A Linear-Time Algorithm for the Copy Number
Transformation Problem

Ron Shamir!, Meirav Zehavil, and Ron Zeira!

1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
rshamir@post.tau.ac.il

2 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
meizeh@post.tau.ac.il

3 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
ronzeira@post.tau.ac.il

—— Abstract

Problems of genome rearrangement are central in both evolution and cancer. Most evolutionary
scenarios have been studied under the assumption that the genome contains a single copy of
each gene. In contrast, tumor genomes undergo deletions and duplications, and thus the number
of copies of genes varies. The number of copies of each gene along a chromosome is called its
copy number profile. Understanding copy number profile changes can assist in predicting disease
progression and treatment. To date, questions related to distances between copy number profiles
gained little scientific attention. Here we focus on the following fundamental problem, introduced
by Schwarz et al. (PLOS Comp. Biol., 2014): given two copy number profiles, v and v, compute
the edit distance from u to v, where the edit operations are segmental deletions and amplifications.
We establish the computational complexity of this problem, showing that it is solvable in linear
time and constant space.

1998 ACM Subject Classification F.2.2 Pattern Matching
Keywords and phrases Genome Rearrangement, Copy Number

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.16

1 Introduction

The genome of a species evolves by undergoing small and large mutations over generations.
Large mutations modify genome organization by rearrangement of genomic segments. Com-
putational analysis of the process of genome rearrangement has been subject of extensive
research over the last two decades [5]. The majority of these studies to date were restricted
to a single copy of each gene, and were concerned with the reordering of segments. Extant
models that do not make this assumption often result in NP-hard problems [12, 14, 15].

While most work on genome rearrangements to date was done in the context of species
evolution, there is today great opportunity in analysis of cancer genome evolution. Cancer
is a dynamic process characterized by the rapid accumulation of somatic mutations, which
produce complex tumor genomes. Species evolution happens over eons and changes are carried
over from one generation to the next. In contrast, cancer evolution happens within a single
individual over a few decades. In many tumor genomes, a lot of the changes are segmental
deletions and amplifications [16]. As a result, the number of copies of each gene along a
chromosome, known as its copy number profile, changes during cancer development, compared
to the normal genome that has two copies (or alleles) for each gene. Understanding these
changes can assist in predicting disease progression and the outcome of medical interventions.
? Ron Shamir, Meira.uv Zehavi, and Ron Zeira;

5v icensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 16; pp. 16:1-16:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2

A Linear-Time Algorithm for the Copy Number Transformation Problem

However, computational questions related to distances between copy number profiles received
little scientific attention to date. Such questions are the topic of this paper.

Over the years, a variety of methods were used to determine the copy number profile of a
cancer genome, at different resolutions. G-banding allows viewing the chromosomes bands
[11]. FISH measures the copy numbers of tens to hundreds of targeted genes [4]. Array
comparative genomic hybridization gives a higher resolution of copy number estimation for a
cell population [17]. Most recently, deep sequencing techniques yield copy number profiles
by using read depth data [10]. While it would have been preferable to analyze the genome
(karyotype) itself and not its copy number profile, detection of structural variations from
sequencing data is still problematic [7, 1]. Today it is a routine procedure to obtain detailed
copy number profiles of cancer genomes, but utilizing them to understand cancer evolution
is still an open problem.

Given two copy number profiles, the healthy tissue’s and the tumor’s, evaluating the
distance between them can help in understanding cancer progression. A naive measure of
distance is the Euclidean distance between the two profiles [13]. Chowdhury et al. defined
edit distance between copy number profiles obtained from FISH, where the edit operations
are amplification or deletion of single genes, single chromosomes or the whole genome [3, 4, 2].
However, calculating these distances requires exponential time in the number of genes and
therefore is limited to low resolution FISH data. The TuMult algorithm uses the number of
breakpoints (loci where the copy numbers change) between two profiles as a simple distance
measure [6].

Schwartz et al. introduced a model that admits amplification and deletion of contiguous
segments [13]. The edit distance between two copy number profiles was defined as the
minimum number of segmental deletions and duplications over all separations of the profiles
into two alleles (a procedure known as phasing). Their algorithm MEDICC for computing
the edit distance uses finite-state transducers (FSTs) [9] in order to model the profiles and
efficiently compute the distance. However, the complexity of this method was not analyzed.
Even without the phasing computation, the method needs to compose a 3-state transducer
with itself N times, resulting in a transducer with 3V states [13, 8]. The running time of
FST procedures relies on the number of states and transitions, and in some cases may be
exponential [9, 8].

Copy Number Transformation. We investigate the following problem, which underlies the
model of [13]: Given two copy number profiles (CNPs), u and v, compute the minimum
number of segmental duplications and deletions needed to transform w into v. We call this
problem the Cory NUMBER TRANSFORMATION PROBLEM (CNTP). A CNP is represented
by a vector of nonnegative integers (the number of copies of each gene). A segmental deletion
(amplification) decreases (resp. increases) by 1 the values of a contiguous segment of the
vector, where zero values are not affected. Formal definitions are given in Section 2.

Our Contribution. We show that CNTP is solvable in linear time and constant space.
The algorithm relies on several properties of the problem that we establish in Section 3.1,
which may also be relevant to the analysis of other problems involving CNPs. Exploiting
these properties results in a pseudo-polynomial dynamic programming algorithm for CNTP,
presented in Section 3.2. In Section 3.3, by establishing that a certain function in the dynamic
programming recursion is piecewise linear, we improve its performance and obtain our main
result. For lack of space, some proofs are omitted.

