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Abstract 

 

It is estimated that between 35% and 74% of all human genes can undergo 

alternative splicing. Currently, the most efficient ways for large-scale detection of 

alternative splicing are through Expressed Sequence Tags (ESTs) or microarray analysis. 

As these merely sample the transcriptome, splice variants that do not appear in deeply 

sampled tissues have a low probability to be detected. We present a new method by 

which we can predict that an internal exon is skipped (namely whether it is a cassette-

exon) merely based on its naked genomic sequence and on the sequence of its mouse 

ortholog. No other data, such as ESTs, are required for the prediction. Using our method, 

which was experimentally validated, we detected hundreds of novel splice variants that 

were not detectable using ESTs, and showed that a substantial fraction of the splice 

variants in the human genome could not be identified through current human EST or 

cDNA data.  
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Introduction 

 

Alternative splicing is a mechanism allowing one gene to produce multiple, 

sometimes functionally distinct, protein variants (Maniatis and Tasic 2002). In recent 

years, numerous studies have shown that the phenomenon of alternative splicing is very 

prevalent in mammalian genes (Brett et al. 2000; Kan et al. 2001; Kan et al. 2002; Lander 

et al. 2001; Mironov et al. 1999; Modrek et al. 2001). All these studies used Expressed 

Sequence Tags (ESTs) or cDNAs for detection of alternative splicing. Other studies used 

microarrays specifically designed for detection of splice variants (Johnson et al. 2003).  

Although much progress has been made in the field of computational detection of 

alternative splicing in recent years (reviewed in (Graveley 2001) and (Modrek and Lee 

2002)), the full extent of splice variants in the human genome is far from being 

completely known. ESTs, which are the main source of information for alternative 

splicing prediction, are a problematic source of information, as they are merely a sample 

of the transcriptome. The detection of a particular splice variant by ESTs is possible only 

if its transcription level is sufficiently high in a tissue type for which an EST library has 

been prepared. Moreover, as most ESTs are generated from the 5’ or the 3’ termini of the 

transcript, dbEST is biased towards under-representation of splice variants involving 

exons that are in the middle of long transcripts (Johnson et al. 2003). In addition, ESTs 

are very noisy and contain numerous erroneous sequences (Sorek and Safer 2003; Sorek 

et al. 2003), so that some of the EST-predicted splice variants may be artifacts (Modrek 

and Lee 2002).  
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Indeed, Johnson and colleagues, who has recently investigated the extent of 

human alternative splicing using large-scale microarrays experiments, reported on 

numerous events of alternative splicing that were not represented in ESTs (Johnson et al. 

2003). However, even microarray experiments are not sufficient for the identification of 

all splice variants, as they do not sample all combinations of possible tissues, 

developmental stages and conditions. 

Comparative genomics has recently proven a useful approach for alternative 

splicing research (Modrek and Lee 2003; Nurtdinov et al. 2003; Resch et al. 2004; Sorek 

and Ast 2003; Sorek et al. 2003). Specifically, we have found that conserved alternatively 

spliced internal exons (of the “cassette-exons” type) are usually flanked by intronic 

sequences that are conserved between human and mouse, a feature only rarely seen in 

constitutively spliced exons (Sorek and Ast 2003). These conserved intronic sequences 

are probably involved in the regulation of alternative splicing. We have also recently 

found that alternative exons that are conserved between human and mouse possess 

characteristics, such as smaller size and divisibility by 3, which distinguish them from 

non-conserved alternatively spliced exons (Sorek et al. 2003). In the current study we 

show (and experimentally verify) how the combination of these and additional features, 

which distinguish alternative from constitutive exons, can be used for the accurate 

prediction whether an exon is an alternative cassette exon or not, even when there are no 

ESTs that indicate its skipping. 
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Results and Discussion 

 

To identify and characterize features that distinguish between alternative and 

constitutive exons, we used the training exons sets from (Sorek and Ast 2003), which 

contained 243 alternative internal exons (cassettes) and 1753 constitutive internal exons 

that are conserved between human and mouse (see Methods). These sets were based on 

EST analysis of GenBank (release 131), where exons were defined as constitutive if there 

were at least 4 expressed sequences supporting them, and no EST skipping them, both in 

human and in mouse.  

