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Abstract 
 

Background: Life sciences and biomedical research have undergone a revolutionary 

change in the last few years, with the emergence of a new paradigm, termed systems 

biology, which aims at gaining systems-level understanding of biological networks. 

This approach has become feasible thanks to the combination of three indispensable 

factors: the completion of the sequencing of genomes of various organisms, which 

provides us with entire blueprints of the 'program of life' in these species; the 

maturation of novel high-throughput biotechnologies for large-scale analysis of 

cellular constituents that yields comprehensive views of life in a cell; and the 

development of powerful computational algorithms and data analysis tools. The large-

scale sequencing projects and the novel high-throughput biotechnologies have 

transformed biology into an information-rich science. Mining meaningful biological 

knowledge out of the huge volume of accumulated data is critically dependent on the 

availability of supporting bioinformatics tools. 

 Prominent among the novel high-throughput biotechnologies are gene 

expression microarrays that allow parallel recording of expression levels of thousands 

of genes in a single assay, providing genome-wide snapshots of the cellular 

transcriptome under the examined biological conditions. They have proven to be very 

powerful tools for molecular characterization of pathological conditions, and for 

global delineation of transcriptional programs induced by various stimuli or  of 

programs associated with physiological processes such as differentiation, cell cycle, 

aging and neoplastic transformation.  

 DNA damage poses one of the greatest threats to the function and life of the 

cell and the organism and therefore cells acquired intricate mechanisms to sense and 

handle such challenges. The efficiency and quality of cellular responses to DNA 



damage determine whether this insult will be repaired with no lasting effect on 

cellular life, or divert the cell from normal growth to programmed cell death 

(apoptosis), or end up in neoplastic transformation. Understanding of DNA damage 

responses has broad implications for basic life processes such as cell cycle control, 

aging, tissue development and degeneration. It is highly relevant for human health, 

primarily to coping with environmental hazards, cancer formation, and many 

neurodegenerative disorders.  

Cellular responses to DNA damage have long been viewed mainly in terms of the 

concerted activation of DNA repair mechanisms and cell cycle checkpoints. However, 

studies that applied functional genomics approaches demonstrate that the damage-

invoked network is much broader than DNA repair and cell cycle control. These 

recent studies showed that DNA damage sets off a wide array of signaling pathways 

that cover most aspects of cellular physiology, ranging from metabolic pathways to 

changes in protein turnover, cellular trafficking and cell-to-cell signaling. The 

biological mechanisms and the significance of most parts of this network are barely 

understood. 

Our lab is interested in understanding cellular responses to DNA damage, and in 

particular the role of the ATM protein kinase in modulating the response to DNA 

double strand breaks (DSBs). ATM is positioned at the center of a physiological 

junction from which the cell activates a vast array of pathways in response to a DSB. 

To date, more than 20 direct substrates of ATM have been identified, including p53, 

CHEK2, and BRCA1.   

Goals:   The major goal of my research was to develop bioinformatics approaches for 

the analysis of gene expression microarray data and to apply them, as well as existing, 

state-of-the-art computational techniques, to the study of transcriptional networks 



induced by DNA damage, with special emphasis on the role of ATM. Specific goals 

were to identify ATM-dependent components in the transcriptional network induced 

by DSBs, identify by computational means transcription factors that control the 

transcriptional response induced by DNA damage, and dissect the damage response 

network into arms mediated by these regulators. 

Methods: A large-scale, gene expression microarray project that was carried out in 

our lab yielded an enormous amount of data. Mining meaningful biological insights 

from the raw data poses a major bioinformatic challenge. To meet this challenge we 

adopted an integrative approach for the analysis of the data that starts with the initial 

preprocessing steps of signal extraction, normalization and filtering, and continues 

through partition analysis (clustering or biclustering) to high-level statistical analyses 

that seek enriched functional categories and cis-regulatory promoter elements in the 

clusters/biclusters. This approach is implemented in the EXPANDER package, that 

serves as the central platform for the integration of all the microarray data analysis 

algorithms developed in Shamir's lab. 

Results: The results of six projects are presented in my thesis. In the first project, we 

developed the PRIMA (PRomoter Integration in Microarray Analysis) tool for 

integrating computational promoter analysis in the analysis of gene expression 

datasets. Microarray experiments provide genome-wide snapshots of the cellular 

transcriptome under the examined biological conditions. They do not, however, 

directly reveal the transcription factors (TFs) that mobilize the observed modulation 

of the transcriptional program. Computational promoter analysis can potentially shed 

light on this hidden layer using a 'reverse engineering' approach, in which sets of 

genes that show similar expression patterns are first identified (usually, by applying 

cluster analysis), and then the promoters of these co-expressed genes are scanned for 



over-represented sequence motifs, which presumably reflect the common regulatory 

elements through which these promoters are co-regulated. PRIMA applies such 

approach. In short, given a target set and a background set of promoters, PRIMA 

performs statistical tests aimed at identifying TFs whose binding site signatures are 

significantly more prevalent in the target set than in the background set. First, we 

demonstrated the power of PRIMA in delineating transcriptional networks in human 

cells. At present, in addition to human data, we have also extracted genome-wide 

promoter sets for twelve organisms, including worms, insects, fish, chicken, rodents, 

and dog, and successfully applied PRIMA to gene expression data obtained from 

these species.  

In the second project we established the SHARP (SHowcase of ATM Related 

Pathways) knowledge base for signaling pathways. Our motivation for developing 

this bioinformatic tool was two-fold. First, the overwhelming complexity of the 

cellular responses to DNA damage turns the assimilation and interpretation of extant 

data no less acute a problem than lack of data. We therefore realized that a 

computational environment for storing, visualizing and analyzing this signaling web 

had to be developed. Second, we envisioned SHARP as a pivotal component of our 

computational arsenal for analyzing functional genomics datasets. Using SHARP, we 

superimpose gene expression data on signaling maps to elucidate biological endpoints 

mediated by various pathways that are induced in response to genotoxic stress.  

SHARP is being developed in our labs and includes two main software components: 

A database for biological interactions and a visualization package that allows graphic 

viewing of the biological interactions stored in the database, dynamic layout and 

navigation through the networks, and superposition of DNA microarray data on the 

interaction maps. 



In the third project we focused on transcriptional mechanisms that control cell 

cycle progression in human cells. Our computational analyses revealed eight 

transcription factors whose binding sites are significantly over-represented in 

promoters of genes whose expression is cell cycle-dependent. The enrichment of 

some of these factors was specific to certain phases of the cell cycle. In addition, 

several pairs of these transcription factors show a significant co-occurrence rate in cell 

cycle-regulated promoters. Each such pair suggests functional cooperation between its 

members in regulating the transcriptional program associated with cell cycle 

progression. In this project we demonstrated for the first time that the reverse 

engineering approach, which infers regulatory mechanisms from gene expression 

patterns, can reveal transcriptional networks in human cells. Before this study, such 

methodologies were successfully demonstrated only in prokaryotes and low 

eukaryotes.  

In the forth project, we further demonstrated how functional genomics data can be 

utilized to discover novel functional links between transcription factors based on 

significant co-occurrence of their binding site signatures on common target 

promoters. Focusing on the oncoprotein c-Myc, we identified nine transcription 

factors whose binding site signatures are highly over-represented in a promoter set of 

c-Myc targets, which points to possible functional links between these transcription 

factors and c-Myc. We showed that the binding sites of most of these transcription 

factors were also enriched on the set of mouse homolog promoters, suggesting 

functional conservation.  

In the fifth project we assessed the ability to precisely dissect transcriptional 

networks by the combination of the RNA interference (RNAi) and gene expression 

techniques. Analyzing a DNA damage-induced transcriptional network, we recorded 



expression profiles in human cells exposed to a radiomimetic drug that induces DNA 

double strand breaks (DSBs). Profiles were measured in control cells and in cells 

knocked-down for the Rel-A subunit of NF-kB and for p53, two pivotal stress-

induced transcription factors, and for ATM, a major transducer of the cellular 

responses to DSBs. We observed that NF-kB and p53 mediated most of the damage-

induced gene activation; that they controlled the activation of largely disjoint sets of 

genes; and that ATM was required for the activation of both pathways. Applying 

computational promoter analysis, we demonstrated that the dissection of the network 

into ATM/NF-kB- and ATM/p53-mediated arms was highly accurate. 

In the sixth project we aimed at obtaining global dissection of the 

transcriptional response to ionizing radiation in murine lymphoid tissue using gene 

expression microarrays. Probing Atm-knockout and wild-type mice, we identified a 

prominent cluster containing dozens of genes whose response to irradiation was Atm-

dependent. Computational analysis identified significant enrichment of the binding 

site signatures of NF-κB and p53 among promoters of these genes, pointing to the 

major role of these two transcription factors in mediating the Atm-dependent 

transcriptional response in the irradiated lymphoid tissue. Examination of the 

response showed that pro- and anti-apoptotic signals were simultaneously induced, 

with the pro-apoptotic pathway mediated by p53 targets, and the pro-survival pathway 

by NF-κB targets. 

Discussion: Functional genomics is changing the way biological research is done. For 

the first time it is possible to study biological systems as a whole and to obtain large-

scale snapshots of cellular transcriptome and proteome. In our studies, we developed 

and applied functional genomics approaches to dissect transcriptional programs that 

are associated with cell cycle progression and responses to DNA damage in human 



and mouse model systems. Our results elucidated novel regulatory links within these 

intricate signaling networks. Applying genome-wide computational promoter 

analyses, we pointed to novel regulators of the transcriptional program associated 

with cell cycle progression, and we have shed more light on the mechanisms by which 

the c-Myc oncogene promotes cell growth and transformation. 

Fine dissection of complex transcriptional responses has posed a long-standing 

challenge in the signal transduction field. External and internal stimuli may activate 

complex networks whose analysis by traditional biochemistry can be daunting. The 

DNA damage response is an example of such a complex network. The combination of 

gene expression microarrays, manipulation of genes activity using siRNAs, and 

powerful computational tools holds promise for systematic and rapid dissection of 

such networks. The study in which we dissected the transcriptional network induced 

by DSBs into two major arms, the ATM/NF-κB- and the ATM/p53-dependent arms, 

provided a proof-of-principle for the power of this combined experimental approach, 

despite possible nonspecific effects of RNAi, which can be neutralized by controlled 

experimental design and computational analysis of the data. 

Our findings on the lymph nodes dataset further elucidate the molecular network 

induced by IR, and might have implications for cancer management. They raised a 

model in which pro- and anti-apoptotic signals are induced in parallel, where the 

former is mediated by p53 and the latter – by NF-κB. This model suggests that 

restoring the p53-mediated apoptotic arm while blocking the NF-κB-mediated pro-

survival arm could effectively increase the radiosensitivity of lymphoid tumors.  

Our results demonstrate that the new paradigm of systems biology provides global 

delineation of complex cellular networks. Although systems biology is in its infancy, 

it is already a vital part of modern biomedical research. Its potential benefits are 



enormous in both scientific and practical terms. It is expected to impact on clinical 

medicine as well as on pharmaceutical industries. This emerging field will eventually 

provide us with detailed mechanistic models for the etiology of diseases, pointing the 

way to novel strategies for rational intervention in pathological conditions and the 

design of improved personalized drugs. 

 

 

 
 



1. Introduction 

1.1. Systems biology and functional genomics 

Life sciences and biomedical research have undergone a revolutionary change in 

the last few years, with the emergence of a new paradigm, termed systems biology, 

that aims at a systems-level understanding of biological networks [1-7]. Biological 

research has traditionally applied reductionist experimental approaches whereby 

cellular systems are deconstructed into their elementary components (genes, proteins) 

and particular, isolated parts of the system are characterized. The transition to a new 

experimental paradigm in biology, often called the 'post-genome era', was triggered 

by the rapid advance in the human genome project and  in large-scale sequencing 

projects in other model organisms.  

The availability of sequences of complete genomes allows us, in principle, to 

identify all the genes in an organism (and thereby also the entire collection of encoded 

proteins) — analogous to listing all the parts of a mechanical system. While such a 

catalog of individual components is invaluable for studying the system, it is not 

sufficient by itself for understanding the system's function. In the case of the living 

organism, we need to decipher how the components dynamically interact and regulate 

each other to form highly intricate physiological systems. This is the goal of the new 

field called functional genomics. More than merely assigning genes into functional 

categories, functional genomics aims at a comprehensive understanding of genetic 

networks: how gene products interact and regulate each other to produce coherent and 

coordinated physiological processes during the organism's development and in 

response to homeostatic challenges [8].  

In contrast to the reductionist approach, functional genomics takes a holistic 

approach in which the cellular system is analyzed as a whole [9]. This systems-level 
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approach has become feasible in biomedical research thanks to the combination of 

three indispensable factors. First, as noted above, the completion of the sequencing of 

genomes of various organisms providing us with entire blueprints of the 'program of 

life' in these species. Second, the maturation of novel high-throughput 

biotechnologies for large-scale analysis of cellular constituents that yield 

comprehensive views of life in a cell, a tissue, and ultimately the whole organism. 

Third, the development of powerful computational algorithms and data analysis tools. 

The large-scale sequencing projects and the novel high-throughput biotechnologies 

have transformed biology into an information-rich science. Experimental biological 

data are being generated at an unprecedented pace. Mining meaningful biological 

knowledge out of the huge volume of accumulated data is critically dependent on the 

availability of supporting bioinformatics tools. Therefore, this novel research 

paradigm is multidisciplinary and necessitates intimate collaboration between 

biologists and computational scientists.  

1.2. Functional genomics technologies 

The novel high-throughput functional genomics technologies analyze cellular 

constituents at various layers: from the level of the DNA sequence (the genome tier), 

through the expressed RNA molecules (the cellular transcriptome tier) to the level of 

the proteins (the proteome tier). 

Prominent functional genomics tools for the study of cells at the DNA level are 

SNP (Single Nucleotide Polymorphisms) genotyping and CGH (Comparative 

Genomic Hybridization) microarrays. SNP arrays enable scientists to conduct 

genome-wide linkage and association studies in order to discover genetic variations 

underlying complex human traits [10-12]. For example, the new generation of SNP-

genotyping high density array manufactured by Affymetrix, the GeneChip Mapping 
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100K Set, allows the genotyping of more than 100,000 distinct human SNPs in a 

single assay [13]. CGH microarrays have significantly increased the resolution of 

conventional CGH in detection of DNA copy number aberrations; this greatly 

improves the ability to characterize the chromosomal imbalances resulting in gain 

and/or loss of genomic material that are recurrent in human cancers [14, 15].  

Major functional genomics technologies for analysis of the cellular transcriptome 

are gene expression microarrays (see detailed description in Section 1.3 below) and 

SAGE (Serial Analysis of Gene Expression). Gene expression microarrays rely on 

hybridization between RNA molecules extracted from the examined cells (or cDNA 

molecules derived from them), and complementary probes deposited or synthesized 

on the array [16-18]. SAGE is based on the isolation of unique sequence tags 

(typically 10-14 bp in length) from defined locations in mRNA molecules, and 

concatenation of these tags in a serial way into long DNA molecules for a lump-sum 

sequencing indicating the expression level of the corresponding RNA molecules [19]. 

These technologies allow parallel recording of expression levels of thousands of 

genes in a single assay, providing genome-wide snapshots of the cellular 

transcriptome under the examined biological conditions. They have proven to be very 

powerful tools for molecular characterization of pathological conditions, andfor 

global delineation of transcriptional programs induced by various stimuli or  programs 

associated with physiological processes such as differentiation, cell cycle, aging and 

neoplastic transformation [20-23].  

Another functional genomics approach that greatly enhances the study of 

transcriptional networks combines chromatin immunoprecipitation (ChIP) and 

promoter microarrays . This technique, also termed ‘ChIP-on-chip’, enables genome-

scale identification of promoters that are bound by specific transcription factors (TFs) 
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under certain conditions, in a single experimental assay [24, 25]. ChIP-on-chip was 

recently applied in a seminal study by Lee et al. [24] to map all TF-promoter binding 

relationships in yeast under standard growth conditions. The microarrays used in this 

study contained probes corresponding to the promoters of all known and predicted 

genes in S. cerevisiae. These arrays were reacted with all known TFs in this organism, 

yielding a comprehensive map of the transcriptional network controlling yeast life 

under standard growth conditions. The approach was also applied to mammalian cells 

to identify genome-wide direct targets of many TFs, including E2F, c-Myc and NF-

κB [26-28].  

Mass spectrometric analysis for protein identification is a major technology in 

systems analysis of the cellular proteome (proteomics) [29]. It has been applied in 

recent years to identify protein-protein interactions on a proteome-wide scale (the 

interactome) in organisms ranging from yeast to human [30-32]. In addition, mass 

spectrometric techniques have been established for the analysis of post-translational 

modifications, such as phosphorylation and glycosylation [29, 33]. At the same time, 

protein microarrays are being developed. They can be divided into two categories 

according to use. In the first category are chips for profiling protein levels. Dozens of 

antibodies with high specificity are deposited on the chip to enable comparison of the 

expressions of the respective protein antigens from different samples. This technology 

was recently applied to identify proteins that are upregulated in specific cancers [34]. 

Furthermore, antibodies that recognize specific modified states of their target proteins 

(e.g., recognizing a target that is phosphorylated on a certain site) are used to measure 

the level of various post-translational modifications. In the second category are chips 

for biochemical characterization of the function of proteins. The proteins themselves 

are deposited on the chip and assayed in parallel for a specific biochemical reaction. 
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For example, in a recent study [35], a protein chip on which all S. cerevisiae proteins 

were spotted was assayed for interactions with specific substrates to identify, among 

others, all calmodulin-binding proteins.  

Another major advance in functional genomics came with the discovery of RNA 

interference (RNAi) and its harnessing as a research tool [36, 37]. RNAi has 

dramatically expanded the scope and versatility of cell culture systems for the analysis 

of gene function and involvement in biological processes. Prior to this discovery, 

obtaining cell lines deficient for a specific protein depended largely on the availability 

of cells from human patients affected with genetic disorders, or from knockout mice. 

Methods for silencing the expression of specific genes using antisense oligos allowed 

only transient silencing and their efficiency was limited. The advent of RNAi 

technology changed this situation. The introduction of short (21 nt) double-stranded 

RNA (or an RNA oligo that acquires a secondary small hairpin structure that imitates 

double-stranded RNA) into cells results in the degradation of complementary cellular 

mRNA molecules via activation of the RISC complex (RNA-induced silencing 

complex) [36]. Furthermore, it is now possible to express ectopically such small 

hairpin RNA (shRNA) to generate cell lines that are stably knocked-down for the 

target gene [38, 39]. Several labs have undertaken the task of systematically 

constructing cell lines that collectively will be knocked-down for most genes in the 

human genome and in other model organisms [36, 37, 40, 41]. Initial progress 

towards this goal was recently reported when a large-scale RNAi screen was carried 

out in human cells to identify new components of the p53 pathway [42].   
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1.3. Gene expression microarrays: platforms 

During its first few years gene expression microarray technology suffered from 

'infancy maladies' [43]. Now that it has reached the stage where it yields accurate and 

reproducible results, it  has become a standard research tool in molecular biology labs.  

Gene expression microarrays come in three platforms that differ in the nature of 

the probe molecules used to detect RNA levels, and the method of placing them on 

the array surface. The three platforms are called cDNA microarrays, high-density 

oligonucleotide arrays, and long-oligonucleotide arrays.  

cDNA microarrays use as probes PCR products (typically several hundred bps in 

length) of cDNA libraries. These probes are mechanically deposited ('spotted') on the 

array surface by a robotic arm carrying a pin head [16, 17, 44] in a simple, widely 

used procedure. The problems of irregular spot size and shape and probe 

concentration are addressed by co-hybridization to the same chip of two samples, a 

test sample and a reference sample, each labeled with a different florescent dye that 

allows relative measurements of gene expression levels. 

