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Abstract 

This thesis studies problems in optimization of hardware testing using computational biology 

techniques. Mathematically, the hardware testing data can be presented as a matrix whose 

rows correspond to the tests performed on the hardware and columns correspond to 

meaningful events measured during each test. The matrix values are the number of times the 

event occurred in the test. It is analogous to gene expression matrix, where rows are genes and 

columns are conditions. Taking this analogy further, we can use methods developed in gene 

expression analysis. For example, clustering techniques can be used in order to partition the 

tests (or the events) into similarity groups. The identified groups can then be analyzed by 

hardware validation engineers in order to find redundant tests and replace them with 

representative tests. Gene expression analysis and visualization tools, such as EXPANDER, 

can assist in comprehension of the validation process. We also explore combinatorial methods 

for set cover problems in order to find small test sets with good event coverage. 

We also define and study a new approach to clustering, based on finding cohesive subgraphs 

in an undirected weighted graph. The objective function of cohesion is a generalization of 

subgraph density, defined as the ratio between the number of edges and the number of nodes 

in the subgraph. Inspired by graph clustering, cohesion discourages the inclusion of inter-

cluster edges and high degree nodes. We give a polynomial algorithm for finding a maximum 

cohesion subgraph in an undirected weighted graph, based on iterated flow computations. We 

then test our new approach on simulated clustering data generated using different models. We 

report improved performance using cohesion compared to density.  
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1. Introduction and summary 

In today's world, electronic chips play a major role in almost every device we use. Chip 

designers and manufacturers invest vast resources in validation of their products to ensure 

their reliability and stability of operation. This validation process, referred to as silicon 

validation, is divided to two major parts: pre and post silicon validation. Pre-silicon validation 

is done using software tools before a real chip is ready. It usually focuses on smaller 

functional blocks and thorough testing. Post-silicon validation, on the other hand, is the 

validation of a whole system on a real prototype chip. It focuses on system level tests and has 

less debugging capabilities than pre-silicon validation. 

In post-silicon validation, chip behavior is monitored by measuring internal signals, called 

events. Many random tests are run on the chip so that important events are eventually 

observed. Since the internal state of the chip is not completely observable, validation 

engineers manually design sophisticated tests in order to observe certain rare events. Such 

tests accumulate over time in chip design companies, resulting in cumbersome validation test 

suites. 

In our research we try to study these validation test suites. We use the reports on events 

occurring during the tests to formalize the problem mathematically. We use results from a real 

industrial test suite. Our approach employs methods that have proven successful in 

computational biology. 

We first investigate ways of reducing the number of tests used while keeping the same 

coverage of the events, using method developed for set cover problems. We substantial show 

reduction in the number of tests depending on the coverage goal selected. 

Another question is choosing the order of tests. We compare several heuristics and several 

objective functions, and show that a very simple greedy heuristic outperforms the others in 

almost all aspects. 

Then we turn to clustering similar tests, i.e., grouping together tests that cover similar sets of 

events. A partition of the tests into groups can be used by validation engineers to further 

understand test functions and reduce the number of tests, or design new ones to address less 

covered events. We investigate several alternative definitions for similarity between tests and 

use several algorithms for clustering. All solutions show a highly homogenous group of tests 
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composed of more than 50% of the suite. This means that most of these tests have similar 

results, and hence there is redundancy among them. We use tree hierarchy to present 

similarity between tests. We then discuss how to interpret clustering results using additional 

information on test parameters. The analysis shows that a group of similar tests tends to use 

specific parameters that do not appear in other groups. This enables the validation team to 

identify important parameters for the design of new tests and to gain insight on the internal 

behavior of the chip.     

The second part of this thesis is devoted to finding cohesive subgraphs in an undirected 

weighted graph and using this method to partition the graph. We define the cohesion of a 

subgraph by modifying the known definition of subgraph density. The density of a subgraph 

is defined as the ratio between the number of its edges and the number of its nodes. We 

propose a generalized definition, which is more suitable for graph clustering. The new 

definition, called cohesion, discourages the inclusion of inter-cluster edges and high degree 

nodes. Cohesion uses two parameters to weigh inter-cluster edges and node degrees. We give 

a polynomial algorithm to find a maximum cohesion subgraph. The algorithm, which 

generalizes Goldberg's density algorithm, performs iterated network flow computation. The 

algorithm requires                max flow computations, where      is the maximum 

edge weight in the graph and   is the number of nodes. 

To test the cohesion concept, we propose several random graphs models, using both weighted 

and unweighted graphs. We test the maximum density and maximum cohesion algorithms on 

data simulated using each model. All results show better clustering quality using cohesion 

under high levels of noise.   
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2. Preliminaries and background 

In this chapter we give the required background for our work. We start with an overview of 

silicon validation, problem formulation and research goals. We then cover the computational, 

mathematical and statistical methods we base our work on. We also review previous work 

done on post-silicon validation. 

2.1. Silicon validation 

In this section we will review the terminology and methodology of silicon validation. We will 

discuss the differences between the validation stages and then focus on the post-silicon 

validation stage.  

2.1.1. Pre- and post-silicon testing 

The complexity of today's microprocessor's silicon designs is increasing rapidly and together 

with tight time-to-market product schedule many verification challenges arise. One of the key 

challenges is validation, namely, making sure (to the extent possible) that the produced chip 

meets its specifications and functions correctly without bugs. Chip manufacturers spend 

enormous efforts on validation to ensure reliability of their products. Intel corporation alone 

invests over $300 million annually in validation [1]. 

The validation process begins during the first stages of component design by defining the test 

plan, and continues throughout pre-silicon, post-silicon development and manufacturing. Each 

stage of validation differs in its scale (what is being tested), depth (how many and what tests 

are made), controllability (specific test generation), observability (ability to monitor internal 

behavior) and duration [2]. Bugs decline in numbers over the development and validation 

processes, but increase in cost. A summary of the validation stages domain and characteristics 

is presented in Figure 1. 
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Figure 1: Validation domain and characteristics [3]. 

As the name suggests, pre-silicon verification refers to the chip verification process done 

before a real silicon chip exists. This verification stage is usually done using software 

simulation or emulation of the hardware's design. Pre-silicon validation is focused on 

exhaustive validation of smaller hardware blocks on shorter time scales. Often referred to as 

functional verification, it aims to validate the design's functionality before producing a silicon 

chip, a process called tape-out. The current practice for functional verification of complex 

designs starts with a definition of a test plan, comprised of a large set of events that the 

verification team would like to observe during the verification process. The test plan is 

usually implemented using random test generators that produce a large number of test-cases, 

and coverage tools that detect the occurrence of events in the test plan. Analysis of the 

coverage reports allows the verification team to modify the directives for the test generators 

and to better reach areas or specific events in the design that are not covered well. 

In addition to stochastic testing, functional validation today broadly uses formal verification 

techniques [4]. Equivalence and model checking techniques are used to decide whether a 

system satisfies a set of properties, usually specified using temporal logic. The latter is now a 

key component of all industrial formal verification tools. Boolean reasoning models, such as 

Boolean Satisfiability (SAT) and Binary Decision Diagrams (BDDs), are also central to pre-

silicon validation. Formal verification is usually used on small, well defined blocks rather 

than full systems due to their complexity. 
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Post-Silicon validation is the validation of the real chip on the board after a hardware 

prototype is produced. The validation process requires many resources, both machine and 

human. Compared to pre-silicon, post-silicon tests are much faster, but the internal 

observability (the ability to monitor many events simultaneously) is very poor. In pre-silicon 

validation, on the other hand, the situation is the opposite – unlimited observability, but slow 

testing rate. Hence, post-silicon validation concentrates on more complex system scenarios 

and protocols. Post-silicon validation aims to generate all possible pertinent scenarios 

randomly. As in pre-silicon, the test plan is comprised of a set of events that the verification 

team would like to observe during the verification process.  Tests are usually implemented 

using random test generators that produce test-cases. Because each silicon tape-out is highly 

costly and the post-silicon validation must precede production, it is important to optimize this 

process while keeping high coverage of the events according to the test plan. 

2.1.2. A formal description of the validation data 

Suppose the system under test has a finite set of configurations or parameters          .  

A test on the system is defined by a set of configurations          , such that     

       . We assume that all tests are different, i.e.,                     . 

There is a finite set           of events that can occur and can be measured in the 

system.  

Suppose a test    runs    times. A single run of a test    is a partial function           

    , where         is the number of times event    was observed in test    on the j'th run. 

We assume the function is partial since not all events are measured in a single run of a test. 

Hence, test    is repeated    times (with different random seeds) and in each run some of the 

events are recorded. Notice that if an event is not recorded during a run it does not necessarily 

mean it has not occurred. 

The results of test    are the set of its runs             
 . The results of the entire test suite 

are the collection of all test results           . 

For each event      there is a threshold     . We say that run    of a test    covers or hits 

event    if and only if           . We say that a test    covers/hits event    if any of its runs 

covers it, i.e., for some                     . 
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A more compact representation of the test suite results uses a test   event matrix       . 

The results of a test    are summarized in row                , where      is a function of 

the number of times event    occurs in test   . Such a matrix can be a derived from   using 

some aggregation on the test runs. Such aggregation can be, for example, taking the maximal 

value of hits in each event in all runs of the test, the number of times the threshold was 

exceeded, or the average number of hits per run. We may sometimes get the aggregated 

results matrix instead of  . We refer to the matrix representation of the results   as the hit 

matrix. 

2.2. Computational background 

In this section we provide basic definitions and background for the computational problems 

we will discuss in the thesis. For further reading and more details see [5–24]. 

2.2.1. Basic concepts in graph theory 

2.2.1.1. Undirected graphs 

Let         be an undirected graph with a finite set of nodes   and a set of unordered 

pairs of nodes,      . We typically use   or       to denote an edge        , and we 

let       and      . We assume   has no self loops or parallel edges. Edge weights may 

be specified by a weight function       . When the graph is unweighted we assume all 

edge weights are 1. We denote the weight of edge         as    or       . 

Let       be subsets of nodes. We define the weights between   and   as the sum of edges 

with an end in each subset:                  
   

       

. The weight of a subgraph with node 

set   is the sum of the edge weights inside it:                         
       

.  

The degree of a node   is defined as the sum of the weights on the edges incident to  : 

                  . In case the graph is unweighted, the degree is just the number of edges 

touching node  . The complement degree of a node   is defined as                  

           . 
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2.2.1.2. Directed graphs and flow networks 

Let         be a directed graph with a finite set of nodes   and a set   of ordered pairs of 

nodes,      . We will use similar notation as for the undirected case. We may 

distinguish two nodes   and   in   as the source and sink, respectively.  

A directed s-t path in   is a sequence of nodes and edges of the form 

                                         . A minimal s-t cut in   is a minimal set of 

edges   whose removal disconnects   from   in  , i.e., breaks all directed s-t paths. If   is a 

proper superset of some s-t cut, it is an s-t cut but not a minimal one. The value      

       is the weight of cut  . A minimum cut    is an s-t cut whose weight,           , 

is minimum among all s-t cuts. All minimum cuts are minimal because edge weights are 

positive. 

An s-t flow   in a directed graph   is a function        where             for all 

    and for all          ,                                      . The value of the 

flow from   to   is                                        . In the maximum-flow 

problem, we wish to find a flow    that yields a maximum value for  , denoted as   . When 

referring to flow networks, we will use the term capacity instead of weight for edges and edge 

sets. 

Given a flow   in graph  , we define the corresponding residual network denoted as      or 

   as follows. The residual network has the same nodes as the network  , but has edges with 

capacities                      . Only edges with non-zero capacity are included in 

  .  

The max-flow min-cut theorem [5] states that the maximum value of the flow from   to   in a 

network equals the minimum capacity among all     cuts, i.e.,      .  

The maximum flow problem is well studied and several polynomial time algorithms were 

developed for it. The first such algorithm due to Ford and Fulkerson, is based on augmenting 

paths and runs in            . An improvement for the augmenting paths algorithm, due to 

Edmonds and Karp, runs in       . Using a different approach called preflow-push-relabel, 

Karzanov achieved a running time of      . There are many more approaches and algorithms 

for the maximal flow problem. See [6] for references and much more information. 
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2.2.2. Covering and domination problems  

2.2.2.1. Set cover problem 

The set covering problem (SCP) [7] is a classical question in optimization. The problem study 

led to the development of fundamental techniques in the field of approximation algorithms. It 

was also one of Karp's 21 classical problems shown to be NP-complete [25]. 

Set cover problem: Given a universe   of   elements, a collection of subsets of  ,   

         , and a cost function       , find a minimum cost subcollection of   that 

covers all the elements of  , i.e.,                       s.t              . 

The greedy algorithm: 

The greedy strategy applies naturally to the set cover problem: iteratively pick the most cost-

effective set and remove the covered elements, until all elements are covered. Let   be the set 

of elements already covered at the beginning of an iteration. During this iteration, define the 

cost-effectiveness of a set   to be the average cost at which it covers new elements, i.e, 
    

     
.  