Table 1 summarizes the major classifying features that we characterized. In short, 

alternatively spliced exons are flanked by intronic sequences that are more conserved 

between human and mouse; they are shorter than constitutively spliced exons; their size 

tends to be a multiple of 3; and they have higher identity level when aligned to their 

mouse counterpart exon (Fig 1 A-E). These differences probably stem from the unique 

function of the alternative exons: Since these exons are cassette exons that are sometimes 

inserted and sometimes skipped, their size should be a multiplication of 3 so that their 

skipping would not alter the reading frame of the downstream exons. This constraint, 

which was also recently reported by (Resch et al. 2004), does not apply to constitutively 

spliced exons. The higher identity level between human and mouse could be explained by 

the fact that alternatively spliced exons frequently contain sequences that regulate their 

splicing (exonic splicing enhancers and silencers, reviewed in (Cartegni et al. 2002)). 

These regulatory sequences add another level of conservation constraint on the exon 
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sequence. The fact that alternatively spliced exons are smaller than constitutively spliced 

ones was observed before (Thanaraj and Stamm 2003), and might be related to sub-

optimal recognition of smaller exons by the spliceosome (Berget 1995). 

The features described above could be used to identify exons that are skipped in 

the human and the mouse genomes. However, each feature by itself provides only a weak 

classification for exons. Our goal was to find a combination of features that would detect 

a substantial fraction of the alternative exons, while making near-zero false positive 

detection errors. The features we have chosen are the following: (i) exon length, (ii) 

divisible/not divisible by 3, (iii) percent identity when aligned to the mouse counterpart, 

and (iv) conservation in the upstream and downstream intronic sequences. Each of the 

two “intronic conservation” features (upstream and downstream) were divided into two 

sub-features: (a) length of best human/mouse local alignment in the 100 intronic 

nucleotides nearest to the exon (where only local alignments with at least 12 consecutive 

perfectly matching nucleotides were considered) and (b) identity level in this local 

alignment. 

For each of the features we defined a set of thresholds (see Methods). For 

example, “human/mouse exon identity” threshold can be set to 100%, at least 99%, at 

least 98%, and so forth. Similarly, the thresholds for “length of conserved upstream 

region” can be set to 100, at least 95, at least 90 and so forth. By using a threshold for 

each of the seven features above, one gets a classification rule that classifies as 

alternative all exons that pass all seven thresholds. Such a rule might, for example, be: 

“all exons that are at least 99% conserved with their mouse counterpart and have at least 

95 conserved nucleotides upstream the exon and are divisible by 3 and …”. 
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We enumerated all possible rules (about 100 million rules) and tested the quality 

of the resulting classification on our training set of 243 alternative and 1,753 constitutive 

exons. We sought a rule that would correctly identify a maximum number of alternative 

exons from the training set while making no false positive identification.  

The best rule that emerged was the following: At least 95% identity with the 

mouse exon counterpart; exon size is a multiple of 3; a best local alignment of at least 15 

intronic nucleotides upstream the exon with at least 85% identity; and a perfect match of 

at least 12 consecutive intronic nucleotides downstream the exon. This combination of 

features identified 76 exons, or 31% of the 243 alternatively spliced exons in our training 

set, while none of the 1,753 constitutively spliced exons matched these features. To check 

the robustness of this analysis we employed 5-way cross validation. (see supplementary 

material for details) The average sensitivity in these five analyses was 32.3% and the 

average specificity was 99.72%.  

The above combination of parameters can therefore be used to identify 

alternatively spliced exons with very high specificity, making less than 0.3% false 

positive calls. We note that since the ratio of constitutive to alternative exons in the 

genome is probably higher than in our training set, and since our training set may have 

some other unknown bias, the performance in genome-wide application of the rule may 

be somewhat lower. 

To test this classifier in a genome-wide manner, as well as to discover novel 

splice variants in the human genome, we collected a large set of 108,983 human exons, 

for which a mouse counterpart could be identified (see Methods). To ensure the 

coherence of the analysis, we excluded our training exons from this analysis. For each of 
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the exons, all classifying parameters were calculated. Out of the 108,983 human exons, 

952, or ~1%, were found to comply with the above-mentioned combination of 

parameters. Information on these 952 exons appears as Supplementary Material.  

