
A faster algorithm for RNA co-folding

Michal Ziv-Ukelson 1 ?, Irit Gat-Viks2 ∗, Ydo Wexler 3 ∗, and Ron
Shamir4

1 Computer Science Department, Ben Gurion University of the Negev, Beer-Sheva.
2 Computational Molecular Biology Department, Max Planck Institute for Molecular

Genetics, Berlin, Germany.
3 Microsoft Research, Microsoft Corporation, Redmond, WA.

4 School of Computer Science, Tel Aviv University.

Abstract. The current pairwise RNA (secondary) structural alignment
algorithms are based on Sankoff’s dynamic programming algorithm from
1985. Sankoff’s algorithm requires O(N6) time and O(N4) space, where
N denotes the length of the compared sequences, and thus its applicabil-
ity is very limited. The current literature offers many heuristics for speed-
ing up Sankoff’s alignment process, some making restrictive assumptions
on the length or the shape of the RNA substructures. We show how to
speed up Sankoff’s algorithm in practice via non-heuristic methods, with-
out compromising optimality. Our analysis shows that the expected time
complexity of the new algorithm is O(N4ζ(N)), where ζ(N) converges to
O(N), assuming a standard polymer folding model which was supported
by experimental analysis. Hence our algorithm speeds up Sankoff’s algo-
rithm by a linear factor on average. In simulations, our algorithm speeds
up computation by a factor of 3-12 for sequences of length 25-250.
Availability: Code and data sets are available, upon request.

1 Introduction

Within the last few years non-coding RNAs (ncRNAs) have been recognized as a
highly abundant class of RNAs that do not code for proteins but nevertheless are
functional in many biological processes, including localization, replication, trans-
lation, degradation, regulation and stabilization of biological macromolecules
[19]. Thus, the computational identification of functional RNAs in genomes is
a major, yet largely unsolved, problem. It is well known that structural conser-
vation implies potential function and thus comparative structure analysis is the
gold standard for the identification of functional RNAs and the determination
of RNA secondary structures [22].

Many of the comparative genomics methods for the identification of func-
tional RNA structures require a sequence alignment as input [16, 13, 23]. How-
ever, an alignment based on primary sequence alone is generally not sufficient
for the identification of conserved secondary structure [6]. This is due to the
fact that functional RNAs are not necessarily conserved on their primary se-
quence level. Instead, the stem-pairing regions of the functional RNA structures

? These authors contributed equally to the paper.



evolve such that substitutions that maintain the bonding between paired bases
are more likely to survive. The base-pair covariation in the structural stems
includes multiple compensatory substitutions (e.g. G:C → A:U) and compat-
ible single substitutions (e.g. G:C → G:U). In 1985 David Sankoff proposed
an algorithm [4], which we shall call SA, designed for the simultaneous align-
ment and structure prediction of homologous structural RNA sequences (for
brevity, we call that problem here the co-folding problem). SA merges the re-
cursions of sequence alignment such as Smith and Waterman’s algorithm [25]
with those of RNA structure prediction algorithms [20, 27]. SA takes as input
two sequences and finds a local alignment (two substrings) such that the entire
configuration of structure and alignment is optimal. To combine both structure
and alignment scores, SA aims to maximize the weighted sum of the predicted
structure’s base-pairing interactions and the alignment cost. Base-pairing inter-
actions scores (e.g., Nussinov et al. [20] or Zuker and Stiegler’s energy-based
methods [27]) guide homologous base pairs to align correctly and thus base-
pair covariation can be naturally included as a factor in the alignment solution.
The alignment cost aims to punish for insertions/deletions but encourage com-
pensatory mutations among base-paired characters. SA preserves a common
branching configuration for the aligned structures, but allows variations in the
sizes of the stems and the loops (see Fig. 1).

Unfortunately, SA is not practical for most realistic applications due to its
prohibitive computational cost: the algorithm requires O(N6) time and O(N4)
space, for a pair of sequences of length N . The high complexity of this algorithm
on one hand, and the need for practical solutions on the other hand, motivated
attempts to reduce its complexity heuristically. In recent years, many studies
have suggested practical heuristic methods to reduce SA’s computational cost
[1, 3, 15, 14, 7, 21, 11, 10], highlighting the importance of this algorithm in current
RNA comparative structure analysis. Here, in contrast to the above heuristic
approaches, we obtain a non-heuristic speedup, which does not sacrifice the
optimality of results.