 

Algorithm 1: Greedy set cover algorithm 

It can be shown that the greedy algorithm is an    factor approximation algorithm for the 

minimum set cover problem, where      
 

 
   

 

 
 [7]. In particular           . 

    

       

Greedy set cover algorithm 

While     do 

 Find a set        whose cost-effectiveness is smallest. 

                 
     

      
  

      . 

            

Return   . 
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Surprisingly, the greedy algorithm above gives essentially the best approximation factor one 

can hope for, unless      [7]. 

2.2.2.2. Domination problems 

The matrix domination problem can be thought of as a simple generalization of the set cover 

problem. To our knowledge, this problem is novel.  

Given a matrix   in     , two rows         and a column      , we say that 

row   dominates row   on column   iff        . We say that row   dominates row   if it 

dominates it for all columns. 

Matrix row domination: Given a matrix   in      and a row cost function         

  , find a minimum cost subset   of the rows of   s.t. every other row is dominated on 

every column by some row in  , i.e.,                             s.t.             

              s.t.        . 

We show that the matrix row domination problem is NP-hard by a simple reduction from Set 

Cover.  

Reduction: Given a universe   of   elements, a collection of subsets of  ,            , 

and a cost function        we reduce the problem to matrix domination problem by a 

reversible mapping between the collection of sets and the matrix rows. We define a matrix   

in      s.t                        
         

             
  . Let             s.t. 

                        . Now,         is a minimum cost dominating set of rows in 

  if and only if         
  is a minimum cost set cover of  .   

2.2.3. Clustering 

Clustering is the challenge of finding and describing cohesive or homogeneous "chunks" in 

data, called the clusters [9]. The idea behind clustering is rather simple: introduce a measure 

of similarity between entities under consideration and combine similar entities into the same 

clusters while keeping dissimilar entities in different clusters.  

Formally, let             be a set of   elements, and let             be a partition of 

  into subsets. Each subset is called a cluster, and   is called a clustering solution, or simply 
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clustering. Two elements    and    are called mates with respect to   if they are members of 

the same cluster in  .  

Given a set of elements  , a distance function between elements         and a number 

of clusters  , the clustering algorithm aims to partition   into   disjoint clusters such that 

mates in that clustering are more similar to each other than are non-mates. In some algorithms 

  is not provided. Some formulations use similarity or proximity metric between elements 

instead of distance. Clustering formulations vary in the way their objective functions balance 

between intra-cluster homogeneity and inter-cluster separation. For example, K-means 

(described in Section 2.2.3.1), minimizes the average distance within each cluster while fixing 

the number of clusters. The Click algorithm (described in Section 2.2.3.3) presents a 

probabilistic model and the algorithm tries to maximize the likelihood under the model. Most 

clustering formulations yield NP-hard problems. For additional clustering methods see, e.g., 

[10]. 

2.2.3.1. K-means 

The K-means algorithm [9] is one of the earliest clustering heuristics. The algorithm seeks a 

partition of the entity set into   sets called clusters. Each cluster is represented by its mean 

vector. More formally, if                 is the set of elements, the cluster structure is 

represented by a partition into subsets      and m-dimensional centroids          

       , satisfying     
 

    
        

. 

Given   m-dimensional vectors    as cluster centroids, the algorithm updates cluster sets     

according to the so-called minimum distance rule. The minimum distance rule assigns entities 

to the nearest centroid. Specifically, for each entity    , its distances to all centroids are 

calculated, and the entity is assigned to the nearest centroid. When there are several nearest 

centroids, the assignment among them is arbitrary. In other words,     is made of all such 

    that         is minimum over all centroids          .   measures the distance in the 

m-dimensional space. For example, when using Euclidean distance 

                
  

   . 
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Algorithm 2: K-means 

This algorithm usually converges fast to a local optimum, depending on the initial setting. The 

choice of the initial centroids may affect not only the speed of convergence but, more 

importantly, the final results as well.  

2.2.3.2. Hierarchical clustering 

In hierarchical clustering [9] we wish to present our data in the form of a hierarchy over the 

entity set. This hierarchy is represented by a rooted tree in which each node is the union of its 

children. 

Figure 2 shows an example of a hierarchical tree. The vertical height axis represents the 

similarity between clusters. The tree assumes a constant distance between the root and the 

leaves. Such a tree is called a dendrogram. 

K-Means 

1. Data preprocessing. Transform the data into a 

quantitative space and define a distance measure. 

2. Initial setting. Given the number of clusters  , choose 

initial centroids        . 

3. Iteration: 

i. Cluster update. Given the centroids      , 

determine clusters       using the minimum 

distance rule. 

ii. Stop condition. If the cluster assignment did not 

change following step i, stop. 

iii. Centroid update. Given clusters      , 

calculate        and go back to step i.   
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Figure 2: A dendrogram generated by a hierarchical clustering algorithm [10]. 

There are two approaches to building a cluster hierarchy: 

 Agglomerative clustering methods build a hierarchy in a bottom-up fashion by starting 

from smaller clusters and sequentially merging them into 'parental' nodes. 

 Divisive clustering methods build a hierarchy top-down by splitting greater clusters 

into smaller ones starting from the entire data set. 

The agglomerative approach in clustering builds a cluster hierarchy by merging two clusters 

at a time, starting from singletons (one-entity cluster) or other pre-drawn clusters. Thus, each 

non-singleton cluster in the hierarchy is the union of two smaller clusters, and the whole 

hierarchy can be drawn as a binary tree. The singletons and their successive merges at every 

intermediate step form a cluster hierarchy, until the root is reached, at which point the full 

cluster hierarchy emerges.  

In addition to the tree topology, hierarchical clustering also specifies edge lengths, reflecting 

distance (dissimilarity) between sets. Some algorithms assume all leaves have the same 

distance from the root and then parent nodes are equally distant from their children (Figure 2). 

Other algorithms do not assume that. 

At each step of an agglomerative clustering algorithm, a set of already formed clusters   is 

considered along with a matrix of distances between the clusters in  . Then two closest 

clusters are merged and the newly formed cluster is assigned distances from the other clusters. 

A clustering (partition) solution can be derived from a hierarchy in different ways, e.g., by 

trimming the tree at a certain height and taking the top cluster nodes. 

Agglomerative algorithms differ depending on between-cluster distance measures used in 

them and on the rule for identifying closest clusters. 
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UPGMA algorithm  

UPGMA [11] is an algorithm for constructing a dendrogram clustering solution (see Figure 

2). Let   be the distance function between two elements. We define the distance       between 

two clusters    ,   with sizes    ,   respectively, as follows: 

     
 

     
        

        

 

The distance from a new cluster       formed by joining    and   , to all other clusters can be 

computed as a weighted average of the distances from its components: 

         
  

     
       

  

     
      

The new node formed by merging clusters   and   is connected to both   and   by branches of 

length       . UPGMA picks       with the smallest distance     in each iteration. 

Neighbor Joining Algorithm 

Neighbor joining [12] aims to produce a rooted tree with branch lengths without assuming 

equal root-leaf distances. The input is the distance matrix between elements. Initially each 

element is a cluster. At each iteration, the algorithm identifies two nodes that are guaranteed 

to be neighbors in the current tree (i.e., nodes with a common parent node), and merges them 

to form a new cluster. It then computes the distances from the new cluster. When the 

algorithm finishes, we represent the results as an edge weighted tree. The tree is not required 

to be a dendrogram. If there exists a tree such that distances between leaves match the matrix 

distances, the algorithm is guaranteed to find it. 

Figure 3 shows an example of a tree generated by the neighbor joining algorithm. The 

elements are marked 1-8 and internal nodes A-F. Numbers on the edges represent branch 

lengths. 
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Figure 3: Dendrogram the neighbor joining algorithm [12]. 

2.2.3.3. Click 

Click (CLuster Identification via Connectivity Kernels) [13] is a graph-based algorithm for 

clustering. The input for Click is a similarity matrix between elements. The Click algorithm 

attempts to find a partition of the set of elements into clusters, so that two criteria are 

satisfied: homogeneity - pairs of elements from the same cluster are highly similar to each 

other; and separation - pairs of elements from different clusters have low similarity to each 

other. Unlike conventional clustering algorithms, Click allows some elements to remain un-

clustered. Un-clustered elements, referred as singletons, should be dissimilar to any of the 

clusters found. 

Click initially identifies highly homogeneous and well-separated sets of elements called 

connectivity kernels, which are subsets of very similar elements. The remaining elements are 

subsequently added to the kernels by the similarity to kernel centroids. 

Probabilistic Model 

The Click algorithm makes the following assumptions: 

 Similarity values between mates are normally distributed with parameters      . 

 Similarity values between non-mates are normally distributed with parameters      . 

 Similarity values are mutually independent. 

For clusters to be identifiable, these parameters must also satisfy       , and       should 

be small enough compared to      . 
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Basic Click Algorithm 

The Click algorithm represents the input data as a weighted similarity graph        . In 

this graph, nodes correspond to elements and edge weights are derived from the similarity 

values. The weight     of an edge       reflects the probability that   and   are mates, and is 

set to be: 

      
        

            
 

where   is the probability of two genes to be mates, and           
        is the value of the 

probability density function for mates (non-mates) for    . According to our 

assumptions             ,            . 

The main idea of the algorithm is as follows: given a connected graph  , we would like to 

decide whether      is a subset of some true cluster, or      contains elements from at least 

two true clusters. In the first case we say that   is pure. In order to make this decision, we 

would like to test the following two hypotheses for every possible cut   in  : 

  
 :   contains only edges between non-mates. 

  
 :   contains only edges between mates 

  is declared a kernel if    is more probable for all cuts. The decision whether   is a kernel 

relies on the following theorem: 

Theorem [13]:   is a kernel iff the weight of              . 

Following the theorem, the basic algorithm splits   recursively using min-cut computations 

until a kernel or a singleton is reached. This is done heuristically since edge weights can be 

negative, and the MIN-CUT problem for a weighted graph with both positive and negative 

edges is NP-Complete. 

Click refinements 

The Basic-Click algorithm divides the graph into kernels and singletons. These kernels are 

expanded to the full clustering, using several heuristic refinements: 

 Adoption Step: kernels “adopt” singletons to create larger clusters. 
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 Cleaning Step: removing from clusters nodes having a low degree. 

 Merge Step: merging clusters whose centroids are similar. 

2.2.3.4. Performance measures 

When a correct solution for a clustering problem is known, we can evaluate an algorithm’s 

performance by measuring how close the true and the algorithm's solution are. Let  ,   be two 

clustering solutions. We mark by     the number of pairs of elements that are mates in both   

and  ,     is the number of pairs that are mates only in  , and     is the number of pairs that 

are mates only in  . The Jaccard coefficient is defined by: 

  
   

           
 

The value is 1 iff the two solutions are identical. The similarity of the solutions improves as 

the value of the coefficient increases.  

Unfortunately, in most cases the ”correct” solution for the clustering problems is unknown. In 

these cases, a clustering solution will be considered good if it provides tight clusters that are 

well separated from each other.  

The input to the clustering problem is   a set of   elements and a fingerprint function 

mapping elements in   to vectors in   . We define the fingerprint of a set of elements to be 

its centroid, i.e., the coordinate-wise mean vector of the fingerprints set members. Let 

        be clusters,      be the cluster of element  ,      be the fingerprint of a cluster  , 

and let              denote the similarity between two fingerprints. 

The average homogeneity of a clustering solution             is defined as: 

        
 

   
                

   

 

The minimum homogeneity of    is defined as: 

           
   

                

The average separation of   is defined as: 
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The maximum separation of   is defined as: 

           
   

               

A clustering improves when      and      increase, and when      and      decrease. 

Another way to evaluate a clustering solution is the silhouette method [14], which is based on 

comparison of the cluster tightness and separation. The method can evaluate clustering 

validity and could also be used to determine the number of clusters. The silhouette of each 

element     is defined as:  

     
         

               
 

Where      is average dissimilarity of   to other elements in the same cluster;      is the 

average dissimilarity of   to elements in the closest cluster. The silhouette index ranges 

between -1 and 1. The silhouette of a clustering solution is the average silhouette over all 

elements. The clustering solution is better when its silhouette is close to 1. A negative 

silhouette index means that an element is more similar to a different cluster than to the cluster 

it is in.  

2.2.4. Statistical scores 

In this section we describe some statistical tests that will be used in our study. 

2.2.4.1. Hypergeometric score 

The hypergeometric distribution describes the probability of drawing   white balls in   draws 

without replacement from a finite population   containing   white balls and     black 

balls. The probability mass function is defined as: 
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The statistical significance (or P-value) of a draw of   white balls is the probability to get at 

least   white balls under the hypergeometric distribution. More formally         

          . The lower this probability is, the less likely the model is given the data. 

