
SlimPLS: A Method for Feature Selection in Gene
Expression-Based Disease Classification
Michael Gutkin1, Ron Shamir1*, Gideon Dror2

1 Blavatnik school of Computer Science, Tel Aviv University, Tel Aviv, Israel, 2 School of Computer Science, The Academic College of Tel-Aviv-Yaffo, Tel-Aviv, Israel

Abstract

A major challenge in biomedical studies in recent years has been the classification of gene expression profiles into
categories, such as cases and controls. This is done by first training a classifier by using a labeled training set containing
labeled samples from the two populations, and then using that classifier to predict the labels of new samples. Such
predictions have recently been shown to improve the diagnosis and treatment selection practices for several diseases. This
procedure is complicated, however, by the high dimensionality if the data. While microarrays can measure the levels of
thousands of genes per sample, case-control microarray studies usually involve no more than several dozen samples.
Standard classifiers do not work well in these situations where the number of features (gene expression levels measured in
these microarrays) far exceeds the number of samples. Selecting only the features that are most relevant for discriminating
between the two categories can help construct better classifiers, in terms of both accuracy and efficiency. In this work we
developed a novel method for multivariate feature selection based on the Partial Least Squares algorithm. We compared the
method’s variants with common feature selection techniques across a large number of real case-control datasets, using
several classifiers. We demonstrate the advantages of the method and the preferable combinations of classifier and feature
selection technique.

Citation: Gutkin M, Shamir R, Dror G (2009) SlimPLS: A Method for Feature Selection in Gene Expression-Based Disease Classification. PLoS ONE 4(7): e6416.
doi:10.1371/journal.pone.0006416

Editor: Magnus Rattray, University of Manchester, United Kingdom

Received February 23, 2009; Accepted June 11, 2009; Published July 29, 2009

Copyright: � 2009 Gutkin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the GENEPARK project which is funded by the European Commission within its FP6 Programme (contract number EU-
LSHB-CT-2006- 0375). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rshamir@tau.ac.il

Introduction

Classification of patient samples presented as gene expression

profiles has become the subject of extensive study in biomedical

research in recent years. One of the most common approaches is

binary classification, which distinguishes between two types of samples:

positive, or case samples (taken from individuals that carry some illness),

and negative, or control samples (taken from healthy individuals).

Supervised learning offers an effective means to differentiate positive

from negative samples: a collection of samples with known type labels is

used to train a classifier that is then used to classify new samples.

Microarrays allow simultaneous measurement of tens of

thousands of gene expression levels per sample. Because typical

microarray studies usually contain less than one hundred samples,

the number of features (genes) in the data far exceeds the number

of samples. This asymmetry of the data poses a serious challenge

for standard learning algorithms–that can be overcome by

selecting a subset of the features and using only them in the

classification. This feature selection step offers several advantages:

N Improved performance of classification algorithms, thanks to

removal of irrelevant features (noise).

N Improved generalization ability of the classifier, thanks to

avoidance of over-fitting (learning a classifier that is too tailored

to the training samples, but performs poorly on other samples).

N Fewer features, making classifiers more efficient in time and

space.

N More focused analysis of the relationship between a modest

number of genes and the disease in question.

N Less costly collection and storage of data.

Many feature selection techniques have been proposed. One of

the most basic and popular methods involves filters [1], which

select the subset of features as a pre-processing step, independent

of the chosen classifier. Being computationally simple and fast,

they can handle extremely large-scale datasets. Furthermore,

feature selection needs to be performed only once, after which

different classifiers can be evaluated [1]. Most filters are univariate,

considering each feature independently of other features–a

drawback that can be eliminated by multivariate techniques.

In this study we developed a novel feature selection technique based

on the Partial Least Squares (PLS) algorithm [2–4], which we call

SlimPLS. PLS aims to obtain a low dimensional approximation of a

matrix that is ‘as close as possible’ to a given vector. SlimPLS is a

multivariate feature selection method based on PLS that incorporates

feature dependencies. We tested the performance of SlimPLS by five

classifiers: linear Support Vector Machine (SVM), radial SVM,

Random Forest, K-nearest-neighbors (KNN), and Naı̈ve Bayes. 19

different case-control expression profile datasets comprising a total of

1547 samples were collected and used for training and testing. Our

results show that the use of some SlimPLS variants leads to significantly

better classification than that obtained with standard filters.

The use of PLS for classification is not new. In [5] the authors

designed a procedure that entailed dimension reduction by PLS,

PLoS ONE | www.plosone.org 1 July 2009 | Volume 4 | Issue 7 | e6416

followed by classification using the components constructed by

PLS as the new extracted features; only a small subset of the total

pool of genes was used for the construction of the components,

selected by t-test. In [6] the authors extended this two-step

procedure to support multiclass classification. Huang and Pan [7]

used PLS and penalized regression for binary classification. First, q

PLS components were constructed and a linear regression model

was built using the components. Then, using a penalizing

procedure, only genes with coefficients larger than some threshold

l were kept. Both q and l were determined by cross validation.

The classification itself is obtained by the penalized linear

regression model. A similar procedure was employed in [8] in

order to combine information from two different datasets of gene

expression. Quite recently, Cao et al. [9] used PLS-SVD (a variant

of PLS that uses singular value decomposition) together with Lasso

Penalty in order to integrate data coming from different sources

for classification. The combination of PLS and linear regression

techniques was further studied in [10].

Fort and Lambert-Lacroix [11] described a classification using

PLS with penalized logistic regression; like [5], this study ran the t-

test filter before applying PLS. The discriminating abilities of PLS

were studied in [12], where the connection between PLS and

Linear Discriminant Analysis is shown. In addition, nonlinear

extensions of PLS were also studied as kernel methods (e.g.,

[13,14]), and their use together with SVM is described in [15].