To check if these exons are indeed alternatively spliced, we searched for human 

expressed sequences (ESTs or cDNAs) that skip the exons but contain the two flanking 

exons. For 453  (48%) of the 952 candidate alternative exons there was such skipping 

evidence. For comparison, only 7% (7495 exons) out of our entire set of 108,983 exons 

had similar skipping EST evidence. This means that our classification rule indeed 

substantially enriches for alternatively spliced exons.  

Moreover, there is evidence that EST databases can contain spurious sequences 

that appear as splice variants but are, in fact, artifacts caused by aberrant splicing. Such 

splicing artifacts are usually characterized by low EST support, although there are cases 

in which real, functional splice variants are supported by a single EST (Sorek et al. 2004). 

Indeed, only 17% of the 453 exons that were classified as ‘alternative’ by our rule had 

their exon-skipping supported by only one EST – the rest were supported by two or more. 

In comparison, skipping was supported by only a single EST in 46% of the total 7495 

exons that showed skipping EST evidence. This suggests that our classification rule 

enriches for alternatively spliced exons with higher probability of being “real” relative to 

alternative exons merely supported by EST evidence. To calculate the classification 

sensitivity of the whole genome analysis while eliminating the low EST coverage factor, 

we took only exons that were supported by at least 10 human ESTs skipping the exon. 

There were 873 such exons in the entire set of 108,983 exons, and 176 in our set of 453 

exons classified as alternatives. This means that the sensitivity of our analysis on the 



 9

whole genome is at least 20% (176/873). This is probably an underestimate, as we 

eliminated our training exons-set from the whole genome analysis. 

We manually examined the remaining 499 candidate alternative exons (952-453), 

for which no EST/cDNA showing exon skipping event was found, by using the UCSC 

genome browser (April 2003). We found that for 190 additional exons (out of the 499) 

there was a human expressed sequence showing patterns of alternative splicing other than 

exon skipping (41 cases (22%) of alternative donor/acceptor; 33 cases (17%) of intron 

retention; 14 cases (7%) of mutually exclusive exons. More complicated types, such as 

double and triple exon skipping, comprise the remaining). Thus, for 643 (453 + 190; 

68%) of the 952 candidate alternative exons identified by our method there was 

independent evidence for alternative splicing in dbEST and RefSeq.  

But what about the remaining 309 candidate exons for which no EST or cDNA 

indicating the skipped isoform was found? These can still be rarely expressed 

alternatively spliced exons, or exons that are specific to a tissue, developmental stage or 

condition which is under-represented in dbEST, so that an EST representing their 

skipping isoform has not been sequenced yet. Indeed, while on average there were 32 

supporting expressed sequences per exon in our general set of 108,983 exons (median 

10), the support for the 309 candidate alternative exons was much smaller, averaging 14 

sequences (median 7). This shows that the 309 candidate exons are supported by fewer 

ESTs than the average exon, in accordance with our hypothesis that under-representation 

in dbEST is the cause for not identifying them as alternatively spliced. 

To test whether these candidate alternative exons for which no skipping ESTs 

were found are indeed alternative, we selected 5% of them (15 exons) for experimental 
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verification (Table 2). Only exons with EST support equal or less than the average (14 

sequences) were selected for this verification, as such alternative splicing events are more 

likely to have been missed in dbEST due to low sampling and not due to a their 

appearance in a transient developmental state or in a rare condition. For each of these 15 

exons, primers were designed from the two flanking exons. RT-PCR reactions were 

carried out with RNA extractions of 14 different tissue types (see Methods). For nine of 

these exons, a splice variant was detected in at least one of the 14 tissues tested (Figure 

2). In six of the nine cases the variant represented exon skipping. Interestingly, in the 

other three cases the exon was alternatively spliced, but in a pattern other than exon-

skipping: Two cases (genes BAZ1A and SMARCD1) of alternative acceptor site, and one 

case (VLDLR) of intron retention. This is consistent with our genome-wide scan, where 

453/643 (70%) cases that were identified according to the classifying parameters were 

exon-skipping, while the remaining 30% exhibited other types of alternative splicing.  

The above experimental results indicate that at least 60% (9/15) of our predictions 

are true (although this estimate can have a relatively large variance, due to the small size 

of exon set tested). Some or all of the remaining six exons might also be alternatively 

spliced, but in a tissue other than the ones we tested, or in an early developmental stage. 

We therefore believe that the actual prediction rate of this method may even be higher.  