2.2.4.2. FDR correction 

When performing many statistical tests, correction for multiple testing is required. Bonferroni 

correction [26] may be too harsh if we are willing to accept few false positive results. The 

standard approach is called FDR  (False Discovery Rate) [15], and it ensures that the expected 

fraction of false positives, out of all accepted tests, would remain low. 

Let         be the null hypotheses and         their corresponding p-values ordered in 

increasing order. For a given threshold   we reject the hypotheses with the lowest p-values 

such that     
 

 
. Under some mild assumptions, the procedure guarantees that the false 

positives fraction will not exceed  . 

2.2.4.3. Mantel test 

The Mantel test [16], [17] is a technique to estimate the resemblance between two proximity 

matrices computed for the same elements. The matrices must therefore be of the same 

dimensions, but not necessarily symmetric though this is often the case. 

The test is based on the correlation between the two similarity matrices. To enable correlation 

calculation each matrix is transformed into a vector row by row. For symmetric matrices, such 

as similarity matrices, only the upper (or lower) triangle is needed. 

When applied to similarity matrices, the test assumes that only the rank order of elements in 

the two matrices is important for clustering, i.e., clustering algorithm are likely to be more 

sensitive to the order of similarities than to their actual values. In order to measure correlation 

between two proximity matrices, the nonparametric Spearman rank correlation statistic, 

denoted   , is used. Hence, the test statistic is the rank correlation between corresponding 

similarity values of the row vectors of matrices   and  .  

Given two similarity matrices, first, an observed Mantel statistic,   , is calculated. Second, to 

estimate the p-value, the elements (rows and columns) within one of the matrices are 

subjected to random permutations, and    is recalculated for each random permutation. The 
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significance is empirically estimated as the proportion of permutations that lead to a value of 

   that is equal to or higher than the original observed correlation. 

2.2.5. Graph clustering and density 

Graph clustering is the task of grouping the nodes of the graph into clusters taking into 

consideration the edge structure of the graph in such a way that there should be many edges 

within each cluster and relatively few between the clusters. In this section we focus on a 

specific clustering objective function named density.  

2.2.5.1. Densest subgraph problem 

The density of a graph is defined as the ratio of number of edges to the number of nodes in the 

graph. The definition can also be generalized to handle weighted edges. Formally, given an 

undirected graph         and a weight function over the edges        , the density of 

a subgraph on a node set   is defined as      
       

   
, where is      is the set of edges in 

the subgraph induced by   and the weight of an edge set is the sum of the weights all edges in 

it. 

The densest subgraph problem receives an input a weighted graph and seeks a subset of nodes 

   of maximum density. The optimum density is denoted as              . 

The densest subgraph problem can be solved optimally in polynomial time based on an 

elegant network flow formulation proposed by Goldberg [18]. Charikar [19] gave a linear 

programming formulation to this problem. He also showed that we can find a 2-

approximation to the densest subgraph problem in linear time using a very simple greedy 

algorithm. Saha et al. [20] used a different flow construction to solve the problem.  

When a size constraint is specified, namely, when the goal is to find a densest subgraph of 

exactly/at least/at most   nodes, the problems become NP-hard [27]. There is a very simple, 

linear time, greedy 3-approximation algorithm for the densest subgraph with at least   nodes 

[27]. A 2-approximation can be achieved for the same problem using flow computation or 

linear programming [22]. For the densest subgraph with exactly   nodes there is a polynomial 

approximation factor [23]. It was shown that the problem does not have any PTAS under 

reasonable complexity assumptions [24]. For the densest subgraph with at most   nodes 
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approximation complexity is not yet known, but an approximation bound follows from the 

problem of densest subgraph with exactly   nodes [22]. 

2.2.5.1.1. Goldberg's algorithm [18] 

Goldberg's algorithm reduces the problem of finding a maximum density subgraph to a series 

of minimum cut problems, which in turn can be solved using network flow techniques. The 

algorithm requires        min-cut computations on networks with     nodes. We present 

here the unweighted version of the algorithm but it can easily be generalized to the weighted 

case as we show in Chapter 7. 

The algorithm works as follows: Let   be the density of the desired subgraph. At each stage 

of the algorithm there is a guess     for  . Then a network is constructed and a minimum 

cut computation enables decision on whether     or    . Using binary search on the 

interval of possible values of  , within         iterations the algorithm finds a maximum 

density subgraph. 

Let    be the degree of node   of  . Given a guess  , we convert   into a network   

        as follows: We add a source node   and a sink node   to  ; replace each (undirected) 

edge of   by two directed edges of capacity 1 each; connect the source   to every node   of   

by an edge of capacity  ; and connect every node   of   to the sink   by an edge of 

capacity          . Figure 4 illustrates the construction. 
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Figure 4: Goldberg's flow network for detecting densest subgraph. Nodes       are the 

original graph nodes and  ,   are added as a source and a sink respectively. 

Notice that all capacities are non negative because for any  ,      and our guess   will 

always be non negative. 

A partition of    into two sets,   and  , such that     and    , determines an s-t cut. Let 

        , and         . If        , then the capacity of the cut          ; 

otherwise, the capacity of the cut is given by (see Figure 5): 

           

       

     

    

     

    

     

         

   

                                      

    

      

         

       

   

                             
                    

   

    
    

Notice that                     
    is the number of edges in the subgraph of G induced 

by   , so 
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is the density of the subgraph of   generated by   . Therefore,                     

   . The following theorem gives a way to tell whether g is too large or too small.  

Theorem (Goldberg,84) [18]. Assume that   and   give a minimum cut. If       , then 

   ; If        (i.e. S={s}) then     . (Proof omitted) 

 

 

Figure 5: An s-t cut in the flow network. 

The maximum density    lies between 0 and  ; furthermore, the smallest distance between 

two different possible values of    is at most 
 

  . Hence, if    is a subgraph of   with density 

  , and no subgraph of   has a density greater or equal to    
 

  , then    is a maximum 

density subgraph.  

Now we can describe an algorithm to find the maximum density subgraph. 
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Algorithm 3: Goldberg's algorithm for finding a maximum density subgraph 

Running time: Let        be the time required to find a minimum capacity cut in a network 

with   nodes and   edges. The only loop is executed                         times. 

The flow network contains     nodes and       edges. Hence, the algorithm runs in 

time                . 

2.2.5.1.2. The algorithm of Saha et al. [20] 

The algorithm of Saha et al. [20], like Goldberg's, finds a densest subgraph using a series of 

min-cut computations. The algorithm guesses the density of the maximum density subgraph 

and then refines the guess by a network flow computation. The binary search and stop 

criterion are exactly the same as Goldberg's. The only difference is in the flow network 

construction, as described below. 

Create a flow network    with a source node   and sink node  . In    we have a node 

corresponding to each edge in   (call this set   ) and a node corresponding to each node in   

(call this set   ). Add edges from   to      of capacity      and an edge from      to   

              

while     
 

   do 

   begin 

   
   

 
; 

 Construct N=(VN,EN); 

 Find min-cut (S,T); 

 If       then     

    else 

       begin 

     ; 

          ; 

       end; 

   end; 

return (subgraph of G induced by V1) 
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with capacity  , where   is a guess for the maximum density. Add edges from         

   to both      and      with capacity  . 

The general idea of this method is that the nodes that correspond to edges between nodes on 

the same side of the cut must also be on that side. If the guess is lower than the optimal 

density there will be a minimum cut other than the trivial one separating   from the rest of the 

  . Otherwise the minimum cut weight would be the same as the trivial. We omit the full 

proof. 

Saha et al. use their network construction to calculate the densest subgraph with annotation 

based distance restrictions. We note that they could have used Goldberg's construction for the 

same purpose. An apparently unique feature of their approach is that it allows to solve the 

problem subject to the additional constraint that the desired subgraph must contain a given 

node set. In a different effort, they give an algorithm to compute all  -close to densest 

subgraphs. We note that Goldberg's construction with a different enumeration algorithm can 

also be used to compute all  -close to densest subgraphs. 

2.3. Previous studies on post-silicon test optimization 

Post-silicon validation is in broad practical use by all chip developers. It can be credited with 

finding of many functional bugs that escaped pre-silicon verification. However, in general, 

functional verification methodology for post-silicon is still less varied and mature than for 

pre-silicon platforms. Very little is published on post-silicon verification methodologies (e.g., 

[28]), and most research in post-silicon validation has centered on on-line checking and 

debugging capabilities of the silicon platforms (e.g., [29]). 

Pre-silicon validation, on the other hand, received a lot of research attention. Pre-silicon 

validation is based on a well-established methodology of coverage-driven verification (CDV 

[30]). A verification plan comprises a large set of features in the Design Under Verification 

(DUV) that need to be verified; random stimuli generators directed towards the verification 

goals using test-templates [31] (i.e., general specifications of the desired test structure and 

properties); and coverage analysis tools [32] that detect the occurrence of events in the 

verification plan and provide feedback regarding the state and progress of the verification 

process. 
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Figure 6: Functional verification process with automatic test generation [33]. 

Coverage directed test generation (CDG) has been previously studied [33–36]. Although it 

mainly focuses on functional (pre-silicon) verification, the CDG methodologies can be 

employed in post-silicon verification as well. The current practice for functional verification 

of complex designs (Figure 6) starts with a definition of a test plan, comprised of a large set 

of events that the verification team would like to observe during the verification process. The 

test plan is usually implemented using random test generators that produce a large number of 

test cases, and coverage tools that detect the occurrence of events in the test plan, and provide 

information related to the progress of the test plan. Analysis of the coverage reports allows the 

verification team to modify the directives for the test generators and to better "hit" areas or 

specific tasks in the design that are not covered well. The analysis of coverage reports, and 

their translation to a set of test generator directives to guide and enhance the implementation 

of the test plan, result in major manual bottlenecks in the otherwise highly automated 

verification process. Considerable effort is invested in finding ways to close the loop of 

coverage analysis and test generation. CDG is a technique to automate the feedback from 

coverage analysis to test generation. The main goals of CDG are to improve the coverage 

progress rate, to help reaching uncovered tasks, and to provide many different ways to help 

reach a given coverage task.  

Fine and Ziv [33] suggested the use of Bayesian networks to generate many different test-

cases, each leading to different coverage tasks. Bayesian networks offer an efficient modeling 

scheme by providing a compact representation of the complex (possibly stochastic) 

relationships among the CDG ingredients, together with the possibility to encode essential 

domain knowledge. The CDG process begins with the (manual) construction of a Bayesian 

network model that describes the relations between the test directives and the coverage space 

with possible hidden nodes that affect the inner design knowledge. After the Bayesian 

network structure is specified, it is trained using a sample of directives and the respective 
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coverage tasks. Learning algorithms are used to estimate the Bayesian network’s parameters. 

In the evaluation phase, the trained Bayesian network can be used to determine directives for 

a desired coverage task, via posterior probabilities queries. A later work [35] tries to 

automatically construct a data-driven CDG engine based on Bayesian networks, aimed at 

providing coverage boosting with minimal human effort. 

Clustering is not a new idea in the verification studies. Following their work on CDG,  Fine 

and Ziv [36] tried to enhance the verification process using clustering techniques. They use 

clustering to enhance the efficiency of the CDG process by focusing on sets of non-covered 

events, instead of one event at a time. They also try to find the correct number of clusters. In a 

different work [37], they attempt to improve the coverage process efficiency by clustering 

together related events and generating one set of directives that attempts to cover all events in 

the same cluster. 
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3. The tested data 

In this section we describe the industrial data example that we analyzed in this thesis. 

3.1. The analyzed data sets 

Recall the formulation in Section 2.1.2. The industrial data example is available as a set of 

tests ( ), each having a set of parameters ( ) defining how it was performed and what its 

results were: 

 Configs:  for each test, a list of config files it runs with. There are ~250 configs. On 

average each test has ~70 configs. 

 System-elements:  for each test, a list of the system elements it runs on. There are 

~2700 system elements. On average each test has ~600 system elements. 

 Modifications:  for each test, a list of mod (modification) files it runs with.  

In this industrial example, the parameter set ( ) is actually comprised of three sets. Together, 

the three sets of configs, system-elements and mods uniquely define a test. 

Additional two data bases provide the events and results: 

 Events (   ): each event   is accompanied by a threshold   . An event is considered 

hit or covered by a test run if it occurred at least    times in that run.  

 Results ( ): The results are summarized by a table with one dimension corresponding 

to (test, seed) combinations and the other corresponding to events (see Figure 7). For 

some combinations of test, event and sample (seed run), the table holds the value of 

the event's counter. There are 874 distinct tests and 302 events. Some tests have a lot 

of seeds (thousands) and some only a few (or 1). Notably, for any specific run (seed) 

of the test, not all the counters were measured. There are 7 million counter reads in the 

table. The counter's value depends on the amount of time that the test ran, which may 

be different from test to test (and currently is not available). 
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Figure 7: An example of the matrix summarizing the test results. 

