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ABSTRACT

A major goal of system biology is the characteriza-
tion of transcription factors and microRNAs
(miRNAs) and the transcriptional programs they reg-
ulate. We present Allegro, a method for de-novo dis-
covery of cis-regulatory transcriptional programs
through joint analysis of genome-wide expression
data and promoter or 3’ UTR sequences. The algo-
rithm uses a novel log-likelihood-based, non-
parametric model to describe the expression pat-
tern shared by a group of co-regulated genes. We
show that Allegro is more accurate and sensitive
than existing techniques, and can simultaneously
analyze multiple expression datasets with more
than 100 conditions. We apply Allegro on datasets
from several species and report on the transcrip-
tional modules it uncovers. Our analysis reveals
a novel motif over-represented in the promoters
of genes highly expressed in murine oocytes, and
several new motifs related to fly development.
Finally, using stem-cell expression profiles, we iden-
tify three miRNA families with pivotal roles in
human embryogenesis.

INTRODUCTION

One of the main challenges in molecular biology is
to understand the regulatory program that controls
mRNA levels. The key components of this program are
transcription factors (TFs), proteins that activate or
repress transcription of a gene by binding to short DNA
sequences, termed transcription factor binding sites
(TFBSs), which usually reside in the gene’s promoter.
The level of translated mRNA of a gene can also be
decreased post-transcriptionally, through annealing of
microRNAs (miRNAs) to the 30 UTR of the mRNA.
A key step in reverse engineering regulatory networks is
computational analysis of genome-wide measurements
of mRNA levels obtained from DNA microarray assays

in various environmental conditions, biological samples
and time-points (henceforth we use the term condition
to refer to each microarray assay). The purpose of this
analysis is to identify groups of genes that are co-regu-
lated, also termed transcriptional modules (TMs), and
to characterize their regulators. A two-step approach is
most commonly used [see examples in (1,2) and the
review in (3)]: In the first step, a clustering procedure is
executed to partition the genes into groups believed to be
co-regulated, based on expression profile similarity (4).
In the second step, a motif discovery tool is applied to
search for abundant sequence patterns in the promoters
(or 30 UTRs) of each group that may represent the binding
sites (BSs) of TFs (or miRNAs) that regulate the corre-
sponding genes.
Despite extensive research, motif discovery has had lim-

ited success due to the short and degenerate nature of BSs,
and the high levels of complexity of transcriptional net-
works, especially in metazoans. Since both the expression
profiles and the promoter sequences of the genes carry
information regarding their regulation, a methodology
that utilizes both sources of information may give better
results than the two-step approach. Several studies pro-
posed computational schemes for this parallel analysis.
Most of these algorithms use a unified probabilistic
model over both gene expression and sequence data, and
assume a Gaussian distribution of the expression values
(5–7). Additional examples are the algorithms Reduce (8)
and Motif Regressor (9), which search for motifs corre-
lated with a single condition using linear regression, and
assume that the number of BSs and their affinity are lin-
early correlated with the gene’s expression. The algorithm
DRIM (10) uses the hypergeometric (HG) score to com-
pute the enrichment of motif occurrences among the top-
ranked genes. However, it too is limited to a single
condition.
Here we present Allegro (A Log-Likelihood based

Engine for Gene expression Regulatory motifs Over-
representation discovery), a de-novo motif discovery plat-
form for simultaneously detecting gene sets with coherent
expression profiles and corresponding over-represented
sequence patterns. A graphic overview of the Allegro
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approach is presented in Figure 1. Unlike existing meth-
ods, which rely on statistical assumptions, Allegro uses a
novel non-parametric model called Condition Weight
Matrix (CWM) to describe the expression profile of a
group of co-regulated genes. We show that this model
represents the expression profiles of sets of co-regulated
genes more accurately than do commonly used expression
metrics and statistical distributions. Allegro builds upon a

motif discovery software platform we recently developed
called Amadeus (11). In brief, given a set of co-regulated
genes, Amadeus searches for motifs that are over-repre-
sented in their cis-regulatory sequences with respect to
(w.r.t.) the rest of the cis-regulatory sequences in the
genome or some other background (BG) set (see
Supplementary Data for additional information).
Allegro utilizes the efficient motif search engine of

Figure 1. Overview of the Allegro computational approach. Given a genome-wide expression matrix and cis-regulatory sequences (promoters or 30

UTRs), Allegro executes efficient algorithms and statistical analyses to search for transcriptional modules. A transcriptional module is a set of genes
sharing a sequence motif, modeled using a PWM, and a common expression profile described using a novel model called CWM. The CWM is
analogous to the PWM: it assigns a weight to each discrete expression level in each of the experimental conditions. Allegro uses a multi-phase motif
enumeration engine to generate candidate motifs. For each motif, it applies a cross-validation-like procedure to construct a CWM (Supplementary
Figure 2), such that there is a significantly large overlap between the targets of the motif (the set of genes whose cis-regulatory sequence has an
occurrence of the PWM, left arrows at the top) and the targets of the CWM (the genes whose expression levels match the CWM, right arrows). The
statistical significance of this overlap is evaluated using one of two enrichment scores: the HG score or the binned enrichment score, which accounts
for biases in the length and GC-content of the cis-regulatory sequences. The scores obtained by the motifs and their CWMs are iteratively modified
to improve the models and eventually converge to high-scoring transcriptional modules.
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Amadeus to enumerate a huge number of candidate motifs
and to converge to high-scoring ones. For each candidate
motif, Allegro fits a CWM to its putative targets using a
cross-validation-like procedure. In order to
ascertain whether the motif and the CWM are significantly
correlated, Allegro computes one of two enrichment
scores: the HG score or the binned enrichment score
(11). As we demonstrate, the latter is very useful in cases
where the expression profiles are correlated to the length
and GC-content of the cis-regulatory sequences. Such
expression-sequence dependencies are ignored by most
existing methods, leading to many false predictions.