The classification rule that was chosen for the experimental verification retrieves 

alternatively spliced exons with a very high specificity (less than 0.3% false positive rate) 

but at the price of a relatively low sensitivity (20-32%). Other rules can be chosen in 

which sensitivity is higher, but naturally this would increase the false positive rate of the 

prediction. Figure 3 presents a sensitivity versus false positive rate plot (ROC curve) for 
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different rules selecting for increasing number of alternative exons from our test set of 

243 exons. As shown in the figure, it is possible to employ a rule that would identify up 

to 73% of the alternative exons, but this rule would also retrieve 36% of the constitutively 

spliced exons (the upper limit of 73% is due to the Boolean nature of the “divisibility by 

3” feature). Note, that since most of the exons in the human genome are constitutive, such 

a rule would have low predictability for exon skipping: Assuming, for example, that 

~10%, or 20,000 out of the ~200,000 predicted exons in the human genome, are 

alternative, the probability that an exon identified by the 73%:36% rule would really be 

alternative is only 18% (0.73*20,000/[0.73*20,000 + 0.36*180,000]). This is why we 

preferred a rule with close to zero false positives. The curve in Fig. 3 presents a variety of 

alternatives, and allows the selection of a rule for a desired target specificity or 

sensitivity. For example, 50% sensitivity is achievable at about 1.8% false positive rate. 

Our method is able to identify alternative splicing ab initio. Other computational 

approaches to detect alternative splicing were previously described, but most of them 

used ESTs and/or cDNAs, or information from transcripts predicted using ESTs, to 

predict alternative splicing (e.g., Clamp et al. (2003) and Haas et al. (2003) ; also 

reviewed at (Modrek and Lee 2002)). There was also an attempt to predict alternatively 

spliced exons using suboptimally scored exons in the gene structure prediction software 

GENSCAN (Burge and Karlin 1997) (see http://genes.mit.edu/GENSCANinfo.html), but 

as far as we know this prediction method was not tested experimentally.  

We have described a novel computational method for prediction of alternative 

splicing. A possible improvement of the method could be the addition of more classifying 

features. One such feature could be the comparison of the flanking intronic sequences 

http://genes.mit.edu/GENSCANinfo.html
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between the human and other genomes. For example, we were able to locate in the 

chicken genome 72 and 328 exons from our original alternative and constitutive training 

sets, respectively. Of the 72 alternatively spliced exons, 34 (47%) had conserved 

sequences in both their upstream and downstream introns when human and chicken 

genomes were compared; only 10 (3%) of the 328 constitutively spliced exons that could 

be found in the chicken genome had such intronic conservation (data not shown).  

Currently, our classifier mainly identifies exon-skipping events in exons 

conserved between human and mouse. In the future, it could develop into a more general 

alternative splicing predictor that would identify other types of alternative splicing. The 

ultimate goal of such a predictor would be genome-based prediction of all splice variants, 

including their pattern of alternative splicing (i.e., in which tissue would the exon be 

inserted). This could set the foundations for understanding the absolute number of exons 

that are alternatively spliced and might ultimately lead to narrowing the gap between the 

genome and the proteome, and thereby advance towards revealing the full extent of our 

proteome’s complexity.  

 

Methods 

 

Enumeration over features in training set 

Training sets of alternatively spliced internal exons and constitutively spliced 

internal exons were taken from our previous study (Sorek and Ast 2003). For the current 

analysis we eliminated from our constitutive exons’ set, exons for which novel evidence 
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for alternative splicing appeared in the newer version of GenBank, 136. This left us with 

1,753 constitutive exons.  

The thresholds used in the enumeration of classification rules were as follows: 

Exon identity thresholds were 100%, at least 99%, at least 98%, and so forth until 80%; 

exon lengths were below 18 bp, 23 bp, 28 bp, …, 198 bp and 1000bp; length of 

human/mouse local alignment of the 100 nearest upstream (or downstream) intronic 

nucleotides using sim4 (Florea et al. 1998) was at least 100, 95, 90, ,…, 0; minimum 

identity level in the locally aligned segment of the upstream (or downstream) region was 

100%, 97%, 94%,…, 67%; exon divisibility by 3 had two categories, ‘yes’ or ‘no’. 

Overall we enumerated more than 100 million different combinations of features. 

