
GERBIL: Genotype resolution and block identification
using likelihood
Gad Kimmel* and Ron Shamir

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Edited by Richard M. Karp, International Computer Science Institute, Berkeley, CA, and approved November 11, 2004 (received for review July 1, 2004)

The abundance of genotype data generated by individual and
international efforts carries the promise of revolutionizing disease
studies and the association of phenotypes with individual poly-
morphisms. A key challenge is providing an accurate resolution
(phasing) of the genotypes into haplotypes. We present here
results on a method for genotype phasing in the presence of
recombination. Our analysis is based on a stochastic model for
recombination-poor regions (‘‘blocks’’), in which haplotypes are
generated from a small number of core haplotypes, allowing for
mutations, rare recombinations, and errors. We formulate geno-
type resolution and block partitioning as a maximum-likelihood
problem and solve it by an expectation-maximization algorithm.
The algorithm was implemented in a software package called GERBIL

(genotype resolution and block identification using likelihood),
which is efficient and simple to use. We tested GERBIL on four
large-scale sets of genotypes. It outperformed two state-of-the-art
phasing algorithms. The PHASE algorithm was slightly more accurate
than GERBIL when allowed to run with default parameters, but
required two orders of magnitude more time. When using com-
parable running times, GERBIL was consistently more accurate. For
data sets with hundreds of genotypes, the time required by PHASE

becomes prohibitive. We conclude that GERBIL has a clear advantage
for studies that include many hundreds of genotypes and, in
particular, for large-scale disease studies.

haplotype � algorithm � phasing � single-nucleotide polymorphism �
expectation maximization

Most variations in the DNA sequence among individuals are
at single-base sites, in which more than one nucleic acid

can be observed across the population. Such differences and
their sites are called SNPs (1, 2). In most cases only two
alternative bases (alleles) occur at a SNP site. The total number
of common human SNPs is estimated to be �10 million (3). The
sequence of alleles in contiguous SNP sites along a chromosomal
region is called a haplotype. Identification of haplotypes is
a central challenge of the International HapMap Project
(www.hapmap.org), because of their expected importance in
disease associations (4, 5).

Recent evidence suggests that haplotypes tend to be pre-
served along relatively long genomic stretches, with recombi-
nation occurring mostly in narrow regions (1, 2). The stretch
of SNP sites between two neighboring recombination regions
is called a block. The number of different haplotypes within
each block that are observed in a population is very small:
typically, some 70–90% of the haplotypes within a block are
identical (or almost identical) to very few (two to five) distinct
common haplotypes (1).

Several studies have concentrated on the problem of block
identification and partitioning in a given data set of haplotypes:
Zhang et al. (6, 7) defined a block to be an interval of SNPs that
minimizes the number of tag SNPs. Koivisto et al. (8) used a
minimum description length criterion for block definition. Kim-
mel et al. (9) minimized the total number of common haplotypes
when errors and missing data are allowed. The same dynamic
programming approach (6) was used in all of these studies, and

the main difference is in the optimization criterion used within
the dynamic programming computation.

Diploid organisms, like human, have two near-identical copies
of each chromosome. Most experimental techniques for deter-
mining SNPs do not provide the haplotype information sepa-
rately for each of the two chromosomes. Instead, they generate
for each site an unordered pair of allele readings, one from each
copy of the chromosome (10). The sequence of these pairs is
called a genotype. A homozygous site in the genotype of an
individual has two identical bases, whereas a heterozygous site
has different bases on the two chromosomal copies at that site.
The process of inferring the haplotypes from the genotypes is
called phasing or resolving.

In the absence of additional information, each genotype in a
population can be resolved in 2h�1 different ways, where h is the
number of heterozygous sites in this genotype. Thus, one must
use some model of how the haplotypes are generated to perform
genotype resolving. Clark (11) proposed the first approach to
haplotype resolution, which was parsimony-based. Likelihood-
based expectation-maximization (EM) algorithms (12, 13) gave
more accurate results. Stephens and coworkers (14, 15) and Niu
et al. (16) proposed Markov chain Monte Carlo-based methods.
A combinatorial model based on the perfect phylogeny tree
assumption was suggested by Gusfield (17). By using this model,
Eskin et al. (18) showed good performance on real genotypes
with low error rates. Recently, Greenspan and Geiger (19)
proposed an algorithm that performs resolution while taking
into account the block structure. The method is based on a
Bayesian network model.