To test the performance of our method and highlight its
unique features and advantages over existing approaches,
we applied Allegro on several large-scale datasets from
yeast, fly, mouse and human. In all cases, Allegro success-
fully recovered binding motifs of TFs and miRNAs that
are known to regulate the relevant processes, together with
their corresponding expression profiles. In addition, we
report on novel transcriptional modules discovered by
Allegro in datasets of human and murine tissues, and in
Drosophila tissues profiled during various stages of devel-
opment. For example, we discovered a novel motif that is
over-represented in the promoters of genes that are highly
induced in oocytes and fertilized eggs. Application of
Allegro to expression profiles of human stem cell lines
highlighted three miRNA families as key players in regu-
lation of cell fate in embryogenesis. The miRNA activities
predicted based on these findings are in good agreement
with evidence from recent miRNA expression studies.
A comparison of our results with those obtained by
several current methods for clustering and motif finding
indicates that Allegro is more sensitive and accurate. We
also demonstrate additional important advantages of our
approach, including joint analysis of multiple expression
datasets from several organisms, and accounting for cor-
relations between the expression levels of genes and the
length and GC-content of their cis-regulatory sequences.
We believe that Allegro introduces significant novel ideas
in computational motif finding and gene expression ana-
lysis. On the practical side, our software can serve as an
accurate, feature-rich, user-friendly tool for the biological
community.

METHODS

Genomic sequences and binding patterns

Promoter sequences (repeat- and coding-sequence-
masked) of human, mouse and fly, and 30 UTR sequences
(repeat-masked) of human were extracted from Ensembl
(12). Yeast promoters were downloaded from SGD (http://
www.yeastgenome.org). Motifs reported by Allegro were
compared to known binding patterns of TFs and miRNAs
taken from Transfac (13) and miRBase (http://microrna.
sanger.ac.uk/sequences), respectively. See Supplementary
Data for more details.

Gene expression datasets

The expression dataset for the yeast osmotic-stress
response was downloaded from the supplementary

material of (14). The values in the data are log2 of
the fold change w.r.t. wild-type (WT) grown on YPD
medium at standard osmolarity.
The human cell-cycle dataset was obtained from the sup-

porting web-site of (15) (http://genome-www.stanford.edu/
Human-CellCycle/HeLa). Expression values are log2 of the
fold change w.r.t. asynchronously grown HeLa cells.
Human and mouse tissue expression datasets were

downloaded from the GNF SymAtlas web-site (http://
symatlas.gnf.org/SymAtlas, version 1.2.4, gcRMA-ana-
lzyed) (16). We applied quantile normalization (17), as
implemented in Expander (18), in order to rescale the
expression values in each tissue to a common distribution.
We then normalized the values of each gene by computing
the log2 of the fold change w.r.t. the gene’s average expres-
sion value.
The human stem cells dataset is the stem cell matrix

described in (19) (GEO accession number GSE11508).
After averaging technical replicates, this dataset contains
124 samples. The full list of cell types used appears in
Supplementary Table V. The expression pattern of each
gene was normalized to mean 0 and SD 1.
The datasets analyzed in this study are summarized in

Supplementary Table I. See Supplementary Data for addi-
tional details.

CWM for a motif target set

Denote by B the set of genes in the expression data, and
let eg(1), . . . , eg(m) denote the discrete expression levels
(DELs) of gene g2B (81� j�m, eg(j) 2 {e1, . . . , el}). The
background condition frequency matrix (CFM), R = {ri,j},
holds the frequencies of the DELs in each condition across
all genes: ri,j = |{g2B | eg(j)= ei}|/|B|. For a candidate
motif M, denote by T its target set, i.e. the group of genes
whose cis-regulatory sequences contain an occurrence of
M. As described in the Results section, Allegro samples a
training set S from T, and constructs a CFM F={ fi, j}
based on the DELs of the genes in S: fi,j=|{g 2 S |
eg(j)= ei}|/|S|. The training-set sampling procedure is
described in the Supplementary Data. Allegro then calcu-
lates the CWM, which contains the log-ratios between
F and R:

81 � i � l,1 � j � m CWMði, jÞ ¼ log
fi, j
ri, j

� �

Allegro uses the CWM to compute the log-likelihood ratio
(LLR) score of every gene, as explained below.

LLR score computation

Given the background CFM, R={ri,j}, and a CFM,
F={fi,j}, learnt from the target set of a candidate motif,
Allegro computes the LLR score of all the genes, as
described in the Results section. The naı̈ve computation
takes O(|B|�|C|) time, where B is the set of genes and C is
the set of conditions. Different genes may share the same
discrete pattern, so the time complexity can be improved
to O(|P|�|C|), where P is the set of distinct discrete expres-
sion patterns observed in the dataset. For example, in
the tissues dataset (16) there are 14 698 human genes
but only 2112 distinct expression patterns, so the above
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observation gives a 7-fold speedup in this case. Another
running time improvement is achieved by reducing the
average number of operations per discrete pattern in the
LLR computation, as follows. In a preprocessing proce-
dure we build a complete weighted graph, GP, in which the
nodes correspond to the patterns in P, and the weight of
an edge is the Hamming distance between the two corre-
sponding patterns. We then find a minimum spanning tree
(MST) of GP, denoted TP. In order to compute the LLR
score of all the patterns in P, we scan TP in preorder, and
use the LLR score of each pattern as a basis for computing
the scores of its child nodes. Formally, let v=(ev(1), . . . ,
ev(|C|)) be a discrete expression pattern. If v is the root of
TP, the LLR is calculated naı̈vely, as described in the
Results. Otherwise, let u=(eu(1), . . . , eu(|C|)) be the parent
of v in TP, then:

LLPðvÞ ¼ LLRðuÞ þ
X
j2Duv

log
fvð j Þ, j
rvð j Þ, j

� �
� log

fuð j Þ, j
ruð j Þ, j

� �� �

where Duv is the set of conditions, in which the DELs in u
and v differ (|Duv| is the Hamming distance between u and
v). Note that since TP is scanned in preorder, LLR(u) is
calculated before LLR(v), as required. In preprocess, we
compute a table that contains the value log(fi,j/
ri,j)� log(fk,j/rk,j) for every pair of DELs, ei and ek, and
every condition cj. Using this table, LLR(v) can be calcu-
lated given LLR(u) in time c�|Duv|, where, c is a very small
constant. Thus, the total time complexity of computing
the LLR score of all patterns is O(|P|�d+|C|), where d
is the average Hamming distance in the MST (the second
summand, |C|, is the time for the LLR computation of the
root). In the human tissues dataset mentioned above, there
are 79 tissues, but the average distance in TP is only 1.31.
Thus, using the MST gives a further 59-fold time
improvement.