 The high-density oligonucleotide array technology was developed by Affymetrix 

(Santa Clara, CA). In this platform, called GeneChip, 25-mer oligonucleotide probes 

are synthesized directly on the array using photolithography and photosensitive 

oligonucleotide synthesis chemistry [8, 18, 45]. Each target gene in these arrays is 

represented by a probe set of 11-20 perfect match (PM) oligos complementary to 

different regions along the respective mRNA molecule. A parallel set of mismatch 

(MM) oligo probes that differ from the PM probes by a single nucleotide at the central 

position serves as a control that improves the discrimination between specific and 

nonspecific hybridization signals. Recent studies questioned the utility of the MM 

probes as negative controls [46, 47]. The design of the Affymetrix GeneChip requires 
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knowledge of the sequence of the target genes. Affymetrix offers whole- or near-

whole genome GeneChip expression arrays for many organisms whose genome 

sequencing is near completion, including bacteria, yeast, worm, fly, chicken, rat, 

mouse and human. 

The third gene expression platform uses as probes in-situ synthesized long 

oligonucleotide (60-70 mers), which are spotted on the arrays. In a study of the 

dependence of specificity and sensitivity of hybridization signals on probe length, 

Hughes et al [48] found that 60-mer probes yield optimal results. Long 

oligonucleotide arrays,e commercially manufactured by Agilent Technologies (Palo 

Alto, CA), improved probe deposition by an ink-jet printing process. Mechanically 

spotted long oligonucleotide arrays were produced by some academic groups [49]. 

Several studies compared the performance of different platforms [50, 51]. cDNA 

microarrays were found to be more prone to cross-hybridizations but are cheap and 

affordable to academic labs. Oligonucleotide-based arrays have higher flexibility in 

probe selection, which improves specificity. The 60-mer oligonucleotide arrays are 

highly sensitive (and were shown to detect genes expressed at levels as low as one 

copy per cell [48]). The GeneChip records are robust thanks to multiple probes used 

to measure each target. Extensive efforts are underway to understand the factors 

affecting inter-platform and inter-lab variability and to set standards for the gene 

expression technology [52-54]. 

 

1.4. Gene expression microarrays: applications 

To date, the most notable achievements of systems biology have been in global 

delineation of transcriptional regulatory networks that control various biological 

processes. These achievements were made possible by the maturation of genome-
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wide gene expression microarrays and the ChIP-on-chip technique, both of which 

specifically shed light on the transcriptome layer of cellular systems [55-58]. Gene 

expression microarrays are now used in all fields of biomedical research. Some of the 

major applications of this technology are summarized below.  

• Identification of transcriptional programs activated in response to perturbations of 

cellular life. Regulation of transcription is a key component of physiological 

networks and is the endpoint of many signal transduction pathways triggered by 

either extracellular or intracellular stimuli. Therefore, delineation of 

transcriptional programs activated during normal development or in response to 

homeostatic challenges is one of the important tasks of functional genomics. Even 

the simplest implementation of gene expression microarrays – comparison of 

expression profiles of two biological samples, one exposed to a certain 

manipulation and the other  a control – has demonstrated its tremendous power to 

identify new connections between genes and cellular processes. In one of the early 

implementations of this technology, Jelinsky and Samson [59] identified several 

hundred genes whose expression was modified in the budding yeast following 

exposure to the alkylating carcinogen MMS. This single study increased by about 

10-fold what is known about the transcriptional program activated in response to 

this stress. More advanced applications record expression profiles over multiple 

perturbations, time points, genetic manipulations, etc. For example, microarrays 

were used to disclose global transcriptional programs associated with cell cycle 

progression in yeast [60] and humans [21], cellular responses to various stresses in 

yeast [61] and human [62], aging [22], and development [63].  

• Functional characterization of unknown genes. Although most of the human 

genome has been sequenced, a significant proportion of genes remain functionally 
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uncharacterized; they reside in databases as ESTs (expressed sequence tags) or 

predicted genes. Complementary to insights that can be derived from sequence 

analysis, microarrays provide a systematic and comprehensive means to obtain 

putative functional annotations for such genes. Many studies demonstrated that 

genes that share a common function or participate in a common pathway tend to 

be expressed together in many different biological conditions. Therefore, an 

uncharacterized gene with an expression pattern similar to that of a group of genes 

that function in a certain biological process can be tentatively assigned to this 

functional category. This approach is called 'guilt-by-association' [64]. 

• Definition of diagnostic molecular signature. Another major application of gene 

expression microarrays is the identification of "molecular signatures" associated 

with pathological conditions. Prominent successes have been reported in cancer 

research. Comparison of expression profiles between patients and healthy controls 

and among sets of patients with different prognoses has led to identification of 

molecular signatures that are predictive of survival and treatment outcome in 

several cancers [65-67]. The predictive power of molecular signature defined by 

microarrays outperformed conventional prognostic markers for breast cancer, and 

led to the first use of this technology in clinics [68]. Microarrays have served not 

only for identifying classification signatures of known cancers, but also for 

discovering novel subtypes of cancers associated with different survival rates [23, 

69]. Here, microarrays hold immediate promise for disease diagnosis and 

personalized medicine.  

• Drug development and toxicogenomics. Gene expression microarrays are widely 

used by drug companies:  for selection of target candidates, identification of drug 

targets, and early identification of toxic side-effects [70, 71]. The integration of 
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this functional genomics technology into drug development holds promise for 

significant reduction in development time and in the proportion of drug candidates 

that fail at the late stage of in-vivo testing due to toxic effects on the animal. A 

closely related novel research field termed toxicogenomics is building a 

comprehensive database for expression profiles recorded after exposure of cells 

and animal tissues to known toxins. With such a collection of profiles, the 

molecular signatures ('fingerprints') that characterize toxin families sharing 

common mode of toxic operation can be defined. Comparing the expression 

profile that results from exposure of cells to a new candidate drug with the 

molecular signatures of known toxins will flag its toxic side effects at very early 

trial phases, thereby boosting the efficiency of drug development [72].   

 

1.5. Reverse Engineering of transcriptional networks  

Microarray experiments provide genome-wide snapshots of the cellular 

transcriptome under the examined biological conditions. Comparisons of gene 

expression profiles under normal and pathological conditions and in response to 

various perturbations elucidate the corresponding alteration in the cellular 

transcriptional programs. Microarray measurements do not, however, directly reveal 

the regulatory networks that underlie the observed transcriptional modulation: the 

layer of the transcription factors (TFs) that mobilize the observed program is to a 

large extent hidden from the microarray measurements. This is because microarrays 

record gene expression levels, while the activity of many TFs is regulated at the 

protein level. In many cases, TFs are controlled by post-translational modifications 

such as phosphorylation and ubiquitination, which affect their activity, stability and 
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subcellular localization. Combining computational promoter analysis with microarray 

results can potentially shed light on this hidden layer. 

A computational approach designed to infer transcriptional regulators from the 

observed expression data is termed 'reverse engineering' of transcriptional network. 

This approach has two main steps: sets of genes that show similar expression patterns 

are identified (usually, by applying cluster analysis), and the promoters of these co-

expressed genes are scanned for over-represented sequence motifs, which presumably 

reflect the common regulatory elements through which these promoters are co-

regulated. When the approach was first being developed it successfully deciphered 

transcriptional networks only in lower organisms, including E. coli and S. cerevisiae 

[55, 58, 73].  

Several computational methods implement this approach. All of them need to deal 

with the fact that DNA elements recognized and bound by TFs are very short 

(typically, 7-10 bps) and highly flexible. The binding site of most TFs contains only a 

very short core, typically of 3-4 bps, in which the constraint for specific nucleotides is 

rigid. Therefore, genome-wide computational scans of promoters for putative binding 

sites inevitably yield many false positives. Tools for reverse-engineering of 

transcriptional networks differ in several features: Some restrict the analysis to TFs 

whose binding site (BS) signatures are characterized and utilize pre-compiled models 

for these signatures (e.g., COMET [74], Toucan [75]). Others do not rely on known 

BS motifs but try to recover novel motifs ab initio (e.g., MEME [76] which applies 

Expectation-Maximization algorithm, AlignAce [77] which applies Gibbs sampling, 

MITRA [78] which performs efficient string enumeration, and Ann-Spec [79] which 

applies neural networks). These tools also differ in the method they use to model the 

BS of the TFs. Common methods are degenerate patterns, which specify the allowed 
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set of nucleotides in each position of the BS (patterns are conventionally represented 

using the IUPAC nomenclature); and position weight matrices (PWMs), which 

specify the probability for observing each nucleotide at each position of the BS, based 

on a set of empirically validated BSs of the respective TF. More complicated models 

that account for inter-dependencies between different positions in the BS were also 

suggested [80], but training them requires large sets of validated BSs and this 

information is currently available only for very few TFs. 

The availability of sequences of many genomes in addition to the human genome 

greatly boosts the specificity of in-silico identification of regulatory elements 

embedded in the genome [81]. Because higher selective pressure imposed on 

functional elements makes them more conserved than their surrounding non-

functional DNA, scanning for evolutionarily conserved elements, an approach called 

phylogenetic footprinting, markedly reduces false-positive hit rates [82-84].    

Transcriptional regulation in eukaryotes is combinatorial in essence. That is, the 

conditions under which a gene is transcribed are determined by an intricate interplay 

of multiple positive and negative transcriptional regulators that recognize and bind to 

cis-regulatory elements within and beyond the gene’s promoter region. Thus, a major 

task in deciphering transcriptional regulation networks is to identify combinations of 

TFs that cooperate in the regulation of multiple genes; that is, to identify 

combinations of TFs whose binding site signatures co-occur in promoters and form 

recurrent regulatory motifs, termed regulatory modules. Recent studies successfully 

undertook a computational approach for genome-wide mapping of such 

transcriptional regulation modules in S. cerevisiae [55, 85] and Drosophila [86-88]. 

Transcriptional modules in mammalian cells were defined and identified by several 
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pioneering studies [89-91]. Computational tools that try to define such modules 

include CRÈME [92] and COMET [74]. 

 

1.6. DNA damage response networks 

Cell life is governed by a highly structured network of biochemical pathways that 

evolved to maintain its metabolism, and in higher organisms also to allow it to carry 

out specific functions according to tissue context. This carefully laid-out plan of 

operation may be perturbed by numerous physical and chemical environmental agents 

that damage cellular constituents. Notable among them are agents that damage the 

DNA, posing one of the greatest threats to the function and life of the cell and the 

organism. DNA damage stems from several sources. It inevitably occurs during 

normal DNA replication (e.g., via replication errors); it is constantly induced by 

intermediates of normal cellular metabolism, usually by reactive oxygen species 

formed during cellular respiration or inflammation; and it is inflicted by exposure to 

environmental physical and chemical agents that induce a large variety of chemical 

modifications in DNA components or strand breaks.   

Cells possess intricate mechanisms to sense and handle the challenge posed by 

DNA damage. The essentiality of these mechanisms for cell life is reflected by the 

conservation of their core throughout evolution. Elements in the DNA damage 

response network can be generally divided into a three-layered hierarchy. At the top 

of the network are specialized DNA surveillance sensors that scan the genome for 

abnormalities. Once the sensors detect damage, they lead to the activation of 

transducers which amplify and convey the alarm message throughout the cell by 

modulating the activity of downstream effectors that in turn affect the biological 

endpoints of the damage response [93]. The efficiency and quality of cellular 
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responses to DNA damage determine whether this insult will be repaired with no 

lasting effect on cellular life, or divert the cell from normal growth to programmed 

cell death (apoptosis), or end up in neoplastic transformation [94]. Understanding of 

DNA damage responses has broad implications for basic life processes such as cell 

cycle control, aging, tissue development and degeneration. It is highly relevant for 

human health, primarily to coping with environmental hazards, cancer formation [95, 

96], and many neurodegenerative disorders. Strong evidence for this is provided by 

genetic disorders caused by defects in cellular responses to DNA damage. Patients 

with such disorders exhibit acute predisposition to cancer, degenerative changes in 

specific tissues, premature aging, and body malformations (e.g., Bloom syndrome 

[97], xeroderma pigmentosum (XP) [98], hereditary non-polyposis colorectal 

carcinoma (HNPCC) [99, 100], ataxia-telangiectasia (A-T) [101], and Nijmegen 

breakage syndrome [102]). The central nervous system (CNS) seems to be especially 

sensitive to defects in DNA damage response [103-105], possibly due to its high 

oxidative stress and lack of cellular turnover.  

Cellular responses to DNA damage have long been viewed mainly in terms of the 

concerted activation of DNA repair mechanisms and cell cycle checkpoints that are 

activated in order to prevent cell death during DNA replication, or fixation of genetic 

alterations at the damage sites, or transmission of unbalanced genetic content to 

daughter cells [106]. However, studies that applied functional genomics approaches 

demonstrate that the damage-invoked network is much broader than DNA repair and 

cell cycle control [59, 73, 107-109]. These recent studies show that DNA damage sets 

off a wide array of signaling pathways that cover most aspects of cellular physiology, 

ranging from metabolic pathways to changes in protein turnover, cellular trafficking 
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and cell-to-cell signaling. The biological mechanisms and the significance of most 

parts of this network are barely understood.  

It is also becoming apparent that different tissues induce distinct damage 

responses, adding to the complexity of the DNA damage response network. In  

general, tissue sensitivity to DNA damage may be linked to its proliferation rate: 

terminally differentiated, post-mitotic cells tend to be more resistant (e.g., adult brain, 

muscle), while tissues with high cellular turnover are more sensitive (e.g., epithelia, 

bone marrow, spermatogonia and hair follicles)  [110-114]. This model fits well with 

the general radiosensitivity of tumors, which are made up of actively proliferating 

cells; however, it fails to explain the radiosensitivity of some of the most 

radiosensitive tissues – spleen and thymus - which in adults consist mainly of non-

dividing cells, as well as the high radiosensitivity of bone-marrow haematopoietic 

stem cells, which are predominantly quiescent [110].  

 

1.7. ATM and A-T 

The nuclear protein kinase ATM is positioned at the center of a physiological 

junction from which the cell activates a vast array of pathways in response to a 

specific DNA lesion, the double strand break (DSB). When DSBs crop up in the 

DNA, the cell activates an intricate web of pathways that includes DNA repair 

mechanisms, cell cycle checkpoints, and numerous other stress responses. ATM plays 

a pivotal role in the activation of all these branches of the damage response [96] by 

phosphorylating key players in each of the pathways. To date, more than 20 direct 

substrates of ATM have been identified that control the signaling cascades that 

execute the endpoint physiological processes (Fig 1.7.1).  
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Figure 1.7.1. ATM-regulated 
network. ATM is a master regulator 
of an intricate web of cellular 
responses induced by DNA double 
strand breaks. In the presence of 
such lesions in the DNA, ATM sets 
off a wide array of signaling 
pathways by directly 
phosphorylating numerous 
substrates. Among the processes 
modulated by ATM are cell-cycle 
checkpoints, apoptosis, DNA repair, 
gene transcription, and protein 
degradation. The interactions shown 
in the map are selective: the entire 
network of all ATM interacting 
proteins plus their own documented 
interactions contains more than a 
hundred proteins with dozens of 
interconnections. This figure was 
generated using our SHARP tool 
which is described in detail in 
Section 4.2. Briefly, violet nodes 
correspond to proteins; green nodes 
to protein complexes, and yellow nodes to protein families. Blue edges represent regulations: arrows correspond to activation; T shape edges – to 
inhibition; and open circles denote regulations whose effect is still not clear. Green edges represent association between nodes (e.g., association 
between a protein complex and its components). Red and green dots within a node indicate that not all the regulations and associations  stored in 
SHARP database for the node are displayed in the map.   
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Notable examples for ATM substrates are p53 that mediates the activation of G1/S 

checkpoint, DNA repair and apoptosis; the phosphorylation of the cell cycle 

checkpoints CHK1 and CHK2; and BRCA1 (for a recent review see [115]). A 

recurrent mode of operation in the tactic taken by ATM in modulating downstream 

pathways is its parallel regulation of several players within a target pathway.  For 

example, ATM stimulates p53 activity by its phosphorylation on Ser 15 and augments 

this activation by directly phosphorylating MDM2 and MDMX [116] which interfere 

with their inhibitory effect on p53. In an analogous manner, ATM phosphorylates 

both BRCA1 and its inhibitor CtIP to achieve robust activation of this response arm 

[117, 118].    

We are only just beginning to understand the very early events that lead to ATM 

activation in response to DSB. Recent evidence suggests that the complex containing 

the DNA repair proteins Mre11, Rad50 and Nbs1 (MRN complex) acts as sensor of 

DSB and is responsible for the recruitment and activation of ATM at DNA damage 

sites [119, 120]. In a proposed model, Mre11 and Rad50 form structural bridges 

between free DNA ends at DSB sites via the coiled-coil arms of Rad50 dimers, and 

NBS1 facilitates the recruitment of ATM and other downstream effectors by protein-

protein interactions [121]. The nuclease activity of the MRN complex exerted by 

MRE11, which resects broken DNA ends to produce single-strand ends, was shown to 

be required for the activation of ATM. 

The gene that encodes ATM is mutated in patients with the autosomal recessive 

disorder ataxia-telangiectasia (A-T). A-T is a devastating multifaceted disorder 

characterized by progressive degeneration of the cerebellum leading to severe 

neuromotor dysfunction; immunodeficiency that stems from compromised 
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functioning of both the B- and T-cell arms of the immune system; premature aging; 

growth retardation; and extreme predisposition to cancer, mainly of lymphoid origin 

[101]. Significantly, A-T patients show acute sensitivity to ionizing radiation and 

other radiomimetic chemicals and therefore cannot be treated effectively for cancer 

using radiotherapy and commonly used chemotherapies.    

The pleiotropic nature of A-T points to the high complexity of the DNA damage 

network and its essential role in the maintenance of proper functioning cells and 

tissues. The connection between compromised DNA damage response and cerebellar 

degeneration in A-T was intensely debated for many years. It was even suggested that 

in contrast to its role as a nuclear DNA damage protein in proliferating tissues, ATM 

plays other roles as a cytoplasmic protein in post-mitotic neurons of the CNS [122, 

123]. Recent findings brought this debate to an end. One finding is associated with the 

discovery of the genetic disorder ATLD (AT-like disease), which shares many 

common features with A-T, including the cerebellar degeneration [124]. The 

responsible gene encodes the MRE11 DNA nuclease protein. This similarity between 

the two diseases suggested that the MRN complex is required for ATM activation by 

DNA damage. This was experimentally confirmed by Uziel et al. [120], strongly 

suggesting that the cerebellar degeneration in both A-T and ATLD results from the 

defective DNA damage response. Moreover, Frappart et al. [125] recently showed 

that while inactivation of the murine Nbs1 gene, which encodes the Nbs1 subunit of 

the MRN-complex, is embryonic lethal, its conditional inactivation in neural tissues 

results in a combination of neurological anomalies, including cerebellar defects and 

ataxia.     
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1.8. Signaling pathway databases 

The complexity of the networks that regulate cellular physiology is growing 

commensurate with the enormous growth in biological knowledge. It is now clear that 

proteins that carry out physiological processes do not function in isolation, but rather 

as units of large multi-protein complexes. And, biological pathways that govern 

cellular development and responses to environmental challenges are not linear, 

parallel, and independent, but form an intricate web of interlocking processes tightly 

controlled by various logics of positive and negative feedback loops [126, 127].  