Our algorithm extends the approach of Wexler, Zilberstein and Ziv-Ukelson
[26], previously applied to speeding up the classical O(N3) RNA secondary struc-
ture prediction algorithms [20, 27]. The classical algorithms for RNA secondary
structure prediction are based on dynamic programming (DP) and their time
complexities are O(N3), where the bottleneck is due to the fact that the recur-
sion for computing the optimal folding includes a term that takes into account
O(N) possible branching points (see Figure 1) which ”compete” for the optimal
score. The speedup suggested in [26] to the classical O(N3) algorithm computes
an exact optimal folding. This is done by pruning the number of branch points
that need to be considered from O(N) down to ψ(N), where ψ(N) is shown to
be constant on average under standard polymer folding models. The accelerated
algorithm uses a candidate-list approach to utilize two observations: (a) the main
(2D) DP matrix computed by the classical algorithm for RNA secondary struc-
ture prediction obeys the triangle inequality; (b) a classical thermodynamic ar-
gument indicates that the probability for base-pair formation between two bases
q indices apart is bounded by b/qc for some constants b, c > 0 [17, 18].

Similarly to the RNA folding algorithms, the time-complexity bottleneck of
SA is also due to the computation of all the scores induced by competing branch



points. However, in contrast to the RNA folding algorithms, in the SA case the
branch point considerations scale up to two orders, as all possible combinations of
pairs of branch point indices (i.e. all possible indices of sequence A × all possible
indices of sequence B, where A and B are the two co-folded sequences) need to
be considered. This adds a factor of O(N2) to the time complexity of SA which
is due to branch point considerations. In this paper we extend the approach
of [26] and apply it to speed up SA by reducing the number of branch points
that need to be considered in the main recursion for the SA score computation.
Although the method suggested in [26] is not directly applicable to the 4D DP
matrix computed in the SA algorithm, we show how to interpret the terms in
the SA algorithm so as to maintain a set of candidate lists that will reduce
the amount of computations needed. The resulting algorithm is guaranteed to
obtain the optimal solution to the problem. In order to do this, we first show
that the DP table computed by the SA recursion also obeys a sort of triangle
inequality, and that the main theorem of [26] regarding redundant candidate
branch-point considerations extends to the branch-point pairs considered by SA.
Based on these proofs, we give a new candidate-list variant of SA that exploits
redundancies in the main SA DP table to speed it up.

Under the probabilistic model of self avoiding random walk [24], which has
been verified experimentally for polymers [17, 18], the expected time complexity
of the new algorithm is O(N4ζ(N)), where ζ(N) is the expected maximal size
of a candidate list. In contrast to [26], where ζ(N) converges to a constant, we
show that in fact here ζ(N) converges to O(N). Thus, our algorithm provides
a theoretical speedup over the original SA by a linear factor on average. This
behavior of the co-folding algorithm is verified in an experimental analysis, which
shows a linear growth of the candidate list size with increasing sequence length.
The faster new algorithm was implemented as a filter, denoted fastCoFold,
on top of a popular SA implementation of Havgaard et al. [15]. Our run-time
benchmarks show that fastCoFold is indeed faster in practice when compared
to the standard SA version of the same code, by a factor of 3-12 for sequences
of length 25-250.

The rest of this paper proceeds as follows. Section 2 gives the basic prelimi-
naries and definitions including an algorithmic background. Section 3 examines
properties of the folding and co-folding DP algorithms which are later exploited
by our pruning method. The new algorithm is described and analyzed in Section
4, and a comparative performance analysis of the algorithm is given in Section
5.

Due to space restrictions, all proofs are omitted. Proofs, as well as a biological
application of SA to the analysis of functional tandem repeats in C. elegans, will
appear in an extended journal version of the paper.