All the above studies used PLS for classification, and when

feature selection was involved, it was implicitly used. For example,

in [7], where a penalizing process was applied to reduce the

number of genes, the threshold parameter l, which implicitly

determines the number of features, was found using cross

validation. Again, the goal in [7] was to construct a classifier

rather than a feature selection technique per se.

The SlimPLS method is unique in that it focuses solely on

feature selection; it does not propose a new classification

procedure. As a result, it can be used as a pre-processing stage

with different classifiers. Thus, we evaluate the performance of

SlimPLS with different classifiers, and compare it to other feature

selection methods and not to the PLS-based classification methods

mentioned above.

Methods

We first provide some background on PLS and then describe

our algorithm.

Partial Least Squares
Partial Least Squares (PLS) is one of a broad class of methods

for modeling relations between sets of observed features by means

of latent variables called components [16]. It is an iterative method

that finds the relationship between a two-dimensional sample6
feature matrix X and the class vector y of the samples; PLS was

developed by Herman Wold and coworkers [2–4].

The basic algorithm. We shall use the following notation in

the sequel. We denote a (column) vector by an underline vð Þ, its j-

th component by v j½ �, and its mean by the scalar �vv. Matrices will

be denoted by capital letters. An estimated or predicted parameter

will be denoted by a tilde (e.g. ~yy). We use n for the number of

samples (patients) and k for the number of required features

(genes).

The basic goal of PLS is to obtain a low dimensional

approximation of an n6k matrix X such that the approximation

will be ‘as close as possible’ to a given n61 vector y. The simplest

approximation is one dimensional: One seeks a k61 vector w such

that wk~1k and cov Xw,y
� �

is maximal. Xw is called the

component of X with respect to y, and is denoted by t. The

approximation error is defined as E~X{tpT where p is a k61 vector

minimizing X{tpT
���

���. Similarly, the approximation error of y is

defined as f ~y{qt, where q is a scalar minimizing y{qt
���

���. p

and q are called the loadings of t with respect to X and y,

respectively.

The same process can be repeated iteratively by taking the

approximation errors E and f as the new X matrix and y vector,

and passing them to the next iteration. Hence, in the second

iteration, a second component of X with respect to y is computed;

new approximation errors are obtained, which can subsequently

be used to compute the third component, etc.

The substitution of X and y by their approximation errors is

called deflation. This process can be repeated, and the desired

number of components (hence, iterations) a is given to the

algorithm as input.

This variant of PLS, which we shall use below, is sometimes

called PLS1 [16,17] to distinguish it from other variants that

compute the approximations and the residuals in a slightly

different fashion [16].

Classification with PLS. The use of PLS in classification is

done in two parts–learning and prediction. In the learning part

PLS extracts the ti

� �a

i{1
components by finding the weight vectors

wi

� �a

i{1
(recall that a is the number of components). These

components are used to approximate the X matrix (expression

matrix) and the y vector (class label vector).

In the prediction part the ti

� �a

i{1
components are extracted

from the query sample z using the weight vectors wi

� �a

i{1
found in

the learning phase. Together with the loadings pi

n oa

i{1
and

qi

n oa

i{1
found earlier, PLS can then estimate the value of ~yyz, i.e.,

the estimated value of the class label of the query sample.

It should be emphasized that PLS is designed for regression, and

as such does not predict the query sample’s class. However, for a

binary classification problem one can represent the class by as a

numeric variable with two possible values, typically -1 and 1. In

such a representation, PLS can output, for example, ‘‘0.92’’ as the

query sample’s approximated class label.

The detailed learning algorithm is given in Figure 1; the

prediction algorithm is given in Figure 2. See [17] for more

details.

The complexity of each iteration of the learning stage (Figure 1)

is O n|kð Þ, which is the complexity of calculations of matrix

products needed for the component construction. Therefore, the

total complexity of the learning stage is O a|n|kð Þ.
The prediction stage (Figure 2; see [17] for more details) is

similar to the learning stage: ti

� �a

i-1
components are calculated

using the wi

� �a

i-1
weight vectors found earlier. However, now we

are dealing with only one sample (z), and not with a group of

samples as in the learning stage. Therefore, each calculated

component is actually a scalar. Because of that, in each iteration

we have O(k) calculations, and the overall complexity of this step is

O a|kð Þ.

SlimPLS
Ranking-based filters usually utilize a univariate approach when

selecting features. In some cases they can produce reasonable

feature sets, especially if the features in the original set are

uncorrelated. However, since the method ignores multivariate

relationships, the chosen feature set will be suboptimal when the

features of the original set are dependent. Some of the features will

add little discriminatory power on top of previously selected

features, although ranked relatively high individually [1,18]. In

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 2 July 2009 | Volume 4 | Issue 7 | e6416

these cases it is sometimes better to combine a highly predictive

feature (one having a high rank according to some criterion) with

some less predictive ones that correlate less with it. This way, the

added features will be better able to ‘explain’ unexplained (or

residual) ‘behavior’ of the samples than when only top-scoring

features are used. Moreover, in some cases individual features are

not highly predictive but gain predictive power when combined

[19].

PLS is a good candidate for overcoming these problems. The PLS

components are orthogonal and uncorrelated. Moreover, each

component tries to approximate the residual (or error) left after

using all former components. However, the method, in its original

form, uses all the features without selection. Each component is

constructed by a linear combination of all features using the weight

vector w. By manipulating this vector, we can use PLS for feature

selection or feature extraction, as described below. This way we

choose only the most relevant features from each component before

advancing to the next component. We call this technique SlimPLS.

