
 

 

 
Sackler Faculty of Exact Sciences, Blavatnik School of Computer Science 
 
 
 
 

Discovering motifs using  
high-throughput in vitro data 

 
 
 
 

THESIS SUBMITTED FOR THE DEGREE OF 
“DOCTOR OF PHILOSOPHY” 

 
 
 
 

by 

Yaron Orenstein 
 
 
 
 

The work on this thesis has been carried out 
under the supervision of  

Prof. Ron Shamir 
 
 

Submitted to the Senate of Tel-Aviv University 
September 2014 



 

 i 

Acknowledgments 
 

This dissertation summarizes most of my research in the last four and a half years. I 
would like to express my sincere thanks to my advisor, Ron Shamir, for his guidance, 
advice and support, and for giving me academic freedom to pursue my research interests.  

I would like to thank all my friends and collaborators in the Computational Genomics 
lab. I would also like to acknowledge additional collaborators on various projects, some 
of which are not included in this thesis. Last but not least, I would like to thank my 
family. Thanks to my parents for their love and support throughout all my academic 
studies. This work is dedicated to my dear wife, Liat, who helped and encouraged me in 
so many ways. Finally, I would like to mention my greatest achievements during the last 
year, our wonderful child – Eyal – you’re the best! 

 



 

 ii 

Preface 
This thesis is based on the following four articles that were published throughout the PhD 
period in scientific journals. 
 
1. Assessment of algorithms for inferring positional weight matrix motifs of 
transcription factor binding sites using protein binding microarray data 
Yaron Orenstein, Chaim Linhart and Ron Shamir. 
Published in PLoS ONE  [1]. 
 
2. RAP: Accurate and fast motif finding based on protein-binding microarray data 
Yaron Orenstein, Eran Mick and Ron Shamir.  
Published in Journal of Computational Biology [2]. 
 
3. Design of shortest double-stranded DNA sequences covering all k-mers with 
applications to protein-binding microarrays and synthetic enhancers 
Yaron Orenstein and Ron Shamir.  
Published in Bioinformatics [3]. 
 
4. A comparative analysis of transcription factor binding models learned from 
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Abstract 
A major challenge in system biology is to delineate the regulatory program of a genome, 
which describes how the cell controls the amount and exact composition of the proteins it 
produces from each gene in a given circumstance. A major factor in gene regulation is the 
binding of transcription-regulating proteins to the specific DNA sequences. 
Technological advancements in recent years have made it possible to take a deep look 
into cell activity and specifically protein-DNA binding. These new technologies can 
measure the intensities of thousands and sometimes millions of interactions in a single 
experiment. The experimental data accumulated by new technologies require efficient 
and accurate computational analysis to infer the binding preferences of the tested 
proteins. In this thesis, we studied the practical and theoretical aspects of binding site 
inference from high-throughput data. We developed new algorithms for inferring 
compact and accurate binding models from high-throughput data produced by in vitro 
technologies, and implemented them efficiently. Our approach outperforms existing 
methods and is applicable to data generated by the state-of-the-art technologies. On the 
theoretical side, we developed new efficient algorithms for solving several combinatorial 
problems in the field of sequence design. Our methods employ ideas from graph theory, 
and are faster and conceptually simpler than extant algorithms. 
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1. Introduction 
1.1 The "Big Data" era 
In recent years technologies that measure biological processes have been advancing in an 
overwhelming pace. Technologies today can measure thousands – and sometimes 
millions - of values in a single experiment. These can provide an unprecedented view into 
the living cell. One type of such experiments accurately measures interactions between 
molecules in a high-throughput manner. Consequently, in each experiment the amount of 
data produced is enormous. While in the past, biological insights could be achieved by 
manual interpretations, it is impossible to do so based on such data. Efficient and accurate 
algorithms are required to process the vast data and derive significant conclusions. As in 
many other fields, we are in the "Big Data" era. 

The living cell is an amazingly complex machine, constantly performing a myriad 
of biochemical reactions to sustain itself and carry out a variety of functions in a diverse 
and ever-changing environment. In order to understand how this machinery works, we 
need to determine the function of each element in that machine and how the functional 
elements are regulated in the cell. One of the main mechanisms in regulation is through 
protein-DNA binding. Observing this process in vitro can provide important insights 
regarding its function in the cell. 

Thanks to the maturation of high-throughput experimental techniques, we now have 
tools with which we can study these questions. Two high-throughput technologies 
measure thousands and even millions of interactions in a single experiment. The first is 
the "DNA chip", or microarray, which simultaneously measures thousands of interactions 
using hybridization of mRNAs to an array of pre-designed sequences [5]. The second 
technology is deep sequencing, which reads millions of DNA sequences simultaneously 
[6]. In both technologies, a single experiment yields a snapshot of concentrations and 
strength of interactions in a given tissue or cell-line (in vivo) or outside the cell (in vitro). 
While measurements in the cell provide a detailed view of the cell's state, in many cases 
in vivo measurements may be too complex or affected by other confounding factors. In 
some scenarios, measuring interactions in vitro may provide a cleaner view of the studied 
process. The models inferred from in vitro data can later be applied and validated by in 
vivo experiments. Overall, both in vivo and in vitro experiments are important to advance 
the research in any biological field. 
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1.2 Transcriptional regulation  
The cell is equipped with several tools for regulating the amount of proteins it produces 
from each gene in a given condition - chromatin state, RNA interference (RNAi), RNA 
editing, and alternative splicing, to name a few. Perhaps the main regulatory mechanism 
is the transcriptional program, which describes when and to what extent each gene is 
transcribed to mRNA. Transcription is controlled primarily via regulatory sequence 
elements, located in the proximity of each gene's coding sequence. These are recognized 
and bound by specialized proteins, called transcription factors (TFs). The set of TFs that 
bind to the DNA, and the intensity, or affinity, of these bindings, may increase or 
decrease the rate of transcription of the corresponding gene. Thus, different combinations 
of TFs and binding affinities could produce a huge variety of transcription profiles. 

The DNA sequences bound by a TF are called its binding sites (BSs), or cis-
regulatory elements. They are typically very short (6-15 bases) and degenerate - a TF can 
bind, with varying affinities, to many different sequences that reflect a common pattern, 
or motif, characteristic of the factor. Most BSs are found in the promoter, the region 
upstream of the gene's transcription start site (TSS), though BSs may also exist 
downstream of the TSS and at large distance from the gene, in locations termed 
enhancers. Some TFs cooperate in the regulation of genes, resulting in more complex and 
specific transcription profiles. Reverse-engineering the transcriptional program of an 
organism requires identifying its TFs, the locations and affinities of their BSs, and the 
various modules they are organized in. 

Deciphering the transcriptional regulation in vivo is a difficult task. While TF 
binding is sequence-specific, it is affected by many factors. First, the DNA has to be 
accessible for binding by the TF. Second, other TFs may compete for the same binding 
sites, making it harder for the TF to bind to its potential binding sites. Third, in some 
instances, the TFs may only bind cooperatively, but current technologies cannot 
distinguish between cooperative and direct binding. On top of that, the set of binding site 
sequences present in the genome may be limited and not reflect all possible binding 
sequences. In such cases, one cannot derive the full range of TF binding affinities from 
these data. Learning the DNA binding preferences of a TF from in vivo data is hence 
hampered by assay complexity. 

In contrast, in vitro data may enable a cleaner high-resolution measurement of TF-
DNA binding preferences, as there are fewer confounding factors. First, one can 
guarantee that no binding sites are inaccessible due to compressed chromatin. Second, 
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there are no competing TFs, as the experiment is performed using a single TF in a 
synthetic environment. Third, barring technological artifacts, the binding is due to direct 
TF-DNA binding. Last, in some cases, the sequences can be combinatorially designed to 
cover all k-mers of the desired length k. In other cases, they are randomly generated such 
that together they are guaranteed to cover nearly all k-mers. So, if technological biases 
can be handled, the TF-DNA binding signal is expected to be much clearer. 

1.2.1 Technologies for measuring TF-DNA binding 

Identifying the sites bound in vivo by a specific TF and their affinity is not an easy task. 
Methods like DNA footprinting or chromatin immunoprecipitation (ChIP) can be used, 
but are applicable only to short, hand-chosen genomic loci. The combined strategy of 
ChIP and promoter microarrays, also termed ChIP-chip, enables genome-wide 
identification of promoter segments that are bound by a specific TF, in a single 
experimental assay [7]. Replacing the microarray-based readout with next-generation 
sequencing technologies, an approach called ChIP-seq, allows the detection of BSs 
throughout the entire genome [8].  

Measuring protein-DNA binding in vitro gives a cleaner view of the TF binding 
preferences, but lacks the genomic context. Since in vitro experiments are cheaper and 
easier, it is highly appealing to use in vitro models with complementary genomic 
information to predict in vivo binding. In vitro technologies can measure thousands of 
binding events simultaneously, and report the binding intensity to each possible DNA k-
mer (a word of length k). Using this information, the effects of mutations in the binding 
sites can be predicted and ultimately help understand individual differences and cross-
species divergence. Techniques that measure TF-DNA binding in vitro include protein 
binding microarrays (PBMs), based on microarrays, and high-throughput SELEX (HT-
SELEX), based on deep sequencing. 

Universal protein binding microarrays are designed to measure the binding 
intensity in high-throughput and unbiased manner [9]. Each array contains around 41,000 
DNA sequences of length 36bp each. These are designed to cover together all DNA 10-
mers [10]. The tested protein binds the sequences, and its binding intensity is measured 
using a florescence tag (see Figure 1). The same array can be used to test other proteins, 
as its design is universal. Hundreds of experiments were deposited in the public database 
UniPROBE [11]. 
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Figure 1. PBM experiment. A protein binds a pre-designed set of DNA sequences. Its 
binding is measured using a florescence tag and this image is scanned to produce the 
binding intensities of each sequence. (Source: [9]) 

 

High-throughput SELEX measures the binding of a single protein to millions of 
random oligos [12-14]. The initial pool, before any binding, is a set of pseudo-random 
oligos with no specific design. In each cycle of the process, the set of bound oligos is 
retrieved, amplified and sequenced. The set of filtered oligos is then used as the initial 
sequence set for the next cycle. Hence, the proportion of the bound oligos increases from 
one cycle to the next. The output is a set of sequence files, each of a different cycle, 
starting from the initial pool. Figure 2 shows a schematic of the process.  
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Figure 2. HT-SELEX experiment. A protein binds a pool of random DNA sequences. The 
bound sequences are filtered and amplified by PCR. A fraction of the resulting set is 
sequenced and another fraction is used as the initial pool for the next cycle. (Source: [14]) 
 

1.2.2 Models for binding site motifs 

Several computational models have been developed for describing BS motifs. The most 
popular model is the position weight matrix (PWM), also known as position specific 
scoring matrix (PSSM) [15]. This model (see Figure 3) uses a 4×k frequency matrix fb,i to 
represent the motif, where fb,i is the probability for observing nucleotide b at position i in 
the motif. An inherent property of this model is position-independence: probabilities at 
different positions are assumed to be independent. The probability that a given k-mer w = 
w1w2…wk is a functional BS is simply the product of the corresponding matrix elements, 

i.e., ∏ =
k
i iiw
f1 , . The matrix can also be viewed as an energy-based model, where instead 

of frequencies it holds the free energy contributions of the four nucleotides in each 
position [16]. Among the advantages of the PWM model are its simplicity, small number 
of parameters and an intuitive visualization [17]. The logo format (Figure 3) visualizes 
the matrix by drawing the different nucleotides in each position in size according to their 
weights and ordered by their weights. The total height of each position is inversely 
proportional to its entropy, which corresponds to the strictness of each position. 
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Figure 3. An example of a PWM and its logo illustration. The matrix represents the 
binding preference of a TF to the different nucleotides in each position. The logo 
provides a visualization of the matrix. 

 

While the PWM model is very popular and useful, it might be too simplistic for 
some TFs. An inherent assumption of the model is position-independence, which means 
that each position adds to the total binding score independently of the other positions. 
This assumption has been shown to be untrue for some TFs [18]. Other models extend the 
position weight matrix by additional features. The most prominent features are di-
nucleotide dependencies. To avoid the complexity of having too many features, usually 
only adjacent positions are considered as dependence between neighboring positions 
were observed more often than between non-neighboring ones [19]. The most 
comprehensive model, which makes no assumptions, is the complete k-mer model [13]. 
In this model, every possible DNA k-mer has a binding score representing the affinity of 
the TF to it. One disadvantage of both models is the huge number of parameters and the 
risk of over-fitting. 

Using validated BSs as training sets and high-throughput experimental techniques 
such as PBM and HT-SELEX, parameters for TFBS models have been derived for scores 
of known TFs in various species, and deposited in databases such as TRANSFAC [20], 
ScerTF [21], UniPROBE [11] and JASPAR [22]. 

1.3 Motif finding 
Over the past several years, a variety of computational methods were developed to 
analyze PBM and HT-SELEX experimental data and suggest novel biological 
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hypotheses, which can then be tested by further experiments. Unfortunately, since BSs 
are short and degenerate, and DNA probes contain many putative sites, it is difficult to 
distinguish between specific binding and non-specific (background) binding.  Moreover, 
each technology suffers from biases, which produce artifacts that eventually distort the 
measured intensities. Algorithms aim to extract the signal, i.e. the binding preferences of 
the TF, and distinguish it from the noise (background binding and technological biases). 

1.3.1 Motif discovery in genomic sequences 

In de novo motif discovery, given a set of co-regulated genes, the goal is to find motifs 
that are statistically enriched in their promoters. Once found, further biological research 
must be performed in some cases in order to discover the proteins whose BSs are 
described by these motifs. De-novo motif discovery has been tackled using a myriad of 
algorithmic techniques, such as Expectation Maximization (MEME [23], EMnEM [24], 
OrthoMEME [25], PhyME [26]), Gibbs sampling (GibbsDNA [27], AlignACE [28], 
MotifSampler [29]), efficient enumeration (YMF [30], MITRA [31], Multiprofiler [32], 
WEEDER [33], FootPrinter [34], FIRE [35], Trawler [36], Amadeus [37]), and neural 
networks (ANN-Spec [38]), as well as greedy (CONSENSUS [39]), graph-based 
(WINNOWER and SP-STAR [40]), and randomized (PROJECTION [41]) methods. 

An extension of this problem is to find motifs de novo in a set of ranked or 
weighted sequences. The weight of a sequence corresponds to the probability or intensity 
of the binding of the TF to it. Weights may be assigned to different genomic loci based 
on microarray florescent intensity (in ChIP-chip) or the number of bound sequence reads 
covering each locus (in ChIP-seq). In other applications, each gene may be given a score 
based on the change in its expression, and this score is assigned to its promoter sequence. 
Methods that use weights or a ranked list of genes include DRIM [42], PREGO [43] and 
MatrixREDUCE [44]. Other methods were specifically designed to infer models from 
ChIP data (MEME-Chip [45], MDScan [46] ChIPMunk [47] and TherMos [48]). A 
survey of motif finding tools can be found in [49, 50]. The evolution of motif finding 
algorithms is described in [51]. 

1.3.2 Motif finding in PBM data 

The problem of inferring a motif from high-throughput in vitro data requires algorithms 
that are tailored to these specific data. A naïve solution is to use methods developed for 
motif finding in genomic sequence. The set of DNA probes or sequences can be divided 
into positive and negative sets, according to their binding intensity [1]. A more 
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informative way is to use the measured binding intensities as sequence weights and 
provide them to one of the tools that work on weighted sequences [52]. Unfortunately, 
applying these methods has costly running time and produces models that are less 
accurate compared to models produced by technology-specific methods. 

Several approaches have been proposed for inferring accurate binding models 
from PBM data. The most popular practice is to first derive scores for all possible k-mers. 
These scores depend on the binding intensities of the probes the k-mer appears in. Some 
methods use average or median binding intensity, while others use enrichment scores, 
such as Wilcoxon-Mann-Whitney test [53]. The top scoring k-mer is identified as the 
consensus or seed. A binding model is inferred by optimizing a function of the data. It 
may be a model that has the best fit to the ranking of the probes, or to their binding 
intensities. In either case, a time-consuming optimization procedure learns the model 
parameters (e.g., maximum likelihood using gradient descent and Levenberg-Marquardt 
algorithm). Methods for inferring binding site models from PBM data include Seed-and-
Wobble [9], RankMotif++ [54] and BEEML-PBM [55]. An international competition on 
predicting PBM binding intensities was conducted in 2010 [56]. Description of the best 
performing methods can be found in [52].  

1.3.3 Motif finding in HT-SELEX data 

Binding model inference from HT-SELEX data is slightly different than from PBM data. 
As opposed to PBM technology, each DNA oligo represents a binding site, but the 
intensity is not reported. Instead, it can be computationally derived for k-mers of length 
smaller than the oligo, since these appear in thousands of oligos. K-mer scores are 
derived based on their frequency in the different cycles of the experiment. The ratio 
statistic for a k-mer in cycle i is the ratio of the k-mer's frequency in cycle i and its 
frequency in cycle i-1. It represents the enrichment of each k-mer between the cycles and 
thus is an estimate of the binding preference of the TF to this DNA word. The first 
reported method for inferring binding models from HT-SELEX data was BEEML [12]. It 
uses the frequencies from two cycles of enrichment to learn the binding preferences 
based on a free energy model. A method due to Toivonen et al. uses k-mer frequencies as 
scores and constructs a model based on k-mers at Hamming distance ≤1 from the 
consensus [14]. Another method developed for SELEX-seq data uses k-mer ratios (after 
correction for biases and artifacts) to derive a complete k-mer list as the binding model 
[13]. 
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 Recently, Jolma et al. published hundreds of HT-SELEX experiments [57]. For 
the first time, a large-scale comparison between HT-SELEX and PBM experiments on 
the same TFs was possible. Such a comparison may highlight the advantages and 
disadvantages of each technology, as well as reveal biases and artifacts of each 
technology. Such insights may later help in developing improved algorithms using these 
data. 

1.4 Combinatorial sequence design in computational biology 
Microarray technologies and other techniques that use sets of DNA sequences necessitate 
design of sequences with specific properties. The set of DNA probes in an experiment, 
also called oligonucleotides (oligos in short), determine the space and spectrum of 
measurements. In general, the wish is to measure a wide spectrum of oligos in order to 
enable a complete view of the biological process. Typically, the set of oligos is limited by 
several factors, such as capacity, cost, potential interactions between probes and other 
experimental considerations. 

DNA sequence design is a well-studied area. Microarray probes that measure 
mRNA quantities were designed to capture transcription profiles of specific organisms 
[58, 59]. Other designs aim to measure structural variations of genomes, such as genes 
copy number and SNP detection [60, 61]. In many applications, there is a risk of self- and 
cross-hybridization of the oligos, which makes them inaccessible. Some designs aim to 
avoid this risk while preserving high coverage [62]. 

PBMs measure protein-DNA binding. The microarray is designed to cover all 
possible k-mers. This enables an unbiased measurement of TF-DNA binding preferences, 
since all possible k-long binding sites are represented on the array. Ideally, the array 
would contain 4k probe sequences, each covering a different k-mer uniquely. However, 
since the space on the device is limited, this strategy is already unfeasible today for k=8. 
Instead, a smaller number of longer probes are used, so that each probe contains multiple 
overlapping k-mers, and together the probes cover all possible k-mers. In the 
implementation by Bulyk's lab, each microarray contains approximately 41,000 36bp-
long probe sequences that together cover all 10-mers [9]. 

1.4.1 Designing a minimum-length sequence to cover all k-mers 

The most compact sequence that covers all k-mers is a de Bruijn sequence [9, 63]. A de 
Bruijn sequence of order k over alphabet ∑ is a cyclic sequence of length |∑|k, such that 
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each word of length k over ∑ appears exactly once. To design a set of oligos from the de 
Bruijn sequence, it is cut into overlapping subsequences which serve as the oligos. The 
overlap length is k-1, so each k-mer is present in an oligo. For example, in the PBM array 
design of [9] all 10-mers are covered in 36bp-long probes, each covering 27 unique 10-
mers. Thus, 4!"/27  probes are required to cover all 10-mers. 

There are several methods to generate a de Bruijn sequence of order k over 
alphabet |∑|. One way to generate de Bruijn sequences is by de Bruijn graphs. A 
complete de Bruijn graph of order k is a directed graph containing |∑|k vertices; each 
vertex represents a unique k-mer. An edge (u, v) exists between two vertices if and only 
if the (k-1)-suffix of u equals the (k-1)-prefix of v. Thus, each edge represents a unique 
(k+1)-mer. An Euler tour in a graph traverses each edge exactly once. Thus, such a tour 
in a complete de Bruijn graph represents a de Bruijn sequence of order k+1 [64]. Another 
method to generate de Bruijn sequences is based on the theory of Galois fields. Linear 
shift feedback registers generate a stream of characters where each character is a function 
of the preceding l characters in the stream [65]. A small subset of these functions can be 
used to generate a de Bruijn sequence. Universal PBM arrays were designed using linear 
shift feedback registers with unique properties. The sequences have improved coverage 
of gapped k-mers and uniform coverage of words of length longer than 10, the order of 
the de Bruijn sequence used in the PBM design [10]. In general, the number of different 
de Bruijn sequences over alphabet of size n and order k is  (𝑛!)!!!!/𝑛!, making it 
infeasible to enumerate all of them for realistic k values. 