In this study we provide an algorithm that solves block
partitioning and phasing simultaneously. Our algorithm is based
on a model for genotype generation. The model and preliminary
analysis on its performance were reported in ref. 20. The model
is based on a haplotype generation model, parts of which were
suggested by Koivisto et al. (8). Within each block, we redefine
common haplotypes in a probabilistic setting and seek a solution
that has maximum likelihood, by using an EM algorithm. The
model accounts for errors and rare haplotypes.

The algorithm was implemented in a software package called
GERBIL (genotype resolution and block identification using
likelihood). We applied GERBIL to three genotype data sets: on
a data set from chromosome 5 (21) it outperformed HAPLO-
BLOCK (19) and HAP (18) and gave similar results to PHASE (14),
with much shorter run times. On the data set of Gabriel et al.
(2) and on data from the International HapMap Project (www.
hapmap.org), the PHASE algorithm was slightly more accurate
than GERBIL when allowed to run with default parameters, but
required two orders of magnitude more time. We also simulated
data with larger numbers of genotypes (500 to 1,000) based on
real haplotypes. In such a scenario, when the number of geno-

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: GERBIL, genotype resolution and block identification using likelihood; EM,
expectation-maximization.

*To whom correspondence should be addressed. E-mail: kgad@tau.ac.il.

© 2004 by The National Academy of Sciences of the USA

158–162 � PNAS � January 4, 2005 � vol. 102 � no. 1 www.pnas.org�cgi�doi�10.1073�pnas.0404730102



types increased, GERBIL had a clear advantage over PHASE,
because the latter required a prohibitively long time (and was, in
fact, unable to solve the larger data sets). The GERBIL software
can be downloaded at www.cs.tau.ac.il��rshamir�gerbil.

Unlike most former probabilistic approaches (12–14, 16), our
algorithm reconstructs block partitioning and resolves the hap-
lotypes simultaneously. As in refs. 14 and 19 haplotype similarity
is taken into account. Although our approach has some resem-
blance to HAPLOBLOCK, there are significant differences. First,
our approach computes the maximum likelihood directly and is
not based on a Bayesian network. Second, once the model
parameters are found, we solve the phasing problem directly to
optimality, so that the likelihood function is maximized. In
contrast, HAPLOBLOCK applies a heuristic to find the block
partitioning, even though this partitioning is part of the model
parameters. Third, our stochastic model allows a continuous
spectrum of probabilities for each component in each common
haplotype, whereas the HAPLOBLOCK software allows only two
common probability values for all mutations. HAPLOBLOCK’s
model has the advantage of incorporating interblock transitions,
whereas we handle them separately after the main optimization
process.

Methods
We first concentrate on modeling and analysis of a single block. The
input to the problem is n genotypes g1, . . . , gn, each of which is an
m-long vector of readings gi(1), . . . , gi(m) corresponding to the SNP
sites. We assume that all sites have at most two different alleles and
rename the two alleles arbitrarily as 0 and 1. The genotype readings
are denoted by gi(j) � {0, 1, 2}. 0 and 1 stand for the two
homozygous types {0, 0} and {1, 1}, respectively, and 2 stands for
a heterozygous type. A resolution of gi is two m-long binary vectors
gi

1, gi
2 satisfying gi

1(j) � gi
2(j) � gi(j) if gi(j) � 0 or 1, and gi

1(j) � gi
2(j)

if gi(j) � 2.

The Probabilistic Model. Our stochastic model for the genotypes
generation is based on the observation that within each block the
variability of haplotypes is limited (2, 21). The model assumes a
set of common haplotypes that occur in the population with
certain probabilities. The generation of a genotype is as follows:
First, two of the common haplotypes are chosen. Second, the
alleles at each site of the haplotypes are determined. Third, their
confluence is formed. In our model, these common haplotypes
are not deterministic. Instead, we use the notion of probabilistic
common haplotype that has specific allele probabilities at each
site. Such a haplotype is a vector, whose components are the
probabilities of having the allele 1 in each site of a realization of
that haplotype. Hence, a vector of only zeroes and ones corre-
sponds to a standard (consensus) common haplotype, and a
vector with fractional values allows for deviations from the
consensus with certain (small) probabilities, independently for
each site. In this way, a common haplotype may appear differ-
ently in different genotypes. A similar model was used in ref. 8
in the block partitioning of phased data. Note that the model
makes the Hardy–Weinberg (22) assumption that mating is
random. An illustration of the model appears in Fig. 1.