Adapting PLS for feature selection. Several issues need to

be addressed before applying PLS for feature selection:

Figure 1. The learning stage of the PLS algorithm.
doi:10.1371/journal.pone.0006416.g001

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 3 July 2009 | Volume 4 | Issue 7 | e6416

1. How many features should be selected? The performance of

classification and feature selection methods depends, among

other factors, on the number of features that are selected. Too

few features will have insufficient classification power, while too

many features may add noise and cause over-fitting. Our

analysis (see Section 4.3.1) showed clear improvement in

performance when the number of related features was

increased from 20 to 50, but no clear improvement when the

number of features was increased beyond 50. We therefore

used 20- and 50-feature configurations in our studies.

2. How many components of the PLS algorithm should be used?

Typically, components computed at later iterations are much

less predictive than former ones, as they approximate the

residual, the residual of the residual, etc.;

3. When using several components, how many features should be

selected from each component? Exactly how should they be

selected?

4. Should one use the selected features themselves as the output of the

process, or perhaps use the extracted PLS component (a linear

combination of the selected original features) as the output?

We considered several possible answers to each question, and

systematically tested algorithm variants implementing combina-

tions of the choices.

The number of components and the number of features

per component. We studied two possible approaches to

partitioning the number of features across the PLS components.

a) An equi-partition approach: Use n components and partition

the features among them equally. The total number of

features is assumed to be 50, unless specified otherwise. We

call this type of variants CONST, and denote a specific

variant by the parameter n. For example, CONST variant ‘5’

chooses a total of 50 features, 10 from each component, thus

iterating over five components; variant ‘2’ uses two

components, selecting 25 features from each one; ‘1’ uses

one component.

b) A dynamic partition approach based on computing p-values:

This approach selects the number of components and the

number of features from each component according to the

properties of each component. A correlation coefficient is

computed between each component and the original label

vector y
� �

, and a p-value for that correlation is calculated

[20]. Components participate in the feature selection only if

they achieve p-values lower than a given threshold h. Then,

the numbers of the features taken from each component are

determined according to the distribution of the magnitudes of

the p-values (2log(p-value)) of the relevant components.

Specifically, the number of features ni selected from the i’th

component is taken to be ni!
log pviP

j:pvj vh

log pvj
where pvi is the p-

value associated with it.

For example, suppose the threshold h is set to 561023, and p-

values for the correlation between the first ten components and the

original label vector are calculated. The first component has a p-

value of 1.7610212, the second one 5.261025 and all other

components have p-values larger than h. Since only the first two

components have p-values,h, features will be selected using only

these components. Now, we have to decide how many features will

be selected from each component. Beginning with the pair of p-

values (1.7610212, 5.261025), we calculate their 2log (p-value):

(11.77, 4.28). The relevant proportions are therefore (0.73, 0.27).

The number of features is selected from each component according

to these proportions. For example, if we wish to select 50 genes, then

37 will be chosen from the first component and 13 from the second.

We call this variant PVAL, and denote it by the p-value used.

After selecting the desired number of features from a particular

component, we modify the original weight vector w by putting

zeroes in all entries other than the selected features and then re-

normalizing w. This way a modified component is constructed

(using the modified w vector) instead of the original component.

We compute approximations to the X matrix and the y vector

using this new component, and then continue to the next iteration,

as in the original PLS algorithm.

Figure 2. The prediction stage of the PLS algorithm.
doi:10.1371/journal.pone.0006416.g002

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 4 July 2009 | Volume 4 | Issue 7 | e6416

Selecting features from a component. After determining

the number of components and the number of features per

component, the next step is to find the features themselves. We

examined two possible approaches.

a) Pick the top features in each component (variant HIGH): If

we are to choose k features from a given component, we

simply pick the k features that have the largest absolute

weights in the vector w calculated for that component.

b) A hill-climbing improvement approach (variant HC): We take

the set of features obtained in (a) as a base set, and begin an

improvement process using hill climbing [21], looking for a set of

features of the same size that yields a lower approximation error (

||E|| where E~X{tpT , t is the component constructed using

the selected set of features, and p is its loading; see Figure 1). At

each step of hill climbing, we randomly search for a better set of

features, constructed by replacing one feature that currently

belongs to the set by another feature that does not. The first

switch that yields a lower error is chosen. This procedure

terminates when no improvement is found after a given number

of times (we used the number 50 in this study). The search is

performed separately for each component.

Feature selection and feature extraction. Once we have

determined the desired features in each component, we can use

them in two ways:

a) Use the selected features as the output. This approach is

called TOP.

b) Use the components as extracted features: In each component use

the selected features to modify the original weight vector w of that

component, putting zeroes in all entries other than entries that

belong to the selected features and then normalizing w. The

constructed modified components are the output. Hence, these

components are the new extracted features, and each of them is a

linear combination of some original features. The total number of

original features used is still as prescribed. In this approach the

number of extracted features is the number of iterated PLS

components. This approach is called TCOMP.

The full designation of the variants used will be a dash-separated

tripartite name, where the first part is CONST/PVAL, the second

HIGH/HC and the third TOP/TCOMP. The first part is a number:

it denotes the number of components if it is a natural number, and the

p-value otherwise. For example, 561022-HC-TCOMP selects 50

features; the number of components and the number of features in

each component are selected using the PVAL approach with a

threshold of 561022; features are optimized using hill climbing and

components are used as the new extracted features.

Table 1 summarizes the different SlimPLS variants described

above. We categorize the variants into ‘families’, first depending

on how many features they use from each component (constant, or

using component p-values), and then - among those using p-

values–depending on whether they take the highest scoring

features or try to improve them via hill climbing.

