

 TEL AVIV UNIVERSITY
The Iby and Aladar Fleischman Faculty of Engineering

The Zandman-Slaner School of Graduate Studies

POST-SILICON TEST OPTIMIZATION USING METHODS

FROM BIOINFORMATICS

A thesis submitted toward the degree of

Master of Science in Electrical and Electronic Engineering

by

Ron Zeira

January 2013

TEL AVIV UNIVERSITY
The Iby and Aladar Fleischman Faculty of Engineering

The Zandman-Slaner School of Graduate Studies

POST-SILICON TEST OPTIMIZATION USING METHODS

FROM BIOINFORMATICS

A thesis submitted toward the degree of

Master of Science in Electrical and Electronic Engineering

by

Ron Zeira

This research was carried out in the School of Electrical Engineering

Department of Electrical Engineering – Systems

under the supervision of Prof. Ron Shamir and Prof. Dana Ron

January 201

III

Acknowledgements

I would like to thank my advisor Prof. Ron Shamir and all the members of the Computational

Genomics group for their support and guidance in every step of the way during my M.Sc

studies. I would also like to thank Prof. Dana Ron for co-supervising my studies.

I had the privilege of collaborating with Mr. Dmitry Korchemny from Intel Corporation, who

initiated this research, provided the industrial data, and supported me with his expert

knowledge. I deeply thank the Intel Corporation for funding my fellowship over the past two

years.

IV

Abstract

This thesis studies problems in optimization of hardware testing using computational biology

techniques. Mathematically, the hardware testing data can be presented as a matrix whose

rows correspond to the tests performed on the hardware and columns correspond to

meaningful events measured during each test. The matrix values are the number of times the

event occurred in the test. It is analogous to gene expression matrix, where rows are genes and

columns are conditions. Taking this analogy further, we can use methods developed in gene

expression analysis. For example, clustering techniques can be used in order to partition the

tests (or the events) into similarity groups. The identified groups can then be analyzed by

hardware validation engineers in order to find redundant tests and replace them with

representative tests. Gene expression analysis and visualization tools, such as EXPANDER,

can assist in comprehension of the validation process. We also explore combinatorial methods

for set cover problems in order to find small test sets with good event coverage.

We also define and study a new approach to clustering, based on finding cohesive subgraphs

in an undirected weighted graph. The objective function of cohesion is a generalization of

subgraph density, defined as the ratio between the number of edges and the number of nodes

in the subgraph. Inspired by graph clustering, cohesion discourages the inclusion of inter-

cluster edges and high degree nodes. We give a polynomial algorithm for finding a maximum

cohesion subgraph in an undirected weighted graph, based on iterated flow computations. We

then test our new approach on simulated clustering data generated using different models. We

report improved performance using cohesion compared to density.

V

Contents

1. Introduction and summary ...11

2. Preliminaries and background ..13

2.1. Silicon validation ..13

2.1.1. Pre- and post-silicon testing ..13

2.1.2. A formal description of the validation data ...15

2.2. Computational background ...16

2.2.1. Basic concepts in graph theory ...16

2.2.2. Covering and domination problems ..18

2.2.3. Clustering ...19

2.2.4. Statistical scores ...27

2.2.5. Graph clustering and density ..29

2.3. Previous studies on post-silicon test optimization ..34

3. The tested data ...37

3.1. The analyzed data sets...37

3.2. Summarizing the raw test data ..38

4. Analysis using covering and domination techniques ..39

4.1. Single event cover and domination ..39

4.1.1. Set cover ..39

4.1.2. Domination ..39

4.2. Event pair cover and domination ...40

4.2.1. Set cover ..40

4.2.2. Domination ..40

4.3. All subset cover ..41

5. Prioritizing tests ...42

5.1. Performance criteria ..42

5.2. Greedy approaches ..42

5.3. Evaluations ...43

6. Analysis using clustering techniques ..49

VI

6.1. Ad-hoc similarity measures for post-silicon test data ...49

6.1.1. Hit matrix similarity ...49

6.1.2. Binary test vector similarity ..50

6.1.3. Between cluster similarity ..51

6.2. Clustering with K-means...52

6.3. Hierarchical clustering ..54

6.3.1. Dendrogram solution ..54

6.3.2. Neighbor joining ..55

6.4. Clustering using Click ...56

6.5. Consensus clustering and Model explorer ...58

6.5.1. Application to Click ...59

6.5.2. Application to K-means and hierarchical clustering ..63

6.6. Analysis of clustering solutions using enrichment ...64

7. Algorithms for cohesive subgraphs ..68

7.1. Finding maximum cohesion subgraphs..68

8. Application of cohesion to graph clustering ...77

8.1. Models for simulating test data ...77

8.1.1. The corrupted clique graph model ..77

8.1.2. The weighted corrupted clique graph model ...78

8.1.3. Random similarity graph model ..80

8.2. Results ..80

8.3. Discussion ..89

9. Future work ...92

10. References: ..93

VII

Figures

Figure 1: Validation domain and characteristics .. 14

Figure 2: Hierarchical clustering dendrogram ... 22

Figure 3: Neighbor joining tree ... 24

Figure 4: Flow network for detecting densest subgraph ... 31

Figure 5: An s-t cut in the density flow network ... 32

Figure 6: Functional verification process with automatic test generation 35

Figure 7: An example of the matrix summarizing the test results .. 38

Figure 8: An example of a dominating set ... 40

Figure 9: An example of an event pair dominating set .. 41

Figure 10: Event coverage percent .. 44

Figure 11: Event pair coverage percent ... 44

Figure 12: Undominated tests ... 45

Figure 13: Average number of times events are covered ... 45

Figure 14: Minimum number of times events are covered ... 46

Figure 15: Subset homogeneity ... 46

Figure 16: Subset homogeneity with an initial set ... 47

Figure 17: Average number of times events are covered with an initial set 47

Figure 18: Minimum number of times events are covered with an initial set 48

Figure 19: Performance of K-means ... 53

Figure 20: Homogeneity and separation of K-means ... 53

Figure 21: Average silhouette ... 54

Figure 22: A hierarchical clustering solution dendrogram ... 55

Figure 23: A neighbor joining tree of the test data .. 56

Figure 24: Characteristics of a clustering solution produced by Click 57

Figure 25: Homogeneity and separation of a clustering solution produced by Click 57

Figure 26: Click cluster in Expander ... 58

Figure 27: Similarity between Click solutions ... 60

Figure 28: Area under Click's consensus matrix's CDF ... 61

Figure 29: Number of singletons ... 61

Figure 30: The original similarity matrix .. 62

Figure 31: Consensus similarity matrix ... 63

VIII

Figure 32: Similarity between K-means solutions ... 64

Figure 33: Area under K-mean's consensus matrix's CDF ... 64

Figure 34: A flow network for detecting most cohesive subgraph ... 71

Figure 35: An s-t cut in the cohesion flow network. .. 73

Figure 36: A visual representation of the contaminated clique model generation 78

Figure 37: Discrete Chi-square distribution .. 79

Figure 38: Clustering quality scores of density vs. cohesion.. 82

Figure 39: Average density of selected subgraphs ... 83

Figure 40: Average cohesion of selected subgraphs .. 84

Figure 41: The effect of on cohesion performance ... 85

Figure 42: Clustering quality score deviations .. 86

Figure 43: Performance of a uniformally weighted corrupted clique graph............................ 87

Figure 44: Performance of a weighted corrupted clique graph.. 88

Figure 45: Performance under the random similarity graph model .. 89

IX

Tables

Table 1: Greedy test ranking methods. .. 43

Table 2: Comparison of similarity measures for sets ... 51

Table 3: Analyzing configuration enrichment of a clustering result 65

Table 4: Significant configurations in clusters .. 66

X

Algorithms

Algorithm 1: Greedy set cover algorithm .. 18

Algorithm 2: K-means algorithm .. 21

Algorithm 3: Algorithm for finding a maximum density subgraph .. 33

Algorithm 4: Algorithm for finding a maximum cohesion subgraph 75

Algorithm 5: Clustering algorithm based on finding maximum cohesion subgraphs. 80

11

1. Introduction and summary

In today's world, electronic chips play a major role in almost every device we use. Chip

designers and manufacturers invest vast resources in validation of their products to ensure

their reliability and stability of operation. This validation process, referred to as silicon

validation, is divided to two major parts: pre and post silicon validation. Pre-silicon validation

is done using software tools before a real chip is ready. It usually focuses on smaller

functional blocks and thorough testing. Post-silicon validation, on the other hand, is the

validation of a whole system on a real prototype chip. It focuses on system level tests and has

less debugging capabilities than pre-silicon validation.

In post-silicon validation, chip behavior is monitored by measuring internal signals, called

events. Many random tests are run on the chip so that important events are eventually

observed. Since the internal state of the chip is not completely observable, validation

engineers manually design sophisticated tests in order to observe certain rare events. Such

tests accumulate over time in chip design companies, resulting in cumbersome validation test

suites.

In our research we try to study these validation test suites. We use the reports on events

occurring during the tests to formalize the problem mathematically. We use results from a real

industrial test suite. Our approach employs methods that have proven successful in

computational biology.

We first investigate ways of reducing the number of tests used while keeping the same

coverage of the events, using method developed for set cover problems. We substantial show

reduction in the number of tests depending on the coverage goal selected.

Another question is choosing the order of tests. We compare several heuristics and several

objective functions, and show that a very simple greedy heuristic outperforms the others in

almost all aspects.

Then we turn to clustering similar tests, i.e., grouping together tests that cover similar sets of

events. A partition of the tests into groups can be used by validation engineers to further

understand test functions and reduce the number of tests, or design new ones to address less

covered events. We investigate several alternative definitions for similarity between tests and

use several algorithms for clustering. All solutions show a highly homogenous group of tests

12

composed of more than 50% of the suite. This means that most of these tests have similar

results, and hence there is redundancy among them. We use tree hierarchy to present

similarity between tests. We then discuss how to interpret clustering results using additional

information on test parameters. The analysis shows that a group of similar tests tends to use

specific parameters that do not appear in other groups. This enables the validation team to

identify important parameters for the design of new tests and to gain insight on the internal

behavior of the chip.

The second part of this thesis is devoted to finding cohesive subgraphs in an undirected

weighted graph and using this method to partition the graph. We define the cohesion of a

subgraph by modifying the known definition of subgraph density. The density of a subgraph

is defined as the ratio between the number of its edges and the number of its nodes. We

propose a generalized definition, which is more suitable for graph clustering. The new

definition, called cohesion, discourages the inclusion of inter-cluster edges and high degree

nodes. Cohesion uses two parameters to weigh inter-cluster edges and node degrees. We give

a polynomial algorithm to find a maximum cohesion subgraph. The algorithm, which

generalizes Goldberg's density algorithm, performs iterated network flow computation. The

algorithm requires max flow computations, where is the maximum

edge weight in the graph and is the number of nodes.

To test the cohesion concept, we propose several random graphs models, using both weighted

and unweighted graphs. We test the maximum density and maximum cohesion algorithms on

data simulated using each model. All results show better clustering quality using cohesion

under high levels of noise.

13

2. Preliminaries and background

In this chapter we give the required background for our work. We start with an overview of

silicon validation, problem formulation and research goals. We then cover the computational,

mathematical and statistical methods we base our work on. We also review previous work

done on post-silicon validation.

2.1. Silicon validation

In this section we will review the terminology and methodology of silicon validation. We will

discuss the differences between the validation stages and then focus on the post-silicon

validation stage.

2.1.1. Pre- and post-silicon testing

The complexity of today's microprocessor's silicon designs is increasing rapidly and together

with tight time-to-market product schedule many verification challenges arise. One of the key

challenges is validation, namely, making sure (to the extent possible) that the produced chip

meets its specifications and functions correctly without bugs. Chip manufacturers spend

enormous efforts on validation to ensure reliability of their products. Intel corporation alone

invests over $300 million annually in validation [1].

The validation process begins during the first stages of component design by defining the test

plan, and continues throughout pre-silicon, post-silicon development and manufacturing. Each

stage of validation differs in its scale (what is being tested), depth (how many and what tests

are made), controllability (specific test generation), observability (ability to monitor internal

behavior) and duration [2]. Bugs decline in numbers over the development and validation

processes, but increase in cost. A summary of the validation stages domain and characteristics

is presented in Figure 1.

14

Figure 1: Validation domain and characteristics [3].

As the name suggests, pre-silicon verification refers to the chip verification process done

before a real silicon chip exists. This verification stage is usually done using software

simulation or emulation of the hardware's design. Pre-silicon validation is focused on

exhaustive validation of smaller hardware blocks on shorter time scales. Often referred to as

functional verification, it aims to validate the design's functionality before producing a silicon

chip, a process called tape-out. The current practice for functional verification of complex

designs starts with a definition of a test plan, comprised of a large set of events that the

verification team would like to observe during the verification process. The test plan is

usually implemented using random test generators that produce a large number of test-cases,

and coverage tools that detect the occurrence of events in the test plan. Analysis of the

coverage reports allows the verification team to modify the directives for the test generators

and to better reach areas or specific events in the design that are not covered well.

In addition to stochastic testing, functional validation today broadly uses formal verification

techniques [4]. Equivalence and model checking techniques are used to decide whether a

system satisfies a set of properties, usually specified using temporal logic. The latter is now a

key component of all industrial formal verification tools. Boolean reasoning models, such as

Boolean Satisfiability (SAT) and Binary Decision Diagrams (BDDs), are also central to pre-

silicon validation. Formal verification is usually used on small, well defined blocks rather

than full systems due to their complexity.

15

Post-Silicon validation is the validation of the real chip on the board after a hardware

prototype is produced. The validation process requires many resources, both machine and

human. Compared to pre-silicon, post-silicon tests are much faster, but the internal

observability (the ability to monitor many events simultaneously) is very poor. In pre-silicon

validation, on the other hand, the situation is the opposite – unlimited observability, but slow

testing rate. Hence, post-silicon validation concentrates on more complex system scenarios

and protocols. Post-silicon validation aims to generate all possible pertinent scenarios

randomly. As in pre-silicon, the test plan is comprised of a set of events that the verification

team would like to observe during the verification process. Tests are usually implemented

using random test generators that produce test-cases. Because each silicon tape-out is highly

costly and the post-silicon validation must precede production, it is important to optimize this

process while keeping high coverage of the events according to the test plan.