A more formal definition of the stochastic model is as follows.
Assume that the genotype data contain only one block. Let k be
the number of common haplotypes in that block. Let �i1�i�k be
the probability vectors of the common haplotypes, where �i �
(�i,1, . . . , �i,m) and �i,j is the probability to observe 1 in the jth
site of the ith common haplotype. (Consequently, 1 � �i,j is the
probability to observe 0 in that site.) Let �i � 0 be the probability
of the ith common haplotype in the population, with �i�1

k �i � 1.
Each genotype gt is generated as follows:

Y Choose a number i between 1 and k according to the proba-
bility distribution {�1, . . . , �k}. i is the index of the first
common haplotype.

Y The haplotype (x1, . . . , xm) is generated by setting, for each
site j independently, xj � 1 with probability �i,j.

Y Repeat the steps above for the second haplotype and form
their confluence. The result is the genotype gt.

For generating genotypes with several blocks, the process is
repeated for each block independently.

EM. The two common haplotypes that were used to create a
genotype are called its creators (the two may be identical). For
a single genotype gj, assuming its creators �a and �b are known,
the probability of obtaining gj is

f�gj; �a, �b	 � �
i�1

m � �1 � �a,i	�1 � �b,i	 g j,i � 0
�a,i�b,i g j,i � 1
�a,i�1 � �b,i	 � �b,i�1 � �a,i	 g j,i � 2

.

We denote by Ii and Ji the index of the first and second creator
of genotype gi, respectively. The complete likelihood of all
genotypes is

L�M	 � �
i�1

n

� Ii
�Ji

f�gi; �Ii
, �Ji

	 .

Because Ii and Ji, for 1 � i � n, are unknown, we use the EM
approach (see, e.g., ref. 23) for iteratively increasing the likeli-
hood. We get closed-form equations for the updating of �i in
each iteration, and we use numerical methods for updating the
�i vectors. Thus, we iteratively recalculate the parameters of the
model, until convergence of the likelihood to a local maximum.

Fig. 1. An illustration of the probabilistic model. This model has three
common haplotypes covering four SNPs. In the first step, pairs of the common
haplotypes are chosen according to their probabilities �i. In this example 1,2
and 1,3 are chosen. In the second step, the alleles at each site of the haplotypes
are determined according to the probabilities �i,j. In the third step, each
genotype is formed by a confluence of two haplotypes created at the former
step.

Kimmel and Shamir PNAS � January 4, 2005 � vol. 102 � no. 1 � 159

G
EN

ET
IC

S



For a detailed mathematical development of the solution for the
optimization problem see ref. 20.

Block Partitioning and Finding the Parameter k. A simple approach
that assumes independence between blocks would be to multiply
the block likelihoods. However, as the parameter k is unknown,
we use a minimal description length approach for finding the
block partitioning and finding the parameter k for each of the
blocks, in a similar fashion to ref. 8. For each pair of SNPs i,j, and
for each possible k, we solve the problem as described above on
the sites i through j, assuming they span a single block that
contains k common haplotypes, and obtain the log likelihood
score Li,j

(k). We also compute the description length Di,j
(k) of the

model parameters. Note that when k is larger, the likelihood
increases, but so does the description length of the model. The
minimum description length of such a block is Mi,j

(k) � Di,j
(k) � Li,j

(k).
Let k(i, j) � arg mink Mi,j

(k). A partition P of the SNPs into b blocks
is defined by 1 � i1 
 i2 
 � � � 
 ib � n, where the tth block is
[it,it�1 � 1]. The score of such a partition according to the
minimum description length criterion is �s�1

b M is,is�1�1
k(is,is�1�1). Finding

the optimal partition is solved by dynamic programming (cf. refs.
6 and 8).

Speedup. Instead of checking all possible k values, we first resolve
the genotype data into a preliminary haplotype matrix HP, by
using a procedure that is based on our single block resolving
algorithm (see Appendix). Now, for each candidate block [i, j] the
number of distinct haplotypes that appears in HP more than once
is used as an approximation for k(i, j). Also, to save time, only
candidate blocks of up to 30 SNPs are considered.