R. Shamir, M. Zehavi, and R. Zeira

(4) s = ([t]11,) (B)
'

C1 = (2,2,'1)
a(S) = (1,0, 1,1) _— _

;= (4,4,-1) JE—— p—
GeS) = L0100 S=.,23.. S=.,23..
v cs=(1,5,+1) T=..0,0,.. T=..,00,..

T=cs(cx(ce(S)) = (2,0,2,0,2) Not elongated Elongated

Figure 1 Copy number transformations. (A) The CNT C = (ci, c2, c3) transforms S into 7'
The size of C' is 3. Red and green blocks indicate deletions and amplifications, respectively. (B)
Elongated and non-elongated CNTs. Bold lines indicate the range of deletions.

2 Preliminaries

In this section, we give definitions and notation that are used throughout the paper. Let n € N.
A CN profile (CNP) is a vector V = (v1,vg,...,vy), where v; € NU{0}. A CN operation
(CNO) is a triple ¢ = (¢, h,w), where 1 < ¢ < h <nand w € {—1,1}. We say that a CNO ¢ =
(£, h,—1) is a deletion and ¢ = (¢, h,1) is an amplification. Given a CNP V' = (vy,vg,...,vp)
and a CNO ¢ = (¢, h,w), we define the operation ¢(V) = (¢(v1), c(v2), ..., c(vy,)) as follows.
For each i € {1,2,...,n}, if £ <i < h and v; > 1, then c(v;) = v; + w, otherwise (i.e., if
i<flori>horv =0)c(v) =wv. A triple ¢ = (¢, h,w) with h < £ has no effect on the
CNP, i.e., ¢(V) = V. Given two CNPs, S = (s1, 82,...,8) (source) and T = (t1,ta,...,t,)
(target), a CN transformation (CNT) is a vector C = (c1,¢2,...,¢m), where m € N and
each ¢; = (4;, h;,w;) is a CNO, such that C(S) = ¢(cm—1(--- (c1(5)))) = T. The size of
C, denoted |C|, is m. An example is given in Fig. 1(A). Finally, we denote the number of
operations of weight w € {—1,1} affecting s; by op(C,w,i) = [{({,h,w) € C : £ < i < h}|.
For example, in Fig. 1(A) op(C,—1,2) = 1.

The CN distance (CND) from S to T, dist(S,T), is the smallest size of a CNT C
that satisfies C(S) = T, where if no such CNT exists, dist(S,7) = co. Note that dist is
not symmetric. For example, for S = (1) and T = (0), dist(S,T) = 1 but dist(7,S) =
oo. Given two CNPs, S = (s1,82,...,8,) and T = (t1,ta,...,t,), the COPY NUMBER
TRANSFORMATION problem, CNTP, seeks dist(S,T) (if one exists). We say that a CNT
C' is optimal if it realizes dist(S,T), i.e., |C] = dist(S,T) (there may exist several optimal
CNTs). We let N = max{max? ,{s;}, max} ,{t;}} denote the maximum copy number in
the input. Finally, for all 1 < i < n, we define u; = s; — t;.

3 An Algorithm for CNTP

We first present an O(nN?)-time, O(N)-space algorithm for CNTP that is based on dynamic
programming (Sections 3.1 and 3.2). Recall that N is the maximal integer in the input, so
that the algorithm is pseudo-polynomial. Then, we modify this algorithm to run in linear
time (Section 3.3). On a high level, the modification is based on the observation that the
table used by the algorithm to store values of partial solutions can be described by O(n)
piecewise linear functions, where each function encapsulates O(N) entries of the table. We
show that each function has only three linear segments and so the computation of an entry
can be performed in time O(1) rather than O(N). Furthermore, since each function can be
represented in a compact manner, the size of table shrinks from O(nN) to O(n). The precise
definitions of the table and the functions are given in Sections 3.2 and 3.3. Our proof of the

16:3

CPM 2016

16:4

A Linear-Time Algorithm for the Copy Number Transformation Problem

correctness of the use of these functions requires a somewhat extensive case analysis that is
presented separately in Section 3.4.

3.1 Key Propositions

We start by developing Algl, an O(nN?)-time dynamic programming algorithm for CNTP.
Let (S = (s1,82,...,8,), T = (t1,ta,...,t,)) be the input. Observe that there exists a CNT
C such that C(S) = T if and only if there does not exist an index 1 < ¢ < n such that
s; = 0 and t; > 0. Since the existence of such an index can be determined in linear time
(where, if such an index is found, we return co), we will assume that dist(S,T) < oco. To
simplify the presentation, we further assume w.l.o.g. that t1,t¢,, # 0. Indeed, if t; = 0 or
t, = 0, we can solve the input (S' = (1, s1,82,...,8,,1),T" = (1,t1,t2,...,tn, 1)) instead,
since it holds that dist(S,T) = dist(S’, 7). Finally, we assume w.l.o.g. that for all 1 <1i < n,
s; > 0. Indeed, if there exists 1 < ¢ < n such that s; = 0, then also t; = 0, and we
can solve the input (S’ = (81,...,8i-1,8i41,--+,8n), I’ = (t1...,ti—1,tit1,-..,tn)) since
dist(S,T) = dist(S’,T").