 

Genome-wide retrieval of human and mouse orthologous exons 

For the genome-wide compilation of human exons, human ESTs and cDNAs were 

obtained from NCBI GenBank version 136 (June 2003) (www.ncbi.nlm.nih.gov/dbEST) 

and were mapped to the human genome (April 2003 assembly) 

(www.ncbi.nlm.nih.gov/genome/guide/human) using the spliced alignment module 

described in (Sorek et al. 2002; Sorek and Safer 2003). For each expressed sequence, all 

mappings of internal exons on the human genome were retrieved. Only exons flanked by 

AG/GT or AG/GC splice sites were allowed. 185,799 human exons mapped to the human 

genome were thus retrieved. 

To find the mouse orthologue for each human exon, we first aligned the mouse 

expressed sequences from GenBank version 136 to the human genome, as described in 

(Sorek and Ast 2003). Mouse sequences exactly spanning human exons were aligned to 

http://www.ncbi.nlm.nih.gov/dbEST
http://www.ncbi.nlm.nih.gov/genome/guide/human
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the mouse genome as well, and the corresponding sequence on the mouse genome was 

declared as the orthologous mouse exon, if it was flanked by AG/GT or AG/GC legal 

splice sites.  

Human exons for which no spanning mouse expressed sequence was detected 

were aligned directly to the mouse genome. Hits spanning the full length of the exon, that 

were flanked by AG/GT or AG/GC legal splice sites, were declared as the orthologous 

mouse exons.  

Altogether, these searches retrieved 108,983 pairs of exons in the human and 

mouse genomes (this set does not contain the exons from our two training sets). For each 

such exon, all classifying parameters were calculated as follows. Conservation between 

exons was calculated from aligning the human and mouse exons using the global 

alignment program “GAP” of the GCG software package with default parameters. 

Conservation in the flanking intronic sequences was calculated by sim4 as described in 

(Sorek and Ast 2003). Sim4 detects exact matches of length 12 and extends them in both 

directions with a score of 1 for a match and 5 for a mismatch, stopping when extensions 

no longer increase the score (Florea et al. 1998). Exon size and divisibility by 3 were 

retrieved from the exon sequence itself.  

 

 

Reverse transcription of mRNA samples 

cDNA was obtained by reverse transcription of total RNA from the following 

human tissue samples: 1. Brain pool – a pool of brain derived RNA samples (Biochain – 

Normal). 2. Prostate pool – a pool of prostate derived RNA samples (Biochain – 
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Normal). 3. Testis pool – a pool of testis derived RNA samples (Biochain – Normal). 4. 

Kidney pool – a pool of kidney derived RNA samples (Biochain – Normal). 5. Thyroid 

pool – a pool of thyroid derived RNA samples (Biochain – Normal). 6. Assorted cell-line 

pool – a pool of cell-line derived RNA samples from the cell-lines: DLD, MiaPaCa, 

HT29, THP1, MCF7 (ATCC). 7. Cervix pool – a pool of 3 cervix derived RNA samples, 

mixed origin (Tumor and Normal, in-house tissue samples). 8. Uterus pool - a pool of 3 

uterus derived RNA samples (Biochain – Normal), mixed origin (Tumor and Normal). 9. 

Ovary pool - A pool of 5 ovary derived RNA samples (Biochain – Normal), combined 

with two samples of mixed origin (Tumor and Normal). 10. Placenta – one sample of 

placenta derived RNA (Biochain – Normal). 11. Breast pool – a pool of 3 breast derived 

RNA samples of mixed origin (2 from tumor and one from normal - in-house tissue 

samples). 12. Colon and intestine – A pool of 5 colon derived RNA of mixed origin 

(Tumor and Normal), combined with one intestine (Normal) derived RNA sample (in-

house tissue samples). 13. Pancreas – one sample of pancreas derived RNA (Biochain – 

Normal). 14. Liver and spleen – one sample of liver derived RNA (Biochain – Normal), 

one sample of spleen derived RNA (Biochain – Normal), combined with one sample of 

HepG2 cell line (liver tumor - ATCC) derived RNA. 

