform a bad cent-mapping on C and C3

19: end if

20: else if jF j > 1 then

21: Depending on the parity of l;: perform either a proper or an improper cent-mapping on a cycle

from Cann such that after: l; is even and jF;j > 1

22: else if l; is odd then

23: if evil2 > 0 then

24: Let C 0 2 C2
evil. Perform a bad cent-mapping on C and C 0

25: else

26: Perform a proper cent-mapping on C

27: end if

28: else

29: Perform an improper cent-mapping on C

30: end if

31: end if

32: end if

33: call Procedure 4

Procedure 4. Handle mbad D 0
1: if 1 2 DEG and nona > 0 then

2: Let M be a maximum matching in BCM satisfying .1; C1/ 2M , where C1 2 Cnona

3: if jFM j D 1 and nona � 2 then

4: Let M be a maximum matching in BCM satisfying .1; C2/ 2M where C1 ¤ C2 2 Cnona

5: end if

6: else

7: Let M be any maximum matching in BCM

8: end if

(continued)
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Procedure 4. (Continued)

9: if lM is odd, and fgood.M/ D 1, and after C 2 C3
evil nM is replaced by a leaf jFM j D 1 then

10: if there exists i 2 DEG such that i � deg.C/ then

11: Update M such that .i; C/ 2M

12: end if

13: end if

14: if lM is odd and there exists C 2 C
3
evil nM that can be replaced by a leaf such that jFM j > 1 after then

15: Perform this replacement

16: else if lM is even and jFM j D 1 then

17: if fgood.M/ � 2 then

18: Replace two unmatched cycles in C
3
evil by two leaves (each cycle is replaced by one leaf)

19: else if evil2 > 0 then

20: Replace a cycle in C2
evil by two leaves

21: else if fbad > 0 then

22: Let i1; i2; i3 2 DEG n M , where i1 < i2 < i3. Let C1; C2; C3 2 C
1
evil [ Cann, where deg.Cj / D j for

j D 1; 2; 3. Perform a bad cent-mapping on C1 and C2. Replace C3 by two leaves

23: else if jM j > 0 then

24: Choose C 2 C
1
evil [Cann, C 0 2 C

3
evil [ Cnona such that .deg.C/; C 0/ 2M

25: if deg.C/ D 1 then

26: Perform an improper cent-mapping on C

27: if C 0 2 C
3
evil then

28: Replace C by a leaf

29: end if

30: else

31: Replace C by two leaves

32: end if

33: else if ann > 0 and nona > 0 then

34: Let C1; C2 2 Cann, C3 2 Cnona. Perform a proper cent-mapping on C1. Perform a bad cent-mapping on C2

and C3

35: else if C
3
evil > then

36: Replace C 2 C3
evil by a leaf

37: end if

38: end if

39: for all .i; C/ 2M do

40: Perform a bad cent-mapping on C and a C 0 2 C
1
evil [ Cann, where deg.C 0/ D i , such that �.l C evil/ D �2

(Lemma 12).

41: end for
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Sorting Cancer Karyotypes by Elementary Operations

MICHAL OZERY-FLATO and RON SHAMIR

ABSTRACT

Since the discovery of the ‘‘Philadelphia chromosome’’ in chronic myelogenous leukemia in
1960, there has been ongoing intensive research of chromosomal aberrations in cancer.
These aberrations, which result in abnormally structured genomes, became a hallmark of
cancer. Many studies provide evidence for the connection between chromosomal alterations
and aberrant genes involved in the carcinogenesis process. An important problem in the
analysis of cancer genomes is inferring the history of events leading to the observed aber-
rations. Cancer genomes are usually described in the form of karyotypes, which present the
global changes in the genomes’ structure. In this study, we propose a mathematical frame-
work for analyzing chromosomal aberrations in cancer karyotypes. We introduce the prob-
lem of sorting karyotypes by elementary operations, which seeks a shortest sequence of
elementary chromosomal events transforming a normal karyotype into a given (abnormal)
cancerous karyotype. Under certain assumptions, we prove a lower bound for the elemen-
tary distance, and present a polynomial-time 3-approximation algorithm for the problem.
We applied our algorithm to karyotypes from the Mitelman database, which records cancer
karyotypes reported in the scientific literature. Approximately 94% of the karyotypes in the
database, totaling 58,464 karyotypes, supported our assumptions, and each of them was
subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to
generate a 3-approximation, it produced a sequence whose length matched the lower bound
(and hence optimal) in 99.9% of the tested karyotypes.

Key words: combinatorics, computational molecular biology, gene expression, gene networks,

genetic variation, sequence analysis.

1. INTRODUCTION

Cancer is a disease caused by genomic mutations leading to the aberrant function of genes. Those

mutations ultimately give cancer cells their proliferative nature. Inferring the evolution of these mu-

tations is an important problem in the research of cancer. Chromosomal mutations that shuffle/delete/

duplicate large genomic fragments are common in cancer. Many methods for detection of chromosomal

mutations use chromosome painting techniques, such as G-banding, to achieve a visualization of cancer cell

genomes. The description of the observed genome organization is called a karyotype (Fig. 1). In a karyotype,

each chromosome is partitioned into continuous genomic regions called bands, and the total number of bands

is the banding resolution. Over the last decades, a large amount of data has been accumulated on cancer
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karyotypes. One of the largest depositories of cancer karyotypes is the Mitelman database of chromosomal

aberrations in cancer (Mitelman et al., 2008), which records cancer karyotypes reported in the scientific

literature. These karyotypes are described using the ISCN nomenclature (Mitelman, 1995) and thus can be

parsed automatically. While novel techniques can provide information at much higher resolution of the

cancer karyotypes (Snijders et al., 2001; Greenman et al., 2007), the Mitelman database still contains data on

a number of karyotypes a few orders of magnitudes larger.

Cancer karyotypes exhibit a wide range of chromosomal aberrations. The common classification of these

aberrations categorizes them into a variety of specific types, such as translocations, and iso-chromosomes.

Inferring the evolution of cancer karyotypes using this wide vocabulary of complex alteration patterns is a

difficult task. Nevertheless, the entire spectrum of chromosomal alterations can essentially be spanned by

four elementary operations: breakage, fusion, duplication, and deletion (Fig. 2). A breakage, formally

FIG. 1. A schematic view of two real karyotypes: a normal female karyotype (a) and the karyotype of MCF-7 breast

cancer cell-line (b) (NCI, 2001). In the normal karyotype, all chromosomes, except X and Y, appear in two identical

copies, and each chromosome has a distinct single color. In the cancer karyotype presented here, only chromosomes 11,

14, and 21 show no chromosomal aberrations.

FIG. 2. Illustrations of elementary operations: breakage, fusion, duplication, and deletion. The inverse elementary

operations are fusion, breakage, c-deletion, and addition, respectively.
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known as a ‘‘double-strand break,’’ cuts a chromosomal fragment into two. A fusion ligates two chromo-

somal fragments into one. Genomic breakages, which occur quite frequently in somatic cells, are normally

repaired by the corresponding inverse fusion. Mis-repair of genomic breakages is believed to be a major

cause of chromosomal aberrations in cancer (Ferguson and Frederick, 2001). Other prevalent chromosomal

alterations in cancer genomes are duplications and deletions of chromosomal fragments. These four ele-

mentary events play a significant role in carcinogenesis: fusions and duplications can activate oncogenes,

while breakages and deletions can eliminate tumor suppressor genes.

In this article, we introduce a new model for analyzing chromosomal aberrations in cancer based on the

four elementary operations presented above. We study the problem of finding a shortest sequence of

operations that transforms a normal karyotype into a given cancer karyotype. We call this problem kar-

yotype sorting by elementary operations (KS), and the length of a shortest sequence is called the elementary

distance between the normal and cancer karyotypes. The elementary distance indicates how far, in terms of

number of operations, a cancer karyotype is from the normal one. Hence, it corresponds to the complexity

of the cancer karyotype, which may give an indication of the tumor phase (Höglund et al., 2005). The

reconstructed elementary operations can be used to detect common events for a set of cancer karyotypes

and thus point out genomic regions suspect of containing genes associated with carcinogenesis.

Under certain assumptions, which are supported by most cancer karyotypes, the KS problem can be

reduced in linear time to a simpler problem, called RKS. For the latter problem, we prove a lower bound for

the elementary distance, and present a polynomial-time 3-approximation algorithm. We show that approx-

imately 94% of the karyotypes in the Mitelman database (58,464) support our assumptions, and each of

these was subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to

generate a 3-approximation, it produced a sequence whose length matched the lower bound (and hence

optimal) in 99.9% of the tested karyotypes. Manual inspection of the remaining cases reveals that the

computed sequence for each of these cases is also optimal.

This article is organized as follows. In Section 1, we give the combinatorial formulation of the KS

problem and its reduced variant RKS. In the rest of the article, we focus on the RKS problem. In Section 2,

we prove a lower bound for the elementary distance for RKS. Section 3 describes our 3-approximation

algorithm for RKS. Finally, in Section 4, we present the results of the application of our algorithm to the

karyotypes in the Mitelman database.

2. PROBLEM FORMULATION

2.1. The KS problem

The KS problem receives two karyotypes as an input: the normal karyotype, Knormal, and the cancer

karyotype, Kcancer. We represent each of the two karyotypes by a multi-set of chromosomes. Every

chromosome in Knormal is presented as an interval of B integers, where each integer represents a band. For

simplicity, we assume that all the chromosomes in Knormal share the same B, which corresponds to the

banding resolution. Every two chromosomes in the normal karyotype are either identical, i.e., are re-

presented by the same interval, or disjoint. More precisely, we represent every chromosome in Knormal by

the interval [(k� 1)Bþ 1, kB], where k is an integer that identifies the chromosome. The normal karyotype

usually contains exactly two copies of each chromosomes, with the possible exception of the sex chro-

mosomes. Every chromosome in Kcancer is either a fragment or a concatenation of several fragments, where

a fragment is a maximal sub-interval, with two bands or more, of a chromosome in the normal karyotype.

More formally, a fragment is a maximal interval of the karyotype of the form [i, j] � [i, iþ 1, . . . , j], or

[ j, i] � [ j, j� 1, . . . , i], where i5 j, i, j 2 f(k� 1)Bþ 1, . . . , kBg, and [(k� 1)Bþ 1, kB] 2 Knormal. Note

that, in particular, a chromosome in Kcancer can be identical to a chromosome in Knormal. We use the symbol

‘‘::’’ to denote a concatenation of two fragments, e.g., [i, j]::[i0, j0]. Every chromosome, in both Knormal and

Kcancer, is orientation-less, i.e., reversing the order of the fragments, and the fragments themselves, results

in an equivalent chromosome. For example, X¼ [i, j]::[i0, j0] � [j0, i0]::[ j, i]¼ �XX:
We refer to the concatenation point of two intervals as an adjacency if the union of their intervals is

equivalent to a larger interval in Knormal. In other words, two concatenated intervals that form an adjacency

can be replaced by one equivalent interval. For example, the concatenation point in [5, 3]::[3, 1]: [5, 1] is

an adjacency. Typically, a breakage occurs within a band, and each of the resulting fragments contains a

piece of this broken band that can still be viewed and identified by cytogenetic techniques. For example, if
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[5, 1] is broken within band 3, then the resulting fragments are generally denoted the by [5, 3] and [3, 1].

For this reason, we do not consider the concatenation [5, 3]::[2, 1] as an adjacency. A concatenation point

that is not an adjacency, is called a breakpoint.1 Additional examples of concatenation points that are

breakpoints are as follows: [1, 3]::[5, 6] and [2, 4]::[4, 3].

We assume that the cancer karyotype, Kcancer, has evolved from the normal karyotype, Knormal, by the

following four elementary operations (Fig. 2):

I. Fusion: a concatenation of two chromosomes, X1 and X2, into one chromosome X1::X2.

II. Breakage: a split of a chromosome into two chromosomes. A split can occur within a fragment, or between two

previously concatenated fragments, i.e., in a breakpoint. In the former case, where the break is in a fragment

[i, j], the fragment is split into two fragments: [i, k] and [k, j], where k 2 fiþ 1, iþ 2, . . . , j� 1g.
III. Duplication: a whole chromosome is duplicated, resulting in two identical copies of the original chromosome.

IV. Deletion: a complete chromosome is deleted from the karyotype.

Given Knormal and Kcancer, we define the KS problem as finding a shortest sequence of elementary

operations that transforms Knormal into Kcancer. The length of that sequence is called the elementary distance

between the karyotypes, and denoted d(Knormal, Kcancer). An equivalent formulation of the KS problem is

obtained by considering the inverse direction: find a shortest sequence of inverse elementary operations that

transforms Kcancer into Knormal. Clearly, fusion and breakage operations are inverse to each other. The

inverse to a duplication is a constrained deletion (c-deletion), where the deleted chromosome is one of two

or more identical copies. In other words, a c-deletion can delete a chromosome only if there exists another

identical copy of it. The inverse of a deletion is an addition of a chromosome. Note that in general, the

added chromosome need not be a duplicate of an existing chromosome and can contain any number of

fragments. For the rest of the article, we analyze KS by sorting in reverse order, i.e., starting from Kcancer

and going back to Knormal. The sorting sequences will also start from Kcancer.

2.2. Reducing KS to RKS

In this section, we present a basic analysis of KS, which together with two additional assumptions, allows

the reduction of KS to a simpler variant in which no breakpoint exists (RKS). As we shall see, our

assumptions are supported by most analyzed cancer karyotypes.

We start with several definitions. A sequence of inverse elementary operations is sorting, if its appli-

cation to Kcancer results in Knormal. We shall refer to a shortest sorting sequence as optimal. Since every

fragment contains two or more bands, we can present any band i within it by an ordered pair of its two ends,

i0, which is the end closer to the minimal band in the fragment, and i1, the end closer to the maximal band in

the fragment. More formally, we map the fragment [i, j], i 6¼ j, to [i1, j0] � [i1, (iþ 1)0, (iþ 1)1, . . . , j0] if

i< j, and otherwise to [i0, j1] � [i0, (i� 1)1, (i� 1)0, . . . , j1]. We say that two fragment-ends, a and a0, are

complementing if fa, a0g ¼ fi0, i1g. The notion of viewing bands as ordered pairs is conceptually similar to

considering genes/synteny blocks as oriented, as is standard in the computational studies of genome

rearrangements in species evolution (Bourque and Zhang, 2006). In this study, we consider bands as

ordered pairs to well identify breakpoints: as mentioned previously, a breakage usually occurs within a

band, say i, and the two ends of i, i0 and i1, are separated between the two new resulting fragments. Thus, a

fusion of two fragment-ends forms an adjacency iff these ends are complementing. We identify a break-

point, and a concatenation point in general, by the two corresponding fragment-ends that are fused together.

More formally, the concatenation point in [a, b]::[a0, b0] is identified by the (unordered) pair {b, a0}. For

example, the breakpoint in [1, 2]::[4, 3] � [11, 20]::[40, 31] is identified by {20, 40}. Having defined

breakpoint identities, we refer to a breakpoint as unique if no other breakpoint shares its identity, and

otherwise we call it repeated. In particular, a breakpoint in a non-unique chromosome (i.e., a chromosome

with another identical copy) is repeated. Last, we say that a chromosome X is complex if it contains at least

one breakpoint, and simple otherwise. In other words, chromosome X is simple iff it consists of

one fragment. Analogously, an addition is complex if the chromosome added is complex, and simple

otherwise.

1Formally, since the broken ends of a chromosome are not considered breakpoints here, the term ‘‘fusion-point’’ may
seem more appropriate. However, we kept the name ‘‘breakpoint’’ due to its prior use and for brevity.
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Observation 1. Let S be an optimal sorting sequence. Suppose Kcancer contains a breakpoint, p, that is

not involved in a c-deletion in S. Then there exists an optimal sorting sequence S0, in which the first

operation is a breakage of p.

Proof. Since Knormal does not contain any breakpoint, p must be eventually eliminated by S. A

breakpoint can be eliminated either by a breakage or by a c-deletion. Since p is not involved in a c-deletion,

p is necessarily eliminated by a breakage. Moreover, this breakage can be moved to the beginning of S

since no other operation preceding it involves p. &

Corollary 1. Let S be an optimal sorting sequence. Suppose S contains an addition of chromosome

X¼ f1:: f2:: :: fk, where f1, f2,…, fk are fragments, and none of the k� 1 breakpoints in X is involved in any

subsequent c-deletion in S. Then the sequence S0, obtained from S by replacing the addition of X with the

additions of f1, f2,…, fk (a total of k additions), is an optimal sorting sequence.

Proof. By Observation 1, the breakpoints in X can be immediately broken after its addition. Thus,

replacing the addition of X, and the k� 1 breakages following it, by k additions of f1, f2,…, fk, yields an

optimal sorting sequence. &

It appears that complex additions, as opposed to simple additions, make KS very difficult to analyze.

Moreover, based on Corollary 1, complex additions can be truly beneficial only in complex scenarios in

which c-deletions involve repeated breakpoints that were formerly created by complex additions (Fig. 3).

Therefore, we make the following assumption:

FIG. 3. An example Kcancer and Knormal for which any optimal sorting scenario contains a complex addition. Note that

this scenario involves duplication of the breakpoint in [1,4]::[5,8], while repeated breakpoints are quite rare in the real

data.
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Assumption 1. Every addition is simple, i.e., every added chromosome consists of one fragment.

Using the assumption above, the following observation holds:

Observation 2. Let p be a unique breakpoint in Kcancer. Then there exists an optimal sorting sequence

in which the first operation is a breakage of p.

Proof. If p is not involved in a c-deletion, then by Observation 1, p can be broken immediately.

Suppose there are k c-deletions involving p or other breakpoints identical to it. If p is on chromosome X that

is c-deleted, then at the time of the c-deletion, another copy X0 of X is present in the karyotype, with an

identical breakpoint p0 in it. Note that following Assumption 1, from the four inverse elementary opera-

tions, only fusion can create a new breakpoint. Thus, we can obtain an optimal sorting sequence, S0, from S,

by: (i) first breaking p, (ii) canceling any fusion that creates a breakpoint p0 identical to p, (iii) replacing any

c-deletion involving p, or one of its copies, with two c-deletions of the corresponding 4 unfused chro-

mosomes, and (iv) not having to break the last instance of p (since it was already broken). In summary, we

moved the breakage of p to the beginning of the sorting sequence and replaced k fusions and k c-deletions

(i.e., 2k operations) with 2k c-deletions. &

Observation 3. In an optimal sequence, every fusion creates either an adjacency, or a repeated

breakpoint.