Enrichment scores

For each candidate motif, we use a subset S of its target
genes (S�T) as a training set for learning a CWM, as
described in the Results section. The set of all other
genes in the expression data, denoted Bs (Bs=B\S), is
used for evaluating the fit between the CWM and the
motif, as follows. Let W (W�Bs) be the set of genes,
whose expression pattern obtained an LLR score higher
than the current CWM cutoff (Allegro tries several cut-
offs), excluding the training-set genes. Denote by b and w
the subset of genes from Bs and from W, respectively, that
contain at least one occurrence of the motif in their cis-
regulatory sequence, i.e. b=Bs\T and w=W\T.
Allegro computes one of two supported enrichment
scores, as specified by the user, to assess whether
the motif is over-represented in W, i.e. whether w is
significantly larger than expected, given Bs, W and b.
The first score, called the HG enrichment score,
uses the HG tail distribution to compute the probability
of observing at least |w| sequences in W with a motif
hit, under the null hypothesis that the genes in W were

drawn randomly, independently and without replacement
from Bs:

HG score¼HGtailðjBsj;jWj;jbj;jwjÞ¼
XminðjWj;jbjÞ

i¼jwj

jbj
i

� �
jBsj�jbj
jWj�i

� �
jBsj

jWj

� �

The second score, called the binned enrichment score,
accounts for cases where the expression values are corre-
lated with the length or GC-content of the cis-regulatory
sequences. In short, the genes are divided into bins accord-
ing to the length and GC-content of their cis-regulatory
sequence. The counts of the number of genes in each bin
that passed the LLR cutoff and the number of genes with
a hit in their sequence are used in order to estimate the
overall enrichment. For exact details, see (11).

Clustering and motif-finding tools

K-means (20) and CLICK (21) were executed using the
Expander gene expression analysis software (18). K-means
was run twice—with k=10, and with k=20. CLICK was
run with the ‘homogeneity’ parameter set to 0.3. Two
motif-finding tools, Weeder and Amadeus, were applied
on all clusters found by K-means and CLICK, excluding
huge clusters with more than 900 genes. Weeder (v1.3) was
executed with the ‘medium T100 S’ parameters and using
the BG model files supplied with the software (22).
Amadeus (v1.0) was run with its default settings (11).

GO functional analysis

For each motif discovered by Allegro in the tissues data-
sets, we ran the TANGO algorithm via the Expander soft-
ware (18) to test whether the CWM targets of the motif
are enriched for Gene Ontology biological process terms.
TANGO performs a bootstrapping procedure to correct
the enrichment p-values for multiple testing and account
for the large overlaps between related GO terms. All
results reported here obtained a p-value less than 10�9

and a corrected p-value less than 10�3.

RESULTS

We developed a novel method, called Allegro, for simul-
taneous de novo discovery of regulatory sequence motifs
and the expression profiles they induce in one or more
genome-wide gene expression datasets. Given a candidate
motif, Allegro learns an expression model that describes
the shared expression profile of the genes, whose cis-regu-
latory sequence contains the motif. It then computes a p-
value for the over-representation of the motif within the
cis-regulatory sequences of the genes that best fit the
expression profile. We implemented Allegro and inte-
grated it with our Amadeus motif discovery platform.
Amadeus executes a series of refinement phases to con-
verge to high-scoring motifs. Each phase receives as
input a list of candidate motifs, applies an algorithm for
refining the list, and produces a set of improved candidates
that constitute the starting point for the next phase. The
output of Amadeus is a non-redundant list of top-scoring
motifs, modeled using position weight matrices (PWMs).
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Additional scoring functions and features available in
Amadeus are described in (11). In the current study,
motifs in each phase are evaluated using Allegro.
Thus, the motifs reported by the algorithm are those
that possess the highest correlation to the expression
data in terms of the aforementioned p-value.

In the following sections we introduce the expression
model used by Allegro and demonstrate its advantages
over commonly used approaches. We then describe the
algorithm Allegro applies to ascribe a p-value for a
given motif. Finally, we present results of applying
Allegro to several large-scale expression datasets repre-
senting a diverse set of biological systems and species,
and compare them to those obtained by existing tools.

Modeling the expression profile of co-regulated genes

We developed a new method for modeling the expression
profile shared by a group of co-regulated genes. Unlike
existing approaches, it does not make complex statistical
assumptions about the distribution of the expression
values in each condition. Furthermore, unlike expression
similarity measures employed by clustering techniques,
our model is robust against extreme values and can
describe profiles that differ across a very small number
of conditions. The model is analogous to the PWM
model for sequence motifs (23,24), with DNA bases sub-
stituted here by discrete expression levels, and the posi-
tions along the motif replaced by the experimental
conditions.

Given continuous expression values, Allegro first trans-
forms them into discrete expression levels (DELs, in short):
e1, e2, . . . , el. The number of expression levels (l) and the
range of values that define each one are set by the user.
For example, if the expression values are given in log2
ratios w.r.t. some base condition, then one may use
three DELs, as illustrated in Supplementary Figure 1:
Expression values above 1.0 are replaced by e1 (or ‘U’,
for ‘Up-regulated’), values between �1.0 and 1.0 are
replaced by e2 (or ‘S’, for ‘Similar to base condition’)
and values below �1.0 are replaced by e3 (or ‘D’, for
‘Down-regulated’). The DELs may also be defined using
percentiles rather than cutoffs.