3.2. Summarizing the raw test data 

When taking the average event hit count for each test over all its seeds and filtering counter 

values below the threshold, we obtain a matrix   with 718 tests, 105 events and 8930 counter 

values. This means that only 
    

        
       of the values in the hit matrix are non zero. 

When taking the maximum (instead of average) over all seeds for each test, we obtain a 

matrix    with 722 tests, 108 events and 9059 counter values (11.6%). 

This suggests that the hit distribution over the different seeds is relatively small. Therefore 

there is high redundancy in the test seeds and perhaps time can be saved by using less seeds. 

We can transform    to a binary coverage matrix, in which    
    if test   covers event  , 

and otherwise    
   . In the binary coverage matrix, each event is covered on average by 

12.5 tests, with a maximum of 44 and a minimum of 1. Each test covers on average 84 events 

with a maximum of 388 and a minimum of 1. 

Our notion of coverage is that a test covers an event if any of its runs covers it. Hence,    was 

used as the data matrix for further analysis. Values that are below their threshold are 

discarded and treated as 0 hit count or uncovered.  
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4. Analysis using covering and domination techniques 

Recall that we say that a test covers an event if the hit counter value exceeds the threshold. 

We seek to find small subsets of the tests that achieve similar event coverage as the whole set 

of tests. In the simplest type of cover we require each event separately to be covered by the 

selected subset. On the other hand, one might be interested in tests where two events happen 

together. In that case the subset selected should cover every pair of events that is covered 

together by some test in the whole set of tests. A generalization of the covering objective 

beyond looking at pairs of events is to find a subset of the tests that will cover all possible 

event combinations that are hit together by some test. 

4.1. Single event cover and domination 

4.1.1. Set cover 

In the set cover problem we seek a minimum subset of the tests that hits all events (see 

Section 2.2.2.1). In this formulation there is no use of the actual hit count. When applying the 

greedy algorithm (Algorithm 1) to the sample data, it gave a subset of 18 tests that cover all 

events. Although the greedy algorithm guarantees only an approximation (Section 2.2.2.1) it 

happens to give on these data the same results as solving the full integer linear programming 

problem. 

4.1.2. Domination 

Recall the problem definition in Section 2.2.2.2. We say that test   dominates test   on event 

  if the event’s counter value in test   is at least as high as  's (see Figure 8). The goal is to 

find a minimum subset   of the tests, such that for each event in any test there is a test in   

that dominates it. On the sample data, the greedy approach gave a subset of 45 tests. The 

greedy algorithm, in each iteration, adds a test that covers the maximal number of uncovered 

test-event entries. A similar analysis to the set cover greedy algorithm (see Section 2.2.2.1) 

gives this algorithm an approximation ratio of       , where     is the minimum 

number of tests required to dominate all events and   is the number of events. When looking 

only on binary entries instead of hit count, the problem is identical to set cover. 
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Figure 8: An example of a dominating set. Each white entry has a yellow entry in its column 
that is equal or higher. Therefore the yellow rows form a dominating set. 

4.2. Event pair cover and domination 

In this problem we seek to cover or dominate all possible event pairs. Out of all possible pairs 

    
 

      , only 3559 pairs are covered by one or more set in the whole set of tests. 

4.2.1. Set cover 

This problem can be formulated as a set cover problem where the universe to be covered is 

the set of event pairs. On the sample data, a greedy approach gives a set of 77 tests that covers 

all 3559 event pairs. 

4.2.2. Domination 

In this problem version we want to find a test set dominating all event pairs. In other words, 

we seek a subset of the tests such that each event pair will be dominated together by a test in 

the subset (see Figure 9). On the sample data set, a greedy approach found a set of 240 tests 

that dominates all event pairs. 
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Figure 9: An example of an event pair dominating set. The yellow set of rows 4 and 11 is not 

a pair dominating set since the pair of events with values 3, 7 in row 2 is not dominated by 
any other single row. Rows 2, 4, 11 constitute a pair dominating set. 

4.3. All subset cover 

We say that a test   dominates test   if for every event that   hits   times,   hits the same 

event at least   times. Notice that if test   is dominated by test  ,   cannot contribute to any 

type of cover better than   can. Thus, by removing all dominated tests we remain with a 

subset that has the same coverage as the whole set on all possible event combinations. This 

algorithm can be implemented straightforward in        time. Notably, finding the subset 

that covers all possible event combinations is the only polynomial problem out of all coverage 

techniques we discussed.  

On the sample data set, this strategy gives a subset of 473 tests that are un-dominated. When 

discarding the actual hit count and looking on a binary cover matrix, domination becomes 

containment ( ) and gives a subset of 291 tests. 
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5. Prioritizing tests 

One of our main goals is to reduce the complexity of the post silicon validation effort. One 

strategy is to prioritize the tests by ranking them according to their importance. Validation 

engineers can then opt not to check the whole test suite and focus initially on the important 

tests. 

5.1. Performance criteria 

Evaluation of a subset of tests can be defined using several criteria. Maximizing coverage 

percentage of the subset, as described in Section 4, is one criterion. Another goal is 

maximizing the average (or minimum) number of times each event is covered by the subset. 

A desired property of a good subset is heterogeneity, so that the tests would be different from 

one another. 

5.2. Greedy approaches 

A simple test ranking can be done in a greedy fashion, by either adding or removing the 

best/worst test at each stage. The utility of the considered test can be evaluated according to 

its similarity to other tests or its relative added coverage. A clustering solution can also be 

used to this end. 

A simple incremental greedy algorithm that aims to maximize the coverage selects a test that 

covers an event that is the least covered at that stage. If the allowed number of tests is equal or 

larger than the number of events then clearly we get a set cover problem. 

The k-center problem seeks to find a node subset   of size   in an edge-weighted graph such 

that the maximal distance from any node to   would be minimized. A 2-approximation 

algorithm is achieved by selecting the farthest node from those already chosen at each stage 

[38]. Inspired by this method, a similar approach is suggested here. Start with an arbitrary or a 

known subset   (a cover, for example). Add the test least similar to  . A different version can 

start with all the tests and remove the one most similar to another. Dissimilarity to a group can 

be defined as the average dissimilarity to its elements, or as the minimal dissimilarity to an 

element. This method aims to minimize the homogeneity.  
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One-class SVM is a variation of SVM classification due to Chen et al. [39]. The strategy is to 

map the data into the feature space and then use a hyper-sphere to describe the data in feature 

space so that most of the data points fall in the hypersphere. This can be formulated as an 

optimization problem. We want the ball (hypersphere) to be as small as possible while at the 

same time including most of the training data. The tradeoff between the radius of the ball and 

the number of training samples that it can hold is set by the parameter        . When   is 

small, we put more data points into the ball. When   is larger, we reduce the size of the ball. 

Our one-class SVM ranking algorithm works as follows: In each stage a one-class SVM is 

built for the remaining tests using a dot-product similarity kernel. The outliers of the SVM 

solution are added to the test set, since they represent different patterns from the main set. By 

selecting the SVM error   we control the number of tests added in each stage. In our 

implementation, we add 50 tests each time until a total of   tests are selected. 

5.3. Evaluations 

In the following experiment, for each value of   we selected   tests out of the entire test set 

(718). The methods mentioned above were used in addition to selecting a random subset. A 

summary of the methods and graph legend is presented in Table 1. All methods ran 100 times 

and results were averaged. To allow some degree of randomness, instead of taking the best 

test in each iteration, a random test was selected among the top 3 tests.  

Label Method Color 

Add farthest 

(avg) 

Add the least similar test to the current set. Similarity to a 

group is the average similarity to its members. 
 

Add farthest 

(min) 

Add the least similar test to the current set. Similarity to a 

group is the minimal similarity to its members. 
 

Remove 

farthest (avg) 

Remove the least similar test from the current set. Similarity 

to a group is the average similarity to its members. 
 

Remove 

farthest 

(min) 

Remove the least similar test from the current set. Similarity 

to a group is the minimal similarity to its members. 
 

Add min 

event 
Add a test covering the least covered event.  

One-class 

SVM 

Build one class SVM models iteratively and add 50 outliers to 

the set in each iteration. 
 

Random Randomly choose   tests.  

Table 1: Greedy test ranking methods. 
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In Figure 10 and Figure 11 we report the coverage percentage of single events and event pairs 

for each method. As expected, the greedy algorithm that adds a test covering the minimally 

covered event, is the first to reach full coverage. Both incremental and decremental similarity 

based methods show the same trend. Measuring dissimilarity to an existing set gives better 

results when taking the minimal dissimilarity than when taking the average. Most methods 

perform better than random, at least for large  . 

 

Figure 10: Event coverage percent as a function of the number of tests ( ). Legend is 

presented in Table 1. 

 

Figure 11: Event pair coverage percent as a function of the number of tests ( ). Legend is 

presented in Table 1. 

A more general objective is to cover all possible subsets of events. As showed in section 4.3 

we only need to look for tests that are not contained in any other test. A minimal set of tests 

that covers all subsets contains 291 tests. Figure 12 shows the number of tests not dominated 

(contained) by any other test selected as a function of  . Best performance is obtained by the  
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method that adds the test with minimally covered event, reaching full coverage at 600 tests. 

Other methods do not perform consistently better than random selection.  

 

Figure 12: The number of tests not dominated by any of the tests selected. Legend is 

presented in Table 1. 

Another possible objective is to increase the number of times each event is covered. Figure 13 

and Figure 14 show the average and minimum number of times events are covered for each 

method. Note that the 'min event' objective considers only events that have not reached their 

maximal possible number of covering tests. Not surprisingly, the 'add min event' method is 

best in terms of the average and minimal event cover. Other methods are worse than random 

when it comes to the average event cover. On the other hand, for minimal event cover, all 

methods are better than random. 

 

Figure 13: Average number of times events are covered. Legend is presented in Table 1. 
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Figure 14: Minimum number of times events are covered. The left plot presents all methods 

while the right one shows all methods except 'min event'. Legend is presented in Table 1. 

We would like the selected subset to be heterogeneous. Figure 15 shows the homogeneity (as 

defined in Section 2.2.3.4) of the solution produced by each method as a function of  . The 

methods that are based on average dissimilarity, 'add farthest' and 'remove farthest', perform 

best. 

 

Figure 15: Subset homogeneity of each method as a function of  . Legend is presented in 

Table 1. 

In a different experiment, we repeated the tests of Figure 15 starting with the basic subset of 

291 tests that covers all possible subsets. Figure 16 shows the homogeneity of each method as 

a function of   in this case. Most methods provide similar homogeneity to random selection 

of tests. Only the two methods based on average similarity have consistently lower 

homogeneity. 
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Figure 16: Subset homogeneity of each method as a function of  . The subset selection starts 
from the known set of 291 tests that dominates all tests. Legend is presented in Table 1. 

Figure 17 and Figure 18 present the average and minimum times events are covered when the 

selection start from the dominating set. The 'add min event' method gives the best results for 

both average and minimum event cover. Other methods have worse average event cover than 

random. On the other hand, with the minimum event cover objective, all methods are better 

than random. 

 

Figure 17: Average number of times events are covered. The subset selection starts from the 

known set of 291 tests that dominates all tests. Legend is presented in Table 1. 
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Figure 18: Minimum number of times events are covered. The subset selection starts from the 

known set of 291 tests that dominate all tests. The left plot presents all methods while the 
right one shows all methods except 'min event'. Legend is presented in Table 1. 

In conclusion, we see an advantage of the 'add min event' approach for most objective 

functions except those aiming to maximize heterogeneity. Interestingly, the SVM method 

does not perform well. It is noteworthy that randomly selecting tests sometimes outperforms 

more directed algorithms. 
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6. Analysis using clustering techniques 

We now describe a different approach to test optimization. We will try to partition the tests 

into clusters that achieve similar event coverage. Such a partition of the tests can help 

discover redundant or similar tests and replace them with a smaller number of representative 

tests. Together with a visualization tool it may also assist in finding low cover areas. 

Clustering expression profile of genes is a common method in bioinformatics. There are 

several gene expression analysis and visualization tools, such as EXPANDER [40]. Our idea 

is to use the test-events hit matrix as if it was a gene expression data and apply these tools. 

6.1. Ad-hoc similarity measures for post-silicon test data 

6.1.1. Hit matrix similarity 

The hit count matrix can formally be treated as a gene expression matrix and then one can use 

some clustering methods such as K-means, Click or SOM. There are several problems in this 

approach: 

 The hit counts depend on the time each test was run. In order to achieve a reliable 

comparison between the hit counts of different tests we should have used the rate of 

events and not the hit count. The very high variance in the hit count between the tests 

and between the events may also suggest that the actual numbers are misleading. 

 Clustering is dependent on the data normalization methods. In our study, several 

normalization methods were tried: normalizing each test or event to mean 0 and 

variance 1, quantizing hit numbers or even binarizing them. Each of these methods 

gives a different ranking of the similarities between tests or events. 