1.4.2 Utilizing the DNA reverse-complement property 

In many technologies that utilize sets of DNA probes, the probes are double-stranded. In 
double-stranded DNA each strand is matched with its reverse complement. A 
complementarity relation is a symmetric non-reflexive relation. For DNA, 
A=complement(T) and C=complement(G). In the reverse complement sequence of 
sequence S, denoted RC(S), each letter is replaced with its complement and letters are 
placed in reverse order. For example, ACGG=RC(CCGT). One example for a technology 
using double-stranded DNA probes is PBMs, which measure the binding of a protein to 
double-stranded DNA probes [9]. Another example arose in the context of synthetic 
enhancers: double-stranded DNA sequences were inserted into the zebra fish genome, 
and their effect on the limb formation during its development was measured [66]. 
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Instead of using the de Bruijn sequence to generate probes containing all k-mers, 
a major saving in the number of probes may be achieved by utilizing the reverse 
complementary nature of the probes. The set of probes is designed to cover all k-mers. 
However, whenever a k-mer is covered by a probe, so is its reverse complement. 
Theoretically, for each k-mer it is enough for the set of probes to cover either the k-mer 
or its reverse complement. We call a sequence with this property a reverse 
complementary de Bruijn sequence. 

The problem that this reasoning raises is how to generate a minimum-length 
reverse complementary de Bruijn sequence over a finite alphabet Σ. A solution for odd k 
was presented (without proof) in [67]. A full solution is given later in this thesis. In 
parallel to us, a method that generates the smallest set of probes of a specific length to 
cover all k-mers utilizing the reverse complement property was developed, but its 
running time is prohibitive even for moderate k values [66]. A polynomial time solution 
to the related problem of finding a maximum-length sequence such that each k-mer 
appears at most once, in either orientation, was given for odd k in [68]. 
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1.5 Summary of articles included in this thesis 

1. Assessment of algorithms for inferring positional weight matrix motifs of 
transcription factor binding sites using protein binding microarray data. 
Yaron Orenstein, Chaim Linhart and Ron Shamir. 
Published in PLoS ONE [1]. 

The new technology of protein binding microarrays (PBMs) allows simultaneous 
measurement of the binding intensities of a transcription factor to tens of thousands of 
synthetic double-stranded DNA probes, covering all possible 10-mers. A key 
computational challenge is inferring the binding motif from these data. We present a 
systematic comparison of four methods developed specifically for reconstructing a 
binding site motif represented as a positional weight matrix from PBM data. The 
reconstructed motifs were evaluated in terms of three criteria: concordance with reference 
motifs from the literature and ability to predict in vivo and in vitro bindings. The 
evaluation encompassed over 200 transcription factors and some 300 assays. The results 
show a tradeoff between how the methods perform according to the different criteria, and 
a dichotomy of method types. Algorithms that construct motifs with low information 
content predict PBM probe ranking more faithfully, while methods that produce highly 
informative motifs match reference motifs better. Interestingly, in predicting high-affinity 
binding, all methods give far poorer results for in vivo assays compared to in vitro assays.  

2. RAP: Accurate and fast motif finding based on protein-binding microarray 
data. 
Yaron Orenstein, Eran Mick and Ron Shamir.  
Published in Journal of Computational Biology [2]. 

The novel high-throughput technology of protein-binding microarrays (PBMs) measures 
binding intensity of a transcription factor to thousands of DNA probe sequences. Several 
algorithms have been developed to extract binding-site motifs from these data. Such 
motifs are commonly represented by positional weight matrices. Previous studies have 
shown that the motifs produced by these algorithms are either accurate in predicting in 
vitro binding or similar to previously published motifs, but not both. In this work, we 
present a new simple algorithm to infer binding-site motifs from PBM data. It 
outperforms prior art both in predicting in vitro binding and in producing motifs similar 
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to literature motifs. Our results challenge previous claims that motifs with lower 
information content are better models for transcription-factor binding specificity. 
Moreover, we tested the effect of motif length and side positions flanking the “core” 
motif in the binding site. We show that side positions have a significant effect and should 
not be removed, as commonly done. A large drop in the results quality of all methods is 
observed between in vitro and in vivo binding prediction. The software is available 
on acgt.cs.tau.ac.il/rap. 

3. Design of shortest double-stranded DNA sequences covering all k-mers with 
applications to protein-binding microarrays and synthetic enhancers. 
Yaron Orenstein and Ron Shamir.  
Published in Bioinformatics [3]. 

Novel technologies can generate large sets of short double-stranded DNA sequences that 
can be used to measure their regulatory effects. Microarrays can measure in vitro the 
binding intensity of a protein to thousands of probes. Synthetic enhancer sequences 
inserted into an organism’s genome allow us to measure in vivo the effect of such 
sequences on the phenotype. In both applications, by using sequence probes that cover 
all k-mers, a comprehensive picture of the effect of all possible short sequences on gene 
regulation is obtained. The value of k that can be used in practice is, however, severely 
limited by cost and space considerations. A key challenge is, therefore, to cover all k-
mers with a minimal number of probes. The standard way to do this uses the de Bruijn 
sequence of length 4k. However, as probes are double stranded, when a k-mer is included 
in a probe, its reverse complement k-mer is accounted for as well. Here, we show how to 
efficiently create a shortest possible sequence with the property that it contains each k-
mer or its reverse complement, but not necessarily both. The length of the resulting 
sequence approaches half that of the de Bruijn sequence as k increases resulting in a more 
efficient array, which allows covering more longer sequences; alternatively, additional 
sequences with redundant k-mers of interest can be added. The software is freely 
available from our website http://acgt.cs.tau.ac.il/shortcake/. 

4. A comparative analysis of transcription factor binding models learned from 
PBM, HT-SELEX and ChIP data. 
Yaron Orenstein and Ron Shamir. 
Published in Nucleic Acid Research [4]. 
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Understanding gene regulation is a key challenge in today's biology. The new 
technologies of protein-binding microarrays (PBMs) and high-throughput SELEX (HT-
SELEX) allow measurement of the binding intensities of one transcription factor (TF) to 
numerous synthetic double-stranded DNA sequences in a single experiment. Recently, 
Jolma et al. reported the results of 547 HT-SELEX experiments covering human and 
mouse TFs. Because 162 of these TFs were also covered by PBM technology, for the first 
time, a large-scale comparison between implementations of these two in 
vitro technologies is possible. Here we assessed the similarities and differences between 
binding models, represented as position weight matrices, inferred from PBM and HT-
SELEX, and also measured how well these models predict in vivo binding. Our results 
show that HT-SELEX- and PBM-derived models agree for most TFs. For some TFs, the 
HT-SELEX-derived models are longer versions of the PBM-derived models, whereas for 
other TFs, the HT-SELEX models match the secondary PBM-derived models. 
Remarkably, PBM-based 8-mer ranking is more accurate than that of HT-SELEX, but 
models derived from HT-SELEX predict in vivo binding better. In addition, we reveal 
several biases in HT-SELEX data including nucleotide frequency bias, enrichment of C-
rich k-mers and oligos and underrepresentation of palindromes.  
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Assessment of Algorithms for Inferring Positional Weight
Matrix Motifs of Transcription Factor Binding Sites Using
Protein Binding Microarray Data
Yaron Orenstein, Chaim Linhart, Ron Shamir*

Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Abstract

The new technology of protein binding microarrays (PBMs) allows simultaneous measurement of the binding intensities of a
transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key
computational challenge is inferring the binding motif from these data. We present a systematic comparison of four
methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM
data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the
literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and
some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a
dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking
more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in
predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.
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Introduction

Understanding gene regulation is a fundamental problem in

biological research. A principal way to regulate gene expression in

the cell is via transcription, which is governed primarily by

transcription factors (TFs). A TF is a protein that binds to the

promoter region of a gene at specific sequences, called TF binding

sites (TFBSs). The binding of one or several TFs enables or

impedes the transcription of the gene. A TF binds to similar short

nucleotide sequences at different affinities. Finding these cis-

regulatory elements and modeling the affinity of TF binding to

them is a central challenge in understanding gene regulation.

The most common computational model for describing a TFBS

motif is a position weight matrix (PWM) [1]. The TFBS is

represented by a 46k matrix, where k is the motif length. Each

column contains four probabilities, representing the nucleotide

frequencies at that position. This relatively simple model is highly

popular since it is compact, effective and easy to interpret.

New technologies have enabled comprehensive mapping of

protein-DNA binding affinities. The main technology to measure

in vivo protein occupancy is chromatin immunoprecipitation

(ChIP). In the ChIP-chip method, the protein-bound DNA

segments are hybridized to a pre-designed microarray [2], whereas

the ChIP-seq method uses deep sequencing to read the bound

DNA segments [3]. A recent promising technology in this field is

the protein binding microarray (PBM) [4]. This microarray

contains ,41,000 synthesized, 60 bp-long double-stranded DNA

probes, each containing 36 bp of unique sequence, designed so

that every possible 10-mer is contained in exactly one probe

sequence. A single in vitro experiment measures the binding

intensity profile of a specific TF to each probe, thereby providing

complete coverage of the binding affinity of the TF to all possible

10-mers. Often, two experiments with different array designs are

performed with the same TF, providing paired profiles.

Numerous computational methods for finding a motif in a

target set of promoters have been developed over the last two

decades [5–7]. Predicting binding sites based on PBM data is

different: the experimental data are much more comprehensive,

covering all possible 10-mers, but are generated in vitro and in a

high-throughput (and hence noisy) fashion. Therefore, several

methods were recently developed specifically for identifying TFBS

motifs from PBM profiles. Here we compare methods that

represent the motifs as PWMs. We do not include methods that

use more complex models [8], since we choose to focus on simpler,

more compact models.

In this paper we present a systematic comparison of four

algorithms for identifying TFBS motifs from PBM profiles: Seed-

and-Wobble (SW) [4], RankMotif++ (RM) [9], BEEML-PBM

(BE) [10] and the algorithm Amadeus-PBM (AM) introduced here

(see Table 1). In 2005, a systematic comparison of computational

methods for motif discovery in promoters clarified some of the

issues and the difficulties in that domain, and led to progress in

that research area [11]. We hope that our study will have a similar

effect regarding methods for analyzing PBM data.
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Results

Concordance with SELEX-based reference motifs from
the literature

We used each method to find motifs using PBM data, and

compared the results to previously reported motifs for the same

TFs, obtained using independent experiments. Each motif was

learned using the data from two paired experiments performed

with the same TF. For each TF, we measured the distance

between the PBM-based PWM to the PWM of the same TF as

published in JASPAR [12]. For this test we used all mouse PBM

datasets from the SCI09 study [13,14] that had a corresponding

PWM in JASPAR, excluding those for which the JASPAR PWMs

were constructed using PBM data. This set contained 58 PWMs.

Most were constructed based on in vitro SELEX experiments,

which are still the main source of TF motifs.

The AM PWMs were the most similar to JASPAR, with average

Euclidean distance (6 estimated standard deviation) 0.17860.11.

The average for SW was 0.19360.1, for RM was 0.2160.09, and

for BE was 0.22760.1 (Table 2). The difference between AM and

SW was not significant (p = 0.17, Wilcoxon rank-sum test) and

both were significantly better than RM and BE (p = 0.001 and

p = 0.0005 compared to AM, respectively).

We then focused on high-quality predictions of the four

methods. We say that a motif is successfully recovered by a

method if the Euclidean distance of the predicted PWM from the

reference PWM is below a predetermined cutoff. As in [15], we

used three cutoffs for the distance. AM attained a higher success

rate using all cutoffs (Figure 1). A similar comparison of mouse

motifs in TRANSFAC [16] and yeast motifs in ScerTF [17], and a

parallel comparison, using p-value for the significance of the

similarity [18], showed a similar advantage to AM (Figure S1).

Visual inspection suggested that the PWMs produced by AM

and SW are easier to interpret and look distinct in logo format

(Figure 2). To quantify this observation, we calculated the

average information content for each PWM (see Methods S1).

Averaged over the PWMs computed from all 115 available paired

mouse PBM sets, the information scores for the raw PWMs were

1.03, 0.61, 0.42 and 0.53 bits for AM, SW, RM and BE,

respectively, with AM scoring significantly higher (p,10215,

Wilcoxon rank-sum test). After trimming the PWMs to discard

flanking positions with low information, the information averages

were 1.03, 1.09, 0.54 and 0.61 bits, respectively (p = 1.2?1027

when comparing SW to AM and ,10215 when comparing AM

and SW to RM and BE). The full comparison results are available

in Table S1.

Predicting in vitro binding intensities
Next, we tested the prediction of binding intensities by the four

methods on 115 pairs of mouse PBM profiles [13,14] following the

procedure in [9]. Each method learned a PWM according to one

PBM experiment; this PWM was used to rank the probes of its

paired array. The goal was to correctly rank the positive probes,

i.e. those with highest affinity measurements. The set of positive

probes (denoted 4s, see Methods S1) contained an average of

912 probes per array. We also evaluated larger sets of positive

probes using more permissive cutoffs (denoted 3s, 2s and 1s; an

average of 1580, 3215 and 8224 probes per array, respectively).

When testing on 4s top probes set (Table 2 and Figure 3), BE

had significantly best Spearman and AUC scores (p,0.0025,

Wilcoxon rank-sum test), while AM and RM were essentially equal

(p = 0.41 and p = 0.44, respectively), and significantly better than

SW (p,1024). Using the sensitivity measure, BE was again best

Table 1. Properties of the tested methods.

Program Operating principle Reference

Seed-and-Wobble Ranks all 8-mers according to Wilcoxon-Mann-Whitney rank-sum score. The top scoring 8-mer is used
as a seed, its positions are ‘‘wobbled’’ and its length is extended in order to improve match to the data.
http://the_brain.bwh.harvard.edu/PBMAnalysisSuite/index.html

[4]

RankMotif++ Aims to predict the ranking of the probes according to their binding intensity. Maximizes the likelihood of
the ranking function, using the three top 7-mers as seeds. http://morrislab.med.utoronto.ca/software.html

[9]

BEEML-PBM Estimates the position and background biases from the data, then optimizes the parameters of a binding
energy model using BEEML algorithm, explicitly taking the biases into account. http://stormo.wustl.edu/beeml/

[10]

Amadeus-PBM Seeks enriched PWMs in 1000 top ranking 9-mers compared to the background set of all 9-mers, using
Amadeus motif finding algorithm. http://acgt.cs.tau.ac.il/amadeus//

Described here

doi:10.1371/journal.pone.0046145.t001

Table 2. Summary of the comparison. Boldface indicates significantly better performance than the other methods (including
equal top performance).

Similarity to
reference motifs

In vitro
binding prediction

In vivo binding
prediction

Running
time

Average Euclidean
distance

Spearman rank
coefficient

Sensitivity
at 1% FP AUC

Spearman rank
coefficient

Sensitivity
at 1% FP AUC Seconds

AM 0.178 0.27 0.342 0.876 0.152 0.089 0.653 30

SW 0.193 0.244 0.305 0.866 0.145 0.118 0.659 7200

RM 0.21 0.264 0.295 0.881 0.158 0.092 0.655 3600

BE 0.227 0.308 0.411 0.891 0.146 0.084 0.665 900

doi:10.1371/journal.pone.0046145.t002

Comparison of Motif Finding Algorithms in PBM Data
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(p,10215), AM second best (p = 3.8?1026 compared to SW), and

RM and SW were roughly the same (p = 0.18). Hence, BE showed

consistently best performance in all three measures, followed by

AM. Interestingly, BE gave the poorest AUC and Spearman

scores on a few samples. On larger probe sets (Figure 4), BE

performed best, followed by RM. The AUC and sensitivity criteria

deteriorated for all methods, as expected due to the increasing

difficulty in ranking lower-affinity probes. The Spearman score

improvement results from its bias to larger sets, so it is more

meaningful for comparison of sets of similar sizes. Full results are

available in Table S2.

Predicting in vivo binding intensities
Since PBM and SELEX are in vitro assays, which may introduce

biases, we also tested the methods’ abilities to predict binding

intensities for in vivo experiments. Our evaluation included ChIP-

chip datasets of 32 yeast TFs (69 experiments) that had also PBM

profiles [19,20]. A PWM learned according to the profiles of both

PBMs (when available) is tested against the data from a ChIP-chip

experiment. To evaluate the prediction on the high intensity

promoters, where binding is expected to be strongest, we used the

positive promoter set as those with reported p-values below 0.001.

All methods performed quite similarly on the AUC and

Spearman rank coefficient criteria (Figure 5). Using the sensitivity

measure, SW was better than the other three (p,0.02), AM and

BE were roughly the same (p = 0.39) and significantly better than

RM (p,0.04). Hence, SW showed consistently best performance

in all three measures, while AM and BE were second best (Table 2
and Figure 4). Full results are available in Table S3.

Running times
We ran each method on the same 10 examples using a single

core of an IntelH XeonH CPU E5410 @ 2.33 GHz, with 6 MB of

cache and 16 GB of memory. On average, AM runs for

30 seconds (including pre-processing), while BE, RM and SW

run for about 15 minutes, one hour and more than two hours,

Figure 1. Similarity to experimentally established PWMs. For 58 TFs, we compared the motifs produced from their PBM profiles by each
method, to the known motif from JASPAR database. Distance was measured using Euclidean distance. Three distance cutoffs were used, and the
fraction of recovered motifs with distance below the cutoff is the success rate. BE: BEEML-PBM, RM: RankMotif++, SW: Seed-and-Wobble, AM:
Amadeus-PBM, JR: JASPAR.
doi:10.1371/journal.pone.0046145.g001

Figure 2. Examples of generated motifs. The figure shows examples of the motifs produced by each method and the corresponding JASPAR
motif. For three proteins, the PWM logos produced by each method and the experimentally and independently established motif in the JASPAR
database are shown. AM was trained on motif length 8, while for BE, RM and SW only the most informative contiguous positions were kept. We chose
TFs whose motifs had information content most similar to the averages of the different methods.
doi:10.1371/journal.pone.0046145.g002

Comparison of Motif Finding Algorithms in PBM Data
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respectively (Table 2). BE currently uses SW results as seeds, thus

SW’s running time should be added to the total running time of

BE. Hence, AM provides a speedup by a factor of 30–200.

Similarity between the algorithms
We evaluated the similarity between the PWMs produced by

the four algorithms (Figure 6A). In terms of PWM distance, the

pairs AM/SW and RM/BE were more similar than others. Note

that the comparison is not symmetrical, since it uses the eight most

informative contiguous positions in the first PWM (corresponding

to a column in the table). Large asymmetries (e.g., SW-RM and

RM-SW) reflect the fact that these positions are not clearly

detectable in RM and BE PWMs (see also Figure 2). On average,

the distance between PWMs from different methods is similar to

the distance between these and the reference PWMs (Table 2).

We also compared the probe ranking that the PWMs of the

different algorithms induce (Figure 6B–D). We used a PWM

inferred by one algorithm on a PBM to rank the probe set of the

paired PBM, and measured sensitivity and AUC for these probes

ranking produced by another algorithm. Results tended to show

more symmetry, with pairs involving BE obtaining best scores, in

agreement with the good performance of BE in ranking (Figure 3
and Table 2). Additionally, we focused on rankings of the 4s
probe set and compared them using Spearman rank coefficient.

PWMs inferred by two algorithms on a PBM to rank the 4s probe

set of the paired PBM, and compared the two rankings using

Spearman score. Again pairs with BE got the highest scores, and

remarkably, all pair scores were much higher than their similarity

scores to original binding intensities (Spearman rank coefficient,

0.5–0.6 compared to 0.24–0.31, respectively).

Discussion

We have described an assessment of four tools for extracting

binding site motifs from PBM data. All four methods report their

results in the form of a positional weight matrix (PWM). Table 2
summarizes the comparison. All tools were run with their

recommended default parameters; tuning the parameters could

improve the results of some methods and affect the relative

ranking in our test criteria.

The reference motifs stored in databases are strongly dependent

on experimental sources. Most TRANSFAC and JASPAR motifs

that we used were created based on SELEX, an in vitro assay of

limited accuracy and throughput. Still, the relative performance of

the methods was essentially the same when tested on three

different databases of two species, which indicates robustness of

our conclusions.

The best results in similarity of reference mouse motifs to

predicted motifs from PBMs (Figure 1) were comparable to the

similarity of reference metazoan motifs to predicted motifs

obtained using a state-of-the-art motif finder that uses promoter

sequences [15]. On one hand, PBM profiles cover the spectrum of

possible sequences more comprehensively. On the other hand,

they include only relatively short motifs. To conclude, no clear

winner has yet emerged between PBM technology and traditional

motif finding methods in finding PWMs that are closest to

reference motifs.

Figure 3. Success rates in probe ranking of a paired PBM. For each TF and method, the PWM was learned using one array and used to infer
probe intensity ranking in its paired array. Ranking was gauged on a set of top positive probes (4s set) according to three measures: Spearman rank
coefficient, sensitivity at 1% false positive and AUC (see Methods S1 for all mathematical terms). For each quality measure, three distance cutoffs
were used, and the fraction of TFs with score equal or better to the cutoff is the success rate. The results show the success rate over 230 samples (115
paired arrays).
doi:10.1371/journal.pone.0046145.g003

Figure 4. Quality of binding prediction for in vivo and in vitro data of different sizes. For each of the four algorithms, the quality of the
motifs inferred from PBMs in ranking the top binding probes as measured in vivo (by ChIP-chip experiments) and in vitro (by PBMs) was evaluated.
The in vivo test included 69 yeast ChIP-chip experiments data (with an average of 61 promoters per experiment). The in vitro test included 230 mouse
PBMs covering 115 TFs, and used several definitions for the sets of top binding promoter sequences (4s to 1s, with averages of 912, 1580, 3215 and
8224 top probes, respectively, see text). Ranking quality was measured by the Spearman rank coefficient, the sensitivity at 1% false positive (FP) and
the area under the ROC curve (AUC) (see Methods S1). The average ranking quality is reported in each case.
doi:10.1371/journal.pone.0046145.g004
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When using binding intensities of one PBM as input and

predicting the ranking of probe intensities of another array for the

same TF, BE showed best performance. When using PBM binding

intensities to predict ranking of promoter intensities in a ChIP-chip

experiment for the same TF, SW performed best. We note that

there is still only a modest number of TFs with data from both

ChIP-chip and PBM; a larger benchmark for in vivo prediction,

containing also TF binding in metazoans, is needed.