Given this high degree of complexity, it is essential to develop computational 

means for processing, presenting and analyzing cellular signaling networks. However, 

at present, most biological knowledge resides as free text in archives of scientific 

journals. Before it can be processed by computers, it has to be transformed into 

symbolic form using a highly structured language. This process is complicated by the 

fact that the same protein is often referred to by different aliases in different 

publications, and the same designation is sometimes assigned to several different 

proteins. Such ambiguities can be avoided by basing the symbolic representation of 

biological knowledge on standardized vocabularies and controlled nomenclature, 

where possible.  

The need to represent biological knowledge in formal language within electronic 

knowledgebases (KBs) is well recognized and several have been established in recent 

years. Most of them (e.g., EcoCyc [128], KEGG [129], WIT [130]) focus on 

metabolic pathways in lower organisms, which at present are the most characterized 

pathways. KBs for signal transduction pathways in higher eukaryotes are also coming 

on the scene (e.g., CSNDB [131], TRANSPATH [132], aMAZE [133, 134], BIND 

[135] and Reactome [136]).   
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In addition to their contribution as central repositories for data on protein-protein 

interactions, biochemical reactions and signaling pathways, and making these data 

available in a form amenable to computational analysis, these KBs are becoming an 

essential part of the analysis of data obtained by high-throughput functional genomics 

technologies. When examining the effect of a certain perturbation on the cellular 

transcriptome, hundreds of genes are typically found to respond. A major challenge is 

to understand the biological meaning of the observed modulation of the 

transcriptional program. Microarray publications usually provide long lists of genes 

that were found to respond to certain stimuli, but making global sense of the 

biological endpoints from such lists is very difficult. One way to tackle this task is to 

systematically integrate these results with current biological knowledge. One of the 

first tools for the integration of microarray data with extant biological knowledge was 

GeneMapp [137]. This tool provides a software environment for drawing pathways by 

the users, and once a pathway is drawn and submitted, it is posted on the web and can 

be utilized by the research community. Maps for canonical processes such as cell 

cycle, apoptosis and metabolic cycles were contributed by various researchers and are 

available from the GeneMapp website (http://www.genmapp.org/default.asp). Using 

GeneMapp, expression data can be linked to the drawings and used for coloring the 

maps. The user can navigate among the different maps to seek out those that are 

densely colored by the data, pointing to the activation/repression of the respective 

pathway in the analyzed dataset. The main drawback of this approach is that 

representing the knowledge in such a drawing, rather than storing it in a strictly 

structured DB, precludes its algorithmic processing by computers. In addition, the 

maps are not connected to each other, and are not updated on a regular basis.  
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Cytoscape [138] is another software environment for integrating high-throughput 

data (on cellular transcriptome, proteome, or interactome) with current knowledge on 

biomolecular interaction networks. In addition to providing network visualization 

utilities, Cytoscape implements a powerful computational approach that helps 

elucidate pathways and processes that are responsive in the analyzed dataset. It 

superimposes the user's high-throughput input dataset on the entire genome-wide 

network and, with no bias by the researcher's assumption about the responding 

pathways, searches this global map for local regions that are significantly enriched for 

responding genes [139]. 
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2. Research goals and specific aims 
 

The major goal of my research was to develop bioinformatics approaches for the 

analysis of gene expression microarray data and to apply them to the study of DNA 

damage response networks, with special emphasis on the role of ATM. 

Specific aims: 

• Develop new methods for the analysis of gene expression data. 

• Apply these methods as well as existing, state-of-the-art computational 

techniques to experimental datasets in order to delineate transcriptional 

responses to DSBs in mouse tissues and human cells. 

• Use these methods to identify ATM-dependent components in the 

transcriptional network induced by DSBs.  

• Identify by computational means transcription factors that control the 

transcriptional response induced by DNA damage, and dissect the damage 

response network into arms mediated by these regulators. 

• Elucidate biological endpoints of the transcriptional program induced in 

response to DNA damage. 
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3. Methods 

3.1. Integrative approach for analysis of gene expression 

data 

A large-scale, gene expression microarray project that was carried out in our lab 

yielded an enormous amount of data. Mining meaningful biological insights from the 

raw data poses a major bioinformatic challenge. We adopted an integrative approach 

for the analysis of the data that includes the following steps: 

- Intensity signal extraction. 

- Chip normalization. 

- Gene clustering and biclustering based on the chip data. 

- Enrichment analysis of functional categories and cis-regulatory promoter 

elements. 

- Superposition of the microarray data on signaling maps that reflect current 

knowledge on cellular signal transduction pathways.  

The methods and algorithms applied at each step are described below. The 

analysis flow is presented in Fig 3.1.1. This integrative approach was designed and 

developed in Prof. Ron Shamir's group by Amos Tanay, Chaim Linhart, Roded 

Sharan and myself. Each application was first implemented and tested separately, and 

then integrated into a general analysis platform by Adi Maron and Israel Steinfeld. 

This integrated package, called EXPANDER, serves as the central platform for the 

integration of all the microarray data analysis algorithms developed in our lab 

(http://www.cs.tau.ac.il/~rshamir/expander/) (see Appendix A for a manuscript we 

recently submitted that describes EXPANDER in detail).   
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Figure 3.1.1. Analysis flow 
of gene expression datasets. 
A flow chart illustrating our 
analysis of gene expression 
datasets. This integrated 
approach starts with the 
initial preprocessing steps of 
signal extraction, 
normalization and filtering, 
and continues through 
partition analysis (clustering 
or biclustering) to high-level 
statistical analyses that seek 
enriched functional 
categories and cis-regulatory 
promoter elements in the 
clusters/biclusters. In the last 
step, we superimpose the 
results on signaling maps that 
reflect current biological 
knowledge. Algorithms and 
tools applied in each step are 
indicated. This approach is 
implemented in the 
EXPANDER package developed in our lab. 

 

Extraction of expression signals. Our microarray project uses the Affymetrix 

GeneChip technology. In these arrays each target is probed by a set of 11-20 pairs of 

perfect-match (PM) and mismatch (MM) probes, each of which is 25 bp long and is 

complementary to a different region along the respective mRNA molecule. Arrays 

were scanned using an Affymetrix supplied scanner, and images were analyzed using 

Affymetrix image analysis software to yield 'CEL files' that assign an intensity level 

for each probe ('cell') in the chip. Several methods are used for summarizing the 

intensity levels obtained for probes in the same probe set into a representative signal 

that is indicative of the expression level of the respective target gene [47]. 

The most naïve approach was applied by Affymetrix Microarray Analysis Suite 

version 4 (MAS 4). The following model was assumed to describe the relationship 
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between the intensity of signals measured by the probes in a specific probe set, and 

the expression level of their target gene (i.e., the concentration of the gene's RNA): 

PMij – MMij = θi + εij 
 

Where:  
i=1,..,I is the index of the chip (in an experiment that includes I chips) 
j=1,…,J is the index of the probe within a probeset.  
PMij is the signal measured by PM probe j of the probeset in chip i. 
MMij is the signal measured by MM probe j of the probeset in chip i. 
θi is the expression level of the target gene in the sample probed by chip i.  
εij is a term that reflects random error assumed to have an identical distribution 

over all probes in the probe set and over all conditions.  
  
This model assumes a constant additive error term. Therefore, an appropriate statistic 

of the probeset signals is an arithmetic average: 

Ei = Σ(PMij-MMij)/N*  
 
In practice, outlier probe pairs (i.e., their difference deviates from the mean difference 

by more than 3 standard deviations) are excluded from the sum.  

 
Affymetrix Microarray Analysis Suite version 5 (MAS 5) refined the model after 

observing that the measurement error is generally proportional to the probe signal, 

and therefore introduced a multiplicative error term (see Affymetrix technical report, 

http://www.affymetrix.com/products/software/index.affx): 

 
PMij-MM'ij = εij* θi  

The measurement error is therefore: (εij - 1)* θi, and we can write equivalently: 

log(PMij-MM'ij) = log(θi) + log(εij);  

Here it is assumed that the error terms εij follow log-normal distribution. MM' stands 

for mismatch signals that are manipulated in cases where they are above perfect-

match values to prevent negative values in the log transformation.  

 
The summary Ei of the probeset signals that is appropriate to this model is a 

(weighted) average over logarithm of the signals.  
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Log(Ei) = Σwj*Log(PMij-MMij)  

The wj weights are computed using Tukey biweight's function, in which the distance 

of each data point from the median determines how each value is weighted. Outliers 

far from the median contribute little to the average making the summary resistant to 

them. 

Li and Wong [140] observed that the variability among signals measured by 

different probes within a probeset is very large. Therefore they introduced into their 

model a parameter that captures this probe affinity effect. Denote by αj the affinity 

effect of probe j, the model assumes the following relationship:  

PMij – MMij = αjθi + εij. 
 
Multiple arrays are required in order to fit a model and to obtain good estimates 

for the α parameters. Ei, the estimator of θi, is obtained using linear least square 

procedure. This method for computation of probe signals from Affymetrix chips is 

implemented in the dChip tool [140].  

Recently, the Robust Multi-array Average (RMA) method was introduced and 

was demonstrated by several studies to outperform the other methods [47, 141]. 

Notably, these studies questioned the utility of the MM probes as negative controls 

and recommended ignoring them in the computation of intensity signals (the MM 

signals are still utilized in estimation of global background signals, which we do not 

discuss here). RMA assumes the following model: 

Log(PM'ij) = log(αj θi)  + εij

where PM' denotes PM values after background correction and normalization; αj is 

the affinity effect of probe j; and the error terms εij are assumed to follow a normal 

distribution.  

RMA estimates θi using a robust linear fitting procedure.  
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In the early stages of our project, we used the MAS 5.0 method for extraction of 

intensity signals. After RMA was published we utilized it, in its implementation 

provided by the BioConductor project [142].  

Arrays normalization. The comparison of expression levels measured under different 

conditions should be preceded by removal of systematic biases between arrays. The 

process of removing such biases is called normalization, and several methods were 

developed for this task. The normalization scheme implemented by Affymetrix 

analysis software is a basic one that computes a single scaling factor per chip. 

Multiplying all intensity signals in an array by the scaling factor brings the average 

signal to a fixed predefined level.  

Several studies pointed out that systematic variation between chips is often 

intensity- or spatially-dependent [141, 143]. Such non-linear biases cannot be 

removed by global scaling and necessitate more advanced approaches. Yang et al. 

[143] introduced the lowess normalization scheme that computes a normalization 

function using local regression. Using lowess, the mean signal is equalized among the 

arrays over the entire range of intensities (neutralizing non-linear, intensity-dependent 

biases), and between all spatial sectors on the chip. An even more stringent 

normalization scheme, quantile normalization, was introduced by Bolstad et al. [141]. 

This scheme forces the distribution of signals in all analyzed chips to be identical. A 

recent comparative study reported that quantile normalization outperforms the other 

methods in removing systematic biases while retaining true biological variation. In the 

first phases of our project, chips were normalized using global scaling. Later, we 

adopted quantile normalization.  

Filtering. After normalizing the arrays to a common scale, we focus our high-level 

analyses on the set of responding genes; that is, we filter out genes that are either not 
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expressed in the probed conditions or do not respond to the examined perturbations. 

First, we filter out probesets that get 'Absent' calls by Affymetrix software across all 

the arrays in the dataset. Typically, signals of such probesets are at the lower tail of 

the intensity distribution, close to the level of background noise. Then we scan the 

data for genes that show a variation above a predefined threshold across the probed 

conditions.  

The number of replicates used in our experiments (2-3 repeats) usually does 

not allow sufficient statistical power to robustly detect differentially expressed genes; 

rigorous statistical tests at this stage usually pass too few genes for subsequent 

analyses. Therefore, at this initial filtering step, we usually apply a naive fold-change 

(FC) filtering criterion. Statistical tests with controlled rate of false positive 

discoveries are applied in our downstream analyses in order to detect global 

phenomena within the set of responding genes. As a default we use FC threshold of 

1.75. Affymetrix reported that such a threshold corresponds to an average of 5% false 

positives in a single differential experiment without replicates [18]. Before applying 

this filtering scheme we set a floor intensity level: all intensities below a certain floor 

level are set to this level to reduce false calls in the low intensity range. We set the 

floor level to the 75th percentile intensity of the distribution of the 'Absent' probesets. 

Identification of major expression patterns in the dataset. In the next step, we subject 

the set of responding genes to cluster analysis. Clustering algorithms that are applied 

to gene expression data partition the genes into distinct groups according to their 

expression patterns over a set of experimental conditions. Such partition should assign 

genes with similar expression patterns to the same cluster (keeping the homogeneity 

merit of the clustering solution) while retaining the distinct expression pattern of each 

cluster (ensuring the separation merit of the solution). Cluster analysis eases the 
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interpretation of the data by reducing its complexity and revealing the major 

underlying expression patterns. We used several clustering algorithms, including 

SOM [20], K-means [58], hierarchical clustering [144], and CLICK [145]. The last 

one is a graph theory-based algorithm developed in Shamir's group by Roded Sharan. 

CLICK was demonstrated to outperform other algorithms according to several 

objective figures of merit  [146].  

As expression data accumulate and profiles over hundreds of different 

biological conditions are readily available, clustering becomes too restrictive. 

Clustering algorithms globally partition the genes into disjoint sets according to the 

overall similarity in their expression patterns; i.e., they search for genes that exhibit 

similar expression levels over all the measured conditions. Such a requirement is 

appropriate when small to medium size datasets from one or a few related 

experiments are analyzed, as it provides statistical robustness and produces results 

that are easily visualized and comprehended. But when larger datasets are analyzed, a 

more flexible approach is needed. A bicluster is defined as a set of genes that exhibit 

significant similarity over a subset of the conditions. A biclustering algorithm can 

dissect a large gene expression dataset into a collection of biclusters, where genes or 

conditions can take part in more than one bicluster. A set of biclusters can thus 

characterize a combined, multifaceted gene expression dataset [147]. For this analysis 

we utilize SAMBA (Statistical-Algorithmic Method for Bicluster Analysis), an 

algorithm that was developed in Shamir's group by Amos Tanay and Roded Sharan 

[148].    

Functional enrichment analysis. After identifying the main co-expressed gene groups 

in the data (either by clustering or biclustering), one of the major challenges is to 

ascribe to them a biological significance. To this end, we applied statistical analysis 
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that seeks specific functional categories that are significantly over-represented in the 

analyzed gene groups with respect to a given background set of genes. This analysis 

utilizes functional annotation files that associate genes with functional categories 

using the standard vocabulary defined by the Gene Ontology (GO) consortium 

((http://www.geneontology.org/), [149]). The statistical significance of the enrichment 

of a specific cluster for genes from a particular functional category is determined by 

computing the upper tail of the hypergeometric distribution (see, for example, [58]), 

taking into account the number of genes represented on the chip that are associated 

with this functional category. While certain genes are represented by several probe 

sets, to avoid biases, each gene is counted only once.  

The functional enrichment module integrated in EXPANDER currently 

supports six organisms: yeast (S. cerevisiae), worm (C. elegans), fly (D. 

melanogaster), rat (R. norvegicus), mouse (M. musculus) and human. We compiled 

annotation files for these organisms based on data provided by the GO consortium 

and by the central databases for these organisms.  

  An improved module for functional enrichment analysis was recently 

integrated in EXPANDER. The TANGO (Tool for ANalysis of GO enrichments) 

algorithm developed by Amos Tanay (manuscript in preparation) accounts better for 

extensive multiple testing typically done in such analysis (hundreds of categories are 

typically tested for enrichment). While standard methods for accounting for multiple 

testing assume independent tests (e.g., Bonferroni, False Discovery Rate), the 

hierarchical tree-like structure of the GO ontology induces strong dependencies 

among the categories. TANGO accounts for these dependencies, thus yielding more 

reliable p-value estimations.  
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Cis-regulatory element analysis. Microarray measurements provide snapshots of 

cellular transcriptional programs that take place in the examined biological 

conditions. These measurements do not, however, directly reveal the regulatory 

networks that underlie the observed transcriptional activity, i.e., the transcription 

factors (TFs) that control the expression of the responding genes. Computational 

promoter analysis can shed light on the regulators layer of the network (see Section 

1.5). We developed the PRIMA tool for this task (PRIMA is described in Section 4.1) 

and routinely apply it to gene expression datasets to discover TFs that control the 

observed alteration in the cellular transcriptome. 

Superposition of gene expression data on signaling maps. Knowledgebases for 

signaling pathways are becoming highly instrumental in the analysis of high-

throughput data in general, and gene expression in particular. A simple way to 

integrate gene expression data with extant biological knowledge is to present 

microarray results on signaling maps. This can be done, for example, by coloring 

genes in the maps according to their expression levels. Such coloring points to sub-

regions in the network that are turned on or shut down in response to the examined 

perturbations. Such sub-regions will correspond to subgraphs densely populated with 

genes that are induced or repressed in the dataset. We use our SHARP tool for this 

task (SHARP is described in Section 4.2). 

Applying this integrative approach to analysis of gene expression datasets 

allows us to systematically identify major expression patterns in the data (by applying 

cluster or bicluster analysis), assign clusters with putative functional roles (based on 

the enriched functional categories), and reveal transcription factors that underlie the 

transcriptional response exhibited by the clusters (using PRIMA). Superposition of 

the data on signaling maps using SHARP helps us to identify active pathways and to 
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generate hypothetical mechanistic models for cellular networks that respond to 

various stresses. Gene expression projects in which we applied this flow of analysis 

are described in Sections 4.5 and 4.6.  
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4. Results 
The results of six projects are presented in this thesis. Section 4.1 describes our 

promoter analysis tool PRIMA (PRomoter Integration in Microarray Analysis) and 

Section 4.2 presents the signaling knowledgebase SHARP (SHowcase of ATM 

Related Pathways).  Section 4.3 describes a project in which we demonstrate that the 

reverse engineering approach can successfully delineate transcriptional networks in 

human biological systems. As a test case we applied this approach to data on cell 

cycle progression in human cell lines. In Section 4.4 we further demonstrated how 

computational promoter analysis can be utilized in the analysis of ChIP-on-chip 

datasets. The c-Myc TF served as our test case. Section 4.5 presents a study in which 

we combined the microarray and siRNA technologies to dissect transcriptional 

network induced by DNA damage in human cell line. Finally, in Section 4.6 we 

applied our experimental and computational strategy to delineate transcriptional 

responses to ionizing radiation (IR) under physiological conditions: murine tissues 

from wild-type and Atm-deficient animals. 

4.1. PRIMA 

At the time we began this project, reverse engineering of transcriptional networks 

had been successfully applied only to lower organisms, such as E. coli and S. 

cerevisiae [55, 58, 73]. We were motivated to demonstrate that, notwithstanding their 

much higher complexity, networks that govern transcriptional networks in human 

cells can be elucidated by this approach as well. For this purpose Chaim Linhart of 

Ron Shamirs' group and I developed PRIMA (Promoter Integration in Microarray 

Analysis) for integrating computational promoter analysis in the analysis of gene 
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expression datasets. PRIMA is described in [150] (see Appendix B and 

http://www.cs.tau.ac.il/~rshamir/prima). Based on the assumption that genes that 

exhibit similar transcriptional expression patterns across multiple conditions share cis-

regulatory elements in their promoters, PRIMA computationally scans promoters for 

TF binding sites in search of these common sequence elements. In short, given a 

target set and a background set of promoters, PRIMA performs statistical tests aimed 

at identifying TFs whose binding site signatures are significantly more prevalent in 

the target set than in the background set. Technical details on PRIMA's principles of 

operation are given in this section. Projects in which we utilized PRIMA to delineate 

transcriptional networks in humans and mouse are described in Sections 4.3-4.6.   