2 Preliminaries and Definitions

RNA is typically produced as a single stranded molecule, which then folds upon
itself to form a number of short base-paired stems (Fig 1). This base-paired
structure is called the secondary structure of the RNA. Paired bases almost al-
ways occur in a nested fashion in RNA secondary structure. Under the assump-
tion that the structure does not contain pseudoknots, a model was proposed by



Left Branch ][ Right Branch

A-CGGCAAA---UUGGCCG-U ][ GCUGCGUGCAAAGCGC

((((((.........)))))) ][ ...((((.....))))

AUCGCGAAAAAAUUGCGCGAU ][ GCUG-GCGCAAAGC-C

Fig. 1. Co-folding. Left: An example of a branching co-folding. Matched round paren-
theses indicate paired bases in the co-folding, and square brackets indicate a partition
point. In the terminology of Section 2, the left branch is a co-terminus co-folding and
the right side is a dangling co-folding. Right: The (aligned) secondary structures corre-
sponding to the branching co-folding. Both branches consist of a stem (matched bases)
and a loop.

Tinoco et al. [12] to calculate the stability (in terms of free energy) of a folded
RNA molecule by summing all contributions from the stabilizing, consecutive
base pairs from the loop-destabilizing terms in the secondary structure. This
model has been widely investigated since and parameters for this model were
experimentally collected e.g. by the Turner group [5]. Based on this model, DP
algorithms for computing the most stable structures were proposed [20, 27].

The Sankoff co-folding algorithm [4] combines RNA folding with alignment,
by taking into account both sequence and structure homology. This is formalized
below in Definitions 1-4.

Definition 1 An alignment of sequences R′, T ′ is a pair of sequences R, T s.t.
|R| = |T |, R(T ) is obtained from R′(T ′) by adding ‘-’s such that for no index i,
ri = ti = ‘-’.

The alignment score is
∑

i

σ(Ri, Ti). Here, σ(x, y) is the score of substi-

tuting x and y. The indel score σ(x,−) is often indicated by γ(x).

Definition 2 For a sequence F over the alphabet {(, ), .}, where the parentheses
are nested, define P(F) = {(π, π) |π, π are paired parenthesis positions in F}.
Definition 3 For a sequence T over the RNA alphabet {A,U,C, G,−}, a fold-
ing F (T ) is a series over the alphabet {(, ), .}, annotated with the letters of T ,
such that (1)|F (T )| = |T |, (2) F (T ) is nested, and (3) for each paired parenthe-
ses positions (π, π) ∈ P (F ), {Tπ, Tπ} ∈ {{A,U}, {G,C}, {G,U}, {−,−}}.

The folding score is
∑

P (F )

βT
ππ, where βT

ij denotes the score for the stability

contribution of a base-pair between the characters in indices i and j of T .

We note that some SA implementations relax requirement (3) in the above
definition, and instead set βT

ij to a score penalty in those cases when {Ti, Tj}



/∈ {{A,U}, {G,C}, {G,U}}. Furthermore, the implementation of the term βT
ij

depends on the structure prediction algorithm employed by the specific SA vari-
ant. For example, in variants that are based on McCaskill’s algorithm, such as
PMCOMP [14], βT

ij is the probability for the character at index i of T to form a
base-pair with the character at index j of T . Alternatively, in SA variants that
are based on Zuker’s MFE approach, such as Foldalign [15], the score βT

ij is in
general computed dynamically depending on the structural context, making use
of Turner parameters such as e.g. loop energy rules [27].

Definition 4 A co-folding of two RNA sequences R′, T ′ is the triplet R, T, F
such that R, T is an alignment of R′, T ′ and F is a folding of R and of T .
The co-folding score is

∑

i

σ(Ri, Ti) +
∑

P (F )

(βT
ππ + βR

ππ + τ(Sπ, Rπ, Tπ, Tπ)),

where the term τ(Rπ, Rπ, Tπ, Tπ) is a score that takes into account compensatory
mutations and substitutions.

Given a pair of RNA sequences A and B, the local co-folding problem
is to find two substrings A[i. . . j] and B[k . . . `] such that their co-folding has
maximum score. The global co-folding problem is to find a co-folding of
A[1. . .N ] and B[1 . . . N ] of maximal score.

Sankoff’s algorithm solves the co-folding problem by DP. All of the current
algorithms that are based on SA employ variants of the same basic DP recursion.
We now demonstrate the recursions in FoldalignM [7] and Foldalign [15]. Given
two RNA sequences A and B, let S[i, j; k, `] hold the score of the best co-folding
of the subsequences A[i. . . j] and B[k . . . `].