2.1.2. A formal description of the validation data

Suppose the system under test has a finite set of configurations or parameters .

A test on the system is defined by a set of configurations , such that

 . We assume that all tests are different, i.e., .

There is a finite set of events that can occur and can be measured in the

system.

Suppose a test runs times. A single run of a test is a partial function

 , where is the number of times event was observed in test on the j'th run.

We assume the function is partial since not all events are measured in a single run of a test.

Hence, test is repeated times (with different random seeds) and in each run some of the

events are recorded. Notice that if an event is not recorded during a run it does not necessarily

mean it has not occurred.

The results of test are the set of its runs
 . The results of the entire test suite

are the collection of all test results .

For each event there is a threshold . We say that run of a test covers or hits

event if and only if . We say that a test covers/hits event if any of its runs

covers it, i.e., for some .

16

A more compact representation of the test suite results uses a test event matrix .

The results of a test are summarized in row , where is a function of

the number of times event occurs in test . Such a matrix can be a derived from using

some aggregation on the test runs. Such aggregation can be, for example, taking the maximal

value of hits in each event in all runs of the test, the number of times the threshold was

exceeded, or the average number of hits per run. We may sometimes get the aggregated

results matrix instead of . We refer to the matrix representation of the results as the hit

matrix.

2.2. Computational background

In this section we provide basic definitions and background for the computational problems

we will discuss in the thesis. For further reading and more details see [5–24].

2.2.1. Basic concepts in graph theory

2.2.1.1. Undirected graphs

Let be an undirected graph with a finite set of nodes and a set of unordered

pairs of nodes, . We typically use or to denote an edge , and we

let and . We assume has no self loops or parallel edges. Edge weights may

be specified by a weight function . When the graph is unweighted we assume all

edge weights are 1. We denote the weight of edge as or .

Let be subsets of nodes. We define the weights between and as the sum of edges

with an end in each subset:

. The weight of a subgraph with node

set is the sum of the edge weights inside it:

.

The degree of a node is defined as the sum of the weights on the edges incident to :

 . In case the graph is unweighted, the degree is just the number of edges

touching node . The complement degree of a node is defined as

 .

17

2.2.1.2. Directed graphs and flow networks

Let be a directed graph with a finite set of nodes and a set of ordered pairs of

nodes, . We will use similar notation as for the undirected case. We may

distinguish two nodes and in as the source and sink, respectively.

A directed s-t path in is a sequence of nodes and edges of the form

 . A minimal s-t cut in is a minimal set of

edges whose removal disconnects from in , i.e., breaks all directed s-t paths. If is a

proper superset of some s-t cut, it is an s-t cut but not a minimal one. The value

 is the weight of cut . A minimum cut is an s-t cut whose weight, ,

is minimum among all s-t cuts. All minimum cuts are minimal because edge weights are

positive.

An s-t flow in a directed graph is a function where for all

 and for all , . The value of the

flow from to is . In the maximum-flow

problem, we wish to find a flow that yields a maximum value for , denoted as . When

referring to flow networks, we will use the term capacity instead of weight for edges and edge

sets.

Given a flow in graph , we define the corresponding residual network denoted as or

 as follows. The residual network has the same nodes as the network , but has edges with

capacities . Only edges with non-zero capacity are included in

 .

The max-flow min-cut theorem [5] states that the maximum value of the flow from to in a

network equals the minimum capacity among all cuts, i.e., .

The maximum flow problem is well studied and several polynomial time algorithms were

developed for it. The first such algorithm due to Ford and Fulkerson, is based on augmenting

paths and runs in . An improvement for the augmenting paths algorithm, due to

Edmonds and Karp, runs in . Using a different approach called preflow-push-relabel,

Karzanov achieved a running time of . There are many more approaches and algorithms

for the maximal flow problem. See [6] for references and much more information.

18

2.2.2. Covering and domination problems

2.2.2.1. Set cover problem

The set covering problem (SCP) [7] is a classical question in optimization. The problem study

led to the development of fundamental techniques in the field of approximation algorithms. It

was also one of Karp's 21 classical problems shown to be NP-complete [25].

Set cover problem: Given a universe of elements, a collection of subsets of ,

 , and a cost function , find a minimum cost subcollection of that

covers all the elements of , i.e., s.t .

The greedy algorithm:

The greedy strategy applies naturally to the set cover problem: iteratively pick the most cost-

effective set and remove the covered elements, until all elements are covered. Let be the set

of elements already covered at the beginning of an iteration. During this iteration, define the

cost-effectiveness of a set to be the average cost at which it covers new elements, i.e,

.

Algorithm 1: Greedy set cover algorithm

It can be shown that the greedy algorithm is an factor approximation algorithm for the

minimum set cover problem, where

 [7]. In particular .

Greedy set cover algorithm

While do

 Find a set whose cost-effectiveness is smallest.

 .

Return .

19

Surprisingly, the greedy algorithm above gives essentially the best approximation factor one

can hope for, unless [7].

2.2.2.2. Domination problems

The matrix domination problem can be thought of as a simple generalization of the set cover

problem. To our knowledge, this problem is novel.

Given a matrix in , two rows and a column , we say that

row dominates row on column iff . We say that row dominates row if it

dominates it for all columns.

Matrix row domination: Given a matrix in and a row cost function

 , find a minimum cost subset of the rows of s.t. every other row is dominated on

every column by some row in , i.e., s.t.

 s.t. .

We show that the matrix row domination problem is NP-hard by a simple reduction from Set

Cover.

Reduction: Given a universe of elements, a collection of subsets of , ,

and a cost function we reduce the problem to matrix domination problem by a

reversible mapping between the collection of sets and the matrix rows. We define a matrix

in s.t

 . Let s.t.

 . Now, is a minimum cost dominating set of rows in

 if and only if
 is a minimum cost set cover of .

2.2.3. Clustering

Clustering is the challenge of finding and describing cohesive or homogeneous "chunks" in

data, called the clusters [9]. The idea behind clustering is rather simple: introduce a measure

of similarity between entities under consideration and combine similar entities into the same

clusters while keeping dissimilar entities in different clusters.

Formally, let be a set of elements, and let be a partition of

 into subsets. Each subset is called a cluster, and is called a clustering solution, or simply

20

clustering. Two elements and are called mates with respect to if they are members of

the same cluster in .

Given a set of elements , a distance function between elements and a number

of clusters , the clustering algorithm aims to partition into disjoint clusters such that

mates in that clustering are more similar to each other than are non-mates. In some algorithms

 is not provided. Some formulations use similarity or proximity metric between elements

instead of distance. Clustering formulations vary in the way their objective functions balance

between intra-cluster homogeneity and inter-cluster separation. For example, K-means

(described in Section 2.2.3.1), minimizes the average distance within each cluster while fixing

the number of clusters. The Click algorithm (described in Section 2.2.3.3) presents a

probabilistic model and the algorithm tries to maximize the likelihood under the model. Most

clustering formulations yield NP-hard problems. For additional clustering methods see, e.g.,

[10].

2.2.3.1. K-means

The K-means algorithm [9] is one of the earliest clustering heuristics. The algorithm seeks a

partition of the entity set into sets called clusters. Each cluster is represented by its mean

vector. More formally, if is the set of elements, the cluster structure is

represented by a partition into subsets and m-dimensional centroids

 , satisfying

.

Given m-dimensional vectors as cluster centroids, the algorithm updates cluster sets

according to the so-called minimum distance rule. The minimum distance rule assigns entities

to the nearest centroid. Specifically, for each entity , its distances to all centroids are

calculated, and the entity is assigned to the nearest centroid. When there are several nearest

centroids, the assignment among them is arbitrary. In other words, is made of all such

 that is minimum over all centroids . measures the distance in the

m-dimensional space. For example, when using Euclidean distance

 .

21

Algorithm 2: K-means

This algorithm usually converges fast to a local optimum, depending on the initial setting. The

choice of the initial centroids may affect not only the speed of convergence but, more

importantly, the final results as well.

2.2.3.2. Hierarchical clustering

In hierarchical clustering [9] we wish to present our data in the form of a hierarchy over the

entity set. This hierarchy is represented by a rooted tree in which each node is the union of its

children.

Figure 2 shows an example of a hierarchical tree. The vertical height axis represents the

similarity between clusters. The tree assumes a constant distance between the root and the

leaves. Such a tree is called a dendrogram.

K-Means

1. Data preprocessing. Transform the data into a

quantitative space and define a distance measure.

2. Initial setting. Given the number of clusters , choose

initial centroids .

3. Iteration:

i. Cluster update. Given the centroids ,

determine clusters using the minimum

distance rule.

ii. Stop condition. If the cluster assignment did not

change following step i, stop.

iii. Centroid update. Given clusters ,

calculate and go back to step i.

22

Figure 2: A dendrogram generated by a hierarchical clustering algorithm [10].

There are two approaches to building a cluster hierarchy:

 Agglomerative clustering methods build a hierarchy in a bottom-up fashion by starting

from smaller clusters and sequentially merging them into 'parental' nodes.

 Divisive clustering methods build a hierarchy top-down by splitting greater clusters

into smaller ones starting from the entire data set.

The agglomerative approach in clustering builds a cluster hierarchy by merging two clusters

at a time, starting from singletons (one-entity cluster) or other pre-drawn clusters. Thus, each

non-singleton cluster in the hierarchy is the union of two smaller clusters, and the whole

hierarchy can be drawn as a binary tree. The singletons and their successive merges at every

intermediate step form a cluster hierarchy, until the root is reached, at which point the full

cluster hierarchy emerges.

In addition to the tree topology, hierarchical clustering also specifies edge lengths, reflecting

distance (dissimilarity) between sets. Some algorithms assume all leaves have the same

distance from the root and then parent nodes are equally distant from their children (Figure 2).

Other algorithms do not assume that.

At each step of an agglomerative clustering algorithm, a set of already formed clusters is

considered along with a matrix of distances between the clusters in . Then two closest

clusters are merged and the newly formed cluster is assigned distances from the other clusters.

A clustering (partition) solution can be derived from a hierarchy in different ways, e.g., by

trimming the tree at a certain height and taking the top cluster nodes.

Agglomerative algorithms differ depending on between-cluster distance measures used in

them and on the rule for identifying closest clusters.

23

UPGMA algorithm

UPGMA [11] is an algorithm for constructing a dendrogram clustering solution (see Figure

2). Let be the distance function between two elements. We define the distance between

two clusters , with sizes , respectively, as follows:

The distance from a new cluster formed by joining and , to all other clusters can be

computed as a weighted average of the distances from its components:

The new node formed by merging clusters and is connected to both and by branches of

length . UPGMA picks with the smallest distance in each iteration.

Neighbor Joining Algorithm

Neighbor joining [12] aims to produce a rooted tree with branch lengths without assuming

equal root-leaf distances. The input is the distance matrix between elements. Initially each

element is a cluster. At each iteration, the algorithm identifies two nodes that are guaranteed

to be neighbors in the current tree (i.e., nodes with a common parent node), and merges them

to form a new cluster. It then computes the distances from the new cluster. When the

algorithm finishes, we represent the results as an edge weighted tree. The tree is not required

to be a dendrogram. If there exists a tree such that distances between leaves match the matrix

distances, the algorithm is guaranteed to find it.

Figure 3 shows an example of a tree generated by the neighbor joining algorithm. The

elements are marked 1-8 and internal nodes A-F. Numbers on the edges represent branch

lengths.

24

Figure 3: Dendrogram the neighbor joining algorithm [12].

2.2.3.3. Click

Click (CLuster Identification via Connectivity Kernels) [13] is a graph-based algorithm for

clustering. The input for Click is a similarity matrix between elements. The Click algorithm

attempts to find a partition of the set of elements into clusters, so that two criteria are

satisfied: homogeneity - pairs of elements from the same cluster are highly similar to each

other; and separation - pairs of elements from different clusters have low similarity to each

other. Unlike conventional clustering algorithms, Click allows some elements to remain un-

clustered. Un-clustered elements, referred as singletons, should be dissimilar to any of the

clusters found.

Click initially identifies highly homogeneous and well-separated sets of elements called

connectivity kernels, which are subsets of very similar elements. The remaining elements are

subsequently added to the kernels by the similarity to kernel centroids.

Probabilistic Model

The Click algorithm makes the following assumptions:

 Similarity values between mates are normally distributed with parameters .

 Similarity values between non-mates are normally distributed with parameters .

 Similarity values are mutually independent.

For clusters to be identifiable, these parameters must also satisfy , and should

be small enough compared to .

25

Basic Click Algorithm

The Click algorithm represents the input data as a weighted similarity graph . In

this graph, nodes correspond to elements and edge weights are derived from the similarity

values. The weight of an edge reflects the probability that and are mates, and is

set to be:

where is the probability of two genes to be mates, and
 is the value of the

probability density function for mates (non-mates) for . According to our

assumptions , .

The main idea of the algorithm is as follows: given a connected graph , we would like to

decide whether is a subset of some true cluster, or contains elements from at least

two true clusters. In the first case we say that is pure. In order to make this decision, we

would like to test the following two hypotheses for every possible cut in :

 : contains only edges between non-mates.

 : contains only edges between mates

 is declared a kernel if is more probable for all cuts. The decision whether is a kernel

relies on the following theorem:

Theorem [13]: is a kernel iff the weight of .

Following the theorem, the basic algorithm splits recursively using min-cut computations

until a kernel or a singleton is reached. This is done heuristically since edge weights can be

negative, and the MIN-CUT problem for a weighted graph with both positive and negative

edges is NP-Complete.

Click refinements

The Basic-Click algorithm divides the graph into kernels and singletons. These kernels are

expanded to the full clustering, using several heuristic refinements:

 Adoption Step: kernels “adopt” singletons to create larger clusters.

26

 Cleaning Step: removing from clusters nodes having a low degree.

 Merge Step: merging clusters whose centroids are similar.