Proof. Let S be an optimal sorting sequence. Suppose S contains a fusion that creates a new unique

breakpoint p. Then, following Observation 2, p can be immediately broken after it was formed, a con-

tradiction to the optimality of S. &

In this work, we choose to focus on karyotypes that do not contain repeated breakpoints. According to

our analysis of the Mitelman database, 94% of the karyotypes satisfy this condition. Thus, we make the

following additional assumption:

Assumption 2. The cancer karyotype, Kcancer , does not contain any repeated breakpoint.

Assumption 2 implies that we can (i) immediately break all the breakpoints in Kcancer (due to Observation

2), and (ii) consider fusions only if they create an adjacency (due to Observation 3). Hence, given a cancer

karyotype, for each normal chromosome, its fragments can be separated from all the other fragments and

used to solve a simpler variant of KS: In this variant, (i) Knormal¼f[1, B] · Ng, (ii) there are no breakpoints

in Kcancer, and (iii) neither fusions, nor additions, form breakpoints. Usually, N¼ 2, with N¼ 1 for the sex

chromosomes. We refer to this reduced problem as restricted KS (abbreviated RKS). For the rest of the

article, we shall limit our analysis to RKS only.

3. A LOWER BOUND FOR THE ELEMENTARY DISTANCE

In this section, we analyze RKS and define several combinatorial parameters that affect the elemen-

tary distance between Knormal and Kcancer. Based on these parameters, we prove a lower bound on the ele-

mentary distance. Though theoretically our lower bound is not tight, we shall demonstrate in Section 4 that

in practice, for the vast majority (99.9%) of the real cancer karyotypes analyzed, the elementary distance

achieves this bound.

3.1. Extending the karyotypes

For simplicity of later analysis, we extend both Knormal and Kcancer by adding to each karyotype 2N ‘‘tail’’

intervals:

bKKnormal¼Knormal [ f[0, 1] · N, [B, Bþ 1] · Ng
bKKcancer¼Kcancer [ f[0, 1] · N, [B, Bþ 1] · Ng
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For an example, see Figure 4a. These new ‘‘tail’’ intervals do not take part in elementary operations:

breakage and fusion are still limited to {2, 3,…, B� 1}, and intervals added/c-deleted are contained in [1, B].

Hence d(Knormal, Kcancer) � d( bKKcancer, bKKcancer). Their only role is to simplify the definitions of parameters

given below.

3.2. The histogram

We define the histogram of bKKcancer, H � H( bKKcancer) : f[i� 1, i] j i¼ 1, 2, . . . , Bþ 1g ! N [ f0g, as

follows. Let H([i� 1, i]) be the number of fragments in bKKcancer that contain the interval [i� 1, i] (Fig. 4b).

From the definition of bKKcancer, it follows that H([0, 1])¼H([B, Bþ 1])¼N. For simplicity, we refer to

H ([i� 1, i]) as H (i). The histogram H has a wall at i 2 f1, . . . , Bg if H(i) 6¼ H(iþ 1). If H(iþ 1)4H(i)

(respectively, <H(i)) then the wall at i is called a positive wall (respectively, a negative wall). Intuitively, a

wall is a vertical jump of H. We define w to be the total size of walls in H. More formally,

w¼
XB

i¼1

jH(iþ 1)�H(i)j

Since H(1)¼H(Bþ 1)¼N, the total size of positive walls is equal to the total size of negative walls, and

hence w is even. Note that if bKKcancer¼ bKKnormal then w¼ 0. The pair (i, h) � (i, [h� 1, h]), h 2 N, is a brick in

the wall at i if H(i)þ 1 � h � H(iþ 1) or H(iþ 1)þ 1 � h � H(i). A brick (i, h) is positive (respectively,

negative) if the wall at i is positive (respectively, negative). Note that the number of bricks in a wall is equal

to its total size. Hence, w corresponds to the total number of bricks in H.

Observation 4. For breakage and fusion, �w¼ 0; For c-deletion and addition, �w¼f� 2, 0, 2g.

3.3. Counting complementing end pairs

Consider the case where w¼ 0. Then there are no gains and no losses of bands, and the number of

fragments in bKKcancer is greater or equal to the number of fragments in bKKnormal. Note that each of the four

elementary operations can decrease the total number of fragments by at most one. Hence, when w¼ 0, an

optimal sorting sequence would be to fuse pairs of complementing fragment-ends, not including the tails.

Let us define f � f ( bKKcancer) as the maximum number of disjoint pairs of complementing fragment-ends.

Note there could be many alternative choices of complementing pairs. Nevertheless, any maximal disjoint

pairing is also maximum. It follows that if w¼ 0, then d( bKKnormal, bKKcancer)¼ f � 2N. Also, when w 6¼ 0, a

c-deletion may need to be preceded by some fusions of complementing ends, to form two identical

fragments. In general, the following holds:

FIG. 4. An example of a cancer karyotype K̂Kcancer and its combinatorial parameters. (a) The (extended) cancer

karyotype is K̂Kcancer¼f[0, 1] · 2, [1, 4], [4, 5], [5, 10] · 2, [10, 11] · 2, [2, 3] · 2, [6, 8]g. Here N¼ 2, B¼ 10. The number

of disjoint pairs of complementing fragment-ends, f, is 5. (b) The histogram H � H(K̂Kcancer). H has walls at 1, 2, 3, 5, 6,

and 8. There are four positive bricks: (2,2), (2,3), (5,2), and (6,3), and four negative bricks: (1,2), (3,3), (3,2), and (8,3).

Hence w¼ 8. Four of the eight bricks are simple: (2,2), (3,2), (6,3), and (8,3), thus s¼ 4. (c) The weighted bipar-

tite graph of BG. It is not hard to verify that M¼f ((2, 3), (3, 3)), ((6, 3), (3, 2)), ((2, 2), (1, 2)), ((5, 2), (8, 3)) g is a

minimum-weight perfect matching and hence m¼ 2.
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Observation 5. For breakage �f ¼ 1; For fusion, �f ¼ � 1; For c-deletion, �f 2 f0, � 1, � 2g; For

addition, �f 2 f0, 1, 2g.

Lemma 1. For breakage and addition, �(w / 2þ f )¼ 1; For fusion and c-deletion, �(w / 2þ f )¼ � 1:

Proof. For breakage/fusion, �w¼ 0, and thus the lemma immediately follows from Observation 5. For

addition: (�w¼ 0)) (�f ¼ 1); (�w¼ � 2)) (�f ¼ 2); (�w¼ 2)) (�f ¼ 0). For c-deletion:

(�w¼ 0)) (�f ¼ � 1); (�w¼ � 2)) (�f ¼ 0); (�w¼ 2)) (�f ¼ � 2). &

3.4. Simple bricks

A brick (i, h) is called simple if: (i) (i, h� 1) is not a brick, and (ii) bKKcancer does not contain a pair of

complementing fragment-ends in i (Fig. 4b). Thus, in particular, a simple brick cannot be eliminated by a

c-deletion. On the other hand, for a non-simple brick, (i, h), there are two fragments ending in the corre-

sponding location (i.e., i). Nevertheless, it may still be impossible to eliminate (i, h) by a c-deletion if these

two fragments are not identical. We define s � s( bKKcancer) as the number of simple bricks.

Observation 6. For breakage, �s 2 f0, � 1g; For fusion, �s 2 f0, 1g; For c-deletion, �s¼ 0; For

addition, j�sj � 2.

Observation 6 and Lemma 1 imply:

Lemma 2. For every move, �(w / 2þ f þ s) � � 1.

3.5. The weighted bipartite graph of bricks

The last parameter that we define is based upon matching pairs of bricks. Note that in the process of

sorting bKKcancer, the histogram is flattened, i.e., all bricks are eliminated, which can be done only by using

c-deletion/addition operations. If a c-deletion/addition eliminates a pair of bricks, then one of these bricks is

positive and the other is negative. Thus, roughly speaking, every sorting sequence defines a matching

between pairs of positive and negative bricks that are eliminated together.

Given two bricks, v¼ (i, h) and v0 ¼ (i0, h0), we write v< v0 (resp. v¼ v0) if i< i0 (resp. i¼ i0). Let Vþ and

V� be the sets of positive and negative bricks, respectively. We say that v and v0 have the same sign, if

either v, v0 2 V þ , or v, v0 2 V � . Two bricks have the same status if they are either both simple, or both non-

simple. Let BG¼ (V þ , V � , � ) be the weighted complete bipartite graph, where � : V þ · V � ! f0, 1, 2g is

an edge-weight function defined as follows. Let vþ 2 V þ and v� 2 V � . Then:

�ðvþ ; v�Þ¼

0 vþ and v� are both simple and v�5 vþ

0 vþ and v� are both non-simple and vþ 5 v�

1 vþ and v� have opposite status

2 otherwise

8>>>>>>><
>>>>>>>:

For an illustration of BG, see Figure 4c. Roughly speaking, �(vþ , v� ) corresponds to the additional cost of

eliminating vþ and v� together, either by an addition, when v�< vþ, or by c-deletion, when vþ< v�. A

matching is a set of vertex-disjoint edges from V þ · V �. A matching is perfect if it covers all the vertices in

BG (recall that jVþj¼ jV�j). Thus, a perfect matching is in particular a maximum matching. Given a

matching M, we define d(M) as the total weight of its edges. Let m � m(K̂Kcancer) denote the minimum weight

of a perfect matching in BG. The problem of finding a minimum-weight perfect matching in a bipartite

graph, also known as the assignment problem, can be solved in O(n3) time (Kuhn, 1955; Munkres, 1957). In

the Appendix, we describe a simple O(n log n) algorithm for computing m, which relies heavily on the

specific weighting scheme, d.

Below, we prove a lower bound for the elementary distance using the four parameters we have just

defined: w, f, s, and m. First, we prove two technical lemmas.
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Lemma 3. Let M and M0 be two perfect matchings that differ by exactly two edges (i.e., four vertices).

Then jd(M)� d(M0)j � 2.

Proof. Let M nM0 ¼ fe1, e2g and M0 nM¼fe3, e4g. Assume w.l.o.g. that �¼ �(M0)� �(M) � 0. Then

�¼ �(e3)þ �(e4)� �(e1)� �(e2) � 4, since for every edge, e, �(e) 2 f0, 1, 2g. If �(e1)þ �(e2) � 2 then

clearly D� 2. Suppose d(e1)þ d(e2)< 2. Now, let e1¼ (v1, u1) and e2¼ (v2, u2). W.l.o.g. we assume that

e3¼ (v1, v2) and e4¼ (u1, u2).

� Case 1: d(e1)¼ d(e2)¼ 0. In this case, e1 and e2 connect vertices with the same status. If v1 has a different status

than v2, then d(e3)¼ d(e4)¼ 1. Otherwise, v1, u1, v2, and u2 have the same status. In this case it is not hard to verify

by considering the possible orderings of fv1, u1, v2, u2g that �(e3)þ �(e4) 2 f0, 2g. Thus, in either case D� 2.
� Case 2: d(e1)þ d(e2)¼ 1. In this case, exactly three vertices in fv1, u1, v2, u2g have the same status, while the

remaining vertex has the opposite status. Thus, it follows that either d(e3)¼ 1 or d(e4)¼ 1 and thus D� 2. &

Let K 0 be obtained from K by an elementary operation (a move). For a function F defined on karyotypes,

define D(F)¼F(K 0)�F(K).

Proposition 1. For every move, �(w / 2þ f þ sþm) � � 1.

Proof. For a given move, let �¼�(w / 2þ f þ sþm). Let G1 and G2 be the graphs before and after we

make the move, respectively, and let M1 and M2 be minimum-weight perfect matchings in G1 and G2,

respectively, where jM2 nM1j is minimal. Thus Dm¼m2�m1, where m1¼ d(M1) and m2¼ d(M2) We shall

prove D��1 by considering each move type.

� Breakage. We shall prove that jDj � 1. Now, D(w/2þ f )¼ 1 (Lemma 1), �(s) 2 f0, � 1g (Observation 6). If

Dm¼ 0 then � 2 f1, 0g. Suppose Dm= 0. Then a simple brick v became non-simple due to the move and

Ds¼�1. It follows that every edge, e, adjacent to v satisfies �(�(e)) 2 f� 1, 1g. Hence, for every perfect

matching M, �(�(M)) 2 f� 1, 1g. Then, in G1: m1 � �(M2) � m2þ 1, and in G2: m2 � �(M1) � m1þ 1. Hence

jDj ¼ jDmj � 1.
� Fusion. Since fusion is the inverse operation to breakage, it follows that jDj � 1 for fusion as well.
� C-deletion. By Lemma 1 D(w/ 2þ f )¼�1 and by Observation 6, D(s)¼ 0. We shall prove that Dm� 0 by

analyzing the possible values of Dw.
� Dw¼�2. Then two bricks, vþ 2 V þ and v� 2 V � , were eliminated, where vþ< v�, and both vþ and v� are non-

simple. Let e¼ (vþ,v�). Clearly, d(e)¼ 0. Thus before we apply the move: m2¼ �(M2)¼ �(M2 [ feg) �
�(M1)¼m1. Hence Dm� 0.
* Dw¼ 0. In this case, a non-simple brick, v, was replaced with another non-simple brick, v 0 with the same sign. If

v, v0 2 V þ , then v< v0, otherwise, v> v0. Thus, for every vertex u with the same sign to v, d((v, u))� d((v0, u)).

For every vertex u with the opposite sign, d((v,u))¼ d((v0,u)). Hence, Dm� 0.
* Dw¼ 2. In this case, a pair of new non-simple bricks, v� 2 V � and vþ 2 V þ was added, where v�< vþ. Let

e¼ (vþ,v�). Then clearly d(e)¼ 2. Recall that jM2 nM1j is minimal. We now prove that M2¼M1 [ feg and

hence m2¼m1þ 2. Suppose e 62 M2. Let uþ 2 V þ and u� 2 V � be the nodes matched to v� and vþ, re-

spectively, in M2. Let M01 be a minimal perfect matching in G1 that contains e0 ¼ (u�,uþ). Then �(M01) � m1 and

thus it suffices to prove that �(M2) � �(M01). We will do so by proving that d(v�, uþ)þ d(vþ, u�)� d(e0). If

d(e0)¼ 0 then this is certainly true. Suppose d(e0)> 0.

—d(e0)¼ 1. Then exactly one of uþ and u� is simple, hence either d(v�, uþ)¼ 1 or d(vþ, u�)¼ 1.

—d(e0)¼ 2. Then uþ and u� have the same status. If they are both simple then d( v�, uþ)þ
d(vþ, u�)¼ 1þ 1¼ 2¼ d(e0). Otherwise, a simple case analysis reveals that at least one of the edges (vþ, u�)

and (uþ, v�) has a weight 2, and thus d(v�, uþ)þ d(vþ, u�)� 2.
� Addition. Then D(w/2þ f )¼ 1 (Lemma 1), Ds��2 (Observation 6).

* Dw¼�2. In this case, two bricks, v� 2 V � and vþ 2 V þ , were eliminated, where v�< vþ. Let e¼ (v�, vþ).

Then d(e)¼ 2þDs. Moreover, m2¼ �(M2 [ feg)� �(e) � m1� �(e). Thus DmþDs��d(e)þDs¼�2. Hence

D��1.
* Dw¼ 0. In this case, one brick, v, was replaced with a new brick with the same sign, v0. Thus Ds��1, and

Dm��2, since only the edges adjacent to v, which are now adjacent to v0, are affected. If Ds� 0 then clearly

D��1. Suppose Ds¼�1. The a simple brick was replaced with a non-simple brick. Let u be a vertex with the

opposite sign to v. Then d((u,v))� d((u,v0))��1, and thus Dm��1. Therefore, D��1.
* Dw¼ 2. Then two new bricks, vþ 2 V þ and v� 2 V � , were added, where vþ< v�. Thus Ds� 0. Also

D( f )¼ 0. It suffices to prove that Dm��2 and hence D��1. Let e¼ (vþ, v�). If e 2 M2 then clearly m2�m1,
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and thus Dm� 0. Suppose e 62 M2. Then there exist e1, e2 2 M2 where e1¼ (vþ, u�), e2¼ (v�, uþ). Let

M01¼M2 n fe1, e2g [ fe0g, where e0 ¼ (uþ, u�). Then M01 is a perfect matching in G1 and thus �(M01) � m1. Now,

M02¼M01 [ feg is a perfect matching in G2, which differs from M2 by exactly two edges. By Lemma 3,

�(M2) � �(M02)� 2. Since �(M02)¼ �(M01)þ �(e0) � m1, it follows that m2�m1� 2 and thus Dm��2. &

Corollary 2. d�w/ 2þ f� 2Nþ sþm� 0.

Proof. Since N is constant, Proposition 1 implies D(w/ 2þ f� 2Nþ sþm)��1. For

K̂Kcancer¼ K̂Knormal, w / 2þ f � 2Nþ sþm¼ 0þ 2N� 2Nþ 0þ 0¼ 0. Thus the left inequality holds, and it

suffices to prove that t¼w/ 2þ f� 2Nþ sþm� 0. If f� 2N then clearly t� 0. Suppose f< 2N. We shall

prove that fþ sþm� 2N. There are at least 2N� f intervals of the form [0, 1] or [B,Bþ 1], with no

complementing fragment-ends at 1,B. Each of these unmatched tails corresponds to a brick at 1 or B. Let

us look at an optimal matching and focus on the edges involving these bricks. There are at least

d(2N� f )/ 2e such edges. It is easy to verify that each of these edges contributes 2 to sþm, hence

sþm� 2N� f. &

4. THE 3-APPROXIMATION ALGORITHM

Algorithm 1 is a polynomial procedure for the RKS problem. We shall prove that it is a 3-approximation,

and then describe a heuristic that aims to improve it.

Lemma 4. Algorithm 1 transforms K̂Kcancer into K̂Knormal using at most 3w/ 2þ f� 2Nþ sþm inverse

elementary operations.

Proof. Let � � �(w / 2þ f þ sþm). First, we prove that D¼�1 for each move except Step 13, and

for Step 13 moves, D¼ 1.

� Step 3: �(w / 2þ f )¼ 1, �(sþm)¼ � 2. Note that if there exists a negative (resp. positive) brick at 1 (resp. B),

then this brick is necessarily eliminated in this step.
� Steps 7,9: �(w / 2þ f )¼ 1 (by Lemma 1). After Step 3, any brick at 1 (resp. B) is necessarily positive (resp.

negative) and thus not simple. Thus Ds¼�1. Now Dm��1 (by Proposition 1). By using the maximal matching

induced by M, in which v is replaced by 1 (if v 2 V þ ) or by B (if v 2 V � ), we get Dm¼�1.
� Step 13: By now, Vþ[V� contains only non-simple bricks, i.e., s¼ 0 and thus Ds¼ 0. Moreover, m¼ 0, since the

matching induced by M is optimal (see previous step) and every pair (vþ,v�) in it, where vþ 2 V þ and v� 2 V � ,

satisfies vþ< v�. Therefore, Dm¼ 0. D(w/ 2þ f )¼ 1 (by Lemma 1).
� Step 18: There are no bricks at p, thus Ds¼Dm¼ 0, and D¼D(w/ 2þ f )¼�1 (by Lemma 1).
� Step 20: By now, all bricks are non-simple and the negative bricks are at B. Thus s¼m¼ 0 and Ds¼Dm¼ 0. D(w/

2þ f )¼�1 (by Lemma 1).