A first requirement for PRIMA is the availability of genome-wide promoter 

sequences. Thus, we initially downloaded the entire human genome data assembled 

into genomic contigs by the NCBI Reference Sequence project [151] 

(ftp://ftp.ncbi.nih.gov/genomes/H_sapiens, release of June 2001). The version in 

which human repetitive sequences are masked was used (mfa files). From these 

genomic contigs, we extracted putative promoter sequences of known human genes 

based on their start annotations provided by NCBI (gbs files provided at the same url). 

Next, we had to determine the promoter region around the putative transcription start 

site (TSS) in which to search for transcriptional regulatory elements in human 

networks. We examined the location distribution of 1075 empirically validated TF 

binding sites in human promoters (data obtained from TRANSFAC database [152]). 

We found that some 80% of these elements were located within 1,200 bases upstream 

of the genes' TSS, and therefore confined our analyses to this region. Clearly, current 

knowledge is biased towards binding sites at short distances from the TSS. Certain 

regulatory elements are known to act over very large distances, up to several kilobases 
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from TSS; yet it is clear that ample information resides in sequences in close 

proximity to the TSS. At the time we began this project our promoter set contained 

sequences for putative promoter regions of 12,981 known human genes, each 1,200 

bp in length. We refer to this promoter set as the '13K set' (which can be downloaded 

from http://www.cs.tau.ac.il/~rshamir/prima/PRIMA.htm). Since the vast majority of 

the genes' TSSs in the human genome are not experimentally validated, it was 

important to estimate the quality of this promoter set by benchmarking it with 

experimentally validated human promoters extracted from the EPD database [153]. 

EPD contained validated promoter sequences for 247 distinct human genes. The 13K 

set contained promoter sequences for 180 of these genes. When the pairs of putative 

and validated promoters were aligned, the distance between the putative and true TSS 

was within 200 bp in 70% of cases.   

As part of the maintenance of PRIMA, we routinely update the promoter set with 

every major update of the human genome assembly. At present, in addition to human 

data, we have also extracted genome-wide promoter sets for all organisms supported 

by the Ensembl project [154]), using a Perl script based on the application 

programming interface provided by Ensembl. We have already downloaded putative 

promoter sequences for twelve organisms, including worms, insects, fish, chicken, 

rodents, dog and human. Ensembl TSS annotations are derived from alignment of 

cDNAs, ESTs and proteins sequences to the genomic sequence (for detailed 

description of Ensembl's method for gene building see [155]). Best TSS annotations 

are obtained for organisms for which large collections of full-length cDNAs are 

available (e.g., the FANTOM2 set for mouse [156] and the comprehensive human 

full-length cDNA libraries [157, 158]). In order to ensure that the quality of the 

annotated TSS in all organisms suffices for the detection of cis-regulatory elements, 
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we verified that the TATA-box signal detected by PRIMA peaks at the correct 

location, in the very proximity of the TSS, in each of the tested species (Fig. 4.1.1).  

 

 
 
Figure 4.1.1. Location distribution of TATA-box signal in 12 species. Promoter 
sequences spanning 3000 bps were scanned for hits of TATA-box using PRIMA. For 
each species, the promoters were divided into bins of 20 bps length, and the total 
number of TATA hits in all promoters was recorded for each bin. Y-axis represents 
the normalized counts in each bin. A very sharp peak was observed at the expected 
position (-30 relative to the TSS) in all organisms except Fugu, confirming the high 
quality of the TSS annotation. The peak values (in standard deviations) are shown in 
the legends.  
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In scanning promoters for putative TFBSs, PRIMA relies on extant information on 

binding site signatures of known TFs. PRIMA uses position weight matrices (PWMs) 

as models for TFBSs, and we obtained PWMs for known mammalian TFs from the 

TRANSFAC database [152] which has the largest PWM collection currently 

available.   

PRIMA was primarily designed to elucidate TFs that underlie the transcriptional 

response in gene expression datasets. In this context, PRIMA gets sets of co-

expressed genes (identified by cluster analysis), scans their promoters for TFBSs of 

known TFs, and identifies PWMs that are significantly over-represented in each 

examined set compared to some background set of promoters. Typically, the set of 

genes represented on the microarray or the set of genes that were expressed in the 

examined conditions serves as the background set in PRIMA's tests.  

Formally, given a PWM P of length l, both strands of each promoter are scanned 

by sliding a window of length l along the promoter. At each position of the window, a 

similarity score is computed between P and the corresponding subsequence of the 

promoter. Denote by p(i,j) the frequency of base i at position j in the PWM P. Given a 

promoter subsequence s1s2…sl, we originally defined its similarity to P as follows:  

∏
=

=
l

j
jl jspsssPsim

1
21 ),()...,(  

At later stages, we added an option to weigh each position by its information 

content, which gives further importance to matches in the BS core positions. The 

value of the information content at each position is between 0 – for positions with 

uniform distribution of the nucleotides ('low information') and 2 – for positions with 

absolute requirement for one specific nucleotide ('maximal information') [159]. In 

order to identify putative binding sites, or hits, of a TF, a threshold T(P) for the 
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similarity score of the TF’s PWM P is determined. Subsequences with a similarity 

score above T(P) are regarded as hits of P. The threshold T(P) is controlled by two 

parameters,  and β.  The first parameter controls the rate of hits of P in random 

sequences as follows: A set of 1,000 random promoters of the same length as the real 

promoters is generated by an order-2 Markov model learnt from the background 

promoters. A threshold T1 is computed, such that  percent of the random promoters 

contain one or more sites whose similarity score to P is above T1. For several PWMs, 

we observed that typical values of α (e.g., 5%-10%) yielded very low hit rates on the 

real promoters, which makes it difficult to reveal statistical enrichment for the 

corresponding TFs. Therefore, we introduced a second parameter, β, which controls 

the rate of hits of P in a background set of promoters. A threshold T2 is computed, 

such that a fraction of β background promoters contain one or more sites whose 

similarity score to P is above T2. The threshold T(P) is set as the minimum of T1 and 

T2. Default parameter values were empirically set to =10%, and β=10%. Although 

the choice of these particular parameter values is somewhat arbitrary, we observed 

that significant TF BS enrichments are not sensitive to a large range of settings for 

these parameters.  

Once a similarity score threshold is set, the PWM P is used to scan the promoters. 

Given a set B of n background promoters, and a subset T of m target promoters, we 

compute an analytical score for the observed enrichment of PWM P in T with respect 

to its abundance in B. Suppose there are h hits of P in T, where three hits at most are 

counted per promoter. Let n1, n2 and n3 denote the number of background promoters 

containing one, two, or at least three hits, respectively. Assuming that T is randomly 

chosen out of B, the analytical score for the probability of observing at least h hits in 

T is: 
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We examined the accuracy of our analytical scores by an empirical statistical 

procedure. We tested how often each of the PWMs with analytical score p<0.001 

received at least h hits on 10,000 random sets of promoters (analytical score < 0.001 

indicates that on average there should be less than 10 sets with at least h hits out of 

10,000 random sets). Each set was generated by randomly choosing a subset of m 

promoters from B. The empirical validations indicated that the analytical scores are 

reliable (after accounting for multiple testing).  

Transcriptional regulation in eukaryotes is to a large extent combinatorial. 

Therefore, in addition to the identification of TFs whose BSs are enriched in given 

target sets, PRIMA also applies a statistical test to identify pairs of TFs whose BSs 

tend to appear on common promoters much more frequently than would be expected 

by chance alone. Significant co-occurrence of TF signatures can point to regulatory 

interplays maintained among the respective TFs. Formally, given a set of m 

promoters, and a pair of PWMs, Pa and Pb, denote by fa, fb the number of promoters 

that contain a hit for Pa, Pb, respectively. Let fab be the number of promoters with a hit 

for both Pa and Pb. The p-value for observing fab or more promoters containing hits 

for both PWMs is: 
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Overlapping hits of Pa and Pb are omitted from counting.  

 

In its stand-alone version, an execution of PRIMA typically takes several hours to 

complete. To facilitate the execution of PRIMA from within EXPANDER, we added a 

preprocessing phase, which decreased the running time to only a few minutes on a 

standard PC. The preprocessing phase is run by us on occasions of major updates of 

genome sequence assemblies of the supported organisms (yeast, worm, fly, rat, 

mouse, and human). This step generates promoter-fingerprints file for each organism. 

These fingerprints files, which are supplied with EXPANDER, map computationally-

identified, high scoring putative binding sites (‘hits’) of all TFs to the entire set of 

promoters in the organisms. In the version integrated in EXPANDER, PRIMA loads 

the hits data from the fingerprints files rather than scanning promoter sequences de-

novo on each run, thereby enormously reducing the running time. This improvement 

greatly enhanced the flexibility of PRIMA, enabling its execution in an iterative way, 

in which results obtained by different clustering solutions can be routinely compared. 

The following sample PRIMA run demonstrates the drastic improvement in running 

time due to the use of fingerprints. A PRIMA analysis of target and background sets 

of 500 and 22,240 genes, respectively, that tested for enrichment of 430 PWMs in the 

region from -1000 to +200 relative to the TSS took 4 hrs and 48 min (some 40 sec per 

PWM) on a standard PC (Pentium 4 2.4 Ghz, 768 MB of RAM). The same run took 

less than a minute using the fingerprints file. 

  

4.2. SHARP – a DNA damage signaling knowledgebase  

We initiated and designed the SHARP (SHowcase of ATM Related Pathways) 

tool as a signaling pathway knowledgebase focused on ATM- and DNA-damage 
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related networks. SHARP, based on the PIVOT tool developed by Nir Orlev [160], is 

currently developed by Giora Strenberg, Ran Blekhman and Jackie Assa of our group. 

SHARP is expected to be officially released by September 2005. The tool is already 

operational and utilized in our lab and in several other labs serving as beta sites.  

Our motivation for developing this bioinformatic tool was two-fold. First, the 

complexity of the cellular responses to DNA damage is much higher than originally 

thought. The network regulated by the ATM protein exemplifies this high degree of 

complexity. Although our present understanding of ATM functions is only partial, the 

signaling network that involves all currently known ATM-interacting proteins, ATM 

substrates, and downstream effectors is already known to contain hundreds of proteins 

with dozens of interconnections (see Fig 1.7.1 in the Introduction). Given this 

complexity, the assimilation and interpretation of data become no less acute a 

problem than lack of data. We therefore realized that a computational environment for 

storing, visualizing and analyzing this signaling web had to be developed. Second, we 

envisioned SHARP as a pivotal component of our computational arsenal for analyzing 

the high volume of data expected from our gene expression microarray project. Using 

SHARP, we superimpose gene expression data on signaling maps to elucidate 

biological endpoints mediated by various ATM-dependent pathways. 

In this thesis I will describe in detail only the data model of SHARP, since this 

was the module in which I was most deeply involved. Other modules of SHARP 

software were designed and implemented by others and therefore are presented here 

only in general principles.    

SHARP’s data model.  We have devised a formal data model in which information 

on signaling interactions is summarized in a format amenable to computerized 

manipulation and analysis. Two fundamental requirements instructed our model: 
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First, the formal language should be of sufficient expressive power to capture 

information on most aspects of regulatory pathways. Second, it should be kept as 

simple as possible for easy entry of novel data by all SHARP users. Too complicated 

a model would hamper our goal that SHARP DB be populated primarily by the user 

community. With these considerations in mind, we designed a data model that is 

based on two basic types of objects: “biological entities” and “regulatory 

interactions”.  

1. Biological entities: SHARP data model comprises the following four biological 

entities: 

a. Genes/Proteins. Genes (and the proteins they encode) are the atomic elements 

of our model. To avoid ambiguities about the identity of genes, only characterized 

human genes that were assigned a formal designation by the Human Genome 

Nomenclature Committee (HGNC) are included in SHARP gene/protein space. At 

present, over 20,000 human genes have been assigned such unique symbols. 

b. Protein families. These families are groups of  isoforms (encoded by distinct 

loci) that share most of their biological activities. Well known examples are the JNK 

family which includes JNK1, JNK2 and JNK3 proteins (whose official names are 

MAPK8, MAPK9 and MAPK10), and the p38 family that is comprised of four p38 

isoforms officially designated as MAPK11-14. 

c. Protein complexes. These complexes are groups of proteins (or protein families) 

that carry out a specific function only when associated with their complex mates. For 

example, the DNA-damage sensor MRN complex is composed of three proteins — 

Mre11, RAD50 and NBS1; the NF-κB transcription factor is a hetrodimeric complex 

that is composed of two subunits, each a family of proteins (the first subunit is a 
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member of the Rel family that contains the Rel, RelA and RelB proteins; the second 

subunit is either NF-κB1 (whose common alias is p105) or NF-κB2 (p49/p100)).   

d. Small molecules. This entity enables the model to include descriptions of 

interactions involving or modulated by small signaling molecules such as GTP, 

cAMP, Ca++, etc. 

 

2. Regulatory interactions. The second object in our data model is the regulatory 

interaction. A regulatory interaction has the following structured form: 

[Source]  <regulatory mode> [Target]   

(e.g., ATM activates p53, p21 inhibits CycE-CDK2 complex). 

A regulatory interaction can be defined between any two biological entities or 

between a biological entity and another regulatory interaction. A regulatory 

interaction can have one of three modes: “promote/activate”, “inhibit/repress”, or 

“unknown”.  

A regulatory mode can be achieved by different biochemical mechanisms 

(phosphorylation, transcriptional regulation etc.). Each regulatory interaction (defined 

by its source, target and mode/effect) is associated with several attributes: the 

biochemical mechanism by which the regulation is driven, at least one supporting 

reference, its submitter, and reliability and status flags for quality control (see below).  

Allowing the definition of one regulation as the target of another regulation 

enhances the flexibility and expressivity of the SHARP data model. First, it enables 

our model to describe regulatory interactions that affect only a subset of downstream 

interactions emanating from its target, as illustrated in Fig 4.2.1a. In addition, it 

improves the specificity of the description, as demonstrated by the comparison 

between Fig 4.2.1b and Fig 4.2.1c. For regulations that act on other regulations, an 
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additional attribute is added: the physical target, which specifies the physical entity 

on which the biochemical interaction is exerted.  

 

Figure 4.2.1. 
SHARP data 
model. (a). The 
utility of adding the 
SHARP data model 
with the option to 
define regulation 
between a biological 
entity and another 
regulation. This type 
of regulation is 
helpful in cases where 
the effect of regulator 
A on target B is transmitted to some but not all targets of B. In this schematic example, A 
specifically inhibits the B-mediated activation of C. (b). A schematic representation of p53 
activation by Chk2. (c). Introducing a regulation between a biological entity and another 
regulation allows our model to be more elaborative. Here, we present the information that the 
activation of p53 by Chk2 is achieved by interfering with the inhibition of p53 by Mdm2 (See 
Hiaro A. et al. [161]). Therefore, the target of this regulation is the inhibition of Mdm2 on 
p53, and its physical target is p53.  

A

B

EDC

CHK2 p53

 
SHARP components. SHARP includes three main software modules: A database 

(DB) for signaling interactions, a visualization package for presenting pathway maps, 

and an algorithmic engine for analyzing the networks.  

 SHARP DB for biological interactions. SHARP data model is implemented in a 

relational database using MySQL as the DB management system (DBMS). SHARP 

contains data from two sources: 1) interactions inserted individually by SHARP users;  

and 2) data imported en masse from general signaling pathway DBs (we have already 

imported data from KEGG [129] and plan to import data also from the Reactome 

[136] and BIND [162] DBs). Data uploaded by SHARP users will focus on pathways 

intimately related to ATM, such as cell cycle checkpoints, DNA repair, and apoptosis. 

Data loaded en masse will cover many other aspects of cellular signaling, which will 

facilitate novel discoveries on functional relationship between ATM and various 

physiological processes (such as energy metabolism, transcriptional regulation, 

3A. 3B. 

3C. 

MDM2 p53

CHK2

b.a.

c.
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protein turnover, RNA processing). Having these two sources combined should 

produce a high volume of data in the SHARP DB, which will be especially 

comprehensive on pathways closely related to ATM. At present, we have already 

populated SHARP DB with several hundred interactions pertinent to ATM signaling. 

We decided that SHARP DB will contain only direct regulatory interactions although 

the model supports both direct and indirect interactions.  

 The issue of data quality is tackled by several means. Each submission is 

attached with reliability and status flags. The reliability flag is set by the user who 

uploads the data and reflects the confidence the user ascribes to it; in general, 

interactions derived from highly focused biochemical studies are assigned high 

reliability, while those derived from high-throughput experiments are assigned low 

reliability. The status flag is set to 'Draft' at the time of submission. SHARP curators 

will review all new submissions, decide whether to accept, edit or reject the submitted 

data, and set the status flag accordingly. SHARP visualization module allows the 

filtering of displayed data according to their reliability and status values.  

Standardization of metadata is important in the context of signaling DBs, but there 

are no standard widely-accepted ontologies for summarizing biological experimental 

details. A collective effort for their definition is required by the biomedical research 

community (similar to the MIAME standards for microarray experiments' metadata). 

Once such standardization is defined, SHARP will be adjusted to support it. 

Currently, each regulation is linked to at least one supporting reference from which 

details on experimental conditions can be retrieved. Standard nomenclature is both 

available and critical for genes' identifiers, and therefore is strictly enforced by 

SHARP – genes are uniquely referred to by their official HUGO symbol. In addition, 

in order to impose basic uniformity, fields that describe the regulation are provided as 
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closed vocabularies (e.g., regulation effect is defined as 'promote', 'inhibit', 'unknown'; 

regulation mechanism is selected from a closed list of biochemical processes: 

'phosphorylation', 'transcriptional regulation', 'ubiquitination' etc). 

SHARP visualization package. SHARP pathway visualization module, based on the 

PIVOT protein visualization tool that was developed in our lab by Nir Orlev [160], 

allows dynamic presentation of the biological interactions stored in the DB and 

gradual navigation through the networks.  Researchers can manipulate the graph 

interactively, control its layout, expand or collapse selected segments, and retrieve 

further information on both biological entities and displayed interactions. Another 

utility supported by SHARP visualization module is the superposition of functional 

genomics data onto the signaling map to color it according to supplied experimental 

results (Fig 4.2.2). 

SHARP algorithmic inference engine. This module is not yet implemented. We plan 

to include in it basic graph analysis utilities such as: the path-finding algorithm that 

will enable the user to find the shortest path(s) of interactions connecting two selected 

entities in the network; and more sophisticated tasks such as identification of 'hot-

spots' in the entire network given high-throughput results. Examples of the latter are  

identification of sub-regions that are significantly dense for genes/proteins that show 

some property of interest and thereby point to active pathways in the analyzed dataset, 

and identification of apparent discrepancies between interactions in the network and 

experimental data. 
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Figure 4.2.2. Superposition of gene expression data on signaling maps using 
SHARP. SHARP enables the user to superimpose functional genomics data on 
pathway maps, enhancing the interpretation of such data. In this example, the map of 
the p53-mediated transcriptional network was superimposed with gene expression 
data measured 4 hrs after exposure of human lymphocyte cells to ionizing radiation. 
The color of the bar above gene nodes indicates its response in the dataset. 
Upregulated genes are reddish in color: the darker the read the greater the fold of 
induction. Downregulated genes are colored green. Genes whose expression was not 
changed are yellow, and genes for which data are not available (e.g., genes not present 
on the microarray) are grey.  Superimposing the data on this map clearly shows that 
the p53 network was activated by the examined stress. SHARP also allows 
superimposition of clustering data: any division of the genes into groups (according to 
GO annotation, cellular compartment, clustering algorithms, or user-specific 
definitions) can be viewed on the pathway map (not shown). (Explanation of the 
different types of nodes and edges displayed in SHARP maps is detailed in the legend 
of Fig 1.7.1). 
 