RNA was incubated with a random hexamer primer mix (Invitrogen), denaturated 

at 700C for 5 minutes and transferred to 4oC for hexamer annealing. Reverse transcription 

was done by Superscript II Reverse transcriptase (Invitrogen), in the presence of 

RNAsin™ (Promega) at 370C for 1 hour. Reaction was terminated by enzyme 

deactivation on beads (Promega). 
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Amplification of splicing products 

For each exon tested, oligonucleotide primers were designed from its flanking 

exons (Supplementary Table 1). Amplification was performed for 35 cycles, consisting of 

940C for 45 sec, annealing at a primer specific temperature (40C below the primer’s TM) 

for 45 sec, and extension at 720C for 1 min. The cycle was ended by one stage of gap 

filling at 720C for 10 min’s. The products were resolved on 2% agarose gel and 

confirmed by sequencing. 
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Legends to figures 

 

Figure 1: Graphic representation of the differences between alternative and 

constitutive exons. For each of the following curves, constitutive exons are in squares, 

and alternatives are in diamond shapes. A) Length of conserved region in the nearest 100 

nucleotides of the flanking upstream intron. X axis, length of conserved region (best sim4 

local alignment); Y axis, percent exons with upstream conserved region greater than or 

equal to the value in X. Conservation was detected using local alignment with the mouse 

100 counterpart intronic nucleotides. A minimum hit was 12 consecutive perfectly 

matching nucleotides. B) Length of conserved region in the nearest 100 nucleotides of the 

flanking downstream intron. Axes as in A. C) Exon size distribution. X axis, exon size; Y 

axis, percent exons having size lesser or equal to the size in X. D) Human-mouse exon 

identity. X axis, percent identity in the global alignment of the human and the mouse 

exons; Y axis, percent exons with identity greater or equal to the value in X. E) Human-

mouse exon identity, for exons whose size is a multiple of 3. Axes as in D. Note that by 

combining two features we get better separation of the two exon-types. 

 

 Figure 2: Experimental validation for the existence of alternative splicing in 

selected predicted exons. RT-PCR for 15 exons (detailed in Table 2), for which no 

EST/cDNA indicating alternative splicing was found, was conducted over 14 different 

tissue types and cell lines (see Methods). Detected splice variants were confirmed by 

sequencing. For nine of these exons a splice isoform was detected in at least one of the 

tissues tested. Only a single tissue is shown here for each of these nine exons. Lane 1, 
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DNA size marker. Lane 2, exon 2 skipping in FGF11 in ovary tissue (the 344nt and 233nt 

products are exon inclusion and skipping, respectively). Lane 3, exon 4 skipping in 

EFNA5 gene in ovary tissue (exon inclusion 287nt; skipping 199nt). Lane 4, exon 8 

skipping in NCOA1 gene in placenta tissue (exon inclusion 377nt; skipping 275nt). Lane 

5, exon 22 skipping in PAM gene in cervix tissue (exon inclusion 323nt; skipping 215nt). 

Additional upper band contains a novel exon in PAM. Lane 6, exon 9 skipping in 

GOLGA4 gene in uterus tissue (exon inclusion 288nt; skipping 213nt). Lane 7, exon 9 

skipping of NPR2 gene in placenta tissue (282nt inclusion; 207nt skipping). Lane 8, 

intron 8 retention in VLDLR gene in ovary tissue (wild type 324nt; intron retention 

427nt). Lane 9, alternative acceptor site in exon 12 of BAZ1A in ovary tissue (wild type 

351nt; alternative acceptor variant 265nt). The uppermost band represents a new exon in 

BAZ1A, inserted between exons 12 and 13. Lane 10, alternative acceptor site in exon 7 

of SMARCD1 in uterus tissue (wild type 353nt; exon 7 extension 397nt).  

 

 Figure 3: Sensitivity vs. false positive rate in classification rules. Each square on 

the curve represents the performance of a single classification rule. X axis, 1-specificity, 

i.e., percent constitutive exons (false positives) retrieved by the rule. Y axis, sensitivity, 

i.e., percent alternative exons (true positives) identified by the rule.  Values were 

computed relative to the training set. Rules that were used for this plot are provided as 

Supplementary Material. 
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Table 1:  Features differentiating between alternatively spliced and constitutively 

spliced exons 

 

 

Alternatively 

spliced exons 

Constitutively 

spliced exons 

P valuea 

Average size 87 128 p < 10-16 

Percent exons whose length is a 

multiple of 3 

73% 

(177/243) 

37% 

(642/1753) 

p < 10-9 

Average human-mouse exon 

conservation b 

94% 89% p < 10-36 

Percent exons with upstream intronic 

elements conserved in mouse c  

92% 

(223/243) 

45% 

(788/1753) 

p < 10-11 

Percent exons with downstream 

intronic elements conserved in 

mouse c 

82% 

(199/243) 