Algl exploits four key observations about the nature of the problem at hand, summarized
as follows: (1) it is sufficient to examine CNTs where all of the deletions precede all of the
amplifications; (2) it is sufficient to examine CN'Ts that do not contain both a deletion that
affects s; but not s;;1 and a deletion that affects s; 1 but not s;, and the same is true for
amplifications; (3) when seeking an optimal solution, it is not necessary to store information
indicating how many deletions/amplifications affect s; if t; = 0; (4) the maximum number of
deletions/amplifications that affect each s; can be bounded by N.

To formally state the first observation, we need the following definition.

» Definition 1. A CNT C = (c¢1,c¢2,...,¢m) is ordered if for all 1 <i < j <m,if¢;isa
deletion, then c¢; is also a deletion.

» Proposition 2. There exists an optimal ordered CNT.

We note that the “opposite” proposition, stating that there exists an optimal CNT
where all of the amplifications precede all of the deletions, does not hold: consider, e.g.,
S=(1,1,1,1,1) and T = (2,0,2,0,2). To prove this proposition, we will need the following
claim.

» Claim 3. Let C = (c1,¢2,...,¢m) be an optimal CNT and let i be an index such that
¢i = (Ui hi,1) and cio1 = (b1, hiz1,—1). Then, there exists an optimal CNT C' =
(C1yvv s Cim1, €y Cipqs Cigay - oy Cm), where ¢ = (05, by, w;) and ¢y = (€5, hi 1, wi), such
that one of the following conditions holds.

L (hi =€) + (hiyy — Ciqq) < (hi — &) 4 (hiv1 — Lia).

2. (h; — 6;) =+ (h;—Jrl - €;+1) = (hz — EZ) =+ (hi—i-l — éi—i—l) and w; = —1.

Proof. Consider the following exhaustive case-analysis.

1. h; < /l;yq or hyp1 < £;: In this case, the segments corresponding to ¢; and ¢; 1 are disjoint.
Thus, we can simply define ¢; = ¢;11 and ¢}, ; = ¢;. Then, Condition 2 is satisfied.

2. 0; <liv1 < h; <hjyi: Define C; = (hl +1,hip1, —1) and C;—H = (Kiagi-i-l —1, 1). For any
CNP V = (v1,v2,...,0n), ¢j41(c;(V)) = cit1(ci(V)). This argument holds because an
application of ¢; which is followed by an application of ¢;;1 does not change any entry vy
such that £;11 < k < h;. We have that C'(S) = T. Since |C'| = |C|, C’ is an optimal
CNT. Now, Condition 1 is satisfied.

R. Shamir, M. Zehavi, and R. Zeira

3. lip1 <4 < hipq < hy: Define ¢ = (biq1,0; —1,—1) and ¢ | = (hit1 4+ 1,h;,1). Asin
the second case, we obtain an optimal CNT that satisfies Condition 1.

4, él S 81'_;'_1 S hi+1 § hz Define C; = (giagi—i-l — 1, 1) and C;+1 = (hi—i-l -+ 1,hi, 1) As in the
second case, we obtain an optimal CNT that satisfies Condition 1.

5. 01 <¥4; <h; < hjyi: Define C; = (€i+1a€i -1, —1) and C/Z-Jrl = (hl + 1, kg1, —1). As in
the second case, we obtain an optimal CNT that satisfies Condition 1. <

As we show below, Claim 3 implies the existance of an ordered optimal CNT. In each of the
cases in Claim 3, a local change is made in the CNT. Note however that just performing enough
local operations does not guarantee reaching an ordered optimal CNT. For example, in a CNT
with three consecutive CNOS, C; = (6“ hi, 1), Cit1 = (£i+1, hi+17 1), Cit2 = (€i+2; hi+2, 71),
one may loop between changing c¢;;1 into a deletion and then into an amplification.

Proof of Proposition 2. Let C be the set of optimal CNTs, and suppose, by way of contra-
diction, that it does not contain an ordered CNT. The three following phases sieve some
solutions out of C. Informally, we initially consider only optimal CNTs that minimize the
sum of the sizes of the segments corresponding to their CNOs (C!); then, we further consider
only the CNTs whose first amplification is as late as possible (C?); finally, we only take the
CNTs whose first deletion after their first amplification is as early as possible (C3).
Given C = (c1,¢a,...,¢p) € C, define z(C) = Y7 (h; — £;). Let C! be the set of every
C € C for which there does not exist C’ € C such that z(C) > z(C").
Given C = (c1,¢a,...,¢m) € CL, let y(C) be the largest index 0 < i < m such that for all
1 < j <1, ¢; is a deletion. Note that y(C) = 0 if and only if ¢; is an amplification. Let C?
be the set of every C' € C! for which there does not exist C’ € C* such that y(C) < y(C").
Given C = (c1,¢2,...,¢m) € C2, let 2(C) be the smallest index i € {y(C)+1,...,m}
such that ¢; is a deletion. By the definition of y(C) and since C is not ordered, we have
that 2(C) is well-defined and z(C) > y(C) + 2. Let C3 be the set of every C € C? for
which there does not exist C’ € C? such that z(C) > z(C").

Since C # (), we have that C® # (). Thus, we can let C = (c1,¢a,...,¢n) be a solution
in C3. Let i be the smallest index such that ¢; is an amplification and Ci+1 is a deletion.
Now, consider the conditions in Claim 3: if Condition 1 holds, we have a contradiction to
the fact that C' € C', while if Condition 2 holds, we have a contradiction either to the fact
that C € C% (if i = 1 or ¢;_; is a deletion) or to the fact that C' € C® (otherwise). Thus, we
conclude that C contains an ordered CNT. <

The other three propositions are stated without proof.