Algorithm 1 Elementary Sorting (RKS)

1: M/ a minimum-weight perfect matching in BG

2: for all (v� , vþ ) 2 M where v� 5 vþ do

3: Add the interval [v� , vþ ].

4: end for /* Now vþ< v� for every (vþ , v� ) 2 M, where vþ 2 V þ , v� 2 V � � /

5: for all v 2 V þ [ V � such that v is simple, and v= 1, B do

6: if v 2 V þ then

7: Add the interval [1,v]

8: else

9: Add the interval [v,B]

10: end if

11: end for /* Now vþ< v� for every (vþ , v� ) 2 M, where vþ 2 V þ , v� 2 V � and

all the bricks are non-simple. In addition, 1 62 V � and B 62 V þ�/
12: for all v� 2 V � such that v�<B do

13: Add the interval [v�, B]
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Let t¼w / 2þ f � 2Nþ sþm. There are at most w/ 2 additions at Step 13, each of which satisfies D¼ 1.

For all the other operations we have shown that D¼�1. Thus the overall number of operations is less or

equal to w / 2þ tþw / 2¼ 3w / 2þ f � 2Nþ sþm. &

Theorem 1. Algorithm 1 is a polynomial-time 3-approximation algorithm for RKS.

Proof. By Lemma 4, the algorithm requires � 3t moves. By Corollary 2, that number is at most 3d.&

Note that the same result applies to multi-chromosomal karyotypes, by summing the bounds for the RKS

problem on each chromosome. Note also that the results above imply also that d 2 [w / 2þ f � 2Nþ
sþm, 3w / 2þ f � 2Nþ sþm]

We now present Procedure 2, a heuristic that attempts to improve the performance of Algorithm 1, by

suggesting an alternative to steps 12–21. The procedure assumes that (i) all bricks are non-simple, and (ii)

vþ< v�, for every (vþ , v� ) 2 M, v� 2 V � , vþ 2 V þ . In this case, m¼ 0, and the lower bound is reached

only if no additions are made. Thus, Procedure 2 attempts to minimize the number of extra addition

operations performed. For an interval I, let L(I) and R(I) be the left and right endpoints of I respectively.

5. EXPERIMENTAL RESULTS

In this section, we present the results of sorting real cancer karyotypes, using Algorithm 1, combined

with the improvement heuristic in Procedure 2.

5.1. Data preprocessing

For our analysis, we used the Mitelman database (version of November 4, 2008), which contained 57,776

cancer karyotypes, collected from 9,311 published studies. The karyotypes in the Mitelman database

(henceforth, MD) are represented in the ISCN format and can be automatically parsed and analyzed using

the software package CyDAS (Hiller et al., 2005). We refer to a karyotype as valid if it was parsed by

Procedure 2 Heuristic for eliminating non-simple bricks

1: while Vþ= ; do

2: vþ/max Vþ

3. for all p4 vþ , p5B, p 62 V � do

4: Fuse any pair of intervals complementing at p.

5: end for

6: if AI1,I2, where I1¼ I2 and L(I1)¼ vþ, and R(I1)5R(I2) 2 V � then

7: Let I1,I2 be a pair of intervals with minimal length satisfying the above.

8: C-delete I1

9: else if AI1,I2, where L(I1)¼ L(I2)¼ vþ and R(I1)5R(I2) 2 V � then

10: Let I1,I2 be a pair of intervals with minimal length satisfying the above.

11: Add the interval [R(I1),R(I2)]

12: else

13: Let u� ¼ minfv� 2 V � jv� 4 vþ g
14: Add the interval [u�,B]

15: end if

16: end while

14: end for /* Now all the bricks are non-simple, and v� ¼B, 8v� 2 V �� /

15: while Vþ= ; do

16: vþ/max Vþ

17: for all p> vþ, p<B do

18: Fuse any pair of intervals complementing at p.

19: end for

20: C-delete an interval [vþ, B]

21: end while
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CyDAS without any error. According to our processing, 50,769 (88%) of the records gave valid karyotypes.

Since some of the records contain multiple distinct karyotypes found in the same tissue, the total number of

simple valid karyotypes that we deduced from MD was 62,421.

A karyotype may contain uncertainties, or missing data, both represented by a ‘‘?’’ symbol. We ignored

uncertainties and deleted any chromosomal fragments that were not well defined.

5.2. Sorting the karyotypes

Out of the 62,421 karyotypes analyzed, only 3,957 karyotypes (6%) contained repeated breakpoints. Our

analysis focused on the remaining 58,464 karyotypes. We note that 21,747 (35%) of these karyotypes do

not contain any breakpoint at all. (In these karyotypes, there are no fusions of bands that are not adjacent in

normal chromosomes, but some chromosome tails, as well as full chromosomes, may be missing or

duplicated.) Following our assumptions (see Section 1.2), we broke all the breakpoints in each karyotype.

To avoid over estimation of whole chromosome gains due to events of global changes in the genome

ploidy, we used the ploidy of each karyotype as the normal copy-number (N) of each chromosome. (The

ploidy was computed by the CyDAS parser, based on the the ISCN description of karyotype.) We first

applied Algorithm 1 (without the heuristic), to the fragments of each of the chromosomes in these kar-

yotypes. In 54,903 (94%) of the analyzed karyotypes, this algorithm achieved the lower-bound, and thus

produced optimal sequences. We then applied Algorithm 1, combined with Procedure 2, and the number of

karyotypes that achieved the lower bound increased to 58,434 (99.9%) of the analyzed karyotypes. Each of

the remaining 30 karyotypes contained one or two chromosomes for which the computed sequence was

larger by 2 than the lower-bound. Manual inspection revealed that for each of these cases the elementary

distance was indeed 2 above the lower bound. Hence the computed sequences were found to be optimal in

100% of the analyzed cases.

5.3. Operations statistics

We now present statistics on the elementary operations reconstructed by our algorithm. The 58,464

analyzed karyotypes, contained 86,666 (unique) breakpoints in total. Hence the average number of fusions

FIG. 5. The distribution of number of breakpoints (i.e., fusions of non-adjacent bands) per karyotype. ‘‘Sorted

karyotypes’’ correspond to karyotypes with no repeated breakpoints. ‘‘Non-sorted karyotypes’’ correspond to karyo-

types with repeated breakpoints. About 35% of all the karyotypes do not contain any breakpoint.

Table 1. Average Number of Elementary Operations per (Sorted) Cancer Karyotype

Breakage Fusion Deletion Duplication All

2.4 1.5 2.6 1.1 7.6
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(eq. breakpoints) per karyotype is approximately 1.5. The distribution of the number of breakpoints per

karyotype, for all valid karyotypes, including the non-sorted karyotypes (i.e karyotypes with repeated

breakpoints, which are not analyzed by our algorithm), is presented in Figure 5. The most frequent number

of breakpoints after zero is two, which is due to the prevalence of reciprocal translocations in the analyzed

cancer karyotypes. (Indeed, a direct analysis of cancer karyotypes with exactly two breakpoints shows that

75% have a single translocation.) Table 1 summarizes the average number of operations per sorted kar-

yotype.

6. DISCUSSION

In this article, we proposed a new mathematical model for analyzing the evolution of cancer karyotypes,

using four simple operations. Our model was developed following our empirical observation that chro-

mosome gain and loss are dominant events in cancer (Ozery-Flato and Shamir, 2007). That observation

relied on a purely heuristic algorithm that reconstructed for each cancer karyotype a sequence of events

leading to the normal karyotype, using a wide catalog of complex rearrangement events, such as inversions,

tandem-duplications, iso-chromosome creation, etc. Here we attempted to reconstruct rearrangement events

in cancer karyotypes in a rigorous, yet simplified, manner.

The fact that we model and analyze bands and karyotypes may seem out of fashion in an era of CGH

micro arrays and next generation sequencing. While modern techniques today allow in principle detection

of chromosomal aberrations in cancer at an extremely high resolution, the clinical reality is that kar-

yotyping is still commonly used for studying cancer genomes, and to date it is the only abundant data

resource for cancer genomes structure. Moreover, our framework is not limited to cytogenetic banding

resolution, as the ‘‘bands’’ in our model may represent any DNA blocks.

Readers familiar with the wealth of computational works on evolutionary genome rearrange-

ments (Bourque and Zhang, 2006) may wonder why we have not used traditional operations, such as

inversions and translocations, as has been previously done (Raphael et al., 2003). The reason is that

while inversions and translocations are believed to dominate the evolution of species, they form less

than 25% of the rearrangement events in cancer karyotypes Ozery-Flato and Shamir (2007), and 15%

in karyotypes of malignant solid tumors. The extant models for genome rearrangements do not cope

with duplications and losses, which are frequently observed in cancer karyotypes, and thus are not

suitable for cancer genomes evolution. Extending these models to allow duplications results, even for

the simplest models, in computationally hard problems (Radcliffe et al., 2005, Theorem 10). On the

other hand, the elementary operations in our model can easily explain the variety of chromosomal

aberrations viewed in cancer (including inversions and translocations). Moreover, each elementary

operation we consider is strongly supported by a known biological mechanism (Albertson et al., 2003):

breakage corresponds to a double-strand-break (DSB); fusion can be viewed as a non-homologous end-

joining DSB-repair; whole chromosome duplications and deletions are caused by uneven segregation of

chromosomes.

Based on our new model for chromosomal aberrations, we defined a new genome sorting problem. To

further simplify this problem, we made two assumptions that essentially prohibit the occurrence of repeated

breakpoints in cancer karyotypes, and in their intermediates. All the cancer karyotypes we analyzed did not

contain repeated breakpoints. Although we do not have direct evidence about their intermediate karyotypes,

our assumption is supported by the fact that the vast majority (94%) of reported cancer karyotypes do not

contain repeated breakpoints. We presented a lower bound for this simplified problem, and developed a

polynomial 3-approximation algorithm. The application of this algorithm to 58,464 real cancer karyotypes

yielded solutions that achieve the lower bound (and hence an optimal solution) in almost all cases (99.9%).

This is probably due to the relative simplicity of reported karyotypes, especially after removing ones with

repeated breakpoints (Fig. 5).

In the future, we would like to extend this work by weakening our assumptions in a way that will allow

the analysis of the remaining non-analyzed karyotypes. Those karyotypes, due to their complexity, are

likely to correspond to more advanced stages of cancer. Our hope is that this study will lead to further

algorithmic research on chromosomal aberrations, and thus help in gaining more insight on the ways in

which cancer evolves.
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7. APPENDIX: FINDING A MINIMUM-WEIGHT PERFECT MATCHING

In this section, we present an O(n log n) algorithm for finding a minimum-weight perfect matching. For

status T (i.e T¼ ‘‘simple’’ or T¼ ‘‘non-simple’’) and a set of bricks V, let VT�V denote the set of bricks in

V that are of status T.

Observation 7. Let vþ1 , vþ2 2 V þT and v�1 , v�2 2 V �T . Suppose vþ1 5 vþ2 and v�1 5 v�2 .

� If T¼ ‘‘simple’’ then �(v�1 , vþ2 )) � �((v�1 , vþ1 )) � �((v�2 , vþ1 )).
� If T¼ ‘‘non-simple’’ then �(vþ1 , v�2 )) � �((vþ1 , v�1 )) � �((vþ2 , v�1 )).

Let vþ1 , vþ2 2 V þ , and v�1 , v�2 2 V �. Let e1¼ (vþ1 , v�1 ), and e2¼ (vþ2 , v�2 ). We say that e1� e2 if

vþ1 � vþ2 and v�1 � v�2 .

Lemma 5. Suppose e� ¼ minfe 2 V þt · V �T j�(e)¼ 0g. Then there is a minimum-weight perfect

matching that contains e�.

Proof. Let M0 be a perfect matching that does not contain e�, with a minimum weight. Let M be a

perfect matching most similar to M0 that does contain e�. In other words M differs from M0 by exactly two

edges, one of which is e�. Let e2 2 M nM0, e2 6¼ e�. Suppose e� ¼ (vþ1 , v�1 ) and e2¼ (vþ2 , v�2 ), where

vþ1 , vþ2 2 V þ and v�1 , v�2 2 V � . Then M0 nM¼fe3, e4g, where e3¼ (vþ1 , v�2 ) and e4¼ (vþ2 , v�1 ). We

shall prove that �m¼ �(M)� �(M0)¼ �(e�)þ �(e2)� (�(e3)þ �(e4)) � 0.

If d(e2)¼ 0 then clearly Dm� 0. Suppose d(e2)> 0. Since �(e�)¼ 0, vþ1 and v�1 are of the same status,

say T. Let �TT be the inverse status to T.

Case 1: vþ2 and v�2 have the same status. Then d(e2)¼ 2. If the status of vþ2 and v�2 is �TT then d(e3)¼ d(e4)¼ 1 and thus

Dm¼ 0. Suppose the status of vþ2 and v�2 is T. It suffices to prove that either d(e3)¼ 2 or d(e4)¼ 2. Suppose

d(e3)¼ 0. Recall that e� ia a minimal edge in V þT · V �T with a zero weight.

� T¼ ‘‘simple’’. Then (�(e2)¼ 2)) (vþ2 5 v�2 ), and �(e3)¼ 0)) (vþ1 4 v�2 ) and thus vþ2 5 v�1 and e4¼
(vþ2 , vþ1 )5 (vþ1 , v�1 )¼ e�. Since e�, e4 2 V þT · V �T and e� is the minimal edge in V þT · V �T satisfying d(e1)¼ 0, it

follows that d(e4)¼ 2.
� T¼ ‘‘non-simple’’. In this case similar arguments to the case where T¼ ‘‘simple’’ are used, by simply reversing the

direction of each inequality.

Case 2: vþ2 and v�2 have a different status. In this case �(e�)þ �(e2)¼ 0þ 1¼ 1, and either d(e3)¼ 1 or d(e4)¼ 1. Thus

Dm� 0. &

Observation 7 and Lemma 5 immediately imply Algorithm 3, which finds a minimal-weight perfect

matching in BG. It is not hard to verify that this algorithm can be implemented in O(n log n).

Algorithm 3 Finding a minimum-weight perfect matching in the weighted bipartite

graph of bricks

1: M/ ;
2: for all T¼ ‘‘simple’’,‘‘non-simple’’ do

3: if T¼ ‘‘simple’’ then

4: L1/ increasingly ordered V �T
5: L2/ increasingly ordered V þT
6: else

7: L1/ increasingly ordered V þT
8: L2/ increasingly ordered V �T
9: end if

10: flag / true

11: while flag¼ true and L1= ; do

12: v1 / the first brick in L1

13: L1  L1 n fv1g
14: while v1 is unmatched and L2= ; do
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On the frequency of genome rearrangement events in cancer karyotypes

Michal Ozery-Flato and Ron Shamir

School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
{ozery,rshamir}@post.tau.ac.il

Abstract. Chromosomal instability is a hallmark of cancer. The results of this instability can be observed in the
karyotypes of many cancerous genomes, which often contain a variety of aberrations. In this study we introduce
a new approach for analyzing rearrangement events in carcinogenesis. This approach builds on a new effective
heuristic for computing a short sequence of rearrangement events that may have led to a given karyotype. We
applied this heuristic on over 40,000 karyotypes reported in the scientific literature. Our analysis implies that
these karyotypes have evolved predominantly via four principal event types: chromosomes gains and losses,
reciprocal translocations, and terminal deletions. We used the frequencies of the reconstructed rearrangement
events to measure similarity between karyotypes. Using clustering techniques, we demonstrate that in many cases,
rearrangement event frequencies are a meaningful criterion for distinguishing between karyotypes of distinct
tumor classes. Further investigations of this kind can provide insight on the scenarios by which particular cancer
types have evolved.

1 Introduction

It is well known that many cancerous genomes exhibit abnormal karyotypes. The abnormalities found in
these karyotypes include numerical aberrations, i.e. changes in chromosome copy number, and structural
aberrations, i.e. rearrangements within the genome (see Fig. 1). Some of the malignancies, mostly hemato-
logical ones, are associated with specific patterns of aberrations. A classical example of such association is
between the “Philadelphia chromosome” abberation (a specific translocation between chromosomes 22 and
9) and chronic myelogenous leukemia [17, 19]. This translocation leads to the formation of the oncogene
BCR-ABL [5].

F ig . 1 . A schematic view of an aberrant karyotype (produced by the SKYGRAM converter tool [1]). Chromosomes 1,14, and
18 show structural aberrations, and chromosome 18 shows a numerical aberration. (An ISCN description of this karyotype is
47,XY,der(1)t(1,18)(p36;q21),t(14,18)(q32;q21),+der(18)t(12;18)(p11;q21),+der(18)t(14;18).)

Ov er the last few decades, intensiv e research on chromosomal abberations in cancer has led to the
accumulation of large amount of data on cancerous karyotypes. The largest av ailable public depository of
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such data is the Mitelman database [15], which contains ov er 50,000 karyotypes collected from ov er 8 ,000
publications. In this study we analyze this database. Our goal is to understand the main abberation types
and their freq uency in diff erent cancers. Our hope is that such studies will prov ide insights and better
understanding of the ev olution of karyotypes in specific cancer types.

Traditionally, karyotypes hav e been constructed using chromosome staining methods, mostly G -banding.
SK Y [22] and M-FISH [25] are relativ ely new molecular cytogenetic techniq ues that permit the simulta-
neous v isualization of all the chromosomes in diff erent colors, considerably improv ing the detection of
material exchange between chromosomes. The Mitelman database contains primarily karyotypes based on
G -banding. The resolution and the detectable lev el of details in such karyotypes is lower than what can
be observ ed with SK Y and M-FISH or with nov el high throughput methods (e.g. array-based CG H [24 ]
and E SP [26 ]). N ev ertheless, we chose to focus on the Mitelman database since it is the largest collection
of cancerous karyotypes.

K aryotypes are usually described using the ISCN nomenclature [14 ]. In this system, ev ery aberrant
chromosome is described using specific rearrangement and numerical ev ents, e.g., translocations, inv ersions,
deletions, and duplications. Although ISCN attempts to describe the correct set of ev ents leading to the
observ ed karyotypes, it has almost no ability to do so when there are ov erlapping rearrangements, e.g. a
chromosome inv olv ed in two translocations, each at a diff erent position. Moreov er, while the inference of
the ev ents is an easy task for many modestly rearranged karyotypes of hematological disorders, it can be
a computationally hard task when the karyotypes are complex, as often happens in solid tumors.