2.2.3.4. Performance measures

When a correct solution for a clustering problem is known, we can evaluate an algorithm’s

performance by measuring how close the true and the algorithm's solution are. Let , be two

clustering solutions. We mark by the number of pairs of elements that are mates in both

and , is the number of pairs that are mates only in , and is the number of pairs that

are mates only in . The Jaccard coefficient is defined by:

The value is 1 iff the two solutions are identical. The similarity of the solutions improves as

the value of the coefficient increases.

Unfortunately, in most cases the ”correct” solution for the clustering problems is unknown. In

these cases, a clustering solution will be considered good if it provides tight clusters that are

well separated from each other.

The input to the clustering problem is a set of elements and a fingerprint function

mapping elements in to vectors in . We define the fingerprint of a set of elements to be

its centroid, i.e., the coordinate-wise mean vector of the fingerprints set members. Let

 be clusters, be the cluster of element , be the fingerprint of a cluster ,

and let denote the similarity between two fingerprints.

The average homogeneity of a clustering solution is defined as:

The minimum homogeneity of is defined as:

The average separation of is defined as:

27

The maximum separation of is defined as:

A clustering improves when and increase, and when and decrease.

Another way to evaluate a clustering solution is the silhouette method [14], which is based on

comparison of the cluster tightness and separation. The method can evaluate clustering

validity and could also be used to determine the number of clusters. The silhouette of each

element is defined as:

Where is average dissimilarity of to other elements in the same cluster; is the

average dissimilarity of to elements in the closest cluster. The silhouette index ranges

between -1 and 1. The silhouette of a clustering solution is the average silhouette over all

elements. The clustering solution is better when its silhouette is close to 1. A negative

silhouette index means that an element is more similar to a different cluster than to the cluster

it is in.

2.2.4. Statistical scores

In this section we describe some statistical tests that will be used in our study.

2.2.4.1. Hypergeometric score

The hypergeometric distribution describes the probability of drawing white balls in draws

without replacement from a finite population containing white balls and black

balls. The probability mass function is defined as:

28

The statistical significance (or P-value) of a draw of white balls is the probability to get at

least white balls under the hypergeometric distribution. More formally

 . The lower this probability is, the less likely the model is given the data.

2.2.4.2. FDR correction

When performing many statistical tests, correction for multiple testing is required. Bonferroni

correction [26] may be too harsh if we are willing to accept few false positive results. The

standard approach is called FDR (False Discovery Rate) [15], and it ensures that the expected

fraction of false positives, out of all accepted tests, would remain low.

Let be the null hypotheses and their corresponding p-values ordered in

increasing order. For a given threshold we reject the hypotheses with the lowest p-values

such that

. Under some mild assumptions, the procedure guarantees that the false

positives fraction will not exceed .

2.2.4.3. Mantel test

The Mantel test [16], [17] is a technique to estimate the resemblance between two proximity

matrices computed for the same elements. The matrices must therefore be of the same

dimensions, but not necessarily symmetric though this is often the case.

The test is based on the correlation between the two similarity matrices. To enable correlation

calculation each matrix is transformed into a vector row by row. For symmetric matrices, such

as similarity matrices, only the upper (or lower) triangle is needed.

When applied to similarity matrices, the test assumes that only the rank order of elements in

the two matrices is important for clustering, i.e., clustering algorithm are likely to be more

sensitive to the order of similarities than to their actual values. In order to measure correlation

between two proximity matrices, the nonparametric Spearman rank correlation statistic,

denoted , is used. Hence, the test statistic is the rank correlation between corresponding

similarity values of the row vectors of matrices and .

Given two similarity matrices, first, an observed Mantel statistic, , is calculated. Second, to

estimate the p-value, the elements (rows and columns) within one of the matrices are

subjected to random permutations, and is recalculated for each random permutation. The

29

significance is empirically estimated as the proportion of permutations that lead to a value of

 that is equal to or higher than the original observed correlation.

2.2.5. Graph clustering and density

Graph clustering is the task of grouping the nodes of the graph into clusters taking into

consideration the edge structure of the graph in such a way that there should be many edges

within each cluster and relatively few between the clusters. In this section we focus on a

specific clustering objective function named density.

2.2.5.1. Densest subgraph problem

The density of a graph is defined as the ratio of number of edges to the number of nodes in the

graph. The definition can also be generalized to handle weighted edges. Formally, given an

undirected graph and a weight function over the edges , the density of

a subgraph on a node set is defined as

, where is is the set of edges in

the subgraph induced by and the weight of an edge set is the sum of the weights all edges in

it.

The densest subgraph problem receives an input a weighted graph and seeks a subset of nodes

 of maximum density. The optimum density is denoted as .

The densest subgraph problem can be solved optimally in polynomial time based on an

elegant network flow formulation proposed by Goldberg [18]. Charikar [19] gave a linear

programming formulation to this problem. He also showed that we can find a 2-

approximation to the densest subgraph problem in linear time using a very simple greedy

algorithm. Saha et al. [20] used a different flow construction to solve the problem.

When a size constraint is specified, namely, when the goal is to find a densest subgraph of

exactly/at least/at most nodes, the problems become NP-hard [27]. There is a very simple,

linear time, greedy 3-approximation algorithm for the densest subgraph with at least nodes

[27]. A 2-approximation can be achieved for the same problem using flow computation or

linear programming [22]. For the densest subgraph with exactly nodes there is a polynomial

approximation factor [23]. It was shown that the problem does not have any PTAS under

reasonable complexity assumptions [24]. For the densest subgraph with at most nodes

30

approximation complexity is not yet known, but an approximation bound follows from the

problem of densest subgraph with exactly nodes [22].

2.2.5.1.1. Goldberg's algorithm [18]

Goldberg's algorithm reduces the problem of finding a maximum density subgraph to a series

of minimum cut problems, which in turn can be solved using network flow techniques. The

algorithm requires min-cut computations on networks with nodes. We present

here the unweighted version of the algorithm but it can easily be generalized to the weighted

case as we show in Chapter 7.

The algorithm works as follows: Let be the density of the desired subgraph. At each stage

of the algorithm there is a guess for . Then a network is constructed and a minimum

cut computation enables decision on whether or . Using binary search on the

interval of possible values of , within iterations the algorithm finds a maximum

density subgraph.

Let be the degree of node of . Given a guess , we convert into a network

 as follows: We add a source node and a sink node to ; replace each (undirected)

edge of by two directed edges of capacity 1 each; connect the source to every node of

by an edge of capacity ; and connect every node of to the sink by an edge of

capacity . Figure 4 illustrates the construction.

31

Figure 4: Goldberg's flow network for detecting densest subgraph. Nodes are the

original graph nodes and , are added as a source and a sink respectively.

Notice that all capacities are non negative because for any , and our guess will

always be non negative.

A partition of into two sets, and , such that and , determines an s-t cut. Let

 , and . If , then the capacity of the cut ;

otherwise, the capacity of the cut is given by (see Figure 5):

Notice that
 is the number of edges in the subgraph of G induced

by , so

32

is the density of the subgraph of generated by . Therefore,

 . The following theorem gives a way to tell whether g is too large or too small.

Theorem (Goldberg,84) [18]. Assume that and give a minimum cut. If , then

 ; If (i.e. S={s}) then . (Proof omitted)

Figure 5: An s-t cut in the flow network.

The maximum density lies between 0 and ; furthermore, the smallest distance between

two different possible values of is at most

 . Hence, if is a subgraph of with density

 , and no subgraph of has a density greater or equal to

 , then is a maximum

density subgraph.

Now we can describe an algorithm to find the maximum density subgraph.

33

Algorithm 3: Goldberg's algorithm for finding a maximum density subgraph

Running time: Let be the time required to find a minimum capacity cut in a network

with nodes and edges. The only loop is executed times.

The flow network contains nodes and edges. Hence, the algorithm runs in

time .

2.2.5.1.2. The algorithm of Saha et al. [20]

The algorithm of Saha et al. [20], like Goldberg's, finds a densest subgraph using a series of

min-cut computations. The algorithm guesses the density of the maximum density subgraph

and then refines the guess by a network flow computation. The binary search and stop

criterion are exactly the same as Goldberg's. The only difference is in the flow network

construction, as described below.

Create a flow network with a source node and sink node . In we have a node

corresponding to each edge in (call this set) and a node corresponding to each node in

(call this set). Add edges from to of capacity and an edge from to

while

 do

 begin

;

 Construct N=(VN,EN);

 Find min-cut (S,T);

 If then

 else

 begin

 ;

 ;

 end;

 end;

return (subgraph of G induced by V1)

34

with capacity , where is a guess for the maximum density. Add edges from

 to both and with capacity .

The general idea of this method is that the nodes that correspond to edges between nodes on

the same side of the cut must also be on that side. If the guess is lower than the optimal

density there will be a minimum cut other than the trivial one separating from the rest of the

 . Otherwise the minimum cut weight would be the same as the trivial. We omit the full

proof.

Saha et al. use their network construction to calculate the densest subgraph with annotation

based distance restrictions. We note that they could have used Goldberg's construction for the

same purpose. An apparently unique feature of their approach is that it allows to solve the

problem subject to the additional constraint that the desired subgraph must contain a given

node set. In a different effort, they give an algorithm to compute all -close to densest

subgraphs. We note that Goldberg's construction with a different enumeration algorithm can

also be used to compute all -close to densest subgraphs.

2.3. Previous studies on post-silicon test optimization

Post-silicon validation is in broad practical use by all chip developers. It can be credited with

finding of many functional bugs that escaped pre-silicon verification. However, in general,

functional verification methodology for post-silicon is still less varied and mature than for

pre-silicon platforms. Very little is published on post-silicon verification methodologies (e.g.,

[28]), and most research in post-silicon validation has centered on on-line checking and

debugging capabilities of the silicon platforms (e.g., [29]).

Pre-silicon validation, on the other hand, received a lot of research attention. Pre-silicon

validation is based on a well-established methodology of coverage-driven verification (CDV

[30]). A verification plan comprises a large set of features in the Design Under Verification

(DUV) that need to be verified; random stimuli generators directed towards the verification

goals using test-templates [31] (i.e., general specifications of the desired test structure and

properties); and coverage analysis tools [32] that detect the occurrence of events in the

verification plan and provide feedback regarding the state and progress of the verification

process.

35

Figure 6: Functional verification process with automatic test generation [33].

Coverage directed test generation (CDG) has been previously studied [33–36]. Although it

mainly focuses on functional (pre-silicon) verification, the CDG methodologies can be

employed in post-silicon verification as well. The current practice for functional verification

of complex designs (Figure 6) starts with a definition of a test plan, comprised of a large set

of events that the verification team would like to observe during the verification process. The

test plan is usually implemented using random test generators that produce a large number of

test cases, and coverage tools that detect the occurrence of events in the test plan, and provide

information related to the progress of the test plan. Analysis of the coverage reports allows the

verification team to modify the directives for the test generators and to better "hit" areas or

specific tasks in the design that are not covered well. The analysis of coverage reports, and

their translation to a set of test generator directives to guide and enhance the implementation

of the test plan, result in major manual bottlenecks in the otherwise highly automated

verification process. Considerable effort is invested in finding ways to close the loop of

coverage analysis and test generation. CDG is a technique to automate the feedback from

coverage analysis to test generation. The main goals of CDG are to improve the coverage

progress rate, to help reaching uncovered tasks, and to provide many different ways to help

reach a given coverage task.

Fine and Ziv [33] suggested the use of Bayesian networks to generate many different test-

cases, each leading to different coverage tasks. Bayesian networks offer an efficient modeling

scheme by providing a compact representation of the complex (possibly stochastic)

relationships among the CDG ingredients, together with the possibility to encode essential

domain knowledge. The CDG process begins with the (manual) construction of a Bayesian

network model that describes the relations between the test directives and the coverage space

with possible hidden nodes that affect the inner design knowledge. After the Bayesian

network structure is specified, it is trained using a sample of directives and the respective

36

coverage tasks. Learning algorithms are used to estimate the Bayesian network’s parameters.

In the evaluation phase, the trained Bayesian network can be used to determine directives for

a desired coverage task, via posterior probabilities queries. A later work [35] tries to

automatically construct a data-driven CDG engine based on Bayesian networks, aimed at

providing coverage boosting with minimal human effort.

Clustering is not a new idea in the verification studies. Following their work on CDG, Fine

and Ziv [36] tried to enhance the verification process using clustering techniques. They use

clustering to enhance the efficiency of the CDG process by focusing on sets of non-covered

events, instead of one event at a time. They also try to find the correct number of clusters. In a

different work [37], they attempt to improve the coverage process efficiency by clustering

together related events and generating one set of directives that attempts to cover all events in

the same cluster.

37

3. The tested data

In this section we describe the industrial data example that we analyzed in this thesis.

3.1. The analyzed data sets

Recall the formulation in Section 2.1.2. The industrial data example is available as a set of

tests (), each having a set of parameters () defining how it was performed and what its

results were:

 Configs: for each test, a list of config files it runs with. There are ~250 configs. On

average each test has ~70 configs.

 System-elements: for each test, a list of the system elements it runs on. There are

~2700 system elements. On average each test has ~600 system elements.

 Modifications: for each test, a list of mod (modification) files it runs with.

In this industrial example, the parameter set () is actually comprised of three sets. Together,

the three sets of configs, system-elements and mods uniquely define a test.

Additional two data bases provide the events and results:

 Events (): each event is accompanied by a threshold . An event is considered

hit or covered by a test run if it occurred at least times in that run.

 Results (): The results are summarized by a table with one dimension corresponding

to (test, seed) combinations and the other corresponding to events (see Figure 7). For

some combinations of test, event and sample (seed run), the table holds the value of

the event's counter. There are 874 distinct tests and 302 events. Some tests have a lot

of seeds (thousands) and some only a few (or 1). Notably, for any specific run (seed)

of the test, not all the counters were measured. There are 7 million counter reads in the

table. The counter's value depends on the amount of time that the test ran, which may

be different from test to test (and currently is not available).

38

Figure 7: An example of the matrix summarizing the test results.

3.2. Summarizing the raw test data

When taking the average event hit count for each test over all its seeds and filtering counter

values below the threshold, we obtain a matrix with 718 tests, 105 events and 8930 counter

values. This means that only

 of the values in the hit matrix are non zero.

When taking the maximum (instead of average) over all seeds for each test, we obtain a

matrix with 722 tests, 108 events and 9059 counter values (11.6%).