» Definition 4. A CNT C is elongated if for all 1 <i < n and w € {—1,1},
min{op(C, w,1),op(C,w,i+ 1)} = |[{({,h,w) € C : £ <i,i+1<h}|.

Equivalently, C is elongated if no two amplifications (or deletions) “dovetail”, i.e., one
ending at ¢ and the other starting at i+1. It is clear that for any CNT C, the inequality > holds
above (since {({, h,w) € C': £ <i,i+ 1 < h} is a subset of both {(¢{,h,w) € C: ¢ <i<h}
and {(¢,h,w) € C: £ <i+1 < h}). Our second key proposition implies the inequality <
holds as well. An example for an elongated CNT is given in Fig. 1(B).

» Proposition 5. Every ordered optimal CNT is elongated.

To formalize our third key proposition, we need the following definition.

16:5

CPM 2016

16:6

A Linear-Time Algorithm for the Copy Number Transformation Problem

» Definition 6. A CNT C skips zeros if for every 1 < i < j < n such that for all
i <r<j,t. =0 we have

op(C, -1,) = max{ mitx {s.},0p(C, ~1,)}, and 0p(C,1,5) = 0p(C; 1,7).

In words, for a block of consecutive zeros in the target profile, all deletions that span the
block also include its flanking positions. An example of a CNT that skips zeros is given in
Fig. 2(A).

» Proposition 7. There exists an optimal ordered CNT that skips zeros.

For a position with positive target value, knowing the number of deletions that affected
it uniquely determines the number of amplifications that affected it. This simple fact will
help the efficiency of our procedures. Formally:

» Observation 8. Let 1 < i < n be an index such that t; > 0, and let C = (¢1,¢a,...,Cm)
be a CNT such that C(S) =T. Then, op(C,1,i) = —u; + op(C, —1,1).

Finally, we formalize our fourth key proposition.

» Definition 9. A CNT C is bounded if for all 1 <i < n and every w € {—1,1}, we have
op(C,w,i) < N.

» Proposition 10. Every optimal ordered CNT that skips zeros is bounded.

3.2 An O(nN?)-Time Algorithm for CNTP

On a high-level, the dynamic programming algorithm works as follows. It considers increasing
prefixes S* = (s1,82,...,8;) and T% = (t1,ta,...,t;) of the input. It computes a table M
having n(N + 1) entries where M([i, d] is the best value of a solution on (S% T%) that uses
exactly d deletions that affect the " position. The parameter d ranges between zero and N,
and the values for each i are computed based on values M[j, -] for a single specific j < i. In
particular, at each point of time, only two rows of the table M are stored. By Propositions
2-10, the algorithm considers only ordered, elongated, zero-skipping and bounded solutions.
We call such solutions good.

More formally, given 1 <i <nand 0 <d < N, we say that a CNT C is an (i,d)-CNT
if C(S%) =T¢ d=op(C,—1,i), and C is good. We say that an (i,d)-CNT C is optimal if
there is no (i,d)-CNT C’ such that |C’| < |C]. Our goal will be to ensure that each entry
M[i, d] stores the size of an optimal (i, d)-CNT, where if no such CNT exists, it stores co. We
do not compute entries M[i, d] such that t; = 0; indeed, by relying on Property 7, we are able
to skip such entries (though our recursive formula does consider CNs s; referring to indices ¢
such that ¢; = 0). In this context, observe that any ordered CNT C such that C'(S) =T
consists of at least u; deletions that affect s;, and if ¢; > 0, it cannot consist of more than
s; — 1 such deletions (since after decreasing s; to 0, it remains 0). Moreover, if u; < d < s,
there exists an (i,d)-CNT — by independently adjusting the value of each position < i to its
target position and the value at position ¢ with d deletions, using operations of span 1.

» Observation 11. Given 1 < i < n such that t; > 0 and 0 < d < N, there exists an
(i,d)-CNT if and only if u; < d < s;.

In case s; < t;, Observation 11 states that there exists an (i, d)-CNT if and only if d < s;.
In light of this observation, we will use the following assumption.

R. Shamir, M. Zehavi, and R. Zeira

» Assumption 12. In the computation below, we assume that max{u;,0} < d < s;. Entries
Mi, d) for which it is not true that max{u;,0} < d < s; store co.

By Observation 8, if a solution involved d deletions at position i with ¢; > 0, then it
involved —u; + d amplifications at that position. For convenience denote that number by
a(i,d) = —u; +d for all 1 < i < n satisfying ¢; > 0 and max{u;,0} < d < s;, and a(i,d) =
otherwise.

For input profiles S, T, the algorithm precomputes two vectors .Given an index 1 <7 < n
such that ¢; > 0, let prev(i) denote the largest index j < ¢ such that t; > 0. Moreover, if
prev(i) = i — 1, let Q; = 0, and otherwise let Q; = maxp,ev(i)<j<iisj}. A skipping zero
solution will skip the positions between i and prewv(i) in the computation, but will make sure
to perform at least (); deletions spanning the skipped positions.

Initialization. The initialization step sets all entries M[1, d] as follows.

MIL,d] + d + a(1,d).