Results

Datasets
We collected 19 datasets reported in the literature, with sample

sizes ranging from 31 to 173 and containing between 2000 to

22283 features. The list of datasets appears in Table 2.

Our goal was to find the more informative features. Because

different features have different scales, the data had to be

standardized before comparisons could be made. Each feature

was linearly transformed to have a zero mean and variance 1. This

data standardization is a common pre-processing step in

microarray studies and was done previously when using PLS [7].

Performance evaluation criteria
Using the benchmark of 19 datasets, we tested five classifiers

and 36 feature selection algorithms–four filters (Pearson correla-

tion coefficient [26], Welch test [20], which is a variant of T-test

[41], Golub criterion [24] and mutual information [42]) and 14

SlimPLS variants (two CONST variants with one component: 1-

HIGH/HC-TOP, eight PVAL variants: 561022/561023-

HIGH/HC-TOP/TCOMP and four variants with two compo-

nents: 2-HIGH/HC-TOP/TCOMP)–and selected a total of 20

and 50 features in each test. To avoid confusion, we will call a

feature selection algorithm simply a feature selector (FS), and reserve

the term ‘‘combination’’ for a combination of FS and classifier.

Hence, we assessed a total of 180 combinations.

We used the R package [43] for the implementation of the SlimPLS

methods, and used publicly available packages for the classifiers

implementation: e1701 [44] for SVM and Naı̈ve Bayes, class [44,45] for

KNN, and randomForest [44,46] for Random Forest. When running

SVM, we used the grid 10{1,1,10,102,103,104
� �

of possible values of

Table 1. A summary of the SlimPLS variants and their properties.

Family Feature Selector Description

CONST n-HIGH-TOP Use n components, with an equal number of top features from each component

CONST n-HIGH-TCOMP As above, but use the modified components as the extracted features

CONST n-HC-TOP Use n components, with an equal number of features from each component; Select the features in each
component by hill climbing from the K/n top ones, where K is the total number of features selected.

CONST n-HC-TCOMP As above, but use the modified components as the extracted features

PVAL-HIGH p-HIGH-TOP Select only components that show correlation p-value,p with the label vector; select the number of features
from each component according to their relative p-values

PVAL-HIGH p-HIGH-TCOMP As above, but use the modified components as the extracted features

PVAL-HC p-HC-TOP Select only components that show correlation p-value,p with the label vector; select the number of features
from each component according to their relative p-values; Improve by hill climbing

PVAL-HC p-HC-TCOMP As above, but use the modified components as the extracted features

In all variants the total number of features selected was set to 50 unless otherwise specified. n is a natural number and p is a real number 0,p,1. This difference in
range of the first part of the name distinguishes the CONST from the PVAL variants.
doi:10.1371/journal.pone.0006416.t001

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 5 July 2009 | Volume 4 | Issue 7 | e6416

C and found the best value of C using leave-one-out cross-validation on

the training set. The Random Forest procedure was run with 1500

trees and m~
ffiffiffiffiffiffi
M
p

(where M is the total number of features and m is

number of selected features that are used for branching on each node

in each tree in the random forest; see [47] for more details). When

running KNN, we used the grid {1,3,5,7} of possible values of k and

found the best value of k using leave-one-out cross-validation on the

training set. When running the mutual information filter, we used ten

equal-sized bins. Ten bins showed better performance than fewer and

more bins (results not shown).

A key question was how to evaluate performance. As some datasets

are harder to classify than others, evaluating performance by the

number of errors in each would give these datasets higher weight.

Relative ranking of performance gives equal weight to all datasets, but

ignores the absolute magnitude of the errors. For these reasons we used

several criteria, each revealing a different aspect of the performance.

Error rates were calculated using leave-one-out cross validation, and

performance was measured according to two criteria:

a) Rank sum p-value. Define a three-dimensional array E where

E i,j,kð Þ is the error rate of classifier i and feature selector j on

dataset k. Hence, the dimensions of E are 5636619. Define

an array R of the same dimensions, where R i,j,kð Þ is the rank

of E i,j,kð Þ among E i, � ,kð Þ. Hence, R i,j,kð Þ ranks feature

selector j compared to all others for classifier i and dataset k.

The score of a subset of feature selectors S~ j1, . . . ,jnf g for

classifier i is computed by comparing the distribution of the

values R i,S,kð Þ to the distribution of the values of R �, � ,kð Þ,
using the Wilcoxon rank-sum test [20]. This test determines

the extent to which a particular group of values (e.g., the

error rates of one feature selector) tends to have low rank

compared to the rest. The p-values calculated on each dataset

were combined using Fisher’s method [48]. This score

compares the different combinations of classifier and feature

selectors, which means it also compares classifiers.

a) Another comparison was made for each dataset. This time

the distribution of the values R i,S,kð Þ was compared to the

distribution of the values of R i, � ,kð Þ and a rank-sum score

was computed as above. This score was used to compare the

feature selectors using different individual classifiers, since it

evaluates the performance of the different feature selectors

using a particular classifier.

a) We used the two scores defined here to compare

combinations of a family of feature selectors (or a subset of a

family) and a classifier. In other words, we did not compare one

feature selector to another, but compared groups of similar

variants.

b) Binomial tail p-value. We used only 50 features with this method.