 Another problem is the sparseness of the matrix. Similarity measures like Pearson 

correlation (used in Click) or Euclidian distance (used in K-means) will consider 

sparse test vectors to be very similar. Using Euclidian distance for example, a test that 

hit an event a thousand times would be considered more similar to a test that does not 

hit the event than to one that hits it a million times. A better similarity measure should 

give high score to tests that hit common events. 
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6.1.2. Binary test vector similarity 

Validation engineers are mostly concerned with whether the event was covered than with the 

actual count, assuming that it reached the threshold. Together with the problems described 

above this leads us to concentrate on a binary coverage matrix. The matrix holds 1 for each 

event that is covered by a test. Alternatively, one could think of each test as the set of events 

that it covers. 

We would like to use a similarity measure that would prefer matches in hits over misses (or 

1's over 0's). One such similarity measure is the Jaccard coefficient, defined as the size of the 

intersection of two sets divided by the size of their union. Let    be the set of events covered 

by test  .  

                
       

       
 

This measure scores high two tests that share many common events. A drawback of the 

Jaccard coefficient is its tendency to underestimate the similarity as depicted in Table 2. Take 

for example the following scenarios:  

 When the sets are about the same size and overlap on 1/2 of the elements, Jaccard will 

give a similarity of only 1/3. To get a similarity of 1/2, the sets need to overlap on 2/3 

of the elements. 

 When one set is contained in the other, Jaccard similarity will be equal to the 

proportion of containment. For example, if the proportion is 1/2, the similarity will be 

only 1/2. 

Possible solutions [9] could be replacing the denominator by                 or by 

               for example. Another way is computing the geometric mean or the arithmetic 

mean of the fractions 
       

    
 and 

       

    
. When looking on the sets as binary vectors, the 

geometric mean can be interpreted as the normalized dot product.  

                  
       

          

 
       

         
 

Another possible measure is: 
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Arithmetic Geometric Jaccard Scenario 

     

   
             

             

   

 
             

                        

Table 2: Comparison of three similarity measures for sets (or binary vectors). The table 

exemplifies Jaccard's tendency to underestimate similarity. 

For our data set, the similarity between every pair of tests obey:                     

           . The second inequality holds for every data set because of the arithmetic-

geometric means inequality. 

How can we estimate how similar are the two similarity measures? We used the Mantel [16], 

[17] test described in Section 2.2.4.3 to evaluate the correlation of two similarity matrices.  

When scoring similarity of all pairs of tests in our data, the correlation between the Jaccard 

similarity and the geometric similarity is 0.9873 using Spearman correlation with p-value 

    . This means that these measures are quite similar. 

6.1.3. Between cluster similarity 

Given some partition of the tests into clusters, how does one calculate the similarity between 

clusters or between a test and a cluster? There are several common alternatives: 

 Calculate the binary cluster centroid. This is a set/vector that holds events that appear 

in the majority of cluster members. Similarity of two clusters is then defined as their 

centroids’ similarity. This method is used in the binary matrix decomposition 

algorithm [41], a version of a binary K-means. 

 Calculate the average similarity between all pairs of tests, one from each cluster. 
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6.2. Clustering with K-means 

K-means was used to cluster the sample data because of its simplicity and ability to adapt to 

different similarity measures. The K-means code was inspired by Expander's implementation. 

The choice of the initial partition in K-means affects the clustering solution. The choice of the 

representatives was done in two ways:  

 Choose disjoint tests as representatives. We will refer to this method as the 'non-

overlapping seeds' method. 

 Choose tests that have some overlap as representatives. Randomize 100 pairs of tests 

and take the 10
th

 highest dissimilarity as a threshold. Then choose tests that are at least 

as dissimilar as the threshold. We will refer to this method as the 'overlapping seeds' 

method. 

Using a binary cluster centroid for the cluster-to-single-test similarity did not work well in K-

means. Due to the sparsity of data, the centroids were very sparse and non-informative. We 

also tried defining the set of events of a cluster by the set of all events that are hit by a fraction 

  of the cluster tests, for different values of   
 

 
, with poor results. Therefore, to compute 

similarity between clusters, all pair-wise similarity values for tests in the two clusters were 

computed and the average was used as the inter-cluster similarity. 

K-means was run for     to    and results were averaged over    runs for each  . Jaccard 

and geometric mean similarity measures were used. In addition, the effect of the initial 

solution was tested, by choosing initial seed tests with and without common events. 

Figure 19 shows the distribution of the cluster sizes as a function of the number of clusters. 

The graphs plot the maximal size cluster and the cluster sizes standard deviation. We noticed 

that in all clustering solutions there is always one big cluster consisting of at least 50% of the 

tests. It can be seen that the choice of the initial solution has a greater effect on the 

distribution than the similarity measure. When the initial solution for K-means has tests with 

overlapping events, the final clustering tends towards smaller clusters in both similarity 

measures. It also shows results when using Euclidian distance based similarity, using K-

means in Expander. K-means with Euclidian distance (see Section 2.2.3.1) tends to divide 

clusters more uniformly than binary measures.  
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Figure 19: Performance of different variants of K-means as a function of the value  . Left: 

maximum cluster size. Right: cluster size standard deviation. K-means was run with two 

similarities measure: Jaccard and geometric mean. Different choices of the initial solution 

were tested: tests that have coverage overlap and those that do not. For comparison, 
Expander's K-means solution with Euclidian distance is presented too. 

Figure 20 shows the average homogeneity and separation for all clusters with two similarity 

measures. Notice that different similarity values are a function of the similarity measure.  

Separation is presented here using similarity and not dissimilarity so lower values means 

better separation. When splitting the data to more clusters we get more homogeneous clusters, 

as expected. On the other hand, when there are more clusters the separation between them 

decreases (similarity increases). There is a tradeoff between homogeneity and separation 

when choosing the initial solution – taking orthogonal cluster representatives gives better 

separation but worse homogeneity. The difference is noticeable in the Jaccard similarity. 

Figure 20: Performance of different variants of K-means as a function of the value  . The 

graphs show different similarity measures and different choices of the initial solution. Left: 

homogeneity and separation using Jaccard similarity. Right: homogeneity and separation 
using geometric mean similarity 

Figure 21 shows the average silhouette. The silhouette index takes into consideration both 

homogeneity and separation. Finding a maximum point for the silhouette can help choose the 

"correct" number of clusters. Unfortunately, there is no clear maximum indicating a "correct" 
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number of clusters. We can see that for large number of clusters, starting with orthogonal 

representatives has a clear advantage.  

 

Figure 21: The average silhouette of solutions obtained using different variants of K-means, 

as a function of the value  . Variants differ by the similarity measure and the choice of the 

initial solution. 

6.3. Hierarchical clustering 

6.3.1. Dendrogram solution 

We present application of hierarchical clustering to the sample post-silicon data. Expander 

supports hierarchical clustering on both matrix dimensions but it uses Pearson correlation 

similarity measure. In order to use the binary similarity measures the R statistical software 

was used.  

Figure 22 shows hierarchical clustering using Jaccard similarity. The tree's leaves are the test 

names. The tree is cut into 8 clusters at height 5. 
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Figure 22: A hierarchical clustering solution presented as a dendrogram. The Jaccard 

similarity measure was used here. Each leaf corresponds to a test. Red lines represent 
trimming the tree to 8 clusters. 

Such a dendrogram can also be used to produce clusters by cutting the tree at a given height 

or branch length. Another approach is to focus on deep branches that may be singled out as 

highly similar tests. 

Comparing clusters produced from hierarchical clustering vs. clusters produced by K-means 

with the same number of clusters, shows the following results: the homogeneity is better in 

the hierarchical clustering solutions but the separation is worse, for all cluster sizes. The 

differences are extreme when Jaccard similarity is used. These results are not surprising since 

each new cluster added by cutting the hierarchical clustering tree is a sibling of an existing 

cluster. Therefore the clusters could be highly similar causing the separation to deteriorate. 

The hierarchical method has an advantage of explicitly presenting the similarity relationship 

between clusters. It may also suggest the number of clusters to use when running K-means, 

for example. 

6.3.2. Neighbor joining 

Figure 23 shows an example of a neighbor joining tree of the tests built according to their 

geometric mean similarities. Four sets color the tree, each one holds about a quarter of the 

tests. The tests were divided according to the number of events they cover. It can be seen that 

tests that hit a similar number of events also hit a similar subset of events, since they appear 



  

56 

 

near each other in the tree. This property of the test data should be analyzed by the validation 

team in order to design a more diverse test suite.   

 

 

Figure 23: A neighbor joining tree solution. The tree was partitioned into four sets (colors) 

based on the number of events each test covers. The number of events each test in a group 
covers is marked in brackets.  

6.4. Clustering using Click 

Here we try to use the Click algorithm for analyzing our post-silicon data. Recall that Click 

can produce a solution that contains unclustered singletons. In the context of test clustering, 

such outliers should probably be included in any test cover. They are not similar to any of the 

clusters, so they should be selected for the test suit as they reflect unique behavior.  

By default, Click uses Pearson correlation as a similarity measure. It also enables using the 

dot product similarity measure, which is the same as the geometrical mean for binary vectors.  

The Click algorithm receives a homogeneity threshold value  . Click was run with several 

values of  . Value of 0 refers to the algorithm's default value. 

Figure 24 displays solution properties when using Click. As in K-means, the solutions always 

contain one big cluster. As the threshold for homogeneity increases, the algorithm tends to 

divide the data and keep more tests un-clustered (singletons). High homogeneity causes 

smaller clusters on the one hand, but on the other hand more tests remain un-clustered. When 

setting the threshold too high, Click does not produce any clusters. 
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Figure 24: Characteristics of Click solution for different homogeneity thresholds.  The graph 

plots the number of unclustered tests and the size of the maximal cluster for each 

homogeneity threshold ( ). It also shows the number of clusters (multiplied by hundred to fit 

the scale). 

Figure 25 shows the homogeneity and separation for each threshold value. There is no clear 

value that achieves both high homogeneity and low separation. In comparison with K-means 

with the same similarity measure (geometric mean/dot product), Click has better homogeneity 

values but slightly worse separation. Click has slightly better silhouette values than its K-

means counterparts. Click has an advantage over K-means by not clustering all the data. 

In addition to the average homogeneity, individual cluster homogeneity is also important. 

Highly homogenous clusters indicate similar tests groups that can be reduced. Usually the 

most homogenous cluster is small and the average homogeneity is closer to the minimum 

homogeneity which is obtained by a large cluster. Individual cluster homogeneity data are 

presented in Figure 25. 

Figure 25: Characteristics of clustering solutions produced by Click. Left: the homogeneity 

and separation of Click’s solution as a function of the threshold ( ). Right: the minimal, 

maximal and average cluster homogeneity in every solution.  
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Figure 26 shows an example of the highest individual homogenous cluster found for a 

threshold of        . The cluster homogeneity is 0.65 and it holds 32 tests. The figure 

exemplifies Expander's visual abilities displaying the data matrix.  

 

Figure 26: A homogenous cluster produced by Click as visualized using Expander. The 

vertical and horizontal axes correspond to the tests and events respectively. Blue dots indicate 
an event covered by a test. 

6.5. Consensus clustering and Model explorer 

When we do not know the real underlying cluster structure of our data, each clustering 

algorithm may provide us with a different solution. Algorithms with a stochastic component 

may provide different solutions on different runs. How can we trust our solution in this case? 

Inspired by cross validation techniques, consensus clustering method [42] captures majority 

vote across multiple runs of a clustering algorithm. The method determines the number of 

clusters in the data and assesses the stability of the discovered clusters. We say that a 

clustering solution is stable if different runs of an algorithm (with different seeds, for 

example) provide similar solutions. Intuitively, if there is a real cluster structure hidden in the 

data, every run should provide similar results.  

While consensus methods were originally used to assess the number of clusters in a good 

clustering solution, they can also be used for choosing other parameters of clustering 

algorithms. 

The consensus method works in the following way: 

1) Initialize a consensus matrix with rows and columns corresponding to elements. 

2) Sample a subset (say, 80%) of the data. 

3) Run the clustering algorithm on the subset. 

4) Increment results of cells in the consensus matrix if the corresponding two elements 

are in the same cluster. 
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5) Repeat steps 2-4 several times. 

6) Calculate similarity between elements as the percentage of solutions clustering them 

together. 

7) Repeat 1-7 for different parameters of algorithm (number of clusters, for example). 

8) Choose the best parameters and use the corresponding similarity matrix. 

The choice of best parameters is done using two methods which we now outline. These 

methods are fully described in [42], [43].  

If we were to plot a histogram of the consensus matrix entries, perfect consensus would 

translate into two bins centered at 0 and 1. As the number of clusters increases the distribution 

of the similarity values would further dissolve. For a given histogram, we can define and plot 

the corresponding empirical cumulative distribution function (CDF). The CDF is defined as 

the probability of a random variable to get values up to a certain value, i.e.,        

        . We can then compute the area under the CDF. Monti et al. [42] recommend using 

the parameter set for which the area under the CDF stops changing, i.e., when the difference 

between two parameter sets is reaching 0. 