The performance results can be explained by the different goals

of the algorithms. RM was designed to optimally rank all probes,

so it tries to capture both high-affinity and low-affinity binding

information. This explains why it performs less accurately when

analyzing the top-binding probes but performs better on very large

Figure 5. Test data and evaluation criteria. The table lists the data and evaluation criteria used in each benchmark.
doi:10.1371/journal.pone.0046145.g005

Figure 6. Similarity between methods. (A) For each pair of methods, the Euclidean distance between the PWMs of the two methods is reported.
Before the comparison, the column method’s PWM is trimmed to eight most informative contiguous positions. (B–D) ranking based comparisons. For
each pair of methods, the probe ranking defined according to the column’s method is used as reference, and the ranking of the row’s method is
evaluated using AUC (B) and sensitivity at 1% false positive (C). In (D), for each pair of methods, the 4s positive sets of the paired PBM are first ranked
by each method, and the Spearman rank coefficient of those rankings is computed. In all tables, the average over 230 PBM experiments is reported.
Red colour corresponds to greater similarity.
doi:10.1371/journal.pone.0046145.g006
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positive sets (Figure 4). The same applies to BE. The inclusion of

information from low-intensity binding yields better ranking of

low-affinity binding probes, but creates PWMs with lower

information content (Figure 2). In contrast, AM was designed

to identify specific binding motifs; it trains only on the 1000 top-

binding 9-mers, and so it only uses information on the specific

binding of the protein. Interestingly, SW is best for in vivo binding,

hinting that longer motifs with a stringent core might be better for

this data.

The comparison of the prediction results for in vitro and in vivo

data (Figure 4) is striking: The quality of the results is much

poorer on in vivo data, according to all evaluation criteria (similar

results were reported in [21]). This is in spite of the fact that the in

vivo data consisted of yeast motifs, which are easier to find than

mice motifs [5,15]. There can be several explanations of this

finding:

1. The length of the probes on the PBM (36 bp) is much shorter

than the whole yeast promoters targeted by ChIP-chip (an

average of 474 bp). As a result, scoring and ranking yeast

promoters is harder.

2. Biases caused by the PBM technology lead to systematic

distortion in the reconstructed motifs, compared to in vivo

motifs. If this is the case, revealing and correcting these biases is

essential for using the motifs for in vivo analysis.

3. The methods tailored specifically for PBMs may overfit this

type of data.

4. The complexity of in vivo assays distorts the raw binding signals,

which look more like the PBM-based motifs in a cleaner in vitro

environment.

One interesting phenomenon we encountered was secondary

motifs: For some PBMs, SW and AM identified a second,

completely different motif in addition to the primary one (Figure
S2). This phenomenon was first reported in [14]. Agius et al.

suggested that the secondary binding motifs arise as an artefact of

the PBM experiment [8]. Zhao and Stormo suggested that

secondary motifs are a result of a biased analysis of the PBM data

[10], but Morris et al. challenge this conclusion [22]. We tested the

benefit of using primary and secondary motifs discovered by SW

for in vitro binding prediction. While there was a significant

improvement in performance, it was still worse than BE (data not

shown). Jauch et al. recently obtained a crystal structure of the TF

Sox4 domain bound to DNA and concluded that two positions in

the binding motif are dependent [23]. Such dependency can be

manifested by two PWM motifs. Indeed, SW and to some extent

AM recover two motifs that reflect this dependence (Figure S3).

We agree with the conclusion in [21] that more matching PBM

and in vivo datasets are needed in order to shed more light on this

phenomenon.

An interesting insight arises from the comparison of the

methods (Figure 6D). In terms of the Spearman score of probe

ranking, all methods are much more similar to each other than to

the true binding intensities. This suggests that all methods capture

similar information, while missing other pertinent effects (e.g.,

background or technological biases). On the other hand,

predicting the top probes of another method was harder than

finding true positive probes (Figure 6D). Overall, BE had highest

pairwise ranking-based scores, concordant with our conclusion

that it predicts true binding best (Table 2). In terms of distance

between PWMs, higher similarities between AM and SW, and

between BE and RM, reflect the observation that the former pair

produce clear, stringent motifs, while the latter generate more

variable, ranking-oriented motifs.

Protein-DNA interactions can occur in a broad range of

intensities, and involve both specific and low-affinity (less specific)

binding. PBM data enable analysis of the full spectrum of DNA

binding affinities of a TF. The binding specificity of a protein can

be represented using various models, which differ in expressive-

ness, compactness, redundancy and interpretability. Our analysis

suggests that a PWM models the specific in vitro binding quite

accurately, obtaining an average AUC of 0.9 on the top probes.

The fact that results of all methods tend to deteriorate as the

positive sets grow (Figure 4), and the success of more complex

models in ranking [8] suggest that less specific binding may be

better captured by other models. The lower success of all methods

in predicting in vivo binding questions the transformability of PBM-

based results to the in vivo domain. Deeper analyses using more

data are required on this point.

Our study gauged performance using three criteria: similarity to

reference literature motifs, and ability to rank in vitro and in vivo

bindings. The tested methods show a tradeoff between ranking

quality and motif similarity. Degenerate motifs are better at in vitro

binding prediction at the cost of lower information content and

similarity to literature motifs. Potential improvement may be

achieved by novel methods that strive to optimize both criteria

simultaneously.

Materials and Methods

Algorithms
We compared four algorithms: Seed-and-Wobble (SW) [4],

RankMotif++ (RM) [9], BEEML-PBM (BE) [10] and Amadeus-

PBM (AM), a new algorithm presented here (see Methods S1).

The computational approaches of the algorithms are summarized

in Table 1. Software for BE, RM and SW was downloaded from

the authors’ websites and run using the default parameters. The

full details are in Methods S1.

PBM data
We downloaded PBM data from UniPROBE [13]. This

database contains, for each TF, paired probe intensity profiles

measured on two different arrays. We used the SCI09 dataset,

which contains paired profiles of 115 mouse proteins [13,14], and

the GR09 dataset, which contains profiles of 89 yeast TFs [20]

(Figure 5).

Reference PWM data
To compare predicted PWMs to experimentally obtained

PWMs, we used three databases of reference PWMs: JASPAR

[12] and TRANSFAC [16] for mouse motifs and the new yeast

motif database ScerTF [17] (Figure 5). We included in the

comparison only reference PWMs that were produced without

using PBM data.

ChIP-chip data
We downloaded the ChIP-chip data for yeast TFs from

Harbison et al. [19]. These data provide large-scale in vivo binding

for many TFs. Our test used 69 experiments (32 TFs) that had

PBM profiles in UniPROBE as well as ChIP-chip measurements.

Comparison and evaluation
We tested the quality of PWMs produced by each method in

three ways: by comparison to reference PWMs from the literature

(mostly SELEX-based), by their accuracy in predicting in vitro

binding in PBMs, and by their accuracy in predicting in vivo

binding as measured by ChIP-chip. In addition, we evaluated how

Comparison of Motif Finding Algorithms in PBM Data
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similar the methods are in a pairwise comparison using the same

criteria.

To compare a predicted PWM to a reference one, the

Euclidean distance between the two PWMs was calculated, as in

[15] (for a description of all evaluation criteria see Methods S1).

The information content of each matrix was also measured in

order to evaluate its degeneracy. Each algorithm was trained using

the data from both arrays for the same TF. PWMs were also

compared using the Tomtom algorithm [24].

For testing the quality of in vitro binding prediction, we followed

the method of [9]. Since two (paired) binding profiles were

available for each TF, a PWM was trained on one profile (the

‘‘training array’’) and used to rank the probes in the other profile

(the ‘‘test array’’). Given a PWM, the probes of the test array were

ranked using the sum occupancy score (see Methods S1). This

ranking was compared to the measured ranking of the probes in

the test array according to three criteria: Spearman rank

coefficient, sensitivity at 1% false positive rate and area under

the ROC curve (AUC) (see Methods S1 for all definitions). The

comparison was done on the probes that showed high binding

intensity in the test array (the positive probe set [9]).

To test the quality of in vivo binding predictions, we used similar

criteria. For each TF, we trained each method using both paired

binding profiles (when available) and tested how well the method

predicts the ranking of the strongest bound yeast promoters (see

Methods S1). Predicted and experimental rankings were

compared using the same three criteria.

In computing similarity between different methods, we used

four criteria. First, we measured the distance between the PWMs

inferred by each method. Second, for each method, using the

PWM learned on one array, we ranked the set of positive probes in

the paired array, and then measured the Spearman rank

coefficient between the rankings of each two methods. Third

and fourth, we used one method to rank the probes of the paired

array, and tested the prediction of the other method using

sensitivity at 1% false positive and AUC (see Methods S1 for

computational details).

Statistical significance of the comparison
For each comparison we evaluated its significance using the

Wilcoxon rank-sum test [25]. Since the gauged measurements do

not distribute normally, we used a non-parametric statistical test.

Supporting Information

Figure S1 Similarity to experimentally established
PWMs. (A) TRANSFAC motifs. For 80 proteins available in

TRANSFAC we compared the motifs produced from their PBM

data by each of the tested methods to the motif available in

TRANSFAC. Distance was measured using Euclidean distance.

Three distance cutoffs were used, 0.12, 0.18 and 0.24, and the

fraction of recovered motifs with distance below the cutoff is the

success rate. (B): ScerTF motifs. The same tests on 51 motifs from

the ScerTF database. AM: Amadeus-PBM; SW: Seed&Wobble;

RM: Rankmotif++; BE: BEEML-PBM.

(TIF)

Figure S2 Shadow motifs. Examples of the primary and

secondary motifs found by Amadeus for Pou2f3 (A) and Sox1 (B).

p-values for the motif enrichment (hypergeometric score) are

indicated above each motif. Note that even the second ranked

motifs obtain extremely high significance.

(TIF)

Figure S3 Sox4 primary and secondary motifs as found
by Seed-and-Wobble (SW) and Amadeus-PBM (AM).
Jauch et al. reported two motifs: CTTTGTT and AATTGTT

(23). (A) The two top motifs recovered by AM. The first motif of

Jauch et al. was recovered correctly; the second was partially

recovered. (B) The two top motifs recovered by SW. Both motifs

from Jauch et al. were inferred correctly. Logos taken from

UniPROBE database (13).

(TIF)

Table S1 Results of each of the four methods on
different reference motifs from the literature. Each line

gives the Euclidean distance between a PWM learned on PBM

data and a PWM from another source. On the right-hand side,

TOMTOM results are reported, giving the statistical significance

of PWM similarity.

(XLS)

Table S2 Results of each of the four methods on SCI09
PBM dataset for different positive probe set sizes
(4sigma to 1sigma). Each 2 consecutive lines refer to the

paired PBM version of the same TF. The one listed under ‘‘PBM

training data’’ is used for training, and the scores reported are for

testing on the other one.

(XLS)

Table S3 Results of each of the four methods on
Harbison et al. dataset. Each line gives the result of in vivo

binding prediction on data taken from on experiment.

(XLS)

Methods S1 Supplementary methods and results.

(DOC)
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RAP: Accurate and Fast Motif Finding Based

on Protein-Binding Microarray Data

YARON ORENSTEIN, ERAN MICK, and RON SHAMIR

ABSTRACT

The novel high-throughput technology of protein-binding microarrays (PBMs) measures
binding intensity of a transcription factor to thousands of DNA probe sequences. Several
algorithms have been developed to extract binding-site motifs from these data. Such motifs
are commonly represented by positional weight matrices. Previous studies have shown that
the motifs produced by these algorithms are either accurate in predicting in vitro binding or
similar to previously published motifs, but not both. In this work, we present a new simple
algorithm to infer binding-site motifs from PBM data. It outperforms prior art both in
predicting in vitro binding and in producing motifs similar to literature motifs. Our results
challenge previous claims that motifs with lower information content are better models for
transcription-factor binding specificity. Moreover, we tested the effect of motif length and
side positions flanking the ‘‘core’’ motif in the binding site. We show that side positions have
a significant effect and should not be removed, as commonly done. A large drop in the
results quality of all methods is observed between in vitro and in vivo binding prediction. The
software is available on acgt.cs.tau.ac.il/rap.

Key words: motif finding, protein-binding microarray, protein-binding site.

1. INTRODUCTION

Gene expression is regulated mainly by proteins that bind to short DNA segments. These proteins,

termed transcription factors (TFs), bind to short DNA sequences with variable affinity. These se-

quences, called binding sites (BSs), are usually found upstream to the gene transcription start site. This TF-BS

binding regulates gene expression, either by encouraging or impeding gene transcription.

Many technologies have been developed to measure the binding of TFs to DNA sequences. Chromatin

immunoprecipitation (ChIP) extracts bound DNA segments, which are then either hybridized to a predesigned

DNA microarray (Aparicio et al., 2004) or directly sequenced (Johnson et al., 2007; Rhee and Pugh, 2011).

These technologies can produce reasonably accurate in vivo binding profiles. However, they present some

difficulties. The binding is tested against genomic sequences only, which have sequence biases (e.g., they do

not cover all k-mers uniformly and thus can affect constructed models). In addition, many binding events are

due to cooperative binding by more than one TF. Moreover, accurate modeling of these binding events must

account for other significant factors that affect binding, such as nucleosome occupancy and chromatin state.
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In vitro technologies, such as protein-binding microarray (PBM) (Berger et al., 2006) and MITOMI

(Fordyce et al., 2010), measure binding of a TF to thousands of synthesized probe sequences. The se-

quences are designed to cover all DNA k-mers and so give an unbiased measurement of TF binding to a

wide spectrum of sequences. The binding is due to TF affinity without additional binding effects found

in vivo (albeit, with some technological biases). Current implementations of PBMs cover all DNA 10-mers

and are available in two different array designs. Another technology, based on high-throughput sequencing,

measures binding to random k-mers, with complete coverage of all 12-mers (Nutiu et al., 2011). The latter

study showed that some TFs bind to motifs of length greater than 10 and emphasized the importance of

greater k-mer coverage.

Several algorithms were developed for the specific task of learning binding-site motifs from protein-

binding microarray data. These include Seed-and-Wobble (SW) (Berger et al., 2006), RankMotif++ (RM)

(Chen et al., 2007), and BEEML-PBM (BE) (Zhao and Stormo, 2011). All produce the binding-site motif as

a position weight matrix (PWM). For each position, the binding preference is given by a probability

distribution over four nucleotides. Agius et al. (2010) developed a much more complex model based on a

collection of 13-mers, but we will focus here on the PWM model, which is far more common and

transparent. A previous study by our group compared these different methods using several evaluation

criteria (Orenstein et al., 2012). Weirauch et al. (2012) compared methods for TF-binding prediction using

PBMs. A key observation that emerged from both studies is a dichotomy of current motif construction

methods: Some produce motifs that accurately predict in vitro binding; other methods produce motifs with

higher information content that are more similar to literature motifs. No method performed well in both

tasks.

The current state of affairs of PBM-based motif prediction raises several questions: Can one develop a

method that produces motifs that are both similar to literature motifs and accurately predict in vitro

binding? What is the best model for TF-binding preference? Is it a PWM with low or high information

content motifs? What is the best length of the binding site that can be learned from PBM data?

In this study, we address all these questions. We developed a new simple method to extract binding-site

motifs, represented in PWM format, from PBM data. In spite of its simplicity, the method produces motifs

that achieve top performance both in predicting in vitro binding and in similarity to known motifs. By

comparing the performance of motifs of different lengths we conclude that longer motifs are better and that

inclusion of flanking positions—even with relatively low information—has a positive effect on predicting

binding affinity. We also give evidence to a large gap between the quality of in vitro and in vivo binding

prediction.

2. RESULTS

2.1. The RAP algorithm

We developed a new method for finding binding-site motifs using PBM data. The method works in four

phases. (1) Ranking phase: rank all 8-mers by the average binding intensity of the probes in which they

appear. (2) Alignment phase: align the top 500 8-mers to the top-scoring 8-mer using star alignment

(Altschul and Lipman, 1989). 8-mers must align with an overlap of at least five positions, at least four

matches, and at least three consecutive matches, otherwise, they are discarded. (3) PWM phase: use the

aligned 8-mers to build a PWM. The core matrix is of length 8. In each column of the PWM, the nucleotide

probabilities are calculated according to a weighted count in the corresponding column of the alignment.

(4) Extension phase: the matrix is extended to both sides according to the original probes that contain each

of the aligned 8-mers. In each peripheral position, the probe sequences and their scores are used to calculate

nucleotide probabilities in a similar fashion as for the core positions. The method is called RAP (for rank,

align, PWM). Its running time is less than 2 seconds for one PBM data file, where most of the time is

needed to read the file.

2.2. Performance comparison: predicting in vitro binding

We tested RAP, SW (Berger et al., 2006), RM (Chen et al., 2007), and BE (Zhao and Stormo, 2011) in

predicting high-affinity binding. Most TFs studied by PBMs to date were measured in a pair of experiments

using two different array designs. This allows an elegant way to test performance, as suggested in Chen

376 ORENSTEIN ET AL.



et al. (2007): The binding site is learned according to one array and tested on the other. For this test, we

used all TFs in the UniPROBE database that had such paired experiments. PBM experiments that had a

positive set of less than 20 probes (see Methods) were excluded from the testing results. In total, the results

reported below cover 316 PBM experiments.

A PWM learned using one array was used to rank the probes of its paired array. This ranking was

compared to the ranking according to true binding intensity using three criteria: area under the ROC curve

(AUC), sensitivity at 1% false positive (TP1FP), and Spearman rank coefficient (see Methods). RAP

achieves best average performance in all criteria, followed by BE, RM, and SW in this order (Table 1). The

advantage of RAP over BE is not significant in all criteria, while the advantage of both RAP and BE over

RM and SW is significant (p < 0.05, Wilcoxon rank-sum test). In terms of median performance, BE is

slightly better than RAP. Figure 1 shows a dot plot comparison of RAP and BE.

2.3. Performance comparison: similarity to literature motifs

We compared motifs learned by the different methods to motifs learned from non-PBM technologies.

We used 58 mouse and 51 yeast PWMs taken from the JASPAR (Bryne et al., 2008) and ScerTF (Spivak

and Stormo, 2012) databases, respectively, and calculated the similarity to PWMs learned by the different

methods (on two paired PBM profiles together, when available). We measured dissimilarity using Eu-

clidean distance. In addition, we calculated the average information content (IC) of the PWMs of each

method (see Methods). The results are summarized in Table 2.

RAP achieves best similarity, followed closely by SW (p-value = 0.14, Wilcoxon rank-sum test), while

RM and BE are far less similar to literature motifs (p-value < 0.0003). SW had the highest average IC

(1.33), significantly higher than RAP, RM, and BE in that order. Figure 2a shows a boxplot of similarity to

known motifs, with colors depicting the IC of each PWM. On average higher IC correlates with lower

Euclidean distance, e.g., about - 0.4 correlation for BE and RM. Figure 2b shows examples of PWMs in

logo format.

Table 1. Predicting In Vitro Binding

Method/criterion AUC TP1FP Spearman

RAP 0.880 0.435 0.293

BEEML-PBM 0.873 0.418 0.283

Seed-and-Wobble 0.858 0.332 0.239

RankMotif++ 0.869 0.292 0.245

The table shows average results in three different criteria for each method over 316 PBM pairs. In each

experiment, a PWM was learned using one array and then used to rank probes of its paired array. This ranking was

compared to the original probe ranking using AUC, sensitivity at 1% false positive (TP1FP), and Spearman rank

coefficient. AUC, area under the curve; PWM, position weight matrix; RAP, rank, align, PWM; PBM, protein-

binding microarray.

FIG. 1. Comparison of RAP and BEEML-PBM (BE) in predicting in vitro binding. Data and performance criteria are

as in Table 1. Each dot corresponds to a PBM experiment, and the x- and y-axis are RAP and BE performance results

for that experiment, respectively. Note that in the AUC plot experiments with low score are not shown. RAP, rank,

align, PWM; PBM, protein-binding microarrays.
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2.4. The effect of motif length and flanking sequences

We tested the effect of motif length and flanking sequences on the ability to predict in vitro binding. We

took the PWMs produced by the different methods, and for different values of k, we kept the k contiguous

positions with the highest IC. In another test, since different TFs may have different lengths, we also

trimmed side positions by using an IC threshold. Figure 3 summarizes the results of both tests.

For most methods, longer motifs are better. The performance of RAP, BE, and RM declined as motif

length decreased. On the other hand, SW’s performance peaked at length 11 and decreased for longer

motifs (Fig. 3a). All four methods did not benefit from trimming flanking positions with low IC (Fig. 3b).

Both BE and RM deteriorated sharply as the cutoff increased, since they produce PWMs with low IC

(compare Table 2). RAP and SW were barely affected.

2.5. Predicting in vivo binding

We also tested the performance of the methods in predicting in vivo binding. We used the Harbison et al.

(2004) data set and its definition of a positive promoter set, focusing on 69 yeast ChIP-chip experiments

with corresponding TFs in the UniPROBE database. We used the PWM learned using PBM data to predict

ranking of yeast promoter sequences and compared it to the true ranking reported by Harbison et al., using

the same three criteria. The results are summarized in Table 3.

Table 2. Dissimilarity to Literature Motifs and Information Content

Method/criterion Dissimilarity Information content

RAP 0.197 0.992

Seed-and-Wobble 0.201 1.330

RankMotif++ 0.222 0.884

BEEML-PBM 0.232 0.689

We calculated Euclidean distances between PWMs learned by each method and the

corresponding matrices in JASPAR and ScerTF (51 mouse and 58 yeast PWMs, respectively).