Let E i,j,kð Þ be defined as before, using only the 50 features

version of the feature selectors. Hence, the dimensions of E are

5618619. R i,j,kð Þ is defined as the rank of E i,j,kð Þ among

E �, � ,kð Þ. To compare two combinations c1 and c2, where the

first one uses classifier i1 and FS j1, and the second one uses

classifier i2 and FS j2, we compare the two vectors R i1,j1,�ð Þ and

R i2,j2,�ð Þ. Let n1~ k R i1,j1,kð ÞwR i2,j2,kð Þjf gj j and let

n2~ k R i1,j1,kð ÞvR i2,j2,kð Þjf gj j. Then nd~n1zn2 is the

number of datasets in which the ranks using combination c1

and combination c2 differ. Our null hypothesis is that the two

combinations show similar performance. In other words, after

removing the entries that have identical values we assume that

R i1,j1,kð ÞwR i2,j2,kð Þ has a probability of 0.5. Therefore, n1 has

a binomial distribution B nd ,0:5ð Þ. The p-value for observing at

least n1 cases where combination c1 is ranked above combination

c2 is: P n§n1ð Þ~ 0:5ð Þnd
Pnd

l~n1

nd

l

� �
.

The effect of the number of features
We first tested how performance changed when different numbers

of features were selected. For a particular feature selector j using a

particular classifier i, we calculated the average error rate achieved by

this combination. Formally, we calculated 1
19

P
k

E i,j,kð Þ. Notice that

we use here the error rates, since we are evaluating the performance of

a particular feature selector using different numbers of features.

For a given classifier, we calculated this average error rate for six

different variants of SlimPLS: 1-HC/HIGH -TOP, 561022/561023-

HC-TOP and 561022/561023-HC-TCOMP (see Table 1 for

variant definitions) using nine different numbers of selected features:

20, 30, … 100. Then, the average error rate over these feature selectors

was calculated for each number of selected features. The results for the

classifiers SVM-radial and KNN are summarized in Figure 3.

An improvement in performance is evident when the number of

selected features increased from 20 to 50. No significant

improvement is noticeable when the number increased further.

Therefore, the following focuses only on the 50-feature configu-

rations, unless otherwise stated.

The effect of the classifier
The average rank-sum p-values of each classifier were

calculated over three groups of feature selectors:

a) Filters: the four filters used in this work.

b) CONST: the two TOP variants that choose all features from

one component, 1-HIGH/HC-TOP.(We excluded the

TCOMP variants since they report only one extracted

Table 2. The Datasets used in this study.

Dataset Ref. N A B P

1 HD blood [22] 31 14 17 22283

2 HD caudate [23] 70 32 38 20223

3 Leukaemia [24] 72 47 25 7129

4 HD cerebellum [23] 66 27 39 20223

5 Prostate Cancer [25] 102 50 52 12533

6 Breast Cancer [26] 78 44 34 16783

7 Colon Cancer [27] 62 40 22 2000

8 Crohn’s Disease blood [28] 101 42 59 22215

9 Breast Cancer [29] 118 43 75 22215

10 Liver Cancer [30] 60 20 40 7070

11 Breast/Colon Cancer [31] 104 62 42 22215

12 Lung Cancer [32] 86 62 24 7129

13 Liver Cancer [33] 60 40 20 7129

14 Prostate Cancer [34] 53 19 34 4344

15 Breast Cancer [35] 58 28 30 2166

16 Breast Cancer [36] 49 25 24 2166

17 Ovarian Cancer [37] 54 30 24 22283

18 Neural tissue [38] 150 100 50 12488

19 Myeloma and bone lesions [39] 173 137 36 12625

Datasets 12–19 were used in [40]. For each dataset, N is the number of samples,
A and B are the number of cases and controls, respectively, and P is the number
of probes (features) measured. HD: Huntington’s Disease.
doi:10.1371/journal.pone.0006416.t002

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 6 July 2009 | Volume 4 | Issue 7 | e6416

feature, and some of the classifiers that we tested do not

support classification with one feature).

c) PVAL-HC: the four variants that choose a variable number

of features per component, depending on the p-values:

561022/561023-HC-TOP/TCOMP.

The results are summarized in Figure 4. For the PVAL-HC

variants, SVM (linear and radial) and KNN showed better

performance than RF and NB. Moreover, these three classifiers

together with the four PVAL-HC variants achieved the highest scores

among all combinations. When using filters, the RF classifier

performed best and SVM classifiers second. The filters performed

worst with the KNN classifier. The difference in the performance of

PVAL-HC variants and filters was the most pronounced with this

classifier (see Discussion).

Figure 4 shows that SVM-linear and SVM-radial classifiers

produced similar results. When the NB and RF classifiers were

used, the PVAL-HC FS variants outperformed other feature

selectors, but less dramatically than with the other classifiers.

To get a clearer understanding of the influence of the feature

selectors on the different classifiers, we performed the second variant

of the rank-sum test (see Results, Performance evaluation
criteria a, and Figure 5). This time the comparison between the

different feature selectors for each specific classifier was done

separately. The PVAL-HC variants showed a clear advantage over

the other feature selectors. The differences were minor with RF, but

stronger with the other classifiers.

As in the previous test (Figure 4), the greatest advantage of

PVAL-HC feature selectors over the filters was attained when the

KNN classifier was used.

The effect of the feature selectors
Figure 6 summarizes the comparisons between different

feature selectors using dominance maps. These are directed graphs

in which each node is a combination and a directed edge from c1

to c2 indicates that combination c1 performed significantly better

p{valueƒ0:05) than combination c2. Performance is measured

using the binomial tail for the relative accuracy of the two

combinations across the datasets. See Results (Performance
evaluation criteria b) for more details. We constructed five

maps, one for each classifier. Singletons–combinations that were not

significantly comparable to any other combination (corresponding

to isolated vertices in the map)–were omitted. Transitive edges were

also removed: if there were three edges ARC, ARB and BRC,

edge ARC was removed. Out of the four variants of the PVAL-HC

group, only two were taken: 561023-HC-TOP/TCOMP.