S[i, j ; k, l] = max





(1) S[i + 1, j; k, `] + γ(Ai),
(2) S[i, j; k + 1, `] + γ(Bk),
(3) S[i, j − 1; k, `] + γ(Aj),
(4) S[i, j; k, `− 1] + γ(B`),
(5) S[i + 1, j; k + 1, `] + σ(Ai, Bk),
(6) S[i, j − 1; k, `− 1] + σ(Aj , Bl),
(7) S[i + 1, j − 1; k, `] + βA

ij + γ(Ai) + γ(Aj)
(8) S[i, j; k + 1, `− 1] + βB

kl + γ(Bk) + γ(B`)
(9) S[i + 1, j − 1; k + 1, `− 1] + βA

ij + βB
kl + τ(Ai, Aj , Bk, Bl),

(10) max
i<m<j,k<n<l

{ S[i,m; k, n] +S[m + 1, j;n + 1, `] }
(1)

where all entries of S are initialized to 0. Terms (1)−(4) account for gaps in one of
the two sequences. Terms (5) and (6) describe the extension of both subsequences
with an unpaired position. Terms (7) and (8) describe the extension of only one
of the subsequences with a base-pair. These two terms are conditional and are
only applied in certain contexts: term (7) can only be applied if, in the co-folding
corresponding to S[i+1, j−1; k, `], Ai+1 is base paired with Aj−1, and term (8)
can only be applied if in the co-folding corresponding to S[i, j; k +1, `− 1] Bk+1

is base paired with B`−1. The constraints on terms 7 and 8 are only necessary
in order to preserve the common branching configuration for the two aligned
structures. Term (9) describes the extension of both sequences by a base-pair



match, and Term (10) describes a branching event, as demonstrated in Figure
1. The following two definitions are also exemplified in Figure 1.

Definition 5 (co-terminus folding and co-folding) A folding of a sequence
si . . . sj is a co-terminus folding if si pairs with sj. Otherwise it is called a
dangling folding.

Similarly, a co-terminus co-folding over a pair of sequences A[i, j] and
B[k, `] is a co-folding in which Ai pairs with Aj and Bk pairs with B`. Otherwise
it is called a dangling co-folding.

Definition 6 A partition point in a given co-folding of A[i, j] versus B[k, `]
is an index pair (p1, p2), such that there is no co-terminus folding over Ax . . . Ay

in this co-folding, where i ≤ x ≤ p1 and p1 ≤ y ≤ j, and in addition there is
no co-terminus folding over Bz . . . Bw in this co-folding, where k ≤ z ≤ p2 and
p2 < w ≤ `.

Time and Space Complexity Analysis of SA.
Let N = max{|A|, |B|}. Computing the matrix S requires O(N4) space. For

each entry S[i, j, k, l] to be computed in this matrix, the algorithm employs the
recursion of Eq. 1. The bottleneck of Eq. 1 is term (10), which considers O(N2)
competing sums of pairs. Therefore, the time complexity is O(N6).

3 Properties of RNA co-folding

In this section we generalize the triangle inequality and polymer zeta properties,
which were used for speeding up the folding algorithm [26], to the RNA Co-
Folding problem. We start with a short review of the quadrangle inequality and
the triangle inequality in the context of speeding up dynamic programming. Let
M be an n×n matrix in which each entry M(i, j), such that i ≤ j, is computed
by the following formula:

M(i, j) = min
i<i′≤j

{M(i, i′) + M(i′ + 1, j)}

The well-known inverse quadrangle inequality property [9] is defined as follows.

Definition 7 A matrix M obeys the inverse quadrangle inequality condi-
tion iff

∀ i < i′ < j < j′ M(i, j′) ≤ M(i, j) + M(i′, j′)−M(j′, j)

Both the quadrangle and the inverse quadrangle inequalities have previously
been used to speed up dynamic programming [2, 9]. However, both the quad-
rangle inequality and the inverse quadrangle inequality are strong constraints
on the input behavior, and do not apply to the matrix S computed by SA.
However, a special weaker case of the classical inverse quadrangle inequality, the
triangle inequality property, which is much more common in practice in various
applications, will be extended in this paper and used to speed up RNA folding
prediction.