This suggests that the hit distribution over the different seeds is relatively small. Therefore

there is high redundancy in the test seeds and perhaps time can be saved by using less seeds.

We can transform to a binary coverage matrix, in which
 if test covers event ,

and otherwise
 . In the binary coverage matrix, each event is covered on average by

12.5 tests, with a maximum of 44 and a minimum of 1. Each test covers on average 84 events

with a maximum of 388 and a minimum of 1.

Our notion of coverage is that a test covers an event if any of its runs covers it. Hence, was

used as the data matrix for further analysis. Values that are below their threshold are

discarded and treated as 0 hit count or uncovered.

39

4. Analysis using covering and domination techniques

Recall that we say that a test covers an event if the hit counter value exceeds the threshold.

We seek to find small subsets of the tests that achieve similar event coverage as the whole set

of tests. In the simplest type of cover we require each event separately to be covered by the

selected subset. On the other hand, one might be interested in tests where two events happen

together. In that case the subset selected should cover every pair of events that is covered

together by some test in the whole set of tests. A generalization of the covering objective

beyond looking at pairs of events is to find a subset of the tests that will cover all possible

event combinations that are hit together by some test.

4.1. Single event cover and domination

4.1.1. Set cover

In the set cover problem we seek a minimum subset of the tests that hits all events (see

Section 2.2.2.1). In this formulation there is no use of the actual hit count. When applying the

greedy algorithm (Algorithm 1) to the sample data, it gave a subset of 18 tests that cover all

events. Although the greedy algorithm guarantees only an approximation (Section 2.2.2.1) it

happens to give on these data the same results as solving the full integer linear programming

problem.

4.1.2. Domination

Recall the problem definition in Section 2.2.2.2. We say that test dominates test on event

 if the event’s counter value in test is at least as high as 's (see Figure 8). The goal is to

find a minimum subset of the tests, such that for each event in any test there is a test in

that dominates it. On the sample data, the greedy approach gave a subset of 45 tests. The

greedy algorithm, in each iteration, adds a test that covers the maximal number of uncovered

test-event entries. A similar analysis to the set cover greedy algorithm (see Section 2.2.2.1)

gives this algorithm an approximation ratio of , where is the minimum

number of tests required to dominate all events and is the number of events. When looking

only on binary entries instead of hit count, the problem is identical to set cover.

40

Figure 8: An example of a dominating set. Each white entry has a yellow entry in its column
that is equal or higher. Therefore the yellow rows form a dominating set.

4.2. Event pair cover and domination

In this problem we seek to cover or dominate all possible event pairs. Out of all possible pairs

 , only 3559 pairs are covered by one or more set in the whole set of tests.

4.2.1. Set cover

This problem can be formulated as a set cover problem where the universe to be covered is

the set of event pairs. On the sample data, a greedy approach gives a set of 77 tests that covers

all 3559 event pairs.

4.2.2. Domination

In this problem version we want to find a test set dominating all event pairs. In other words,

we seek a subset of the tests such that each event pair will be dominated together by a test in

the subset (see Figure 9). On the sample data set, a greedy approach found a set of 240 tests

that dominates all event pairs.

41

Figure 9: An example of an event pair dominating set. The yellow set of rows 4 and 11 is not

a pair dominating set since the pair of events with values 3, 7 in row 2 is not dominated by
any other single row. Rows 2, 4, 11 constitute a pair dominating set.

4.3. All subset cover

We say that a test dominates test if for every event that hits times, hits the same

event at least times. Notice that if test is dominated by test , cannot contribute to any

type of cover better than can. Thus, by removing all dominated tests we remain with a

subset that has the same coverage as the whole set on all possible event combinations. This

algorithm can be implemented straightforward in time. Notably, finding the subset

that covers all possible event combinations is the only polynomial problem out of all coverage

techniques we discussed.

On the sample data set, this strategy gives a subset of 473 tests that are un-dominated. When

discarding the actual hit count and looking on a binary cover matrix, domination becomes

containment () and gives a subset of 291 tests.

42

5. Prioritizing tests

One of our main goals is to reduce the complexity of the post silicon validation effort. One

strategy is to prioritize the tests by ranking them according to their importance. Validation

engineers can then opt not to check the whole test suite and focus initially on the important

tests.

5.1. Performance criteria

Evaluation of a subset of tests can be defined using several criteria. Maximizing coverage

percentage of the subset, as described in Section 4, is one criterion. Another goal is

maximizing the average (or minimum) number of times each event is covered by the subset.

A desired property of a good subset is heterogeneity, so that the tests would be different from

one another.

5.2. Greedy approaches

A simple test ranking can be done in a greedy fashion, by either adding or removing the

best/worst test at each stage. The utility of the considered test can be evaluated according to

its similarity to other tests or its relative added coverage. A clustering solution can also be

used to this end.

A simple incremental greedy algorithm that aims to maximize the coverage selects a test that

covers an event that is the least covered at that stage. If the allowed number of tests is equal or

larger than the number of events then clearly we get a set cover problem.

The k-center problem seeks to find a node subset of size in an edge-weighted graph such

that the maximal distance from any node to would be minimized. A 2-approximation

algorithm is achieved by selecting the farthest node from those already chosen at each stage

[38]. Inspired by this method, a similar approach is suggested here. Start with an arbitrary or a

known subset (a cover, for example). Add the test least similar to . A different version can

start with all the tests and remove the one most similar to another. Dissimilarity to a group can

be defined as the average dissimilarity to its elements, or as the minimal dissimilarity to an

element. This method aims to minimize the homogeneity.

43

One-class SVM is a variation of SVM classification due to Chen et al. [39]. The strategy is to

map the data into the feature space and then use a hyper-sphere to describe the data in feature

space so that most of the data points fall in the hypersphere. This can be formulated as an

optimization problem. We want the ball (hypersphere) to be as small as possible while at the

same time including most of the training data. The tradeoff between the radius of the ball and

the number of training samples that it can hold is set by the parameter . When is

small, we put more data points into the ball. When is larger, we reduce the size of the ball.

Our one-class SVM ranking algorithm works as follows: In each stage a one-class SVM is

built for the remaining tests using a dot-product similarity kernel. The outliers of the SVM

solution are added to the test set, since they represent different patterns from the main set. By

selecting the SVM error we control the number of tests added in each stage. In our

implementation, we add 50 tests each time until a total of tests are selected.

5.3. Evaluations

In the following experiment, for each value of we selected tests out of the entire test set

(718). The methods mentioned above were used in addition to selecting a random subset. A

summary of the methods and graph legend is presented in Table 1. All methods ran 100 times

and results were averaged. To allow some degree of randomness, instead of taking the best

test in each iteration, a random test was selected among the top 3 tests.

Label Method Color

Add farthest

(avg)

Add the least similar test to the current set. Similarity to a

group is the average similarity to its members.

Add farthest

(min)

Add the least similar test to the current set. Similarity to a

group is the minimal similarity to its members.

Remove

farthest (avg)

Remove the least similar test from the current set. Similarity

to a group is the average similarity to its members.

Remove

farthest

(min)

Remove the least similar test from the current set. Similarity

to a group is the minimal similarity to its members.

Add min

event
Add a test covering the least covered event.

One-class

SVM

Build one class SVM models iteratively and add 50 outliers to

the set in each iteration.

Random Randomly choose tests.

Table 1: Greedy test ranking methods.

44

In Figure 10 and Figure 11 we report the coverage percentage of single events and event pairs

for each method. As expected, the greedy algorithm that adds a test covering the minimally

covered event, is the first to reach full coverage. Both incremental and decremental similarity

based methods show the same trend. Measuring dissimilarity to an existing set gives better

results when taking the minimal dissimilarity than when taking the average. Most methods

perform better than random, at least for large .

Figure 10: Event coverage percent as a function of the number of tests (). Legend is

presented in Table 1.

Figure 11: Event pair coverage percent as a function of the number of tests (). Legend is

presented in Table 1.

A more general objective is to cover all possible subsets of events. As showed in section 4.3

we only need to look for tests that are not contained in any other test. A minimal set of tests

that covers all subsets contains 291 tests. Figure 12 shows the number of tests not dominated

(contained) by any other test selected as a function of . Best performance is obtained by the

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 150 200 250 300 350 400 450 500 550 600 650 700

p
er

ce
n

t

n

Event Coverage percent

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250 300 350 400 450 500 550 600 650 700

p
er

ce
n

t

n

Pair coverage percent

45

method that adds the test with minimally covered event, reaching full coverage at 600 tests.

Other methods do not perform consistently better than random selection.

Figure 12: The number of tests not dominated by any of the tests selected. Legend is

presented in Table 1.

Another possible objective is to increase the number of times each event is covered. Figure 13

and Figure 14 show the average and minimum number of times events are covered for each

method. Note that the 'min event' objective considers only events that have not reached their

maximal possible number of covering tests. Not surprisingly, the 'add min event' method is

best in terms of the average and minimal event cover. Other methods are worse than random

when it comes to the average event cover. On the other hand, for minimal event cover, all

methods are better than random.

Figure 13: Average number of times events are covered. Legend is presented in Table 1.

0

100

200

300

400

500

600

700

50 100 150 200 250 300 350 400 450 500 550 600 650 700

te

st
s

n

Un-dominated tests

0

10

20

30

40

50

60

70

80

90

50 100 150 200 250 300 350 400 450 500 550 600 650 700

ti
m

e
s

co
ve

re
d

n

Average event cover

46

Figure 14: Minimum number of times events are covered. The left plot presents all methods

while the right one shows all methods except 'min event'. Legend is presented in Table 1.

We would like the selected subset to be heterogeneous. Figure 15 shows the homogeneity (as

defined in Section 2.2.3.4) of the solution produced by each method as a function of . The

methods that are based on average dissimilarity, 'add farthest' and 'remove farthest', perform

best.

Figure 15: Subset homogeneity of each method as a function of . Legend is presented in

Table 1.

In a different experiment, we repeated the tests of Figure 15 starting with the basic subset of

291 tests that covers all possible subsets. Figure 16 shows the homogeneity of each method as

a function of in this case. Most methods provide similar homogeneity to random selection

of tests. Only the two methods based on average similarity have consistently lower

homogeneity.

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550 600 650 700

ti
m

e
s

co
ve

re
d

n

Minimal event cover

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500 550 600 650 700

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200 250 300 350 400 450 500 550 600 650 700

h
o

m
o

ge
n

ei
ty

n

Homogeneity

47

Figure 16: Subset homogeneity of each method as a function of . The subset selection starts
from the known set of 291 tests that dominates all tests. Legend is presented in Table 1.

Figure 17 and Figure 18 present the average and minimum times events are covered when the

selection start from the dominating set. The 'add min event' method gives the best results for

both average and minimum event cover. Other methods have worse average event cover than

random. On the other hand, with the minimum event cover objective, all methods are better

than random.

Figure 17: Average number of times events are covered. The subset selection starts from the

known set of 291 tests that dominates all tests. Legend is presented in Table 1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

300 350 400 450 500 550 600 650 700

h
o

m
o

ge
n

ei
ty

n

Homogeneity

0

10

20

30

40

50

60

70

80

90

300 350 400 450 500 550 600 650 700

ti
m

e
s

co
ve

re
d

n

Average event cover

48

Figure 18: Minimum number of times events are covered. The subset selection starts from the

known set of 291 tests that dominate all tests. The left plot presents all methods while the
right one shows all methods except 'min event'. Legend is presented in Table 1.

In conclusion, we see an advantage of the 'add min event' approach for most objective

functions except those aiming to maximize heterogeneity. Interestingly, the SVM method

does not perform well. It is noteworthy that randomly selecting tests sometimes outperforms

more directed algorithms.

0

50

100

150

200

250

300

350

400

300 350 400 450 500 550 600 650 700

ti
m

e
s

co
ve

re
d

n

Minimal event cover

0

10

20

30

40

50

60

300 350 400 450 500 550 600 650 700

49

6. Analysis using clustering techniques

We now describe a different approach to test optimization. We will try to partition the tests

into clusters that achieve similar event coverage. Such a partition of the tests can help

discover redundant or similar tests and replace them with a smaller number of representative

tests. Together with a visualization tool it may also assist in finding low cover areas.

Clustering expression profile of genes is a common method in bioinformatics. There are

several gene expression analysis and visualization tools, such as EXPANDER [40]. Our idea

is to use the test-events hit matrix as if it was a gene expression data and apply these tools.

6.1. Ad-hoc similarity measures for post-silicon test data

6.1.1. Hit matrix similarity

The hit count matrix can formally be treated as a gene expression matrix and then one can use

some clustering methods such as K-means, Click or SOM. There are several problems in this

approach:

 The hit counts depend on the time each test was run. In order to achieve a reliable

comparison between the hit counts of different tests we should have used the rate of

events and not the hit count. The very high variance in the hit count between the tests

and between the events may also suggest that the actual numbers are misleading.

 Clustering is dependent on the data normalization methods. In our study, several

normalization methods were tried: normalizing each test or event to mean 0 and

variance 1, quantizing hit numbers or even binarizing them. Each of these methods

gives a different ranking of the similarities between tests or events.

 Another problem is the sparseness of the matrix. Similarity measures like Pearson

correlation (used in Click) or Euclidian distance (used in K-means) will consider

sparse test vectors to be very similar. Using Euclidian distance for example, a test that

hit an event a thousand times would be considered more similar to a test that does not

hit the event than to one that hits it a million times. A better similarity measure should

give high score to tests that hit common events.

50

6.1.2. Binary test vector similarity

Validation engineers are mostly concerned with whether the event was covered than with the

actual count, assuming that it reached the threshold. Together with the problems described

above this leads us to concentrate on a binary coverage matrix. The matrix holds 1 for each

event that is covered by a test. Alternatively, one could think of each test as the set of events

that it covers.

We would like to use a similarity measure that would prefer matches in hits over misses (or

1's over 0's). One such similarity measure is the Jaccard coefficient, defined as the size of the

intersection of two sets divided by the size of their union. Let be the set of events covered

by test .

This measure scores high two tests that share many common events. A drawback of the

Jaccard coefficient is its tendency to underestimate the similarity as depicted in Table 2. Take

for example the following scenarios:

 When the sets are about the same size and overlap on 1/2 of the elements, Jaccard will

give a similarity of only 1/3. To get a similarity of 1/2, the sets need to overlap on 2/3

of the elements.