Let c1, c2, . . . , cm be the set of m conditions in the given
expression matrix. The expression model assigns to each
condition a discrete probability distribution. Define an l x
m matrix, called condition frequency matrix (CFM), in
which column j holds the distribution of the DELs in con-
dition cj according to the model. Hence, the value in row i
and column j is the probability of generating expression
level ei in condition cj (Supplementary Figure 1). The
background CFM, R= {ri,j}, is computed from the
observed DELs of all given genes; i.e. ri,j is the BG fre-
quency of expression level ei in condition cj (see Methods
section).

Given another CFM F={fi,j}, which models the
expression levels of a transcriptional module T, we
would like to assign to each gene a score that quantifies
its similarity to F. To this end, we use the standard like-
lihood ratio approach, as follows. Let eg(j) (1� j�m)
denote the DEL of gene g in condition cj. The LLR

score of g is the logarithm of the ratio between the prob-
ability of observing these expression levels under the
assumption that gene g belongs to T, and the probability
of observing them under the null hypothesis:

LLRðexpression of gene gÞ ¼
Xm
j¼1

log
fgð j Þ, j

rgð j Þ; j

� �

The l�m matrix whose entries are log(fi,j/ri,j) is called the
CWM. The CWM can be used to classify genes as belong-
ing to the transcriptional module T in the standard way:
for a given threshold h, a gene is considered to belong to T
if its LLR score is above h. In a sense, the CWM repre-
sents an expression motif similarly to the standard
sequence motif representation using a PWM. In the next
section we explain how the CWM and the threshold h are
computed for a putative transcriptional module.
We tested how well the CWM model identifies the

expression profile of known transcriptional modules, and
compared its performance to that of popular expression
metrics: Pearson correlation, Spearman’s rank correlation,
and Euclidean distance (4). The results show that in most
cases (16 out of 18) our model describes the expression
profile of TMs more accurately than existing approaches
(Supplementary Table II). The experimental procedure
and results are detailed in the Supplementary Data.

Learning the expression profile induced by a motif

For each candidate motif, Allegro tries to learn a CWM
that describes the expression of (some of) its targets. If the
motif represents BSs of a TF that is active in the measured
conditions, Allegro will likely find a CWM that is charac-
teristic of the motif’s targets; otherwise, the expression
values of the target genes are expected to behave like the
BG distribution, and no such CWM will be found. Let T
denote the set of genes whose cis-regulatory sequences
contain at least one occurrence, or hit, of the motif M.
Allegro finds a CWM that models the expression profile of
T by executing a cross-validation-like procedure, illu-
strated in Supplementary Figure 2. First, it samples a
training set from T and generates a CFM F based on
the frequencies of DELs in that training set. A CWM is
computed from F and from the background CFM, as
explained earlier (see Methods section). Then, for all
genes excluding those in the training set, it computes the
LLR score described above. In order to ascertain that the
motif M is over-represented in the genes with a high LLR
score (i.e. genes whose expression is more similar to the
profile represented by F than to the background CFM),
Allegro computes one of two enrichment scores developed
in Amadeus: the HG score and the binned enrichment
score. The latter accounts for biases in the length and
nucleotide composition of the regulatory sequences (see
Methods section). Note that the training-set genes are
ignored when computing the enrichment score in order
to avoid over-fitting. The enrichment score is computed
for several LLR cutoffs and the best one is chosen and
Bonferroni-corrected for multiple testing. Allegro repeats
this process for several training sets, which are sampled in
a judicious procedure that takes into account both the
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expression and sequence data (see Supplementary Data).
Finally, Allegro chooses the CWM that yielded the best
enrichment score, and this score is set as the p-value of the
motif. We use the term CWM targets to refer to the genes
that passed the LLR cutoff of the top-scoring CWM. For
an arbitrary motif, only a relatively small fraction of the
CWM targets are also targets of the motif (i.e. contain a
hit for the PWM in their cis-regulatory sequence),
whereas, for a biologically relevant motif, the overlap
between the set of its PWM targets and the set of its
CWM targets is significantly large (in the sense of the
enrichment score).
As described earlier, Allegro examines a large number

of candidate motifs in a series of refinement phases. The
motifs in each phase are ranked according to the above
enrichment score. We implemented sophisticated data-
structures and algorithms in order to speed-up the
CWM learning procedure (see Methods section). The
output of the Allegro algorithm is a list of transcriptional
modules, each one comprised of a sequence motif (PWM)
and an expression profile (CWM) that are highly corre-
lated in terms of the genes they match.

Test case: human cell cycle

Whitfield et al. studied cell-cycle regulation using cDNA
microarrays that measured gene expression profiles of
HeLa cells over five time courses (15). In each time
course, the cells were synchronized to the same cell-cycle
phase by one of three different methods. In order to iden-
tify cell-cycle genes and the phases in which they are active,
Whitfield et al. quantified the periodicity of the expression
levels of each gene using Fourier transform, and compared
it to that of known cell-cycle genes. Several studies utilized
their findings to analyze the transcriptional programs
underlying the cell-cycle phases (25–28).
In order to test the ability of our method to uncover

transcriptional modules ab initio from a large mammalian
dataset, we applied it to the cell-cycle data of Whitfield
et al. The input to Allegro consisted of expression values
across 111 time points and of 1200 bps-long promoter
sequences of �15 000 genes. Consistent with biological
knowledge and previous studies, the three top-scoring
motifs found by Allegro are the BS patterns of E2F and
NF-Y (CCAAT-box), and the motif termed CHR (cell-
cycle genes homology region), whose binding protein is
yet to be discovered (29) (see Supplementary Data for
information on how the motifs are matched to known
BS patterns). As shown in Figure 2, the expression
of the CWM targets of E2F peaks in the G1/S phase,
whereas genes associated with NF-Y and CHR are
active in the G2 and M phases. Importantly, these
results were obtained by analyzing the expression and
sequence data alone, without using any prior knowledge
on periodicity of human cell-cycle or on known phase-
specific genes.
An additional test case on expression data of the

innate immune response in mouse is described in the
Supplementary Data.