Definition 8 A matrix M obeys the triangle inequality property iff

∀ i < j < j′ M(i, j′) ≤ M(i, j) + M(j + 1, j′).

The matrix S is four dimensional and therefore the standard triangle in-
equality does not apply. However, we consider the following ”extended” inverse
triangle inequality property of a 4D matrix.

Definition 9 A four dimensional matrix M obeys the 4D inverse triangle
inequality property iff

∀ i < j < j′and ∀ k < ` < `′

M [i, j′; k, `′] ≥ M [i, j; k, `] + M [j + 1, j′; ` + 1, `′]

The next claim is immediate from Definition 9 and Eq. 1.
Claim 1 The matrix S, as computed by Eq. 1, obeys the 4D inverse triangle
inequality.

We next turn to review the polymer zeta property in the context of RNA
folding.

Definition 10 Consider the space θ of all possible foldings for a given RNA
string si . . . sj under a given folding model Λ. Let P (i, j) denote the probability
for a folding in θ to be a co-terminus folding, and let j − i = q. We say that Λ
has the polymer-zeta property if P (i, j) ≤ b/qc for some constants b, c > 0.

Experimental work has shown that RNA folding obeys the polymer-zeta prop-
erty, namely, the probability that a co-terminus folding is formed over the sub-
sequence, pairing two positions at distance q monomers apart, is P (q) = b/qc

where b = 1 and c > 1 [17, 18]. This fact is explained by modeling the folding of
a polymer chain as a self-avoiding random walk (SAW) in a 2D lattice [24].

The theoretical exponent for the 2D SAW model is known to be c = 1.5 [8].
In this paper we assume that the secondary structures corresponding to SA co-
foldings obey the polymer zeta property. This assumption is supported by our
computational results on real data, described in Section 5.

4 A Candidate List Filter for Computing the Matrix S

In this section we describe an alternative approach to the computation of S,
which prunes redundant computations in the bottleneck term (10) of Eq. 1 with-
out sacrificing optimality of results. The algorithm saves operations by filling the
O(N4) matrix S in a specific order, avoiding certain computations that are sub-
optimal. For each combination of subsequence start points and end points, the
original algorithm requires O(N2) sums in term (10). Instead, our algorithm will
identify certain endpoint combinations for which a fraction of the sums is already
guaranteed not to yield the optimal score, thereby saving from the O(N2) time
needed for computing all sums.

We start by describing the order in which we traverse and fill the ma-
trix S. Recursion 1 requires the availability of both values S[i + 1, j, k, `] and



S[i, j, k + 1, `] during the consideration of terms (1) and (2), correspondingly, in
the computation of S[i, j, k, `]. Symmetrically, it also requires the availability of
S[i, j − 1, k, `] during the computation of term (3) and of S[i, j, k, `− 1] during
the computation of term (4). Theorem 1, which is given later in this section,
shows that, for a given row in S, some partition points (with smaller m and n
values) dominate others (with greater m and n values) in the computation of
term (10), and that this dominance holds for all other entries in the row such
that j > m and ` > n. In order to exploit this dominance property, as well
as maintain the precedence order necessary for the application of Recursion 1,
we will processes the entries of S in decreasing i index order and in decreasing
k index order first (in other words: we compute S row-by-row, in decreasing
row index order). For each index-pair (i, k), defining a specific row in S, we will
compute the entry values in increasing ` index order first and then in increasing
j index order (in other words: we maintain a left-to-right cell-traversal order
within each row). Therefore, let beam(i,k) denote the ordered series of entries
S[i, j; k, `], for j = i . . . N, ` = k . . . N , first in increasing ` index, and then in
increasing j index. For simplicity of presentation, we will refer to each entry by
its order of traversal within its beam, i.e. entry S[i, j; k, `] will be denoted entry
(j, `) of beam(i, k). Clearly, there are O(N2) possible beams in S and each beam
covers O(N2) entries, left-to-right.