One can see a clear tendency of the PVAL-HC variants (the

blue nodes) to appear in the upper row, the location of the better

performing FS for the given classifier. The PVAL-HC nodes also

tended to have more outgoing edges, showing dominance over

many other feature selectors. A very strong dominance of the

PVAL-HC variants was observed with the KNN classifier

(Figure 6(d)). In addition to the PVAL-HC variants, the Filters

(green nodes) and the CONST-50-50 variants (yellow nodes) also

tended to perform well.

Four feature selectors were never dominated by others: 1-

HIGH-TOP, 561023-HC-TOP, 561023-HC-TCOMP and

COR, the correlation filter (combinations that were singletons

are not shown on the maps).

Evaluation of the leading combinations
The above comparison evaluated feature selectors for each

classifier separately. Because comparisons of all combinations of

feature selector and classifier yield complex, hard-to-interpret

results (see [49]), we calculated another dominance map (Figure 7)

containing only the four leading feature selectors and all the

classifiers. We chose only those feature selectors that were not

dominated by any of the others in the previous analysis: 1-HIGH-

TOP, 561023-HC-TOP, 561023-HC-TCOMP and COR.

All four combinations using SVM-radial were undominated.

The combinations of SVM-linear and KNN with 561023-HC-

TCOMP dominated the largest number of others.

Figure 3. Performance as a function of the number of selected features. Performance is measured by the average error rate of six different
SlimPLS-based feature selectors using the KNN and SVM-radial classifiers, for different numbers of selected features.
doi:10.1371/journal.pone.0006416.g003

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 7 July 2009 | Volume 4 | Issue 7 | e6416

All combinations involving the Naı̈ve Bayes classifier with the

exception of the combination with 561023-HC-TCOMP were

dominated by others. This is consistent with the classifiers comparison

(Figure 4). The generally poorer performance of Naı̈ve Bayes

compared to the other classifiers is in line with the prevailing view that

discriminative classifiers are almost always preferred (see e.g. [50])

Robustness
A key question in feature selection is robustness: how stable is the

set of selected features when the data are perturbed? To address this

question, we found the features for each dataset that were selected at

least half the time in the leave-one-out cross-validation iterations,

and then averaged this number over all datasets.

Figure 4. Performance of different classifiers using three groups of feature selectors. 2log(p values) of the combined Wilcoxon rank-sum
tests for three groups of methods using five different classifiers are shown. See text for the group definitions.
doi:10.1371/journal.pone.0006416.g004

Figure 5. Performance of three groups of feature selectors calculated separately for each classifier, according to the classifier-
specific rank-sum p-value. 2log(p-value) of the combined Wilcoxon rank-sum tests for the three groups using five different classifiers are shown.
The concentric pentagons show the 2log(p-value) scale. The results on separate classifiers are shown on the separate axes. This representation is
intended to emphasize the relative performance of each FS on each classifier separately, and does not present relative performance across classifiers.
See text for the description of the families.
doi:10.1371/journal.pone.0006416.g005

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 8 July 2009 | Volume 4 | Issue 7 | e6416

Figure 6. Dominance maps for comparing feature selectors. The comparison is done separately for each classifier: (A) SVM-linear (B) SVM-
radial (C) Random Forest (D) KNN (E) Naı̈ve Bayes. An edge XRY indicates that X significantly outperformed Y. In (D) the second and the third layers
from the top were originally one layer that was divided into two rows for display purposes only. Methods in upper layers performed better than
methods in lower ones.
doi:10.1371/journal.pone.0006416.g006

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 9 July 2009 | Volume 4 | Issue 7 | e6416

As expected, the filters achieved high robustness. For example, when

a total of 50 features were selected, the t-test filter found an average of

48 features that were selected in at least half of the iterations. The

HIGH variants achieved an average of 43–46 features, except for the

1-HIGH-TOP variant, which achieved an average of 49.1 features.

The 561023-HC-TOP variant achieved an average number of 36.7

features and the 1-HC-TOP an average of 40.8 features (the matching

TCOMP variants are not mentioned as they use the same mechanism

for feature selection and therefore would have the same scores).

The drop in the average for the HC variants is due to the hill

climbing procedure. As hill climbing randomly tests candidate

replacement features, it can find, say, two distinct sets that perform

similarly as a group. Thus, HC variants may consistently find the

‘core’ set of features, but may find different subsets of features to

provide the full ‘explanation’ of the domain.

More details on the robustness comparison can be found in

[49].

Running Times
The running time of a feature selector can be divided into two

components: feature selection time and classification time. The

running times for each component are summarized in Table 3.

The HIGH variants exhibited comparable feature selection time to

the filter, and had a faster feature selection time when only one PLS

component was used. The HC variants showed slower feature

selection times than the filters, due to the hill climbing search, which

takes extra time after the initial set of features is found. With regard

to the classification time, the TOP variants showed times similar to

those of the filters, while the TCOMP variants were faster, having to

test fewer (extracted) features than the TOP variants or the filters.

Discussion

We have described a new algorithm for feature selection based

on the Partial Least Squares method, and used a variety of

classification algorithms to compare it to filter methods. Our tests

on real case-control biological datasets show an advantage of the

new method over filter methods.

We focus here on the 50-feature configuration since in most

cases, classifiers achieved a lower error rate with that configuration

compared to the 20 selected features configuration, and, increasing

the number of features beyond 50 brought no consistent

improvement (Figure 3, see also [49]).

The PVAL-HC variants of SlimPLS tended to outperform the

other tested variants (Figure 5 and Figure 6). These variants

select the number of features per component based on their

significance and try to improve the feature set by local search.