The table shows average distance for each method. Information content averages are calculated

for the PWMs learned by each method.

FIG. 2. Dissimilarity to literature motifs and logo comparison. (a) Dissimilarity values boxplots. Binding sites were

learned by each method, and the Euclidean distance was measured against 109 PWMs from JASPAR and ScerTF. Dots

correspond to transcription factors (TFs) where height is the distance and color reflects the information content (IC) of

the PWM. Black: IC > 1.3; orange: 1.3 ‡ IC > 0.9; yellow: IC £ 0.9. (b) PWM logos for Ceh-22 protein.
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In terms of AUC and Spearman score, all methods performed roughly equally. SW and RM performed

slightly (but not significantly) better in the sensitivity and Spearman criterion, respectively. Notably, all

methods performed much worse in predicting in vivo binding than in predicting in vitro binding (compare

Table 1).

3. DISCUSSION

We have developed RAP, a new algorithm to extract binding-site motifs in PWM format from protein-

binding microarray data. Previous studies observed that algorithms for this task fall into two categories

(Orenstein et al., 2012; Weirauch et al., 2012). Some algorithms predict in vitro binding well but produce

motifs that show low resemblance to motifs reported in the literature. Others match literature motifs

(extracted using other technologies) well, but are less successful in in vitro binding prediction. This raised

the question whether the dichotomy is inevitable. Here we show this is not the case. The RAP algorithm

achieved top performance in both criteria. In terms of in vitro binding, it is on a par with BE; its motifs are

as similar to literature motifs as those of SW. Notably, its running time is a couple of seconds, 2–3 orders of

magnitude faster than the other algorithms.

We note that while RAP is slightly better on average than BE, the latter was slightly better in median. For

more TFs, BE results are better than RAP’s (Fig. 1). But for some, it fails to capture the binding preference

correctly. For example, BE achieves AUC < 0.5 for 10 TFs, while only one such case exists for RAP.

FIG. 3. Effect of motif length and information content on predicting in vitro binding. (a) Performance as a function of

motif length. For each PWM, we kept the k most informative contiguous positions and tested the ability of the resulting

motif to predict in vitro binding. When the motif length was smaller than k, we used all positions. Average results of

three criteria are shown in the graphs. (b) Performance as a function of IC cutoff. For each PWM, we removed all

contiguous side positions with IC below the cutoff until reaching the first position with higher IC. The graphs show

average results using the same three criteria.

Table 3. Predicting In vivo Binding

Method/criterion AUC TP1FP Spearman

RAP 0.662 0.108 0.149

Seed-and-Wobble 0.659 0.118 0.145

RankMotif++ 0.655 0.092 0.158

BEEML-PBM 0.665 0.084 0.146

The table shows average results for each method over 69 ChIP-chip experiments. In each experiment, a PWM

learned using PBM data was used to rank yeast promoter sequences. This ranking was compared to the original

promoter ranking using AUC, sensitivity at 1% false positive (TP1FP), and Spearman rank coefficient.
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Hence, BE performs slightly better in more samples, but has a few failures, whereas RAP is robust and

produces accurate motifs in almost all cases.

In spite of its very simple algorithm, RAP was shown to be powerful and quite accurate. What explains

RAP’s performance? Like other methods, it combines information about binding intensities of 8-mers using

their occurrences in multiple probes in order to evaluate robustly the 8-mers binding intensity. Unlike other

methods, it then focuses solely on the top-binding 8-mers. Star alignment of the top 500 8-mers to the top-

ranked one is a simple yet effective way to extract an initial core motif, which is then extended using the

original probes. Our tests showed that the use of 500 top 8-mers is optimal, with performance dropping when

more k-mers are used. It is possible that a part of the advantage of RAP is gained by focusing on the top 8-

mers: They are informative enough to reveal a PWM with good binding-prediction quality, and this approach

avoids noise and reduced IC that would be caused by incorporating information from lower intensity probes.

Previous studies suggested that TF-binding preference is best modeled by low IC motifs (cf. Weirauch et

al., 2012). This is a natural conjecture derived from the dichotomy of previous methods, since literature

motifs tend to have high IC. The RAP algorithm goes against this suggestion: It produces motifs with

relatively high IC, which are on par with the best in predicting in vitro binding. (SW motifs have sub-

stantially higher IC, but they do not perform highly in both criteria).

Our tests of the effect of motif length on performance showed that peripheral positions do affect TF

binding. For RM, BE, and RAP, the performance deteriorated as the motif was shortened. Only SW (whose

performance was generally lower) did worse for motifs of length ‡ 11. Hence, while the core motifs are

easier to comprehend, keeping flanking positions in the model is beneficial. As current PBM techniques are

limited to covering all 10-mers (or 12-mers) (Nutiu et al., 2011), producing larger arrays would allow more

accurate inference of longer motifs. Our analysis also shows that using IC cutoffs to remove flanking

positions is too crude and is particularly damaging to low IC motifs. Hence, both tests suggest that side

positions should be kept in the model, in agreement with conclusions reported in Nutiu et al. (2011). To our

knowledge, this is the largest-scale rigorous test of the effect of motif length.

Our results show that all algorithms give much poorer prediction on in vivo compared to in vitro data

(Table 3): AUC drops from 0.88 to 0.665, and sensitivity deteriorates from 0.435 to 0.118. While the

complexity of the in vivo environment may explain this in part, the severity of the gap in the quality of the

results questions our ability to carry over the powerful results achievable using PBMs to the natural

environment. More complex in vivo models that could combine ‘‘naked’’ in vitro motifs with epigenetic

marks and other parameters may help to narrow this gap.

In summary, we developed a new algorithm and showed that it is highly accurate in both predicting in

vitro binding and producing interpretable motifs. Our results question the claim that TF binding preference

is best modeled with low IC motifs and highlight the importance of using long motif models and of learning

peripheral positions correctly. Carrying these results over to in vivo predictions remains an important

challenge.

4. METHODS

4.1. Data

We downloaded all paired PBM profiles from the UniPROBE database (Robasky and Bulyk, 2011),

obtaining 364 PBM profiles (182 pairs). From these we removed all PBM profiles, where the size of the

positive set (see definition below) on the test array was smaller than 20. This resulted in 316 PBM profiles

to test the methods performance.

We compared similarity between motifs learned from PBM data and motifs learned by independent

technologies. For this aim, we used 58 mouse TFs that had a PBM profile in the SCI09 study (Badis et al.,

2009) and had a model not based on PBM in the JASPAR database (Bryne et al., 2008). Similarly, we

collected 51 yeast TFs that had a PBM profile in the GR09 study (Zhu et al., 2009) and were present in

ScerTF database (Spivak and Stormo, 2012). The motif was learned using the PBM profile or two paired

profiles, when available, and compared against the PWM from the database.

For the in vivo binding prediction we used Harbison et al. ChIP-chip dataset (Harbison et al., 2004). The

positive promoter set included all promoters with p-value < 0.001 according to Harbison et al. (2004). We

used all experiments with a TF in the GR09 dataset (Zhu et al., 2009). This resulted in 69 different

experiments.
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4.2. Comparison criteria

We tested the ability of each method to predict in vitro binding of another PBM array. A binding site in

PWM format was learned using one PBM profile. The PWM was used to rank all probe sequences of the

paired array. For each probe an occupancy score was calculated, which is the sum of the probability of the

TF to bind over all positions (Tanay, 2006). This score is used to rank all probes. For probe sequence s and

PWM Y of length k, the sum occupancy score is

f (s‚Y) =
Xjsj - k

t = 0

Yk

i = 1
Yi[st + i]

where Yi(x) is the probability of base x in position i of the PWM. The ranking due to the occupancy score is

compared to the original probe ranking according to the binding intensity. A positive set of probes is

defined as the probes with binding intensity greater than the median by at least 4 * (MAD/0.6745), where

MAD is the median absolute deviation (MAD = 0.6745 for the normal distribution N(0,1)) (Chen et al.,

2007). Three criteria are used to gauge the ranking: AUC of ROC curve, sensitivity (true positive rate) at

1% false positive (TP1FP), and Spearman rank coefficient among the positive set (Orenstein et al., 2012).

For interpretability and motif similarity we used average IC and average Euclidean distance. The IC for

vector (v1, v2, v3, v4) (where
P

i vi = 1) is defined as 2 +
P

i vi log(vi) (Schneider et al., 1986). The IC for a

PWM is the average IC of the most informative eight contiguous positions, since peripheral positions tend

to be of low IC and bias the results. To measure the similarity between two motifs we used Euclidean

distance (Harbison et al., 2004). For two PWMs, we tried all possible offsets, with an overlap of at least five

positions, and chose the one with minimal average Euclidean distance between columns. Motif logos were

plotted using http://demo.tinyray.com/weblogo

In vivo binding prediction is tested in the same fashion as for probe ranking. Yeast promoters are ranked

according to occupancy score using a PWM learned by one of the methods. The ranking is compared to the

original ranking by p-value. AUC, TP1FP, and Spearman rank coefficient are used to gauge the ranking

(Orenstein et al., 2012).

4.3. Implementation details

The method is implemented efficiently in Java. Each nucleotide is coded by 2 bits. The 8-mers are kept in

a hash table, together with pointers to the original probes in which they appear. The software is available on

acgt.cs.tau.ac.il/rap.
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Design of shortest double-stranded DNA sequences covering all

k-mers with applications to protein-binding microarrays and

synthetic enhancers
Yaron Orenstein and Ron Shamir*
Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

ABSTRACT

Motivation: Novel technologies can generate large sets of short

double-stranded DNA sequences that can be used to measure their

regulatory effects. Microarrays can measure in vitro the binding inten-

sity of a protein to thousands of probes. Synthetic enhancer se-

quences inserted into an organism’s genome allow us to measure

in vivo the effect of such sequences on the phenotype. In both appli-

cations, by using sequence probes that cover all k-mers, a compre-

hensive picture of the effect of all possible short sequences on gene

regulation is obtained. The value of k that can be used in practice is,

however, severely limited by cost and space considerations. A key

challenge is, therefore, to cover all k-mers with a minimal number of

probes. The standard way to do this uses the de Bruijn sequence of

length 4k. However, as probes are double stranded, when a k-mer is

included in a probe, its reverse complement k-mer is accounted for as

well.

Results: Here, we show how to efficiently create a shortest possible

sequence with the property that it contains each k-mer or its reverse

complement, but not necessarily both. The length of the resulting se-

quence approaches half that of the de Bruijn sequence as k increases

resulting in a more efficient array, which allows covering more longer

sequences; alternatively, additional sequences with redundant k-mers

of interest can be added.

Availability: The software is freely available from our website http://

acgt.cs.tau.ac.il/shortcake/.

Contact: rshamir@tau.ac.il

1 INTRODUCTION

Gene regulation is a central focus of biological research. The

main factors that regulate gene expression are transcription fac-

tors (TFs). These proteins bind to short DNA sequences, either

in promoters or enhancers, and by that encourage or impede

gene transcription. TFs bind to different DNA sequences with

different affinity and specificity. Understanding TF-binding spe-

cificity and its effect on gene expression and the final phenotype

is a fundamental goal in the study of gene regulation.

Recent technologies measure the binding intensity of a TF to

many DNA sequences [e.g. protein-binding microarray (PBM)

(Berger et al., 2006) and MITOMI [Fordyce et al., 2010)]. These

technologies synthesize a large set of DNA sequences and meas-

ure the binding intensity of the TF to each of those sequences.

Some technologies use random DNA sequences (Nutiu et al.,

2011). Others use sequences that cover all possible DNA

k-mers, as they provide a complete picture of the binding

spectrum (Berger et al., 2006; Fordyce et al., 2010). A similar

approach was also used to test binding in vivo. A recent study

used synthesized enhancer oligomers designed to cover all 6mers

to test their effect on limb formation in zebrafish (Smith and

Ahituv, 2012).

De Bruijn sequences are the most compact sequences that cover

all k-mers (Berger et al., 2006; Fordyce et al., 2010). The length

of a de Bruijn sequence of order k over alphabet j�j is j�jk,

where the DNA alphabet is � ¼ fA,C,G,Tg. Because of the

exponential dependency on k and small space on the experimen-

tal device, these technologies are limited to a small value of k.

The most popular technology, PBM, was used in hundreds of

experiments to date using arrays with k¼ 10. To create p-long

probe sequences, the sequence is split into intervals of length p

with k� 1 overlap (p¼ 36 is used in PBMs).
Despite the universal and high-throughput nature of these

technologies, the data produced are still limited. For many

TFs, binding depends on410 DNA positions, usually with six

to eight core positions and additional side positions that have a

significant contribution (Nutiu et al., 2011; Orenstein et al.,

2013). A recent study from the Taipale Laboratory using HT-

Selex showed that many TFs have longer motifs that are not

covered well by an all 10mer array (Jolma et al., 2013). The

RankMotifþþ algorithm for PBM data also generates motifs

of length 410 in most cases (Chen et al., 2007). Covering all

k-mers for a greater value of k will lead to improved understand-

ing of TF binding.
As the probes are double-stranded DNA segments, one can

save by using the reverse complementarity of DNA: whenever a

k-mer is included, its reverse complement is included as well, and

there is no need to cover it again. This brings up the following

question: a sequence S is called a reverse complementary complete

sequence of order k (RC complete sequence for short) if for each

k-mer either the k-mer or its reverse complement are included in

S. Can we construct an optimal (minimum length) RC complete

sequence? Theoretically, if for each k-mer T the sequence S in-

cludes either T or its reverse complement but not both, one could

save a factor of nearly 2 compared with the length of a de Bruijn

sequence.
Ministeris and Eisen (2006) and Philippakis et al. (2008) pro-

posed the use of (regular) de Bruijn sequences for designing

probes for PBMs. Philippakis et al. used linear feedback shift

registers to generate a de Bruijn sequence with good coverage

of gapped k-mers. This approach was used for constructing two

microarrays that are in use today with k¼ 10 (Berger et al.,

2006). The idea of exploiting reverse complementarity was

raised byMinisteris and Eisen (2006), who sketched an algorithm

for it without proof. In fact, as we shall show, the algorithm of*To whom correspondence should be addressed.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

 at T
el A

viv U
niversity on M

ay 14, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://acgt.cs.tau.ac.il/shortcake/
http://acgt.cs.tau.ac.il/shortcake/
mailto:rshamir@tau.ac.il
http://bioinformatics.oxfordjournals.org/


Mintseris and Eisen (2006) does not provide an optimal solution
for even values of k. In the context of sequence assembly,
Medvedev et al. (Medvedev and Brudno, 2009; Medvedev

et al., 2007) solved the problem of constructing a minimum
length sequence that covers a given set of k-mers, using reverse
complementarity. Although their algorithm can be applied to

solve the problem raised in this study, they do not address it
directly. When applied to our problem, their algorithm requires
Oðk2 log2ðj�jÞj�j2kÞ time. As we shall see, our algorithm is much

faster.
In this study, we address the problem of constructing an op-

timal RC complete sequence. We first give a lower bound for the

length of such a sequence. We prove that for odd k, there exists a
sequence that achieves the lower bound and show how to con-
struct it in time complexity that is linear in the output sequence

length. For odd k, the algorithm constructs two tours that are
reverse complementary to each other and together cover all edges

of the de Bruijn graph and is identical to Mintseris and Eisen
(2006). Then, we show how to adjust the algorithm to handle the
case of even k, achieving a saving factor approaching 2 as k

increases. We give two solutions: a simple near-optimal one
requiring linear time and a more complex (Oðkj�j5k=4 logðj�jÞÞ
time) solution that guarantees optimality of the resulting se-

quence. In particular, this implies that the lower bound is not
tight for even k. We implemented the algorithm and we demon-
strate the saving it achieves. The produced sequences are nearly

half the length compared with a regular de Bruijn sequence.
The article is organized as follows. We first provide for-

mal definitions and preliminaries. We then present a lower

bound for the length of an optimal sequence based on k-mer
counts. Then, we present an algorithm that works in linear time
on the de Bruijn graph and prove that it solves the problem for

odd k. We conclude by describing the two possible solutions for
even k and report on experimental results with all the algorithms.

2 PRELIMINARIES

We start with some basic definitions of graphs and sequences.

For more details see, e.g. West et al. (2001).
A directed graph (digraph or simply a graph) G ¼ ðV,EÞ is a

set of vertices V ¼ fv1, v2, . . . , vng and a set of edges

E ¼ fe1, e2, . . . , emg. Each edge is an ordered pair of vertices
ðvi, vjÞ, and we say the edge is directed from vi to vj. The indegree
of vertex v is the number of edges entering v. Similarly, the out-

degree is the number of edges outgoing from v. A vertex is
balanced if its indegree equals its outdegree. A path in a digraph

is a sequence of vertices, vi1 , . . . , vik , such that for each 1 � j5k
there is an edge ðvij , vijþ1 Þ. A cycle is a path where i1 ¼ ik. A
digraph is strongly connected if for every pair of vertices u, v

there exists a path from u to v and a path from v to u. A strongly
connected component in a digraph is a maximal set of vertices that
induces a strongly connected subgraph.

An Eulerian tour through a digraph G is a cycle that traverses
all edges in G, such that each edge is traversed exactly once. If a
digraph contains an Eulerian tour, we call it Eulerian. A digraph

is Eulerian if and only if it is strongly connected and all vertices
are balanced (West et al., 2001).
A de Bruijn sequence of order k over alphabet � is a minimum

length sequence that covers each k-mer over � exactly once. For

convenience, we define the length of the sequence as the number

of k-mers in it. Hence, a sequence of length t contains tþ k� 1

characters. A de Bruijn sequence has length j�jk, which is the

minimum possible for covering all k-mers.
Given sequences a, b over alphabet �, the overlap between a

and b, denoted ovða, bÞ, is the largest suffix of a that is also a

prefix of b.

A de Bruijn graph of order k is a digraph in which for every

possible k-mer x1, . . . , xk there is a vertex denoted by

½x1, . . . , xk�. There is an edge from u to v if and only if

u ¼ ½x1, . . . , xk� and v ¼ ½x2, . . . , xkþ1�, that is,

jovðu, vÞj ¼ k� 1. Each edge represents a unique ðkþ 1Þ-mer.

For example, the edge ðu, vÞ above represents ðx1, . . . , xkþ1Þ.

To distinguish vertices from edges, we will use square brackets

for vertices. Hence, ðx1, . . . , xkþ1Þ is the edge between

½x1, . . . , xk� and ½x2, . . . , xkþ1�. Obviously, for each vertex v the

indegree and outdegree are j�j, and the graph is strongly con-

nected. Thus, a de Bruijn graph is Eulerian. Any Eulerian tour

represents a de Bruijn sequence of order kþ 1. Each edge and

vertex in the graph is represented by Oðk logðj�jÞÞ bits.

Throughout the article, we assume this number of bits is con-

tained in one computer word; hence, we deduce that it takes O(1)

time to find an edge or a vertex.
A complementarity relation between characters is a symmetric

non-reflexive one-to-one relation. The alphabet of DNA is

� ¼ fA,C,G,Tg with the complementarity relation �A ¼ T and
�C ¼ G. By symmetry also �T ¼ A and �G ¼ C. The reverse com-

plement of sequence ðx1, . . . , xkÞ, denoted RCðx1, . . . , xkÞ, is

defined as the sequence obtained by reversing the original se-

quence and replacing each character by its complement, i.e.

RCðx1, . . . , xkÞ ¼ ð �xk, . . . , �x1Þ. For example, RCðCGAAÞ ¼

TTCG . A sequence s is called a palindromic reverse complemen-

tary sequence or in short a palindrome, if s ¼ RCðsÞ. For ex-

ample, ACGT is a palindrome. We define a reverse

complementary complete sequence of order k over alphabet �

(RC complete sequence for short) as a sequence such that for

each k-mer s, at least one of s and RC(s) are in the sequence.

Note that unlike a regular de Bruijn sequence, the definition of

an RC complete sequence does not require minimality. An RC

complete sequence is optimal if it is of minimum length.

3 RESULTS

3.1 A lower bound for the length of an RC complete

sequence

First, we derive a lower bound for the length of an RC complete

sequence from k-mer counts.

PROPOSITION 1. Denote by n�ðkÞ the length of an optimal RC

complete sequence of order k.

n�ðkÞ �
j�jk

2 , if k is odd
j�jkþj�jk=2

2 , if k is even

(
ð1Þ

PROOF. We consider separately the cases of odd and even k. For

odd k, there are no palindromes, as the middle position in a

k-mer differs from its reverse complement. Each k-mer must be

represented in the sequence by itself or its reverse complement.
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Thus, a lower bound for the minimum length is half the number
of unique k-mers, which is j�jk=2. For even k, some k-mers are
palindromes. For palindromes, the first k=2 characters define the

last k=2 characters. Hence, there are exactly j�jk=2 different pal-
indromes. All palindromes must appear at least once in any RC
complete sequence, whereas for the non-palindromic k-mers,
either they or their reverse complement must appear in the

sequence. Thus, for even k, n�ðkÞ � j�j
k�j�jk=2

2 þ j�jk=2. g
We shall show later that n�ðkÞ is tight for odd k, but not for

even k.