 When one set is contained in the other, Jaccard similarity will be equal to the

proportion of containment. For example, if the proportion is 1/2, the similarity will be

only 1/2.

Possible solutions [9] could be replacing the denominator by or by

 for example. Another way is computing the geometric mean or the arithmetic

mean of the fractions

 and

. When looking on the sets as binary vectors, the

geometric mean can be interpreted as the normalized dot product.

Another possible measure is:

51

Arithmetic Geometric Jaccard Scenario

Table 2: Comparison of three similarity measures for sets (or binary vectors). The table

exemplifies Jaccard's tendency to underestimate similarity.

For our data set, the similarity between every pair of tests obey:

 . The second inequality holds for every data set because of the arithmetic-

geometric means inequality.

How can we estimate how similar are the two similarity measures? We used the Mantel [16],

[17] test described in Section 2.2.4.3 to evaluate the correlation of two similarity matrices.

When scoring similarity of all pairs of tests in our data, the correlation between the Jaccard

similarity and the geometric similarity is 0.9873 using Spearman correlation with p-value

 . This means that these measures are quite similar.

6.1.3. Between cluster similarity

Given some partition of the tests into clusters, how does one calculate the similarity between

clusters or between a test and a cluster? There are several common alternatives:

 Calculate the binary cluster centroid. This is a set/vector that holds events that appear

in the majority of cluster members. Similarity of two clusters is then defined as their

centroids’ similarity. This method is used in the binary matrix decomposition

algorithm [41], a version of a binary K-means.

 Calculate the average similarity between all pairs of tests, one from each cluster.

52

6.2. Clustering with K-means

K-means was used to cluster the sample data because of its simplicity and ability to adapt to

different similarity measures. The K-means code was inspired by Expander's implementation.

The choice of the initial partition in K-means affects the clustering solution. The choice of the

representatives was done in two ways:

 Choose disjoint tests as representatives. We will refer to this method as the 'non-

overlapping seeds' method.

 Choose tests that have some overlap as representatives. Randomize 100 pairs of tests

and take the 10
th

 highest dissimilarity as a threshold. Then choose tests that are at least

as dissimilar as the threshold. We will refer to this method as the 'overlapping seeds'

method.

Using a binary cluster centroid for the cluster-to-single-test similarity did not work well in K-

means. Due to the sparsity of data, the centroids were very sparse and non-informative. We

also tried defining the set of events of a cluster by the set of all events that are hit by a fraction

 of the cluster tests, for different values of

, with poor results. Therefore, to compute

similarity between clusters, all pair-wise similarity values for tests in the two clusters were

computed and the average was used as the inter-cluster similarity.

K-means was run for to and results were averaged over runs for each . Jaccard

and geometric mean similarity measures were used. In addition, the effect of the initial

solution was tested, by choosing initial seed tests with and without common events.

Figure 19 shows the distribution of the cluster sizes as a function of the number of clusters.

The graphs plot the maximal size cluster and the cluster sizes standard deviation. We noticed

that in all clustering solutions there is always one big cluster consisting of at least 50% of the

tests. It can be seen that the choice of the initial solution has a greater effect on the

distribution than the similarity measure. When the initial solution for K-means has tests with

overlapping events, the final clustering tends towards smaller clusters in both similarity

measures. It also shows results when using Euclidian distance based similarity, using K-

means in Expander. K-means with Euclidian distance (see Section 2.2.3.1) tends to divide

clusters more uniformly than binary measures.

53

0

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

si
m

ila
ri

ty

number of clusters

Performance using K-means with Jaccard
similarity

no
overlap
hom

overlap
hom

no
overlap
sep

overlap
sep

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cl
u

st
e

r
si

ze

number of clusters

Max cluster

Figure 19: Performance of different variants of K-means as a function of the value . Left:

maximum cluster size. Right: cluster size standard deviation. K-means was run with two

similarities measure: Jaccard and geometric mean. Different choices of the initial solution

were tested: tests that have coverage overlap and those that do not. For comparison,
Expander's K-means solution with Euclidian distance is presented too.

Figure 20 shows the average homogeneity and separation for all clusters with two similarity

measures. Notice that different similarity values are a function of the similarity measure.

Separation is presented here using similarity and not dissimilarity so lower values means

better separation. When splitting the data to more clusters we get more homogeneous clusters,

as expected. On the other hand, when there are more clusters the separation between them

decreases (similarity increases). There is a tradeoff between homogeneity and separation

when choosing the initial solution – taking orthogonal cluster representatives gives better

separation but worse homogeneity. The difference is noticeable in the Jaccard similarity.

Figure 20: Performance of different variants of K-means as a function of the value . The

graphs show different similarity measures and different choices of the initial solution. Left:

homogeneity and separation using Jaccard similarity. Right: homogeneity and separation
using geometric mean similarity

Figure 21 shows the average silhouette. The silhouette index takes into consideration both

homogeneity and separation. Finding a maximum point for the silhouette can help choose the

"correct" number of clusters. Unfortunately, there is no clear maximum indicating a "correct"

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

si
m

ila
ri

ty

number of clusters

Performance using K-means with
geometric similarity

no overlap
hom

overlap
hom

no overlap
sep

overlpa
sep

0

50

100

150

200

250

300

350

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cl
u

st
er

 s
iz

e

number of clusters

Cluster size stdv

Jaccard no seed overlap

Jaccard seed overlap

geometric no overlap

geometric seed overlap

expander binary

54

number of clusters. We can see that for large number of clusters, starting with orthogonal

representatives has a clear advantage.

Figure 21: The average silhouette of solutions obtained using different variants of K-means,

as a function of the value . Variants differ by the similarity measure and the choice of the

initial solution.

6.3. Hierarchical clustering

6.3.1. Dendrogram solution

We present application of hierarchical clustering to the sample post-silicon data. Expander

supports hierarchical clustering on both matrix dimensions but it uses Pearson correlation

similarity measure. In order to use the binary similarity measures the R statistical software

was used.

Figure 22 shows hierarchical clustering using Jaccard similarity. The tree's leaves are the test

names. The tree is cut into 8 clusters at height 5.

0

0.05

0.1

0.15

0.2

0.25

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

si
m

ila
ri

ty

number of clusters

Average silhouette

Jaccard no
seed overlap

Jaccard seed
overlap

Geometric no
seed overlap

Geometric
seed overlap

55

Figure 22: A hierarchical clustering solution presented as a dendrogram. The Jaccard

similarity measure was used here. Each leaf corresponds to a test. Red lines represent
trimming the tree to 8 clusters.

Such a dendrogram can also be used to produce clusters by cutting the tree at a given height

or branch length. Another approach is to focus on deep branches that may be singled out as

highly similar tests.

Comparing clusters produced from hierarchical clustering vs. clusters produced by K-means

with the same number of clusters, shows the following results: the homogeneity is better in

the hierarchical clustering solutions but the separation is worse, for all cluster sizes. The

differences are extreme when Jaccard similarity is used. These results are not surprising since

each new cluster added by cutting the hierarchical clustering tree is a sibling of an existing

cluster. Therefore the clusters could be highly similar causing the separation to deteriorate.

The hierarchical method has an advantage of explicitly presenting the similarity relationship

between clusters. It may also suggest the number of clusters to use when running K-means,

for example.

6.3.2. Neighbor joining

Figure 23 shows an example of a neighbor joining tree of the tests built according to their

geometric mean similarities. Four sets color the tree, each one holds about a quarter of the

tests. The tests were divided according to the number of events they cover. It can be seen that

tests that hit a similar number of events also hit a similar subset of events, since they appear

56

near each other in the tree. This property of the test data should be analyzed by the validation

team in order to design a more diverse test suite.

Figure 23: A neighbor joining tree solution. The tree was partitioned into four sets (colors)

based on the number of events each test covers. The number of events each test in a group
covers is marked in brackets.

6.4. Clustering using Click

Here we try to use the Click algorithm for analyzing our post-silicon data. Recall that Click

can produce a solution that contains unclustered singletons. In the context of test clustering,

such outliers should probably be included in any test cover. They are not similar to any of the

clusters, so they should be selected for the test suit as they reflect unique behavior.

By default, Click uses Pearson correlation as a similarity measure. It also enables using the

dot product similarity measure, which is the same as the geometrical mean for binary vectors.

The Click algorithm receives a homogeneity threshold value . Click was run with several

values of . Value of 0 refers to the algorithm's default value.

Figure 24 displays solution properties when using Click. As in K-means, the solutions always

contain one big cluster. As the threshold for homogeneity increases, the algorithm tends to

divide the data and keep more tests un-clustered (singletons). High homogeneity causes

smaller clusters on the one hand, but on the other hand more tests remain un-clustered. When

setting the threshold too high, Click does not produce any clusters.

57

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.4 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775

si
m

ila
ri

ty

target homogeinety threshold

Cluster homogeneity - min, max, average

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.4 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775

si
m

ila
ri

ty

target homogeinety threshold

Average Homogeneity/Separation

Avg Hom

Avg Sep

Figure 24: Characteristics of Click solution for different homogeneity thresholds. The graph

plots the number of unclustered tests and the size of the maximal cluster for each

homogeneity threshold (). It also shows the number of clusters (multiplied by hundred to fit

the scale).

Figure 25 shows the homogeneity and separation for each threshold value. There is no clear

value that achieves both high homogeneity and low separation. In comparison with K-means

with the same similarity measure (geometric mean/dot product), Click has better homogeneity

values but slightly worse separation. Click has slightly better silhouette values than its K-

means counterparts. Click has an advantage over K-means by not clustering all the data.

In addition to the average homogeneity, individual cluster homogeneity is also important.

Highly homogenous clusters indicate similar tests groups that can be reduced. Usually the

most homogenous cluster is small and the average homogeneity is closer to the minimum

homogeneity which is obtained by a large cluster. Individual cluster homogeneity data are

presented in Figure 25.

Figure 25: Characteristics of clustering solutions produced by Click. Left: the homogeneity

and separation of Click’s solution as a function of the threshold (). Right: the minimal,

maximal and average cluster homogeneity in every solution.

0

100

200

300

400

500

600

700

te
st

s

target homogeinety threshold

Max cluster size, singletones and clusters

unclustered

max cluster

clusters*100

58

Figure 26 shows an example of the highest individual homogenous cluster found for a

threshold of . The cluster homogeneity is 0.65 and it holds 32 tests. The figure

exemplifies Expander's visual abilities displaying the data matrix.

Figure 26: A homogenous cluster produced by Click as visualized using Expander. The

vertical and horizontal axes correspond to the tests and events respectively. Blue dots indicate
an event covered by a test.

6.5. Consensus clustering and Model explorer

When we do not know the real underlying cluster structure of our data, each clustering

algorithm may provide us with a different solution. Algorithms with a stochastic component

may provide different solutions on different runs. How can we trust our solution in this case?

Inspired by cross validation techniques, consensus clustering method [42] captures majority

vote across multiple runs of a clustering algorithm. The method determines the number of

clusters in the data and assesses the stability of the discovered clusters. We say that a

clustering solution is stable if different runs of an algorithm (with different seeds, for

example) provide similar solutions. Intuitively, if there is a real cluster structure hidden in the

data, every run should provide similar results.

While consensus methods were originally used to assess the number of clusters in a good

clustering solution, they can also be used for choosing other parameters of clustering

algorithms.

The consensus method works in the following way:

1) Initialize a consensus matrix with rows and columns corresponding to elements.

2) Sample a subset (say, 80%) of the data.

3) Run the clustering algorithm on the subset.

4) Increment results of cells in the consensus matrix if the corresponding two elements

are in the same cluster.

59

5) Repeat steps 2-4 several times.

6) Calculate similarity between elements as the percentage of solutions clustering them

together.

7) Repeat 1-7 for different parameters of algorithm (number of clusters, for example).

8) Choose the best parameters and use the corresponding similarity matrix.

The choice of best parameters is done using two methods which we now outline. These

methods are fully described in [42], [43].

If we were to plot a histogram of the consensus matrix entries, perfect consensus would

translate into two bins centered at 0 and 1. As the number of clusters increases the distribution

of the similarity values would further dissolve. For a given histogram, we can define and plot

the corresponding empirical cumulative distribution function (CDF). The CDF is defined as

the probability of a random variable to get values up to a certain value, i.e.,

 . We can then compute the area under the CDF. Monti et al. [42] recommend using

the parameter set for which the area under the CDF stops changing, i.e., when the difference

between two parameter sets is reaching 0.

The model explorer method [43] is similar to consensus clustering in using multiple runs of

the clustering algorithm to decide the correct number of clusters. In this method two

algorithms are run in each iteration and the similarity between the two solutions is recorded.

The distribution of the similarity can then be used to choose a stable clustering solution. To

assess the similarity between two solutions the adjusted rand score [42] was used. Given two

clustering solutions, and , we define a contingency table by .

Denote row sum as , column sum as and number of elements

 . The adjusted rand score is defined as:

6.5.1. Application to Click

While the original motivation of the consensus method was to find the correct number of

clusters for a given algorithm (such as K-means), the Click algorithm determines the number

by itself. However, Click accepts a threshold parameter for determining the cluster

60

homogeneity. Consensus methods were used here to determine the most suitable threshold.

Another difference in Click is allowing elements to remain un-clustered (singletons). It does

not limit the use of consensus methods since if an element is truly a singleton then it is

expected to be so in every clustering solution.

Figure 27 shows the adjusted rand index of Click's clustering solution as a function of . The

inner small plot is a zoom-in on the section between 0.8 and 1. It can be seen that the most

stable solutions are obtained for . The median similarity score is the highest and the

distribution is narrow for . For the scores completely deteriorate.

Figure 27: Adjusted rand index of Click clustering solutions. The index is shown for different

values of theta. The inner plot is a zoom-in on the section between 0.8 and 1.

Figure 28 shows the area under the consensus matrix cumulative distribution function (CDF)

as a function of theta. We can see that gives the maximal area.

61

Figure 28: Area under the consensus matrix CDF for each threshold. The maximal value is for
0.7.