Comparison to the two-step approach: yeast HOG pathway

The Saccharomyces cerevisiae high osmolarity glycerol
(HOG) pathway is required for osmoadaptation. It con-
tains two branches that activate the protein Hog1 via
Pbs2, one containing Ssk1 and the other containing
Sho1 and Ste11. O’Rourke et al. characterized the roles
of Hog1, Pbs2, Ssk1, Sho1 and Ste11 in response to ele-
vated osmolarity using whole-genome expression profiling
(14). The expression data contain osmotic shock profiles
of the WT strain, and of mutant strains in which compo-
nents of the HOG pathway were knocked-out. The pro-
files were monitored at different levels of hyper-osmolarity
at several time points. In addition, the transcriptional
response of the WT strain to the mating pheromone
a-factor was measured at four time points. Overall, the
dataset consists of expression values of 5758 genes in
133 conditions.

The seven top-scoring motifs reported by Allegro for
this dataset are the RRPE, PAC and STRE (stress
response element) motifs, and the BS patterns of Rap1,
MBF, Ste12 and Sko1 (Figure 3). Remarkably, all seven
motifs are related to osmotic shock (30–33). For example,
Msn2 and Msn4 mediate a general stress response through
binding to STRE (31,34), and they are also controlled by
Hog1 (33). Indeed, the CWM targets of STRE are up-
regulated in the time series of exposure to high osmolarity.
Another example, which provides further evidence of the
sensitivity of our approach, is Sko1, one of the main TFs
that control the specific response to hyper-osmolarity (33).
Under normal conditions, Sko1 recruits the general
repressor complex Tup1–Ssn6 and together they act to
repress their target genes. After osmotic shock, Hog1
phosphorylates Sko1, resulting in decreased affinity for
Tup1, and Sko1 then activates transcription by an
unknown mechanism. Reassuringly, Allegro uncovered
the Sko1 binding motif, and its CWM targets are consid-
erably up-regulated in response to high osmolarity only in
strains in which Hog1 and Pbs2 were not knocked out. See
Supplementary Data for additional analysis of the results.

We applied the standard two-step approach to the
HOG dataset to check whether the transcriptional mod-
ules discovered by Allegro can also be found using existing
techniques. We first performed clustering using three
methods—k-means with k= 10 and k=20 (20), and the
CLICK algorithm (21), which resulted in 38 clusters. Four
of these clusters were huge (>900 genes, i.e. >20% of the
entire gene set) and did not exhibit an interesting expres-
sion profile, so we ignored them. We then executed two
motif finding tools on each of the 34 remaining clusters:
Weeder (22), which out-performed 13 other tools in a
large-scale assessment (35), and Amadeus, our recently
published software (11). Following (11,35), from each
such execution we examined the two top-scoring motifs
reported by the motif finder. We thus examined a total
of 68 motifs discovered by the clustering and motif-finding
pipeline. As listed in Table 1, out of the seven motifs
Allegro discovered, only four were found by the two-
step approach—RRPE, PAC, MBF and STRE. We also
applied the clustering and motif-finding tools developed
by Slonim et al., Iclust (36) and FIRE (37). Again, only
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four out of the seven motifs Allegro recovered were
reported by FIRE. Specifically, the BS motifs of Sko1
and Ste12 were found by Allegro but not by any other
method.

We could not compare Allegro to other published meth-
ods that infer motifs by simultaneous analysis of sequence
and expression data (5–7), either because they are not
publicly available or we could not execute them and
obtain reasonable results.

Analysis of multiple datasets: tissue-specific regulators

A unique feature of Allegro is simultaneous analysis of
multiple datasets from one or more species. Given several
expression matrices and corresponding sequence data,
Allegro explores the motif search space as described
above. For each candidate motif, it computes its enrich-
ment score in each of the datasets separately; i.e. it finds a
CWM whose top-scoring genes have a significantly large

Figure 2. Results of Allegro on the human cell cycle dataset (15). (A) Screenshot of Allegro. The left panel presents the input parameters: organism,
expression data file, scores, etc. The top-scoring motifs discovered by Allegro are shown in the output panel on the right. Additional information is
displayed for each motif, such as the average expression profile of the CWM targets that contain a hit of the motif, statistics on the number of hits
and their locations, similar binding patterns from Transfac or miRBase, and more. Here, the three top-scoring motifs reported by Allegro represent
the BS patterns of key regulators of the human cell cycle: E2F, CHR (whose binding TF is unknown), and NF-Y (not shown). (B) Expression
profiles of the five CWM targets with the highest LLR score of the three motifs found by Allegro. High and low expression values w.r.t. time 0 are
colored in red and green, respectively. The purple bars represent S phase and the blue vertical lines indicate mitoses, as reported in (15). In agreement
with biological knowledge and previous computational analyses (25–28,50), E2F induces genes mainly in the G1/S phase, whereas CHR and NF-Y
are highly specific to the G2 and G2/M phases.
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overlap with the genes that contain the motif in their cis-
regulatory sequence. Allegro then combines these scores
into a single p-value using the Z-transform (38).
We tested this feature on the human and mouse gene

atlas (16) in search of tissue-specific regulators. Given the
expression levels of �15 000 human and mouse genes
across 79 human tissues and 61 mouse tissues, Allegro
found known and novel motifs. The main results are sum-
marized in Table 2. The motifs reported by Allegro are
non-redundant: for every pair of reported motifs—M1 and
M2—no more than 5% of their hits overlap, i.e. �95% of
the occurrences of M1 do not overlap any occurrence of
M2, and vice versa. Thus, each reported motif is likely to
represent a biologically distinct binding pattern.
The top-scoring motif is the binding pattern of CREB/

ATF, and its target genes are up-regulated in testis tissues

(Supplementary Figure 3). Indeed, CREB is known to
activate transcription of genes essential for proper germ
cell differentiation (39), and its disruption in mice severely
impairs spermatogenesis (40,41). Allegro reported four
additional testis-specific motifs: RFX, MYB and two
novel motifs (motifs 2–5 in Table 2). Members of the
RFX and MYB families are expressed at high levels in
the testis (42–46). Interestingly, all three known testis-
related TF families—CREB, RFX and MYB—have
testis-specific gene products (42,46,47). We performed
functional analysis on the sets of CWM targets of the
motifs found by Allegro in order to identify GO terms
over-represented in these sets (see Methods section).
Reassuringly, the CWM targets of all five testis-related
motifs in both species are highly enriched for
spermatogenesis.