Recursion. If ¢; = 0 position ¢ is skipped. Suppose that ¢ > 1, t; > 0 and max{u;,0} < d <
s;- The order of the computation is determined by the first argument. The computation is
summarized in the following formula.

M[i, d] < 0<r£ll/iI<1N{M[prev(z'), d'] + max{d — d',0} + max{a(i,d) — a(prev(i),d’),0}

+max{Q; — max{d,d’'},0}}.

Roughly speaking, to compute M|i,d] we look back to the previous non zero position in
T, and for each value d’ in that position add the difference from d if needed, the number
of amplifications to be added if needed, and the number of additional deletions if such are
needed to take care of the skipped zero positions. After filling the table M, Algl returns
ming<q4<y M[n,d]. An example if a filled table is given in Fig. 2(B).

Correctness. First, we claim that the entries of the table M are computed properly.

» Lemma 13. For all 1 <i <n such that t; > 0 and for all 0 < d < N, Mli,d] stores the
size of an optimal (i,d)-CNT, where if no such CNT exists, it stores co.

Proof. We prove the lemma by induction on the order of the computation.

The correctness of the initialization step follows from the definition of an (i,d)-CNT and
Observation 8.

Now, fix 1 < ¢ < n such that t; > 0, and fix max{u;,0} < d < s;. Let m be the size of an
optimal (i,d)-CNT. Suppose that the lemma is correct for all i/ < i and 0 < d' < N. We
need to show that M[i, d] = m.

First Direction. First, we show that M[i,d] < m. Let C = (¢1,¢a,...,¢n) be an optimal
(1,d)-CNT, and for all 1 < j < m, denote ¢; = (¢;,h;,w;). For all 1 < j < m, let
c; = (¢j,min{h;,prev(i)},w;). Now, define C" = (c},ch,...,c;,). We further let C' =

(c1,c2,...,¢4) denote the CNT obtained from C” by removing all of the CNOs ¢ = (¢, h, w)
such that h < ¢. Denote d = op(C, —1,prev(i)). Observe that d < N and that C is

a (prev(i),d)-CNT (because C is an (i,d)-CNT). Therefore, by the induction hypothesis,

M[prev(i),cﬂ < ¢ (recall that ¢ = |C|). If prev(i) = i — 1, then @; = 0 and since C is

16:7

CPM 2016

16:8

A Linear-Time Algorithm for the Copy Number Transformation Problem

ordered and elongated, by Observation 8 we have that m — ¢ = max{d — d, 0} + max{a(i, d) —
a(prev(i),d),0}. Thus, by the recursive formula, in this case we get that M[i,d] < m

Now, suppose that prev(i) < ¢ — 1. Then, since C is ordered and skips zeros, and by the
definition of @;, the two following conditions hold.
1. op(C,—1,i—1) = max{Q;,op(C,—1,prev(i))}.
2. op(C,1,i—1) = op(C, 1, prev(i)).

Thus, since C is ordered and elongated, by Observation 8 we have that m — ¢ =
max{d — d,0} + max{a(i,d) — a(prev(i),d),0} + max{Q; — max{d,d},0}. Again, by the
recursive formula, this implies that M[i, d] < m.

Second Direction. Next, we show that M[i,d] > m. To this end, it is sufficient to show
that there exists an (i,d)-CNT C such that M[i,d] > |C|. Let d be an argument d’ at
which the value computed by using the recursive formula is minimized. By the inductive
hypothesis, there exists a (prev(i), c/l\)—CNT C= (¢1,¢2,...,¢q) such that M[prev(i),c?] > q.
For all 1 < j < g, denote ¢; = (¢;, h;, w;). Now, if prev(i) =i — 1, define C = 6’, and else
define C as follows. For all 1 < j<gqletc; = (éj,ﬁ,wj), where h = hj if hj < prev(i)
and h = i — 1 otherwise. Let C = (¢1,¢2,...,¢q). Moreover, as long as there exists
prev(i) < j < i such that op(C, —1,j) < sj, choose the smallest such j, and append to the
beginning of C' the CNO (j,i — 1,—1). Let C’ be the CNT obtained at the end of this
process. Denote C' = (c},c3,...,¢c;), and for all 1 < j <r, denote ¢ = (¢}, h};, w}). Now,
let p and ¢ be the number of deletions and amplifications in C’ whose segments include
i — 1, respectively. If p < d, append to the beginning of C’ d — p “dummy” deletions of
the form (i, — 1,—1), and if a(i,d) < ¢, append to the end of C’ a(i,d) — ¢ “dummy”
amplifications of the form (i,4 — 1,1). Let C” = (¢{,c5,...,c}) be the resulting CNT,
and for all 1 < j < k, denote ¢ = (¢,], w}). Finally, we define C' as follows. Let D
(A) be a set of exactly d deletions (resp. amplifications) in C” whose second argument is
i— 1. We let C be defined as C”, except that each CNO (¢,h,w) € D U A is replaced
by the CNO (4,4, w). It is straightforward to verify that C is an (i,d)-CNT such that
IC| = ¢ + max{d — d,0} + max{a(i,d) — a(prev(i),d),0} + max{Q; — max{d, d},0}, which
concludes the correctness of the second direction. |

Now, we turn to consider the correctness and running time of Algl.
» Theorem 14. Algl solves CNTP in time O(nN?) and space O(N).