The model explorer method [43] is similar to consensus clustering in using multiple runs of 

the clustering algorithm to decide the correct number of clusters. In this method two 

algorithms are run in each iteration and the similarity between the two solutions is recorded. 

The distribution of the similarity can then be used to choose a stable clustering solution. To 

assess the similarity between two solutions the adjusted rand score [42] was used. Given two 

clustering solutions,   and  , we define a contingency table            by            . 

Denote row sum as          , column sum as           and number of elements 

         . The adjusted rand score is defined as: 

  
  

   

 
     

   

 
    

   

 
    

 
 

    

 
    

   

 
     

   

 
       

   

 
    

   

 
    

 
 

  
 

6.5.1. Application to Click 

While the original motivation of the consensus method was to find the correct number of 

clusters for a given algorithm (such as K-means), the Click algorithm determines the number 

by itself. However, Click accepts a threshold parameter   for determining the cluster 
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homogeneity. Consensus methods were used here to determine the most suitable threshold. 

Another difference in Click is allowing elements to remain un-clustered (singletons). It does 

not limit the use of consensus methods since if an element is truly a singleton then it is 

expected to be so in every clustering solution. 

Figure 27 shows the adjusted rand index of Click's clustering solution as a function of  . The 

inner small plot is a zoom-in on the section between 0.8 and 1. It can be seen that the most 

stable solutions are obtained for      . The median similarity score is the highest and the 

distribution is narrow for      . For       the scores completely deteriorate. 

 

Figure 27: Adjusted rand index of Click clustering solutions. The index is shown for different 

values of theta. The inner plot is a zoom-in on the section between 0.8 and 1. 

Figure 28 shows the area under the consensus matrix cumulative distribution function (CDF) 

as a function of theta. We can see that       gives the maximal area.  
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Figure 28: Area under the consensus matrix CDF for each threshold. The maximal value is for 
0.7. 

In Figure 29 we show the number of singletons as a function of  . We can see that when we 

start increasing   the number of singletons increases as well. Higher levels of   make Click 

groups more homogenous, thus leaving more elements unclustered. For       there is a 

local minimum with small variance in comparison to adjacent values of  . 

 

Figure 29: Number of singletons as a function of the threshold. 
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The consensus clustering matrix can also be used as a similarity matrix between elements. 

Figure 30 shows a heatmap of the original similarity matrix given as input to Click. Figure 31 

shows the consensus clustering matrix obtained by running Click with      . We can see 

that the consensus matrix is smoother than the original similarity matrix. Four main clusters 

appear in the consensus map and about 200 tests remain dissimilar to all other tests. These 

tests correspond to singletons in most of Click's runs. 

 

Figure 30: The original similarity matrix.  
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Figure 31: Consensus similarity matrix for      . 

In the criteria we examined, running Click with       gave the most stable results. We 

showed that consensus and stability methods can be used to determine clustering parameters 

and not just the number of clusters. In addition, these methods also work on clustering 

algorithms that do not produce a full partition of the data, i.e., allowing singletons.  

6.5.2. Application to K-means and hierarchical clustering 

Figure 32 and Figure 33 below present the use of consensus clustering and model explorer 

methods to determine the number of clusters. We used K-means and hierarchical clustering as 

they get as input the number of clusters. Because the consensus method does not depend on 

the clustering method nor on the similarity measure, it enables us to compare different 

parameters.  

We ran all algorithms on the post-silicon test data. Hierarchical clustering was run with two 

merge criteria: Ward and average linkage. K-means was run with Jaccard or dot-product 

similarity measure. The results are inconclusive as to which method or measure is better. Nor 

is there a number of clusters that all methods agree upon. We can see that there is high 
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variability between the two objectives of hierarchical clustering, while both K-means versions 

are about the same.  

 

Figure 32: Rand index of K-means and hierarchical clustering solutions. The graph shows the 

average model explorer measure between two successive clustering solutions for each  .  

 

Figure 33: Consensus clustering quality of K-means and hierarchical clustering solutions. The 

graph shows the area under the consensus matrix's CDF for each  .  

6.6. Analysis of clustering solutions using enrichment 

Given a set of elements  , some of which have property  , and given a subset    , we say 

that   is enriched for property   if it contains significantly more elements with that property 

then expected by chance. 

In computational biology, gene groups can be tested for their enrichment by biological 

properties. Similarly, in post-silicon testing, groups of tests can be enriched for some 

properties of the chip or system. This is motivated by the reasoning that tests that cover 

similar events tend also to have similar configuration of the chip and test's inputs. Test groups 
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with significant overrepresented configurations can shed light on the structure of the tests. It 

can also help reduce the number of configurations and provide a base for construction of more 

efficient tests that may act as a class representative. 

To evaluate the significance of a configuration appearing in a cluster we use the 

hypergeometric score. In our case,   is the total number of tests,   is the number of tests in 

the cluster under investigation,   is the total number of tests that use the property, and   is 

the number of tests in the cluster that use the property. The statistical significance (or P-value) 

of a property in a cluster is the probability to get a cluster with the same size that has at least 

the same number of tests with the property.  

In order to account for multiple hypotheses of all clusters against all properties we use FDR 

correction [15] with threshold  . We say that a property is significant in a cluster of its 

corrected p-value is below a threshold  . 

The following table presents an example of clustering the post-silicon data using Click with a 

homogeneity threshold of      . Significance threshold was set to  =0.01. Inspired by the 

hypothesis that homogenous clusters will use similar and more specific configs, we measure 

the configuration homogeneity between tests. We also measure what fraction of the configs is 

used in each cluster, denoted as the config usage percentage. Clusters that use less configs can 

be viewed as more specific. Out of all significant configs we also look on those that appear in 

the majority (>50%) of the tests in the cluster, as they can be viewed as representative 

configs. By keeping the same cluster structure and shuffling the tests' labels we generate a 

random solution and evaluate its enrichment as well. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Singletons 

Size 141 136 54 51 38 33 269 

# Significant configs 21 8 3 11 3 5 38 

# Significant configs above 50% 15 8 3 1 2 4 17 

Config homogeneity 0.4269 0.4301 0.4334 0.3743 0.3552 0.4728 0.3918 

Config usage percentage 0.8914 0.9457 0.7674 0.8565 0.8643 0.7093 1 

Random # significant 0 0 0 0 0 0 0 

Random homogeneity 0.3929 0.3959 0.351 0.38 0.389 0.4036 0.3936 

Random usage 0.9573 0.9302 0.9186 0.8798 0.841 0.8798 0.9728 

Table 3: Analyzing configuration enrichment of a clustering result. Clustering was done using 

Click with a homogeneity threshold of      . 

The table shows there are indeed significantly enriched configs in some of the clusters in 

comparison to randomly permutated clusters. Most of the significant configs are also 
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prevalent in their clusters. However homogeneity is not that conclusive. Clusters 2 and 5 have 

significantly low config usage in comparison to random while other clusters give inconclusive 

results. The singletons group has more significant number of configs than any cluster. This 

may be an artifact of the hypergeometric score, which is susceptible to large groups. When 

looking only on prevalent configs (i.e., configs occurring in at least 50% of the tests), the 

number of significant configs in the singletons group decreases from 38 to 17. In clusters 2 

and 3 all significant configs appear in most of the tests.  

The following table presents the significant configs with p-values above 1E-9. The config 

usage measures how many tests use that specific config. Different significant configs appear 

in different clusters, except for configs 168, 169, which appear in clusters 4 and 5.  

Config ID Usage in cluster Usage in all tests P-Value 

Cluster 1 

80 81.56% 54.16% 4.72E-14 

8 89.36% 66.07% 2.66E-12 

113 62.41% 39.75% 1.13E-09 

54 47.52% 26.59% 1.61E-09 

56 47.52% 26.73% 2.13E-09 

114 88.65% 69.67% 4.82E-09 

Cluster 2 

76 77.94% 56.09% 4.07E-09 

Cluster 4 

168 66.67% 13.85% 6.34E-20 

169 47.06% 9.56% 2.08E-13 

Cluster 5 

169 55.26% 9.56% 1.56E-13 

168 60.53% 13.85% 4.70E-12 

Cluster 6 

102 84.85% 32.41% 2.75E-10 

Singletons 

115 79.55% 58.45% 8.22E-20 

81 59.85% 39.89% 2.29E-17 

52 81.78% 64.68% 2.51E-14 

95 22.68% 11.36% 3.98E-13 

189 45.35% 30.06% 6.67E-12 

88 38.29% 24.38% 3.11E-11 

77 62.08% 46.26% 3.68E-11 

192 61.34% 46.12% 1.93E-10 

194 40.89% 27.42% 5.27E-10 

108 20.45% 10.94% 6.20E-10 

78 63.20% 48.48% 7.39E-10 

193 14.13% 6.65% 1.04E-09 

Table 4: Significant configurations in clusters. 

The same analysis on the system elements (SEs) of the tests gave 93, 69, 84, 152, 65, 149, 16 

significant SE in each cluster, respectively. There are 57, 32, 20, 18, 2, 65, 14 significant 

system elements that appear in more than 50% of the tests in their cluster. In a random 

permutation of the labels no system element is significantly enriched in any cluster. 
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Such an analysis can assist the validation in comprehension and improvement of the tests 

suite. For example, in clusters 2 and 3 all significant configs appear in most of the tests. These 

configs can be thought of as representative for the cluster and allow the development of new 

tests from that group. Clusters 3 and 6 give significantly low config usage. This means they 

use highly specific configs in comparison to just random selection and even other cluster 

groups. Configs 168 and 169 appear in 10% and 14% of tests, but in cluster 4 and 5 they 

appear in the majority of the tests. These two configs clearly have a major impact on the test 

outcomes.  
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7. Algorithms for cohesive subgraphs 

In this section we define cohesion in an undirected weighted graph. The objective function of 

cohesion is a generalization of subgraph density. Inspired by graph clustering, cohesion 

discourages the inclusion of inter-cluster edges and high degree nodes. We give a polynomial 

algorithm for finding a maximum cohesion subgraph, based on iterated flow computations. 

7.1. Finding maximum cohesion subgraphs 

In Section 2.2.5.1 we discussed the problem of finding a maximum density subgraph in an 

undirected (possibly weighted) graph. That problem can be solved in polynomial time using a 

series of min-cut computations. The density of a subgraph was defined as the ratio between 

the number of its edges and the number of its nodes. 

We suggest modifying the definition of density to take into consideration the separation 

between the subgraph and the rest of the graph. Intuitively, a good module should be not only 

dense but also well-separated from the rest of the graph. Here we modify the original density 

definition, and provide it with a new name. As a first attempt we define the cohesion of a 

subgraph with node set   as 

Definition 1      
              

   
 

 

     is the sum of edge weights in the subgraph induced by  ,          is the sum of the 

weights of the edges with one end in  , and    . This new definition is motivated by graph 

clustering, where we seek to partition the graph into sets of nodes that are both highly 

connected internally and separated from each other. 

This first definition of cohesion is biased toward large subgraphs. For example:  

 Consider a graph composed of two cliques of size 
 

 
 with     edges between them. 

The cohesion of one clique in the graph is 
 
   
 

    

   
 

 

 
 

 

 
 

   

 
, while the cohesion 

of the whole graph is 
  

   
 

   

 
 

 

 
 

 

 
 

 

 
. So, for any    , a maximum cohesion 

subgraph will be the whole graph and not each of the cliques composing it, as we 

expect for small  . 
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 Consider a random graph built in the following manner; there are 
 

 
 nodes connected in 

a clique and 
 

 
  satellite nodes, each connected to every other node independently with 

probability   
 

 
.  The expected cohesion of the clique is  

 
   
 

   
 

 

 

 
 

   
 

 

 
 
 

 
    , 

and the cohesion of the entire graph is 
 
   
 

   
   
 

   
 

 

 

 
 

 
 

 

 
      . Now, the 

cohesion of the entire graph will be greater when   
 

    
. So when   increases we 

may encounter unintuitive behavior even for low values of  . 

To overcome this bias we suggest redefining cohesion by adding another term that will 

penalize the use of low degree nodes. We subtract from the numerator the sum of complement 

degrees of nodes in  . Recall   
                       . For     we redefine 

cohesion as 

Definition 2      
                      

   
 

 

Notice that      might be negative. This is the definition of cohesion we shall use from now 

on. 

The maximum cohesion subgraph problem seeks                  . We will describe a 

polynomial algorithm for solving the problem on a graph with positive integer weights.  

Denote the maximum cohesion value by                    . 

Goldberg [18] and Saha et al. [20] proposed two different algorithms for finding a maximum 

density subgraph based on searching flow networks. We will describe an algorithm based on 

Goldberg's method because it uses a simpler construction with        nodes, whereas Saha's 

construction uses            nodes. We note that Saha's construction could have been used 

for our purpose as well. 