SHARP architecture. SHARP currently operates as a stand-alone package, and is 

installed and used by seven research labs serving as beta-sites. The first official 

release of SHARP 1.0, planned for November 2005, will be based on a decentralized 

database architecture, in which a local copy of SHARP database is installed in each 

research lab, and the databases are periodically synchronized. Data exchange between 
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the local DBs will be based on the SHARP XML scheme that was developed for this 

and other interoperability goals. SHARP 2.0 will be upgraded to a web-based system, 

allowing the worldwide ATM and DNA damage research communities to benefit 

from one central database.  

 
SHARP – Limitations. The data model we have devised is intentionally simple, 

facilitating easy uploading of data by many end-users and rapid implementation of the 

project. Despite its simplicity, the model can describe most aspects of signal 

transduction pathways. However, at this stage it does not account for the following 

elements: 

A. Metabolic reactions. SHARP is focused on signaling pathways rather than on 

metabolic ones. Its model, which is based on the structure “Source regulates Target”, 

is adequate for describing signal transduction pathways, but not for metabolic cycles 

where the structure “reactants – enzyme – products” is more suitable.   

B. Splice variants. Since there is still no accepted nomenclature for different splice 

variants originating from the same gene, and since details on the specific variants that 

participate in reported interactions are usually missing in current publications, we feel 

it is premature to cover this aspect at this point. It is known, however, that some 

interactions are carried out only by certain splice variants of a gene and not by others.  

C. Cell-type specificity. Currently, SHARP represents a “generic” cell in which all 

regulations potentially take place. Yet, some interactions may be specific for certain 

cell types. Again, we felt that current knowledge is not sufficient to add a cell-type 

layer to the data.  

D. Quantitative aspects. Our model is a qualitative one. Any quantitative aspect that 

might affect the interactions is not modeled (for example, certain interactions are 

reported only when a physiological trigger rises above a certain threshold). 
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E. Single organism. SHARP currently supports regulatory data obtained in human 

cellular systems.  

Despite these limitations, SHARP design is general enough to allow its adjustment to 

support many of the above features in the future, as biological knowledge expands 

and standard ontologies and nomenclatures are become widely accepted. 

4.3. Reverse-engineering of transcriptional networks in 

human cells – analysis of cell cycle regulation as a test case 

This project was carried out in collaboration with Chaim Linhart and Roded 

Sharan from Prof. Shamir's group. Its results were published in [150], which is 

attached as Appendix B of this thesis.  

  

Reverse engineering infers regulatory mechanisms from gene expression patterns. 

Several studies have applied this approach to discover novel transcriptional networks 

in yeast (see Section 1.5 and [55, 73]). In this study we utilized human genomic 

sequences, models for binding sites of known transcription factors, and gene 

expression data to demonstrate for the first time that reverse engineering can disclose 

transcriptional networks in human cells despite their greater complexity compared to 

yeast.  

In this project we introduced the PRIMA tool for computational promoter analysis 

(see Section 4.1). Our test case was the transcriptional mechanisms that control cell 

cycle progression in human cells. Our first task was to use in-silico analysis to 

identify TFs that cooperate with any particular TF of interest. The scheme of the 

analysis is as follows: A set of promoters of genes that are directly regulated by the 

TF of interest (termed 'targets' of this TF) is constructed and scanned for over-

represented binding sites corresponding to other TFs. Such over-representations may 
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point to a functional link between the over-represented TFs and the TF of interest. We 

used this scheme to ferret out TFs that cooperate with E2F. Since robust statistics 

require the largest possible set of E2F targets, we used recent results published by Ren 

et al. [26], who combined ChIP (chromatin immunoprecipitation) and microarray 

technologies to identify 124 genes whose promoters bind either E2F1 or E2F4 in-

vivo. Our 13K set of human promoters (see Section 4.1) contained promoter 

sequences for 103 of these genes. This set of E2F target promoters was scanned with 

experimentally-derived position weight matrices (PWMs) for 107 human TFs (PWMs 

were taken from TRANSFAC database [152]). The occurrence frequencies of each 

PWM in the E2F target set and in the 13K set, which served as a background set, were 

compared, and an analytical score computed for the significance of its observed 

abundance in the E2F target set (see Section 4.1 for details on statistical 

computations). For PWMs that achieved a highly significant analytical score, we 

applied an additional empirical test vs. random promoter sets. We determined the 

occurrence frequency of those high-scoring PWMs on 10,000 subsets of promoters 

that were randomly chosen from the 13K set and with the same size as the target set 

(103 promoters). We report only PWMs whose abundance on the E2F target set was 

significantly higher than on the random sets. The screening criterion that we applied 

corresponded to p<0.05 after accounting for multiple testing. We identified four 

significantly enriched PWMs in the E2F target set (Table 4.3.1). As expected, the 

PWM of E2F itself is highly enriched in this set. Since E2F is a true positive in this 

set, the identification of its PWM demonstrates the sensitivity of our approach for 

detecting true signals. PWMs of three TFs — NF-Y, CREB and NRF-1 — were also 

significantly enriched, pointing to possible functional links between these TFs and 

E2F. 
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TF  
Number of 

promoters with 
hits 

Number of hits Analytical p-val 
Rank relative to 

abundance in 
random sets 

E2F  
(M00516) 28 35 1.9x10-10 1 

NF-Y 
(M00185) 44 64 1.7x10-14 1 

CREB 
(M00113) 28 41 2.5x10-5 1 

NRF-1 
(M00652) 32 77 3.1x10-4 3 

 
Table 4.3.1. Enriched TF PWMs in promoters of E2F target genes. A set of 103 promoters 
corresponding to E2F target genes reported by Ren et al. [26] was scanned for over-
represented binding sites corresponding to 107 human TF PWMs. Four significantly 
enriched PWMs were found. Indicated for each one are: the number of promoters with 
hits of the PWM and the total number of hits of the PWM (some promoters have multiple 
hits of a PWM), the analytical score for observing such enrichment, and the rank of the 
PWM's abundance in the E2F target set relative to its abundance in 10,000 sets of 
randomly selected promoters of the same size as that of the E2F target set. Similarity 
score thresholds for declaring hits were stringently determined in order to enable 
identification of real enrichments in the examined set. Therefore, the number of 
promoters having E2F binding sites in this E2F target set is underestimated. Nevertheless, 
the observed occurrence rate of E2F is highly significant. Notably, the enrichment of the 
NF-Y PWM in this set is even more significant than the enrichment of the E2F PWM. 

 

Next, we utilized functional annotation data to delineate regulatory 

mechanisms. Hughes et al. [77] demonstrated that groups of functionally related 

genes in S. cerevisiae often share common cis-regulatory elements in their promoters. 

Hence, analyzing promoters of genes with common function could reveal regulatory 

elements characteristic of specific functional categories. We examined whether this 

approach could be applied to human promoters, using the functional categorization of 

human genes provided by the LocusLink DB [151], which adopts the standard Gene 

Ontology vocabulary for description of biological processes [149]. We focused on 

four cell cycle-related categories: cell cycle control, mitotic cell cycle, DNA 

metabolism, and M phase (some genes are assigned to several functional categories, 

hence the groups are not mutually exclusive). The methodology described above was 
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applied to each category, again using the 13K set as the background set and scanning 

with all 107 PWMs. Significantly enriched PWMs were disclosed in all functional 

categories (Table 4.3.2). The E2F PWM is enriched in all categories, reflecting its 

central role in regulating these processes. Notably, it is enriched in promoters of genes 

known to function in the M phase of the cell cycle. This is in accordance with recent 

studies [163, 164] showing that E2F's role in controlling the cell cycle goes beyond its 

previously documented control of the entry into the S phase. NF-Y and NRF-1 PWMs 

are enriched in three out of the four categories, Sp1 PWM is enriched in the cell cycle 

control and DNA metabolism categories, and ETF and ATF PWMs are enriched in 

the cell cycle control and the M phase categories, respectively. 

Biological 
process category 

Number of 
genes TF  Analytical p-val 

Rank relative to 
abundance in 
random sets 

ETF (M00695) 1.5x10-7 1 
E2F (M00516) 1.5x10-6 1 

NRF1 (M00652) 2.5x10-5 1 
Cell cycle control 

(GO:000074) 223 

Sp1 (M00196) 2.5x10-4 4 (2) 
E2F (M00516) 1.4x10-9 1 

NF-Y (M00185) 1.3x10-4 1 (2) 
Mitotic cell cycle 

(GO:0000278) 175 
NRF1 (M00652) 1.6x10-4 1 
E2F (M00516) 6.7x10-5 1 

NF-Y (M00185) 4.6x10-4 4 (2) 
DNA metabolism 

(GO:0006259) 240 
Sp1 (M00196) 6.8x10-4 5 (5) 

NRF1 (M00652) 5.9x10-6 1 
NF-Y (M00185) 2.5x10-4 2 (2) 
ATF (M00338) 3.4x10-4 4 (5) 

M phase 
(GO:0000279) 100 

E2F (M00516) 3.8x10-4 1 
 
Table 4.3.2. Enriched TF PWMs in promoters of genes that function in the cell 
cycle. Four categories related to cell cycle, containing a total of 672 distinct genes, were 
analyzed (certain genes are assigned to several categories; hence the categories are not 
mutually exclusive). The number of promoters and the TF PWMs significantly enriched 
in each category are indicated. Indicated for each over-represented PWM are the 
analytical score for observing such enrichment, and the rank of the PWM's abundance in 
the functional category relative to its abundance in 10,000 sets of randomly selected 
promoters of the same size as that of the functional category set. Numbers in parentheses 
represent the number of random sets in which the PWM was equally abundant as in the 
functional category set.  
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Our next step was to apply the reverse engineering approach to infer 

transcriptional regulatory mechanisms from gene expression data. We analyzed a 

human cell cycle dataset published recently by Whitfield et al. [21]. Their study 

recorded genome-wide gene expression levels over multiple time points during the 

progression of the cell cycle in HeLa human cell line; 874 genes showed periodic 

expression patterns over several cell cycles. Our 13K promoters set contained putative 

promoter sequences for 568 of these genes. Whitfield et al. [21] partitioned the cell 

cycle-regulated genes according to their expression periodicity patterns into five 

clusters, corresponding to cell cycle phases G1/S, S, G2, G2/M and M/G1. We 

analyzed clusters of 103, 105, 122, 145 and 93 promoters, respectively. 

 We searched for significantly enriched PWMs in the entire set of 568 cell 

cycle-regulated promoters using the 13K set as the background set. Six out of the 107 

PWMs, corresponding to E2F, NF-Y, NRF-1, Sp1, ATF and CREB TFs, were 

significantly over-represented in this target set (Table 4.3.3a). We then searched for 

PWMs enriched only in specific phase clusters and found that Arnt and YY1 PWMs 

were specifically enriched in the G1/S and the M/G1 clusters, respectively (Table 

4.3.3b). Caution must be exercised when examining whether PWMs that were 

enriched in the entire set favor any specific phase cluster. Given their significant over-

representation in the entire set, random partitions of the dataset are also expected to 

yield clusters where these PWMs are enriched with respect to their genomic 

prevalence. So, what should be tested is whether these PWMs favor any specific 

phase cluster given their prevalence in this dataset, rather than their genomic 

background prevalence. Hence, in this examination, the set of 568 cell cycle-regulated 

promoters was used as the background set. E2F PWM was found to be significantly 

over-represented in the G1/S and S phases (p=3.2*10-7 for the observed prevalence in 
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these 2 clusters together) and under-represented in the M/G1 cluster (p=0.015); NF-Y 

PWM was over-represented in the G2 and G2/M phases (p=0.0096 for the observed 

prevalence in these 2 clusters together); and Sp1 PWM slightly favored the G1/S 

cluster (p=0.02). NRF-1, ATF and CREB PWMs were more uniformly distributed 

and showed no bias for any particular phase (Fig. 4.3.1).  

 
 
 
a 

 

TF  
Number of 

promoters with 
hits 

Number of hits Analytical p-val 
Rank relative to 

abundance in 
random sets 

NF-Y (M00185) 152 203 1.2x10-11 1 
E2F (M00516) 78 92 1.2x10-8 1 

NRF1 (M00652) 127 234 3.3x10-6 1 
Sp1 (M00196) 223 365 1.3x10-4 1 
ATF (M00338) 113 162 5.3x10-4 2 

CREB 
(M00113) 91 117 9.3x10-4 2 (1) 

b 

TF 
Number of 
promoters 
with hits 

Number of 
hits 

Cell cycle 
phase 

Analytical p-
val 

Rank relative 
to abundance in 

random sets 
Arnt 

(M00236) 33 37 G1/S 5.1x10-4 5 (4) 

YY1 
(M00069) 20 25 M/G1 8.1x10-4 5 (3) 

 
Table 4.3.3. Enriched TF PWMs in promoters of cell cycle regulated genes. a. A set 
of 568 promoters of cell cycle-regulated genes scanned for over-represented TF PWMs, 
disclosing six significantly enriched PWMs. Information for each PWM is the same as in 
Table 4.3.1. b. Whitfield et al. [21] partitioned the cell cycle-regulated genes according to 
their expression periodicity patterns into five clusters corresponding to different phases of 
the cell cycle. When the promoter sequences of these clusters were scanned for enriched 
PWMs, two PWMs were enriched in a specific phase cluster, but not in the 568 set as a 
whole. 
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Figure 4.3.1. TFs whose binding site signatures are highly enriched on promoters 
of cell-cycle regulated genes. The circles correspond to the eight PWMs that are 
highly enriched in promoters of cell-cycle-regulated genes (Table 4.3.3). Each circle 
is divided into 5 zones, corresponding to the phase clusters. The number adjacent to 
the zone represents the ratio of the TF hits prevalence in promoters contained in each 
of the cell-cycle phase clusters to its prevalence in the set of 13K background 
promoters (e.g., E2F hits were 4.2-fold more prevalent on promoters of genes that 
peak at G1/S phase). Note that several TFs show a tendency towards specific cell-
cycle phases: e.g., over-representation of the E2F PWM in promoters of the G1/S and 
S clusters, and its under-representation in promoters of the M/G1 cluster. 

 

 

Next, we examined the location distribution of the computationally identified 

putative binding sites of the enriched PWMs. The putative binding sites for E2F, NF-

Y, NRF-1, Sp1, ATF and CREB tend to concentrate in the proximity of the TSS (Fig 

4.3.2). This observation is in agreement with experimental data on the locations of in-

vivo binding sites of E2F [165] and NF-Y [166]. In addition to the fact that the 

positions of the computationally identified hits are not uniformly distributed, but 

rather concentrate near the TSSs, we also observed that their occurrence rate declines 

sharply downstream of the putative TSSs. These observations provide an additional 

indication of both the high quality of the putative human promoters that we used and 

of PRIMA's specificity in detecting TF hits (a high false positive rate would result in a 

uniform hit distribution as expected for random hits). 
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Figure. 4.3.2. Location distributions of the computationally identified hits peak at TSS. The figure 
presents the distribution of locations of TFs putative binding sites found by PRIMA in the 568 cell-
cycle-regulated 
promoters. Promoters 
were divided into six 
intervals, 200 bp each. 
For each of the PWMs 
listed in Table 4.3.3, the 
number of times its 
computationally 
identified binding sites 
appeared in each 
interval was counted 
(after accounting for the 
actual number of bps 
scanned in each 
interval; this number 
changes as the masked 
sequences are not 
uniformly distributed 
among the six intervals), 
and normalized by the 
total number of hits. The Y-axis represents the percentage of hits in each interval for each PWM. 
Locations of NRF-1, CREB, NF-Y, Sp1, ATF and E2F binding sites were significantly concentrated in 
the vicinity of the TSSs (chi-square test, p<0.01). The sharp peaks of these distributions point to both 
the specificity of PRIMA-identified TF hits and the high quality of TSS annotations in the human 
genome.   
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The approaches applied thus far identified TF PWMs that were enriched in target 

sets of promoters, with the tests performed separately on each PWM. Finding several 

enriched PWMs on the same target set may indirectly point to functional links 

between the corresponding TFs. We sought a direct method to test the associations 

between distinct PWMs. In an effort to identify pairs of PWMs that exhibit a 

significant tendency to appear together in the same promoters, we examined whether 

the prevalence of promoters containing hits for two PWMs was significantly higher 

than would be expected if the PWMs occurred independently. This analysis was 

applied to the set of 568 promoters of cell cycle-regulated genes. We examined all 

possible pairs formed by the 9 PWMs found to be enriched in any of the analyses 

reported above. Eight pairs showed a significant tendency to co-occur in this promoter 

set. Each such pair constitutes a hypothetical regulatory module, or a part thereof. 
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Figure 4.3.3 suggests that NRF-1, Sp1, ETF and E2F may constitute transcriptional 

modules of higher orders, i.e., recurrent motifs of three or four TFs. 

Figure. 4.3.3. Pairs of 
PWMs that co-occur 
significantly in promoters of 
genes regulated in a cell 
cycle-dependent manner. 
We examined whether the 
nine PWMs reported in 
Tables 4.1.1-3 can be 
organized into regulatory 
modules. Eight significant 
pairs were identified, each 
connected by an edge. The 
corresponding p-value is 
indicated next to the edge. 
The edge connecting the E2F-
NRF1 pair is dashed to 
indicate that its borderline 
significance 

 

Our results elucidate some novel aspects of the transcriptional regulation of cell 

cycle progression. They were derived by computational means and as such should be 

regarded as hypotheses on regulatory relationship between the enriched TFs and the 

progression of the cell cycle that requires empirical validation. However, there is 

evidence strongly supporting most of our findings, and is discussed in Section 5. The 

methods we presented in this test case study are general and can be applied to the 

analysis of transcriptional networks controlling any biological process. 

Since the publication this project [150]  in 2003, two other works analyzed the 

same human cell cycle dataset, aiming to identify TFs that control cell cycle 

progression. Sharan et al. [92] sought to identify human-mouse conserved cis-

regulatory modules that are over-represented on cell-cycle regulated promoters. They 

report on seven such modules, together composed of ten different PWMs. Only the 

strongest signals (i.e., enrichment of E2F and NF-Y binding signatures) were reported 

by both Sharan and our study. ZF5 (PWM M00716), which appears in four out of the 
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seven modules reported by Sharan et al., was added to TRANSFAC DB only after our 

analysis was carried out. Testing ZF5 using PRIMA indeed finds that this TF is highly 

enriched on cell cycle-regulated promoters (p<10-11). USF2 (M00726) passes Sharan's 

filtering threshold (p=0.05) but not ours (p=0.001), yet it gets by PRIMA an 

enrichment score of 0.02. DELTAEF1 was defined using chicken binding sites and 

therefore was not included in our analysis. The other five PWMs reported by Sharan 

et al. are not enriched in PRIMA tests. 

Several reasons can account for the different findings. Sharan et al. applied a very 

different methodology, aimed at identification of conserved modules. Therefore, they 

sought for 1) conservation of TF hits between human and mouse promoters and 2) 

significant co-occurrence of hits at spatially restricted intervals. The requirement for 

human-mouse conservation was demonstrated to reduce false positive discoveries in 

the identification of regulatory elements [81, 82, 167]. However, low conservation is 

observed in many known regulatory regions [168-171]. In such cases, imposing the 

requirement for evolutionary conservation can lead to missing functional sites. 

Indeed, only 336 cell-cycle regulated promoters that contained human-mouse 

conserved segments of at least 80 bp were included in Sharan's analysis, compared to 

568 promoters that were included in our analysis. The higher number of promoters 

gives our analysis higher statistical power in detecting real over-representation of 

signatures. 