Proof. The table M contains O(nN) entries, and each entry can be computed in time O(N).
Therefore, the time complexity of Algl is bounded by O(nN?). Moreover, for the computation
of M[i, -], it is only necessary to keep O(NN) entries for position prev(i), and therefore the
space complexity is bounded by O(N). Since every (n,d)-CNT C satisfies C'(S) =T, and
since for every good optimal CNT C, there exists 0 < d < N such that C is an (n,d)-CNT,
we have that Lemma 13 implies that Algl returns the smallest size of a good optimal CNT
(if such a CNT exists). By Propositions 2-10, such a CNT indeed exists, and therefore Algl
solves CNTP. <

3.3 A Linear-Time Algorithm for CNTP

In this section we show how to modify Algl in order to obtain an algorithm, called Alg2,
that solves CNTP in linear time. The central lemma that leads to this improvement states
each column in the table M can be described by a piecewise linear function of at most three
segments.

R. Shamir, M. Zehavi, and R. Zeira

A [— C
(4) ¢ _ 3123214 (©) @
T = 2,0,0,0,0,0,2 i
Skipping zeros solution base;
(B) MI[i, d] +2dmer
i=1 i= ,
ase;
d=0 © 0 ey
d=1 1]
base;
d=2 2 3
= - : dprin b A"
= | = - m . d

Figure 2 (A) A skipping-zeros solution. Bold lines indicate deletions. (B) The DP M [i, d] matrix
for the two CNPs in (A). (C) An example of the piecewise linear function f;(d) described in Lemma
15. The number of segments is three but can be smaller, depending on the values involved.

To present this lemma, we need the following notation. For all i € {1,2,...,n} such that
t; > 0, let d™" = max{u;,0} and d"** = max{s; — 1,0} be the least and largest values of
d for which M]i,d] is finite. Now, the function f; : {d™™",... d"**} — NU {0} will satisfy
fi(d) = M[i, d]. Observe that the function f; is discrete. We stress that in this section, we do
not explicitly compute the entries of M — the definition of the functions concerns the values
that would have been stored in these entries if they were computed by using Algl.

» Lemma 15. For ecach i € {1,2,...,n} such that t; > 0, there exist base;, a;,b; € NU{0}
such that for all d € {d", ... d"ow}:

base; if d;”i" <d<uaq;
fl(d) = (basez- — CLZ‘) + d Zf a; S d S bz
(basei — a; — bl) + 2d ’Lf bl S d S d;naa:

Moreover, basey,a; and by can be computed in constant time, and for each i € {2,3,...,n}
such that t; > 0, given baseprev(s)s Aprev(i) AN bprev(i), basei, a; and b; can be computed in
constant time.

An example is given in Fig. 2(C). The proof is based on Lemma 13 and an exhaustive case
analysis, which, for the sake of clarity of presentation, is handled separately in Section 3.4.
Our algorithm, Alg2, performs the following computation:
1. Let basey = ag = by = 0.
2. Fori=1,2,...,n:
a. If t; = 0, skip the rest of the current iteration.
b. Compute base;, a; and b; using baseprey(iy, Aprev(i) aNd bprey(iy-
3. Return base,.

We are now ready to prove our main result.
» Theorem 16. Alg2 solves CNTP in time O(n) and space O(1).

Proof. According to Lemma 15, the function f;(d) = M][i,d] is a piecewise linear function
described by three values. The correctness of Lemma 15 shows that step 3 calculates these
values in constant time and space given the previous values. The time and space complexity
of Alg2 follow directly.

16:9

CPM 2016

16:10

A Linear-Time Algorithm for the Copy Number Transformation Problem

Now, by the correctness of Algl, it is sufficient to prove that Alg2 returns the value
ming<a<y M[n,d]. By Observation 11, ming<g<ny M[n, d] = mingmin<g<gme= Mln, d]. By
Lemma 15, we further have that mingmin<q<gmae M[n,d] = base,. Thus, by the inductive
proof of Lemma 15, we conclude that Alg2 solves CNTP. |

3.4 Case Analysis

The purpose of this section is to prove the correctness of Lemma 15. That is, we want
to show that f;(d) is a piecewise linear function described by three parameters, and these
parameters can be calculated in constant time. To this end, let j = prev(i) and R; = u; — u;.
Accordingly, the term a(i, d) —a(j, d') can be written as R; +d —d’. Moreover, let dy,,, be the
argument d’ that minimizes the recursive formula we use to compute M[i, d] under certain
conditions that will be clear from context.

We prove Lemma 15 by induction on i. To simplify the proof, let ag = by = basey = 0
and fo(d) = 2d for every 0 < d < N. This definition is equivalent to adding the new entries
s9 =to = N + 1 (which do not affect the distance from S to T'), and thus, it can serve as the
basis of our induction. Next, suppose that Lemma 15 holds for j = prev(i) < ¢, and we will
prove that it holds for 7.

The proof is based on an exhaustive case analysis that examines the position of Q); relative
to d}’”", aj, bj and d7'*", as well as the sign of R;. For example, one of the cases is defined
by the conditions d}m” < Qi <aj, R >0and a; — R; < Q; . In each case, we analyze
the behavior of M[i, d] as we increase d. More precisely, we examine several intervals that
together contain all of the values that can be assigned to d. For example, in the above

mentioned case, we consider the intervals d < a; — Rj, aj — R; < d < Q; and Q; < d. For
i)pt
the examined case. These conditions along with d,,, allow us to remove the minimization

each interval, we let d/ , be an argument d’ that minimizes M[i, d] under the conditions of
and maximization functions from the formula defining M[i, d], and thus we obtain f;(d).
In the latter example, if d < a; — R; we can choose dy,,, = a; and get f;(d) = M[i,d] =
M[j, a;] + max{d — a;,0} + max{R; + d — a;,0} + max{Q; — max{d,a;},0}} = base;. As
a corollary of the analysis, we get that indeed f;(d) is piecewise linear, and that a;, b; and
base; can be calculated in constant time given a;, b;, base;, R; and Q;.