Figure 3. Results of Allegro on the yeast HOG pathway expression dataset (14). Allegro finds the motifs PAC, RRPE, STRE and the binding
patterns of Rap1, MBF, Ste12 and Sko1. Each motif is presented together with the average expression profile (	1 SD) of its CWM targets which
contain a hit for the motif in their promoter. The titles above the expression series indicate the yeast strain the expression was sampled from: WT,
and knockout strains [indicated by the name(s) of the gene(s) that were knocked-out]. The concentrations of KCL and sorbitol are given in molar
units.

Table 1. Results of Allegro and existing tools on the yeast HOG MAPK dataset (14)

Biological process Motif/TF Reference K-means/CLICK Iclust Allegro

Amadeus/Weeder FIRE

General stress response RRPE (31,72) + + +
PAC (31,72) + + +
Rap1 (31) � + +

HOG and pheromone response pathways Sko1 (32,33) � � +
Ste12 (30,33) � � +
MBF (33,73,74) + � +
Smp1 (32) � � �

Skn7 (32) � � �

General stress response and HOG pathway STRE (31–33) + + +

There are nine TFs and motifs known to be involved in the regulation of genes in the studied conditions. In a single execution, Allegro successfully
recovered seven of these binding patterns as the seven top-scoring motifs. In contrast, only four motifs were discovered when the two-step approach
was applied using various combinations of existing clustering and motif discovery tools.
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Additional known TF-tissue associations recovered by
Allegro include MEF2, whose target genes are induced in
heart, skeletal muscle and tongue (48) (Supplementary
Figure 4); HNF1 and HNF4, which induce genes in
liver, and, to a lesser extent, in kidney, pancreas and intes-
tine (49) (Supplementary Figure 5); and the cell-cycle reg-
ulators E2F, NF-Y and NRF1, whose targets are up-
regulated in various types of proliferating cells
(25,27,50,51). We also found four motifs whose targets
are up-regulated in the epidermis and related tissues,
such as tongue and digits: the AP1/FOS-binding pattern,
T-box, TATA and a novel motif (motifs 14–17 in Table 2).
There is evidence of the involvement of FOS and TBP
(TATA binding protein) in the regulation of keratinocyte
proliferation (52,53).

Allegro discovered a novel motif whose target genes are
highly induced in murine oocytes (motif #18 in Table 2,

see also Supplementary Figure 6). Oocytes are not among
the tested tissues in human, so we do not know whether
this enrichment is conserved. A partial list of the putative
targets of the motif is given in Supplementary Table III.
To further test the ability of Allegro to simultaneously

analyze multiple expression datasets, we applied it on
three datasets that recorded expression levels of fly
(Drosophila melanogaster) genes during various develop-
mental stages (54–56) (see Supplementary Data). Allegro
discovered known and novel motifs associated with vari-
ous developmental profiles. The 20 top-scoring motifs are
listed in Supplementary Table IV. Of note, this list
includes the top seven core promoter motifs found by
Ohler (57), indicating that core promoter cis-regulatory
elements play an important role in fly development.
Another interesting example is the TAGteam motif,
which was recently identified and shown experimentally

Table 2. Main results of Allegro for the combined analysis of the human and mouse tissue gene atlas datasets (16)

Logo TF/motif p-value Tissues Gene Ontology (BP; CC)

1 CREB/ATF 10–32 Testis: Testis, testis germ cell,
testis interstitial, testis Leydig
cell, testis seminiferous tubule

Spermato-genesis; Flagellum

2 RFX 10–24

3 – 10–23

4 MYB 10–21

5 – 10–15

6 MEF2 10–29 Muscle: Heart, skeletal muscle,
tongue

Muscle contraction; Myofibril

7 ETS/ELF 10–27 Immune system: Peripheral blood
cells, B/T-cells, lymphnode,
BM myeloid, thymus

Immune response; Plasma
membrane

8 IRF 10–15

9 E2F 10–23 Proliferating cells: Oocyte,
embryo, bone marrow, thymus,
lymphoblasts, cancers

Cell cycle, DNA replication;
Chromosome

10 NF-Y 10–13

11 NRF1 10–14

12 HNF1 10–22 Digestive tract: Liver, kidney,
pancreas, intestine

Metabolism (carboxylic acid, lipid,
amine, . . . ); Mitochondrion

13 HNF4 10–21

14 – 10–18 Keratinocytes: Epidermis,
tongue, digits

Epidermis development,
keratinization; Intermediate
filament cytoskeleton

15 AP1/FOS 10–16

16 T-box 10–15

17 TATA 10–14

18
 – 10–14 Oocyte: Oocyte, fertilized egg Cell cycle; Nucleus

The table lists all motifs with p-value � 10�15 (combined score for human and mouse datasets), as well as several motifs with high similarity to
known binding patterns (TATA, Nrf-1 and NF-Y). Three of the motifs are apparently novel. In addition, a novel motif that obtained a significant
p-value (10�14) only in the mouse dataset is listed. Similar known binding patterns from the Transfac database are shown in the ‘TF/Motif’ column.
The ‘Tissues’ column lists the tissues in which the target genes of each motif are up-regulated. Some tissues were sampled in only one of the two
organisms. The ‘Gene Ontology’ column specifies the most enriched biological process (BP) and cellular component (CC) GO terms in the CWM
targets of each motif.

p-value, tissues and GO terms for motif #18 are based only on the mouse dataset; oocyte and fertilized egg were not sampled in human.
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to induce early zygotic genes (58,59). Allegro recovered
this motif and the expression profile it induces
(Supplementary Figure 7).