3.2 Constructing an optimal RC complete sequence

for odd k

In this section, we prove constructively that for odd k there exists

an RC complete sequence that achieves the lower bound of
Proposition 1 and is thus optimal. The proof modifies the
Euler tour algorithm (West et al., 2001). The modified algorithm
was presented without proof in Mintseris and Eisen (2006). The

algorithm for generating the sequence will work on the de Bruijn
graph of order k� 1. Every k-mer is represented in the graph as
an edge, the graph is strongly connected and all vertices are

balanced. As there are no palindromes of odd length, every
edge has a unique reverse complement counterpart that is differ-
ent from it. This defines a perfect matchingM on the edges of the

graph.
Given a directed path F in the graph, its reverse complement

path is defined as the path R in which each edge ðu, vÞ in F is

replaced by the edge ð �v, �uÞ. For example, for the path
ðACGÞ ! ðCGGÞ ! ðGGTÞ, its reverse complement is
ðACCÞ ! ðCCGÞ ! ðCGTÞ (Fig. 1). We will refer to F and R

as forward and reverse paths, respectively.
The following theorem provides a necessary and sufficient

condition for the existence of an RC complete sequence that

achieves the lower bound.

THEOREM 1. For odd k, an RC complete sequence s achieves

the lower bound (Proposition 1) if there exist two edge-disjoint
paths with no repeating edges, corresponding to s and RC(s), that
together cover all edges of the de Bruijn graph of order k� 1.

PROOF. ) Observe that the lower bound assumes one occur-

rence of either w or RC(w) but not both in the sequence for

each k-mer w. Assume an RC complete sequence s� achieves

the lower bound. Then, because of its minimality, it contains

no repeating k-mers; therefore, it must correspond to a path F

in the de Bruijn graph with no repeating edges. The ordered set

of k-mers in s� corresponds to consecutive edges in F. Note

that the reverse complement sequence t� ¼ RCðs�Þ is also a

path R in the graph: the k-mers in R are the reverse complement

of those in F; therefore, consecutive edges form a path in

the graph traversed in reverse order. As each k-mer or its re-

verse complement is covered in s�, it is also true that each

k-mer or its reverse complement is covered by t�, and the two

paths F and R, corresponding to the two sequences, together

cover all edges.

( Suppose there are two edge-disjoint paths F and R with no

repeated edges that together cover all edges. As they are reverse

complement of each other, and together cover all edges, for each

k-mer w, the sequence s (corresponding to path F) must contain

either w or RC(w) (otherwise, some edges would have been un-

covered). Hence, s is an RC complete sequence. The same argu-

ment holds for RC(s) (corresponding to path R). As each

contains exactly half the edges, the length of each of them

equals the lower bound g.

Before presenting the algorithm for finding an optimal RC

complete sequence, we remind the reader of the algorithm for

finding an Eulerian cycle in a digraph (Fleischner, 1990). The

algorithm starts from an arbitrary source vertex. Initially all

edges are unmarked. It traverses a path of unmarked edges in

arbitrary order. Each traversed edge is marked; therefore, no

edge is traversed more than once. The algorithm also maintains

a set A of the visited vertices that are still active, i.e. they have

outgoing unmarked edges. When the last unmarked edge outgo-

ing from a vertex is traversed, the vertex is removed from A. If

the algorithm reaches a dead end, it starts another traversal from

another vertex in A. A dead end can only be achieved when

closing a cycle (i.e. returning to the source vertex), as in any

other vertex there is always a free incoming edge and a free

outgoing edge (as for every vertex except the source the un-

marked outdegree and the unmarked indegree are equal). If

not all edges have been traversed,A is not empty, and the process

can start from a new source. In the end, as the graph is strongly

connected and all cycles start from visited vertices (except for the

initial vertex), the cycles can be joined to form one Eulerian

cycle. The running time of the algorithm is linear in the

number of vertices and edges.
Algorithm 1 finds an optimal RC complete sequence in a de

Bruijn graph of order k� 1 when k is odd. The algorithm imi-

tates the Euler path algorithm but maintains both a forward

sequence and a reverse complement sequence simultaneously.

The collection of cycles traversed so far is kept in F and the

corresponding reverse complement cycles set is R.

Algorithm 1. Find forward and reverse paths that cover all edges in a de

Bruijn graph G ¼ ðV,EÞ of even order k� 1.

(1) Initially all edges are unmarked, F ¼ R ¼ ;, and A ¼ fug,

an arbitrary vertex.

ACG
CGG

GGT

ACGG CGGT

CGT
CCG

ACC

CCGT ACCG

Fig. 1. An illustration of forward and reverse paths (top and bottom,

respectively). The forward path traverses the edges in their direction. The

corresponding reverse path traverses the reverse complementary edges in

reverse direction
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(2) Although A 6¼ ; do

(3) F ¼ R ¼ ;.

(4) Pick any starting vertex v ¼ ½x1, . . . , xk�1� from A.

(5) Although there exists an unmarked edge

e ¼ ðx1, . . . , xkÞ outgoing from v do

(6) Append e to F. Prepend RC(e) to R.

(7) Mark e and RC(e).

(8) Set v ¼ ½x2, . . . , xk�; A ¼ A [ fvg.

(9) Remove v from A.

(10) If F 6¼ ;, add F to F ; add R to R;

(11) Merge the cycles in F to obtain a single forward path.

Do the same for R.

THEOREM 2. For odd k, Algorithm 1 returns forward and reverse

paths that cover together all edges of the graph and represent

two optimal RC complete sequences. The algorithm runs in

OðjVjÞ time.

PROOF. We prove the theorem using several lemmas. We first

show that if the forward path F reaches a dead end, then so

does the reverse path R, and in that case, a cycle is closed

(Lemma 1). Note that each pair F, R constructed in Steps 4–7

are reverse complementary paths by the way they are con-

structed. Then, we show that the cycles in F can be merged

into one cycle (Lemma 2). Third, we deduce that a strongly con-

nected component is covered by F and R (Lemma 3). Finally,

we conclude that F and R cover all edges, as there is only one

strongly connected component in any de Bruijn graph (Corollary

1). As each edge is traversed once, the paths are of length j�j
k

2

and, hence, optimal.

LEMMA 1. If the forward traversal reaches a dead end, then so

does the reverse. Both paths close a cycle in this case.

PROOF. Distinguish two cases in which the forward path reaches

a dead end:

CASE 1. F reaches a vertex v and R reaches a vertex u 6¼ v, and all

outgoing edges from v were already traversed. We prove that in

that case, F must close a cycle. Assume to the contrary that F

contains no edge outgoing from v. In that case, all outgoing

edges were traversed by R. Then, all incoming edges must have

been traversed by R as well, as each time R reached v, it must

have exited it as well. The only exception is if v is also the first

(last added) vertex u in R, contradicting our assumption that

u 6¼ v. Therefore, all incoming and outgoing edges were covered

by R, contradicting the fact that F just entered v. We conclude

that F has an edge outgoing from v and thus it closed a cycle.
Denote by ðx1, . . . , xkÞ the last edge traversed by F. All edges

of the form ðx2, . . . , xk, aÞ, where a 2 �, were traversed. Hence,

the reverse edges of the form ð �a, xk, . . . , x2Þ were traversed as

well. The last edge traversed by R was ðxk, . . . , x1Þ, outgoing

from the vertex ½xk, . . . , x2�. All incoming edges to this vertex

have already been traversed, as they are the reverse complements

of the edges outgoing from v, which were traversed by F. Thus, R

reaches a dead end as well. R closes a cycle because of a sym-

metrical argument to that made for F.

CASE 2. F and R reach the same vertex v simultaneously. Denote

the incoming edge used by F ðx1, x2, . . . , xkÞ. Then, the reverse

outgoing edge, which is traversed by R, is ðxk, . . . , x2, x1Þ. From

the fact that both reach the vertex simultaneously, we get that

½x2, . . . , xk� ¼ ½xk, . . . , x2�. Hence, in all previous traversals of

this vertex F and R also reached the vertex simultaneously.

Moreover, the forward and reverse paths reach a dead end to-

gether at v. Hence, all incoming and outgoing edges were already

traversed, and they are all of the form ða, x2, . . . , xnÞ and

ðxn, . . . , x2, �aÞ, for all a 2 �. Thus, both paths close a cycle g.

LEMMA 2. The cycles in F can be merged into one cycle.

PROOF. According to Lemma 1, when F is added to F , it is a

cycle in the graph. Thus, F is a set of cycles. The first cycle starts

from an arbitrary vertex, but all other cycles start from a vertex

of another cycle in F (denote encompassing cycle). Thus, each

inner cycle can be merged into its encompassing cycle, forming

one merged cycle. This is true to all cycles, except for the initial

cycle g.

LEMMA 3. The merged cycle of F and R either cover two

strongly connected components separately or one strongly con-

nected component together.

PROOF. Cycles are added to F and R as long as there are un-

marked edges. If there are no shared vertices between F and R,

then both sets cover edges of different components. As each set is

added edges until all are traversed, they cover two strongly con-

nected components separately. Else, there is at least one shared

vertex; thus, they cover the same component. The component is

strongly connected, as no edges are left to traverse g.

COROLLARY 1. F and R cover all edges of a de Bruijn graph.

PROOF. Following Lemma 3, as there is only one strongly con-

nected component in a de Bruijn graph, F and R cover it

together g.

This completes the proof of Theorem 2 g.

3.3 Two solutions for the case of even k

Algorithm 1 cannot be applied when k is even. A palindrome is

represented by one edge in the de Bruijn graph (like any other

k-mer). The algorithm must traverse both an edge and its reverse

complement edge on the forward and reverse paths; therefore,

for a palindromic edge, both paths should use the same edge,

which is impossible.

One possible way to rectify the problem is by adding one more

copy of each palindromic edge to the de Bruijn graph. Note that

in the resulting (multi-) graph, the number of edges is exactly

twice the lower bound. Adding the parallel edges would solve the

problem discussed earlier in the text, but it will make some ver-

tices unbalanced; therefore, the resulting graph is not Eulerian.

Such a graph cannot be represented as a union of two reverse

complementary edge-disjoint paths.
A more aggressive augmentation that overcomes this difficulty

is adding a cycle for every palindromic edge. This would preserve

the balance of all vertices and the strong connectivity as well. If,

in addition, the added non-palindromic edges have a perfect
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matching between reverse complementary edges, the algorithm

can be applied.
We present two possible augmentations. One is simple, based

on the ideas aforementioned, and near-optimal; the other is

optimal but requires a more complex augmentation.

3.3.1 A simple near-optimal augmentation In this approach, for
each palindromic edge, we add to the de Bruijn graph all possible

cyclic shifts of it. More formally, let k ¼ 2l. For the palindrome

e ¼ ðx1, . . . , xl, �xl, . . . , �x1Þ, we add k edges corresponding to

all possible cyclic shifts of e. Obviously, as these edges form a

cycle, all vertices remain balanced. In fact, this cycle contains two

edges that are palindromes, ðx1, . . . , xl, �xl, . . . , �x1Þ and

ð �xl, . . . , �x1, x1, . . . , xlÞ; therefore, only one cycle is added for

both, and the cycle doubles both palindromic edges. It is easy

to see that the remaining 2l� 2 edges are in fact l� 1 matching

pairs of reverse complementary edges. For each edge that repre-

sents the cyclic shift starting at position i, for 15i5k=2, the
matching edge starts at kþ 2� i. Hence, a perfect matching

exists after adding the new cycles. In total, during the edge aug-

mentation process, for each pair of palindromic k-mers, we add k

edges. For example, for the palindromes ACGT and GTAC, we

add ACGT, CGTA, GTAC and TACG (Fig. 2). The added

edges CGTA and TACG match each other. The added palin-

dromes match the original edges in the graph. The resulting aug-

mented graph contains j�jk þ k � j�j
k=2

2 edges, where the first term

is the number of edges in the original de Bruijn graph, and the

second is k for each pair of palindromes.

In some cases, the number of added edges can be reduced.

If the palindrome ðx1, . . . , xkÞ is periodic, then the number of

cyclic shifts needed to return to the original k-mer is the length of

the period. For example, the period of (ATAT . . .T) and

(TATA . . .A) is 2. Only two edges suffice in this case, the

edges (ATAT . . .T) and (TATA . . .A). This also applies to

(CGCG . . .G) and (GCGC . . .C). Therefore, each two periodic

palindromes that are a cyclic shift of each other require an add-

ition of a number of edges equal to the length of their period.

Hence, a smaller augmented graph and a shorter RC complete

sequence can be obtained by considering the different possible

periods, which can only be of even length, as each period is a

palindrome.

Denote by ’ðkÞ the set of even integers that divide k, and by

�ðkÞ the exact number of additional edges.

THEOREM 3.

�ðkÞ ¼
X
i2’ðkÞ

i

2
� j�ji=2 � max

j2’ði=2Þ
j�jj=2

� �
ð2Þ

PROOF. All k-mer palindromes are divided to pairs, which are

cyclic shifts of each other. For each pair, all distinct cyclic shifts

are added. The number of shifts is equal to the length of the

period of the k-mer. The periods can only be even, as the periodic

sequences are palindromes by themselves. The number of i-peri-

odic palindromes is j�ji=2. These contain shorter periods, for

which edges have already been counted. Thus, j�jj=2 is sub-

tracted, where j is the maximum even integer that divides i=2.
The number of edges added for each pair of i-periodic palin-

dromes is i g.

THEOREM 4. Running Algorithm 1 on the augmented graph pro-

duces forward and reverse paths that together cover all edges of

the graph and represent two RC complete sequences.

PROOF. Algorithm 1 can be run on graphs that satisfy the fol-

lowing properties:

(i) The graph is strongly connected.
(ii) All vertices are balanced.

(iii) There exists a perfect matching of the edges, such that each

pair of edges represent a k-mer and its reverse

complement.

The original de Bruijn graph of order k satisfies (1) and (2),

and there exists a perfect matching for all non-palindromic

k-mers in it. Added edges cannot disturb the connectivity. The

addition of cycles preserves the balance. Each added palindromic

k-mer matched the edge representing the same k-mer in the ori-

ginal graph. As discussed earlier in the text, the added non-pal-

indromic edges form a perfect matching. Thus, Algorithm 1 can

be run on the augmented graph. According to Theorem 2, it

produces a forward and reverse path that together covers all

edges of the augmented graph.
Each k-mer is represented in the augmented graph as an edge.

All edges are covered together by the forward and reverse paths.

For each path and for each k-mer, either it or its reverse com-

plement is covered by the path. Thus, the paths represent RC

complete sequences g.

Algorithm 1 produces two sequences, forward and reverse,

each of which is an RC complete sequence (Fig. 3). The length

of the produced sequences is the number of edges divided by two.

For each pair of palindromic edges, at most k edges were added,

ACG CGT

GTATAC

ACGT

GTAC

C
G

T
A

G
C

A
T

Fig. 2. A cycle and edge matching. For the pair of palindromes ACGT

and GTAC, all cyclic shifts of these palindromes are added once (dashed

edges). In the matching, palindromic edges in the original cycle are paired

with their added copies (encircled by small red ovals). Other non-palin-

dromic added edges are paired (encircled by a large red oval)
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and by Theorem 3 exactly �ðkÞ edges were added in total. Hence,
the length of the sequence is ðj�jk þ �ðkÞÞ=2, which is bounded by

ðj�jk þ j�j
k=2

2 � kÞ=2. This is an addition of �ð
ffiffiffiffi
L
p

logðLÞÞ charac-

ters, where L denotes the lower bound in Proposition 1 for an

RC complete sequence of even order k.

3.3.2 An optimal augmentation We now present another aug-

mentation that has higher time complexity but leads to an opti-
mal RC complete sequence. As before, starting from the de

Bruijn graph G ¼ ðV,EÞ, all palindromic edges are doubled, re-

sulting in a graph G0 ¼ ðV,E [ E0Þ. We temporarily disregard the

reverse complementarity matching constraints. As a result of the
edge doubling, there are unbalanced vertices in G0. We rectify

this by adding short paths between unbalanced vertices. By

adding paths of minimum total length, we will obtain a third

graph G2 ¼ ðV,E [ E0 [ E00Þ in which all degrees are balanced
and it has minimum number of edges. Finding an optimal set

of edges E00 can be done by solving a maximum weight-matching

problem on a related graph. In fact the problem is equivalent to

the Chinese postman problem (Edmonds and Johnson, 1973)
[the Chinese postman problem is used in Medvedev and

Brudno (2009) and Medvedev et al. (2007) and is also mentioned

in Mintseris and Eisen (2006) as a solution on the original de

Bruijn graph]. We shall later show that G2 can be modified to
satisfy the reverse complementarity matching requirement with-

out losing optimality. Hence, applying Algorithm 1 on it will

produce an optimal RC complete sequence.
Finding an optimal set of edges E00 is done by solving a max-

imum weight-matching problem in a bipartite graph, where ver-

tices with greater indegree than outdegree constitute one part,
and the vertices with greater outdegree than indegree are the

other. The edge weights are k minus the number of characters

on the path from one vertex to the other. More formally, let

V� (Vþ) be the set of vertices with indegree greater (smaller)

than outdegree in G0. For k ¼ 2l, there are j�jk=2 � j�j

vertices in V� of the form u ¼ ½x2, . . . , xl, �xl, . . . , �x1� and the

same number of vertices in Vþ of the form

v ¼ ½x1, . . . , xl, �xl, . . . , �x2� [note that j�j palindromes of period

2 are already balanced (e.g. ATA . . .T)]. We define a complete

bipartite graph H ¼ ðV�,Vþ,FÞ, where the weight of edge ðu, vÞ

is the maximum overlap between the suffix of u and the prefix of

v (i.e. jovðu, vÞj). The length of the shortest path pðu, vÞ between u

and v is k� jovðu, vÞj (Fig. 4). We are looking for a maximum

weight matching in H. The procedure is summarized in

Algorithm 2, Steps 1–5.

Algorithm 2. Find an optimal augmentation for a de Bruijn graph

G ¼ ðV,EÞ of odd order.

1. Add to G the set E0 of palindromic edges.

The resulting (multi-)graph is G0 ¼ ðV,E [ E0Þ.

2. Define Vþ ¼ fv 2 Vjðv, uÞ 2 E0 ^ ðu, vÞ=2E0 for some ug

V� ¼ fu 2 Vjðv, uÞ 2 E0 ^ ðu, vÞ=2E0 for some vg:

3. Define a complete bipartite graph H ¼ ðV�,Vþ,FÞ

with edge weights wðx, yÞ ¼ jovðx, yÞj.

4. Find a maximum weight-matching M in H.

5. Define G2 ¼ ðV,E [ E0 [ E00Þ

where E00 ¼ fðu, vÞ 2 pðx, yÞjðx, yÞ 2Mg.

6. Modify M, so that each cycle in the graph ðV,E0 [ E00Þ

contains exactly two palindromic edges (Lemma 6).

The graph G2 produced in Step 5 of Algorithm 2 is strongly

connected with all vertices balanced, but it is not guaranteed to

satisfy the third property of Theorem 4, i.e. having a perfect

matching among reverse complementary edges, which is needed

to apply Algorithm 1. We now prove that it can be modified to

satisfy this property without losing optimality. In fact, as E [ E0

has a perfect matching, we only need to prove this property on

the added edges E00. Once this is done, Algorithm 1 can be

applied to produce two reverse complementary paths that

cover all edges.
To establish Algorithm 2, we prove several lemmas:

LEMMA 4. The shortest path from palindrome A to the palin-

drome B is the reverse complementary of the shortest path from

B to A.

PROOF. Denote A ¼ ðx1, . . . , xkÞ and B ¼ ðy1, . . . , ykÞ two pal-

indromes. Let ðxi, . . . xk, y1, . . . , yi�1Þ for any 2 � i � k be an

edge in the shortest path from A to B. Its reverse complement

is ðyi�1, . . . , y1, xk, . . . , xiÞ, which, as A,B are palindromes,

which is the same as ðyk�iþ2, . . . , yk, x1, . . . , xk�iþ1Þ, an edge in

the shortest path from B to A g.

LEMMA 5. No cycle in ðV,E0 [ E00Þ contains a single palindrome.

PROOF. Suppose there exists a cycle containing only one palin-

drome. The shortest path to return to the palindrome is t cyclic

shifts of the palindrome where t is the length of its period. Let

ðx1, . . . , xl, xl, . . . , x1Þ be the palindrome. Its cyclic shift

ðxl, . . . , x1, x1, . . . , xlÞ is another palindrome. Thus, the cycle

includes more than one palindrome g.

A C

GT

A
A

G
G

CC

TT

AC

CA

GT

TG

AG

G
A

CT
TC

C
G

G
C

T
A

A
T

1
2

34

5

6

7

8910

Fig. 3. An augmented de Bruijn graph of order 1 and an example of

forward and reverse paths in it. The dashed edges are added edges. The

blue and brown paths represent the forward and reverse paths, respect-

ively. Numbers on edges are the order of the edges in the forward path.

The sequences are ACCGAATGCT and AGCATTCGGT for forward

and reverse paths, respectively
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LEMMA 6. Every cycle in ðV,E0 [ E00Þ can be decomposed into

cycles containing exactly two palindromes each, without decreas-

ing the total weight of the matching.

PROOF. The proof is by induction on n, the number of palin-

dromes in the cycle. For the induction base, n¼ 1 is impossible

by Lemma 5, and n¼ 2 is trivially true. Induction step, for n � 3,

denote by X, Y, Z and W palindromes in the cycle, where W, X,

Y and Z appear in this order in the cycle. Let x ¼ jovðW,XÞj,

y ¼ jovðX,YÞj, z ¼ jovðY,ZÞj and let w be the sum of overlaps of

all palindromes between Z and W (inclusive). In case n¼ 3,

Z¼W and w¼ 0. Without loss of generality, let y be a maximum

overlap. The total sum of overlaps is xþ yþ zþ w (Fig. 5).

Remove X and Y and form a cycle of these two palindromes.