Pairing Haplotypes Across Block Boundaries. To construct a full
chromosome sequence, one has to determine which alleles
within the block appear together with alleles in the consecutive
block, on the same haplotype. We call this problem matching
pairs of blocks (cf. refs. 15 and 18). Our solution is based on the
fact that specific common haplotypes in neighboring blocks tend
to appear together on the same chromosome (21). For each pair
of neighboring blocks and for each genotype, we simply choose
the pairing that occurred more often in HP.

Initialization. When applied to a block, the EM provides only a
local optimum, and starting from good initial parameter values
is critical both for the solution quality and the speed of the
procedure. We generate such an initial solution as follows. We
randomly permute the order of the genotypes and use Clark’s
inference algorithm (11) to resolve as many of the genotypes as
possible. In case there is still some unresolved genotype, (either
because of heterozygous sites or missing data entries), we resolve
that genotype arbitrarily and reapply Clark’s algorithm. This
procedure ends when all genotypes are resolved. The next stage
is to cluster the haplotypes around k common haplotypes (where
k was already determined as described above). This requires
finding a set C of k haplotypes such that �i�1

n minh��C(d(hi, h�))
is minimized, where d(. . .) denotes the Hamming distance. This
subproblem is already hard (9), and we use the following
heuristic procedure to solve it: We repeatedly select a random
subset C� of k haplotypes h1, . . . , hk, and each time calculate
�i�1

n minh��C�(d(hi, h�)). This is repeated T times and the subset
C that attains the minimum score is chosen. (T � 100 was used
in practice.) We use the set C to construct the initial probabilistic
common haplotypes for the EM procedure, in the following way:
if hi has value 1 in SNP j, we set �i,j � 0.999, otherwise �i,j � 0.001.
The �i value is proportional to the size of the cluster containing
hi. We also use HP as an additional potential starting point.

Implementation. Our algorithm was implemented in a C��
program called GERBIL. Running time on a 2-GHz Pentium
computer with 500 MB of memory is �1 min for resolving data
with 100 SNPs and 150 genotypes. GERBIL is available for
academic use at www.cs.tau.ac.il��rshamir�gerbil.

Evaluating and Comparing Solutions. Let the true haplotypes for
genotype gi be t � (t1, t2), and let the inferred haplotypes be h �
(h1, h2). Comparison of t and h can be done only for sites that are
heterozygous and are resolved in t (e.g., because of pedigree
data). Suppose we restrict t and h to these sites only, and obtain
l-long vectors. We use the switch test (15, 24) to evaluate the
accuracy of h. The test counts the number of times �i we have
to switch from reading h1 to h2 or back to obtain t1, and divides
the result by di � l � 1 (the maximum possible of switches for
this genotype). The switch test value for a set of genotypes is
�i�i��idi.

Results
Chromosome 5p31. The data set of Daly et al. (21) contains 129
pedigrees of father, mother, and child, each genotyped at 103
SNP sites in chromosome 5p31. The original children data
contain 13,287 typed sites, of which 3,873 (29%) are heterozy-
gous alleles and 1,334 (10%) are missing. After pedigree resolv-
ing, only 4,315 (16%) of the 26,574 SNPs remained unknown
(unresolved or missing data). When applied to the children data
GERBIL generated 18 blocks [compared with 11 blocks in the
solution of Daly et al. (21)], and k ranged from 3 to 15 in the
different blocks. The switch error rate was 3.3%.

We compared the performance of GERBIL to three previously
published phasing algorithms: HAP (18), which uses the perfect
phylogeny criterion (see also ref. 25) gave a switch error rate of
4.2%. HAPLOBLOCK (19), which uses a Bayesian network, gave a
switch error rate of 3.6%. PHASE (14) (version 2.0.2 for Linux),
which uses the coalescent as a Bayesian prior, gave a switch error
rate of 3.1%. The run time of GERBIL was 1 min, whereas PHASE
needed 4.1 h with its default parameters. When letting PHASE run
a comparable time to GERBIL (2 min), PHASE achieved an error
rate of 5.4%.

Yoruba Genotypes. Our second test focused on the Yoruba
population genotypes from ref. 2. For this population there were
parental genotypes that could be used to infer the true solution.
We used 29 test genotypes (we removed one trio that had a high
rate of missing entries). There are 52 different samples of size
13–114 SNPs from different regions of the human genome.
GERBIL’s average switch error rate was 15% with a total run time
of 8 min over all samples. PHASE (with default parameters) gave
more accurate results, averaging 12%, with a run time of 10.1 h.
The relatively high values of switch error rate compared with the
results above are caused by the combination of small sample size
and high missing data rate (8%). The accuracy and speed on
individual samples are displayed in Figs. 2 and 3, respectively.
GERBIL was consistently 10–100 times faster.