Dieterich et al. [172] applied another methodology, seeking for TF signatures that 

are enriched on cell-cycle regulated promoters and that are conserved between human 

and mouse. There was no overlap between the 22 enriched PWMs reported in this 

study and ours, and only one overlap with Sharan's results. I believe that the major 

reason for these disparate findings is the different promoter region analyzed by 
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Dieterich et al.: In this study, up to 12,000 bp were scanned in each promoter, 

compared to 1,200 bp in [92] and in our analysis. This increase in the search area by 

an order of magnitude greatly reduces the signal-to-noise ratio. It should be noted that 

E2F and NF-Y signals, which are well-known master regulatory signals of cell cycle 

progression, were not detected by Dietrich et al., again probably due to the large 

promoter region analyzed in this study (E2F and NF-Y signals are strongly biased to 

the close proximity of the TSS). In a recent study, we demonstrated that E2F signal is 

conserved in promoters of G1/S genes in all organisms from worm to human, and that 

NF-Y signal is conserved in promoters of G2/M regulated genes in vertebrates [173].  

 

4.4. Computational identification of transcriptional modules 

– c-Myc as a test case 

This project was carried out in collaboration with Chaim Linhart of Prof. Shamir's 

group and Karen Zeller of Prof. C.V. Dang's lab at the Cancer Center, Johns Hopkins 

University School of Medicine. Its results were published in [174], which is attached 

as Appendix C of this thesis.  

 

In this study we further demonstrated how ChIP-on-chip data can be 

computationally utilized to discover novel functional links between transcription 

factors based on significant co-occurrence of their binding site signatures on common 

target promoters. We focused on the oncoprotein c-Myc and aimed at identifying TFs 

that form recurrent cis-regulatory modules with it. To this end, we analyzed the data 

reported by Li et al. [28]. This study applied the ChIP-on-chip technique and 

identified 776 human genes in Burkitt’s lymphoma cells whose promoters are bound 

by c-Myc and its heterodimer partner Max.  
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c-Myc regulates cell cycle proliferation, apoptosis and differentiation. 

Overexpression of c-Myc is one of the most common alterations in human cancer, yet 

it is not clear how it promotes malignant transformation [175-178]. It is widely 

accepted that transcriptional regulation activity of c-Myc is critical for development 

of malignancy associated with it, but the target genes that mediate this process remain 

elusive. Identification of TFs that are functionally linked to c-Myc can provide novel 

clues to the mechanisms by which its oncogenic form drives cells into unbalanced 

proliferation.  

 First, we extracted genome-wide promoter sequences from the human and 

mouse genomes (version 13 released by Ensembl in Dec. 2002). For each gene 

flagged as a 'known gene', a genomic sequence was extracted that spanned 1,000 bp 

upstream to 200 bp downstream of the gene's putative TSS. The extracted sequences 

were masked for repetitive elements. A total of 19,351 and 18,748 putative promoters 

were extracted from the human and mouse genome, respectively. To avoid biases due 

to highly similar promoters, we constructed for each organism a non-redundant set of 

promoters by running all-against-all BLAST comparisons. For every promoter pair 

with BLAST E-score < 10-50, we excluded one of the members from the non-

redundant set. The non-redundant human and mouse promoter sets contain 17,390 and 

15,521 promoters, respectively. 

In order to identify enriched TF signatures in promoters bound by c-Myc, we 

applied PRIMA to a dataset recently published by Li et al., who used ChIP-on-Chip to 

identify 876 human promoters that were bound by c-Myc, 931 promoters that were 

bound by Max, and 776 promoters that were bound by both TFs in Burkitt’s 

lymphoma cells. In order to reduce false positives among the reported bound 

promoters, we focused on the set of promoters that were reported to be bound by both 
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c-Myc and Max, hereafter referred to as the c-Myc/Max target set. Our collection of 

human promoter sequences contains a total of 19,351 promoters, of which a subset of 

17,390 promoters was defined by us as non-redundant. The full and non-redundant 

promoter sets include sequence data for 615 and 519 genes, respectively, out of the 

776 genes in the Myc/Max target set. We applied PRIMA to scan these 519 non-

redundant promoters of the Myc/Max target set for over-represented TF binding site 

signatures. This means that we searched for TFs whose binding site signatures are 

significantly more abundant on this promoter set than expected by chance, given their 

abundance on the entire collection of non-redundant human promoters. Such over-

representation suggests the existence of functional links between the over-abundant 

TFs and c-Myc/Max. Three hundred PWMs that represent mammalian TF binding 

sites (obtained from the TRANSFAC database) were tested by PRIMA, and nine of 

them were significantly enriched in the c-Myc/Max target set (p_value<10-5, and after 

conservative adjustment for multiple testing p<0.05, Table 4.4.1A). We observed that 

PWMs that were enriched on both the human and its mouse homolog sets tend to 

show similar distributions of hit location (i.e., those PWMs that show picked 

distribution in human, also show such pattern on mouse promoters). However, in 

general, the location of specific hits in homolog promoters was not conserved 

Previously, we used PRIMA to analyze human genes whose expression is cell 

cycle dependent (Section 4.3, [150]). Interestingly, most of the TFs whose signatures 

were enriched in the cell cycle-dependent promoter set were also enriched in the c-

Myc/Max target set (E2F, NF-Y, Sp1, NRF1, ETF, CREB and AhR/Arnt). We 

therefore checked the overlap between the cell cycle and the c-Myc/Max target sets. 

The cell cycle set contains 568 genes, only 30 of which are common to the c-

Myc/Max set. When we analyzed the c-Myc/Max set after deleting these 30 genes, the 
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over-representation of all the TFs reported in Table 4.4.1 remained significant. Thus, 

the overlap between the results obtained on the two datasets is not explained by 

common genes, and is probably due to a general role of these regulators in cell cycle 

progression, where they control different sets of genes in different cell types. The 

mitogen- and stress-induced ELK-1 and EGR-1 TFs were also enriched on the 

Myc/Max target set.  

Li et al. reported, somewhat surprisingly, that only 25% of the promoters bound 

by c-Myc/Max contain a core E-box motif (CACGTG), which is directly recognized 

and bound by the c-Myc/Max heterodimer. In accordance with this observation, 

PRIMA found that PWMs with canonical E-box core motifs are only slightly enriched 

on the Myc/Max target set, and they did not pass our significance threshold. However, 

another PWM that models c-Myc/Max binding sites, whose core motif is a variant of  
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Table 4.4.1. TF binding site signatures enriched in c-Myc/Max target sets 
 

TF [PWM accession ID in 

TRANSFAC DB] 

A. p-value for PWM 

hits’ abundance on 

Myc/max target set 

B. p-value for PWM 

hits’ abundance on 

mouse ortholog set 

C. p-value for PWM 

hits’ abundance on 

mode-1 subset 

ETF [M00695] 1.2x10-15 6.8x10-13 3.2x10-7

Sp1 [M00196] 1.7x10-14 8.9x10-12 6.3x10-10

Nrf-1 [M00652] 6.5x10-14 7.9x10-11 3.2x10-7

NF-Y [M00185] 3.2x10-12 Not enriched 1.5x10-5

CREB [M00177] 4.7x10-8 1.4x10-7 Not enriched 

c-Myc/Max [M00322] 1.5x10-7 2.8x10-6 5.7x10-62* 

Egr-1 [M00243] 2.4x10-7 6.7x10-5 3.4x10-8

Elk-1 [M00025] 3.9x10-7 5.5x10-11 Not enriched 

E2F [M00516] 5.8x10-7 6.6x10-5 Not enriched 

AhR/Arnt [M00237] 6.4x10-7 Not enriched Not enriched 

E-Box 8.4x10-4 4.1x10-5 6.5x10-7

 
*c-Myc/Max signature is markedly enriched on ‘mode1’ subset, since by definition this set comprises the genes whose promoters were found to 
have a hit for cMyc/Max. Not enriched indicates p-value > 0.0001 (p-values are before correction for multiple testing).
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the E-box (CAYGYG, Y=[C or T]), was significantly enriched on this target set 

(PWM M00322 in TRANSFAC DB) (Table 4.4.1A). It cannot be ruled out that we 

failed to detect E-box over-representation because a fraction of these regulatory 

elements are located outside the analyzed promoter region. 

The enrichment of binding site signatures of specific TFs in the c-Myc/Max target 

set raises the possibility that c-Myc/Max and these TFs maintain functional 

relationships and together form recurrent transcriptional regulation modules that 

control the expression of numerous genes. In order to strengthen this in-silico-derived 

hypothesis, we repeated the tests for TF binding site enrichment, this time on the set 

of promoters comprising the mouse orthologs of the human c-Myc/Max target set. 

Extracting promoter sequences for all known mouse genes, we collected 18,478 

mouse promoter sequences, of which 15,521 were non-redundant. The non-redundant 

set includes sequence data for 407 mouse orthologs of the human Myc/Max target set. 

Applying PRIMA to this set, we found that seven out of the nine PWMs that were 

enriched in the human set were also enriched in the mouse set (Table 4.4.1B). The 

enrichment of the same TF binding sites on the ortholog sets suggests that the 

functional relationships between these TFs are conserved between mice and humans.  

As noted above, a canonical E-box was found in only about 25% of the promoters 

identified by Li et al. as direct targets of c-Myc/Max. Therefore, it was suggested that 

the c-Myc/Max heterodimer controls its target by two different modes: in the first one 

it directly binds its target promoters through its classical E-box element or a variant 

thereof; in the second mode it participates in the regulation of target promoters 

without binding directly to the DNA, but by physically interacting with other 

sequence specific TFs or with components of the general transcription machinery.  
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We attempted to identify TFs that form cis-regulatory modules with c-Myc/Max 

via the first mode. To this end we identified a subset of the c-Myc/Max target set, 

comprising genes whose promoters contain high scoring putative binding sites (hits) 

for c-Myc/Max. As the c-Myc/Max variant binding element represented by PWM 

M00322 was more enriched than the canonical E-box, we scanned the c-Myc/Max 

target set for promoters with hits for this PWM. Out of 615 promoters, we identified 

hits for M00322 in 134, making them good candidates for being regulated by c-

Myc/Max through its direct DNA binding. We refer to this subset as ‘c-Myc/Max 

mode1 subset’. Since it is smaller than the complete c-Myc/Max target set, we 

expected statistical phenomena associated with it to be less significant. However, we 

observed that one TF, EGR-1, was even more significantly enriched in the mode1 

subset than in the complete set (Table 4.4.1C). This makes EGR-1 a strong candidate 

for being c-Myc/Max's partner in regulation of mode1 target promoters. To determine 

whether the increased abundance of EGR-1 hits in the mode1 subset compared to the 

entire c-Myc/Max target is statistically significant, we ran PRIMA using mode1 

subset and the c-Myc/Max set as target and background sets, respectively. The over-

representation of EGR-1 hits in the mode1 subset was significant (p=0.0034).  

Of note, E2F, a pivotal regulator of the transcriptional program associated with 

cell cycle progression, was not enriched in the mode1 subset, suggesting that the c-

Myc/Max cooperation with E2F is maintained mainly through mode2. 

As noted above, the EGR-1 binding site signature was more enriched in the c-

Myc/Max mode1 subset than in the complete c-Myc/Max set. Inspection of EGR-1 

PWM (M00243) showed that it has a high GC content with a GCGTGGG core. This 

led us to compare the GC-content of the mode1 subset, the c-Myc/Max target set and 

the full collection of non-redundant human promoters (Table 4.4.2). We observed that 
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the c-Myc/Max target set is more GC-rich than the full set of human promoters (57% 

vs 53%, respectively, z-score=9.4), and the c-Myc/Max mode1 subset is even more 

GC-rich (60.1%, z-score=5.8 when compared to GC content of the c-Myc/Max target 

set). This raised the question whether the higher abundance of hits for EGR-1 in the 

mode1 subset could be explained merely by its high GC-content. To address this 

concern, we generated random PWMs based on the EGR-1 PWM in a way that 

preserved its GC content. We generated the random PWMs by permuting the columns 

of the original PWM, and randomly interchanging A with T and G with C. We then 

compared the enrichment of five permuted and the original EGR-1 PWM on the c-

Myc/Max mode1 subset. Significantly, the original EGR-1 PWM yielded an 

enrichment score that was far more significant than the scores obtained by the random 

PWMs generated based on it (Table 4.4.3). For further examination, we sorted all 

TRANSFAC mammalian PWMs according to their GC-content and recorded their 

enrichment in the mode1 subset. Table 4.4.4 lists the results for the top 25 GC-rich 

PWMs. This list shows that the over-representation of EGR-1 in the mode1 subset is 

not merely a reflection of its high GC-content, as there are many PWMs at least as 

GC-rich as EGR-1 that are not at all enriched on this subset. 

  

Table 4.4.2. High GC content of the c-Myc/max mode-1 subset 
 

 

Number of 

promoters %A %C %G %T 

Non-redundant human 

promoters 

17,390 

23.1 26.4 27.0 23.5 

c-Myc/Max target set 615 21.5 28.3 28.7 21.6 

c-Myc/Max mode-1 subset 134 19.5 30.4 30.5 19.7 
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Table 4.4.3. Enrichment of the original and permuted EGR-1 PWM on the c-
Myc/Max mode-1 subset 

 

PWM EGR-1 EGR-1 
Rand1 

EGR-1 
Rand2 

EGR-1 
Rand3 

EGR-1 
Rand4 

EGR-1 
Rand5 

p-val 4.5x10-7 0.17 0.28 0.25 0.088 0.0034 

 
Table 4.4.4. Enrichment of top 25 GC-rich PWMs on the c-Myc/Max mode-1 
subset    
 

 

TF 
PWM ACCNUM 
(TRANSFAC DB) 

PWM GC 
content 

Enrichment 
on mode-1 
subset  

ETF M00695 0.87 6.92E-09 
MAZ M00649 0.82 8.66E-02 
AP-2gamma M00470 0.82 1.13E-04 
AP-2alpha M00469 0.80 2.81E-02 
AP-2 M00189 0.79 1.80E-04 
Sp1 M00196 0.79 6.29E-10 
Nrf-1 M00652 0.76 3.21E-07 
c-Myc/Max M00322 0.75 5.74E-62 
----- M00051 0.74 1.47E-02 
LBP-1 M00644 0.74 9.65E-02 
E2F-1 M00428 0.74 9.12E-01 
USF2 M00726 0.72 6.52E-07 
Sp1 M00008 0.72 1.59E-03 
Egr-3 M00245 0.72 1.86E-04 
HEB M00698 0.70 3.92E-01 
E2F-1 M00431 0.70 3.37E-02 
MTF-1 M00650 0.70 6.80E-01 
Egr-2 M00246 0.69 2.14E-02 
MZF1 M00083 0.68 7.21E-01 
Egr-1 M00243 0.68 3.36E-08 
LF-A1 M00646 0.67 7.45E-01 
cMyc-E-Box M99996 0.67 6.52E-07 
Sp3 M00665 0.67 4.06E-02 
NF-muE1 M00651 0.67 2.11E-01 
GABP M00341 0.66 1.61E-04 

 

High scoring hits for c-Myc/Max (M00322) and EGR-1 (M00243) were found in 

134 and 167 promoters, respectively, out of a total of 615 promoters in the c-

Myc/Max target set. Fifty-four promoters contained strong hits for both c-Myc/Max 

and EGR-1. Finally, we examined the location distribution of c-Myc/Max and EGR-1 

hits on the promoters of the c-Myc/Max target set. For both TFs, the computationally-
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identified binding sites are significantly concentrated in the proximity of the TSS and 

their density drops downstream of it (Fig 4.4.1). In contrast, the distribution of hits 

identified for a random PWM generated by permuting the EGR-1 PWM was quite 

uniform between -650 bp to +200 bp with respect to the TSS, as expected for random 

hits. The fact that the hit distributions for cMyc/Max and EGR-1 show a prominent 

peak in the anticipated position is an additional indication of the quality of the human 

genome TSS annotations (such peaks would have not been obtained if significant 

deviations had existed between the locations of the annotated and real TSS in a large 

proportion of the genes), and of the specificity of the hits identified by PRIMA (high 

false positive rates for hits identified by PRIMA would have obscured the peak of true 

hits). 

 

Figure 4.4.1. Location distribution of hits for c-Myc/Max and EGR-1 on promoters of 
the cMyc-Max target set. The promoter region spanning 1000 bps upstream to 200 bps 
downstream of the TSS was divided into 10 bins of 120 bps. The graph represents the relative 
frequency of hits over the bins for cMyc/Max (M00322), EGR-1 (M00243), and for a random 
PWM derived from the EGR-1 PWM as explained in the text. The number of hits in each bin 
was normalized by the effective sequence length scanned in the bin (effective lengths can be 
different in different bins due to masking of repetitive elements in promoters). 
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Fifty-four promoters of the cMyc/Max mode1 subset contained strong hits for 

EGR-1. To experimentally test our in-silico derived hypothesis that these two TFs 

together form a recurrent transcriptional cis-regulatory module, our collaborator K. 

Zeller in the laboratory of Prof. C.V. Dang (Cancer Center, Johns Hopkins University 

School of Medicine) selected six of these genes and examined the binding of both c-

Myc and EGR-1 to their promoters using chromatin immunoprecipitation assays 

(ChIP). For all 6 genes examined (RAP2B, KHSRP, PolH, PTPN1, PP and KPNA3), 

the signals obtained for both c-Myc and EGR-1 were above the background level (p 

value < 0.025, one tail t-test, Fig 4.4.2). For a negative control, we chose from the c-

Myc/Max target set the MCCC2 gene, whose promoter did not contain any hit for 

EGR-1. The signal obtained by the ChIP assay for EGR-1 binding to this promoter 

was very close to background level. These results demonstrate that c-Myc and EGR-1 

co-binding occurs on multiple promoters. Further experiments are required to 

establish a direct functional link between these two transcriptional regulators.
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Figure 4.4.2. Chromatin immunoprecipitation of c-Myc and EGR-1 targets.  
Each graph represents real-time PCR amplification of the promoter and control 
regions of each gene using anti-Myc, anti-EGR-1, anti-HGF, and no antibody-
precipitated chromatin as template. Bars represent the percentage of total input 
DNA for each ChIP sample averaged over 3 PCR reactions. Error bars represent 
one standard deviation. The solid horizontal line represents 0.02% total input 
DNA, the background signal for this assay. The signals obtained for the binding 
of c-Myc and EGR-1 to the promoter regions of all 6 genes examined (RAP2B, 
KHSRP, PolH, PTPN1, PP and KPNA3), but not for the negative control, 
MCCC2, were above the background level (p value < 0.025, one tail t-test). 
(Experiments carried out by K. Zeller in the laboratory of Prof. C.V. Dang 
(Cancer Center, Johns Hopkins University School of Medicine).  
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4.5. Dissection of a DNA damage-induced transcriptional 

network using a combination of microarrays and RNAi 

This project was carried out in collaboration with Sharon Rash-Elkeles, Yaniv 

Lerenthal, and Tamar Tenne of Prof. Shiloh's group, Chaim Linhart of Prof. Shamir's 

group, and Dr. Ninette Amariglio and Prof. Gideon Rechavi of the Functional 

Genomics Unit at the Sheba Medical Center. Its results were published in [179], 

which is attached as Appendix D of this thesis. 

 

In this test-case study, we applied two of the most prominent functional 

genomics technologies, gene expression microarrays and RNA interference (RNAi), 

to demonstrate that this combined experimental approach can yield accurate 

dissections of transcriptional networks induced in a human cellular system. In this 

experiment, cellular systems knocked-down for key regulators of the DNA damage 

induced network were established by Yaniv Lerenthal, and microarray hybridizations 

and RT-PCR validations were carried out by Sharon Rashi-Elkeles from our lab. 