As X,Y are palindromes, ovðX,YÞ ¼ ovðY,XÞ; therefore, the

contribution of this cycle to the matching is 2y. The total overlap

of the remaining cycle is w plus the overlap between W and Z,

which is at least minðx, zÞ. To see this, denote by PrefðX, iÞ the

i-long prefix of string X, and denote by SufðX, iÞ the i-long suffix

of X. If x � z, SufðW, xÞ ¼ PrefðX, xÞ ¼ PrefðY, xÞ ¼ SufðY, xÞ

¼ PrefðZ, xÞ, where the first, second and fourth equalities

follow from the overlap assumptions and the second, third

and fourth use the palindrome property. If z � x, simi-

larly SufðW, zÞ ¼ PrefðZ, zÞ. Hence, jovðW,ZÞj � minðz, xÞ.

The total weight of the two cycles in the new matching is

at least 2yþ wþminðx, zÞ. Hence, the difference between

the new matching and the previous one is at least

2yþ wþminðx, zÞ � x� y� z� w ¼ yþminðx, zÞ � x� z ¼ y

�maxðx, zÞ � 0, where the last inequality follows by the choice of
y as a maximum overlap.
The remaining cycle has n� 2 palindromes, and by the induc-

tion step, it is breakable to cycles of size two g.

PROPOSITION 2. There exists a maximum weight matching in
which all the added edges form reverse complementary pairs.

Any maximum weight matching can be modified to such
matching.

PROOF. Consider the graph G2 produced in Step 5 of Algorithm

2. If E0 [ E00 contains cycles of more than two palindromes, by
Lemma 6, they can be decomposed into cycles of two palin-

dromes. The new matching is of the same size, and for each
cycle with exactly two palindromic edges, the remaining edges

match in reverse complementary pairs (Lemma 4) g.
The maximum weight-matching problem, also known as the

assignment problem (West et al., 2001), can be solved by the
Hungarian method in OðjVj2logjVj þ jVjjEjÞ time (Kuhn,

2006). As jVj ¼ �ðj�jk=2Þ and jEj ¼ �ðjVj2Þ ¼ �ðj�jkÞ, the run-
ning time is Oðj�j3k=2Þ. An improvement to this algorithm (Kao

et al., 1997), when the edge weights are integers, runs in
Oð

ffiffiffiffiffiffiffi
jVj
p
jEjlogðjVjNÞÞ time, where N is the largest edge weight.

In our case N¼ k, which gives Oðkj�j5k=4 logðj�jÞÞ running time.
The post-processing of the matching (Lemma 6) requires finding

two palindromes with maximum overlap. This can be done in

total time linear in the number of palindromes, as overlap lengths
are integers in the range of 0 to k, and thus can be sorted using

count sort. Hence, we conclude

GCT ATG CGG TAG ATC GCC TAC CGA GCA TAACGTATT

AGCCATCCGCTAGATGGCGTATCGTGCTTA ACG AAT

00200011100
0

Fig. 4. The bipartite graph for matching unbalanced vertices (Algorithm 2). On the top are the vertices with greater indegree, and on the bottom are the

vertices with greater outdegree. Weights on the edges are the maximum overlap between the vertices’ sequences. Only the edges out of one vertex are

drawn (the graph is a complete bipartite graph). Note that only unbalanced vertices corresponding to ðk� 1Þ-long prefixes and suffixes of palindromes

are included

x y

y z

w x

z w

y y

y y

w t

t w

X:

Y:

Z:

W:

X:

Y:

Z:

W:

Fig. 5. Breaking down cycles with more than two palindromes. Left: Palindrome overlaps in a cycle found by the maximum matching. The rectangles at

the ends indicate overlap between contiguous palindromes. Right: Partition into two cycles, one containing only the palindromes X and Y with a

maximum overlap y. As t � minðx, zÞ, the partition does not decrease the total contribution of the cycles to the weighted matching (Lemma 6)
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THEOREM 5. An optimal RC complete sequence for even k can be

produced in time Oðkj�j5k=4 logðj�jÞÞ.
Summarizing Theorems 2 and 5 we obtain

THEOREM 6. For every value of k, an optimal RC complete se-

quence can be obtained in time polynomial in the size of a de

Bruijn graph of order k� 1.

4 EXPERIMENTAL RESULTS

Table 1 shows the results of the two algorithms for even k. As we

can see, the sequence obtained by the algorithm is of length

nearly half that of the original de Bruijn sequence. For example,

for k¼ 12, the minimum length is within 0.15 per cent of 412=2
and within 10, 116 characters from the theoretical lower bound.
Table 2 lists the number of probes of length p needed to cover

all k-mers, by cutting an optimal RC complete sequence to

p-long probes with overlaps of k� 1. As we can see, the saved

factor in using the RC complete sequence is roughly 2.

A comparison to the Table 1 of (Mintseris and Eisen, 2006)

shows that the sequence produced in (Mintseris and Eisen,

2006) is sub-optimal.
Running times: The simple near-optimal algorithm runs in

time roughly linear in j�jk. For example, for k¼ 8, 10 and 12

the running times are 1.5, 26 and 445 s, respectively. The optimal

algorithm requires 5, 126 and 2937 s, respectively.

5 SUMMARY AND DISCUSSION

In this article, we studied the problem of constructing a min-

imum length sequence that covers each k-mer or its reverse com-
plement at least once. The problem has applications in

construction of dense double-stranded probe arrays for in vitro

measuring of protein–DNA binding (Berger et al., 2006; Fordyce
et al., 2010), and for design of synthetic enhancers for in vivo

developmental studies (Smith and Ahituv, 2012). For the case of
odd k, we provided a proof that a simple modification of the

Eulerian tour algorithm applied to the de Bruijn graph of order

k� 1 gives an optimal solution. The algorithm requires linear
time in the output sequence length, and it cuts the sequence

length in half compared with using a regular de Bruijn sequence.
The problem is a bit more involved for even k, and here we

provided two algorithms, a linear time near-optimal algorithm
and a more complex polynomial algorithm that produces an

optimal sequence. The length of the sequence produced by the

optimal algorithm is slightly shorter, and both algorithms nearly
halve the total length of the sequence.

The following related problem was studied by Medvedev et al.
(Medvedev and Brudno, 2009; Medvedev et al., 2007): what is

the minimum length sequence that contains a given set of

k-mers? Their solution is based on bidirected graphs, which are
similar to de Bruijn graphs, with the difference that a k-mer and

its reverse complement are represented by the same vertex, and
the edges represent the possible ways that double-stranded

Table 2. Number of probes needed to cover all k-mers as a function of probe length and k

k 6 7 8 9 10 11 12 13 14 14-DB

25 107 432 1848 7711 32926 139 811 600 056 2581 111 11189 571 22 369 622

30 86 342 1447 5958 25087 104 858 442 146 1864 136 7898 521 15 790 321

35 72 283 1188 4855 20263 83 887 350 033 1458 889 6103 402 12 201 612

40 62 241 1008 4096 16995 69 906 289 682 1198 373 4973 143 9 942 054

45 54 211 876 3543 14634 59 919 247 082 1016 801 4196 089 8 388 608

50 48 187 774 3121 12850 52 429 215 405 883 012 3629 050 7 255 013

55 43 168 693 2789 11453 46 604 190 927 780 336 3197 021 6 391 321

60 39 152 628 2521 10330 41 944 171 445 699 051 2856 912 5 711 393

65 36 139 574 2300 9408 38 131 155 570 633 103 2582 209 5 162 221

70 33 128 528 2115 8637 34 953 142 386 578 525 2355 700 4 709 394

Note: The table contains the number of probes obtained by cutting an optimal RC complete sequence to short segments with overlaps. Left column: probe length; top row: k.

Right column: number of probes needed when using a regular de Bruijn sequence for k¼ 14.

Table 1. Length of reverse complementary de Bruijn sequences produced by the two algorithms for even k

k 2 4 6 8 10 12 14

Original 16 256 4096 65 536 1 048576 16 777 216 268 435 456

Lower bound 10 136 2080 32 896 524800 8 390 656 134 225 920

Algorithm 1 10 142 2140 33 262 526840 8 400 808 134 275 060

Optimal 10 142 2140 33 262 526816 8 400 772 134 274 844

Saving factor 1.6 1.8 1.91 1.97 1.990 1.997 1.999

Note: The top row is the length of a regular de Bruijn sequence that does not exploit complementarity. The next row contains the theoretical lower bound on RC complete

sequence length (Proposition 1). The next two rows are the lengths of the sequence computed by the two algorithms of Section 3.3.1 and 3.3.2. The saving factor is the ratio

between the original sequence length and length of the optimal RC complete sequence. Note that the lower bound is not tight.
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strings can overlap. These graphs were originally conceived by
Kececioglu and Myers (1995) and actually discovered earlier by
Edmonds (1967). Medvedev et al. stated, without proof, that an
Eulerian path can be found in a bidirected graph in the same way

as in a regular de Bruijn graph (Lemma 1), but they did not
consider explicitly the problem of covering all k-mers and
did not make the distinction between even and odd k. In fact,

some vertices in a bidirected graph of odd order (when edges
represent k-mers of even length) are unbalanced, and thus an
Eulerian tour does not exist. Although their method can be

applied to our problem, it is slower than ours: they require
Oðk2 log2ðj�jÞj�j2kÞ, whereas our algorithms requires Oðj�jkÞ
for odd k and Oðkj�j5k=4logðj�jÞÞ for even k.

Beyond the theoretical interest, our results are applicable to
current (Berger et al., 2006; Fordyce et al., 2010; Smith and
Ahituv, 2012) and future technologies that require complete
coverage of double-stranded DNA k-mers. In PBM, although

it is desirable to have redundancy in covering k-mers, space on
the arrays is limited. By essentially halving the needed sequence
length, space is freed on the array to select additional redundant

probes with desired properties. Similarly, in designing synthetic
enhancer sequences, by using shorter sequences, experiments can
be simplified.

In current technologies, the de Bruijn (or RC complete) se-
quence is cut into probes of length p with overlap k� 1 (Table 2).
There is no constraint that forces these probes to come from a
single sequence. A variant of the problem we studied is as fol-

lows: what is the minimum number of double-stranded DNA
probe sequences of length p that together cover all k-mers? As
our solution for an RC complete sequence of even k covers, a few

k-mers more than once and direct design of probe sequences of
length p might reduce the number of probes needed to cover all
k-mers.

A heuristic solution to that problem was recently proposed by
Riesenfeld and Pollard (Riesenfeld and Pollard, 2012). They stu-
died the following problem: given k and m, design a set of m

double-stranded DNA probes (of equal or almost equal length,
denoted as ‘) that together cover all k-mers. Their algorithm
repeatedly searches for disjoint ‘-long paths between unbalanced
vertices. After removal of all such paths, it finds two reverse-

complementary cycles. One cycle is cut into probes (with over-
laps of k� 1) of length ‘ or ‘þ 1. If the program terminates, an
optimal set of oligomers is found; however, there is no theoretical

guarantee that it will terminate. In our tests, for k¼ 6, their
program terminates in a few seconds, whereas for k¼ 8, it
takes41h and for k¼ 1042 weeks. For some values of m, the

produced probes are not of equal length. A modest reduction in
the number of oligomers is obtainable compared with our design:
for example, for k¼ 6 and probe length 15, the algorithm of
Riesenfeld and Pollard produced 208 oligomers compared with

210 in our design. For greater values of k, the running time was
already prohibitive (for k¼ 12, it kept running for41 month),
and thus we could not test the performance for these values. Our

algorithm, on the other hand, produces an output for values of
k � 10 in just a few seconds, whereas for k¼ 12, the linear algo-
rithm takes510min and the optimal51h. The time is polyno-

mial (or even linear) in the output sequence size, independent of
probe length or the number of oligomers.

Our study raises several additional open questions. First, fol-

lowing (Philippakis et al., 2008), can one design an optimal RC

complete sequence with improved coverage of gapped k-mers?

Second, it is known that the number of distinct de Bruijn se-

quences is ðk!Þk
n�1

=kn. What is the number of different optimal

RC complete sequences? Third, can one construct an optimal RC

complete sequence for even k in linear time? Fourth, is there a

closed formula for the length of an optimal RC complete of even

order?
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ABSTRACT

Understanding gene regulation is a key challenge in
today’s biology. The new technologies of protein-
binding microarrays (PBMs) and high-throughput
SELEX (HT-SELEX) allow measurement of the
binding intensities of one transcription factor (TF)
to numerous synthetic double-stranded DNA
sequences in a single experiment. Recently, Jolma
et al. reported the results of 547 HT-SELEX experi-
ments covering human and mouse TFs. Because
162 of these TFs were also covered by PBM
technology, for the first time, a large-scale compari-
son between implementations of these two in vitro
technologies is possible. Here we assessed the
similarities and differences between binding
models, represented as position weight matrices,
inferred from PBM and HT-SELEX, and also
measured how well these models predict in vivo
binding. Our results show that HT-SELEX- and
PBM-derived models agree for most TFs. For
some TFs, the HT-SELEX-derived models are
longer versions of the PBM-derived models,
whereas for other TFs, the HT-SELEX models
match the secondary PBM-derived models.
Remarkably, PBM-based 8-mer ranking is more
accurate than that of HT-SELEX, but models
derived from HT-SELEX predict in vivo binding
better. In addition, we reveal several biases in
HT-SELEX data including nucleotide frequency
bias, enrichment of C-rich k-mers and oligos and
underrepresentation of palindromes.

INTRODUCTION

The questions of how, when and where genes are expressed
have been fundamental in the field of cell research in the

past decades. Transcription factors (TFs) are known to be
the main regulators of gene transcription and thus have
been a subject for extensive study. These proteins bind to
specific short DNA sequence, mainly in the promoter and
enhancer regions, and by that impede or encourage tran-
scription. They bind with variable affinity, depending on
the sequence and on other factors, and this affinity affects
transcription. Learning and modeling the binding prefer-
ences of TFs is a central goal in gene regulation research.
Many high-throughput technologies have been

developed to study TF binding. Technologies that
measure in vivo binding include ChIP-chip (1), ChIP-seq
(2) and the recently developed ChIP-exo (3). However,
measuring in vivo binding may not reveal the full
picture. First, the accessible sites may not cover the full
spectrum of possible DNA k-mers. Second, in vivo binding
is affected by additional factors, such as chromatin struc-
ture, nucleosome positioning and co-factors. As opposed
to in vivo binding, in vitro binding is purely because of
direct TF–DNA interaction (or cooperative binding of
specific factors) and allows sampling of the full spectrum
of DNA k-mers. Technologies that measure in vitro
binding include protein-binding microarray (PBM) (4)
and mechanically induced trapping of molecular
interactions (5), both of which measure the binding of a
specific protein to a set of oligo sequences designed to
cover all k-mers. A newer technology is high-throughput
SELEX (HT-SELEX), which consists of several cycles of
incubating the DNA-binding protein with a mixture of
DNA sequences, enrichment of the bound DNA se-
quences, sequencing a sample of them and feeding them
to the next cycle (6–8).
PBMs have gained great popularity, thanks to their

high-throughput and unbiased nature. The public
database UniPROBE contains experiments of >400 TFs
(9). Although the models derived from this technology
have been used extensively, it is unclear how accurate
these models are in predicting in vivo binding. Several
studies have shown that using these positional weight
matrix (PWM) models to predict in vivo binding leads to
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poorer results compared with in vitro binding prediction
(10,11). This performance gap can be explained by several
reasons related to in vivo binding, such as indirect binding
and inaccessibility of genomic DNA. Another possible
explanation is that these models include PBM-specific
biases. Thus, an independent in vitro measurement is
required to evaluate the validity of these models.
Recently, a study covering >500 TFs in >800

HT-SELEX experiments was conducted by the Taipale
laboratory (12). For the first time, a high number of
TFs have available experimental data in two independent
in vitro technologies: 162 TFs were tested both in HT-
SELEX and PBM experiments by the Taipale and Bluyk
laboratories, respectively. Jolma et al. (12) compared
SELEX models with PBMmodels by length and presented
several examples where the SELEX models are more
accurate than PBM models based on ChIP-seq data.
However, a much broader systematic comparison of the
binding models produced by each technology is required.
In this study we aim to analyze and measure the

similarities and differences between the two technologies.
First, we ask how well HT-SELEX-derived PWM models
predict PBM binding. Second, to compare the methods
without depending on inferred binding models, we study
how well the top k-mers of the two technologies correlate,
and which technology is better in k-mer ranking. Third,
we test which technology produces better models in
predicting in vivo binding. Fourth, we uncover biases in
HT-SELEX technology. We aim to highlight the advan-
tages of each technology compared with the other. Our
observations may help in developing a new method to
learn binding models based on HT-SELEX data.

MATERIALS AND METHODS

Data

PBM data and PBM-derived PWM models were
downloaded from UniPROBE database (9). We used
normalized PBM probe data, as available in the
database (i.e. the median signal intensity values and
corresponding nucleotide probe sequences). Only the 36
bp of unique sequence were used. HT-SELEX experimen-
tal data and HT-SELEX-PWM models were downloaded
from (12). Human ChIP-seq data were downloaded from
ENCODE (13).

Binding prediction

PWMs were used to represent TF binding preferences
(14). For each TF, the set of PWMs reported was used
for the binding prediction. In many cases, multiple models
were available. In general, we did not distinguish between
mouse and human and between the full protein and the
binding domain only. For each sequence (either PBM
probe or a ChIP-seq peak), the maximum sum occupancy
score over the set of PWMs was its predicted binding
intensity. For probe sequence s and PWM � of length
k, the sum occupancy score is

fðs,�Þ ¼
Xjsj�k

t¼0

Yk

i¼1
�i½st+i�

where �i(x) is the probability of base x in position i of the
PWM. A PBM probe is defined as a positive hit for � if its
binding intensity is greater than the median by at least 4 *
(MAD/0.6745), where MAD is the median absolute devi-
ation from the binding intensity median (MAD=0.6745
for the normal distribution N(0,1)) (15). The positive
ChIP-seq peaks are defined as the 500 peaks with the
smallest reported P-value. We used the 250 bp around
the center of the peak as the positive sequence and the
250-bp-long genomic sequence 300 bp downstream of the
peak center as the negative sequence. Spearman rank
coefficient, sensitivity at 1% false-positive and area
under the receiver operating characteristic curve were
used to gauge the binding prediction (see (15) for
details). For ChIP-seq data, when several experiments
were available for the same TF, the average area under
curve (AUC) over these experiments is reported.

Model independent comparison

For each experiment, the scores of the top 100 8-mers
according to one technique were compared with their
scores in the other technique. PBM 8-mers were scored
by average (or median) binding intensity. For a probe pi,
let s(pi) be its intensity. The score of 8-mer w is the
average binding intensity: avgðwÞ ¼ ð

P
w2pi

sðpiÞÞ=ð
P

w2pi
1Þ.

HT-SELEX 8-mers were scored by either their fre-
quency or ratio of frequencies (frequency in cycle i
divided by frequency in cycle i-1). The top 100 8-mers
according to their PBM scores were selected, and
Pearson correlation was calculated between the PBM
scores and the HT-SELEX scores on these 8-mers.
Similarly, the top 100 HT-SELEX 8-mers were chosen
and their HT-SELEX scores were compared with their
PBM scores using Pearson correlation.

Logo drawing

Motif logos were plotted using http://demo.tinyray.com/
weblogo.

RESULTS

HT-SELEX-derived models predict PBM binding
accurately for most TFs

We first used the HT-SELEX-derived PWM models
published in (12) to predict bound probes in PBM experi-
ments and compared their performance with PBM-derived
PWM models. We used the SCI09 data set of (16), which
includes 115 paired PBM experiments of 104 mouse TFs
[in paired experiments, two array designs are used to study
the same TF, and so a model learned on one array can be
evaluated on the other, see (15)]. For 128 PBM experi-
ments (out of 230), an HT-SELEX-derived model was
available for the same TF; this set covers 56 different
TFs. For some TFs, Jolma et al. reported several
PWMs, either because of multiple experiments or
because of construction of several PWMs by their algo-
rithm. Occasionally, for a TF analyzed by PBM, both a
primary motif and a secondary motif are reported. When
multiple PWMs were reported for the same TF by one
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technology, we assigned to each sequence the highest score
obtained by such a model. We used five algorithms to
generate PWMs from PBM experiments: Amadeus-PBM
(10), Seed-and-Wobble (4), RankMotif++ (15), BEEML-
PBM (17) and RAP (18). The performance of the models
generated by each algorithm was reported in (18). For
each paired experiment, these models were learned on
one array and tested on the other to avoid overfitting.
Testing of a model was by predicting the binding intensity
for each probe in the other array and comparing it with
the measured binding intensity. Scores for the comparison
were the Spearman rank coefficient on the positive probes,
the sensitivity (true positive ratio) at 1% false-positive and
AUC of the receiver operating characteristic curve (see
Methods). We report the average results in Table 1 (for
complete results see Supplementary Table S1).

The results show good agreement between the two
technologies (Table 1 and Figure 1A). The average
accuracy of HT-SELEX models is significantly lower
than that obtained by PBM-derived models (e.g. AUC
of 0.825 compared with 0.899 for the best PBM-derived
models, P-value=7.68·10�14 Wilcoxon signed-rank test).
This is expected because the evaluation is using PBM
measurements. In an additional test on two other PBM
data sets covering 115 human and mouse E26
transformation-specific (ETS) and homeodomain TFs
tested on a single array (19,20), HT-SELEX-derived
models achieved an average AUC of 0.928 (see
Supplementary Information). These results may reflect
properties of specific TF families.

We found no significant difference between binding
models based on mouse and human proteins and between
models based on full proteins and binding domains; in both
cases the two models performed essentially equally in pre-
dicting PBM binding that used mouse binding domains
(see Supplementary Information). Note that sample sizes
were small and broader tests are still needed.