HapMap Project Genotypes. Our third test used genotype data for
30 trios from the International HapMap Project (www.hapmap.
org). As before, we used the parental information only to infer
the true solution and applied the phasing algorithms to the
children only. The missing entries rate in this data set was 1%,
much smaller than in the former data sets.

We extracted four data sets of 70 SNPs from the beginning of
each of the human chromosomes 1–22. The first data set in each
chromosome contained SNPs 1–70, the second contained SNPs
71–140, etc. We applied both GERBIL and PHASE on all 88 data
sets. The average switch error rate was 11% for GERBIL and 10%
for PHASE. Overall run time was 31 min for GERBIL and 22.5 h for
PHASE.

160 � www.pnas.org�cgi�doi�10.1073�pnas.0404730102 Kimmel and Shamir



Large Simulated Data Sets. To assess our software on data sets with
a larger number of genotypes, we simulated genotypes based on
the known haplotypes of chromosome 5p31 (see above). We
generated six different data sets by random sampling and pairing
of haplotypes from the 258 known ones. These data sets con-
tained 500, 600, 700, 800, 900, and 1,000 genotypes. The results
of GERBIL and PHASE are presented in Table 1. On the larger data
sets of 800, 900, and 1,000 genotypes, PHASE aborted after 12
min, because of memory allocation overload. Attempts to run
PHASE on a larger memory machine (Pentium 3 with 2 gigabytes
of memory) also were aborted. On the smaller data sets of 500,
600, and 700 genotypes, when giving PHASE the same amount of
run time, GERBIL outperforms PHASE in accuracy. When using
the default parameters of PHASE, the program provides more
accurate results (1% vs. 3%), but requires considerably longer
run times (�3 days vs. 
1 h).

Discussion
We have introduced an algorithm for haplotype resolution and
block partitioning. The algorithm uses a stochastic model for
genotype generation, based on the biological finding that geno-
types can be partitioned into blocks of low recombination rate,
and in each block, a small number of common haplotypes is
found. Our model uses the notion of a probabilistic common
haplotype, which can have different forms in different geno-
types, thereby accommodating errors, rare recombination
events, and mutations. We were able to define a likelihood
function for this model. Finding the maximum-likelihood solu-
tion for genotype data under the model is achieved by using an
EM algorithm. The algorithm was implemented in the GERBIL
program.

In tests on real data, our algorithm gave more accurate results
than two recently published phasing algorithms (18, 19). Most of
our comparisons concentrated on PHASE (15), currently the
leading algorithm for haplotyping. There are two performance
criteria that should be considered in such a comparison. The first
and foremost is accuracy, which we measured by using the switch
test (15, 24). However, when a program becomes impractically
slow as one attempts to use it on larger and larger problems, one
should apply the criterion of speed and test the tradeoff between
accuracy and speed. Hence, we ran PHASE in two modes: one that
used similar running times to GERBIL, and another (default
PHASE) that was run with the default parameters and required
much longer run times. The tests covered 141 real data sets (2,
21) (www.hapmap.org), ranging in size between 29 and 129
genotypes and from 13 to 114 SNPs. When allowed similar run
times, GERBIL was consistently more accurate than PHASE.
Default PHASE was slightly more accurate than GERBIL but
required two orders of magnitude more time (Fig. 3). The
difference became more apparent on larger data sets containing
500 or more genotypes. On such data sets default PHASE required
several days of computing time, and on 800 genotypes or more
it completely failed to provide a solution (Table 1).

The next few years carry the promise of very large association
studies that will use haplotypes extensively (26). Studies with
400–800 genotypes already have been reported (27), and studies
with thousands of genotypes are envisioned (27). High-
throughput genotyping methods are progressing rapidly (28).
The number of SNPs typed is also likely to increase with
technology improvements: DNA chips that can type �10,000
SNPs have been in use for over a year (29), and chips with

Fig. 2. Phasing accuracy on the Yoruba genotypes. The x axis shows the
number of SNPs in each of the 52 data sets. The y axis shows the switch error
rate of GERBIL (x) and PHASE (E) on each data set.