Soon after the discovery of the RNAi phenomenon and its utilization as an 

experimental tool to modulate gene activity, it was realized that the combination of 

global gene expression profiling and RNAi-mediated silencing of key regulatory 

genes offers a powerful method for systematic dissection of transcriptional networks 

in mammalian systems. However, recent studies pointed out that applying RNAi to 

mammalian cells triggers some nonspecific pathways [180-182] and affects an 

unpredicted number of off-targets [183] in addition to knocking-down the target of 

interest. This raised the concern that nonspecific responses to short interfering RNA 

(siRNA) might obscure the consequences of silencing the target of interest.  
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In this work where we focused on a DNA damage-induced transcriptional network as 

a test case, we established human cellular systems stably knocked-down for the ATM 

protein kinase, for the Rel-A subunit of NF-κB, and for p53. Stable knock-down of 

the proteins was obtained by infecting HEK293 cells with retroviral vectors 

expressing the corresponding short hairpin RNAs (shRNAs). Efficient reduction of 

protein levels was confirmed using western blotting analysis (Fig 4.5.1). Controls for 

our experiments were uninfected cells and cells infected with a vector carrying siRNA 

against LacZ, which has no significant homology to any human gene. Using 

Affymetrix Human Focus GeneChip arrays, which represent some 8,500 well-

annotated genes, we recorded gene expression profiles in these cellular systems prior 

to and 4 hrs after exposure to neocarzinostatin (NCS), an enediyne antitumor 

antibiotic that intercalates into the DNA and induces DSBs [184]. All samples were 

probed in independent triplicates.  

 

Figure 4.5.1. Western blotting analysis demonstrating the reduction in protein 
levels encoded by mRNAs that were targeted by siRNAs. Tubulin was used as a 
loading control. (Experiments carried out by Tamar Tenne).  
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Expression levels were computed using the RMA method [47] that was run 

from the BioConductor package (http://www.bioconductor.org/). We preferred to use 

RMA over Affymetrix’ MAS5 for two reasons: First, several studies indicated that the 

mismatch signals are correlated with the mRNA concentration of their corresponding 

gene; i.e., they themselves contain information on the expression level of the genes, 

hence subtracting their signals from the perfect-match ones, as MAS5 does, may add 

noise to the measurement and therefore be counterproductive [47]. RMA ignores the 

mismatch probes and computes expression levels based only on perfect match signals. 

When we examined the mismatch probe signals for several genes activated by the 

NCS treatment, we found that these signals indeed increased, in a manner correlated 

with the increase exhibited by their corresponding perfect-match signals (Fig. 4.5.2). 

Second, while MAS5 uses global scaling to normalize between arrays, RMA applies 

the quantile normalization that was demonstrated to perform better [141]. Comparison 

of expression levels computed by MAS5 and RMA showed that RMA reduced noise 

between replicates (Fig 4.5.3), as well as the range of fold-changes in gene expression 

after the treatment (Table 4.5.1).  

Probesets that received ‘Absent’ calls in all chips were filtered out, leaving 

6002 probesets for subsequent analysis. Averaging expression levels over replicates, 

our dataset contained measurements for ten conditions: five cellular systems 

(uninfected and the LacZ control cells and cells knocked-down for Rel-A, p53 and 

ATM), each probed at two time points — without treatment and 4 hrs after exposure 

to NCS. 
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Figure 4.5.2. Perfect-match (PM) and 
mismatch (MM) probe signals measured 
prior to treatment and at 1, 2, and 4 hrs 
after treatment with NCS. These signals 
are shown for two sample genes (TNFAIP3 
and IKBα) that were induced by the NCS 
treatment. Mismatch signals were increased 
as well, in strong correlation with their PM 
counterparts, demonstrating that MM probes 
too contain information on expression level 
of their target genes. This correlation 
questions the role of MM probes as negative 
controls and the utility of subtraction of 
these signals from the ones measured by PM 
probes.   
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(ii) 

(iii) 

(i) 

Figure 4.5.3. Comparison between RMA and MAS 5 computed signals.  M (log of 
the difference between probe set signals in the compared chips) vs. A (log of the mean 
probe set signals in the compared chips) plots, as introduced by Speed’s lab 
(http://stat-www.berkeley.edu/users/terry/zarray/Html/normspie.html), based on 
expression levels that were computed by MAS5 or RMA for comparison between: (i) 
two replicated chips (C0a vs. C0b), (ii) post-treatment vs. pre-treatment chips (C0a vs. 
C4a), and (iii) same as (ii) but expression levels were averaged on triplicate chips at 
both time points. In all comparisons, the fold induction distributions (represented by 
the Y-axis) were markedly narrower when expression levels were computed by RMA. 
Distributions based on MAS5 were especially noisy in the low intensity genes. 
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 (I) C_0a vs 

C_0b 

(II) C_0a vs 

C_4a 

(III) <C_0> vs 

<C_4> 

Up 278 342 148 
MAS5 

Down 202 318 251 

Up 11 74 95 
RMA 

Down 7 58 68 

Table 4.5.1. Comparison of expression levels computed by MAS5 and RMA. 
Number of genes whose expression level was increased (Up) or decreased (Down) by 
at least 1.5-fold in the following comparisons: (I) two replicates of control cells are 
compared at time 0; (II) single chip 4 hrs after NCS treatment is compared to a single 
chip ; and (III) triplicate averaged chips of samples prior to and after NCS treatment. 
Note the 25-fold decrease in the noise between two control replicates measured by the 
two methods (see also Fig 4.5.2). 
 

 

As a first step in our data analysis we searched for nonspecific responses to 

siRNA expression. We scanned the dataset for genes that were either consistently up- 

or down-regulated in cells expressing all five siRNAs compared to their basal level in 

the uninfected control, all before exposure to NCS. We observed a subtle but 

statistically significant response to viral infection/siRNA expression. Very few genes 

were consistently responsive when a cut-off of 1.5 fold-change was set, but lowering 

the threshold to 1.3 resulted in 20 consistently up-regulated and 75 consistently down-

regulated genes in the infected cells. The threshold is low, but the number of genes 

that showed consistent response is significantly higher than expected at random (in 

1,000 datasets with randomly permutated entries for each gene, an average of 0.1 and 

0.2 consistently up- and down-regulated genes, respectively, were found). The set of 

consistently up-regulated genes contained mainly genes involved in different aspects 

of cellular metabolism. The consistently down-regulated genes included metabolic 

genes and genes that function in control of cell growth, signal transduction and stress 
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responses. In contrast to some reports [180, 182], we did not observe induction of the 

interferon pathway following the introduction of siRNA to the cells. 

Next, we searched the dataset for genes that responded to the NCS treatment 

in the control uninfected cells and whose response was not disturbed by the 

introduction of siRNA to the cells: namely, genes that responded to the treatment in a 

coherent manner in the uninfected and the LacZ control cells. We defined the 

damage-responding gene set as all genes whose expression levels changed by at least 

1.5-fold in one control (either the uninfected or the LacZ-infected cells), and at least 

1.4-fold in the same direction in the other control. A total of 112 genes that were 

induced in both controls met this criterion. We chose thresholds of 1.5 and 1.4 — 

lower than those usually used in microarray analysis — because the RMA method 

significantly narrows the distribution of expression levels and of the fold changes 

compared to Affymetrix’ MAS5 package (Table 4.5.1 and Fig 4.5.3). Although the 

thresholds are low, the expected false positive rate in our damage-induced gene set is 

low: not one single gene passed this criterion when applied to expression levels 

measured 30 min after exposure of the cells to NCS. In addition, this number is 

significantly higher than expected at random: in 1,000 datasets with randomly 

permutated entries for each gene, the average number of genes that met this criterion 

was 14.1. Only 7 genes met an analogue criterion for repression in response to NCS 

treatment; six of them are related to mitosis, presumably reflecting the activation of 

cell cycle checkpoints in response to DNA damage. 

We divided the expression level of each of the 112 damage-induced genes at 

the 4-hr time point by its level in untreated cells in the same cellular system, yielding 

a 112x4 data matrix, with rows corresponding to genes. We standardized each row to 

mean=0 and SD=1, and subjected the standardized matrix to average-linkage 

 77



 

hierarchical clustering using our EXPANDER package for microarray data analysis. 

The damage-induced gene set was found to fall into four major response patterns (Fig. 

4.5.4): Cluster 1 contained 26 damage-induced genes whose response was strongly 

reduced in the absence of ATM and Rel-A, and only partially affected by the absence 

of p53. Cluster 2 contained 11 genes whose response was abolished in the absence of 

ATM and p53, but augmented in the absence of Rel-A, suggesting some negative 

regulatory effect for NF-κB on their expression. Cluster 3 contained 46 genes whose 

response was markedly attenuated in the absence of ATM and p53, and not 

substantially affected by the absence of Rel-A. Cluster 4 contained 12 genes whose 

induction was strongly reduced in the absence of p53, partially affected by the 

absence of ATM, and not affected by the absence of Rel-A. This analysis shows the 

following. (1) The transcriptional network induced upon exposure to NCS in these 

cells is almost completely mediated by NF-κB and p53, and these two TFs induced 

nearly disjoint sets of genes: the former controls the induction of cluster 1 genes, the 

latter controls the induction of the genes in clusters 2-4. (2) ATM is required for the 

activation of a major part of the damage-induced transcriptional program, comprising 

both the NF-κB and p53 response arms (the activation of clusters 1-3 genes is ATM-

dependent). (3) There is some cross-talk between the NF-κB and p53 pathways: the 

absence of p53 partially reduces the induction of the NF-κB arm (cluster 1), 

suggesting a positive effect of p53 on the induction of the NF-κB mediated response; 

and the absence of Rel-A leads to increased activation of a subset of the p53-mediated 

arm (cluster 2), pointing to a negative regulatory role for NF-κB in the induction of 

these genes. 
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Figure 4.5.4. Four major expression 
patterns in the damage-induced gene set 
revealed by cluster analysis. For each of the 
112 damage-induced genes, induction fold of 
expression level 4 hrs after NCS treatment 
was computed in uninfected cells and in the 
cells knocked-down for Rel-A, p53 and ATM, 
yielding a 112x4 data matrix, with the rows 
corresponding to genes. The matrix rows were 
subjected to hierarchical clustering after 
normalizing the rows to have mean=0 and 
SD=1. The heat map visually represents the 
normalized matrix after clustering. Red, green 
and black entries represent above-, below- and 
near-average fold of induction, respectively. 
Four prominent expression patterns are 
evident: Cluster 1 represents genes whose 
induction is strongly attenuated in cells 
knocked-down for Rel-A and ATM (compared 
to the response in the control uninfected cells), 
and only partially attenuated in cells knocked-
down for p53. Cluster 2 represents genes 
whose response is attenuated in cells knocked-
down for p53 and ATM, but increased in cells 
knocked-down for Rel-A. Cluster 3 represents 
genes whose response is attenuated in cells 
knocked-down for p53 and ATM, but not 
affected by knocking-down Rel-A. Cluster 4 
represents genes whose response is markedly 
attenuated in cells knocked-down for p53, and only partially attenuated in cells 
knocked-down for ATM. 
 

 

Cluster analysis identified both ATM/NF-κB- and ATM/p53-mediated 

transcriptional responses. We sought to demonstrate that this dissection of the ATM-

mediated transcriptional network induced by DNA damage is precise and cannot be 

ascribed to some nonspecific or off-targets effects. To this end, we examined the 

effect of knocking-down Rel-A and p53 on several of their respective known direct 

targets that were included in the damage-induced genes set. Table 4.5.2A shows that 

knocking-down Rel-A and ATM significantly blocked the induction of known NF-κB 

target genes, whereas knocking-down p53 had a much milder effect on their 
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induction. Table 4.5.2B shows that knocking-down p53 and ATM specifically 

blocked the induction of known p53 target genes, whereas knocking-down Rel-A did 

not disrupt their induction (and even augmented it for some genes). Results of 

quantitative real-time RT-PCR, performed to validate the microarray results for these 

genes, were in good agreement with the microarray data in most cases; the 

magnitudes of induction differed between the two experimental systems, but the 

dependency of transcriptional induction on the various regulators was similar for 10 

out of 13 examined genes. 

To further substantiate the accuracy of the network dissection obtained by our 

experimental setup, we applied the PRIMA tool to the dataset in order to identify TFs 

whose binding site signatures are significantly more prevalent in a given set of 

promoters than expected at random. In this analysis, the four gene clusters were used 

as target sets, and the entire collection of genes present on the chip (after filtering out 

those that got ‘Absent’ calls under all conditions) served as the background set. 

Putative promoter sequences corresponding to all known human genes were extracted 

from the human genome (Ensembl, version 19, Feb 2004). PRIMA tests were 

confined to 800 bp upstream to the putative genes’ transcription start site. Repetitive 

elements were masked out. Both strands were scanned. 

Markedly, promoters of genes assigned to cluster 1, which represents an 

ATM-NF-κB dependent response, were specifically and highly significantly enriched 

for the binding site signature of NF-κB (Table 4.5.3), while p53-dependent clusters 3 

and 4 were specifically enriched for the binding site of ATF2. ATF2 regulates 

transcription after heterodimerization with either ATF3 or c-Jun [185]. Of note, in our 

dataset the induction of both ATF3 and c-Jun was p53-dependent (Table 4.5.2B), 

hence the enrichment for this signature probably reflects a second wave of  
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Table 4.5.2. Fold induction of genes’ expression after 4 hrs of exposure to 200 ng/ml of NCS as measured by microarrays and by quantitative 

real-time RT-PCR.  

 

A. Known direct targets of NF-κB.  

 

Fold induction - Microarray  Fold induction - RT-PCR 

Gene Affy_ID 
C LacZ 

Rel-A 

(NFκB)
p53 ATM C 

Rel-A 

(NFκB)
p53 ATM 

TNFAIP3 202644_s_at 8.28 5.34 1.15 3.02 1.19 9.5 1.1 9.5 0.9 

RELB 205205_at 3.7 2.89 0.82 2.95 0.91 15.7 6.0 21.3 2.5 

TNFRSF9 207536_s_at 4.01 3.5 1.1 2.08 1.21 14.3 3.5 11.0 1.4 

NFKBIA 201502_s_at 4.61 5.4 1.26 2.67 1.02 4.2 1.7 4.5 1.2 

CD83 204440_at 3.46 2.99 1.0 1.73 1.06 6.5 1.0 5.7 1.3 

IER3 201631_s_at 4.44 5.12 1.43 2.35 1.44

 

6.6 1.8 3.4 1.8 
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Table 4.5.2 (cont.) 
B. Known direct targets of p53.  
 
 

Fold induction - Microarray Fold induction - RT-PCR 

Gene Affy_ID 
C LacZ 

Rel-A 

NF-κB 
p53 ATM 

 

C 
Rel-A 

NF-κB
p53 ATM 

ATF3 202672_s_at 3.44 3.74 7.03 1.54 1.47  5.2 5.9 1.6 1.6 

EGR1 201694_s_at 2.78 1.77 6.77 1.04 1.02  4.4 13.4 0.7 2.4 

JUN* 213281_at 2.01 1.45 2.71 1.36 1.25  6.6 3.9 0.64 2.5 

FOS 209189_at 1.72 1.42 2.22 1.07 1.22  3.4 13.1 3.4 1.9 

ETR101*
202081_at 1.97 2 2.6 1.06 1.13  2.0 3.0 1.4 1.4 

GADD45A 203725_at 2.36 2.07 2.00 1.07 1.22 1.8 2.3 1.8 1.3 

201041_s_at 2.06 2.57 3.45 1.11 1.22 
 

2.2 4.5 2.0 1.9 DUSP1 

 
*These genes are not reported as direct targets of p53 but are known to be functionally related to p53.  
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transcriptional regulation controlled by these TFs, whose induction is mediated by 

p53. This is in agreement with other studies that reported a p53-dependent activation 

of ATF3 in response to DNA damage [186, 187]. PRIMA did not identify enrichment 

for the p53 binding site signature in the p53-dependent clusters. It is possible that 

PRIMA is not sensitive enough to detect p53 enrichments due to the complex nature 

of p53's binding sites [188] or the relatively long distance of these binding sites from 

the transcription start sites (many experimentally validated p53 binding sites are 

located outside the promoter region included in PRIMA analysis). However, using the 

same parameters, PRIMA did identify significant enrichment for p53 binding 

signature in several other microarray datasets that we analyzed (e.g., results presented 

in Section 4.6). We therefore believe that p53 signature is not over-represented in 

these clusters, suggesting that p53 in the cells we used exerts its direct effect on a 

limited number of target genes, which are then further expanded into a wider network 

of transcriptional response mediated mainly by the ATF/Jun. 

Table 4.5.3. Significantly enriched transcription factor (TF) binding site signatures in 

promoters of co-clustered genes. 

Dependency of genes’ induction on** Enrichment for  

binding sites of***  Number of 

genes*

ATM 
Rel-A (NF-

κB) 
p53 

NF-κB  

(M00054) 

ATF2  

(M00179) 

Cluster 

1 26 ++ ++ + 9.7 (6.0x10-12) ---- 

3 46 ++ - ++ ---- 2.9 (2.7x10-5) 

4 12 + - ++ ---- 6.6 (3.6x10-6) 

* Number of genes with promoter sequence data. 
** Strong attenuation in induction of the cluster’s genes in the respective cells is denoted by ‘++’, partial 
attenuation is denoted by ‘+’, and no attenuation by ‘-'.  
*** The ratio between TF hits prevalence in the cluster and in the background sets of promoters, and its p-
value (Accession numbers for TF binding site models are of TRANSFAC DB). 
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4.6. Functional genomics delineation of Atm-dependent 
transcriptional responses induced by ionizing radiation in 
murine lymphoid tissues  
 

This project was carried out in collaboration with Sharon Rash-Elkeles of Prof. 

Shiloh's group; Nir Weizman of Prof. Barzilai's group (Faculty of Life Sciences, Tel 

Aviv University); Chaim Linhart of Prof. Shamir's group; and Dr. Ninette Amariglio 

and Prof. Gideon Rechavi of the Functional Genomics Unit at the Sheba Medical 

Center.  

 

In this study we applied gene expression microarrays combined with our 

computational battery to delineate transcriptional responses induced by ionizing 

radiation (IR) in murine lymphoid tissues and components of this network whose 

activation is Atm-dependent.  

The critical cytotoxic DNA lesion inflicted by IR is the DNA double strand break 

(DSB), and ATM is the master regulator of the cellular response to this DNA lesion 

[93]. Two phenomena prompted us to examine responses to IR in lymphoid tissues. 

First, A-T patients show severe immunodeficiency stemming from aberrant 

development of both the B- and T- lymphoid arms, and they are highly prone to 

cancer, mainly of lymphoid origin. Second, ATM is frequently mutated in sporadic 

cancers of lymphoid origin [189], among them B-cell chronic lymphocytic leukemias 

(B-CLLs), which are the most common leukemias in western countries. B-CLL 

tumors that carry mutations in either ATM or in TP53 are associated with poor clinical 

course, with ATM-mutated B-CLL tumors less aggressive than the TP53-mutant ones 

[190, 191]. Studying expression profiles in untreated and irradiated Atm-deficient and 

control lymphoid tissues was expected to elucidate molecular factors that promote 
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malignancies, and molecular determinants that affect sensitivity or resistance to IR 

and other forms of chemotherapies used to treat cancers.  

Global transcriptional responses were recorded in wild type and Atm-deficient 

lymph node tissues of unirradiated mice, and 30 and 120 min after exposure to whole 

body irradiation with 15 Gy of IR. All mice were 5-7-week old males. Affymetrix 

GeneChip MGU74Av2 arrays were used. Each sample represented a pool of tissues 

from 3 animals. Samples from untreated mice were probed in independent 

hybridization triplicates, and samples from irradiated mice were probed in 

independent hybridization duplicates. Mice were handled by Nir Weizman. Samples 

and chip hybridizations were prepared by Sharon Rashi-Elkeles.  