There are many computational studies analyzing large data sets of cancerous genomes. Most of these
analyses consider a cancerous genome as a collection of chromosomal abberations easily computed from
the data. For example, in a series of studies, rev iewed in [12], H ögland et al. analyzed cytogenetic data
from indiv idual tumor types, by inspecting v arious parameters, including the number of gains or losses of
genomic fragments, the number of aberrations, and the freq uency at which bands are inv olv ed in breaks.
In another study [21], Sankoff et al. compared the distributions of cancer-related breakpoints, deriv ed
from the Mitelman database, and ev olutionary breakpoints, deriv ed from a human-mouse comparativ e
map. Another important branch of computational studies searches for statistical dependencies between
chromosomal aberrations, usually in the form of tree or directed acyclic graph, such as [6 , 7, 12, 11].

Chromosomal aberrations observ ed in cancer are by and large somatic and thus non-inheritable. W hen
a rearrangement occurs in a genome of a germ-line cell, it can be inherited by off springs. Indeed, the
comparison of genomes of related species rev eals that genome rearrangements play a significant role during
the ev olution of species. In a pioneering paper [20], Sankoff raised the problem of computing a shortest
seq uence of rearrangement operations between two giv en genomes, when genomes are represented by linear
orders of oriented genes. Ov er the last fifteen years, this problem was intensiv ely studied for many types
of rearrangement ev ents and their combinations, including inv ersions, translocations, block exchanges,
deletions and insertions (see [4 ] for a rev iew). All these studies ignored the ploid y in the genomes, i.e., the
number of copies of each chromosome. Since numerical aberrations are prev alent in cancer, ev ery model of
cancer rearrangements must contain both numerical and structural ev ents. This makes the reconstruction
task more complicated and prev ents direct use of results from the rich algorithmic literature on germ-line
rearrangements.

The main purpose of this study was to estimate the prev alence of specific types of genome rearrange-
ment ev ents in cancer karyotypes. For this purpose we dev eloped a new effi cient heuristic for reconstructing
a seq uence of ev ents that best explain the transformation from the normal karyotype into a giv en cancer
karyotype. W e applied this algorithm to ov er 4 0,000 karyotypes published in scientific literature, and col-
lected statistics on ev ent freq uency across cancer types. The algorithm is deliberately simplistic, mimicking
the process of detecting obv ious ev ents and “undoing” them, going back from the giv en karyotype towards
the normal. As such, it does not guarantee finding the shortest solution or finding any solution. H owev er,
we reasoned that most reported karyotypes are of limited complexity and thus may be amenable to such
approach. Reassuringly, ov er 98 % of the karyotypes were solv ed by this method. Our study prov ides for the
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first time a broad picture of ev ent freq uency in hematological and solid cancers. Our analysis shows that
chromosome gains and losses, reciprocal translocations, and terminal deletions, dominate the ev olution of
cancer karyotypes. By using the ev ent freq uencies in each karyotype as its profile, we show that many dif-
ferent cancer types hav e clearly distinguishable profiles, which can be meaningful for further understanding
of the cancers.

This paper is organized as follows. In Section 2 we prov ide a short background on chromosome aberra-
tions in cancer. In Section 3 we present some basic statistics regarding the complexity of cancer karyotypes.
In Section 4 we describe our heuristic for reconstructing genome rearrangement ev ents for a giv en kary-
otype. The analysis of the reconstructed ev ents is reported in Section 5. For lack of space, some details are
deferred to an appendix.

2 B ackground

2.1 Mechanisms for chromosomal aberrations

Many molecular mechanisms are inv olv ed in the formation of chromosomal aberrations. The following
mechanisms are rev iewed in [2, 9, 16 , 18 ].

A d ouble strand break (D SB) is one of the freq uent lesions in D N A. The repair of D SBs in eukaryotic cells
is carried out by two main pathways: non-h omologous end joining (N H E J ) and h omologous recombination
(H R). N H E J repairs D SBs by directly re-ligating D N A ends, which may create a deletion if seq uences
surrounding the lesion were lost. Another potential risk of N H E J is the ligation of two non-matching
broken ends, leading to genome rearrangements. H R repairs breaks through interaction of a free D N A end
with an intact homologous seq uence, which is used as a template to copy missing information prior to re-
ligation. Because of the ability to fill in gaps by copying information from a sister chromatid or homologous
chromosome, H R runs the risk of generating rearrangements through interaction of similar seq uences on
non-homologous chromosomes or regions. In particular, H R may extend to the end of a chromosome,
resulting in a duplication of the whole “tail” of that chromosome.

Another possible lesion to the D N A is the loss of a telomere. The telomeres protect the ends of chromo-
somes from fusion with other ends. Thus a chromosome end that lacks a functioning telomere tends to be
adhesiv e and may initialize a breakage-fusion-brid ge process [13 ]. Stabilization of the genome occurs only
through the net gain of a telomere, either through duplications of protected chromosome ends, or by direct
telomere addition. Indeed, telomerase activ ity has been detected in the majority of malignant epithelial
tumors [8 ].

A direct cleav age through a centromere generates two telocentric (i.e. single-arm) chromosomes, each
containing a portion of the kinetochore (the functional component of an activ e centromere). N on-disjunction
of sister chromatids of a telocentric chromosome results in the formation of an isoch romosome or isod eriva-
tive, i.e. a chromosome with two identical, mirror-image arms.

As elaborated abov e, D SBs, telomeres dysfunction and centric fissions may lead to structural aberra-
tions. N umerical aberrations may occur when genes inv olv ed in chromosome segregation or cytokinesis are
deregulated. In particular, failure in cytokinesis (e.g. endomitosis) and multipolar mitoses may alter the
ploidy of the genome.

2.2 The Mitelman database

The “Mitelman database of chromosome aberrations in cancer” [15] (henceforth abbrev iated MD ) contains
the description of cancer karyotypes manually culled from the literature ov er the last twenty years. For our
analysis we used the v ersion of March 27, 2007, which contained 53 ,573 cancerous karyotypes, collected
from 8 74 8 published studies. The karyotypes in the database are represented in the ISCN format and can
be automatically parsed and analyzed by the software package CyD AS [10]. W e shall use here a simplified

The Blavatnik School of Computer Science 

Tel Aviv University

Technical Report, September 2007 

Presented in the1st RECOMB Satellite W orkshop on Computational Cancer Biology,San Diego, September 2007



5

v ersion of ISCN for representing karyotypes (see Appendix A). W e refer to a karyotype as valid if it can
be parsed by CyD AS without any errors. According to our processing, 4 7,04 5 (8 7.8 % ) of the records were
v alid karyotypes.

2.3 C omp lex k ary oty p es

W hen the cytogeneticist analyzes a sample, sev eral cells are checked. E ach abberation described in a
cancerous karyotype must be present in at least two cells in the described sample. In some cases the cell
population may be non-homogeneous, and contain cells with sev eral distinct karyotypes, resulting from
ev olution of the cell population during the dev elopment of the cancer. A homogeneous cell sample is
described by a simple karyotype, and a non-homogeneous one has a complex karyotype, which consists of
sev eral karyotype species. In this study we deriv e simple karyotypes from complex karyotypes and analyze
each of them independently.

About 17% of all v alid karyotypes in MD are complex. The total number of simple (v alid) karyotypes
that we deduced from MD is 5794 1 (3 3 % of which originate from complex karyotypes). For the rest of this
paper we assume that ev ery analyzed karyotype is simple.

3 B asic statistics on karyotype complex ity

In this section we present some simple statistics based on the MD regarding the complexities of cancerous
karyotypes. H uman malignancies can be div ided into two main categories: hematological disorders and
solid tumors. Our first step was to distinguish between hematological malignancies and solid tumors.
The type of neoplasia can be identified by its morph ology , i.e. the cancer classification based on neoplasm
histology, and its topograph y , i.e. the tumor site (applicable only for solid tumors). Based on the morphology
and topography descriptors of each karyotype, we partitioned the karyotypes in the database into three
categories:

• HEMA: hematological neoplasms, e.g.: leukemia, myeloma, lymphoma.
• BENIGN: solid benign tumors, e.g.: meningioma, leiomyoma, lipoma.
• SOLID: solid malignant tumors, e.g.:adenocarcinoma, W ilms tumor, malignant melanoma.

The HEMA category cov ers 71.2% of the v alid simple karyotypes deriv ed from the MD , while SOLID

and BENIGN cov er only 22.9% and 5.9% respectiv ely. In the following, we compare the distributions of
simple v ariables defined on karyotypes between these categories. W e define a chromosome as abnormal if
it does not match any chromosome in the standard normal karyotype. As expected, the distribution of
the number of abnormal chromosomes per karyotype had the longest tail for solid tumors, while benign
and hematological karyotypes seldom hav e more than fiv e abnormal chromosomes (Fig. 5-a). The number
of fragments (maximal contiguous interv al in the normal) per an abnormal chromosome (Fig. 5-b) had a
similar distribution across categories, with less than 1% of the abnormal chromosomes hav ing four or more
fragments. W e defined karyotype ploid y level as bn+11

23 c, where n is the total number of chromosomes. As
expected, solid tumors tended to hav e higher ploidy, refl ecting their higher complexity (Fig. 5-c). Multicen-
tric chromosomes (i.e. chromosomes with more than one centromere) are considered non-stable, as each of
the centromeres in these chromosomes may be passed to opposite poles in the mitotic anaphase. Interest-
ingly, all three categories had some 2-4 % of karyotypes with multicentric chromosomes (Fig. 5-d). Ov erall,
the diff erence between the categories are q uite subtle. K aryotypes of solid tumors, in particular malignant
solid tumors, tend to hav e more complex abnormal chromosomes and ploidy changes, in comparison to
hematological malignancies.

D o the statistics abov e - as well as those we shall report later - refl ect the distributions of properties
in cancer karyotypes “in the real world”? The answer is probably no. For example, although up to 8 0%
of all human malignancies are solid, most of the karyotypes in MD belong to hematological malignancies.
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One major reason for this bias is the diffi culty in cytogenetically analyzing solid tumors. Solid tumor
genomes often demonstrate poor v isual q uality during metaphase. Moreov er, the karyotypes of solid tumors
are often much more complex and thus more diffi cult to interpret. In addition, the database contains
reported karyotypes from the literature, and there is a bias in this reporting. For example, the hematological
karyotypes in MD are probably of higher complexity than those simple cases seen regularly in the clinic,
which are not deemed publish-worthy as they are too simple or fully understood. W hile this means that
the statistics we are collecting should be interpreted with caution, we believ e they can still be useful
in understanding how to model cancer ev olution on the karyotype lev el and how diff erent classes and
subclasses diff er.

4 A sorting algorithm

In this section we describe an algorithm, which we call SK S (Simple K aryotype Sorter), for reconstructing
the seq uence of rearrangement ev ents (structural and numerical) that hav e led from the normal karyotype
to a giv en cancer karyotype. W e call this process sorting the karyotype. The SK S algorithm aims to mimic
the intuitiv e way a cytogeneticist would perform this task, i.e., starting with the cancer karyotype and
going backwards towards the normal karyotype one ev ent at a time, taking the simplest and most ev ident
step whenev er possible. The SK S algorithm is a heuristic and does not guarantee finding an optimal or
ev en finding any solution seq uence when one exists. In Section 5 we shall report on the performance of this
heuristic on the MD karyotypes.

4 .1 A n abstract data stru ctu re of a k ary oty p e

A chromosome is ind efi nite if its description includes unknown items. For example, ?→? and 1pter→1p? are
indefinite chromosomes. N ote that a definite chromosome may contain uncertain items, e.g. 1pter→1p?12.
Similarly, a karyotype is d efi nite if it contains only definite chromosomes. In what follows we analyze only
definite karyotypes, and ignore any uncertainties, e.g. 1p? 12 will be considered as 1p12. As can be expected,
the percentage of indefinite karyotypes in malignant solid tumors (3 9.6 % ) is higher than in hematological
neoplasms (28 % ), and is the lowest for benign tumors (24 .2% ). H ence, the ov erall number of karyotypes
we analyze here is 4 0,298 .

W e represent a karyotype K by the following abstract data structure:

• A bnormal C h rs(K): A set of distinct, orientation-less, abnormal chromosomes. For each abnormal chro-
mosome in A bnormal C h rs(K) we maintain its multiplicity and list of fragments.

• multiplicity : a mapping assigning to each normal chromosome id (i.e. 1, . . . ,22, X , Y ) its multiplicity
in K.

4 .2 O rp han frag ments

D enote by F rags(K) the multiset of fragments found in A bnormal C h rs(K). A fragment in F rags(K) is
orph an if there is no other fragment in F rags(K) from the same normal chromosome. For example, suppose
A bnormal C h rs(K) = {9pter → 9q 3 2::1p3 6 → 1pter, 14 q ter → 14 p21::9q 3 2 → 9q ter, 14 p21 → 14 q ter}
then F rags(K) = { 9pter → 9q 3 2, 9q 3 2 → 9q ter, 14 q ter → 14 p21 × 2, 1p3 6 → 1pter} and K contains
exactly one orphan fragment: 1p3 6→1pter.

The easiest way to explain an occurrence of an orphan fragment is by a translocation ev ent followed
by a loss of one of the two resulting abnormal chromosomes. For an acentric orphan fragment there is
an alternativ e, less conserv ativ e explanation: The orphan fragment resulted from a duplication during a
process of H R D SB-repair (recall Section 2.1). In Section 5.2 we describe some statistics regarding acentric
orphan fragments that suggest the latter explanation is more likely for many cases.
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4 .3 A lg orithm S K S

The SK S algorithm computes a seq uence of ev ents S = ρ1, . . . , ρt that transforms a normal karyotype
into a giv en (cancerous) karyotype K. Starting from K and applying the corresponding inv erse operations
S−1 = ρ−1

t , . . . , ρ−1
1 generates a normal karyotype. The SK S algorithm works in two phases. First, all the

abnormal chromosomes are sorted. Then, simple numerical operations “correct” the multiplicities of the
normal chromosomes.

W e need a few definitions first. A fragment is centric if it contains a centromere, and acentric otherwise.
Let f and g be two fragments from the same normal chromosome. The concatenation f ::g is an ad jacency
if f and g hav e exactly one shared band - which is their fused ends. For example, 1pter→1p11::1p11→1q 22
is an adjacency. In this case, f and g are said to be complementing . Fragments f, g ∈ F rags(K) are uniquely
complementing if no other fragment h ∈ F rags(K) is complementing to f or g. The types of rearrangement
ev ents that we consider will be introduced in the description of algorithm.

Initialization. W e first detect simple changes in the karyotype ploidy as follows. Let µ and g be the the
median and greatest common div isor of all distinct chromosome multiplicities (both normal and abnormal)
respectiv ely. Clearly, µ ≥ g. Suppose g > 1. In this case we div ide all chromosome multiplicities by d = g.
A single exception is when µ = g and g is ev en - in this case we div ide by d = g/ 2 (instead of by g). If the
chromosome multiplicities were changed (i.e. d > 1) - we set S = {ρ}, where ρ is a corresponding P LOIDY

C HANGE ev ent.

P hase I: S orting the abnormal chromosomes. The abnormal chromosomes are sorted by repeatedly
detecting and undoing one of the following ev ents. The phase ends successfully if there are no more abnormal
chromosomes, and ends with failure if there are still abnormal chromosomes but no additional ev ent is
detected.

• C H R G AIN : A ch romosome gain is a duplication of a complete chromosome. To detect such ev ent, seek
an abnormal chromosome, ch r, whose multiplicity, m, is greater than 1. Perform the inv erse operation,
i.e., the removal of one copy of ch r, decreasing its multiplicity to m − 1.

• IS O C H R O M O S O M E C R E AT IO N : D etect any iso-chromosome or iso-deriv ativ e (see Sec. 2). Perform
the inv erse operation, by remov ing one of the identical arms.

• T R AN S L O C AT IO N and F IS S IO N : A translocation is the exchange of tails between two chromosomes;
a fi ssion is the split of one chromosome into two contiguous segments. Let f and g be two uniq uely
complementing fragments found on diff erent chromosomes. Then there are two possible cases. In the
first case, the complementing ends of both f and g correspond to chromosome ends. In this case, a
F ISSION ev ent is detected and the inv erse operation is a simple fusion of f and g in their complementing
ends (i.e. chromosome fusion). The latter case is when at least one of the complementing ends of f
and g is fused to another fragment. In this case, a T R ANSLOC AT ION ev ent is detected and the inv erse
translocation that fuses the complementing ends of f and g is applied to K.

• IN V E R S IO N : An inversion is the rev ersal of a D N A segment within a chromosome. This ev ent is
detected for a pair of uniq uely complementing fragments, f and g, on the same chromosome, that hav e
diff erent orientation. The inv erse operation is an inv ersion that fuses the complementing ends of f and
g. For example, suppose the chromosome containing f and g is of the form f ::h1::−g::h2, where −g
is the inv erse of g and f :: g is an adjacency. In this case, the detected INV ER SION ev ent inv erts the
segment h1::−g.

• T AN D E M D U P : A tand em d uplication creates two identical consecutiv e fragments on the same chro-
mosome creating h ≡ f1 :: f2 :: f2 :: f3. For example, 1pter→1q 4 4 ::1q 3 1→1q ter is a tandem duplica-
tion since 1pter→1q 4 4 ≡ 1pter→1q 3 1::1q 3 1→1q 4 4 and 1q 3 1→1q ter ≡ 1q 3 1→1q 4 4 ::1q 4 4→1q ter. W hen
identifying such a repetition, simply remov e it, forming h ≡ f1 :: f2 :: f3.
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• IN T E R N AL D E L E T IO N : An internal deletion of a fragment within a chromosome is discov ered as
follows. D etect a non-adjacency pair of concatenated fragments, f ::g, for which there exists a fragment
h such that (i) f ::h and h::g are adjacencies, and (ii) h does not contain in its span any fragment in
F rags(K). Replace f ::g by fragment f ′ ≡ f ::h::g.

• T AIL D E L E T IO N : A deletion of a chromosome tail (acentric end fragment) is detected by identifying an
abnormal chromosome end lacking a pter or a q ter, and whose complementing fragment, f , is (i) acentric
and (ii) does not contain in its span any fragment in F rags(K). To undo the operation, concatenate f
to the chromosome’s end such that a new adjacency is formed.

• AC E N T R IC O R P H AN T AIL : D etect an acentric orphan fragment f that is found on one end of an
abnormal chromosome. E liminate this aberration by a removal of f .