Fig. 3. Running times on the Yoruba genotypes. The x axis shows the number
of SNPs in each data set. The y axis shows a logarithm (base 10) of running
times (in seconds) of GERBIL (x) and PHASE (E) on each data set.

Table 1. Performance of GERBIL and PHASE on large data sets

No. of
genotypes

GERBIL PHASE

Switch error
rate, %

Run time,
min

Switch error
rate, %

Run time,
min

500 3 15 7 37
1 4,711

600 3 20 6 47
1 4,100

700 3 28 5 80
1 4,525

800 3 36 No solution
900 3 42 No solution

1,000 3 59 No solution

Results are shown for different numbers of simulated genotypes generated
from true chromosome 5p31 haplotypes. All runs were on a Pentium 4
computer with 500 megabytes of memory. For PHASE, two runs were per-
formed, one with the default parameters and one with a short running time
comparable to GERBIL’s. The PHASE processes that gave no solutions were
terminated because of memory allocation overload. They also failed on a
2-gigabyte-memory machine.

Kimmel and Shamir PNAS � January 4, 2005 � vol. 102 � no. 1 � 161

G
EN

ET
IC

S



100,000 SNPs are already commercially available. Although
clearly not all such SNPs need to be phased simultaneously,
typing density would call for phasing hundreds of SNPs in up to
a few thousands of genotypes. We believe that GERBIL has the
potential to make a unique and important contribution to the
analysis of such data.

Appendix: Constructing Preliminary Haplotype Matrix
The preliminary haplotype matrix HP is constructed in the
following way: for each genotype g and for each pair of sites i, j
that are heterozygous in it, we want to score the two possible
phasing solutions of the two sites. This is done by applying the
EM algorithm (with k � 4) on the block [i, i � 1, . . . , j] from
which other sites that are heterozygous in g are removed. The
maximum-likelihood solution gives probabilities to the four
possible haplotypes that could have generated g. For example, if
the genotype is g � 201102, then the four possible haplotypes are
h00 � 001100, h11 � 101101, h01 � 001101, and h10 � 101100.
Denote the probabilities found by the algorithm for the corre-

sponding common haplotypes by P00, P11, P01, and P10, respec-
tively. (Note that these are probabilities of full haplotypes and
not only of the pair of sites i and j.) We use these probabilities
to calculate a score, which represents the certainty level in the
more probable phasing solution. Specifically, we define w(i, j) �
n(P00P11 � P01P10)2�(P00 � P01)(P10 � P11)(P00 � P10)(P01 �
P11), where n is the number of haplotypes in the resolved block
that match one of the possible haplotypes of g. [This measure is
closely related to R2 (e.g., ref. 30).] For each genotype, we build
a complete weighted graph G � (V, E), where each vertex
corresponds to a heterozygous site, and the weight of the edge
(v1, v2) is w(v1, v2). Observe that any phasing solution is obtained
according to some spanning tree of G. Hence, we find a
maximum spanning tree of G, and it provides a most probable
phasing solution for that genotype. In practice, we set w(i, j) �
0 if i � j � 30.

We thank Gideon Greenspan, Dan Geiger, Yoav Benjamini, Elazar
Eskin, and Koby Lindzen for helpful discussions and comments. R.S. was
supported by Israel Science Foundation Grant 309�02.

1. Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R.,
Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., et al. (2001)
Science 294, 1719–1723.

2. Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel,
B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., et al. (2002) Science 296,
2225–2229.

3. Kruglyak, L. & Nickerson, D. A. (2001) Nat. Genet. 27, 234–236.
4. Martin, E. R., Lai, E. H., Gilbert, J. R., Rogala, A. R., Afshari, A. J., Riley, J.,

Finch, K. L., Stevens, J. F., Livak, K. J., Slotterbeck, B. D., et al. (2000) Am. J.
Hum. Genet. 67, 383–394.

5. Morris, R. W. & Kaplan, N. L. (2002) Genet. Epidemiol. 23, 221–233.
6. Zhang, K., Deng, M., Chen, T., Waterman, M. S. & Sun, F. (2002) Proc. Natl.

Acad. Sci. USA 99, 7335–7339.
7. Zhang, K., Sun, F., Waterman, M. S. & Chen, T. (2003) in Proceedings of The

Seventh Annual International Conference on Research in Computational Molec-
ular Biology (RECOMB 03), eds. Miller, W., Vingron, M., Istrail, S., Pevzner,
P. & Waterman, M. (Association for Computing Machinery, New York), pp.
332–340.