For some TFs, the HT-SELEX prediction results were
poorer than those achieved by PBM models. We define a
set of HT-SELEX-derived models for the same TF as a
failure if it achieved an AUC lower by at least 0.1 than the
average of the five PBM models. HT-SELEX models
failed in 20 TFs (covered by 42 experiments), including
all Sox, E2F and Rfx proteins, as well as the individual
TFs Hnf4a, Rara, Rxra, Smad3, Sry and Zscan4
(Figure 1A and B). These failures occur in particular TF
families, including the E2F, Sox, NR, Rfx, MAD and
znfC2H2 families [experiments on HMG and znfC2H2

proteins had a low success rate (12)]. The high-mobility
group (HMG) super-family includes the Sox, Lef and
Tcf protein families. It was suggested that for this family
of proteins the DNA structure plays a larger role for
binding site recognition than sequence specificity (21),
which may explain the failure for this protein family.
The recent observation that E2F1 and Smad1 ChIP-seq
peaks do not contain the in vitro binding site (22) may
explain the failures for E2F and Smad3. Figure 1C
presents the differences in the models for some of these
cases.

A model-independent comparison

To avoid dependency on model learning, we performed a
model-independent comparison. For each HT-SELEX
experiment, we selected one arbitrary PBM experiment
of the same TF from Cell08, SCI09 or EMBO10 studies.
This resulted in 238 PBM-SELEX data sets. We chose to
summarize the measurements of each method using 8-mer
statistics, and focus on the top ranking 8-mers, which are
expected to contain most of the information relevant for
TF binding. For PBM 8-mer scores, we used average
binding intensity, which is an accurate estimate of
binding affinities (18). For HT-SELEX 8-mer scores, we
tested two options: 8-mer frequency and 8-mer ratio
(frequency in cycle i divided by frequency in cycle i-1)
for all cycles (see Methods). With these scores at hand,
for each data set we used the set of top 100 8-mers,
according to one technology, and calculated the Pearson
correlation of its scores with the scores of the same set in
the other. Figure 2 shows the results for the different
cycles, different scores and different selection of top
8-mers. Complete results are available in Supplementary
Table S2. Using the Spearman rank correlation provided
similar results (data not shown).
The results show that frequency scores give consistently

better correlation with PBM scores than ratios. Hence, for
the data analyzed in this study, frequency is superior to
ratio, and we used it henceforth. The highest average cor-
relation (just over 0.74) is achieved at cycle 3, when the top
8-mers are selected by PBM data, and HT-SELEX 8-mers
are ranked by frequency (Figure 2A). The k-mer ranking
becomes more specific as the cycles progress [as was noted
in (12)]. At some point it becomes too specific, overrepre-
senting a small number of top k-mers and thus less
accurate for medium- and low-affinity k-mers; we refer
to this phenomenon as overspecification. Figure 2B

Table 1. Accuracy of HT-SELEX- and PBM-based PWM models in predicting TF binding to PBMs

Model based on HT-SELEX PBM

Algorithm Jolma et al. Amadeus-PBM Seed-and-Wobble RankMotif++ BEEML-PBM RAP

Spearman rank coefficient 0.282 0.230 0.272 0.301 0.335 0.339
Sensitivity at 1% false-positive 0.288 0.327 0.293 0.277 0.403 0.400
AUC 0.825 0.877 0.872 0.882 0.899 0.898

Note. Results show average Spearman rank coefficient, sensitivity at 1% false-positive and AUC for predicting positive binding in 128 paired PBM
experiments (covering 56 different TFs). PBM data were taken from (16) and HT-SELEX models were taken from (12). Prediction results for the
different PBM-based algorithms were taken from (18). For each experiment the PWM models learned by HT-SELEX or by the other PBM array
were used to predict the bound probes (see Methods).
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Figure 1. Quality of binding prediction based on PBM data. (A) Accuracy in predicting PBM binding. For each PBM experiment, PBM probes are
ranked according to motifs inferred by five PBM algorithms (AM=Amadeus-PBM, SW=Seed-and-Wobble, RM=RankMotif++,
BE=BEEML-PBM and RAP) and by the HT-SELEX-derived models. This ranking is compared with the true ranking by calculating the AUC
for predicting the bound PBM probes. Each dot is the average result of one algorithm in two or four experiments (TF names are listed at the bottom,
TF family names are at the top, as given in Jolma et al.). (B) Sensitivity results in predicting PBM binding. For each PBM experiment, the bound
probes were predicted using BEEML-PBM and HT-SELEX PWM models. The plot shows the sensitivity (true positive rate) at 1% false-positive rate
of these predictions. Colors correspond to protein families. (C) Disagreement between HT-SELEX- and PBM-derived models. The logos are of the
PWMs learned from HT-SELEX (top), and PBM (middle and bottom) taken from Jolma et al. and UniPROBE, respectively. The middle and
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shows, for each combination of cycle, source of top 8-mers
and HT-SELEX 8-mer score and the number of times
the maximum correlation is achieved by that
combination. Cycles 1, 2 and 3 have the highest
numbers, supporting the idea of a trade-off between spe-
cificity and variability.

The results also suggest that 8-mers ranking using PBM
is more reliable than using HT-SELEX. The top 100 PBM
8-mers have greater correlation than the top 100 HT-
SELEX 8-mers. Identification of these 8-mers is important
for learning the binding preference of the protein. At the
current read coverage of HT-SELEX experiments, PBM

Figure 1. Continued
bottom models learned from PBM for each TF are the primary and secondary models, respectively. 1, 2: examples where HT-SELEX produces
motifs that are similar to the primary PBM model, but too long for PBM technology; 3, 4: cases where HT-SELEX models agree with PBM
secondary model; 5: an example where the HT-SELEX model disagrees with both PBM models. (TCF3 was excluded from the analysis because each
technology tested a different TF with that name: a bHLH Tcf3 was tested by HT-SELEX, whereas the HMG Tcf3 was tested by PBM).

Figure 2. Correlation between the top 8-mers as ranked by PBM and HT-SELEX data. For each HT-SELEX experiment 8-mers were scored by
frequency or by the ratio of the frequency to the frequency in the previous cycle. The 8-mers of a PBM experiment on the same TF were scored by
average binding intensity. For the 100 top scoring 8-mers according to PBM, the correlation between their PBM scores and their HT-SELEX
frequency and ratio scores was computed. Similarly, for the 100 top scoring 8-mers according to HT-SELEX frequency (ratio), their correlation with
the PBM scores was computed. (A) Average correlation in each cycle. Bar names indicate the technology used to determine the top 100 8-mers. The
plot is based on average correlation over 238 TFs. (B) Distribution of the maximum correlation for different parameter combinations. The plot
shows the number of times the maximum correlation is achieved by each combination of cycle, source of top 8-mers and HT-SELEX 8-mers score.
(Because only 39 HT-SELEX experiments included data for a fifth cycle, we excluded it from the comparison; none of these experiments had
maximum score at the fifth cycle).
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data are more robust in identifying the top 8-mers.
Sequencing a larger sample of the bound oligos may
improve 8-mer scores and thus affect the binding models
derived from them.
No significant differences were observed when

comparing mouse versus human models as well as full
protein versus binding domains (see Supplementary
Information). Using median binding intensity to score
PBM 8-mers instead of the average showed similar
results (data not shown).

HT-SELEX models predict in vivo binding more
accurately than PBM models

We compared the performance of PBM PWM models
with HT-SELEX PWM models in predicting in vivo
binding. We used human ChIP-seq data from the
ENCODE project (13) for TFs that had both PBM and
HT-SELEX data. In total, 15 human TFs covered by 111
ChIP-seq experiments were included in this comparison.
The top 500 peaks in each experiment were used as a
positive set, taking for each peak 250 bp around its
center. The negative set consisted of 250-bp-long
sequences taken from flanking sequences 300 bp down-
stream of each positive sequence. This choice is aimed to
select negative sequences with statistical features, such as
GC-content and k-mer counts, similar to those of the
positive ones (23). PBM and HT-SELEX PWM models
were taken from UniPROBE database (9) and Jolma et al.
(12), respectively. When multiple models were reported by
one technology, we assigned to each genomic sequence the
highest score obtained by such a model. We did not dis-
tinguish between human and mouse TFs because Jolma
et al. (12) reported conservation of binding specificities
between these species. Average AUC over the set of
ChIP-seq experiments for each TF is reported. Complete
results are shown in Supplementary Table S3.
Our results show that HT-SELEX models are more

accurate in predicting in vivo binding (average AUC of
0.756 compared with 0.715, P-value=9·10�5 Wilcoxon
signed-rank test) (Figure 3A). Trimming the PWM to the
eight most informative positions results in average AUC of
0.732 and 0.719 (P-value=0.18 Wilcoxon signed-rank
test), respectively, hinting that the advantage of HT-
SELEX models may be due to the addition of flanking
positions. We note that the test set is too small to draw
definitive conclusions, but we believe it points to an advan-
tage of HT-SELEX models in predicting in vivo binding.
For Tcf7, Srf, Mafk, Gata3 and Hnf4a HT-SELEX
models, AUC is greater than that of PBM models by >
0.05 (Figure 1C and 3B). When excluding secondary PBM
models, for Tcf7 and Mafk the average AUC increased
from 0.61 to 0.81 and from 0.87 to 0.92, respectively, sug-
gesting that some secondary models are wrong. At the same
time, for Hnf4a the AUC dropped from 0.86 to 0.65.
Similar results were observed on mouse ChIP-seq experi-
ments downloaded from the ENCODE project (data not
shown). Using the upstream sequences as control gave
similar results (data not shown). When using a larger set
of 1000 peaks, the advantage of HT-SELEX was smaller
but still significant (data not shown).

We checked the effect of the source organism on pre-
dicting in vivo binding in human. Similarly, we compared
the prediction quality based on experiments with full
proteins compared to experiments using only the TF
binding domains. None of the comparisons showed a
significant difference (see Supplementary Information).

HT-SELEX experiments show systematic biases

Binding models for HT-SELEX use the most frequent
k-mer in some cycle as a seed (6). To study the perform-
ance of these models on PBM data, we selected the most
frequent 8-mer from each cycle and compared it with the
top PBM 8-mer (determined by average binding intensity),
when PBM data for the same TF were available (see
Methods). We define a positive identification if the top
8-mer is identical with up to two mismatches to the top
PBM 8-mer allowing an offset of up to two positions
between the aligned sequences. The results are
summarized in Figure 4A. Notably, in a substantial
number of experiments, the most frequent HT-SELEX
8-mer in the last cycles did not match the top PBM
8-mer. Only 184 of 225 (81%) of the top HT-SELEX
8-mers in cycle 4 matched the top PBM 8-mer.
Complete results are available in Supplementary Table S5.

Among the most frequent 8-mers in the different cycles,
we observed many A-rich and C-rich 8-mers. To quantify
this phenomenon, we focused on poly(A) and poly(C)
8-mers, defined as 8-mers containing at least 7 As or 7
Cs, respectively. Figure 4A shows an overabundance of
such 8-mers as the most frequent 8-mers, especially in
cycles 0–2. When comparing the distributions of
poly(A), poly(C) and of other 8-mers in each cycle over
all experiments, poly(A) and poly(C) 8-mers are much
more abundant in the initial pool than the other 8-mers
(median frequency 1.0·10�3 and 5.66·10�4 in cycle 0 and
9.4·10�4 and 9.43·10�4 in cycle 1, respectively,
P-value< 3·10�5 assuming a uniform null 8-mer
distribution).

Moreover, certain 8-mers behaved differently in terms
of their frequency changes between cycles. The poly(C)
8-mers were magnified from cycle to cycle much more
than other 8-mers (Figure 4B). We also tested palindromic
8-mers (i.e. 8-mers that are identical to their reverse com-
plement). We observed that palindromic 8-mers are less
frequent initially (P-value=0.002 in cycle 0 assuming a
uniform null 8-mer distribution) and are less magnified
than the rest of the 8-mers (Figure 4B, P-value=2.2·10�6
using a K–S test for comparing the rate of change between
cycle 3 and cycle 4 of the palindromes with the other
non-poly(A) and non-poly(C) 8-mers). Complete results
are available in Supplementary Table S6. Ratio-based
statistics showed the same phenomenon (data not shown).

Several reasons can explain the uneven abundance and
magnification of k-mers. First, it can arise from techno-
logical artifacts. PCR biases have been observed and
studied (24), and sequence bias is known to exist in
high-throughput sequencing technologies, including the
technologies used in Jolma et al. study (Illumina
Genome Analyzer IIX and Hiseq2000) (25). We
observed that nucleotide frequencies in the data are far
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from uniform, which can be explained by biased oligo
generation (see Supplementary Information). Note that
both the oligo generation and sequencing processes are
strand-specific, so the frequencies of A and T (and of G
and C) need not be equal. The systematic overrepre-
sentation of specific k-mers has been observed both
in vivo [in ChIP-seq data (26)] and in vitro [in PBMs
(27), where it was termed ‘sticky k-mers’]. According to
Jiang et al., in PBM the set of sticky k-mers are all A-rich
except CCCCGCCC, in partial agreement with our obser-
vations on HT-SELEX data. An alternative explanation
suggested by a recent theoretical study was that TFs bind
non-specifically to homogenous sequences (28). The
underrepresentation of palindromes may be due to the
formation of secondary structures that hinder PCR of
such sequences (See Supplementary Information).

False oligos are common in HT-SELEX

Because whole reads (oligos) are sequenced and selected
by the HT-SELEX technology, we also conducted an

analysis of the abundance and magnification properties
of oligos. For each TF, we identified the most frequent
oligos in the last cycles. For the 100 most frequent oligos,
we defined as false oligos those that do not contain any of
the seeds reported in (12) allowing one mismatch. We also
measured the oligo enrichment ratio, defined as the oligo’s
frequency in the last cycle divided by its frequency in the
previous cycle.
The false oligos were on average 25% of the 100 most

frequent oligos in the last cycle. In 113 experiments (of
547), at least 50 of the 100 most frequent oligos in the
last cycle were false. We observed two characteristics
common to them. First, they tended to have more
skewed nucleotide distribution than true oligos, with
high frequency of one nucleotide (C in 75% of the
cases). In all, 35% of the false oligos had one nucleotide
composing at least 50% of the sequence, compared with
14% in the true oligos. Second, they tended to be
extremely magnified, rising from a low count (or zero) in
one cycle to a high count in the next. For example, 41% of

Figure 3. Predicting in vivo binding using HT-SELEX- and PBM-derived PWM models. The PWMs learned from HT-SELEX and PBM were taken
from Jolma et al. and UniPROBE, respectively. In vivo binding was measured by the ENCODE project using ChIP-seq. (A) AUC results for each
ChIP-seq experiment for which HT-SELEX and PBM experiments on the same TF are available. (B) Examples where HT-SELEX predicts in vivo
binding better. For all these examples, the average AUC achieved by the HT-SELEX models exceeds that of the PBM models by >0.05.
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the false oligos were not observed in the one-before-last
cycle, compared with 19% of the true oligos (note that an
oligo present in a particular cycle may have not been
observed because of limited sampling). Figure 4C shows
an example of Atf7 HT-SELEX experiment. Complete
results are available in Supplementary Table S8. Of the
previous studies, we observed similar biases in (6) and
(8), but not in (7) (see Supplementary Information).

DISCUSSION

Protein–DNA binding has been in the focus of gene
regulation studies for years. In the past, binding sites
were defined based on few examples and thus had low
resolution and limited accuracy. With technological devel-
opments, the ability to measure and predict binding sites
has improved. A large leap came in the form of PBMs,

Figure 4. Systematic biases in HT-SELEX technology. (A) Properties of the most frequent 8-mer in different cycles. For each cycle, the fraction of
times the most frequent 8-mer in the HT-SELEX experiment was poly(A), poly(C) or matched the most frequent 8-mer computed from PBM data is
presented (see text). (B) The 8-mer frequency density plots for each cycle. The 8-mers were partitioned into three categories: palindromes,
poly(C) and all the rest. For each category, a smoothed density plot of its 8-mer frequencies is shown. (C) Abundant false oligos in Atf7
HT-SELEX experiment. For cycles 3, 4 and 5, the seven most frequent oligos are shown along with their counts. The consensus sequence is
highlighted in yellow (none of the top seven oligos in cycle 5 contain the consensus).

8 Nucleic Acids Research, 2014

 at T
el A

viv U
niversity on M

ay 14, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

to
due to
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku117/-/DC1
ut of
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku117/-/DC1
-
protein binding microarrays
http://nar.oxfordjournals.org/


which measure in vitro the binding intensity of a specific
TF to thousands of probes, designed to cover all 10-mers
(4). Binding models derived from these data performed
well on other PBM data but less so on in vivo data (10).
One possible explanation was that they reflect PBM arti-
facts together with the specific binding. How well PBM
models represent in vivo TF–DNA binding remained an
open question.

The emergence of new high-throughput in vitro
technologies allowed us to deepen our understanding on
this question. The HT-SELEX technology measures TF–
DNA binding using high-throughput sequencing (6–8).
Recently, Jolma et al. (12) reported HT-SELEX experi-
ments covering hundreds of TFs, where many of them had
been tested on PBM as well. This gave the first opportun-
ity to compare on a large-scale models derived from two
independent high-throughput in vitro technologies.
Through this comparison, we could identify some of the
advantages and disadvantages of each technology and
determine how relevant in vitro models are to in vivo
binding. A small-scale comparison by Jolma et al. (12)
covering 14 models reported a few differences.

Our comparison shows that for most TFs the PBM and
HT-SELEX technologies produce PWM models that are
in good agreement. On average over 246 PBM experi-
ments, the AUC when using the HT-SELEX-derived
model for predicting PBM probe binding was 0.875.
Moreover, in a model-independent comparison, the
average correlation between HT-SELEX 8-mer counts in
cycle 3 and PBM average binding intensities over the set of
top 100 PBM-ranked 8-mers was 0.74. We observed that
PBM-based 8-mer ranking is more accurate and robust
than HT-SELEX-based ranking, and that the ranking
8-mers by their occurrence frequency in the Jolma et al.
HT-SELEX data is better than ranking by between-cycle
ratio score. We speculate that this is due to the relatively
low read coverage in these experiments [compared with
SELEX-seq data, where ratio-based scores were used
(7)]. Although each HT-SELEX experiment reported
hundreds of thousands of oligos, the SELEX-seq experi-
ments had millions. We conclude that high coverage is
necessary to derive accurate ratio scores. For some
families of TFs, the two technologies give discordant
results, perhaps because of differences in DNA structure
[e.g. the HMG proteins, for which structure plays a larger
role in binding (21)]. In comparison with in vivo data from
ChIP-seq experiments, HT-SELEX models had better
binding prediction, partly because of the ability to
model the side positions more accurately. However, the
set of TFs for which HT-SELEX, PBM and ChIP-seq
data were available was rather modest, and larger tests
are needed.

In analyzing the similarity between the top 8-mers
determined by PBM and by HT-SELEX in each cycle,
we observed the previously reported phenomenon of
overspecification. Although 8-mer frequencies in the
initial HT-SELEX cycles are too non-specific and similar
to the initial pool (i.e. closer to random), the last cycles
can, in some cases, be too specific. There is a trade-off
between better coverage of top k-mers in later cycles,
which can improve the binding model accuracy, and

overrepresentation of few top k-mers, which can make
the model too narrow, disregarding weaker binding
motifs. This was noted in (6) and in previous studies
using the SELEX technology (29).
In the course of our analysis, we observed and

characterized several strong biases in many experiments
in the HT-SELEX technology. First, we found a system-
atic bias toward certain types of k-mers [similar but not
identical to the ‘sticky k-mers’, reported for PBM data
(27)]. For many TFs, in the last cycle C-rich 8-mers are
among the most frequent (Figure 4). For example, in 7%
of the experiments the most frequent 8-mer in the last
cycle contained at least 7 Cs. These phenomena can be
explained by PCR and sequencing biases (25) or perhaps
by non-specific TF binding (28). Moreover, when
measuring oligo (whole read) frequencies, we found that
in some experiments the oligos with the highest frequency
and those whose frequencies increased fastest between
cycles did not contain the binding site; we call them
‘false oligos’. We observed these phenomena in the
previous studies (6) and (8), but not in (7). Slattery et al.
were the only ones to isolate bound oligos through a
mobility shift assay, which suggests that this phase
removes false oligos and thus improves the quality of
the data.
Our analysis suggests that each of the HT-SELEX and

PBM technologies has its advantages. PBM data are more
accurate and robust in 8-mer ranking; HT-SELEX seems
to be superior in in vivo binding prediction and allows
better learning of longer motifs. We recommend using
higher read coverage in HT-SELEX experiments, as was
done in (7), to produce more sensitive models. We note
that our comparisons and conclusions are limited to the
specific technological implementations of HT-SELEX and
PBM tested, for which the large-scale overlap exists.
Unfortunately, we could not compare SELEX-seq and
context-genomic PBMs because of fewer data sets.
Our study aimed to provide deeper and broader analysis

of the properties of HT-SELEX experiments and to put
them in the context of other high-throughput technologies
for evaluating TF–DNA binding in vivo and in vitro. In the
future, we plan to extend this work in several directions.
First, we intend to use the new insights to design better
motif finding algorithms based on HT-SELEX data.
Second, we can learn a binding model based on the
biomechanical mechanism of TF–DNA binding using
regression methods that use k-mer counts [as in (8)].
Third, we plan to learn more complex binding models.
More specifically, we plan to incorporate in the models
2-mer features as well as DNA shape features, as was
done recently using custom PBM (30), and demonstrated
using existing motif databases (31). The rich and broadly
available HT-SELEX data provide a great opportunity to
improve our understanding of TF–DNA binding.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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6. Discussion 
In this thesis we described our study on the theoretical and practical aspects of motif 
finding in high-throughput in vitro data. We developed novel algorithms for inferring TF-
DNA binding preferences from these data. We implemented our methods efficiently, 
demonstrated their applicability to data generated by a range of technologies, and showed 
that they outperform existing tools. We applied computational analyses to compare 
between implementations of two different technologies that measure protein-DNA 
binding. We highlighted the advantages and disadvantages of each technology and 
observed several biases in the new HT-SELEX data. Finally, we developed new efficient 
algorithms for a sequence design problem that are related to PBMs. In the future, we 
hope that the practical tools and techniques we implemented and the theoretical 
algorithms we developed will be of use to researchers in biology and computer science, 
respectively.      