• C E N T R IC O R P H AN F U S IO N : D etect a multicentric chromosome ch r containing a centric orphan f .
To undo the operation, perform a fission of ch r near f such that each of the resulting two chromosomes
contains a centromere.

P hase II: G ain/ loss ev ents and p loidy chang es. If this phase is reached the current karyotype K
satisfies A bnormal C h rs(K) = ∅. D efine µ(K) as the median multiplicity of all chromosomes in K (for
gain/ loss computations we consider the sex chromosomes as homologs). For any chromosome ch r whose
multiplicity diff ers from µ(K), adjust its ploidy to µ(K) by C HR LOSS or C HR GAIN ev ents. Then, when
the ploidy of all chromosomes is µ(K), adjust the ploidy globally to 2 by prepending a corresponding
P LOIDY C HANGE ev ent to S.

5 E x perimental results

W e ran algorithm SK S on each of the 4 0,298 definite simple karyotypes deriv ed from MD . W e say that
a karyotype is sortable if SK S transforms it successfully to the normal karyotype. Table 1 shows that the
v ast majority (>98 % ) of the karyotypes are sortable. H ence, our rather naiv e heuristic, which makes only
straightforward mov es, performs v ery well on the MD karyotypes.

T able 1 . Sortability of MD karyotypes. Numbers are percent out of the karyotypes in each categ ory.

H E M A B E N IG N S O L ID AL L

S o rtable - numerical aberration only 21.8% 41.1% 43.8% 27.4%

S o rtable - with structural aberrations 76.7% 56.7% 54.3% 71.0%

N o t so rtable 1.5% 2.2% 1.9% 1.7%

5 .1 E v ent rates

Figure 2-a presents the av erage number of each type of ev ent per karyotype in our reconstruction. The
most prev alent reconstructed ev ents in all categories are chromosome gains and losses, tail deletions and
translocations. In contrast, most other ev ents are relativ ely rare, occurring in a tenth of the karyotypes or
ev en less. For example, the translocation rate is 0.54 per karyotype, while inv ersion rate is only 0.06 1. N ote
that while the ev ents of chromosome gain and loss and tail deletion are dominant in the arrangement of
malignant solid tumor karyotypes, translocations are relativ ely more freq uent in hematological karyotypes.

Translocations are called reciprocal of both of the exchanged fragments are non-empty. Our analysis
shows that most (>96 % ) reconstructed translocations are reciprocal (Fig. 2-b). Additional support to this
observ ation is obtained by analyzing the breakpoint graphs of karyotypes (Appendix B). Interestingly, non-
reciprocal translocations are more than twice as common in solid tumors than in hematological karyotypes.

1 The surprisingly low inversion rate should be taken with caution: clearly, only relatively long inversions covering several
bands are detectable in G -banded karyotypes in M D .
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F ig . 2 . F requencies of each rearrang ement event. Numbers are based on applying the sorting alg orithm to all valid simple karyotypes
in the database. (a) T he averag e number of events per karyotype. (b) Averag e number of reciprocal and non-reciprocal translocations.

5 .2 The orig in of AC E N T R IC O R P H AN T AIL s

For a fragment f ∈ F rags(K), let ch r(f) be the normal chromosome of f . Figure 3 presents the distributions
multiplicity (ch r(f)), for centric orphan fragments and for acentric orphan tail fragments. For comparison,
we include the distribution of ch r(i), i ∈ {1, . . . , 22}, after all abnormal chromosomes hav e been sorted
(i.e. at the completion of Phase I of SK S algorithm). As can be expected, the ploidy of normal autosomal
chromosomes is mostly 2. The ploidy of the normal chromosome of centric orphan fragments is usually
1. Thus the most reasonable explanation is that centric fragments ev olv ed from normal chromosomes by
translocations or tail deletions. Surprisingly, the ploidy of the normal chromosomes of acentric tail orphans
is mostly 2. Since most (98 % ) of these acentric orphan fragments hav e one complete end (i.e. pter or q ter),
this suggests that many of these acentric orphan fragments are the result of a tail duplication ev ent, caused
by the H R D SB repair mechanism (see Section 2.1). The alternativ e scenario is a translocation ev ent, and
an additional ev ent of chromosome gain. The latter explanation is more complex and hence less likely.

F ig . 3 . O rphans and their parent chromosomes. T he plots show the distributions of the multiplicity of normal chromosomes corre-
sponding to acentric orphan tail frag ments, and to centric orphan frag ments. F or comparison, each plot also includes the multiplicity
of normal (autosomal) chromosomes, after all abnormal chromosomes have been sorted. T he distributions are computed separately
for categ ories HEMA, BENIGN and SOLID.
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5 .3 R earrang ement ev ents as characteristics of cancer classes

Are the ev ents that constitute the history of karyotypes, as reconstructed by the SK S algorithm, meaningful
to understanding and distinguishing the diff erent cancer types? To answer this q uestion, we defined sev eral
similarity measures between distinct karyotypes, using the ev ent rates reconstructed by the algorithm, and
used them to compare cancer classes. Our analysis focused on karyotypes from 14 cancer classes, containing
6 0– 8 8 5 karyotypes each (See Tables 2 and 3 for the class descriptions and detailed results). In our tests
below we called a test signifi cant if it attained p-v alue < .0001, after Bonferroni correction for multiple
testing.

C lu stering cancer classes by their ev ent p rofi les. For a karyotype K we define its event profi le,
v̄(K), as a v ector whose entries are the freq uencies of each ev ent in K (ev ent order is as in Fig. 2a, bottom
to top). For example, v̄(K) = (2, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0) for the karyotype K in Fig. 6 . G iv en a set of
karyotypes we define the average event profi le as the coordinate-wise av erage of the ev ent profiles of the
karyotypes. U sing Pearson correlation as a similarity measure, we applied an av erage linkage hierarchical
clustering algorithm [23 ] on the av erage profiles of the 14 classes. As can be seen in Fig. 7, related cancers
tend to cluster close to each other, implying they hav e similar av erage ev ent profiles.

P artitioning k ary oty p es by ev ent p rofi les. Let C1 and C2 be two distinct cancer classes, and let
Ω = C1 ∪ C2. Can the karyotypes in Ω be distinguished, as to which belongs to C1 and which belongs to
C2, by their ev ent profiles? W e partitioned Ω into two clusters, D1 and D2 (Ω = D1 ∪D2), by applying k-
means clustering [23 ], with k = 2, on the ev ent profiles in Ω, and using Pearson correlation as the similarity
measure. W e measured the p-v alue of the correspondence between the new partition, {D1, D2}, and the
original one, {C1, C2}, using the hypergeometric distribution (see Appendix C for details). W e performed
this test for all

(

14
2

)

= 91 pairs of classes. 26 (28 .6 % ) of the tested pairs were significant.

P artitioning k ary oty p es by total ev ent freq u ency . W e define N E vents as the total number of re-
constructed ev ents for the karyotype (i.e., the sum of the entries in v̄(K)). G iv en Ω = C1 ∪ C2 as before

and an integer t, let D
(t)
1 = {K ∈ Ω : N E v ents(K) ≤ t} and D

(t)
2 = {K : N E v ents(K) > t}. W e com-

puted the p-v alue of the match between {D
(t)
1 , D

(t)
2 } and the original partition, for t = 0, . . . , 9. 4 5 of the

91 pairs (4 9.5% ) had a significant N E v ents-based partition. W e repeated the same test with the N A P T
score [12], which is the number of aberrations in the karyotype’s ISCN description2. N E v ents and N APT
are diff erent indicators of a karyotype’s complexity. Interestingly, although N APT is much less exact than
N E v ents, 53 .8 % of the tested pairs had a significant N APT-based partition. A possible explanation is that
the relativ ely large diff erences between the classes are captured better by a cruder measure. On the other
hand, there is meaningful additional information in indiv idual ev ents. For example, 76 .9% of the significant
partitions based on ev ent profiles had p-v alues lower than the corresponding partitions based on N E v ents
and N APT, and 6 (14 .3 % ) of the non-significant N APT-based partitions had corresponding significant
partitions based on ev ent profiles.

P artitioning k ary oty p es u sing a sing le ty p e of ev ent. For each type of ev ent, e, let S E vent(e) be the
number of reconstructed ev ents from type e. For example, SE v ent(C HR GAIN) is the number of C HR GAINs
(i.e. the first entry in the ev ent profile). Our last test was to partition Ω using SE v ent(e), for each type
of ev ent e, in the same fashion as abov e. D ue to the relativ ely low values, we checked only fiv e thresholds
(t = 0 . . . 4 ) for each type of ev ent. Surprisingly, 8 1.3 % of the tested pairs had a significant SE v ent-based
partition. The lowest p-v alues were achiev ed for partitions based on T R ANSLOC AT IONs (3 5.6 % ), C HR

LOSSes (27.4 % ), and C HR GAINs (16 .9% ).

2 The N AP T score is calculated by simply counting the number of comma-separated tokens in the ISCN description, disre-
garding the first two tokens that correspond to the total number of chromosomes and the sex chromosomes description. For
ex ample, the N AP T score for the karyotype in Fig. 1 is 5.
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6 C onclusion

In this paper we presented nov el methods for analyzing and comparing aberrant karyotypes observ ed in
hematological malignancies and in solid tumors cells. W e presented a simple yet eff ectiv e heuristic (the
SK S algorithm) for sorting aberrant karyotypes. On ov er 4 0,000 karyotypes of the Mitleman database, the
algorithm attained a v ery high success rate (98 % ) in sorting the karyotypes. W e believ e that this shows
that on such karyotypes of moderate complexity, the set of rearrangement ev ents reconstructed by our
algorithm (though not necessarily their order) is a close approximation of the actual gross chromosomal
rearrangements that occurred in their ev olution. Our analysis implies that the ev olution of aberrant kary-
otypes in somatic cells is dominated by four ev ents: chromosome gains and losses, reciprocal translocations
and terminal deletions. The prev alence of chromosome gains and losses is expected, since these ev ents
are more easily detected than other more local ev ents, e.g. inv ersions. N ev ertheless, these results empha-
size that duplication and deletion ev ents must play a key role in any computational modeling of genome
rearrangements in cancer.

By using clustering techniq ues, we demonstrated that karyotypes belonging to the same cancer class
hav e characteristic ev ent rates, since they often hav e more similar ev ent freq uencies than karyotypes belong-
ing to diff erent classes. Moreov er, this suggests that carcinogenesis inv olv es diff erent pathways of gaining
chromosomal aberrations for diff erent cancer classes, and further analysis may shed light on the ev ents
characterizing diff erent pathways.

One of the goals of this study was to lay the factual foundations for proposing a mathematical model of
somatic genome rearrangements that will allow an accurate, non-heuristic systematic analysis of aberrant
karyotypes. The simplest model that can generate the spectrum of the aberrations observ ed in cancerous
karyotypes includes four types of ev ents: chromosome gain and loss, breakage, and fusion. For example,
a reciprocal translocation can be mimicked by two breaks followed by two fusions. W hile this simplistic
model fav ors non-reciprocal translocations ov er reciprocal ones, our study observ ed the opposite preference
in the MD karyotypes. Thus, a more realistic model should consider reciprocal translocations as atomic
operations, to refl ect the increased probability of their occurrence. Another operation that is worth con-
sidering is the duplication of a segment in an existing chromosome (see Section 5.2). Our hope is that a
computational inv estigation of many reconstructed rearrangement seq uences will help in pointing out the
dominant scenarios through which chromosomal aberrations ev olv e in specific types of cancer.
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A ppendices

A F ormal representation of karyotypes

A chromosome is div ided by its centromere into two arms: a short arm, denoted p, and a long arm,
denoted q. E v ery chromosome arm is partitioned into bands. The bands in each arm are numbered, starting
from the centromere, whose assigned to the number 10. The symbol ter indicates the (normal) end of a
chromosome arm. A position in the chromosome is identified by three fields: (i) chromosome, (ii) arm, and
(iii) band designation (either a number or ter). For example, 1p11 corresponds to band 11 in the long arm
of chromosome 1; 2p10 and 2q 10 both refer to the centromere of chromosome 2; 3 pter is the (normal) end
of the short arm of chromosome 3 .

W e refer to a chromosome as abnormal if its structure is abnormal. Abnormal chromosomes are defined
by their band composition. In the following, we describe abnormal chromosomes in a similar (but not
identical) manner to the d etailed sy stem of ISCN [14 ]. The term fragment refers to a continuous interv al of
a normal chromosome, identified by the positions of its two ends. W hen a fragment appears in a chromosome
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it has an orientation, denoted by an arrow symbol → between its two ends. For example, 2p12→2q ter is a
fragment of chromosome 2 that starts in band 2p12 and ends in band 2q ter. Two fragments are id entical
if the corresponding chromosome interv als are identical (disregarding orientation). A double colon (::)
indicates a concatenation of two fragments. For example, a concatenation of 1p3 6→1pter to the end of
9pter→9q 3 2 is denoted as 9pter→9q 3 2::1p3 6→1pter. An abnormal chromosome is presented as a list a
concatenation of fragments3.

The description of a karyotype may contain q uestion marks (? ) to indicate uncertainties or unknown
items. A q uestion mark may be placed either before an uncertain item, or it may replace an unknown
chromosome, arm, or band designation. For example, 1p? 12 indicates a q uestionable identification of band
number; 5p? represents an unknown band designation.

B U sing cycles and paths for analyz ing translocation types

For a cancerous karyotype K we define its breakpoint graph , G(K), similarly to [3 ], as follows. The v ertices
of G(K) are the ends of the fragments in F rags(K). The edges in G(K) are colored either black or gray.
Black edges correspond to fused ends in K. G rey edges correspond to complementing ends. For an example,
see Fig. 6 -c-1.

Let S be a seq uence of ev ents reconstructed for K by SK S. E ach of the inv erse operations for INV ER -

SION, T R ANSLOC AT ION, and F ISSION ev ents, forms one or two new adjacencies by fusing complementing
ends. Let G(K, S) be the subgraph of G(K) induced by (i) the set of black edges, and (ii) the grey edges
corresponding to pairs of fused complementing ends during the reconstruction of INV ER SION, T R ANSLO-

C AT ION, and F ISSION ev ents in S. See Fig. 6 -c-2 for an example. It follows that G(K, S) is composed of
simple cycles and paths. The length of a cycle or path in G(K, S) is the number of grey edges in it. N ote
that while a path of size l corresponds to l reconstructed ev ents, a cycle of the same length corresponds
only to l − 1 ev ents. W e define the caliber of a path or cycle to be the number of corresponding ev ents.
A path or a cycle with caliber greater than 1 imply a breakpoint reuse, i.e. a break of a formerly created
fusion. Figure 4 depicts the av erage numbers of cycles and paths in a karyotype, for each caliber. It is q uite
clear that cycles are much more prev alent than paths, ev en in solid tumors, which indicates that reciprocal
translocations are indeed more fav ored than non-reciprocal ones. Moreov er, both structures, cycles and
paths, usually hav e a small caliber.

C M easuring the signifi cance of a partition

In this section we describe the standard hypergeometric score that was used for ev aluating the match of
two partitions. Let {C1, C2} and {D1, D2} be two partitions of Ω. Let n = |Ω|, n1 = |C1|, m = |D1|,
and k = |C1 ∩ D1|. H ence k ≤ min{n1, m}. The significance of the correspondence between {D1, D2} and
{C1, C2} can be ev aluated by the probability of hav ing |C ′ ∩ D1| ≥ k where C ′ ⊂ Ω is randomly chosen
and |C ′| = n1. This probability is giv en by:

p(n, m, n1, k) =

m in {n1,m}
∑

i=k

(

m
i

)(

n−m
n1−i

)

(

n
n1

)

The smaller p(n, m, n1, k), the more significant the correspondence between D1 and C1. To compare D1

with C2, we compute p(n, m, n − n1, m − k). The final p-v alue for the partition {D1, D2} is thus

p-v alue({D1, D2}, {C1, C2}) = 2 min{p(n, m, n1, k), p(n, m, n − n1, m − k)}.

(The multiplier 2 is due to Bonferroni correction for multiple testing.)

3 The ex ception for this are homogenously staining regions (H SR s), which are regions that contain multiple copies of small
D N A fragments. Thus a stained H SR is uniform in appearance (no bands) and its content cannot be identified by cytogenetic
methods.
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F ig . 4 . T he distributions of the averag e numbers of cycles and paths in a karyotype.

T able 2 . Cancer classes.

class ID class name # karyotypes

27 H E M A-Acute monoblastic leukemia without differentiation (FAB type M 5a) 332

28 H E M A-R efractory anemia with ex cess of blasts 885

31 H E M A-R efractory anemia 875

34 H E M A-R efractory anemia with ringed sideroblasts 230

36 H E M A-Acute myeloblastic leukemia with minimal differentiation (FAB type M 0) 286

43 SOL ID -Adenocarcinoma-B reast 590

52 H E M A-Acute monoblastic leukemia with differentiation (FAB type M 5b) 196

58 H E M A-R efractory anemia with ex cess of blasts in transformation 424

70 SOL ID -Adenocarcinoma-K idney 859

111 B E N IG N -B enign epithelial tumor special type-B reast 97

112 SOL ID -Adenocarcinoma-L arge intestine 208

118 B E N IG N -Adenoma-L arge intestine 149

143 SOL ID -Adenocarcinoma-Ovary 119

577 B E N IG N -B enign epithelial tumor N OS-B reast 60

The Blavatnik School of Computer Science 

Tel Aviv University

Technical Report, September 2007 

Presented in the1st RECOMB Satellite W orkshop on Computational Cancer Biology,San Diego, September 2007



15

T able 3 . P artition p-values for pairs of cancer classes in T able 2. T he p-values presented are after the B onferroni correction for
multiple testing .