8. Koivisto, M., Perola, M., Varilo, T., Hennah, W., Ekelund, J., Lukk, M.,
Peltonen, L., Ukkonen, E. & Mannila, H. (2003) in Proceedings of the Pacific
Symposium on Biocomputing (PSB 03), eds. Altman, R. B., Dunker, A. K.,
Hunter, L., Jung, T. A. & Kline, T. E. (World Scientific, Teaneck, NJ), Vol. 8,
pp. 502–513.

9. Kimmel, G., Sharan, R. & Shamir, R. (2004) INFORMS J. Comput. 16,
360–370.

10. Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D.,
Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., et al.
(2001) Nature 291, 1298–2302.

11. Clark, A. (1990) Mol. Biol. Evol. 7, 111–122.
12. Excoffier, L. & Slatkin, M. (1995) Mol. Biol. Evol. 12, 912–917.
13. Long, J., Williams, R. C. & Urbanek, M. (1995) Am. J. Hum. Genet. 56,

799–810.
14. Stephens, M., Smith, N. J. & Donnelly, P. (2001) Am. J. Hum. Genet. 68,

978–989.
15. Stephens, M. & Donnelly, P. (2003) Am. J. Hum. Genet. 73, 1162–1169.
16. Niu, T., Qin, Z. S., Xu, X. & Liu, J. S. (2002) Am. J. Hum. Genet. 70,

157–169.

17. Gusfield, D. (2002) in Proceedings of the Sixth Annual International Conference
on Research in Computational Molecular Biology (RECOMB 02), eds. Myers, G.,
Hannenhalli, S., Istrail, S., Pevzner, P. & Waterman, M. (Association for
Computing Machinery, New York), pp. 166–175.

18. Eskin, E., Halperin, E. & Karp, R. M. (2003) in Proceedings of the Seventh
Annual International Conference on Research in Computational Molecular
Biology (RECOMB 03), eds. Miller, W., Vingron, M., Istrail, S., Pevzner, P. &
Waterman, M. (Association for Computing Machinery, New York), pp.
104–113.

19. Greenspan, G. & Geiger, D. (2003) in Proceedings of the Seventh Annual
International Conference on Research in Computational Molecular Biology
(RECOMB 03), eds. Miller, W., Vingron, M., Istrail, S., Pevzner, P. &
Waterman, M. (Association for Computing Machinery, New York), pp.
131–137.

20. Kimmel, G. & Shamir, R. (2004) in Proceedings of the Eighth Annual Interna-
tional Conference on Research in Computational Molecular Biology (RECOMB
04), eds. Gusfield, D., Bourne, P., Istrail, S., Pevzner, P. & Waterman, M.
(Association for Computing Machinery, New York), pp. 2–9.

21. Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. (2001)
Nat. Genet. 29, 229–232.

22. Hardy, G. H. (1908) Science 18, 49–50.
23. McLachlan, G. J. & Krishnan, T. (1997) The EM Algorithm and Extensions

(Wiley, New York).
24. Lin, S., Cutler, D., Zwick, M. & Chakravarti, A. (2002) Am. J. Hum. Genet. 71,

1129–1137.
25. Bafna, V., Gusfield, D., Lancia, G. & Yooseph, S. (2003) J. Comput. Biol. 10,

323–340.
26. Shi, M. M. (2001) Clin. Chem. 47, 164–172.
27. Nickerson, D. A., Taylor, S. L., Fullerton, S. M., Weiss, K. M., Clark, A. G.,

Stengard, J. H., Salomaa, V., Boerwinkle, E. & Sing, C. F. (2000) Genome Res.
10, 1532–1545.

28. Tsuchihashi, Z. & Dracopoli, N. C. (2002) Pharmacogenomics 2, 103–110.
29. Kennedy, G. C., Matsuzaki, H., Dong, S., Liu, W. M. Huang, J., Liu, G., Su,

X., Cao, M., Chen, W., Zhang, J., et al. (2003) Nat. Biotechnol. 21, 1233–
1237.

30. Devlin, B. & Risch, N. (1995) Genomics 29, 311–322.

162 � www.pnas.org�cgi�doi�10.1073�pnas.0404730102 Kimmel and Shamir