Among these variants, the TCOMP variants, which employ

feature extraction (but still use 50 features only), tend to achieve

slightly better results than the TOP variants. This is not surprising

since the components, which are actually the extracted features,

are found in a way that maximizes the match to the class vector;

that is, the components are chosen to provide a good

approximation of the class prediction. The TOP variants use the

selected features for classification, but without the formulas that

dictate how to re-build these components (the weight vectors). This

leaves the task of constructing the formulas–of finding the relevant

relationships between these features in order to get a good

classification–to the classifier. When the TCOMP variants are

used, we usually get one to four components that already

incorporate some ‘collective’ behavior of features found by

SlimPLS. Moreover, each component approximates the residual

or the ‘unexplained’ behavior of the previous component. Thus,

these new extracted features contribute more information to the

classification.

The better performance of the PVAL-HC variants compared to

the filters is more dramatic when the KNN classifier is used

(Figure 5). This is an interesting result in view of the high

sensitivity of the KNN classifier to the selected features [51]. It

appears to indicate the ability of SlimPLS feature selection

Figure 7. A dominance map comparing the performance of four leading feature selectors using all classifiers. Additional singletons not
shown in the picture: KNN - 561023-HC-TOP and 1-HIGH-TOP; SVM-linear–1-HIGH-TOP and COR; RF - 561023-HC-TOP; NB - 561023-HC-TCOMP.
doi:10.1371/journal.pone.0006416.g007

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 10 July 2009 | Volume 4 | Issue 7 | e6416

techniques to find good informative groups, especially when these

groups are translated into new features, extracted in TCOMP

variants. The combination of the KNN classifier and the 561023-

HC-TCOMP feature selector had the lowest average error-rate.

The combination of KNN and 561022-HC-TCOMP had the

second lowest average error-rate (see [49]). SVM-radial also

showed consistently high performance when the better feature

selectors were used (see Figure 7).

As mentioned above, HC variants may consistently find the

‘core’ set of features, but they may also find different subsets of

features to fully ‘explain’ the domain. Further research on the

‘core’ set is needed since, despite the random process, these

features are repeatedly selected.

The SlimPLS method appears promising. Future work should

examine automatic calculation of the p-value threshold in the

PVAL variants (e.g., the faster the significance drops for

constructed components, the more significant a component will

have to be to pass the threshold), and using a minimum number of

features per component for better ‘capture’ of the component’s

behavior. Another possibility is to stop the local search after a

prescribed number of runs, or after attaining a desired percentage

of improvement of the objective function, and allow one of the

currently selected features to be replaced by another one that is

not, only if the improvement (absolute or relative) of the target

function is higher that some threshold. Different local search

algorithms such as simulated annealing could be applied. It would

also be interesting to use biology-based logic in the local search.

The greedy search tries to find a switch that improves the target

function. A mechanism can be inserted that prevents some

switches, even if they improve the target function. For instance,

one gene can be switched with another only if the two belong to

the same pathway in a given biological network. Or, a switch can

be allowed only if there are representative genes from at least (or at

most) k different modules of the biological network in the resulting

subgroup.

Author Contributions

Conceived and designed the experiments: MG RS GD. Performed the

experiments: MG. Analyzed the data: MG. Wrote the paper: MG RS GD.

References

1. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in

bioinformatics. Bioinformatics 23: 2507–2517.

2. Wold H (1982) Soft modeling: the basic design and some extensions. Systems

Under Indirect Observation 2: 1–53.

3. Wold H (1985) Partial least squares. ‘‘Encyclopedia of the Statistical Sciences’’ 6:
581–591.

4. Wold S, Ruhe H, Wold H, Dunn WJ III (1984) The collinearity problem in

linear regression. The partial least squares (PLS) approach to generalized
inverse. SIAM Journal of Scientific and Statistical Computations 5: 735–743.

5. Nguyen DV, Rocke DM (2002) Tumor classification by partial least squares

using microarray gene expression data. Bioinformatics 18: 39–50.

6. Nguyen DV, Rocke DM (2002) Multi-class cancer classification via partial least
squares with gene expression profiles. Bioinformatics 18: 1216–1226.

7. Huang X, Pan W (2003) Linear regression and two-class classification with gene

expression data. Bioinformatics 19: 2072–2078.

8. Huang X, Pan W, Han X, Chen Y, Miller LW, et al. (2005) Borrowing

information from relevant microarray studies for sample classification using

weighted partial least squares. Comput Biol Chem 29: 204–211.

9. Cao K-AL, Roussouw D, Robert-Granie C, Besse P (2008) A Sparse PLS for

Variable Selection when Integrating Omics Data. Statistical Applications in

Genetics and Molecular Biology 7: Article 35.

10. Ding B, Gentleman R (2004) Classification Using Generalized Partial Least

Squares. Bioconductor Project.

11. Fort G, Lambert-Lacroix S (2005) Classification using partial least squares with
penalized logistic regression. Bioinformatics 21: 1104–1111.

12. Barker M, Rayens W (2003) Partial least squares for discrimination. journal of

chemometrics 17: 166–173.

13. Rosipal R, Trejo L (2001) Kernel Partial Least Squares Regression in
Reproducing Kernel Hillbert Spaces. journal of Machine Learning Research

2: 97–128.

14. Momma M, Kristin P, Bennet (2003) Sparse Kernel Partial Least Squares
Regression. Proceedings Computational Learning Theory. pp 216–230.

15. Rosipol R, Trejo LJ, Matthews B (2003) Kernel PLS-SVC for Linear and

Nonlinear Classification. Twentieth International Conference on Machine
Learning, Washington DC.

16. Rosipal R, Kramer N (2006) Overview and recent advances in partial least

squares. Subspace, Latent Structure and Feature Selection 3940: 34–51.