Note that each sum in term (10) is defined by its start points (i, k), its
end points (j, `) and its partition point (m,n). However, when considering all
the O(N4) sums computed per beam, we note that a specific partition point
(m,n) participates in the sums applied per computations for all end indices
(m′, n′) such that m ≤ m′ ≤ j and n ≤ n′ ≤ `. Therefore, in this section we
view term (10) of Recursion 1 as a competition between partition points (m,n),
m = i + 1 . . . j − 1, n = k + 1 . . . ` − 1 for the branching event that yields the
best score for S[i, j; k, `]. The term S[i,m; k, n] of Recursion 1.(10) will be called
the left branch, while the other term will be called the right branch. For each
entry traversed by a beam, the naive SA computes the sums corresponding to
O(N2) partition points in Recursion 1.(10). The following lemma and theorem
show that some of these partition points are dominated by others (i.e. there are
other partition points that yield equal or better score) and can thus be excluded
from the computation.

Lemma 1. Without loss of optimality, Recursion 1 can be constrained so that
the left branch in term (10) is always a co-terminus co-folding.

Naively, after constraining all left branches in term (10) to co-terminus co-
foldings, there are still O(N2) partition points that compete for the optimal
score in term (10), and thus altogether O(N4) sums of pairs computed per
beam. However, the next theorem exposes a dominance relationship among the
competing partition points, based on the 4D inverse triangle inequality property
of S.

Theorem 1. Suppose S[i, j; k, `] ≤ S[i,m; k, n]+S[m + 1, j; n + 1, `] for some
i < m < j and k < n < `. Then, ∀ j′ > j, `′ > ` S[i, j; k, `] + S[j +
1, j′; ` + 1, `′] ≤ S[i, m; k, n] + S[m + 1, j′;n + 1, `′].



Theorem 1 exposes redundancies in the repeated computation of term (10)
throughout the beam entry traversal, redundancies which could be avoided by
maintaining a list of only those candidate partition points that are not dominated
by others.

Definition 11 (candidate) A partition point (m,n) is a candidate during
the computation of all entries (j, `) ∈ beam(i, k) such that m < j , n < `, iff

1. S[i, m; k, n] corresponds to a co-terminus co-folding.
2. S[i,m; k, n] > S[i,m′; k, n′]+S[m′+1, j; n′+1, `] ∀ i < m′ < m, k < n′ <

n.

The above definition can be applied to speed up the computation of S(i, j; k, `),
as follows: rather than considering all possible O(N2) partition points, one could
query the list that contains only partition points that satisfy the candidacy cri-
teria above. This can be done by further reformulating term (10) as follows,

(10) max
∀(m,n)∈candidate list:

m<j∧n<l

{ S[i,m; k, n] + S[m + 1, j; n + 1, `] } (2)

The pseudocode for the new algorithm, denoted fastCoFold, is given be-
low. Procedure ComputeBeam in Algorithm fastCoFold replaces the original
term (10) in Recursion 1 with its constrained reformulation as Eq. 2. This is im-
plemented as a candidate list that is empty at the start of each beam traversal,
and is extended throughout the left-to-right computation of the entries of the
beam, by appending to the list only those partition points that are candidates
by Definition 11.

Each partition point (m,n) is considered for candidacy once per procedure
call, when entry S[i,m; k, n] is reached by the beam traversal, and will join
the candidate list only if, at this point, the value of this entry dominates all
its preceding partition points on the list. Each entry traversed by beam(i, k) is
computed by the new algorithm as before, with the only difference being that
the maximum of term (10) is taken only over preceding pairs (m,n) from the
candidate list, as formalized in Eq. 2.

In the following theorem we assume that the 2D structures corresponding
to SA co-foldings follow the RNA 2D SAW model (see Section 3), and that
therefore the probability for a co-terminus co-folding follows the polymer-zeta
property with c > 1. This assumption is supported by the experimental results
in Section 5.

Theorem 2. Algorithm fastCoFold improves SA by a linear factor on aver-
age.