35% 

(611/1753) 

p < 10-14 

Percent exons with both upstream 

and downstream intronic elements 

conserved in mouse c 

77% 

(188/243) 

17% 

(292/1753) 

p < 10-37 

 

a P-value was calculated using Fisher’s exact test, except for the “average size” and 

“average human-mouse exon conservation”, for which p-value was calculated using 

student’s T test. 

b Average percent of matching nucleotides in global alignment of the respective exons 
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c The 100 intronic nucleotides immediately upstream (or downstream) of the exon were 

locally aligned with the mouse 100 counterpart intronic nucleotides using sim4 (Florea et 

al. 1998). Conservation was defined if at least 12 consecutive perfectly matching 

nucleotides were found in the alignment. 



 26

Table 2: Experimental validation of predicted alternatively spliced exons 

Gene Alt 

Exona 

PCR 

confirmedb 

Type of 

alternative 

confirmedc 

Gene Description 

FGF11 2 Yes Skip fibroblast growth factor 11 

EFNA5 4 Yes Skip ephrin-A5 

NCOA1 8 Yes Skip steroid nuclear receptor coactivator 

PAM 22 Yes Skip protein associated with Myc mRNA 

GOLGA4 9 Yes Skip golgi autoantigen, golgin subfamily a, 4 

NPR2 9 Yes Skip natriuretic peptide receptor B/guanylate 

cyclase B 

VLDLR 9 Yes Int Ret d very low density lipoprotein receptor 

BAZ1A 12 Yes Alt 3’ss e  bromodomain adjacent to zinc finger 

domain protein 1A  

SMARCD1 7 Yes Alt 3’ss f SWI/SNF related, matrix associated, 

actin dependent regulator of chromatin, 

subfamily d, member 1 

PRKCM 15 No  protein kinase C, mu 

TIAM2 12 No  T-cell lymphoma invasion and 

metastasis 2 

MDA5 4 No  melanoma differentiation associated 

protein-5 

RNASE3L 15 No  nuclear RNase III 

HAT1 7 No  histone acetyltransferase 1 

DICER1 6 No  Dicer1, Dcr-1 homolog (Drosophila) 
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a Serial number of exon (out of gene’s exons) identified as alternative  

b For each predicted exons, primers were designed from its flanking exons and RT_PCR 

was conducted using total RNA from 14 different tissue types: cervix, uterus, ovary, 

placenta, breast, colon, pancreas, liver + spleen, brain, prostate, testis, kidney, thyroid, 

and assorted cell-lines. Products were sequenced, and alternative splicing was searched. 

c Type of alternative splicing: Skip, exon-skipping; Alt 3’ss, alternative 3’ splice site 

(acceptor);  Int Ret., intron retention.  

d Retention of intron 8 (size 103 nucleotides) was detected in VLDLR.  

e Deletion of 86 nucleotides was detected on the 3’ end of exon  12 7 of BAZ1A.  

f Extension of 44 nucleotides was detected on the 3’ end of exon 12 of SMARCD1.  
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Sorek Figure 1c

Exon size
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Sorek Figure 1d

Human mouse exon identity

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

70 75 80 85 90 95 100
Percent identity in human mouse alignment

Pe
rc

en
t e

xo
ns

 w
ith

 id
en

tit
y 

eq
ua

l 
or

 la
rg

er
 th

an
 X

Alt
Const



Sorek Figure 1e

Exon identity AND divisibility by 3
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Sorek Figure 3

ROC curve of classification rules
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Supplementary Table 1: Primers used for validation of alternative exons. 

Gene and direction Primer sequences TM 

FGF11 Forward 

FGF11 Reverse 

5’ – CCAAGGTGCGACTGTGCGG – 3’ 

5’ – GGTAGAGAGCAGAGGCGTACAGGACG – 3’ 

680C 

660C 

EFNA5 Forward 

EFNA5 Reverse 

5’ – ACCGGCCTCACTCTCCAAATGG – 3’ 

5’ – TGGCTCGGCTGACTCATGTACGG – 3’ 

650C 

670C 

NCOA1 Forward 

NCOA1 Reverse 

5’ – AGGCAACACGACGAAATAGCCATACC – 3’ 

5’ – TCTGGCATAAGATGGTTCTCTGCCC – 3’ 