17. Martens H, Naes T (1989) Multivariate Calibration. John Wiley & Sons.

18. Webb A (2002) Statistical pattern recognition. Wiley.

19. Hanczar B, Zucker JD, Henegar C, Saitta L (2007) Feature construction from

synergic pairs to improve microarray-based classification. Bioinformatics 23:

2866–2872.

20. Everitt BS, Hothorn T (2006) A Handbook of Statistical Analyses Using R.

Chapman & Hall/CRC Taylor & Francis Group.

21. Russell SJ, Norvig P (2003) Artificial Intelligence: a modern approach. Prentice

Hall.

22. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, et al. (2005) Genome-wide

expression profiling of human blood reveals biomarkers for Huntington’s

disease. Proc Natl Acad Sci U S A 102: 11023–11028.

23. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, et al. (2006) Regional

and cellular gene expression changes in human Huntington’s disease brain.

Hum Mol Genet 15: 965–977.

24. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science 286: 531–537.

25. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, et al. (2002) Gene

expression correlates of clinical prostate cancer behavior. Cancer Cell 1:

203–209.

26. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene

expression profiling predicts clinical outcome of breast cancer. Nature 415:

530–536.

27. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, et al. (1999) Broad patterns of

gene expression revealed by clustering analysis of tumor and normal colon tissues

probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96: 6745–6750.

28. Burczynski ME, Peterson RL, Twine NC, Zuberek KA, Brodeur BJ, et al. (2006)

Molecular classification of Crohn’s disease and ulcerative colitis patients using

transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 8: 51–61.

29. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, et al. (2006)

Genomic and transcriptional aberrations linked to breast cancer pathophysiol-

ogies. Cancer Cell 10: 529–541.

30. Okada T, Iizuka N, Yamada-Okabe H, Mori N, Tamesa T, et al. (2003) Gene

expression profile linked to p53 status in hepatitis C virus-related hepatocellular

carcinoma. FEBS Lett 555: 583–590.

Table 3. Average running time of different feature selection
techniques.

Feature selection technique
Feature selection
time Classification time

Correlation filter 4.00 4.86

1-HC- TOP 9.71 4.71

561022-HC-TCOMP 27.00 3.00

561022-HC-TOP 26.29 5.43

561023-HC-TCOMP 27.57 2.43

561023-HC-TOP 27.86 4.43

1-HIGH-TOP 1.43 4.29

561022-HIGH-TCOMP 4.86 1.71

561022-HIGH-TOP 4.86 4.43

561023-HIGH-TCOMP 4.57 1.71

561023-HIGH-TOP 4.43 4.71

Times are in seconds per iteration of the leave-one-out cross validation. The
SVM-radial and KNN classifiers were used after the feature selection phase.
These tests were done using a Linux platform with Intel Xeon 5160 CPU,
3.00 GHz clock, and 4 GB of RAM.
doi:10.1371/journal.pone.0006416.t003

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 11 July 2009 | Volume 4 | Issue 7 | e6416

31. Chowdary D, Lathrop J, Skelton J, Curtin K, Briggs T, et al. (2006) Prognostic

gene expression signatures can be measured in tissues collected in RNAlater
preservative. J Mol Diagn 8: 31–39.

32. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, et al. (2002) Gene-

expression profiles predict survival of patients with lung adenocarcinoma. Nat
Med 8: 816–824.

33. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, et al. (2003)
Oligonucleotide microarray for prediction of early intrahepatic recurrence of

hepatocellular carcinoma after curative resection. Lancet 361: 923–929.

34. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, et al. (2001)
Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826.

35. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, et al. (2001) Estrogen
receptor status in breast cancer is associated with remarkably distinct gene

expression patterns. Cancer Res 61: 5979–5984.
36. West M, Blanchette C, Dressman H, Huang E, Ishida S, et al. (2001) Predicting

the clinical status of human breast cancer by using gene expression profiles. Proc

Natl Acad Sci U S A 98: 11462–11467.
37. Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, et al. (2005) Patterns of

gene expression that characterize long-term survival in advanced stage serous
ovarian cancers. Clin Cancer Res 11: 3686–3696.

38. Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, et al. (2005) Adult

mouse brain gene expression patterns bear an embryologic imprint. Proc Natl
Acad Sci U S A 102: 10357–10362.

39. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, et al. (2003) The role of the

Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in

multiple myeloma. N Engl J Med 349: 2483–2494.

40. Song L, Bedo J, Borgwardt KM, Gretton A, Smola A (2007) Gene selection via

the BAHSIC family of algorithms. Bioinformatics 23: i490–498.

41. Hastie T (2001) The Elements of Statistical Learning. Springer.

42. Hamming RW (1980) Coding and Information Theory. Prentice-Hall Inc.

43. The R Project for Statistical Computing. [http://www.r-project.org/].

44. The Comprehensive R Archive Network/Packages. [http://cran.r-project.org/].

45. Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer.

46. Breiman L, Cutler A () Random Forests. Department of Statistics, University of

California, Berkeley. http://stat-www.berkeley.edu/users/breiman/Random-

Forests/.

47. Breiman L (2001) Random Forest. Machine Learning 45: 5–32.

48. Fisher RA (1948) Combining independent tests of significance. American

Statistician 2.

49. Gutkin M (2008) Feature selection methods for classification of gene expression

profiles. Tel Aviv: Tel Aviv University. [http://acgt.cs.tau.ac.il/theses/Msc-

Thesis-Michael-Gutkin.pdf].

50. Vapnik V (1998) Statistical Learning Theory. New York: John Wiley and Sons,

Inc.

51. Mitchell TM (1997) Machine Learning: McGraw-Hill International Editions.

SlimPLS Feature Selection

PLoS ONE | www.plosone.org 12 July 2009 | Volume 4 | Issue 7 | e6416