3’UTR analysis: human stem cells

Stem cells, and in particular embryonic stem cells (ESCs),
have a unique ability to differentiate into diverse cell types.
This multipotency (or pluripotency in case of ESCs) is
maintained by a variety of epigenetic mechanisms, includ-
ing DNA methylation, chromatin modifications and
miRNAs (60). Analysis of sequence motifs in 30 UTRs
of genes up- or down-regulated in various types of stem
cells carries the promise of identifying key miRNAs main-
taining the stem cell differentiation capabilities. Mueller
et al. (19) profiled gene expression in 124 cell samples,
including a variety of stem cells. The analysis of 30 UTR
motifs in this large dataset is hindered by biases in 30 UTR
length and base composition (Supplementary Table V).
For example, proliferating cells, such as ESCs, are
known to express genes with 30 UTRs that are much

shorter than those of genes expressed in other cell types
(61). In contrast, genes specific to the nervous system are
known to have particularly long UTRs (62). This leads to
an almost 2-fold difference in 30 UTR length between
genes up-regulated in undifferentiated ESCs and genes
up-regulated in fetal neural stem cells (NSCs)
(Supplementary Figure 8).

We applied Allegro to search for enriched motifs in the
30 UTRs of the Mueller et al. dataset. Due to the biases
mentioned above, we used the binned enrichment score to
compute the over-representation of each candidate motif
in the set of CWM targets fitted to it. The results are
presented in Figure 4. The top-scoring motif (GCACTT)
is the reverse complement of the hexamer AAGTGC,
which appears in the seed sequences of several miRNA
families (mir-17, mir-302, mir-290 and mir-515), all of
which are among the most highly expressed miRNAs in
human and mouse ESCs (63,64). Indeed, genes reported
by Allegro as putative targets of these miRNA families are
evidently down-regulated in human ESCs compared to

Figure 4. The top three 30 UTR motifs identified in the stem cells dataset (19). On the left, the motif p-value and logo are presented along with the
first 11 bases (starting from the 50 base of the mature microRNA) of miRNAs with a seed that matches the reverse complement of the motif. For the
first motif, only one miRNA from each of the four matching miRNA families is presented. For each motif, the graph on the right shows the average
expression values (in log2 scale) of the corresponding CWM targets that contain a hit for the motif. Each bar represents the average expression level
in one of the cell types (ESCs/NSCs/MSCs—embryonic/neural/mesenchymal stem cells; ‘Undiff.’—Undifferentiated, ‘diff.’—differentiated, ‘Terato.’—
Teratocarcinoma; see also Supplementary Table V; the full expression profile of targets of motif 1 in all 124 samples is shown in Supplementary
Figure 9). The graph also shows the expression levels (in log2 scale) of the matching miRNA(s): mir-302 for motif 1 (average expression over all mir-
302 family members), mir-124 for motif 2 and mir-9 for motif 3. miRNA expression levels are presented only for the cell types profiled in (63).
Evidently, the expression profiles of the motif targets and those of the matching miRNAs are anti-correlated, increasing our confidence that the
discovered motifs represent miRNAs that are active in the relevant cells.
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other cell types (Figure 4). Interestingly, as shown in
Supplementary Figure 9, these genes are also down-regu-
lated in a subset of NSCs, which were differentiated from
ESCs or from teratocarcinoma, indicating that it is possi-
ble that the expression of these miRNA families is not
down-regulated immediately upon differentiation.

The second most significant motif reported by Allegro is
GTGCCTT, which corresponds to the seeds of mir-506
and mir-124a. Inspection of the expression pattern of the
CWM targets (Figure 4) shows that genes carrying this
motif are generally down-regulated in less differentiated
cells (ESCs, NSCs, embryoid bodies and teratocarcinoma)
compared to more differentiated ones [mesenchymal stem
cells (MSCs), fibroblasts and astrocytes]. Mir-506 did not
show any differential expression between ESCs, NSCs and
differentiated cells (63), and was not detected in any tissue
in a recent comprehensive sequencing effort (62); thus, it is
not likely to be the regulator of this gene set. Mir-124a is
known to be abundant and functional in the neural cell
lineage (65), and is up-regulated in NSCs compared to
MSCs and fibroblasts (63). However, it is also up-regu-
lated in NSCs compared to ESCs (63), while the expres-
sion levels of the CWM targets do not appear to differ
between these two cell types. It is possible, therefore,
that the regulation of the CWM targets is carried out by
mir-124a alongside other regulatory mechanisms that may
or may not involve miRNAs.

The third motif reported by Allegro (ACCAAAG)
matches the seed of mir-9. The expression pattern of its
targets shows down-regulation in NSCs compared to dif-
ferentiated cells, with intermediate levels in ESCs and in
teratocarcinoma. Mir-9 is expressed specifically in the
neural lineage (62,63) and is known to have an active
role in neurogenesis (66).

Neither the standard two-step approach (clustering with
k-means or CLICK, followed by motif finding using
Weeder or Amadeus), nor Allegro with the HG enrich-
ment score, recovered the above three motifs. This empha-
sizes the importance of accounting for sequence biases
when conducting cis-regulatory motif finding.

DISCUSSION

In this work we present Allegro, a software platform that
analyzes genomic sequences and expression datasets to
infer transcriptional modules—groups of genes that are
co-expressed along all or some of the experimental condi-
tions and share an enriched regulatory motif in their pro-
moters or 30 UTRs. This single-step methodology, which
infers transcriptional modules by simultaneously analyz-
ing the sequence and expression data, utilizes all available
information throughout the entire analysis, giving it a
clear advantage over the standard two-step approach.
Allegro employs a powerful motif enumeration engine
and our CWM model to discover sequence motifs and
their associated expression profiles without relying on
pre-defined types of distribution to model the sequence
and expression data. Unlike the vast majority of motif-
finding tools, Allegro does not rely on pre-computed
k-mer counts to construct a sequence model; and, unlike

most clustering metrics and existing algorithms for com-
bined sequence-expression analysis, it does not assume a
Gaussian distribution of the expression values. Instead,
Allegro utilizes the cis-regulatory sequences and expres-
sion values of all the analyzed genes (typically, the entire
genome) as a reference set against which to evaluate the
statistical significance of the overlap between each
sequence motif and the expression profile fitted to its
targets.
Another major contribution of the current study is the