Class 1 Class 2 event profi le NE vents NAP T SE vent Class 1 Class 2 event profi le NE vents NAP T SE vent
27 28 1.00E + 00 3.11E -03 7.11E -03 3.32E -69 27 31 1.00E + 00 2.63E -09 1.78E -10 1.45E -98
27 34 1.13E -04 7.99E -03 5.15E -03 1.85E -46 27 36 2.69E -09 1.00E + 00 1.00E + 00 4.50E -17
27 43 4.50E -13 4.52E -03 2.05E -05 8.04E -37 27 52 1.00E + 00 7.68E -02 1.10E -02 1.00E + 00
27 58 1.18E -06 1.00E + 00 1.00E + 00 3.49E -30 27 70 1.00E + 00 1.18E -25 2.95E -27 3.21E -83
27 111 2.82E -01 3.38E -01 5.89E -02 1.01E -10 27 112 3.42E -17 1.12E -07 4.47E -07 3.93E -51
27 118 1.48E -31 5.12E -05 8.54E -05 4.73E -43 27 143 6.47E -31 6.05E -10 1.42E -09 7.13E -26
27 577 8.92E -23 1.02E -14 5.15E -18 1.02E -24 28 31 1.00E + 00 1.47E -02 1.78E -06 1.60E -10
28 34 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00 28 36 1.00E + 00 1.00E + 00 1.00E + 00 2.68E -07
28 43 1.00E + 00 3.33E -06 1.07E -02 3.41E -16 28 52 1.00E + 00 4.78E -02 5.89E -02 6.32E -32
28 58 1.00E + 00 4.17E -01 7.66E -01 1.97E -03 28 70 1.00E + 00 1.36E -55 1.33E -55 2.83E -45
28 111 1.00E + 00 1.00E + 00 3.35E -02 6.97E -03 28 112 1.00E + 00 2.06E -12 2.36E -11 8.86E -11
28 118 1.36E -01 3.33E -07 9.73E -08 1.58E -23 28 143 9.20E -01 1.97E -13 3.61E -13 4.90E -11
28 577 1.00E + 00 4.47E -18 8.04E -25 5.11E -19 31 34 1.00E + 00 7.67E -01 1.67E -01 1.90E -01
31 36 2.57E -02 1.49E -04 2.84E -06 8.75E -21 31 43 9.10E -03 1.55E -14 1.17E -12 2.06E -38
31 52 1.00E + 00 2.48E -01 1.00E + 00 1.72E -50 31 58 4.16E -01 4.92E -07 5.52E -08 6.22E -15
31 70 1.56E -15 7.16E -74 1.05E -92 1.96E -92 31 111 1.00E + 00 1.23E -03 6.85E -07 2.26E -09
31 112 1.06E -08 2.49E -22 5.80E -22 8.68E -22 31 118 1.88E -22 5.32E -14 3.94E -17 1.31E -33
31 143 1.00E -13 6.67E -22 7.74E -27 1.92E -20 31 577 1.00E + 00 1.52E -26 7.82E -34 6.39E -30
34 36 2.59E -01 6.59E -01 1.00E + 00 7.52E -08 34 43 1.00E + 00 9.69E -03 3.03E -01 6.82E -09
34 52 1.00E + 00 3.78E -01 1.00E + 00 2.48E -26 34 58 1.00E + 00 1.00E + 00 1.00E + 00 1.17E -04
34 70 1.90E -01 1.21E -25 2.68E -25 1.76E -29 34 111 1.00E + 00 1.00E + 00 9.73E -02 2.77E -03
34 112 8.69E -04 8.19E -07 8.94E -07 1.31E -08 34 118 2.80E -15 3.86E -05 5.25E -05 1.23E -18
34 143 1.93E -03 1.13E -09 2.63E -10 6.71E -09 34 577 1.00E + 00 2.19E -14 3.24E -17 8.09E -13
36 43 1.00E + 00 3.29E -02 5.67E -01 5.60E -01 36 52 2.22E -06 9.93E -02 6.79E -03 6.37E -06
36 58 1.00E + 00 1.00E + 00 1.00E + 00 2.54E -02 36 70 1.00E + 00 8.34E -23 3.47E -24 3.47E -39
36 111 3.60E -01 1.00E + 00 3.15E -01 1.00E + 00 36 112 4.51E -01 8.74E -07 2.73E -06 2.37E -11
36 118 6.02E -09 1.24E -04 1.69E -04 2.70E -10 36 143 3.13E -05 2.72E -09 5.01E -09 1.26E -08
36 577 1.00E + 00 4.91E -14 6.17E -17 4.32E -17 43 52 1.61E -03 5.65E -06 6.87E -03 6.59E -15
43 58 1.17E -01 7.66E -01 1.26E -01 3.42E -10 43 70 1.00E + 00 1.13E -33 1.36E -39 4.04E -66
43 111 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00 43 112 1.41E -03 1.05E -02 3.59E -04 5.87E -12
43 118 1.00E + 00 2.17E -02 1.32E -04 4.09E -14 43 143 1.00E + 00 1.08E -04 1.69E -07 7.25E -06
43 577 3.10E -10 2.27E -10 5.85E -16 1.36E -15 52 58 1.30E -13 9.73E -04 3.28E -02 2.68E -12
52 70 2.39E -63 9.88E -31 1.96E -31 1.46E -53 52 111 1.00E + 00 3.56E -02 1.08E -02 1.40E -04
52 112 7.15E -40 8.01E -10 1.61E -08 1.10E -30 52 118 4.17E -33 4.07E -08 2.86E -07 5.38E -27
52 143 1.01E -19 1.02E -13 7.03E -13 7.22E -15 52 577 5.81E -20 2.43E -17 3.39E -18 2.11E -23
58 70 1.00E + 00 1.82E -28 2.61E -30 1.15E -31 58 111 1.00E + 00 1.00E + 00 6.47E -01 2.08E -02
58 112 1.00E + 00 6.64E -05 1.45E -04 6.24E -08 58 118 2.52E -03 9.20E -03 4.91E -03 3.66E -15
58 143 1.00E + 00 3.72E -07 2.73E -08 5.12E -09 58 577 1.00E + 00 6.84E -12 2.43E -15 4.37E -15
70 111 1.00E + 00 9.84E -10 1.01E -10 5.51E -14 70 112 5.15E -01 5.92E -12 3.21E -07 3.82E -16
70 118 6.20E -11 4.41E -09 2.25E -05 2.97E -21 70 143 2.90E -01 3.03E -01 2.42E -01 1.62E -13
70 577 2.46E -02 5.29E -02 3.37E -06 2.78E -08 111 112 5.61E -01 4.46E -01 6.85E -01 8.46E -05
111 118 1.00E -06 2.51E -01 2.38E -02 1.09E -12 111 143 1.00E + 00 4.56E -03 2.72E -02 1.33E -04
111 577 1.00E + 00 7.50E -08 1.02E -10 9.46E -09 112 118 2.77E -03 1.00E + 00 1.00E + 00 6.93E -05
112 143 1.00E + 00 1.59E -01 8.58E -01 1.00E + 00 112 577 5.07E -05 4.23E -07 2.92E -07 4.15E -05
118 143 3.01E -01 2.80E -01 1.00E + 00 8.93E -02 118 577 4.25E -12 8.22E -04 7.80E -05 1.43E -10
143 577 1.85E -04 1.79E -02 5.83E -04 7.26E -04
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F ig . 5 . B asic statistics on karyotype complex ity in the Mitelman database. (a) T he distribution of the number of abnormal chro-
mosomes per karyotype. (b) T he number of frag ments per abnormal chromosome. (c) T he distribution of karyotype ploidy. (d)
T he distribution of number of multicentric chromosomes per karyotype. More than 9 7% of all the karyotypes have no multicentric
chromosomes.
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(a) An abstract data structure for a karyotype K:

Abnormal Ch rs =

8

>

>

<

>

>

:

18pter → 18q21::12p11 → 12pter,
1qter → 1p36::18q21 → 18qter,

14pter → 14q32::18q21 → 18qter,
18pter → 18q21::14q32 → 14qter×2

9

>

>

=

>

>

;

multiplicity[1] = multiplicity[14] = multiplicity[18] = 1, multiplicity[i] = 2 for i /∈ {1, 14, 18}

(b ) A sequence of reconstructed events S:

1. AC ENT R IC OR P HAN T AIL: 12p11→12pter,
2. C HR GAIN: 18pter→18q21::14q32→14qter,
3. T R ANSLOC AT ION(reciprocal): 14pter→14q32, 14q32→14qter,
4. T R ANSLOC AT ION(non-reciprocal): 18pter→18q21, 18q21→18qter,
5. T AIL DELET ION: 1p36→1pter
6. C HR GAIN: 18

(c) The breakpoint graph G(K) (1) and its induced subgraph G(K, S)

F ig . 6 . An analysis of the karyotype in F ig . 1.

F ig . 7 . An hierarchical clustering of diff erent cancer classes based on their averag e event profi les, using P earson correlation as
similarity function. E ach cancer is identifi ed by its categ ory, morpholog y, and topog raphy (if it is a solid tumor).
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ABSTRACT 
 
Chromosomal aberrations are a hallmark of cancer. Certain ones are known to be strongly 
connected with specific cancers, while many others appear to be nonspecific and arbitrary. We 
report on a systematic study of the characteristics of chromosomal aberrations in cancers, using 
the largest repository of reported karyotypes, the Mitelman database.  We compared cancer 
types by their manifested aberrations and drew an aberration-similarity map of them. In 
addition to being highly concordant with the histological classification of cancers, the map also 
revealed novel similarities, such as between three embryonic tumors– Wilms’ tumor, Ewing’s 
sarcoma, and Hepatoblastoma.  In another analysis we discovered that chromosome gains 
tended to co-occur with other chromosome gains, and losses with losses. This discovery was 
confirmed on an independent comparative genomic hybridization dataset of cancer samples. It 
suggests that aneuploid cancer cells may use extra chromosome gain / loss events to restore a 
balance in their altered proteins ratios. 
 
Our results assign solid statistical foundations to many findings reported in the literature, and 
reveal novel observations that merit further research. An accompanying website summarizes all 
the discovered associations and allows easy search, filtering and sifting through the results, as 
well as direct viewing of the relevant karyotypes in the Mitelman database.  
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INTRODUCTION 

Most cancer genomes undergo large scale alterations that dramatically alter their content and 
structure (1).  This phenomenon of genomic instability is responsible for the wide repertoire of 
chromosomal aberrations observed in cancer genomes. While the role of most aberrations in the 
carcinogenesis process remains to be determined, the common perception (2) is that some of 
these aberrations are functionally important to the initiation and growth of cancer (drivers), 
while others merely represent random somatic changes that carry no selective advantage to the 
cancer cell (passengers). The identification of strong associations among aberrations, i.e. 
associations that are observed significantly more than expected by chance, may help in the 
detection of driver aberrations or point to mechanisms that promote the selection of certain 
aberrations. As data on chromosomal aberrations in cancer accumulate, the detection of such 
strong associations can become more accurate and powerful. 
 
Following the four-step model for colorectal cancer evolution suggested by Vogelstein et al.(3, 
4), several computational methods were developed for reconstructing common evolutionary 
paths of chromosomal aberrations in specific cancers. Some of these methods used tree models 
(5-7), later extended to acyclic networks (8-10). These evolutionary models enable recognition 
of aberrations that occur at early stages of cancer; often referred to as "primary", they are 
suspected of being cancer drivers. More recently, a statistical method named GISTIC (11) was 
developed for identifying copy-number aberrations whose frequency and amplitude are higher 
than expected. As all the methods described above were designed to analyze samples from the 
same cancer type, they were applied to relatively small datasets, each containing a few hundred 
samples.  
 
The Mitelman database* (12)  is the largest depository of chromosomal aberrations in cancer. 
Although the aberrations are described using karyotypes of low resolution, these methods are 
widely used, notably in hospital labs where the database is the leading source of information for 
clinicians who diagnose and treat cancer. The large number of samples in the database makes it 
ideal for statistical analyses, which are capable of overcoming random errors.  In this study we 
present the results of large-scale analysis of chromosomal aberrations from over 15,000 
karyotypes of the Mitelman database. By exploiting the huge number of karyotypes, 
reconstructing the aberrations in them, and developing appropriate statistical tests, we were able 

                                                 
* http://cgap.nci.nih.gov/Chromosomes/Mitelman. 
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to recognize significant cross-cancer associations among aberrations and to identify correlations 
among tumor types. 
 

Most observed alterations include chromosome gains / losses and translocations.  As 
translocations directly affect a small number of genes, the role of many translocations in cancer 
causation has become much clearer over the years (13). Chromosome gains and losses, on the 
other hand, are broad alterations affecting numerous genes whose significance to the 
carcinogenesis process is much less understood. In this study we demonstrate strong 
associations involving chromosome gain and loss aberrations, suggesting selection preferences 
for aneuploid cells.  
 
The results of our analysis, mainly the computed associations, are publicly available via our 
website for further investigation. 

RESULTS 

Figure 1 summarizes our karyotype analysis. Starting from 59,579 karyotypes in the Mitelman 
database (November 2009 version), we used only 34,107 karyotypes that were annotated as 
unselected in order to avoid over- or under-estimation of aberration frequencies due to biases in 
sample selection (14). We then filtered out any partially characterized or possibly redundant 
karyotypes, as well as karyotypes that were not near diploid. Tumor classes were defined 
according to tissue morphology and organ. Karyotypes belonging to classes with small 
representation (<50 karyotypes) in the remaining dataset were omitted from analysis, resulting 
in a total of 62 classes and 15,495 karyotypes (Table 1).  
 
Each class was assigned to one of four sets: lymphoid disorders, non-lymphoid hematological 
disorders, benign solid tumors, and malignant solid tumors (Table 1). Due to its higher rate of 
successful karyotypic analyses, the group of hematological disorders dominated our dataset, 
with 11,324 (73%) karyotypes, of which 6,913 (45%) belong to non-lymphoid hematological 
disorders. We computed for each karyotype a set of most likely aberrations involved in its 
formation using 11 types of chromosomal rearrangement, deletion, and duplication events 
(Methods, supporting information (SI) Table S1). Of those events, chromosome gain / loss and 
translocation were most frequent (Fig. S1). An aberration was identified by its causing event 
and the chromosomal locations it involved. For example, the translocation involving bands 
9q34 and 22q11 was identified by t(9;22)(q34;q11), following the ISCN terminology (15) 
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Cancer similarity by observed aberrations 

The karyotypes in our dataset contained 5,179 distinct aberrations, including all possible 
chromosome gains and losses. We computed the significance of the correlation of each 
aberration-class pair using the hypergeometric test. Out of 9,208 distinct observed aberration-
class pairs, 1705 were found to be significantly correlated at false discovery rate (FDR) of 5% 
(website). These correlations encompassed all 62 tumor classes in our dataset, involving 1,360 
distinct aberrations, where more than half of these correlations (907, 53%) involved 
translocations. Many of these strong correlations, notably the ones involving translocations, 
have been well documented in the literature: for example,   t(9;22) in chronic myelogenous 
leukemia (16) and t(11;22) in Ewing sarcoma (17). This supports the use of our dataset as a 
valid sample of karyotypes from the considered classes, as well as the soundness of our results. 
 
Which tumor classes have highly similar aberrations? Using the set of significant (FDR 5%) 
aberration-class correlations, we assessed the statistical significance of the overlap in 
aberrations for every pair of tumor classes. Of all 1891 possible class pairs, 56 pairs were found 
to significantly share common aberrations at an FDR of 5% (Fig. S2a). Considering benign and 
malignant solid tumors as one category, all but three (53, 95%) of these pairs belong to the 
same category, with two of the three exceptions linking between lymphoid disorders and 
(malignant) solid tumors.  We repeated the analysis, expanding the set of correlative aberrations 
by considering also weaker correlations with (uncorrected) P-value <0.05.  The results show a 
remarkably similar partition, with 86 significant class pairs (FDR 5%), forming three distinct 
clusters, with only six links between the sets of lymphoid disorders and solid tumors (Fig S1b).  
The fact that the categories were very well separated serves as confirmation of the data and of 
our methodology.  
 
For more in-depth study of similarity among classes, we defined a similarity measure between 
classes based on the significance of their common aberrations (Methods) and used it to 
hierarchically cluster the classes (Fig. 2). As before, classes of the three sets  – non-lymphoid-
hematological disorders, lymphoid disorders and solid tumors – clustered separately. A deeper 
look into each cluster (Fig. 2) revealed that many closely clustered classes were histologically 
related. For example: diffuse large B-cell lymphoma, follicular lymphoma, and mature B-cell 
neoplasm (B-cell lymphomas); adenoma and adenocarcinoma in the large intestine; and AML 
M5 and AML M5a. The correlated aberrations shared by two similar classes can be viewed 
through our website. One of the interesting results was the close proximity of three embryonic 
cancers: Wilms’ tumor (kidney), Ewing sarcoma (skeleton) and Hepatoblastoma (liver).   
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Significant co-occurrence of aberrations 

Many of the specific associations we found between chromosomal aberrations and tumor 
classes are known, and serve here primarily as confirmation of the validity of our approach. We 
now address a question that can be answered only by more complex analysis of a large 
database: which aberration pairs tend to co-occur significantly more than expected by chance? 
Such associations may reveal either cooperation between different oncogenic events or 
common mechanisms creating chromosomal aberrations. To answer this question we tested the 
significance of co-occurrence for 7,202 aberration pairs in our dataset that satisfied the 
following two conditions: each aberration appeared in at least 10 karyotypes, and the pair 
appeared together in at least one karyotype. We first filtered pairs with hypergeometric P-value 
>0.001, leaving 623 pairs whose significance was further evaluated by a permutation test. Our 
analysis yielded 218 significantly co-occurring aberration pairs (P<0.05, after Bonferroni 
correction), of which 154 (71%) were chromosome gain pairs, and 47 (22%) were chromosome 
loss pairs. The induced network split clearly into two disjoint parts: one dominated by 
chromosome gains and one by chromosome losses (Fig. 3a).  We carried out the same analysis 
separately for lymphoid disorders, non-lymphoid hematological disorders, solid tumors, and 
carcinomas (Fig. S3-S6). Each of these groups showed the same clear strong co-occurrence of 
specific gain-gain and loss-loss pairs, with almost no cases of significant co-occurrence for any 
mixed gain-loss pairs. We also  detected the trisomy of 1q (18), which appeared in all tumor 
categories in the associations involving gain of chromosome 1 (Fig. 3a, Fig. S3-S6). 
 
Comparative genomic hybridization (CGH) is a laboratory method to measure gains and losses 
in the copy number of chromosomal regions in tumor cells. To verify our findings, we analyzed 
an independent dataset of 1084 samples obtained by CGH, downloaded from the NCI and 
NCBI’s SKY/M-FISH and CGH database (March 16, 2009 version). This database contains 
CGH records contributed by molecular cytogeneticists for open investigation. Each sample was 
assigned a corresponding set of whole chromosome gain/loss aberrations, yielding 648 (60%) 
samples with non-empty aberration sets. Using a permutation test similar to the one used for 
karyotypes data (Methods), we computed a P-value for the co-occurrences of specific 
aberration pairs in the CGH dataset.  Out of 856 distinct co-occurring aberrations pairs, 47 were 
significantly co-occurring at FDR of 5%. The picture obtained by these pairs (Fig. 3b) is 
strikingly similar to the one produced by the karyotype data. This reaffirms our observation that 
the progression of aneuploidy in cancer is driven by either multiple chromosomal gains or 
multiple chromosomal losses. 
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The website 

All the associations described above can be viewed via the website http://acgt.cs.tau.ac.il/stack/, 
which contains summary tables for the different types of associations: aberration-class, class-
class, and aberration-aberrations. Table rows can be filtered textually and numerically, allowing 
investigations of associations for a specific group of cancer types, a set of aberrations of 
interest, or both.  For example, the user can view all aberrations whose correlation with a 
certain tumor class is below some specified P-value. Alternatively, all aberrations significantly 
co-occurring with a specified aberration can be examined, with their P-values. For aberration-
class and aberration-aberration associations, researchers can examine the karyotypes that led to 
these associations, where each karyotype is linked to its corresponding record in the Mitelman 
database website.    
 