In Figure 29 we show the number of singletons as a function of . We can see that when we

start increasing the number of singletons increases as well. Higher levels of make Click

groups more homogenous, thus leaving more elements unclustered. For there is a

local minimum with small variance in comparison to adjacent values of .

Figure 29: Number of singletons as a function of the threshold.

62

The consensus clustering matrix can also be used as a similarity matrix between elements.

Figure 30 shows a heatmap of the original similarity matrix given as input to Click. Figure 31

shows the consensus clustering matrix obtained by running Click with . We can see

that the consensus matrix is smoother than the original similarity matrix. Four main clusters

appear in the consensus map and about 200 tests remain dissimilar to all other tests. These

tests correspond to singletons in most of Click's runs.

Figure 30: The original similarity matrix.

63

Figure 31: Consensus similarity matrix for .

In the criteria we examined, running Click with gave the most stable results. We

showed that consensus and stability methods can be used to determine clustering parameters

and not just the number of clusters. In addition, these methods also work on clustering

algorithms that do not produce a full partition of the data, i.e., allowing singletons.

6.5.2. Application to K-means and hierarchical clustering

Figure 32 and Figure 33 below present the use of consensus clustering and model explorer

methods to determine the number of clusters. We used K-means and hierarchical clustering as

they get as input the number of clusters. Because the consensus method does not depend on

the clustering method nor on the similarity measure, it enables us to compare different

parameters.

We ran all algorithms on the post-silicon test data. Hierarchical clustering was run with two

merge criteria: Ward and average linkage. K-means was run with Jaccard or dot-product

similarity measure. The results are inconclusive as to which method or measure is better. Nor

is there a number of clusters that all methods agree upon. We can see that there is high

64

variability between the two objectives of hierarchical clustering, while both K-means versions

are about the same.

Figure 32: Rand index of K-means and hierarchical clustering solutions. The graph shows the

average model explorer measure between two successive clustering solutions for each .

Figure 33: Consensus clustering quality of K-means and hierarchical clustering solutions. The

graph shows the area under the consensus matrix's CDF for each .

6.6. Analysis of clustering solutions using enrichment

Given a set of elements , some of which have property , and given a subset , we say

that is enriched for property if it contains significantly more elements with that property

then expected by chance.

In computational biology, gene groups can be tested for their enrichment by biological

properties. Similarly, in post-silicon testing, groups of tests can be enriched for some

properties of the chip or system. This is motivated by the reasoning that tests that cover

similar events tend also to have similar configuration of the chip and test's inputs. Test groups

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

av
e

ra
ge

 M
E

k

Average ME

hierarchical ward

hierarchical
average

kmeans average
DP

kmeans average
Jaccard

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ar
ea

k

Area under CDF

hierarchical ward

hierarchical average

kmeans average DP

kmeans average Jaccard

65

with significant overrepresented configurations can shed light on the structure of the tests. It

can also help reduce the number of configurations and provide a base for construction of more

efficient tests that may act as a class representative.

To evaluate the significance of a configuration appearing in a cluster we use the

hypergeometric score. In our case, is the total number of tests, is the number of tests in

the cluster under investigation, is the total number of tests that use the property, and is

the number of tests in the cluster that use the property. The statistical significance (or P-value)

of a property in a cluster is the probability to get a cluster with the same size that has at least

the same number of tests with the property.

In order to account for multiple hypotheses of all clusters against all properties we use FDR

correction [15] with threshold . We say that a property is significant in a cluster of its

corrected p-value is below a threshold .

The following table presents an example of clustering the post-silicon data using Click with a

homogeneity threshold of . Significance threshold was set to =0.01. Inspired by the

hypothesis that homogenous clusters will use similar and more specific configs, we measure

the configuration homogeneity between tests. We also measure what fraction of the configs is

used in each cluster, denoted as the config usage percentage. Clusters that use less configs can

be viewed as more specific. Out of all significant configs we also look on those that appear in

the majority (>50%) of the tests in the cluster, as they can be viewed as representative

configs. By keeping the same cluster structure and shuffling the tests' labels we generate a

random solution and evaluate its enrichment as well.

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Singletons

Size 141 136 54 51 38 33 269

Significant configs 21 8 3 11 3 5 38

Significant configs above 50% 15 8 3 1 2 4 17

Config homogeneity 0.4269 0.4301 0.4334 0.3743 0.3552 0.4728 0.3918

Config usage percentage 0.8914 0.9457 0.7674 0.8565 0.8643 0.7093 1

Random # significant 0 0 0 0 0 0 0

Random homogeneity 0.3929 0.3959 0.351 0.38 0.389 0.4036 0.3936

Random usage 0.9573 0.9302 0.9186 0.8798 0.841 0.8798 0.9728

Table 3: Analyzing configuration enrichment of a clustering result. Clustering was done using

Click with a homogeneity threshold of .

The table shows there are indeed significantly enriched configs in some of the clusters in

comparison to randomly permutated clusters. Most of the significant configs are also

66

prevalent in their clusters. However homogeneity is not that conclusive. Clusters 2 and 5 have

significantly low config usage in comparison to random while other clusters give inconclusive

results. The singletons group has more significant number of configs than any cluster. This

may be an artifact of the hypergeometric score, which is susceptible to large groups. When

looking only on prevalent configs (i.e., configs occurring in at least 50% of the tests), the

number of significant configs in the singletons group decreases from 38 to 17. In clusters 2

and 3 all significant configs appear in most of the tests.

The following table presents the significant configs with p-values above 1E-9. The config

usage measures how many tests use that specific config. Different significant configs appear

in different clusters, except for configs 168, 169, which appear in clusters 4 and 5.

Config ID Usage in cluster Usage in all tests P-Value

Cluster 1

80 81.56% 54.16% 4.72E-14

8 89.36% 66.07% 2.66E-12

113 62.41% 39.75% 1.13E-09

54 47.52% 26.59% 1.61E-09

56 47.52% 26.73% 2.13E-09

114 88.65% 69.67% 4.82E-09

Cluster 2

76 77.94% 56.09% 4.07E-09

Cluster 4

168 66.67% 13.85% 6.34E-20

169 47.06% 9.56% 2.08E-13

Cluster 5

169 55.26% 9.56% 1.56E-13

168 60.53% 13.85% 4.70E-12

Cluster 6

102 84.85% 32.41% 2.75E-10

Singletons

115 79.55% 58.45% 8.22E-20

81 59.85% 39.89% 2.29E-17

52 81.78% 64.68% 2.51E-14

95 22.68% 11.36% 3.98E-13

189 45.35% 30.06% 6.67E-12

88 38.29% 24.38% 3.11E-11

77 62.08% 46.26% 3.68E-11

192 61.34% 46.12% 1.93E-10

194 40.89% 27.42% 5.27E-10

108 20.45% 10.94% 6.20E-10

78 63.20% 48.48% 7.39E-10

193 14.13% 6.65% 1.04E-09

Table 4: Significant configurations in clusters.

The same analysis on the system elements (SEs) of the tests gave 93, 69, 84, 152, 65, 149, 16

significant SE in each cluster, respectively. There are 57, 32, 20, 18, 2, 65, 14 significant

system elements that appear in more than 50% of the tests in their cluster. In a random

permutation of the labels no system element is significantly enriched in any cluster.

67

Such an analysis can assist the validation in comprehension and improvement of the tests

suite. For example, in clusters 2 and 3 all significant configs appear in most of the tests. These

configs can be thought of as representative for the cluster and allow the development of new

tests from that group. Clusters 3 and 6 give significantly low config usage. This means they

use highly specific configs in comparison to just random selection and even other cluster

groups. Configs 168 and 169 appear in 10% and 14% of tests, but in cluster 4 and 5 they

appear in the majority of the tests. These two configs clearly have a major impact on the test

outcomes.

68

7. Algorithms for cohesive subgraphs

In this section we define cohesion in an undirected weighted graph. The objective function of

cohesion is a generalization of subgraph density. Inspired by graph clustering, cohesion

discourages the inclusion of inter-cluster edges and high degree nodes. We give a polynomial

algorithm for finding a maximum cohesion subgraph, based on iterated flow computations.

7.1. Finding maximum cohesion subgraphs

In Section 2.2.5.1 we discussed the problem of finding a maximum density subgraph in an

undirected (possibly weighted) graph. That problem can be solved in polynomial time using a

series of min-cut computations. The density of a subgraph was defined as the ratio between

the number of its edges and the number of its nodes.

We suggest modifying the definition of density to take into consideration the separation

between the subgraph and the rest of the graph. Intuitively, a good module should be not only

dense but also well-separated from the rest of the graph. Here we modify the original density

definition, and provide it with a new name. As a first attempt we define the cohesion of a

subgraph with node set as

Definition 1

 is the sum of edge weights in the subgraph induced by , is the sum of the

weights of the edges with one end in , and . This new definition is motivated by graph

clustering, where we seek to partition the graph into sets of nodes that are both highly

connected internally and separated from each other.

This first definition of cohesion is biased toward large subgraphs. For example:

 Consider a graph composed of two cliques of size

 with edges between them.

The cohesion of one clique in the graph is

, while the cohesion

of the whole graph is

. So, for any , a maximum cohesion

subgraph will be the whole graph and not each of the cliques composing it, as we

expect for small .

69

 Consider a random graph built in the following manner; there are

 nodes connected in

a clique and

 satellite nodes, each connected to every other node independently with

probability

. The expected cohesion of the clique is

 ,

and the cohesion of the entire graph is

 . Now, the

cohesion of the entire graph will be greater when

. So when increases we

may encounter unintuitive behavior even for low values of .

To overcome this bias we suggest redefining cohesion by adding another term that will

penalize the use of low degree nodes. We subtract from the numerator the sum of complement

degrees of nodes in . Recall
 . For we redefine

cohesion as

Definition 2

Notice that might be negative. This is the definition of cohesion we shall use from now

on.

The maximum cohesion subgraph problem seeks . We will describe a

polynomial algorithm for solving the problem on a graph with positive integer weights.

Denote the maximum cohesion value by .

Goldberg [18] and Saha et al. [20] proposed two different algorithms for finding a maximum

density subgraph based on searching flow networks. We will describe an algorithm based on

Goldberg's method because it uses a simpler construction with nodes, whereas Saha's

construction uses nodes. We note that Saha's construction could have been used

for our purpose as well.

The algorithm

The algorithm reduces the problem of finding a maximum cohesion subgraph to a series of

minimum cut problems, which are solvable using network flow techniques. The algorithm

requires a logarithmic number of min-cut computations on networks with nodes and

 edges.

70

The algorithm works as follows: Let be the maximum cohesion. At each stage of the

algorithm there is a guess for . Then, a flow network is constructed and a minimum cut

computation provides an answer whether or , and a new guess is computed.

When the search terminates and a maximum cohesion subgraph is found.

Given a guess , we convert the graph with edge weights , into a network

 as follows.

Let be the weighted degree of node of as defined in Section 2.2.1 . Let

 . Notice that is a constant depending only on the graph and not

on . is chosen so that all network capacities will be positive, as we shall see.

We add a source node and a sink to the set of nodes; replace each (undirected) edge

of by two directed edges and of capacity each; connect the source

to every node of by an edge of capacity
 and connect every node of to the

sink by an edge of capacity . Figure 34 illustrates the construction.

More formally,

71

Figure 34: A flow network for detecting a most cohesive subgraph. Nodes are the

original graph's nodes and , are added as a source and a sink respectively.

For any ,
 because a node may be connected to at most all

other nodes. As we shall see, our guess always satisfies ,

which implies that . Moreover,
 .

A partition of into two sets, and , such that and , determines an s-t cut. Let

 , and . We denote the value of the cut defined by

 in by :

Definition 3:

Theorem 1. For any , , where is a constant and

 is the cohesion of .

Proof. If , then the capacity of the cut satisfies
 .

Otherwise if , the capacity of the cut is given by (see Figure 35):

72

Here each parenthesis corresponds to a sum.

Since

, rewriting the second term we get:

Where,

 is a positive constant that does not depend on the cut but only on the graph, and

73

Notice that
 is the weight of edges in the subgraph of induced

by , so

is, by Definition 2, the cohesion of the subgraph of generated by . We therefore get,

(1)

Figure 35: An s-t cut in the flow network .

The following theorem gives a way to tell whether is too large or too small.

Theorem 2. Assume that is a minimum cut in the flow network , where

 . If , then, ; If (i.e.) then .

Proof. Notice that the value of the cut separating just from the rest of the graph is, by

Theorem 1,
 . Hence, the value of min cut is at most . Using

Theorem 1 again, the value of the minimum cut satisfies

 , so . If then this inequality implies , i.e., there

exists a subgraph of whose cohesion is at least . Thus, .

74

If then the min-cut value is simply . For any other cut with
 we

have
 and . By Theorem 1 we get

and therefore
 . Denote a maximum cohesion subgraph

 for which

 . For such an optimal solution subset we get

 .

To analyze the number of iterations, we make two assumptions:

1. All weights are integers.

2. are integer multiples of

. Denote

, where .

The maximum cohesion , can take on a range of values.

Denote , then and we can rewrite:

Let

 be two different possible values of . The difference between these values is

For every we have and , so

.

Therefore,

. We have the following theorem:

Theorem 3. If is a subgraph of with cohesion , and no subgraph of has cohesion

greater than or equal to

 , then is a maximum cohesion subgraph.

The theorem tells us when we can stop the search. Now we can describe an algorithm to find

a maximum cohesion subgraph.

During the execution of the algorithm, contains nodes of a subgraph of with cohesion

greater than or equal to . When the algorithm terminates, we know that there is no subgraph

75

with cohesion

 or greater, so, by Theorem 3, the subgraph returned is a maximum

cohesion subgraph.

Algorithm 4: Finding a maximum cohesion subgraph

Running time:

Let be the time required to find a minimum capacity cut in a network with nodes

and edges, and let .

Theorem 4. The algorithm runs in time. In particular,

when is polynomial in the running time is .

Proof. Initially the search interval is , and it is halved in

each iteration. By Theorem 3, when its size is smaller than

, we are done. Hence, the

Max-cohesion-subgraph(G)

while

 do

 begin

;

 Construct ;

 Find min-cut ;

 If then

 else

 begin

 ;

 ;

 end;

 end;

return (V1)

76

binary search loop is executed times. Now,

 so for constant and , we get . The flow network

contains nodes and edges. So the running time is

 .