CWM, a novel non-parametric model for describing the
common expression profile of a group of co-regulated
genes. The model gives a likelihood ratio to the group
using discrete expression levels. It makes no assumptions
about the type of distribution of the expression values,
and is robust against extreme values. Unlike similarity
metrics, a CWM can describe an expression profile that
differs from the background expression levels across a very
small number of conditions (even a single condition), and
can, in effect, assign a different weight (i.e. contribution)
to each condition. Furthermore, a CWM can model more
complex transcriptional patterns than existing methods.
For example, it can describe the effect of a TF that
activates some genes and suppresses others in the same
conditions [e.g. Oct4 and Nanog (67)]. As we demon-
strated for experimentally derived TF target sets and
for functionally related annotated groups of genes, the
CWM captures their distinct expression profiles more
accurately than commonly used metrics (Supplementary
Table II). A detailed discussion on the shortcomings of
existing expression similarity measures is given in the
Supplementary Data. While in this study we used the
CWM in the context of motif finding, it can be applied
in other gene expression analysis tasks, such as functional
analysis (i.e. identifying GO terms whose genes exhibit a
distinct expression profile).
We applied Allegro to several large-scale gene expres-

sion datasets in human, mouse, fly and yeast. Our results
indicate that in a single run, and without any prior knowl-
edge of known binding patterns or the characteristics of
the transcriptional modules (e.g. the number of modules,
their size and the overlap between them), Allegro success-
fully recovers the correct TF/miRNA motifs and reports
them as the top-scoring motifs. The transcriptional mod-
ules found by Allegro are highly heterogeneous in terms of
their expression profiles. For example, the cell-cycle reg-
ulators induce very subtle and noisy cyclic patterns in the
human cell cycle dataset. The yeast HOG pathway data-
set, on the other hand, consists of diverse time-series
experiments, and, accordingly, the relevant TFs induce
distinct complex expression profiles, some of which differ
from the BG distribution in only a small fraction of the
conditions.
One of the unique features of Allegro is joint analysis of

multiple expression datasets. Unlike some comparative
analysis techniques, Allegro does not search for conserved
motifs within aligned promoter sequences, since the con-
servation of TFBSs is, in many cases, very limited across
species (68–70). Instead, for each candidate motif it exam-
ines, Allegro utilizes the information from all supplied
datasets by combining the scores the motif attained on
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them into a single p-value, thus improving the accuracy of
the analysis. We demonstrated this feature on the human
and mouse tissues datasets (16), in which Allegro found 18
distinct motifs in various tissue types (Table 2). Notably,
some of the tissue-specific motifs obtained borderline p-
values in one or both species. Many of these motifs were
not reported by Allegro when it was applied on each data-
set separately (data not shown), underscoring the impor-
tance of combined analysis of multiple datasets for
increased sensitivity. For example, E2F received a
p-value of 4� 10�11 in the human data, which is within
the range of random scores given the huge number of
candidate motifs considered by the algorithm; the com-
bined human–mouse p-value of 10�23 is statistically sig-
nificant. Perhaps this, together with the binned score, is
why other methods failed to recover some of the well-
known TF-tissue associations. Two cases in point:
Elemento et al. applied their Iclust and FIRE tools on
the human and mouse datasets separately, and did not
discover CREB/ATF, RFX, MEF2, IRF, HNF1 and
HNF4 (37). When Xie et al. searched for conserved pro-
moter elements and tested whether they were tissue-speci-
fic (71), they failed to find many of the known TF-tissue
associations such as HNF1 and HNF4 in liver, and E2F in
proliferating cells. In addition to known TFs, Allegro
reported novel motifs that attained statistically significant
scores. Experiments are required to verify and study their
regulatory roles. Additional novel motifs were discovered
by Allegro in fly promoters using three expression datasets
of Drosophila developmental stages (Supplementary
Table IV).
Our analysis of the stem cells dataset demonstrates the

ability of Allegro to reverse-engineer transcriptional pro-
grams regulated by miRNAs. Using the binned enrich-
ment score, Allegro was able to overcome the two main
obstacles in 30 UTR sequence analysis: length heterogene-
ity and GC-content bias. The three top-scoring motifs
identified by Allegro correspond to three miRNA families,
indicating that these families are among the main post-
transcriptional regulators in ESCs and NSCs. In particu-
lar, the top-scoring motif corresponds to a miRNA seed
sequence that was recently shown to be highly dominant
in human and mouse ESCs (63,64). The results of Allegro
further highlight the importance of the miRNA families
carrying this seed sequence in ESC biology. Finally, we
show evidence of activity of miRNA carrying this seed
sequence in several NSC lines for which miRNA expres-
sion profiles are not available. Technologies to accurately
measure miRNA expression levels are maturing, but are
still inferior in fidelity to mRNA profiling. As we have
shown, using sequence analysis and mRNA profiles, we
can predict the activity of miRNAs without the direct
measurement of miRNA expression.
Due to the flexibility of Allegro’s methodology and

interface, it is suitable for a broad range of motif discovery
tasks. For example, in addition to the HG or binned
enrichment score, motifs can be evaluated using other
scores we developed previously that measure global fea-
tures of the distribution of the motif hits: localization
along the promoters, strand bias and chromosomal pref-
erence (11). Allegro can simultaneously analyze promoter

or 30 UTR sequences and multiple genome-wide expres-
sion datasets from several species and combine all avail-
able information for optimal results. Running time on a
standard PC is between a few minutes and several hours,
depending primarily on the size of the expression data. We
developed a user-friendly graphical interface, making
Allegro accessible to a wide range of users. In order to
help the user understand the results of the analysis,
Allegro’s graphical interface displays additional informa-
tion and statistics on each reported motif, such as the
scores it attained, its putative targets and their expression
profile, similar known motifs from Transfac/miRBase,
and more. The Allegro software (a standalone Java appli-
cation) is available at http://acgt.cs.tau.ac.il/allegro.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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