The algorithm 

The algorithm reduces the problem of finding a maximum cohesion subgraph to a series of 

minimum cut problems, which are solvable using network flow techniques. The algorithm 

requires a logarithmic number of min-cut computations on networks with        nodes and 

       edges. 
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The algorithm works as follows: Let    be the maximum cohesion. At each stage of the 

algorithm there is a guess   for   . Then, a flow network is constructed and a minimum cut 

computation provides an answer whether      or     , and a new guess is computed. 

When the search terminates      and a maximum cohesion subgraph is found. 

Given a guess  , we convert the graph         with edge weights    , into a network 

             as follows.  

Let    be the weighted degree of node   of   as defined in Section 2.2.1 . Let        

                   . Notice that    is a constant depending only on the graph and not 

on  .    is chosen so that all network capacities will be positive, as we shall see. 

We add a source node   and a sink   to the set of nodes; replace each (undirected) edge       

of   by two directed edges       and       of capacity           each; connect the source   

to every node   of   by an edge of capacity        
  and connect every node   of   to the 

sink   by an edge of capacity         . Figure 34 illustrates the construction. 

More formally, 
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Figure 34: A flow network for detecting a most cohesive subgraph. Nodes       are the 

original graph's nodes and  ,   are added as a source and a sink respectively. 

For any    ,           
       because a node may be connected to at most all 

other nodes.  As we shall see, our guess always satisfies                  , 

which implies that           . Moreover,        
   . 

A partition of    into two sets,   and  , such that     and    , determines an s-t cut. Let 

          , and              . We denote the value of the cut defined by 

     in      by      : 

Definition 3: 
                                      

       

 

Theorem 1. For any     ,                         , where    is a constant and 

      is the cohesion of   . 

Proof. If      , then the capacity of the cut satisfies                 
         . 

Otherwise if     , the capacity of the cut is given by (see Figure 35): 
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Here each parenthesis corresponds to a sum. 

                            
 

    

                    

    

  

 

 
 

          

         

        

 
 

   

Since    
        

     
    

     
, rewriting the second term we get: 

                                  
 

   

      
 

    

           

    

     

         

       

       

         

       

 

                         
 

   

 

        

  
                      

                   
     

     

    
    

                                 

Where, 

             
 

   

 
 

   is a positive constant that does not depend on the cut but only on the graph, and 
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Notice that                       
    is the weight of edges in the subgraph of   induced 

by   , so 

         
                        

    
 

is, by Definition 2, the cohesion of the subgraph of   generated by   . We therefore get, 

(1)                            

 

Figure 35: An s-t cut in the flow network     . 

The following theorem gives a way to tell whether   is too large or too small.  

Theorem 2. Assume that       is a minimum cut in the flow network     , where      

   . If     , then,     ; If      (i.e.      ) then      . 

Proof. Notice that the value of the cut separating just   from the rest of the graph is, by 

Theorem 1,                  
    . Hence, the value of min cut is at most   . Using 

Theorem 1 again, the value of the minimum cut satisfies                         

  , so              . If      then this inequality implies           , i.e., there 

exists a subgraph of   whose cohesion is at least  . Thus,     . 



  

74 

 

If      then the min-cut value is simply   . For any other         cut with          
  we 

have   
    and            . By Theorem 1 we get     

          
         

       

and therefore       
  . Denote a maximum cohesion subgraph     

    for which 

    
     . For such an optimal solution subset we get       

     .   

To analyze the number of iterations, we make two assumptions:  

1. All weights are integers.  

2.     are integer multiples of 
 

 
. Denote   

  

 
   

  

 
, where          . 

The maximum cohesion   , can take on a range of values. 

    
 

  
                           

Denote      , then       and we can rewrite:  

    
  

   
                               

Let 
  

 

   
  

  
 

   
 be two different possible values of   . The difference   between these values is  

     
   
   

  
   
   

  
             

     
 

For every we       have               and                , so     
 

       
. 

Therefore,     
 

       
. We have the following theorem: 

Theorem 3. If    is a subgraph of   with cohesion   , and no subgraph of   has cohesion 

greater than or equal to    
 

       
 , then    is a maximum cohesion subgraph.   

The theorem tells us when we can stop the search. Now we can describe an algorithm to find 

a maximum cohesion subgraph. 

During the execution of the algorithm,    contains nodes of a subgraph of   with cohesion 

greater than or equal to  . When the algorithm terminates, we know that there is no subgraph 
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with cohesion    
 

       
 or greater, so, by Theorem 3, the subgraph returned is a maximum 

cohesion subgraph.  

 

Algorithm 4: Finding a maximum cohesion subgraph 

Running time: 

Let        be the time required to find a minimum capacity cut in a network with   nodes 

and   edges, and let              . 

Theorem 4. The algorithm runs in                          time. In particular, 

when      is polynomial in   the running time is                    . 

Proof. Initially the search interval is                      , and it is halved in 

each iteration. By Theorem 3, when its size is smaller than 
 

   
, we are done. Hence, the 

                

         

      

Max-cohesion-subgraph(G) 

while     
 

       
 do 

   begin 

   
   

 
; 

 Construct             ; 

        Find min-cut       ; 

 If       then     

    else 

       begin 

     ; 

          ; 

       end; 

   end; 

return (V1) 
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binary search loop is executed                                  times. Now, 

            so for constant      and   , we get                . The flow network 

contains          nodes and              edges. So the running time is 

                        .   

It is also reasonable to define the cohesion for a node weighted graph. In the node weighted 

graph there is also a weight function for the nodes        . The cohesion is then defined 

as  

Definition 4:      
                      

         
 

 

In this formulation, node weights act as the cost of each node. This target function tries to find 

a cohesive subgraph of "cheap" nodes. 

The diligent reader can verify that the algorithm can be modified to handle this definition as 

well by changing capacities of the edges going into the sink   as follows: 
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8. Application of cohesion to graph clustering  

In this section we test the utility of finding maximum cohesion subgraphs for clustering. We 

first define several models for generating graph clustering data and then we use them to 

simulate data and test max density and cohesion algorithms. 

8.1. Models for simulating test data 

8.1.1. The corrupted clique graph model 

To generate simulated data, we used a random corrupted clique graph model similar to Ben-

Dor et al. [44]. The model starts with a graph   composed from several disjoint cliques. Then 

we flip each edge/non-edge independently with probability     
 

 
.   is called the 

contamination level. 

We now give a formal definition of the model. We also refer the reader to Figure 36. 

i. A cluster structure is a vector              , where      and       . Denote 

         . 

ii. We say that an n-node graph has a structure               if it consists of   

disjoint cliques of size               and     singleton nodes. Two nodes from the 

same clique are called mates. 

The random graph model          (representing random corruption of clique graphs) is 

defined as follows: Given a clique graph         of   nodes with structure  , and a value 

    
 

 
, the random graph     is obtained  from   by randomly: 

 Removing each edge in   independently with probability  . 

 Adding each edge not in   independently with probability  . 

Formally, 

           where    is constructed as follows. 
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Hence,          defines a probability for every  -node graph. 

 

Figure 36: A visual representation of the corrupted clique model generation. The cluster 

structure is                         . The six plots correspond to different contamination 

values         . The left plot is the original clique graph (i.e.    ). The rest of the 

plots correspond to corrupted clique graphs with      

8.1.2. The weighted corrupted clique graph model 

In many applications edges have weights. For example, in protein networks, where nodes 

correspond to proteins and edges to interactions, the intensity or the confidence of protein 

interactions may be measured and attributed to the graph edges. 

To model this, we enhance the model by adding a weight distribution     of intra-cluster 

edges and another weight distribution      of inter-cluster edges. We refer to this model as 

the weighted corrupted clique graph model                  . The graph topology is 

generated in the same manner as the unweighted model. In addition, for each edge generated 

between cluster mates, a weight is drawn from    , and for each edge generated between non-

mates, a weight is drawn from     . All draws are independent. 
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For the edge weights we shall use two distributions: 

1. For integers  ,  ,    , a discrete uniform distribution        is defined by     

    
 

     
               

                          

  , i.e., weights are selected from the set of integers 

      with equal probability. The mean value of the distribution is           

   

 
 and its variance is             

          

  
. 

Uniform weight distribution might not be realistic. We would expect the weight 

distributions to have a mean value          and some distribution overlap of the two 

distributions. We model this as follows: 

2. The chi-square distribution (  ) with   degrees of freedom is the distribution of a sum 

of the squares of   independent standard normal random variables. Formally,   
  

   
  

    where           and i.i.d. The mean value of the distribution is     
     

and its variance is       
     . We shall generate values from the    distribution 

with different values of   for     and     . Values are rounded up to maintain 

integrality of the weights. Histograms of distributions with one and two degrees of 

freedom are presented in Figure 37. For    
  , 85% of values are 1 and the rest are 

tailing up to 15. For    
  , only 63% of values are 1. 

 

Figure 37: Discrete Chi-square distributions. The plot shows      for one (left) and two 
(right) degrees of freedom. 
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8.1.3. Random similarity graph model 

The random similarity graph model                 is defined as follows: Given a 

complete graph of   nodes with a cluster structure  , the similarity of two nodes of the same 

cluster    are drawn independently from distribution    ; the similarity of two nodes 

originating from two different clusters is drawn independently from distribution      The 

differentiation of clusters depends here only on the level of separation between the similarity 

distributions     and     , unlike previous models where the topology plays a major part. 

8.2. Results 

We examined the clustering performance of finding maximum cohesion subgraphs on 

randomly generated instances. The clustering algorithm finds a maximum cohesion subgraph, 

identifies it as a cluster, and repeats the process on the remaining subgraph. A predefined 

criterion is used to decide whether a subgraph identified by the algorithm is considered a 

cluster or outliers. In case the whole graph is identified as the maximum cohesion subgraph 

we mark it as a cluster. The general scheme is presented in Algorithm 5. 

 

Algorithm 5: A clustering algorithm based on finding maximum cohesion subgraphs. 

       

Max-cohesion-clustering(G=(V,E)) 

while       do 

   begin 

                         ; 

 if                       then           

 else if (   ) then         

  else Mark   as singletons 

      ; 

   end; 

return ( ) 
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The cluster criterion may be a cohesion threshold, e.g.,              . Another criterion 

may be based on the contamination estimate of the subgraph,      
      

    
  

. We can then 

reject subgraphs with contamination level higher than a certain threshold,     .  

We first generated graphs according to the random corrupted graph model with structure   

                         and different values of  . We repeated each test 500 times. We 

used a contamination threshold of       as a stopping criterion. The algorithm was 

implemented using a preflow-push-relabel max flow algorithm from LEMON C++ graph 

library [45]. A full clustering of a 1000-node took 2-3 seconds.  

We compared the performance of the original maximum density subgraph algorithm (  

     to the maximum cohesion subgraph algorithm (using          ) in the 

reconstruction of clusters. The clustering quality assessment was done using Jaccard 

coefficient as defined in Section 2.2.3.4. The results are presented in Figure 38. 

Interestingly, in all runs we noticed that the algorithm outputs a finite set of values 

corresponding to several clustering options: 

 Perfect clustering with Jaccard score of 1. 

 Forming one group from the      and      clusters and identifying the      and      

clusters. This gives a score of 0.55. 

 Identifying only the      cluster and grouping the rest of the graph together. This 

gives a score of 0.36. 

 Identifying the whole graph as one cluster with a score of 0.3.  

It follows that, for the simulation parameters, the clustering algorithm has only false positive 

pairs and almost no false negatives, meaning that if two nodes are in the same cluster in the 

correct solution they will be in the same output cluster. The algorithm never breaks a cluster 

but sometimes joins clusters together, even the whole graph in the worst case. We discuss this 

phenomenon below. 

Another interesting property of the algorithm is the lack of solution variation. For every 

contamination level the prevalent result was also the median result, and obtained the same 

solution value in over 95% of the simulated data sets.   
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As we can see in Figure 38, both the cohesion and the density criteria reveal the cluster 

structure perfectly for      . For         we see that the density definition deteriorates. 

On the other hand, cohesion gives perfect clustering until         and declines after 

     , still identifying the one or two small clusters. 

 

Figure 38: Clustering solutions in the corrupted graph model. Shown are median clustering 

quality scores of solutions based on density and cohesion for different levels of contamination 

in the corrupted graph model. Density (       is presented in red and cohesion (  
       ) in blue. Standard deviation values are near zero and thus not shown. 

In order to understand the results, we studied in detail the density and cohesion of clusters and 

groups of clusters for different contamination levels. We used the cluster structure   

                  and        nodes. As we can see in Figure 39, the      subgraph has the 

highest density for      , which explains its identification as a separate cluster. For       

we see a transition, in which the           cluster becomes the densest subgraph around 

       , before losing to the                cluster around       . For 

contamination levels of       , the whole graph has the maximum density. This explains 

the identification merged clusters starting at      .  
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Figure 39: Average density of selected subgraphs for different levels of contamination in the 

corrupted graph model with cluster structure                     and        nodes. 