It is also reasonable to define the cohesion for a node weighted graph. In the node weighted

graph there is also a weight function for the nodes . The cohesion is then defined

as

Definition 4:

In this formulation, node weights act as the cost of each node. This target function tries to find

a cohesive subgraph of "cheap" nodes.

The diligent reader can verify that the algorithm can be modified to handle this definition as

well by changing capacities of the edges going into the sink as follows:

77

8. Application of cohesion to graph clustering

In this section we test the utility of finding maximum cohesion subgraphs for clustering. We

first define several models for generating graph clustering data and then we use them to

simulate data and test max density and cohesion algorithms.

8.1. Models for simulating test data

8.1.1. The corrupted clique graph model

To generate simulated data, we used a random corrupted clique graph model similar to Ben-

Dor et al. [44]. The model starts with a graph composed from several disjoint cliques. Then

we flip each edge/non-edge independently with probability

. is called the

contamination level.

We now give a formal definition of the model. We also refer the reader to Figure 36.

i. A cluster structure is a vector , where and . Denote

 .

ii. We say that an n-node graph has a structure if it consists of

disjoint cliques of size and singleton nodes. Two nodes from the

same clique are called mates.

The random graph model (representing random corruption of clique graphs) is

defined as follows: Given a clique graph of nodes with structure , and a value

, the random graph is obtained from by randomly:

 Removing each edge in independently with probability .

 Adding each edge not in independently with probability .

Formally,

 where is constructed as follows.

78

Hence, defines a probability for every -node graph.

Figure 36: A visual representation of the corrupted clique model generation. The cluster

structure is . The six plots correspond to different contamination

values . The left plot is the original clique graph (i.e.). The rest of the

plots correspond to corrupted clique graphs with

8.1.2. The weighted corrupted clique graph model

In many applications edges have weights. For example, in protein networks, where nodes

correspond to proteins and edges to interactions, the intensity or the confidence of protein

interactions may be measured and attributed to the graph edges.

To model this, we enhance the model by adding a weight distribution of intra-cluster

edges and another weight distribution of inter-cluster edges. We refer to this model as

the weighted corrupted clique graph model . The graph topology is

generated in the same manner as the unweighted model. In addition, for each edge generated

between cluster mates, a weight is drawn from , and for each edge generated between non-

mates, a weight is drawn from . All draws are independent.

79

For the edge weights we shall use two distributions:

1. For integers , , , a discrete uniform distribution is defined by

 , i.e., weights are selected from the set of integers

 with equal probability. The mean value of the distribution is

 and its variance is

.

Uniform weight distribution might not be realistic. We would expect the weight

distributions to have a mean value and some distribution overlap of the two

distributions. We model this as follows:

2. The chi-square distribution () with degrees of freedom is the distribution of a sum

of the squares of independent standard normal random variables. Formally,

 where and i.i.d. The mean value of the distribution is

and its variance is
 . We shall generate values from the distribution

with different values of for and . Values are rounded up to maintain

integrality of the weights. Histograms of distributions with one and two degrees of

freedom are presented in Figure 37. For
 , 85% of values are 1 and the rest are

tailing up to 15. For
 , only 63% of values are 1.

Figure 37: Discrete Chi-square distributions. The plot shows for one (left) and two
(right) degrees of freedom.

80

8.1.3. Random similarity graph model

The random similarity graph model is defined as follows: Given a

complete graph of nodes with a cluster structure , the similarity of two nodes of the same

cluster are drawn independently from distribution ; the similarity of two nodes

originating from two different clusters is drawn independently from distribution The

differentiation of clusters depends here only on the level of separation between the similarity

distributions and , unlike previous models where the topology plays a major part.

8.2. Results

We examined the clustering performance of finding maximum cohesion subgraphs on

randomly generated instances. The clustering algorithm finds a maximum cohesion subgraph,

identifies it as a cluster, and repeats the process on the remaining subgraph. A predefined

criterion is used to decide whether a subgraph identified by the algorithm is considered a

cluster or outliers. In case the whole graph is identified as the maximum cohesion subgraph

we mark it as a cluster. The general scheme is presented in Algorithm 5.

Algorithm 5: A clustering algorithm based on finding maximum cohesion subgraphs.

Max-cohesion-clustering(G=(V,E))

while do

 begin

 ;

 if then

 else if () then

 else Mark as singletons

 ;

 end;

return ()

81

The cluster criterion may be a cohesion threshold, e.g., . Another criterion

may be based on the contamination estimate of the subgraph,

. We can then

reject subgraphs with contamination level higher than a certain threshold, .

We first generated graphs according to the random corrupted graph model with structure

 and different values of . We repeated each test 500 times. We

used a contamination threshold of as a stopping criterion. The algorithm was

implemented using a preflow-push-relabel max flow algorithm from LEMON C++ graph

library [45]. A full clustering of a 1000-node took 2-3 seconds.

We compared the performance of the original maximum density subgraph algorithm (

 to the maximum cohesion subgraph algorithm (using) in the

reconstruction of clusters. The clustering quality assessment was done using Jaccard

coefficient as defined in Section 2.2.3.4. The results are presented in Figure 38.

Interestingly, in all runs we noticed that the algorithm outputs a finite set of values

corresponding to several clustering options:

 Perfect clustering with Jaccard score of 1.

 Forming one group from the and clusters and identifying the and

clusters. This gives a score of 0.55.

 Identifying only the cluster and grouping the rest of the graph together. This

gives a score of 0.36.

 Identifying the whole graph as one cluster with a score of 0.3.

It follows that, for the simulation parameters, the clustering algorithm has only false positive

pairs and almost no false negatives, meaning that if two nodes are in the same cluster in the

correct solution they will be in the same output cluster. The algorithm never breaks a cluster

but sometimes joins clusters together, even the whole graph in the worst case. We discuss this

phenomenon below.

Another interesting property of the algorithm is the lack of solution variation. For every

contamination level the prevalent result was also the median result, and obtained the same

solution value in over 95% of the simulated data sets.

82

As we can see in Figure 38, both the cohesion and the density criteria reveal the cluster

structure perfectly for . For we see that the density definition deteriorates.

On the other hand, cohesion gives perfect clustering until and declines after

 , still identifying the one or two small clusters.

Figure 38: Clustering solutions in the corrupted graph model. Shown are median clustering

quality scores of solutions based on density and cohesion for different levels of contamination

in the corrupted graph model. Density (is presented in red and cohesion (
) in blue. Standard deviation values are near zero and thus not shown.

In order to understand the results, we studied in detail the density and cohesion of clusters and

groups of clusters for different contamination levels. We used the cluster structure

 and nodes. As we can see in Figure 39, the subgraph has the

highest density for , which explains its identification as a separate cluster. For

we see a transition, in which the cluster becomes the densest subgraph around

 , before losing to the cluster around . For

contamination levels of , the whole graph has the maximum density. This explains

the identification merged clusters starting at .

83

Figure 39: Average density of selected subgraphs for different levels of contamination in the

corrupted graph model with cluster structure and nodes.

Cohesion values for the same clusters and cluster groups are presented in Figure 40. The use

of cohesion preserves the superiority of the subgraph until . For higher values,

the aggregate clusters have better cohesion. The results match those in Figure 38.

84

Figure 40: Average cohesion () of selected subgraphs for different levels of

contamination for the corrupted graph model.

To understand why the density algorithm rarely breaks a real cluster for our parameter set,

take a cluster with nodes. The expected density of such subgraph under the model is

. For any of its subgraphs with nodes we have density

. So at least when cluster and subcluster densities are close to their

expected values, any split of a cluster will not result in better density.

The same analysis can be done for the expected cohesion value. The expected complement

degree for a node in a node cluster is for corrupted intra-cluster connections

plus for added inter-cluster connections. Because all nodes are independent,

the expected cohesion of a node cluster is

where is a function that does not depend on . Hence, the expected cohesion is

 (2)

85

So the expected cohesion is a linear function of with a slope of

 . For

our parameter choice

 we get,

 . The slope is positive iff

, which is

always true. Thus, any subset of nodes from the cluster is expected to have a lower

value of cohesion.

Figure 41 compares density to cohesion with parameter values and . All other

parameters are the same. We can see that this cohesion version clusters correctly only for

 . Hence, in all experiments we chose not use the parameter since it gave inferior

results in comparison to density.

Figure 41: The effect of the parameter on the cohesion performance. The graph shows the

median clustering quality scores of solutions based on density and cohesion for different

levels of contamination in the corrupted graph model. Density (is presented in red

and cohesion () in blue.

In the corrupted clique graph model, for the same cluster structure, graphs with less nodes are

more susceptible to noise. To see this effect, we chose a certain contamination level and

measured the clustering quality for different sizes of graphs with the same cluster structure.

We chose contamination level to be the first probability for which the algorithms stopped

identifying the all clusters (see Figure 38). We ran the density algorithm with contamination

level of and cohesion with for different values of . Results are presented

86

in Figure 42. We can clearly see that for graphs with nodes there is no variation in

the algorithm's results.

Figure 42: Clustering quality scores of solutions based on density and cohesion for different

graph sizes. Density (left) was used with contamination level of and cohesion

(right) with . Error bars represent the 95% and 5% quantiles. Density (is

presented in red on the left and cohesion () in blue on the right.

As a second test, we used the weighted corrupted graph model on 1000 node graphs with

cluster structure , weight distributions and

(i.e.) and different values of . Each parameter set was tested on 500 instances. The

median clustering quality scores of solutions based on density and cohesion for different

levels of contamination are presented in Figure 43. As expected, better results were obtained

in comparison to the unweighted graphs (Figure 38). Both objectives cluster perfectly for

 . The cohesion version can handle while the density objective finds at most

two small clusters in the same contamination levels. For density cannot detect any

cluster while the small clusters are still detectable using cohesion. Both versions cannot

handle

87

Figure 43: Performance under the weighted corrupted clique graph model. The graph shows

the median clustering quality scores of solutions based on density and cohesion for different

levels of contamination in the weighted corrupted clique graph model. Edge weights are

distributed and . Density (is presented in red and

cohesion () in blue.

Next, we examined the performance of the algorithms on data generated using the weighted

corrupted clique graph model with weight distributions
 and

 . The rest of

the parameters were the same as in previous tests. The clustering quality scores are presented

in Figure 44. As above, cohesion seems to be a better objective than density. There is little

difference between the results for uniform distribution (Figure 43) and for the chi-square

distribution in the density definition. On the other hand, cohesion slightly deteriorates when

the chi-square distribution is used.

88

Figure 44: Performance under the weighted corrupted clique graph model. The graph shows

the median clustering quality scores of solutions based on density and cohesion for different

levels of contamination in the weighted corrupted clique graph model. Edge weights are

distributed
 and

 . Density (is presented in red and cohesion

() in blue.

Our next experiment studied the similarity graph model. We tested the performance of density

and cohesion-based clustering for different similarity distributions of inter and intra-cluster

pairs. The mean and variance of the distributions was kept within a multiplicative distance

factor. The inter-cluster edge similarity distribution was fixed to
 in all graphs. The

intra-cluster similarity distribution was
 , for ranging from 4 to 10. We used the

same cluster structure with nodes and 500 repeats for each

combination of the parameters.

The clustering quality as a function of is presented in Figure 45. Both algorithms can handle

perfectly the case where the intra-cluster similarity values are on average 10 times larger than

inter-cluster values. The cohesion version also solves perfectly for . It also has better

results for , finding the and clusters. A value of is too hard for both

algorithms.

89

Figure 45: Performance under the random similarity graph model. The graph shows the

median clustering quality scores of solutions based on density and cohesion for the random

similarity graph model. Edge weights are distributed
 and

 . Density

(is presented in red and cohesion () in blue.

8.3. Discussion

All experiments show the superiority of cohesion over density. This is especially noticeable in

the unweighted graph model. This is reasonable since depends on the edge weights,

while depends only on the degrees and does not change in weighted graphs. A possible

solution could be defining a weighted complement degree, for example

 .

As shown in Equation (2), the expected cohesion value under the random corrupted clique

model is linearly dependent on the cluster size. We also saw (Figure 40) that for our

parameter selection, as the contamination level increases, more clusters and cluster sets

achieve maximum cohesion. For high contamination rates the whole graphs is the most

cohesive subgraph. So cohesion tends to prefer large subgraphs even if they contain several

'true' clusters. On the other hand, breaking a true cluster did not improve the cohesion value.

At least for our parameter set, the clustering algorithm has only false positive and almost no

90

false negative pairs. In other words, if two nodes are in the same cluster in the true solution

they will be in the same output cluster in the solution produced by the algorithm.

As seen in Figure 39 and Figure 40, density and cohesion values of clustering groups behave

linearly with respect to . Also, the expected density of a subset of some cluster

is roughly linear in the subset size:

. A similar near-linear relation applies for the

expected cohesion. As seen in the above figures, merging more clusters together changes the

slope, causing the aggregated cluster to have higher cohesion. When using cohesion we can

change the parameter (and possibly) to affect the linear relation and enable the algorithm

to cluster the graph better for higher levels of contamination. Further investigation can help

tune the parameters for better clustering. This can be done either empirically using graphs

such as Figure 40, or theoretically by analyzing the expected cohesion as in equation (2).

A quite surprising result is the detection of small clusters. When not detecting all clusters or a

single cluster, the algorithm actually detects the smallest clusters of and . The actual

process is, first, detecting the several biggest clusters as one cluster, and then detecting the

small clusters of and . In contrast to most clustering algorithms, maximum cohesion

is better at detecting small clusters than large ones. It might be beneficial to combine this

method with a coarser clustering algorithm to exploit the strengths of both.

A possible solution to merged cluster detection is applying the maximum cohesion clustering

algorithm recursively, i.e., reapplying it on the maximum cohesion subgraph detected, in

addition to the rest of the graph. Unlike density, cohesion depends not only on the selected

subgraph, but also on the remaining subgraph, due to the term
 . If a subgraph is a

maximum cohesion subgraph for a graph , it might not be a maximum cohesion subgraph

for the graph induced by .