5 Performance Testing

To test the power of algorithm fastCoFold in practice, we implemented it as
a filter on top of the FoldAlign SA program [15] in its version that computes an
optimal solution with no heuristic shortcuts. We then compared the performance
of fastCoFold with that of the original version of FoldAlign. For this, we



Algorithm fastCoFold :
1 for each row i := N to 1 do
2 for each row k := N to 1 do
3 call Procedure ComputeBeam(i,k);

Procedure ComputeBeam(i,k):
1 candidate list ← NULL
2 for each column j := i to N do
3 for each column l := k to N do
4 S dang[i, j; k, l] ←

maximal score among terms (1)− (6) of Eq. 1
5 S co-terminus[i, j; k, l] ←

maximal score among terms (7)− (9) of Eq. 1
6 S branch[i, j; k, l] ←

max
∀(m,n)∈candidate list:

m≤j∧n≤l

{S[i, m; k, n] + S[m + 1, j; n + 1, l]}

7 S[i, j; k, l]← max{S dang[i, j; k, l], S branch[i, j; k, l]}
8 if (S co-terminus[i, j; k, l] > S[i, j; k, l]) then
9 S[i, j; k, l] ← S co-terminus[i, j; k, l]

10 Append (j, l) to the candidate list for (i, k)

Fig. 2. Performance of fastCoFold . (left) The average number of candidates in a list
when running fastCoFold. A ”(no gap)” next to the benchmark name indicates that
the parameter defining the allowed size difference between any two aligned subsequences
was set to 0. (right) The average ratio between the run time of SA as implemented in
Foldalign [15] and fastCoFold (without any gap constraints), for different sequence
lengths.

generated sequences of length 25,50,75 . . ., 250. Two datasets of 50 sequences
each were generated for each length. Each pair of sequences of the same length in
the same data set were co-folded. Altogether, we performed 24,500 co-foldings.
The two sets were generated randomly according to a Markov model trained
on RNA sequences randomly chosen from complete human mRNA sequences



taken from the RefSeq database at NCBI www.ncbi.nlm.nih.gov/RefSeq. Sets
“mm1” and “mm6” were generated using a Markov model of order 1 and 6,
respectively. We ran fastCoFold on each data set and measured running times
and candidate list sizes. Two versions of FoldAlign and fastCoFold were run:
(1) allowing no gaps; (2) the full version allowing gaps of unbounded size. The
results for fastCoFold are shown in Figure 2(left). Reassuringly, in all runs the
averages grow at most linearly with the length of the sequence. Figure 2(right)
plots the average ratio between the run times of the two algorithms (both applied
without any gap constraints) as a function of sequence length for both data sets.
Runs were conducted on an Intel Xeon 2.8GHZ computer with 4GB RAM. The
overall run-time for an all-against-all co-folding of a set of 50 sequences (including
I/O time) varied from 2 seconds for the 25 bps sequences, to up to more than
12 hours for the 250 bps sequences. We suspect that the non-linear behavior
of this graph is mostly due to exhausting memory resources in the benchmark
computer.

Note that two heuristic constraints are used by Foldalign to reduce the time
complexity. One constraint binds the total size of the allowed gaps, (j − i) −
(`− k) ≤ δ. The other constraint, which can only be applied in the case of local
alignments, binds the size of the compared subsequences j− i ≤ λ and `−k ≤ λ.
By applying both heuristics, a constrained version of SA is obtained with time
complexities of O(N5) for global alignment with gaps bounded by a constant,
and O(N4) for local alignment with both gaps and alignment sizes bounded by
a constant. We observe that when δ is set to zero (no gaps allowed), ζ converges
to a constant (see the ”no gap” plot in Figure 2.a). Thus, using fastCoFold,
one can achieve an O(N4) SA that limits only the gaps and not the size of the
alignment.

Acknowledgments We thank Gary Benson for helpful advice and for elaborate
demonstrations of TRDB. We are also grateful to the anonymous WABI2008
referees for their helpful comments. RS was supported in part by the Wolfson
Foundation and by the Raymond and Beverley Sackler Chair in Bioinformatics.
A preliminary version of this study was performed when MZU was supported by
a fellowship from the Edmond J. Safra Program in Bioinformatics at Tel Aviv
University.

References

1. Uzilov AV., Keegan JM., and Mathews DH. Detection of non-coding RNAs on
the basis of predicted secondary structure formation free energy change. BMC
Bioinformatics, 7:173, 2005.

2. M. Crochemore, G. M. Landau, B. Schieber, and M. Ziv-Ukelson. Re-use dynamic
programming for sequence alignment: An algorithmic toolkit. pages 19–60, 2005.