660C 

650C 

PAM Forward 

PAM Reverse 

5’ – TGTCCCAGTGCCCGGG – 3’ 

5’ – GGTGAAATCCACAGCTGACTTGG – 3’ 

610C 

620C 

GOLGA4Forward 

GOLGA4Reverse 

5’ – TCAAGAGAACCTACTTAAGCGTTGTAAGG – 3’ 

5’ – TGAGCAATTTCTTCTTCTTTCATTTCC – 3’ 

610C 

610C 

NPR2 Forward 

NPR2 Reverse 

5’ – CATGTTTGGTGTTTCCAGCTTCC – 3’ 

5’ – CGGGTCAGCTCAATGCGC – 3’ 

620C 

620C 

VLDLR Forward 

VLDLR Reverse 

5’ – TGAGCCCCTGAAAGAGTGTCATATAAACG – 3’ 

5’ – TCTAAGCCAATCTTCCTGATGTCTCTTCG – 3’ 

660C 

660C 

BAZ1A Forward 

BAZ1A Reverse 

5’ – TGCTCTGATGGTTTTGGAGTTCC – 3’ 

5’ – CGTTTTTGATATCTATACTTTGCATTTGC – 3’ 

610C 

600C 

SMARCD1Forward 

SMARCD1Reverse 

5’ – CAGCCTTGTCCAAATATGATGCC – 3’ 

5’ – AAACTCCCGCTCGTGAGGG – 3’ 

610C 

610C 

DICER1 Forward 

DICER1 Reverse 

5’ – AACTCATTCAGATCTCAAGGTTGGG – 3’ 

5’ – CCAGGTCAGTTGCAGTTTCAGC – 3’ 

610C 

610C 

HATB  Forward 5’ – AGGCTTCAGACCTTTTTGATGTGG – 3’ 620C 



HATB  Reverse 5’ – CTTCCGCTGTAATATCAAGAACTGTAGG – 3’ 610C 

PRKCM Forward 

PRKCM Reverse 

5’ – AAGTACTGGGTTCTGGACAGTTTGG – 3’ 

5’ – CTGGTTTGAGGTCACAGTGAACG – 3’ 

610C 

610C 

RNASE3L Forward 

RNASE3L Reverse 

5’ – CGGAGAATTTTTGTGTGAAAGGG – 3’ 

5’ – CCAGCTCCTCCCACTGAAGC – 3’ 

610C 

610C 

TIAM2 Forward 

TIAM2 Reverse 

5’ – AACGACAGTCAGGCCAACGG – 3’ 

5’ – CCAGAAACACCTTCTGAAACTCAAGC – 3’ 

620C 

620C 

MDA5 Forward 

MDA5 Reverse 

5’ – AAATCTGGAGAAGGAGGTCTGGG – 3’ 

5’ – CCACTCTGGTTTTTCCACTCCC – 3’ 

610C 

610C 

 



Cross validation (supplementary material for Sorek et al) 
 
 
Five-way cross validation: The data were partitioned to five equal size sets; each set 
in turn was put aside as the test set, and the remaining 80% of the data were used as 
training set to determine the best rule, that was then applied on the test set. The 
following table describes the 5 rules obtained in each of the cross validation sets. For 
comparison we include also the rule obtained on the complete training set. 
 
 
Rule Ex ID Upst 

Len 
Upst 
ID 

Downst 
Len 

Downst 
ID 

Div 3 

1 95 15 85 12 >0 Yes 
2 95 15 82 12 >0 Yes 
3 95 15 85 12 >0 Yes 
4 94 15 85 12 >0 Yes 
5 95 15 85 12 >0 Yes 
Full set 95 15 85 12 >0 Yes 
 
 
Cross validation sensitivity and false positive rate 
 

Training set Test set Rule 
Alternative Constitutive Alternative Constitutive 

Sensitivity False 
Positive 
Rate 

1 65/195 0/1403 11/48 0/350 33.3% 0% 
2 67/194 0/1402 17/49 2/351 34.5% 0.569% 
3 56/194 0/1402 20/49 0/350 28.8% 0% 
4 64/194 0/1402 20/49 3/351 32.9% 0.854% 
5 62/195 0/1402 14/48 0/351 31.8% 0% 
Full set 76/243 0/1753   31.3% 0% 
 
Average sensitivity: 32.26% 
Average specificity: 0.28% 
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