A major disadvantage of both density and cohesion is symmetry. Since both objectives are

defined by a ratio between edges and nodes, multiplying the numerator and denominator by a

constant factor keeps the objective function the same. For example, consider a graph

composed of two disjoint cliques of size . The density of each clique is

 and so is

the density of the whole graph

. For example, when running the clustering

algorithms on a cluster structure of , no cluster was detected for

91

any level of contamination. Both density and cohesion gave as a solution a single cluster of

the entire graph for the above structure.

Finally, the results of this section should be viewed as preliminary and require further tests on

real data, more diverse cluster structures, further parameter exploration and testing on other

models. Comparison to other clustering algorithms is also required.

92

9. Future work

Our analysis of one industrial post-silicon test set show that combinatorial, graph theoretic

and bioinformatics methods can help in revealing structure and redundancy in the data.

Coverage and domination analysis suggest ways to trim the data and potentially can reduce

the set of tests radically without loss of coverage. Bioinformatics methods can help in

revealing subtle relations between tests and events and their relation to inner parameters. In

our discussion with practitioners the visualizations were found to be very helpful and

revealing. The use of cohesion has yet to be tested on real post-silicon data.

Further evaluation of our methods should be done on more diverse Post-silicon test data. In

addition, cooperation with validation teams is needed to show our result's practicality in post-

silicon optimization. Mapping clusters to certain chip functionalities, e.g. memory, can

strengthen clustering solution validity. Measuring coverage rate when running a reordered test

suite would demonstrate the importance of test order. Analysis of significant configurations in

similar tests can lead to further understanding of the system and the development of new tests.

As mentioned in Section 8.3, cohesion requires further validation on real data and diverse

cluster structure, in addition to comparison to other methods. When the underlying data

generation model is known, we suggested analyzing the expected cohesion in order to

calculate the optimal parameters. Another way of choosing parameters can be done with

consensus methods as presented in Section 6.5. Combining the maximum cohesion subgraph

clustering algorithm with a coarser clustering algorithm can use benefits of both and

overcome their disadvantages.

A clustering objective function based on cohesion/density can be formulated and then is likely

to be proven NP-hard. The greedy maximum cohesion subgraph clustering algorithm

(Algorithm 5) can be analyzed as a possible approximation of the objective function.

Developing further algorithms or heuristics to try and solve the problem is needed.

93

10. References:

[1] Intel Corporation, “Intel Platform and Component Validation,” 2003. [Online].

Available: http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf.

[2] N. Mitra, S. and Seshia, S.A. and Nicolici, “Post-silicon validation opportunities,

challenges and recent advances,” in Proceedings of the 47th ACM/IEEE Design

Automation Conference (DAC), 2010, pp. 12–17.

[3] N. Hakim, “Introduction to Post-Silicon Validation,” manuscript, 2010. [Online].

Available: https://embedded.eecs.berkeley.edu/eecsx44/lectures/NagibHakim-

PostSiValidation.pdf.

[4] B. Bentley, “Validating the Intel (R) Pentium (R) 4 microprocessor,” in Proceeding of

Design Automation Conference, 2001, vol. 1, pp. 244–248.

[5] L. R. Ford Jr, D. R. Fulkerson, and A. Ziffer, “Flows in networks,” Physics Today, vol.

16, p. 54, 1963.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and

Applications, 1st ed. Prentice Hall, 1993.

[7] V. V Vazirani, Approximation algorithms. Springer, 2004, pp. 15–17.

[8] J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency for

Network Flow Problems,” Journal of the ACM, vol. 19, no. 2, pp. 248–264, Apr. 1972.

[9] B. Mirkin, Clustering for Data mining: A Data Recovery Approach. Chapman &

Hall/CRC, 2005.

[10] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,” ACM Computing Surveys

(CSUR), vol. 31, no. 3, 1999.

[11] C. D. Michener and R. R. Sokal, “A quantitative approach to a problem in

classification,” Evolution, pp. 130–162, 1957.

[12] N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing

phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, Jul.

1987.

[13] R. Sharan and R. Shamir, “CLICK: a clustering algorithm with applications to gene

expression analysis,” in Proceedings of the International Conference on Intelligent

Systems for Molecular Biology (ISMB), 2000, vol. 8, no. 307, p. 16.

[14] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–

65, Nov. 1987.

94

[15] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and

powerful approach to multiple testing,” Journal of the Royal Statistical Society. Series

B (Methodological), pp. 289–300, 1995.

[16] J. W. Schneider and P. Borlund, “Matrix comparison, Part 1: Motivation and important

issues for measuring the resemblance between proximity measures or ordination

results,” Journal of the American Society for Information Science and Technology, vol.

58, no. 11, pp. 1586–1595, Sep. 2007.

[17] J. Schneider and P. Borlund, “Matrix comparison, Part 2: Measuring the resemblance

between proximity measures or ordination results by use of the Mantel and Procrustes

statistics,” Journal of the American Society for Information Science and Technology,

vol. 58, no. July, pp. 1596–1609, 2007.

[18] A. V Goldberg, “Finding a maximum density subgraph,” Technical Report UCB/CSB

84/171. Department of Electrical Engineering and Computer Science, University of

California, Berkeley, CA, 1984.

[19] M. Charikar, “Greedy approximation algorithms for finding dense components in a

graph,” Approximation Algorithms for Combinatorial Optimization, pp. 139–152,

2000.

[20] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang, “Dense Subgraphs with

Restrictions and Applications to Gene Annotation Graphs,” in Research in

Computational Molecular Biology, vol. LNBI 6044, B. Berger, Ed. Springer Berlin

Heidelberg, 2010, pp. 456–472.

[21] R. Andersen, “Finding large and small dense subgraphs,” arXiv preprint cs/0702032,

pp. 1–12, 2007.

[22] S. Khuller and B. Saha, “On finding dense subgraphs,” in ICALP, 2009, vol. 5555, pp.

597–608.

[23] U. Feige, G. Kortsarz, and D. Peleg, “The Dense k-Subgraph Problem,” Algorithmica,

vol. 29, pp. 410–421, 2001.

[24] S. Khot, “Ruling out PTAS for graph min-bisection, densest subgraph and bipartite

clique,” in Proceedings of the 45th Annual IEEE Symposium on Foundations of

Computer Science, 2004, pp. 136–145.

[25] R. M. Karp, “Reducibility among Combinatorial Problems,” Complexity of Computer

Computations, p. 85, 1972.

[26] O. J. Dunn, “Multiple Comparisons among Means,” Journal of the American Statistical

Association, vol. 56, no. 293, pp. 52–64, Mar. 1961.

[27] A. Bonato, F. Chung, R. Andersen, and K. Chellapilla, “Finding Dense Subgraphs with

Size Bounds,” in Algorithms and Models for the Web-Graph, vol. 5427, K.

Avrachenkov, D. Donato, and N. Litvak, Eds. Springer Berlin Heidelberg, 2009, pp.

25–37.

95

[28] H. Rotithor, “Postsilicon validation methodology for microprocessors,” IEEE Design &

Test of Computers, no. December, pp. 77–88, 2000.

[29] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, “A

reconfigurable design-for-debug infrastructure for SoCs,” in Proceedings of the 43rd

annual conference on Design automation - DAC, 2006, p. 7.

[30] H. B. Carter and S. Hemmady, Metric-driven Design Verification: An Engineer’s and

Executive's Guide to First Pass Success. Springer, 2007.

[31] M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon, and M. Vinov, “Industrial experience

with test generation languages for processor verification,” in Proceedings of the 41st

annual conference on Design automation - DAC, 2004, p. 36.

[32] A. Piziali, Functional Verification Coverage Measurement and Analysis (Google

eBook). Springer, 2004, p. 213.

[33] S. Fine and A. Ziv, “Coverage directed test generation for functional verification using

bayesian networks,” in Proceedings of the 40th conference on Design automation -

DAC, 2003, p. 286.

[34] L.-C. Wang, “Coverage-directed test generation through automatic constraint

extraction,” in Proc. IEEE International High Level Design Validation and Test

Workshop, 2007, pp. 151–158.

[35] D. Baras, S. Fine, L. Fournier, D. Geiger, and A. Ziv, “Automatic boosting of cross-

product coverage using Bayesian networks,” International Journal on Software Tools

for Technology Transfer, vol. 13, no. 3, pp. 247–261, May 2010.

[36] M. Braun, S. Fine, and A. Ziv, “Enhancing the efficiency of Bayesian network based

coverage directed test generation,” in Proceedings of the Ninth IEEE International

High-Level Design Validation and Test Workshop, 2004, pp. 75–80.

[37] S. Fine and A. Ziv, “Enhancing the control and efficiency of the covering process,” in

Proceedings of the Eighth IEEE International High-Level Design Validation and Test

Workshop, 2003, pp. 96–101.

[38] D. S. Hochbaum and D. B. Shmoys, “A Best Possible Heuristic for the k-Center

Problem,” Mathematics of Operations Research, vol. 10, no. 2, pp. 180–184, May

1985.

[39] T. S. Huang, “One-class SVM for learning in image retrieval,” in Proceedings of the

International Conference on Image Processing, 2001, vol. 1, pp. 34–37.

[40] R. Sharan, A. Maron-Katz, and R. Shamir, “CLICK and EXPANDER: a system for

clustering and visualizing gene expression data,” Bioinformatics, vol. 19, no. 14, pp.

1787–1799, 2003.

[41] T. Li, “A Unified View on Clustering Binary Data,” Machine Learning, vol. 62, no. 3,

pp. 199–215, Jan. 2006.

96

[42] S. Monti, P. Tamayo, J. Mesirov, T. Golub, P. Sebastiani, I. S. Kohane, and M. F.

Ramoni, “Consensus Clustering: A Resampling-Based Method for Class Discovery and

Visualization of Gene Expression Microarray Data,” Machine Learning, vol. 52, no. 1–

2, pp. 91–118, 2003.

[43] R. Giancarlo, D. Scaturro, and F. Utro, “Computational cluster validation for

microarray data analysis: experimental assessment of Clest, Consensus Clustering,

Figure of Merit, Gap Statistics and Model Explorer.,” BMC bioinformatics, vol. 9, p.

462, Jan. 2008.

[44] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression patterns.,”

Journal of computational biology : a journal of computational molecular cell biology,

vol. 6, no. 3–4, pp. 281–97, Jan. 2004.

[45] B. Dezső, A. Jüttner, and P. Kovács, “LEMON – an Open Source C++ Graph Template

Library,” Electronic Notes in Theoretical Computer Science, vol. 264, no. 5, pp. 23–45,

Jul. 2011.

 תקציר

חישוביתעבודה מביולוגיה שיטות בעזרת חומרה בדיקות של אופטימיזציה בבעיות עוסקת זו

ניתןלייצגאתהפלטמבדיקותהחומרהבצורהמתמטיתעלידיטבלהששורותיהמייצגות(.ביואינפורמטיקה)

רכיע.אתהבדיקותשנעשועלהחומרהועמודותיהמייצגותמאורעותחשוביםאשרנמדדובמהלךכלבדיקה

בה,טבלהזוהיאאנלוגיתלטבלתביטויגנים.הטבלההםמספרהפעמיםשכלמאורענצפהבמהלךהבדיקה

תנאים הן והעמודות לגנים מתייחסות השורות לאנלוגיה. ישיר כהמשך שפותחו, בשיטות להשתמש ניתן

.למחלקותדמיון(מאורעותאוה)שיטותקיבוץיכולותלשמשלחלוקהשלהבדיקות,למשל.לניתוחביטוייגנים

והחלפתן בבדיקות יתירות למצוא כדי הבדיקות מהנדסי ידי על מנותחות להיות יכולות שיתגלו הקבוצות

ייצוגיות בבדיקות והצגתם. גנים ביטויי לניתוח כלים EXPANDERכדוגמת, בהבנתתהליך, לסייע יכולים

הבדיקה בנוסף. עבור, קומבינטוריות שיטות בוחנים בדיקותקטנהאנו קבוצת למצוא מנת על כיסוי בעיות

.בעלתאותהרמתכיסוי

גרפיםמגובשיםבגרףממושקללא-אנחנוגםמגדיריםובוחניםגישהחדשהלקיבוץהמבוססתעלמציאתתתי

מכוון המטרה. פונקצית , גיבוש (cohesion)הנקראת , צפיפות של הכללה density)היא תת(,גרף-של

כי הגרףהמוגדרת בתת הצמתים למספר הקשתות מספר בין חס גיבוש. של המטרה פונקצית שהוגדרה,

גרפים קיבוץ בהשראת גבוה, מדרגה ובצמתים קבוצות בין בקשתות שימוש מקטינה מפתחים. אנחנו

ולאמכוון בגרףממושקל למציאתתתהגרףהמגובשביותר אלגוריתםפולינומיאלי המבוססעלסדרהשל,

,אנחנובודקיםאתהגישההחדשהשלנועלקבוצותאקראיותהמיוצרותבעזרתמודליםשונים.זרימהחישובי

.ומראיםשיפורבביצועיםבשימושבגיבושלעומתהשימושבצפיפות

 אביב-אוניברסיטת תל
 שאיביואלדרפליישמן"הפקולטהלהנדסהע

 סליינר-שזנדמן"ביתהספרלתאריםמתקדמיםע

 שיפור בדיקות חומרה בעזרת שיטות מביואינפורמטיקה

בהנדסתחשמל"מוסמךאוניברסיטה"חיבורזההוגשכעבודתגמרלקראתהתואר
 ואלקטרוניקה

ידי-על

 רון זעירא

ביתהספרלהנדסתחשמלהעבודהנעשתהב
מערכות–מחלקהלהנדסתחשמלה

דנהרון'רוןשמירופרופ'בהנחייתפרופ

 ג"שבטהתשע

 אביב-אוניברסיטת תל
 שאיביואלדרפליישמן"הפקולטהלהנדסהע

 סליינר-שזנדמן"ביתהספרלתאריםמתקדמיםע

 ביואינפורמטיקהשיטות משיפור בדיקות חומרה בעזרת

בהנדסתחשמל"מוסמךאוניברסיטה"חיבורזההוגשכעבודתגמרלקראתהתואר
 ואלקטרוניקה

ידי-על

 רון זעירא

 ג"שבטהתשע