To demonstrate the utility of the website, we focused on hyperdiploid multiple myeloma (H-
MM), a subtype of multiple myeloma (MM) with better prognosis, characterized by having 48-
74 chromosomes (19-21). There were 385 MM karyotypes in the database, and 110 (29%) of 
which were hyperdiploid. H-MM is associated with recurrent gains of chromosomes 3, 5, 7, 9, 
11, 15 and 19 (19). Indeed, the website’s class-aberration table, filtered for MM associations, 
confirmed this observation: +3, +5, +9, +11, +15, and +19 were the aberrations most associated 
with MM, and the 142 karyotypes involved in these associations spanned all H-MM karyotypes 
(hyper-geometric P < 1E-76).  Chng et al. (22) suggested a FISH-based trisomy index for 
identifying H-MM, employing probes for chromosomes 9, 11 and 15, and designating a tested 
MM cell as H-MM if it contains two or more trisomies in these chromosomes. They reported 
specificity of 0.98 and sensitivity of 0.69 for that index. The corresponding F-Score (a measure 
combining sensitivity and specificity, see Methods) was 0.8.  We analyzed the 385 MM 
karyotypes in the same fashion as (22); the criterion of any two trisomies in 9, 15, 19 was best 
with specificity 0.996 and sensitivity 0.88 [F-Score 0.93]. In fact, the same combination has the 
highest F-Score on the data of (22) as well (0.83). Thus, the criterion of two or more trisomies 
of chromosomes 9, 15, 19 should be considered for identifying H-MM. 
 
DISCUSSION 

In this study we computationally analyzed a large number of cancer karyotypes from the 
Mitelman database, the largest available compendium of cancer karyotypes. Based on statistical 
analysis of more than 15,000 karyotypes, our results provide strong additional evidence for the 
non-randomness of many chromosomal aberrations in cancer. Our approach is validated by the 



8  DISCUSSION 
 

demonstration of known relationships, including associations between specific aberrations and 
specific tumor types, and similarities among certain tumors (e.g. adenoma and adenocarcinoma 
of the large intestines). More importantly, the analysis led to new discoveries, most notably that 
chromosomal aneuploidy tends to consist of either a pattern of chromosomal gains or a pattern 
of chromosomal losses. This novel discovery was verified by similar analysis of a separate 
molecular database.  
  
To avoid ambiguities and reduce potential biases in the results, we excluded from our dataset 
karyotypes that were not random samples (i.e., reported because of a specific/unusual 
karyotypic feature), and those with missing information. Inclusion of partially-characterized 
karyotypes (omitting non-characterized fragments) increased the number of karyotypes to 
22,425 (45% increase). The results on that set closely matched those reported here (Fig. S7, 
S8), indicating the robustness of both the results and our statistical methods. 
 
Chromosome gains/losses and translocations were the most abundant aberrations in our dataset. 
While many translocations were shown to contribute to carcinogenesis, the role of 
chromosomal aneuploidy in cancer has been debated for almost a century. We report for the 
first time a striking dichotomy of aneuploidy across numerous tumor classes, discovered in an 
analysis of two independent datasets: significantly co-occurring aberration pairs are almost 
exclusively either both chromosome gains or both chromosome losses. A similar tendency was 
observed by Höglund et al. (9) for several specific solid cancers. The karyotypic evolution 
models of (9) contained two converging paths, one dominated by gains of chromosomal 
fragments and the other by losses.  
 
The observed chromosome gain/loss dichotomy suggests a partial explanation for the following 
conundrum: A single chromosome gain/loss in the germline is usually hazardous, both at the 
cellular and the organism levels, while the abundance of chromosome gains/losses in cancer 
cells implies that aneuploidy is beneficial, or at least not harmful, to their vitality (23-26). As 
most chromosomes contain dosage-sensitive genes, the strong gain-gain and loss-loss 
correlations may imply a mechanism for balancing the ratios of proteins that function in 
complexes. Such balancing may be required to protect the cancer cell from the detrimental 

effects of partially assembled protein complexes or free subunits by molecular chaperones 
caused by prior chromosome gain / loss events. This novel hypothesis is testable by large-scale 
quantitative proteomics.  An alternative explanation for these observations is that chromosomal 
gains and losses are caused by different mechanisms of genomic instability. 
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One limitation of the use of the Mitelman database is its inherent bias towards hematological 
cancers. However, the number of solid karyotypes in the database is still substantial, and 
allowed us to obtain results on class similarity among solid cancers (Fig. 2). Moreover, the 
results on aberration co-occurrence tendency were similar using the full data (Fig. 3) and the 
solid karyotypes only (Fig. S5). 
 
The methodologies developed in this study can be used on other large datasets describing 
genetic events. As high resolution genetic information on tumors  accumulates, similar analysis 
can be applied to it – using for instance Next-Generation Sequencing. Moreover, our website 
can be useful both for additional global investigations like those reported here and for in-depth 
analysis of individual associations. 
 

MATERIALS AND METHODS 

Karyotypes selection and analysis. We evaluated all 34,107 karyotypes marked as unselected 
(i.e. chosen in a non-biased manner) in the Mitelman database on November 17, 2009. 
Karyotypes were parsed using the CyDAS ISCN parser (27), and any karyotype detected as 
invalid during the parsing was excluded, leaving 29,911 (88%) valid karyotypes. We refer to a 
karyotype as well-defined if it is complete and does not contain any of the following: 1) double 
minutes, 2) marker chromosomes, 3) ring chromosomes, 4) chromosomes with homogeneous 
staining regions (HSRs), 5) chromosomes with additional material of unknown origin, 6) 
approximated breakpoints, e.g. del(1)(q21~q24), or 7) alternative interpretations of an 
aberration (designated by "or" symbol). Question marks (?) indicating questionable 
identification of a chromosome or chromosome structure (e.g. del(1)(q?23)) were ignored. We 
refer to a karyotype as multiclonal if it is composed of several distinct karyotypes (separated by 
a dash “/” representing different subclones in the sample). Given a multiclonal karyotype, we 
avoided dependency between its karyotypes by choosing only the first well-defined karyotype it 
contained. In case of multiple karyotypes from the same patient (“case” in the Mitelman 
database), only one karyotype was taken into account. To avoid potential biases in chromosome 
gain/loss aberrations, we excluded any karyotype that was not near-diploid (i.e., we omitted 
karyotypes whose total chromosome number was less than 35 or more than 57).  Altogether, 
18,813 karyotypes were selected for analysis. 
 
Aberrations reconstruction. We previously identified 11 frequent chromosomal events in 
tumor karyotypes (chromosome gain/loss, translocation, deletion, duplication and more, see 
Table S1), and developed an algorithm for reconstructing a most plausible set of events leading 
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to a given karyotype (28). We applied the algorithm to all relevant karyotypes from the 
Mitelman database, obtaining unambiguous reconstruction in 99% (18,600) of the karyotypes. 
We recorded each such karyotype’s set of aberrations, where an aberration is defined by an 
event and the chromosomal locations involved. For example, +1 is the aberration resulting from 
a chromosome gain event on chromosome 1, and t(9;22)(q34;q11) is a translocation involving 
bands q34 and q11 on chromosomes 9 and 22, respectively. 
 
Karyotypes classification. We classified karyotypes by their tissue morphology and 
topography as specified in the Mitelman database. To permit robust statistical analysis, we 
omitted all karyotypes whose class had less than 50 karyotypes. Our final dataset contained 
15,445 karyotypes. 
 
CGH data.  We used the NCBI’s SKY/M-FISH and CGH database† (version March 16, 2009), 
consisting of 1084 records. Every record has a list of chromosomal segments with abnormal 
copy number, each classified as a gain or a loss; and the header of the record contains 
information on the cancer tissue. As most tumor classes in this dataset were relatively small, we 
ignored the histological classification. For each record we derived chromosome gain / loss 
aberrations in the following manner: every gained (lost) chromosomal fragment that spanned 
the centromere was considered a whole chromosome gain (loss). 
 
Computing P-values for aberration-class correlations. For an aberration Ab and a class C, 
we calculated the significance of the enrichment of karyotypes with Ab in C using the 
hypergeometric test. 
 
Computing P-values for classes sharing common aberrations.  We developed the following 
method for evaluating the significance of shared aberrations between tumor classes. We 
constructed a binary matrix Mt whose rows and columns correspond to aberrations and classes, 
respectively. We set Mt[Ab,C]=1 if the correlation between aberration Ab and class C had a 

hypergeometric P-value � t (in that case we say that Ab is t-correlative to C), and otherwise 

Mt[Ab,C]=0. For t=0.05, the maximal t used in our analysis, the matrix Mt was already quite 
sparse, less than 2% 1’s. For two classes, C and C', we computed a P-value for their number of 
shared events as follows. Let nt.C,C' be the number of t-correlative aberrations that C and C’ 

shared. More formally, nt.C,C' = �Ab Mt[Ab,C]�Mt[Ab,C']. For every pair of classes, C and C’, 

that shared at least one t-correlative aberration, we estimated the probability of having at least 

                                                 
† http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi. 
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nt,C, C' t-correlative aberrations by chance when the marginal distributions of the rows 
(aberrations) and columns (classes) of Mt are fixed. We did this by randomly sampling N=107 
permutations of Mt that preserve row and column sums. Therefore, the minimal P-value we 
could achieve was lower bounded by 1/N =10-7. 
 
Hierarchical clustering of classes. We performed average-linkage hierarchical clustering of 
the classes using the Expander software package (29). The similarity measure between classes 
was defined as follows. We first built a symmetric matrix, S, satisfying S[C1,C2] = -log(p), 
where p is the P-value described above for the significance of the number of t-correlative 
aberrations that C1 and C2 share. For each class C, we set S[C,C]=log(N), where N=107 as 
above. The similarity between classes was now defined as the Pearson correlation between their 
rows of S.  
 

Computing P-values for co-occurring aberration pairs. Let � denote the entire dataset of 

karyotypes. For two aberrations, Ab and Ab', let n(Ab, Ab') be the number of karyotypes in � 

that contain both aberrations. We estimated the significance of n(Ab, Ab') for all pairs of 
distinct aberrations using a permutation test as follows. We constructed a binary matrix, M', 
whose rows correspond to aberrations that occur in at least 10 karyotypes, and columns to the 

karyotypes in �. Aberrations that did not co-occur with any other aberration in M were 

excluded. For an aberration Ab and karyotype K, we set M'[Ab,K]=1 if K contained Ab, and 
M'[Ab,K]=0 otherwise. We randomly sampled permutations of M' that preserved row and 
column sums. Moreover, to account for the different distributions of aberrations within each 
tumor class, the sampled permutations were also required to preserve (sub-)row sum for each 
class.  We enhanced the performance of this test by filtering aberration pairs whose 
hypergeometric test P-value was above 0.001, and removing from M’ any aberration that did 
not appear in the remaining pairs. 
We performed a similar test for the CGH dataset, but since it was smaller in size we used all 
aberrations (i.e. irrespective of the number of samples in which they were found), and without 
the step of filtering pairs by the hypergeometric test. 
 
Trisomy index test. Sensitivity (respectively, specificity) was calculated as the percentage of 
H-MM (respectively, non-H-MM) karyotypes that are correctly identified as such by the 
trisomy index test (TTI). The positive predictive value (PPV) was calculated as the percentage 
of H-MM karyotypes among all karyotypes identified as H-MM by TTI. The F-score was 
calculated as the harmonic mean of sensitivity and PPV: F = 

2�PPV�sensitivity/(PPV+sensitivity). 
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URLs.  More details on our results can be found on our website (http://acgt.cs.tau.ac.il/stack). 
Supporting information is found on http://acgt.cs.tau.ac.il/stack/suppI. 
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Figure 1: Overview of karyotypes analysis and the STACK website.  A large fraction of the 
karyotypes in the Mitelman database was removed to avoid potential bias in the analysis. These 
included partially characterized karyotypes, multiple karyotypes from the same individual, and 
karyotypes that were not randomly selected in the original report. Tumor type and location were 
used to classify karyotypes into tumor classes, and classes with small representation (< 50 
karyotypes) were removed from the dataset. An algorithm was used to reconstruct the set of 
aberrations leading to each remaining karyotype.  Three types of statistical correlations were 
computed: aberration co-occurrence, association between class and aberration, and class 
similarity (based on their common aberrations). All computed correlations, with their P-values, 
are available for further investigation via our website and are directly linked to the full 
description of the relevant karyotypes in the Mitelman database. Repeating the analysis without 
filtering ambiguities (yielding 22,425 karyotypes) led to essentially the same conclusions. 
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Figure 2: Hierarchical clustering of classes based on class similarity in sharing common 
aberrations. The square at the intersection of each two diagonals shows the similarity of their 
classes, as measured by the aberrations associated with them (Methods). (An aberration was 
associated with a tumor class if their correlation had (uncorrected) P-value < 0.05.) Names of 
cancer classes are colored as follows: orange: lymphoid disorders; red: non-lymphoid 
hematological disorders; light green: benign solid tumors; dark green: malignant solid tumors.   
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Figure 3: Highly co-occurring aberration pairs. Highly co-occurring aberrations in the entire 
karyotype dataset are connected by lines.  Aberrations that are involved only in expected links 
(e.g. a link between a translocation and a gain /loss of one of its derivative chromosomes; a link 
between two (two-break) translocations originating from one three-break (15) rearrangement) 
are not shown.  For explanation on aberration names, see Table S1. (a) Highly co-occurring 
pairs in the Mitelman Database karyotypes (links are significant at P<0.05, after Bonferroni 
correction). (b) Highly co-occurring pairs in the CGH dataset (links are significant at FDR 5%). 
The only gain-loss link is (+1, -16), which has the second worst (i.e. highest) P-value among 
the 47 pairs that passed the FDR 5% criterion. The figure was drawn using Cytoscape (30). 
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Table 1: Tumor classes and categories in the dataset.  The table contains tumor classes used 
in our study, arranged by categories. The Details column contains class description as given in 
the Mitelman database. 
 

Class Details 
No. of 
classes 

benign solid tumors   1567 

    Ad-Large intestine Adenoma-Large intestine 100 

    Ad-Salivary gland Adenoma-Salivary gland 191 

    Ad-Thyroid Adenoma-Thyroid 66 

    Benign-Breast Benign epithelial tumor special type-Breast 69 

    Ch hamartoma-Lung Chondroid hamartoma-Lung 99 

    Leiomyoma-Uterus Leiomyoma-Uterus  corpus 214 

    Lipoma-ST Lipoma-Soft tissue 269 

    Mnng-Brain Meningioma-Brain 508 

    Oncocytoma-Kidney   51 

non-lymphoid hematological 
disorders   6913 

    AML Acute myeloid leukemia  NOS 1026 

    AML M0 Acute myeloblastic leukemia with minimal differentiation (FAB type M0) 144 

    AML M1 Acute myeloblastic leukemia without maturation (FAB type M1) 315 

    AML M2 Acute myeloblastic leukemia with maturation (FAB type M2) 776 

    AML M3 Acute promyelocytic leukemia (FAB type M3) 525 

    AML M4 Acute myelomonocytic leukemia (FAB type M4) 621 

    AML M5 Acute monoblastic leukemia (FAB type M5) 266 

    AML M5a Acute monoblastic leukemia without differentiation (FAB type M5a) 52 

    AML M6 Acute erythroleukemia (FAB type M6) 133 

    AML M7 Acute megakaryoblastic leukemia (FAB type M7) 168 

    BBL Bilineage or biphenotypic leukemia 137 

    CMD Chronic myeloproliferative disorder  NOS 69 

    CML at Chronic myeloid leukemia  aberrant translocation 409 

    CML t(9;22) Chronic myeloid leukemia  t(9;22) 808 

    CMML Chronic myelomonocytic leukemia 147 

    Id myelofibrosis Idiopathic myelofibrosis 115 

    JML Juvenile myelomonocytic leukemia 50 

    MDS Myelodysplastic syndrome  NOS 187 

    Polycythemia Vera Polycythemia vera 166 

    Rf anemia Refractory anemia 374 

    Rf anemia EB Refractory anemia with excess of blasts (FAB) 344 

    Rf anemia RS Refractory anemia with ringed sideroblasts 81 

lymphoid disorders   4411 

    ALL Acute lymphoblastic leukemia/lymphoblastic lymphoma 1817 

    Adult T-Cell lymphoma Adult T-cell lymphoma/leukemia (HTLV-1+) 64 

    Ang T-Cell lymphoma Angioimmunoblastic T-cell lymphoma 71 
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    Burkitt lymphoma Burkitt lymphoma/leukemia 248 

    CLL Chronic lymphocytic leukemia 884 

    DL B-Cell lymphoma Diffuse large B-cell lymphoma 197 

    Follicular lymphoma   274 

    HCL Hairy cell leukemia 57 

    M B-Cell neoplasm Mature B-cell neoplasm  NOS 166 

    MCL Mantle cell lymphoma 78 

    Multiple myeloma   385 

    Per T-Cell lymphoma Peripheral T-cell lymphoma  unspecified 62 

    SMZ B-Cell lymphoma Splenic marginal zone B-cell lymphoma 108 

malignant solid tumors   2554 

    AdC-Breast Adenocarcinoma-Breast 323 

    AdC-Kidney Adenocarcinoma-Kidney 610 

    AdC-Large intestine Adenocarcinoma-Large intestine 125 

    AdC-Ovary Adenocarcinoma-Ovary 56 

    AdC-Prostate Adenocarcinoma-Prostate 124 

    AdC-Thyroid Adenocarcinoma-Thyroid 84 

    AdC-Uterus Adenocarcinoma-Uterus  corpus 62 

    Astrocytoma-Brain Astrocytoma  grade III-IV-Brain 234 

    BCC-Skin Basal cell carcinoma-Skin 87 

    Ewing-Skeleton Ewing tumor/peripheral primitive neuroectodermal tumor-Skeleton 181 

    Giant cell-Skeleton Giant cell tumor of the bome-Skeleton 60 

    Hpblastoma-Liver Hepatoblastoma-Liver 65 

    Liposarcoma M-ST Liposarcoma  myxoid/round cell-Soft tissue 59 

    Melanoma-Eye Malignant melanoma-Eye 72 

    SqCC-Larynx Squamous cell carcinoma-Larynx 58 

    SqCC-Lung Squamous cell carcinoma-Lung 64 

    Synovial sarcoma-ST Synovial sarcoma-Soft tissue 58 

    Wilms-Kidney Wilms tumor-Kidney 232 

 





Chapter 8

Discussion

In this thesis we described our study on genome rearrangements occurring in the

evolution of species and in cancer cells. Considering different models for evolution

and cancer, we focused on finding a shortest sequence of rearrangement events ex-

plaining large-scale differences between two genomes (Chapters 2-5). We built on

extant mathematical theory and generalized it (Chapter 2-4). We presented a new

set of simpler and more efficient algorithms for a previously analyzed model (Chap-

ters 2,3). We extended this model by adding new biological constraints and pre-

sented an accurate polynomial time solution for the corresponding problem (Chap-

ter 4). We proposed an original model suited for cancer karyotypes and provided

a 3-approximation polynomial time algorithm for computing a shortest sequence of

rearrangements transforming a normal genome into a given cancer genome, under

certain assumptions supported by most real data (Chapter 5). The last part of this

thesis was dedicated to a statistical analysis of rearrangements, reconstructed by an

effective heuristic, in a large public database of cancer karyotypes (Chapter 6,7). In

this chapter we briefly review the results introduced in this thesis and discuss their

importance and relevance to other works. In addition, we raise open problems that

stem from the analysis and from the results in this thesis.