Due to lack of space, the details of the case analysis are omitted. The analysis shows that
in all cases, f;(d) is indeed a piecewise linear function with at most three linear segments
defined by some a;, b;, base;. After applying straightforward operations that reorganize the
analysis (to present the results in a compact manner), we obtain the algorithm PiecewiseAlg,
whose pseudocode is given below. This algorithm performs step 2b of Alg2, i.e., it calculates
ai, bi, base; given aj, b;, base; and (); in constant time and space.

PiecewiseAlg first calculates R;,d!" and d"** based on s; and t;. Next, according to
the sign of R; and the relative position of @); in comparison to the previous a; and b;, the
algorithm calculates the structure of f;(d) defined by a; and b;. Finally, since f;(d) is defined
only for the range d" < d < d7*®, we calculate base; = f;(d!"™). Similarly, we limit the
values of a; and b; to that range.

4 Conclusion

In this paper, we initiated the study of distances between CNPs from a theoretical point of
view. We focused on one fundamental problem, CNTP, and showed that it is solvable in
linear time and constant space. To this end, we proved several properties of CNTP that may
be useful in solving other problems involving CNPs. Our algorithm can be modified to return

R. Shamir, M. Zehavi, and R. Zeira

Algorithm 1 PiecewiseAlg

Input: s;,t;,Q;,a;,b;,base;
Output: a;,b;, base;
R; + Uj — Uj
dm +— max{u;, 0}
d® « max{s; — 1,0}
if R; > 0 then
if Qz S Q. then
a; < a; 7Ri; bi «— bj.
else if a; < Q; <b; then
a; < Q1 — Ri, b1 <« bj.
else if b; < (); then
a; < bj — Ri; b; Qz
end if
else if R; < 0 then
if Q; <a; then
Q; < aj; b; bj —R;.
else if a; < @; < b; then
a; < Qi; b; bj — R;.
else if b; < (); then
a; < min{Qi, bj — Rl}, b; < maX{Qi, bj — Rz}

end if
end if
0 if dn < a;
base; < base; + max{Q; — a;,0} + ¢ d™" — q; if a; < dm™ < b;

2d;nm —a; — b; if b; < d;nzn < d’rinaz
a; < max{d™" min{a;,d™**}}; b; < max{a;, min{b;, d"**}}.

K2

a transformation that realizes dist(S,T') in linear time and linear space by backtracking
the dynamic programming vector. We have implemented the algorithm as well as an ILP
formulation of CNTP (the implementations are available upon request), and we intend to
assess the performance of these approaches.

Many computational and combinatorial aspects in the analysis of distances between
CNPs require further research. Indeed, this paper can be viewed as a first step towards
understanding them. We intend to investigate variants of CNTP where one seeks a CNP

that minimizes the overall distance from it to two (or more) CNPs that are given as input.

Such variants are relevant to phylogenetic reconstruction in cancer (see [13]). Additional
directions for further research involve the introduction of edit operations other than basic
segmental deletions and amplifications, dealing with phasing of the profiles, as well as the
handling of noise.

Acknowledgment. We thank the referees for many helpful comments. This study was
supported by the Israeli Science Foundation (grant 317/13) and the Dotan Hemato-Oncology
Research Center at Tel Aviv University. RZ was supported by fellowships from the Edmond
J. Safra Center for Bioinformatics at Tel Aviv University and from the Israeli Center of
Research Excellence (I-CORE) Gene Regulation in Complex Human Disease (Center No
41/11). MZ was supported by a fellowship from the I-CORE in Algorithms and the Simons

16:11

CPM 2016

16:12

A Linear-Time Algorithm for the Copy Number Transformation Problem

Institute for the Theory of Computing in Berkeley and by the Postdoctoral Fellowship for
Women of Israel’s Council for Higher Education.

—— References

1

10

11

12

13

Ryan P Abo, Matthew Ducar, Elizabeth P Garcia, Aaron R Thorner, Vanesa Rojas-Rudilla,
Ling Lin, Lynette M Sholl, William C Hahn, Matthew Meyerson, Neal I Lindeman, Paul
Van Hummelen, and Laura E MacConaill. BreaKmer: detection of structural variation in
targeted massively parallel sequencing data using kmers. Nucleic Acids Research, nov 2014.
doi:10.1093/nar/gkul211.

Salim Akhter Chowdhury, E Michael Gertz, Darawalee Wangsa, Kerstin Heselmeyer-
Haddad, Thomas Ried, Alejandro A Schéffer, and Russell Schwartz. Inferring mod-
els of multiscale copy number evolution for single-tumor phylogenetics. Bioinformatics,
31(12):i258-67, jun 2015. doi:10.1093/bioinformatics/btv233.

Salim Akhter Chowdhury, Stanley E Shackney, Kerstin Heselmeyer-Haddad, Thomas Ried,
Alejandro A Schéffer, and Russell Schwartz. Phylogenetic analysis of multiprobe fluores-
cence in situ hybridization data from tumor cell populations. Bioinformatics, 29(13):1189-
98, jul 2013. doi:10.1093/bioinformatics/btt205.