3. Mathews D. and Turner D. Dynalign: An algorithm for finding the secondary
structure common to two RNA sequences. Journal of Molecular Biology, 317:191–
203, 2002.

4. Sankoff D. Simultaneous solution of the RNA folding, alignment and protosequence
problems. SIAM Journal on Applied Mathematics, 45:810–825, 1985.

5. Mathews DH., Burkard ME., Freier SM., Wyatt JR., and Turner DH. Predicting
oligonucleotide affinity to nucleic acid target. RNA, 5:1458, 1999.



6. Rivas E. and Eddy SR. Secondary structure alone is generally not statistically
significant for the detection of non-coding RNAs. Bioinformatics, 16:583–605,
2000.

7. Torarinsson E., Havgaard JH., and Gorodkin J. Multiple structural alignment and
clustering of RNA sequences. Bioinformatics, 23(8):926–932, 2007.

8. M. E. Fisher. Shape of a self-avoiding walk or polymer chain. J.Chem. Phys,
44:616–622, 1966.

9. R. Giancarlo. Dynamic Programming: Special Cases. Oxford University Press,
1997.

10. Kiryu H., Tabei Y., Kin T., and Asai K. Murlet: a practical multiple alignment
tool for structural RNA sequences. Bioinformatics, 23:1588–1598, 2007.

11. I. Holmes. Accelerated probabilistic inference of RNA structure evolution. BMC
Bioinformatics, 6:73, 2005.

12. Tinoco I., Borer PN., Dengler B., Levine MD., Uhlenbeck OC., Crothers DM., and
Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature
New Biology, 246:40–41, 1973.

13. Hofacker IL., Fekete M., and Stadler PF. Secondary structure prediction for aligned
RNA sequences. Journal of Molecular Biology, 319:1059–1066, 2002.

14. Hofacker IL., Bernhart S., and Stadler P. Alignment of RNA base pairing proba-
bility matrices. Bioinformatics, 20:2222–2227, 2004.

15. Havgaard JH., Lyngso RB., Stormo GD., and Gorodkin J. Pairwise local structural
alignment of RNA sequences with sequence similarity less than 40%. Bioinformat-
ics, 21(9):1815–1824, 2005.

16. Pederson JS., Bejerano G., Siepel A., Rosenbloom K., Lindblad-Toh K., Lander
ES., Kent J., Miller W., and Haussler D. Identification and classification of con-
served RNA secondary structres in the human genome. PLOS Computational
Biology, 2:e33, 2006.

17. A. Kabakcioglu and A.L. Stella. A scale-free network hidden in the collapsing
polymer. ArXiv Condensed Matter e-prints, September 2004.

18. Y. Kafri, D. Mukamel, and L. Peliti. Why is the dna denaturation transition first
order? Physical Review Letters, 85:4988–4991, 2000.

19. Mandal M. and Breaker RR. Gene regulation by riboswitches. Cell, 6:451–463,
2004.

20. R. Nussinov and A.B. Jacobson. Fast algorithm for predicting the secondary struc-
ture of single-stranded RNA. Proc. Natl. Acad. Sci., 77(11):6309–6313, 1980.

21. Dowell RD. and Eddy S. Efficient pairwise RNA structure prediction and alignment
using sequence alignment constraints. BMC Bioinformatics, 7:400, 2006.

22. Griffiths-Jones S. The microrna registry. Nucleic Acids Research, 32:D109–D111,
2003.

23. Washietl S. and Hofacker IL. Consensus folding of aligned sequences as a new
measure for the detection of functional RNAs by comparative genomics. Journal
of Molecular Biology, 342:19–30, 2004.

24. C. Vanderzande. Lattice Models of Polymers (Cambridge Lecture Notes in Physics
11). Cambridge University Press, 1998.

25. M.S. Waterman and T.F. Smith. Rapid dynamic programming algorithms for RNA
secondary structure. Adv. Appl. Math., 7:455–464, 1986.

26. Wexler Y., Zilberstein C., and Ziv-Ukelson M. A study of accessible motifs and
the complexity of RNA folding. Journal of Computational Biology, 14(6):856–872,
2007.

27. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148,
1981.