8.1 Sorting by Translocations

From a bird’s-eye view, genomes of related species are built from essentially the

same set of large (synteny) blocks of DNA. The different ordering of these blocks

137
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in the genomes inspired the computational problem of inferring a shortest sequence

of rearrangement events between related genomes. Reversals (aka inversions) and

translocations are common miotic rearrangements in mammals. While transloca-

tions mix the content of two chromosomes, the effect of inversions is localized to a

single chromosome. Sorting uni-chromosomal genomes by reversals (SBR) became

one of the most analyzed problems in the computational study of genome rearrange-

ments and hence there is a rich theory on it [41, 15, 49, 7, 12, 103]. The problem

of sorting by translocations (SBT) was analyzed in the context of SBR by the same

authors [39, 14], and was shown to share a similar combinatorial formulation with

SBR. Nevertheless, the extant algorithms for solving SBT had little in common with

the algorithms for solving SBR. In Chapters 2 and 3 we described a new combina-

torial framework for analyzing SBT, which built on extant framework for analyzing

SBR. This new framework allowed us to exploit the wealth of theory on SBR and

provide analogous results for SBT. In particular, we managed to adapt three most

efficient algorithms for solving SBR to solve SBT, while preserving the original time

complexities. One of these new algorithms, which runs in sub-quadratic rime, is cur-

rently the fastest algorithm for solving SBT. Testing whether the latest improvement

in the time complexity of SBR, achieved by Swenson et al. [101], can be applied to

SBT remains as a task for future work.

By developing a combinatorial representation of SBT akin to the extant one

for SBR, we revealed novel similarities between the two problems. Moreover, this

implied that the problem of sorting by reversals and translocations (SBRT) can be

analyzed in a similar manner, without having to reduce it to SBR as the current

algorithm does [40, 105, 68]. Despite the common properties we revealed for SBR

and SBT, we did not prove an equivalence between the problems, nor did we prove

that one is reducible to the other. Proving whether there exists such stronger relation

between the two problems remains an open problem.

Reversals and translocations are two special cases of the double-cut-and-join

(DCJ) operations introduced by Yancopoulos et al. [114]. The DCJ operation is

equivalent to the 2-break operation studied by Alekseyev and Pevzner [5]. The

distance formula and the algorithms for sorting by DCJs (SDCJ) were shown to be

much simpler, in comparison with SBR, SBT, and SBRT [114, 13, 5]. The major

reason for the relative simplicity of SDCJ is its powerful ability to create intermediate

circular chromosomes, which are later reabsorbed. This ability facilitates an elegant

bypass to the difficulty of avoiding the creation of “bad components”, which is
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the source of complication for SBR, SBT, and SBRT. We note that the version of

SDCJ in which circular chromosome creation is not allowed is equivalent to SBRT.

An intriguing question if whether there exists an alternative generalization of the

overlap graph in which all DCJ operations are modeled on the same manner.

8.2 Sorting by Translocations with Centromeres

In this thesis we made the first attempt to take into account centromeres in rear-

rangement scenarios (Chapter 4). As no mapping (“ortholog assignment”) is given

between centromeres of related genomes, we treated all centromeres as equivalent

anonymous elements whose location is the only information given for them. As

a chromosome must have a centromere in order to survive the subsequent cell di-

visions, we regarded translocations creating acentric chromosomes as illegal and

forbade their use. We studied the problem of sorting by legal translocations (SBLT)

and provided an accurate polynomial-time solution for it using a reduction to SBT

that mapped the centromeres in the two genomes.

Using our definition for legality, exactly half of all possible translocations are

illegal. In contrast, every reversal is legal, as reversals do not alter the number

of centromeres in a chromosome. Allowing for legal translocations only, as we did,

imposed an additional constraint on the signs of the genes in the input genomes (Ob-

servation 1, Chapter 4). We note that disallowing reversals and considering (legal)

translocations only, severely limits the practicality of our algorithm in analyzing real

data. Extending SBLT to allow for reversals eliminates this “artificial” constraint

and results in a new interesting open problem, which is also biologically more rea-

sonable. Another research direction is to extend SDCJ, which is much simpler than

SBRT, to account for centromeres and legal sorting.

SBR, SBT, and SBRT, are all based on simplistic models for genome rearrange-

ments. Apart from the constraint we considered for centromere-aware operations,

there are many other biologically motivated constraints and requirements that can

be integrated into these problems. These include different weights/probabilities for

different rearrangement events, depending on the rearrangement type, location (e.g.

considering breakpoint “hotspots”), and overall effect (e.g. length of inverted seg-

ment - for reversals [10]). Amajor difficulty in using SBR / SBT / SBRT algorithms

for analyzing real genomes is the non-uniqueness of their solutions. Several ways
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have been proposed to tackle this problem, such as enumerating all optimal solutions

[95, 24], finding a compact representation of the solution space [23, 22], sampling

the solution space [60], and reconstruction of partial “reliable” solutions [115, 116].

We believe that the addition of biologically plausible constraints on SBR / SBT /

SBRT, such as our exclusion of illegal translocations, will help to reduce the num-

ber of optimal scenarios, and thus may bring us closer to the true rearrangement

scenarios that took place.

Although scenarios involving acentric chromosomes are less favorable, they are

not absolutely impossible. In a major discovery in 1993, it was shown that a newly

formed chromosome that lacks a centromere can be rescued by the emergence of

a new centromere in a seemingly random location [110]. Since this initial discov-

ery, over ninety cases of neocentromere formation in humans have been described

in the literature, among which are five cases of centromere repositioning (i.e. neo-

centromere formation accompanies by an inactivation of an existing centromere)

[59]. This discovery supports a new model for rearrangements that considers two

extra operations: forming neocentromere and inactivation of an existing centromere.

Nevertheless, as translocations are far more common than neocentromere formation,

and the mechanisms underlying neocentromeres are not well understood, the use of

neocentromeres in sorting scenarios should be done in moderation. An interesting

question is thus to find a shortest sequence of translocations requiring k centromere

formations / repositioning events, where k is a parameter. Whether there exists a

fixed-parameter-tractable algorithm to this parametric problem is an open problem.

8.3 Sorting Cancer Karyotypes

Cancer karyotypes display a wide variety of chromosomal aberrations caused by re-

arrangement events. In Chapter 5 we made a first attempt to rigorously reconstruct

a sequence of plausible rearrangement events that led to a given cancer karyotype.

We presented an original model of rearrangements in cancer genomes using four

biologically-motivated elementary operations. We used this model to define the

problem of karyotypes sorting (KS), which seeks for a shortest sequence of these

elementary operations that transforms a normal karyotype into a given abnormal

(cancer) karyotype. Under the simplifying assumption that no breakpoint is dupli-

cated, which is supported by the vast majority (94%) of cancer karyotypes in the
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Mitelman database, we reduced KS to a simpler variant RKS, in which no break-

point exists. We proved lower and upper bounds for the length of a solution to

RKS, which yielded a 3-approximation polynomial-time algorithm. We applied this

algorithm on 58,464 karyotypes with no recurrent breakpoints. For 99.9% of those

karyotypes our algorithm produced a solution that achieved the lower bound and

hence was optimal. Manual inspection of the remaining cases revealed that the so-

lutions produced by algorithm were optimal (i.e shortest) for all the remaining (30)

cases as well.

The complexity of KS problem, and its reduced form, RKS, remained an open

theoretical problem for future research. Another requested future extension of this

work is to weaken the assumption that prohibits breakpoint duplication in a way

that allows the analysis of the remaining 6% of the karyotypes, which are likely to

correspond to more advanced stages of cancer. Our hope is that this study will

lead to further algorithmic research on the evolution of chromosomal aberrations in

cancer.

The model we proposed for the evolution of cancer karyotypes allowed for dupli-

cation and deletion events, which were shown to be most common in cancer kary-

otypes (Chapter 6) and hence must not be neglected. Rearrangement models that do

not allow duplications and deletions, such as the ones used by SBR/SBT/SBRT, are

inadequate for modeling the evolution of chromosomal aberrations in cancer. More-

over, karyotypes exhibit complex structural aberrations that are difficult to explain

by mere reversals and translocations. Conversely, the consideration of breakage

and fusion as two independent events, added much more power and flexibility in

the generation of complex aberrations, albeit at the cost of using less conventional

events. We note that most of the statistical studies of rearrangement events in cancer

that we are aware of, analyze elementary events: duplications/deletions of segments

(commonly CGH data), and breakages (commonly referred as “breakpoints”). We

also note that a similar model, which considers breakage and fusion as independent

events but with no deletions/duplications, was previously used by Levy et al. [54]

to analyze chromosomal aberrations caused by ionizing radiation in M-FISH data.

A solution for karyotype sorting, i.e. a shortest sequence of events that led to

a given abnormal karyotype, is usually non-unique. In particular, if two homolog

broken ends exist - then there may be two alternative fusion events for the solution.

Moreover, different solutions may differ only by the order of their events. Therefore,
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in many cases it is preferable to consider the reconstructed events as a set rather

than as a sequence. As we already argued above, imposing further preferences / lim-

itations on the reconstructed sequence of events is likely to decrease the number of

possible solutions and is an important direction for future work. A potential prefer-

ence is to favor solutions that induce translocations (i.e., two consecutive breakages

immediately followed by two fusions between the corresponding four broken ends),

and other complex rearrangements that are frequent in real data (Chapter 6).

Finally, the association of cancer karyotypes with a plausible set of rearrange-

ments can be viewed as the first step in their analysis. Later steps may include

various statistical analyses, such as identifying rearrangements that are likely to

be of importance to the carcinogenesis process (e.g. [16]), reconstructing common

evolutionary pathways (e.g. [32, 33, 109, 85, 44, 43]), or discovering interesting prop-

erties and associations among rearrangements (e.g. Chapters 6 and 7). We note that

most of the statistical studies of rearrangement events in cancer, at the least the ones

that we are aware of, analyze elementary events: duplications/deletions of segments

(commonly CGH data), and fusions.

8.4 Analyzing Rearrangements in Cancer Karyotypes

In chapter 6 we analyzed and compared rearrangement frequencies in different can-

cers. The analyzed rearrangements were reconstructed by a heuristic algorithm that

given a cancer karyotype iteratively detects a most probable event and undoes it. We

ignored the order of the reconstructed events, as many of the events commute. The

algorithm fails if it cannot reconstruct a unique set of events. The algorithm was

shown to succeed on more than 98% of the data, totalling 40,298 well-characterized

karyotypes derived from the Mitelman database [62]. We note that the high effec-

tiveness of the algorithm may be due to the relative simplicity of the karyotypes in

the data. For example, the average number of reconstructed events per karyotype

is less than 3 (see Fig. 2.(a) for average event rates).

The classification into cancer classes was based on the histological data provided

for each karyotype. We showed that the vast majority (98%) of cancer karyotypes

can be explained using 12 types of rearrangement events, among which the most

common were: chromosome gains and losses, translocations, and terminal deletions.

One goal of this study was to set a basis for modeling rearrangements in cancer.
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Our results showed that unlike the modeling of rearrangement in species evolution, a

realistic model for cancer cannot ignore the dominance of duplications and deletions

in cancer genomes.

We used the reconstructed rearrangement frequencies to compare distinct can-

cers. More specifically, the question we asked was: Are there significant differences

in the frequencies of rearrangement events between distinct cancers? To answer this

question we designed several methods to compare event frequencies in different can-

cers. We applied these methods to cancer classes with a sufficient number of samples

(i.e. more than 60 karyotypes). The results showed that for most compared can-

cer pairs, the observed distributions of rearrangement frequencies were significantly

distinguishable.

To the best of our knowledge, this study presented the first large-scale analysis

of the frequencies of rearrangement events in different cancers. Previous comparable

studies were either applied to very small datasets (such as the NCI-60 [86]) or focused

on the behavior of a single parameter of karyotypic complexity, such as the total

number of aberrations [37, 26]. We note that the distinct distributions of event rates

observed for different cancers may result from different recurrent aberrations, such

as the Philadelphia translocation in CML. Our results imply that the mechanisms

underlying chromosome instability vary for cancers of different histological origins.

Our next step was to analyze rearrangement events with their specific chromo-

somal locations (Chapter 7). We used the term aberration to refer to the result of a

rearrangement event on a specific chromosomal location(s), and used an ISCN-like

notation to identify it. For example, the aberration “t(9;22)(q34;q11)” referred to

the result of a translocation event on the chromosomal locations 9q34 and 22q11.

We employed our heuristic for rearrangement reconstruction on a set of over 15,000

karyotypes from the Mitelman database, and assigned each karyotype with its set of

reconstructed aberrations. The remaining karyotypes in the Mitelman database were

excluded from our analysis to avoid potential biases in the reconstructed aberrations.

This study was comprised of two complementing parts. In the first, we computed

a P-value for the correlation of each aberration-class pair. Reassuringly, the lowest

P-values matched well-known strong correlations. These P-values were then used to

compare distinct tumor classes by their aberrations. Our results proved that class

similarity based on manifested chromosomal aberrations is remarkably concordant

with histological similarity. In addition, we revealed a novel significant similarity
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among three childhood cancers, Wilms tumor, Ewing sarcoma, and hepetoblastoma.

Very recently, Liu et al. presented an evolutionary tree of cancers based on copy

number alterations derived from CGH data [57]. As the cancers in the tree of Liu

et al. are different from the ones we analyzed, it is almost impossible to compare

between the results. Nevertheless, despite using different data and methods, the tree

constructed by Liu et al. was also highly concordant with histological classification,

supporting our conclusion.

In the second part of our study, we detected aberration pairs that showed signif-

icant co-occurrence rates, regardless of the cancer class they were found in. Inter-

estingly, there was a clear dichotomy in the significantly co-occurring aberrations:

almost all strong couples involved either two chromosome gain or two chromosome

loss aberrations, but not both. In other words, while there were many strong chromo-

some gain couples and chromosome loss couples, any co-occurrence of chromosome

gain and chromosome loss aberrations appeared to be random. We repeated this

test in an independent CGH dataset. Strikingly, we found that the CGH dataset

showed the same chromosome gain/loss co-occurrence dichotomy. A similar result

was obtained in the study of karyotypic evolution models of several specific solid

cancers by Höglund et al. [44]. The models developed in [44] contain two converg-

ing karyotype evolution paths, one dominated by gains of chromosomal fragments

and the other by losses. Since the analysis methods in [44] were completely different

from ours, this result lends further support to our observation of whole chromosome

gains and losses dichotomy in aneuploid karyotypes. The strong gain-gain and loss-

loss correlations we found suggests that these links are required for balancing the

ratios of proteins that function in complexes. As chromosome gain and loss events

may result in partially assembled protein complexes or free subunits, which put sig-

nificant stress on the cell [113], such balancing can be crucial for the survival of the

aneuploid cell.

8.5 Concluding Remarks

Our research of genome rearrangements initially focused on genomic sorting under

different models. Genomic sorting has been the source of many intriguing problems

that caught the attention of many computer scientists and mathematicians over

the past two decades. Despite its over-simplification of biology, genomic sorting
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turned out to be computationally very complicated, and often NP-hard, for most

considered models. Looking at the history of SBR, the most studied genomic sorting

problem, we can conclude that the research of genomic sorting has been fruitful, both

computationally and biologically. The mathematical theory underlying SBR has

been greatly extended and simplified since the problem was introduced by Kececioglu

and Sankoff, leading to faster and simpler algorithms for solving it. Computational

knowledge on simplistic genomic sorting problems can be used for devising clever

heuristics for computing parsimonious rearrangement scenarios involving more than

two species, as was done in [19].

In this thesis we extended and simplified the theory of an existing problem,

namely SBT, by developing a combinatorial framework akin to the framework of

SBR. Later on, we presented two new models for genome rearrangements. The first

built on the model of SBT, while the second used a novel set of rearrangements suited

for cancer. For the first model we succeeded in providing an accurate polynomial

time solution, but the computational analysis was very complicated. For the second

model, we managed to provide a 3-approximation polynomial time solution, under

certain assumptions, while the overall complexity of the problem remained unknown.

We hope that further investigations of these models will simplify and improve our

results.

Finally, we developed an effective heuristic to sort cancer karyotypes using 12

common rearrangement events and used the reconstructed rearrangements to carry

out statistical analyses. We conducted large-scale robust statistical investigations

of the rearrangements reconstructed from thousands of karyotypes, searching for

differences / relationships between distinct cancers and identifying significant co-

occurring aberrations. Our results revealed new characteristics of chromosomal re-

arrangements in cancer, which may shed light on aberration development mecha-

nisms in cancer. We believe that the wealth of cancer karyotypes merits additional

investigations of these data which will hopefully provide more insights on the role

and importance of chromosomal aberrations in cancer.





Acronyms

Array-CGH - Array-based Comparative Genomic Hybridization

CML - Chronic Myelogenous Leukemia

DCJ - Double-Cut-and-Join

DSB - Double Strand Break

ESP - End Sequence Profiling

FISH - Fluorescence In Situ Hybridization

ISCN - International System for human Cytogenetic Nomenclature

KS - Karyotype Sorting

M-FISH - Multiplex Fluorescence In Situ Hybridization

RKS - Reduced Karyotype Sorting

SBLT - Sorting By Legal Translocations

SBR - Sorting By Reversals

SBRT - Sorting By Reversals and Translocations

SBT - Sorting By Translocations

SDCJ - Sorting By Double-Cut-and-Join operations

SKY - Spectral Karyotyping
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