6.1 Inferring binding site motifs from PBM data 

One contribution of this thesis is the algorithms for motif discovery in PBM data. Protein 
binding microarrays are a leading technology to measure in a high-throughput and 
unbiased manner the DNA-binding preferences of a TF in vitro. Hundreds of TFs were 
examined using PBMs and the datasets were deposited in public databases. Several 
methods have been developed for the task of inferring a binding site motif from PBM 
data, including the method developed by us, Amadeus-PBM, described in Chapter 2. We 
assessed the performance of Amadeus-PBM and extant methods and found that they fall 
into two disjoint categories, where each category is better at a different task. Following 
these insights, we developed the RAP algorithm. This method performs best in all 
benchmarks, as described in Chapter 3. Through the development of RAP, we learned 
more about the characteristics of models representing protein-DNA binding preferences. 

6.1.1 Amadeus-PBM algorithm 

Amadeus-PBM, described in Chapter 2, searches for motifs that are over-represented in 
the top 1000 9-mers of a given PBM experiment. The k-mers are ranked by the average 
binding intensity. From our experience this score produces an accurate and robust 
ranking. Over-representation of the motif in the top of the ranked list is evaluated using 
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the standard hypergeometric score. The general architecture of Amadeus is a pipeline of 
filters, or refinement phases [37]. 

Amadeus-PBM produces interpretable motifs in a very short time (less than 30 
seconds). On extensive and large-scale tests, we found that the models produced by the 
algorithm resemble motifs from public databases. These were learned from data of 
independent technologies, implying that Amadeus-PBM models do not suffer from over-
fitting the biases in PBM data or artifacts of the technology. On the other hand, the 
models are less accurate in predicting the binding of another PBM experiment on the 
same TF with a different array design. The success of other methods may result from 
learning specific technological biases and incorporating this information in the model. In 
our tests for predicting in vivo binding, there is no clear winner and the results are much 
worse than predicting in vitro binding. In an international competition carried out to 
discover the TF based on PBM experiment data, Amadeus-PBM performed best (tied 
with another algorithm) [56]. The algorithm is implemented as part of the Amadeus 
software package and benefits from its user-friendly interface. The software is publicly 
available at http://acgt.cs.tau.ac.il/amadeus. 

In addition to Amadeus-PBM's applicability in inferring a binding site model 
from PBM, the platform includes a wealth of features, such as combined analysis of 
multiple datasets from one or more organisms and one or more technologies (e.g., PBM 
and ChIP), built-in bootstrapping, motif-pairs analysis, and comparison to known TF 
binding sites from public databases (e.g., TRANSFAC and JASPAR). Amadeus-PBM is 
easily accessible to biologists, since it is “wrapped” in an informative, user-friendly 
graphical interface. Amadeus-PBM is in fact a generic scheme that can use any score to 
rank the k-mers and any motif finding algorithm to infer a model based on the top 
ranking k-mers. This scheme is applicable to data produced from any technology 
measuring protein-DNA binding. For example, the algorithm has been applied to 
MITOMI data [63]. It is successfully employed in the lab of Dr. Doron Gerber from Bar-
Ilan University to produce models based on their MITOMI experiments. 

6.1.2 RAP algorithm 

In Chapter 3 we described the RAP algorithm for inferring binding site motifs from PBM 
data. The algorithm performs the same k-mer ranking as Amadeus-PBM. Then, it aligns 
the top k-mers and produces a weighted matrix based on this alignment and the k-mer 
scores. As opposed to other algorithms that learn the model's parameters based on the 
complete dataset, RAP relies on a set of high-affinity k-mers and their weights. It 
improves over Amadeus-PBM since it uses k-mer scores and extends the PWM to more 
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than 10 positions. Amadeus-PBM performs better than RAP when the derived k-mer 
scores are not as accurate and robust as in PBM (as we observed for some MITOMI 
data). We tested RAP and competing methods on three large-scale benchmarks. In terms 
of similarity to known motifs and predicting the binding of a PBM experiment on the 
same TF with a different array design, RAP performed best (tied with a different method 
in each task). The task of predicting in vivo binding based on the in vitro models remains 
difficult: all methods performed much worse in this task. Notably, in a recent study 
combining chromatin accessibility information together with PBM-derived binding 
models, RAP models performed best in predicting in vivo biding [69]. The RAP 
algorithm was implemented efficiently and runs in a couple of seconds. It is freely 
available at http://acgt.cs.tau.ac.il/RAP.  

6.1.3 Predicting in vivo binding from PBM data 

The area of learning DNA-binding preferences of proteins from PBM data has been 
extensively studied. State-of-the-art methods produce models that predict in vitro binding 
quite accurately. In contrast, constructing accurate models for in vivo binding is a harder 
challenge. In all studies, while predicting in vitro binding was very accurate (average 
AUC reaching almost 0.9), predicting in vivo binding was much worse (average AUC 
0.7). When testing PBM-derived models on ChIP-seq experiments available on ENCODE 
(considered more accurate than the ChIP-chip experiments used in Chapter 2), the results 
were effectively the same. The average AUC was 0.69 over 24 TFs that had both a PBM 
model and a ChIP-seq experiment. A comparison of the average AUC of different 
methods revealed that no method was doing better than the others (see Figure 4). The low 
accuracy may be due to the complexity of the cellular environment and also due to the 
simplicity of the produced models. Longer models, as produced by HT-SELEX, are more 
accurate in in vivo binding prediction, achieving an average AUC of 0.74 over 51 TFs, 
hinting that some of the signal directing protein-DNA binding lies in the flanking regions 
of the core motif. Other probable factors that have to be taken into account in in vivo 
binding in addition to sequence-specific features include nucleosome positioning, 
competing TFs and cooperating TFs. 
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Figure 4. Average AUC of PBM-based models in predicting in vivo binding. Models 
were generated using different methods based on PBM data and used to predict 
ENCODE ChIP-seq binding for 24 TFs. Note that the average AUC of 0.69 is higher than 
that achieved on yeast ChIP-chip data (compare Figure 4 in Chapter 2), probably due to 
the improved accuracy of ChIP-seq experiments. AM: Amadeus-PBM, SW: Seed-and-
Wobble, RM: RankMotif++, BE: BEEML-PBM. 

 

6.1.4 Benchmarking tools for motif discovery in PBM data 

Several tools for motif discovery in PBM data have been described in the literature (see 
Section 1.3.2). Comparing them on a large-scale is important to understand the 
advantages and disadvantages of each method, and highlight the limitations in the state-
of-the-art. A good benchmark for reliably comparing the performance of different tools 
should be based on a large number of real, heterogeneous, experimentally-derived 
datasets. We conducted the first large-scale comparison and used benchmarks on three 
different axes. The first compares the models to previously indentified motifs. The 
second evaluates the performance of the inferred model in predicting in vitro binding by 
predicting the binding of a PBM experiment on the same TF, but with a different array 
design. Last, we evaluated in vivo binding prediction by predicting binding in high-
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throughput ChIP experiments. We hope other researchers use these benchmarks to test 
and improve their methods, and extend it with additional datasets from various sources.  

6.1.5 The PWM model 

An ongoing debate exists in the field of protein-DNA binding modeling regarding the 
validity of the PWM model. The PWM is the most popular model for representing DNA 
binding preferences. Our studies have shown that the model is quite accurate for 
predicting in vitro binding. When using the models derived from PBM data to predict the 
binding of another PBM experiment, the average AUC was 0.9. Moreover, as described 
in Chapter 5, when using HT-SELEX-derived models to predict the binding of a PBM 
experiment, prediction accuracy was also very high - reaching average AUC of 0.875. As 
noted before, this model may be too simplistic for predicting in vivo binding. 

What are the characteristics of an accurate PWM? In Chapter 2, we observed that 
methods that generate binding models from PBM data fall into two categories: some 
produce interpretable models, similar to known motifs, and others produce models that 
are more accurate for predicting in vitro binding. The models produced by our RAP 
algorithm bridge between these two: the models are both interpretable and accurate. In 
terms of information content, which is a measure of degeneracy, interpretable models are 
stricter, while accurate models are more degenerate. RAP is somewhere in the middle, 
which may explain, in part, its high performance in both categories. 

Moreover, we found that the flanking positions in the motif affect the binding, 
with smaller effect than the core positions. Longer motifs (up to 14bp-long) produced by 
RAP algorithm perform better in predicting in vitro binding. Still, the task of learning 
these flanks is not easy. For example, the models inferred by Seed-and-Wobble algorithm 
perform better without the flanks, hinting that these flanks are not learned well. On the 
other hand, RAP successfully learns the side positions despite the limited coverage of 
PBM arrays. In our study of HT-SELEX-derived models in Chapter 5, the flanks 
significantly improved the performance of predicting in vivo binding. Other studies 
hypothesized that these positions determine the DNA-shape locally, and by that affect the 
binding [70]. In conclusion, the addition of flanking positions to the PWM model 
improves its performance, if learned correctly subject to the data constraints. 

6.2 Comparing HT-SELEX and PBM 
In Chapter 5 we conducted a large-scale comparison between two implementations of 
high-throughput in vitro technologies for measuring protein-DNA binding. As noted 
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previously, PBM-derived models are very accurate in predicting binding intensities of 
another PBM experiment, but much worse in predicating in vivo binding (as measured in 
ChIP experiments). Data from an independent high-throughput in vitro technology was 
needed to validate these models. HT-SELEX technology 'came to the rescue'. A recent 
study tested hundreds of human TFs in HT-SELEX experiments, 162 of which had a 
PBM experiment. For the first time, this comparison was possible. 

We performed a large-scale comparison using three different benchmarks. The 
first used the models derived from HT-SELEX to predict PBM binding. This was 
compared to models derived from PBM data of another array or using cross-validation, if 
such a model was not available. Second, since model inference highly depends on the 
algorithm, we performed a model-independent comparison. A list of top k-mers was 
generated from one technology, and their binding scores were compared to the scores 
derived from the other technology. Last, we used a third independent technology, ChIP-
seq, to decide which models are more accurate. We believe that the ideas implemented in 
these benchmarks may be useful to other comparisons and method assessments. As 
technologies are evolving quickly and producing data in the hundreds and thousands, 
such comparisons are often being called for and can be conducted on a large scale. 

In our comparison, we found that, on the whole, models derived from these 
technologies mostly agree. The average AUC of HT-SELEX-derived models in 
predicting PBM binding intensities was 0.825, compared to 0.9 using PBM-derived 
models on paired experiments. The disagreements are limited to several TF families, such 
as Sox proteins and zinc fingers. When using a dataset of unpaired PBM experiments, the 
average AUC of HT-SELEX-derived models was 0.925, implying that for the protein 
families in this dataset, homeodomain and ETS, the technologies are in good agreement. 
We derived three conclusions from the model-independent comparison. First, compared 
to the HT-SELEX data produced by the Taipale lab, PBM data are more robust in ranking 
a set of k-mers according to their binding intensities. Second, the read coverage in the 
experiment greatly affects the k-mer ratio statistic. For accurate and robust estimation of 
the binding affinities, a read coverage of at least a million for each k-mer is required. 
With such coverage, accurate ratios may be estimated, and the ranking may be as good as 
or even better than that achieved by PBM technology. Third, over-specification may 
occur at later cycles. High-affinity k-mers may be over-enriched at the expense of low-
affinity k-mers. Notably, in our last test we found that HT-SELEX-derived models are 
more accurate in predicting in vivo binding. We believe that this is mostly due to their 
ability to generate longer motifs, since when we removed these positions the advantage 
was no longer significant.  
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When comparing the accuracy of in vivo peak binding prediction based on PBM and HT-
SELEX models for the same TFs, using ENCODE ChIP-seq peaks and BEEML-PBM-
derived models, HT-SELEX remains superior (see Figure 5). Interestingly, the results for 
individual TFs are quite different from those obtained by Seed-and-Wobble-derived 
models, demonstrating the effect the algorithm of choice has on prediction accuracy 
(compare Figure 3 in Chapter 5).   

 

Figure 5. Comparison of PBM and HT-SELEX-derived PWM models in predicting in 
vivo binding. For 17 TFs that had a PBM and HT-SELEX-derived models and ChIP-seq 
experiments from ENCODE, a PWM model was used to predict the top 500 peaks. This 
figure is analogous to Figure 3 in Chapter 5 but is using the most updated ENCODE 
ChIP-seq data and BEEML-PBM-derived models rather than Seed-and-Wobble.  
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6.2.1 Systematic biases in HT-SELEX technology 

Through our comparison, we revealed several biases in HT-SELEX technology. First, 
some k-mers are enriched in all experiments (in the PBM technology, such enriched k-
mers were called 'sticky k-mers' [71]). These are usually C-rich k-mers. Their abundance 
makes it difficult to identify the TF's consensus sequence. Removing them is not an easy 
task, since some TFs bind C-rich motifs. We give two possible explanations to the this 
phenomenon: one is due to biases in the technology, such as sequencing biases and PCR 
biases; the other is due to non-specific binding of TFs to homogenous oligos. Second, we 
observed 'false oligos' in many experiments. These are oligos that are the most frequent, 
but do not contain the binding site. They show extremely high amplification rate from 
cycle to cycle and are homogenous in their nucleotide composition. Taking it all into 
account, biases in HT-SELEX must be overcome in order to derive accurate binding 
models and benefit from the richness of the data. 

6.2.2 Future plans 

The new data provide several opportunities to further study the mechanisms behind TF-
DNA binding. Since HT-SELEX measures the binding to longer motifs, additional 
features may be derived from sequences flanking the core. These may be added to the 
PWM as side positions or as local DNA shape features, as was proved useful in a recent 
study [70]. Biomechanical models based on free energy contributions may be learned 
from high-quality data (using algorithms such as BEEML and FeatureREDUCE) to 
improve accuracy. Such models require high-quality data, so in order to employ them 
successfully data quality has to improve, either computationally or experimentally. 
Hopefully, using the published data and other data, more can be learned on the binding 
mechanisms of different protein families, and reveal the mechanisms that differentiate 
between proteins in the same family. 

6.3 Sequence design algorithms 
In Chapter 4 we developed a new algorithm for solving a sequence design problem with 
applications to protein binding microarrays and synthetic enhancers. Both of these 
technologies require a set of probe sequences that cover together all possible DNA k-
mers for some k. In the first, the space on the array is limited, while in the second the 
number of experiments that can be performed is bounded. Since the set of probes are 
double-stranded DNA sequences, when a k-mer appears in one strand, its reverse 
complement appears in the other. Thus, a saving of up to 50% in the number of sequences 
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is possible. A reverse complement de Bruijn sequence is a sequence that for each k-mer 
either the k-mer or its reverse complement is covered. The theoretical problem is how to 
design a shortest reverse complement de Bruijn sequence. 

We solved this problem optimally. First, we gave a lower bound for the length of 
such a sequence based on k-mer counts. Then, we described an algorithm for finding two 
reverse complement Euler tours in a de Bruijn graph. The algorithm works on graphs 
with certain properties. A de Bruijn graph of even order (k-1) has these properties. Thus, 
for generating a reverse complement de Bruijn sequence of order k, when k is odd, the 
algorithm can be run on a de Bruijn graph of order (k-1). Two sequences are produced, 
represented as the Euler cycles found by the algorithm. The running time is linear in the 
size of the graph, which is Θ(|∑|k). It is optimal since this is the length of the output 
sequence. 

For even k, the problem is more complex due to palindromes. Palindromes are 
reverse complements of themselves and can only be of even length. A de Bruijn graph of 
odd order (k-1) contains palindromes. The algorithm that constructs two Euler tours 
cannot be run on such graphs. We provided two solutions to this problem, both by 
augmenting a de Bruijn graph with additional edges. The first is sub-optimal and runs in 
linear time and the second is optimal, but runs in higher polynomial time. The first 
augments the graph systematically by adding all cyclic shifts of palindromes. Then the 
algorithm can find two reverse complement Euler tours that together cover all edges. An 
optimal augmentation can be achieved by solving a maximum weight matching. The 
matching finds the smallest set of edges to add, so that in the augmented graph two 
reverse complementary Euler tours exist. Its running time is Θ(k |∑|5k/4 log(|∑|)). The 
length of the output sequence is equal to that obtained by the sub-optimal algorithm for 
k≤8 and is only slightly less for greater k's. The algorithm due to Riesenfeld et al. [66] 
aims to produce the smallest set of sequences that cover all DNA k-mers, while utilizing 
the reverse complementarity property of double-stranded DNA. Unfortunately, it has 
prohibitive running time for realistic k values. In comparison, our optimal algorithm 
terminates in less than one hour for k≤12, while Riesenfeld's algorithm on k=12 did not 
terminate after more than a month. 

 Our algorithm for finding two reverse complement Euler tours can be applied in 
other sequence design problems. For example, we are now developing a new efficient 
algorithm for a similar problem, in which the sequence is allowed to include each k-mer 
at most once, in either orientation. The biological motivation comes from microarray 
sequence design that avoids self- and cross-hybridizations. We have developed an 
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algorithm that produces an optimal solution in polynomial time, based on minimum-cost 
maximum-flow algorithm in de Bruijn graphs. We believe that the ideas applied in our 
algorithm are useful to other sequence design problems based on de Bruijn graphs. 

6.4 The road ahead 
Biological technologies progressed tremendously in recent years. They can measure 
today in a high-throughput manner millions of interactions in a single experiment. As part 
of these developments, protein-DNA binding can be measured accurately over a wide 
spectrum of sequences. The vast data produced by each experiment cannot be analyzed 
manually. Computational methods were critical in the processing these data and 
producing an accurate and compact model to represent TF-specific DNA binding 
preferences. 

We believe that techniques for measuring protein-DNA binding will continue to 
improve thanks to reduced costs of microarrays and deep sequencing platforms. The HT-
SELEX technique demonstrates the benefit of high-throughput sequencing in measuring 
protein-DNA binding [12-14]. One of its main advantages over previous techniques is the 
ability to measure motifs of length longer than 20bp [4]. Its accuracy will continue to 
improve with greater read coverage as the cost of deep sequencing continues to decrease. 
Universal PBMs were recently extended by context-genomic PBMs, which measure the 
binding of a TF to a pre-defined set of genomic sequences. For example, to test the effect 
of different flanking sequences on the binding, all sequences containing a specific core 
motif were placed on one array [70, 72]. As production of microarrays and oligo printing 
becomes cheaper, it is now possible to design arrays to test the binding preference of TFs 
to specific genomic sequences in vitro. 

Technological advancements have been made in measuring in vivo binding as 
well. While ChIP-chip measures in vivo binding to a pre-defined set of promoters, and 
ChIP-seq can detect in vivo binding to regions of around 100bp, ChIP-exo can measure 
TF-DNA in vivo binding in nearly single base-pair resolution [73]. Moreover, techniques 
have been developed to measure other confounding factors that affect in vivo binding, 
such as nucleosome occupancy and other epigenetic marks [74, 75]. On top of that, it is 
even possible to manipulate an organism's genome to test the effect of different genomic 
or synthetic regulatory elements (in promoter or enhancer regions) on its phenotype [66, 
76]. All of these will surely help in improving our understanding of in vivo binding and 
developing more accurate predictive models. 
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On the computational side, we see more complex binding models emerging to 
replace the 'good old PWM'. A long-standing debate has been going on the accuracy of 
the PWM model [56, 77]. More and more studies are starting to criticize the position-
independence assumption and suggest more complex model, mostly adding position-
dependent features, such as di-nucleotide and 3-mers [77]. The benefit of these additional 
features may be explained by their effect on local DNA shape features [78]. While these 
models have been shown to be more accurate, and it is possible to infer them from the 
new high-throughput data, they are rarely used. There are two main challenges. The first 
is the interpretability. Models gain popularity when accompanied by a user-friendly and 
intuitive visualization, which is still missing for the more complex models. Second, it is 
difficult for a new model to reach broad impact, when most bioinformatics tools and 
pipelines accept as input a PWM. Still, this seems to be the direction in which the 
community is going. 

Attempts to improve in vivo binding prediction include new epigenetic data. The 
most useful kind of data is nucleosome occupancy, which demarcates in the genome 
accessible regions where the TF can bind. Studies have used the new DNAse I 
hypersensitivity data together with a sequence-specific binding model to improve in vivo 
binding prediction [69, 79]. In addition, a recent study has been looking at cooperative 
TF binding to improve the predictions based on regions flanking the binding site [80]. 
Other kinds of information may be used in the future to improve in vivo binding 
prediction. 

Last, sequence design problem have been and still are relevant in various 
applications. Microarrays are being used extensively and it is becoming easier to 
implement and modify genomic DNA sequences in vivo. Application in these platforms 
raise interesting sequence design problems, which can be solved using combinatorial 
methods and models, such as de Bruijn graphs and linear shift feedback registers. On the 
downside, some of these problems may become less relevant in the near future, as 
microarray applications are taken over by deep sequencing (e.g. HT-SELEX replacing 
PBM) due to the decreasing cost and higher resolution of the latter. 

To conclude, there are many more problems to be solved in order to advance our 
understanding of protein-DNA binding. The technological advancements require new 
computational tools, and pose new challenges in modeling and predicting protein-DNA 
binding both in vivo and in vitro. 
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