Cohesion values for the same clusters and cluster groups are presented in Figure 40. The use 

of cohesion preserves the superiority of the      subgraph until      . For higher values, 

the aggregate clusters have better cohesion. The results match those in Figure 38.  
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Figure 40: Average cohesion (         ) of selected subgraphs for different levels of 

contamination for the corrupted graph model. 

To understand why the density algorithm rarely breaks a real cluster for our parameter set, 

take a cluster with   nodes. The expected density of such subgraph under the model is 

       
  

 
 

          

 
. For any of its subgraphs with      nodes we have density 

           

 
 

          

 
. So at least when cluster and subcluster densities are close to their 

expected values, any split of a cluster will not result in better density. 

The same analysis can be done for the expected cohesion value. The expected complement 

degree for a node   in a   node cluster is        for corrupted intra-cluster connections 

plus            for added inter-cluster connections. Because all nodes are independent, 

the expected cohesion of a   node cluster is 

 
          

 
 

                     

 
  

 

 
 

 

 
                    

where          is a function that does not depend on  . Hence, the expected cohesion is 

 (2)  
 

 
     

 

 
                 



  

85 

 

So the expected cohesion is a linear function of   with a slope of   
 

 
     

 

 
    . For 

our parameter choice   
 

 
 we get,    

  
 

 

   
 

 
 . The slope is positive iff   

 

 
, which is 

always true. Thus, any subset of      nodes from the cluster is expected to have a lower 

value of cohesion. 

Figure 41 compares density to cohesion with parameter values       and    . All other 

parameters are the same. We can see that this cohesion version clusters correctly only for 

      . Hence, in all experiments we chose not use the   parameter since it gave inferior 

results in comparison to density. 

 

Figure 41: The effect of the   parameter on the cohesion performance. The graph shows the 

median clustering quality scores of solutions based on density and cohesion for different 

levels of contamination in the corrupted graph model. Density (       is presented in red 

and cohesion (         ) in blue. 

In the corrupted clique graph model, for the same cluster structure, graphs with less nodes are 

more susceptible to noise. To see this effect, we chose a certain contamination level and 

measured the clustering quality for different sizes of graphs with the same cluster structure. 

We chose contamination level to be the first probability for which the algorithms stopped 

identifying the all clusters (see Figure 38). We ran the density algorithm with contamination 

level of         and cohesion with       for different values of  . Results are presented 
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in Figure 42. We can clearly see that for graphs with       nodes there is no variation in 

the algorithm's results. 

 

Figure 42: Clustering quality scores of solutions based on density and cohesion for different 

graph sizes. Density (left) was used with contamination level of         and cohesion 

(right) with      . Error bars represent the 95% and 5% quantiles. Density (       is 

presented in red on the left and cohesion (         ) in blue on the right. 

As a second test, we used the weighted corrupted graph model on 1000 node graphs with 

cluster structure                    , weight distributions            and             

(i.e.       ) and different values of  . Each parameter set was tested on 500 instances. The 

median clustering quality scores of solutions based on density and cohesion for different 

levels of contamination are presented in Figure 43. As expected, better results were obtained 

in comparison to the unweighted graphs (Figure 38). Both objectives cluster perfectly for 

      . The cohesion version can handle       while the density objective finds at most 

two small clusters in the same contamination levels. For         density cannot detect any 

cluster while the small clusters are still detectable using cohesion. Both versions cannot 

handle       
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Figure 43: Performance under the weighted corrupted clique graph model. The graph shows 

the median clustering quality scores of solutions based on density and cohesion for different 

levels of contamination in the weighted corrupted clique graph model. Edge weights are 

distributed            and            .  Density (       is presented in red and 

cohesion (         ) in blue.  

Next, we examined the performance of the algorithms on data generated using the weighted 

corrupted clique graph model with weight distributions        
   and         

  . The rest of 

the parameters were the same as in previous tests. The clustering quality scores are presented 

in Figure 44. As above, cohesion seems to be a better objective than density. There is little 

difference between the results for uniform distribution (Figure 43) and for the chi-square 

distribution in the density definition. On the other hand, cohesion slightly deteriorates when 

the chi-square distribution is used. 
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Figure 44: Performance under the weighted corrupted clique graph model. The graph shows 

the median clustering quality scores of solutions based on density and cohesion for different 

levels of contamination in the weighted corrupted clique graph model. Edge weights are 

distributed        
    and         

  .  Density (       is presented in red and cohesion 

(         ) in blue.    

Our next experiment studied the similarity graph model. We tested the performance of density 

and cohesion-based clustering for different similarity distributions of inter and intra-cluster 

pairs. The mean and variance of the distributions was kept within a multiplicative distance 

factor. The inter-cluster edge similarity distribution was fixed to         
   in all graphs. The 

intra-cluster similarity distribution was         
  , for   ranging from 4 to 10. We used the 

same cluster structure                     with        nodes and 500 repeats for each 

combination of the parameters.  

The clustering quality as a function of   is presented in Figure 45. Both algorithms can handle 

perfectly the case where the intra-cluster similarity values are on average 10 times larger than 

inter-cluster values. The cohesion version also solves perfectly for    . It also has better 

results for    , finding the      and      clusters. A value of     is too hard for both 

algorithms. 
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Figure 45: Performance under the random similarity graph model. The graph shows the 

median clustering quality scores of solutions based on density and cohesion for the random 

similarity graph model. Edge weights are distributed         
    and         

  . Density 

(       is presented in red and cohesion (         ) in blue. 

8.3. Discussion 

All experiments show the superiority of cohesion over density. This is especially noticeable in 

the unweighted graph model. This is reasonable since      depends on the edge weights, 

while    depends only on the degrees and does not change in weighted graphs. A possible 

solution could be defining a weighted complement degree, for example      

                 . 

As shown in Equation (2), the expected cohesion value under the random corrupted clique 

model is linearly dependent on the cluster size. We also saw (Figure 40) that for our 

parameter selection, as the contamination level increases, more clusters and cluster sets 

achieve maximum cohesion. For high contamination rates the whole graphs is the most 

cohesive subgraph. So cohesion tends to prefer large subgraphs even if they contain several 

'true' clusters. On the other hand, breaking a true cluster did not improve the cohesion value. 

At least for our parameter set, the clustering algorithm has only false positive and almost no 
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false negative pairs. In other words, if two nodes are in the same cluster in the true solution 

they will be in the same output cluster in the solution produced by the algorithm. 

As seen in Figure 39 and Figure 40, density and cohesion values of clustering groups behave 

linearly with respect to  . Also, the expected density of a subset     of some cluster     

is roughly linear in the subset size: 
            

 
. A similar near-linear relation applies for the 

expected cohesion. As seen in the above figures, merging more clusters together changes the 

slope, causing the aggregated cluster to have higher cohesion. When using cohesion we can 

change the parameter   (and possibly  ) to affect the linear relation and enable the algorithm 

to cluster the graph better for higher levels of contamination. Further investigation can help 

tune the parameters for better clustering. This can be done either empirically using graphs 

such as Figure 40, or theoretically by analyzing the expected cohesion as in equation (2). 

A quite surprising result is the detection of small clusters. When not detecting all clusters or a 

single cluster, the algorithm actually detects the smallest clusters of      and     . The actual 

process is, first, detecting the several biggest clusters as one cluster, and then detecting the 

small clusters of      and     . In contrast to most clustering algorithms, maximum cohesion 

is better at detecting small clusters than large ones. It might be beneficial to combine this 

method with a coarser clustering algorithm to exploit the strengths of both. 

A possible solution to merged cluster detection is applying the maximum cohesion clustering 

algorithm recursively, i.e., reapplying it on the maximum cohesion subgraph detected, in 

addition to the rest of the graph. Unlike density, cohesion depends not only on the selected 

subgraph, but also on the remaining subgraph, due to the term     
    . If a subgraph   is a 

maximum cohesion subgraph for a graph  , it might not be a maximum cohesion subgraph 

for the graph induced by  . 

A major disadvantage of both density and cohesion is symmetry. Since both objectives are 

defined by a ratio between edges and nodes, multiplying the numerator and denominator by a 

constant factor keeps the objective function the same. For example, consider a graph 

composed of two disjoint cliques of size  . The density of each clique is 
  
  

 
 

   

 
 and so is 

the density of the whole graph 
   

  

  
 

   

 
. For example, when running the clustering 

algorithms on a cluster structure of                        , no cluster was detected for 
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any level of contamination. Both density and cohesion gave as a solution a single cluster of 

the entire graph for the above structure. 

Finally, the results of this section should be viewed as preliminary and require further tests on 

real data, more diverse cluster structures, further parameter exploration and testing on other 

models. Comparison to other clustering algorithms is also required. 
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9. Future work 

Our analysis of one industrial post-silicon test set show that combinatorial, graph theoretic 

and bioinformatics methods can help in revealing structure and redundancy in the data. 

Coverage and domination analysis suggest ways to trim the data and potentially can reduce 

the set of tests radically without loss of coverage. Bioinformatics methods can help in 

revealing subtle relations between tests and events and their relation to inner parameters. In 

our discussion with practitioners the visualizations were found to be very helpful and 

revealing. The use of cohesion has yet to be tested on real post-silicon data. 

Further evaluation of our methods should be done on more diverse Post-silicon test data. In 

addition, cooperation with validation teams is needed to show our result's practicality in post-

silicon optimization. Mapping clusters to certain chip functionalities, e.g. memory, can 

strengthen clustering solution validity. Measuring coverage rate when running a reordered test 

suite would demonstrate the importance of test order. Analysis of significant configurations in 

similar tests can lead to further understanding of the system and the development of new tests. 

As mentioned in Section 8.3, cohesion requires further validation on real data and diverse 

cluster structure, in addition to comparison to other methods. When the underlying data 

generation model is known, we suggested analyzing the expected cohesion in order to 

calculate the optimal parameters. Another way of choosing parameters can be done with 

consensus methods as presented in Section 6.5. Combining the maximum cohesion subgraph 

clustering algorithm with a coarser clustering algorithm can use benefits of both and 

overcome their disadvantages. 

A clustering objective function based on cohesion/density can be formulated and then is likely 

to be proven NP-hard. The greedy maximum cohesion subgraph clustering algorithm 

(Algorithm 5) can be analyzed as a possible approximation of the objective function. 

Developing further algorithms or heuristics to try and solve the problem is needed. 
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 תקציר

חישוביתעבודה מביולוגיה שיטות בעזרת חומרה בדיקות של אופטימיזציה בבעיות עוסקת זו

ניתןלייצגאתהפלטמבדיקותהחומרהבצורהמתמטיתעלידיטבלהששורותיהמייצגות(.ביואינפורמטיקה)

רכיע.אתהבדיקותשנעשועלהחומרהועמודותיהמייצגותמאורעותחשוביםאשרנמדדובמהלךכלבדיקה

בה,טבלהזוהיאאנלוגיתלטבלתביטויגנים.הטבלההםמספרהפעמיםשכלמאורענצפהבמהלךהבדיקה

תנאים הן והעמודות לגנים מתייחסות השורות לאנלוגיה. ישיר כהמשך שפותחו, בשיטות להשתמש ניתן

.למחלקותדמיון(מאורעותאוה)שיטותקיבוץיכולותלשמשלחלוקהשלהבדיקות,למשל.לניתוחביטוייגנים

והחלפתן בבדיקות יתירות למצוא כדי הבדיקות מהנדסי ידי על מנותחות להיות יכולות שיתגלו הקבוצות

ייצוגיות בבדיקות והצגתם. גנים ביטויי לניתוח כלים EXPANDERכדוגמת, בהבנתתהליך, לסייע יכולים

הבדיקה בנוסף. עבור, קומבינטוריות שיטות בוחנים בדיקותקטנהאנו קבוצת למצוא מנת על כיסוי בעיות

.בעלתאותהרמתכיסוי

גרפיםמגובשיםבגרףממושקללא-אנחנוגםמגדיריםובוחניםגישהחדשהלקיבוץהמבוססתעלמציאתתתי

מכוון המטרה. פונקצית , גיבוש (cohesion)הנקראת , צפיפות של הכללה density)היא תת( ,גרף-של

כי הגרףהמוגדרת בתת הצמתים למספר הקשתות מספר בין חס גיבוש. של המטרה פונקצית שהוגדרה,

גרפים קיבוץ בהשראת גבוה, מדרגה ובצמתים קבוצות בין בקשתות שימוש מקטינה מפתחים. אנחנו

ולאמכוון בגרףממושקל למציאתתתהגרףהמגובשביותר אלגוריתםפולינומיאלי המבוססעלסדרהשל,

,אנחנובודקיםאתהגישההחדשהשלנועלקבוצותאקראיותהמיוצרותבעזרתמודליםשונים.זרימהחישובי

.ומראיםשיפורבביצועיםבשימושבגיבושלעומתהשימושבצפיפות
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