Salim Akhter Chowdhury, Stanley E Shackney, Kerstin Heselmeyer-Haddad, Thomas Ried,
Alejandro A Schéffer, and Russell Schwartz. Algorithms to model single gene, single chro-
mosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS
Computational Biology, 10(7):€1003740, jul 2014. doi:10.1371/journal.pcbi.1003740.
Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette.
Combinatorics of Genome Rearrangements. MIT Press, 2009.

Eric Letouzé, Yves Allory, Marc A Bollet, Frangois Radvanyi, and Frédéric Guyon. Ana-
lysis of the copy number profiles of several tumor samples from the same patient re-
veals the successive steps in tumorigenesis. Genome Biology, 11(7):R76, 2010. doi:
10.1186/gb-2010-11-7-r76.

Andrew McPherson, Chunxiao Wu, Alexander W Wyatt, Sohrab Shah, Colin Collins, and
S Cenk Sahinalp. nFuse: discovery of complex genomic rearrangements in cancer using
high-throughput sequencing. Genome Research, 22(11):2250-61, nov 2012. doi:10.1101/
gr.136572.111.

M Mohri. Weighted finite-state transducer algorithms. An overview. Formal Lan-
guages and Applications, 2004. URL: http://link.springer.com/chapter/10.1007/
978-3-540-39886-8_29.

Mehryar Mohri. Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science, 14(06):957-982, 2003.

Layla Oesper, Anna Ritz, Sarah J Aerni, Ryan Drebin, and Benjamin J Raphael. Recon-
structing cancer genomes from paired-end sequencing data. BMC' Bioinformatics, 13 Suppl
6(Suppl 6):510, jan 2012. doi:10.1186/1471-2105-13-S6-S10.

D. Pinkel, T. Straume, and J. W. Gray. Cytogenetic analysis using quantitative, high-
sensitivity, fluorescence hybridization. Proceedings of the National Academy of Sciences,
83(9):2934-2938, may 1986. doi:10.1073/pnas.83.9.2934.

Olivier Tremblay Savard, Yves Gagnon, Denis Bertrand, and Nadia El-Mabrouk. Genome
halving and double distance with losses. Journal of Computational Biology, 18(9):1185-99,
2011. doi:10.1089/cmb.2011.0136.

Roland F Schwarz, Anne Trinh, Botond Sipos, James D Brenton, Nick Goldman, and
Florian Markowetz. Phylogenetic quantification of intra-tumour heterogeneity. PLoS Com-
putational Biology, 10(4):¢1003535, apr 2014. doi:10.1371/journal.pcbi.1003535.

http://dx.doi.org/10.1093/nar/gku1211
http://dx.doi.org/10.1093/bioinformatics/btv233
http://dx.doi.org/10.1093/bioinformatics/btt205
http://dx.doi.org/10.1371/journal.pcbi.1003740
http://dx.doi.org/10.1186/gb-2010-11-7-r76
http://dx.doi.org/10.1186/gb-2010-11-7-r76
http://dx.doi.org/10.1101/gr.136572.111
http://dx.doi.org/10.1101/gr.136572.111
http://link.springer.com/chapter/10.1007/978-3-540-39886-8_29
http://link.springer.com/chapter/10.1007/978-3-540-39886-8_29
http://dx.doi.org/10.1186/1471-2105-13-S6-S10
http://dx.doi.org/10.1073/pnas.83.9.2934
http://dx.doi.org/10.1089/cmb.2011.0136
http://dx.doi.org/10.1371/journal.pcbi.1003535

R. Shamir, M. Zehavi, and R. Zeira

14

15

16

17

Mingfu Shao and Yu Lin. Approximating the edit distance for genomes with duplicate

genes under DCJ, insertion and deletion. BMC' Bioinformatics, 13(Suppl 19):S13, 2012.

d0i:10.1186/1471-2105-13-519-813.

Eric Tannier, Chunfang Zheng, and David Sankoff. Multichromosomal median and halving
problems under different genomic distances. BMC' Bioinformatics, 10(1):120, 2009. URL:
http://www.biomedcentral.com/1471-2105/10/120, doi:10.1186/1471-2105-10-120.
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian
carcinoma. Nature, 474(7353):609-15, jun 2011. doi:10.1038/nature10166.

Alexander Eckehart Urban, Jan O Korbel, Rebecca Selzer, Todd Richmond, April Hacker,
George V Popescu, Joseph F Cubells, Roland Green, Beverly S Emanuel, Mark B Ger-
stein, Sherman M Weissman, and Michael Snyder. High-resolution mapping of DNA
copy alterations in human chromosome 22 using high-density tiling oligonucleotide ar-
rays. Proceedings of the National Academy of Sciences, 103(12):4534-9, mar 2006. doi:
10.1073/pnas.0511340103.

16:13

CPM 2016

http://dx.doi.org/10.1186/1471-2105-13-S19-S13
http://www.biomedcentral.com/1471-2105/10/120
http://dx.doi.org/10.1186/1471-2105-10-120
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1073/pnas.0511340103
http://dx.doi.org/10.1073/pnas.0511340103

	Introduction
	Preliminaries
	An Algorithm for CNTP
	Key Propositions
	An O(n*N*N)-Time Algorithm for CNTP
	A Linear-Time Algorithm for CNTP
	Case Analysis

	Conclusion