Signal intensities were computed using Affymetrix MAS 5.0 software. All chips 

were scaled to an average signal intensity of 150. Probe sets that registered 'Absent' 

flags by MAS 5.0 in all measured conditions were excluded. To reduce false positive 

calls of differential genes, which is especially frequent at the low range of intensities, 

signal intensities below 40 were set to 40. This dataset was analyzed before 

publication of the RMA method and we repeated the analysis reported here using 

RMA and quantile normalization. All the results reported below remained solid. A 

representative expression level for each probe set in each of the six tested conditions 

(two genotypes, three time points) was computed by averaging the probe set's signal 

intensities in the replicate arrays. As a filtering step, we defined the set of 'responding 

genes', consisting of genes whose expression level was changed by at least 1.75 fold 

across the tested conditions. Some 10% of the probe sets present in the array, 1206 

out of 12488, met this criterion. 

After these preprocessing steps, we analyzed the data using the EXPANDER 

package. The analysis included the following steps:  
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Identification of major expression patterns in the dataset. We subjected the set of 

responding genes to CLICK, a clustering algorithm that yields an optimal balance of 

intra-cluster homogeneity and inter-cluster separation [145]. Prior to clustering, 

expression levels of each gene were standardized to have mean equal to zero and 

variance equal to one; hence, genes clustered together share expression patterns across 

the tested conditions, but might differ in the magnitude of their response. The six 

major clusters identified by CLICK are shown in Fig. 4.6.1. Clusters 1 and 2 represent 

Atm-dependent expression patterns: that is, they contain genes that were induced by 

IR in the Atm+/+ tissue, while their activation in the Atm-deficient tissue was 

significantly abrogated. Cluster 1 represents ‘early responders’ that were already 

transcriptionally activated at the early time point of 30 min post IR, and whose 

activation was Atm-dependent. Cluster 2 represents a later wave of Atm-dependent 

response. Clusters 3 and 4 contain genes that were either activated (cluster 3) or 

repressed (cluster 4) in both genotypes. Clusters 5 and 6 contain genes that responded 

only in the Atm-deficient tissue. 

Functional categories within gene clusters. Examination of the genes that responded 

to IR indicated that the network activated following IR spans many biological 

processes covering most aspects of the cellular physiology. In an attempt to 

systematically characterize this network, we applied tests aimed at identifying 

functional categories that are statistically enriched in the clusters. We utilized 

functional annotations of mouse genes provided by the Mouse Genome Informatics  
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Figure 4.6.1. Major clusters identified by CLICK in the set of 1206 responding 
genes. Each cluster represents a set of genes with a similar expression pattern. Prior to 
clustering, the expression levels of each gene were standardized to have a mean value 
of 0, and variance of 1. The Y axis represents these standardized values. The X axis 
corresponds to the tested conditions: unirradiated animals, and 30 and 120 min post 
irradiation. Shown for each cluster is the mean expression pattern calculated over all 
the genes contained in it, in Atm+/+ (blue) and Atm-deficient tissues (red). Error bars 
represent +/- one S.D. The total number of genes in each cluster is indicated. Clusters 
1 and 2 contain early and late Atm-dependent responders. Clusters 3 and 4 represent 
genes that exhibited similar response patterns in both genotypes. Clusters 5 and 6 
represent early and late responding genes that were activated in Atm-deficient but not 
in the Atm+/+ tissue. 
 

 

(MGI), which uses the standard vocabulary introduced by the Gene Ontology (GO) 

consortium [149]. Enriched functional categories (p<0.01) were identified in four of 

the clusters (Table 4.6.1). Importantly, regulation of cell cycle and apoptosis were 

among the categories enriched in the Atm-dependent clusters, pointing to their 

defective activation in the Atm-deficient tissue. 
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Cluster Number of 
genes with 
functional 
annotations 

Functional category GO ID Number of 
Genes associated 
with the 
category 

1 25 Cell cycle GO:0007049 7 

Regulation of cell 
cycle GO:0000074 7 

Cytokine activity GO:0005125 5 2 63 

Apoptosis GO:0006915 5 

5 83 Electron transport GO:0006118 8 

Response to pathogen GO:0009613 13 
6 54 

Inflammatory 
response GO:0006954 6 

 
Table 4.6.1. Functional categories enriched in the clusters (p<0.01). 
 

Computational search for mediating transcriptional regulators. Next, we sought to 

identify transcriptional regulators that control the observed modulation in gene 

expression following IR. We were particularly interested in regulators whose 

activation is compromised in Atm-deficient tissues. To this end, we applied PRIMA. 

Each gene cluster was considered a target set, and the entire collection of putative 

murine promoters corresponding to genes present on the chips and expressed in the 

lymph node was the background set. Mouse and human promoter sequences used here 

were downloaded from Ensembl project (v13,  May 2003 release) [192]. Analysis was 

done on the region from 1,000 bp upstream to 200 bp downstream to genes' putative 

TSS. 

PRIMA identified several TFs whose binding site signatures were significantly 

over-represented in cluster 2, which corresponds to the later wave of Atm-dependent 

response (Table 4.6.2). The highest enrichment was observed for NF-κB and p53,  
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Accession 
number in 
TRANSFAC DB 

Enrichment 
factor* p-value Transcription 

factor 

NF-kappaB M00054 4.3 8.0x10-9

p53 M00034 4.2 1.5x10-5

Sp1 M00196 1.6 3.1x10-5

STAT1 M00496 2.9 4.1x10-4

 
Table 4.6.2. TF binding site signatures enriched in the later wave of Atm-
dependent response (cluster #2). 
*The ratio between the prevalence of transcription factor hits found by PRIMA in promoters 
of the genes contained in cluster #2 and in promoters of the background set of all mouse 
promoters. 
 

which are both well-established stress-induced transcriptional regulators. The 

incidence of the NF-κB binding signature was more than 4-fold higher among the 

promoters of cluster 2 than in the background set. This enrichment was robust, 

remaining solid over a large range of threshold values. PRIMA identified 19 

promoters in this cluster that contained at least one high-scoring putative NF-κB 

binding site (the total number of such ‘hits’ was 27, as several promoters contained 

more than one putative NF-κB binding site). We believe that the number of genes 

whose response is controlled by NF-κB in response to IR is higher than we report; 

some were probably not picked up because of the stringent threshold used when 

scanning for putative NF-κB hits. Several of the genes in which we identified strong 

NF-κB binding site signature were previously reported to be under direct control of 

NF-κB, while the others are novel putative NF-κB targets and require experimental 

validation. Of note, this set of genes contained those that encode subunits of the NF-

κB heterodimer itself (Relb, Nfkb2), as well as two of its direct inhibitors, Nfkbia 

(IκBα) and Nfkbib (IκBβ). This pattern of parallel activation of positive and negative 

regulators, which probably represents positive and negative feedback loops, appears 

to be a recurrent theme in the logic of cellular signaling networks. This theme appears 
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in the p53-mediated arm as well, where p53 induces its inhibitor MDM2. PRIMA 

identified high enrichment for p53 binding site signatures in promoters of this cluster 

- 4-fold higher than expected according to the prevalence of p53 hits in the 

background set (Table 4.6.2). p53 binds to a consensus DNA sequence consisting of 

two conserved decamers separated by a spacer varying in length from 0-13 base pairs 

[193]. The PWM used by PRIMA to represent p53 binding sites does not model the 

flexibility in the length of the spacer between the decamer repeats, and therefore may 

have missed possible p53 binding sites in the promoters of this cluster that contain a 

spacer between the decamers.  

 

To validate the results obtained by the microarrays, Sharon Rashi-Elkeles from 

our lab performed quantitative real-time RT-PCR analysis of the expression of eleven 

genes that responded in an Atm-dependent manner. This analysis was focused on the 

putative NF-κB-mediated arm, as the p53-mediated arm is well-documented.  We 

selected for validation genes whose promoters were found to contain a strong NF-κB 

binding signature. To reduce false positive rate, we required that a strong NF-κB 

binding signature appear also in the promoters of the human ortholog genes. We 

found good agreement between the microarray and RT-PCR results; the magnitudes 

of induction differed for some genes but the dependency of their activation on 

functional Atm was validated for all eleven examined genes (Fig. 4.6.2). 

A combination of microarray-based and computational analysis pointed out the 

major involvement of NF-κB in Atm-mediated gene regulation in the lymphoid cells  
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Figure 4.6.2. Real-time RT-PCR validations. Comparison of gene expression 
(induction fold) obtained from microarray data and real-time RT-PCR analysis for 11 
genes selected from the set of Atm-dependent, putatively NF-κB-mediated responding 
genes. Four bars are shown for each gene: the blue and red bars represent fold 
induction of that gene 120 min post IR in the Atm+/+ and Atm-deficient tissues, 
respectively. Within each genotype, the dotted bar denotes the result obtained by RT-
PCR (averaged over three independent measurements, error bars represent one S.D.), 
and the solid bar denotes the value obtained from microarray measurements. Note that 
although the magnitude of induction of some genes differs in the real-time RT-PCR 
and microarray measurements, all eleven genes show agreement between the two 
technologies on the dependence of the induction on Atm. (RT-PCR experiments were 
carried out by Sharon Rashi-Elkeles.) 
 

following IR. We sought to confirm this phenomenon by direct biochemical 

demonstration of the dependence of the IR-induced NF-κB activation on Atm. 

Electro-mobility shift assays (EMSA) performed by Nir Weizman on nuclear extracts 

from lymph node tissues of untreated and irradiated Atm+/+ and Atm-deficient mice 

showed that while NF-κB binding activity in the Atm+/+ tissue was induced by 2.5-

fold following IR, the irradiated Atm-deficient tissue failed to induce NF-κB binding 

 91



 

activity (Fig. 4.6.3). These data demonstrate that the induction of NF-κB in 

lymphocytic cells in response to IR is Atm-dependent. 

 

Figure 4.6.3. Reflecting NF-κB activation 
using EMSA. NF-κB binding activity in 
wild-type and Atm-/- lymphoid tissues 
following exposure to 20 Gy X-rays. (A) 
EMSA results obtained from two animals 
are shown for each indicated time point. The 
arrows indicate the position of the NF-κB-
DNA complexes. (B) Quantitative analysis 
of NF-κB binding activity fold induction 
(n=4 for each time point). ***p<0.01; 
**p<0.025. Error bars represent ± S.D. 
Statistical analyses were performed using 
two-tailed Student's t-test. (C) To 
demonstrate the NF-κB specificity of the 
shifted bands, nuclear proteins isolated from 
irradiated Atm+/+ tissues were exposed to 
100-fold excess of unlabeled 
oligonucleotides representing NF-κB-
binding consensus sequence, and then 
incubated with radiolabeled probe (4+C). 
Band intensity was significantly reduced 
under this condition. (Experiments carried 
out by Nir Weizman.) 
 
 
 
 
 
  
   
 
 
 
 
 
 

In order to identify biological endpoints of the Atm-dependent gene regulation 

mediated by NF-κB and p53, we applied our SHARP tool (described in Section 4.2) 

to this dataset. Figure 4.6.4, generated using SHARP, indicates that while the p53-

regulated arm induced by IR included two major pro-apoptotic regulators (Apaf1 and 
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Bax, which are both direct targets of p53 [194-196]), the NF-κB-mediated arm 

contained three pivotal anti-apoptotic genes (Birc2, Birc3 and TNFaip3, all are direct 

targets of NF-κB [196, 197]). Birc2 and Birc3 (cIAP1, cIAP2), are members of the 

Inhibitor of Apoptosis (IAP) family of proteins that inhibit apoptosis probably by 

directly interfering with activation of several caspases, including Casp3 and Casp9 

[196, 198]. Tnfaip3 (A20) was reported to inhibit TNFα-induced apoptosis by 

disrupting the recruitment of TRADD and RIP to the complex that assembles at the 

TNF receptor shortly after it is bound by its ligand [197]. Our results show that in 

response to IR, pro- and anti-apoptotic signals are induced in parallel, and the 

induction of both arms is Atm-dependent. The pro- and anti-apoptotic signals were 

conveyed via direct targets of p53 and NF-κB. 

In a recent study, Stankovic et al. [199] recorded gene expression profiles in 

ATM-deficient, p53-deficient and ATM/p53 proficient B-CLL cancer samples. 

Similar to the results obtained in our dataset, these investigators reported that the 

ATM-dependent transcriptional response is composed of two major arms: one is p53-

dependent and contains many pro-apoptotic genes, while the other, controlled by an 

unknown transcription factor, is enriched with pro-survival genes. In an attempt to 

reveal the regulator of the ATM-dependent, p53-indepndent response observed in that 

study, we applied PRIMA to the cluster of 61 genes that were reported to respond to 

IR in the wild type and TP53-mutant but not in the ATM-mutant B-CLL tumors. In 

full concordance with the result obtained on our dataset, we found that the ATM-

dependent, p53-independent, pro-survival cluster reported by Stankovic et al. was 

significantly enriched for the NF-κB binding site signature. The prevalence of the NF-

κB binding site signature on genes’ promoters of this cluster was more than 4-fold 

higher than in the background set comprised of all human known-genes’ promoters  
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Figure 4.6.4. Parallel, Atm-dependent induction of pro- and anti-apoptotic 
signals in response to IR in murine lymphoid tissue. Superposition of microarray 
results on gene-interaction map using SHARP pointed to parallel induction of pro- 
and anti-apoptotic signals, with the pro-apoptotic pathway mediated by p53 (through 
its induction of Apaf1 and Bax), and the anti-apoptotic arm mediated by  NF-κB 
(through its induction of Birc2, Birc3 and Tnfaip3). The activation of both arms was 
dependent on Atm in our dataset. p53 is a direct substrate of ATM. The mechanism 
by which ATM activates the NF-κB arm remains to be determined. The figure was 
created using SHARP. The interaction map contains 3 types of nodes and 2 types of 
edges. gGrey nodes represent single proteins (denoted by the official Human Genome 
Nomenclature Committee (HGNC) symbol of their encoding gene), yellow nodes 
represent protein families (e.g., IκB), and green nodes represent protein complexes 
(e.g., IKK). The first type of edge denotes regulation relations (→ for ‘activation’, 
──┤ for ‘inhibition’), and the second type denotes containment relations (green 
arrows) among nodes (e.g., RelA is contained in the NF-κB_subII family). Protein 
nodes were colored by SHARP according to the fold-induction exhibited by their 
encoding genes in the Atm+/+ tissue 120 min post-IR: red- induction, green- 
repression, yellow- no change, gray- data not available (gene was either not present 
on the microarray or its expression level was below detection limit). 
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(p-value of this over-representation is 4.7x10-6). Similar to findings on our data, the 

cluster contains several subunits of NF-κB itself (NFKB1, NFKB2, RelB), further 

supporting a major role for this TF in the induction of the pro-survival transcriptional 

response. This observation suggests an underlying molecular model for the 

phenotypic difference between ATM- and TP53-mutant B-CLL tumors: In contrast to 

ATM-deficient tumors, in which the induction of both pro- and anti-apoptotic signals 

is compromised, in p53-deficient B-CLLS, the induction of the apoptotic arm is 

abolished while that of pro-survival signals mediated by ATM and NF-κB is intact, 

making these tumors more aggressive and resistant to chemotherapies.  

 

In Sections 4.3 - 4.5 we demonstrated that in-silico dissection of transcriptional 

networks is feasible in the analysis of gene expression data obtained from a 

homogenous population of culture cells. Here, we demonstrate that this functional 

genomics approach is sensitive enough to dissect transcriptional networks in a more 

physiological relevant situation: a mixture of cells in the tissue of an irradiated 

animal. The model that emerges has implications for rational therapeutic strategies for 

managing cancers of lymphoid origin. It suggests that restoring the p53-mediated 

apoptotic arm while blocking the NF-κB-mediated pro-survival arm could 

conceivably increase the radiosensitivity of lymphoid tumors.  
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5. Discussion 
 

Functional genomics is changing the way biological research is done. For the first 

time it is possible to study biological systems as a whole and to obtain large-scale 

snapshots of cellular transcriptome and proteome. The maturation of novel high-

throughput biotechnologies has turned biology into an information-rich science. Yet, 

the field is still in its infancy in terms of mining biological knowledge out of the vast 

volume of collected data. Indeed, the development of novel techniques for analysis of 

functional genomics data is one of the major challenges in bioinformatics. Notable 

successes in systems biology have been achieved in global delineation of 

transcriptional networks in various organisms ranging from primitive prokaryotes to 

human. In our studies, we developed and applied functional genomics approaches to 

dissect transcriptional programs that are associated with cell cycle progression and 

responses to DNA damage in human and mouse model systems. Our results 

elucidated novel regulatory links within these intricate signaling networks. 

Usage of computational tools. Section 4.1 presents our PRIMA tool for promoter 

analysis. In addition to its utilization in the analysis of the microarray datasets 

collected in our lab, PRIMA was installed in more than ten labs from various 

countries, and there are already several publications that reported biological findings 

that were obtained using this tool [200, 201]. In addition to the direct installation of 

PRIMA, many more labs use this module as part of our EXPANDER package, which 

is now the preferred way for running PRIMA given the great improvement in running 

time achived by using the pre-complied promoter fingerprint files provided with 

EXPANDER for six organisms. Over a thousand labs installed EXPANDER to date. 

 96



 

 The SHARP KB described in Section 4.2 is not officially released yet, but it is 

installed in several beta sites in addition to our own lab. These sites include the 

labs of Prof. Danny Michaelson and Prof. Yoel Kloog from the Department of 

Neurobiochemistry, Faculty of Life Sciences, Tel Aviv University and three 

research groups the Curie Institute, Paris, France. We have also established a 

SHARP version for fly (Drosophila) installed in the lab of Dr. Danny Chamovitz, 

Dept. Plant Sciences, Faculty of Life Sciences, Tel Aviv University. We expect 

that with its official release and publication SHARP will become popular among 

the DNA damage research community.   

 

Elucidation of key regulators of the human cell cycle transcriptional program. In the 

study presented in Section 4.3, we demonstrated for the first time that the reverse-

engineering approach, which infers transcriptional mechanisms from measured gene 

expression data, can accurately reveal transcription factors that control the observed 

modulation in the human cellular transcriptome. Employing genome-wide in-silico 

promoter analysis, we revealed eight transcription factors (E2F, NF-Y, Sp1, ATF, 

NRF-1, CREB, Arnt and YY1) whose binding site signatures are significantly over-

represented in promoters of genes whose expression is cell cycle dependent. The 

enrichment of some of these factors was specific to particular phases of the cell cycle. 

In addition, we found that several pairs of these TFs show a significant co-occurrence 

rate in cell cycle-regulated promoters. Most of our computationally-derived findings 

are strongly supported by experimental evidence.  

The E2F family is well documented as a prime regulator of the mammalian cell 

cycle. Pathways that modulate the activity of E2F are frequently disrupted in human 

cancers, leading to misregulated cellular proliferation [202]. The E2F PWM obtained 

highly significant enrichment scores in all our analyses, demonstrating the sensitivity 

of our methods to reveal true signals. The role of this family of TFs in the cell cycle 

was underscored by several recent studies showing that E2F regulates not only genes 
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that function in the G1/S and S phases, but also many M phase genes [163, 164]. Our 

analysis indicates that the E2F PWM is indeed enriched in promoters of genes that are 

expressed in G2, although its enrichment in promoters of genes expressed in G1/S and 

S phases is much more prominent (Fig. 4.3.1).  

Published experimental data support our findings on most of the other TFs as well. 

NF-Y and Sp1 PWMs obtained highly significant enrichment scores. Though 

involved in many different aspects of cellular life, both TFs have an established role 

in the regulation of the cell cycle. NF-Y was demonstrated to control the expression 

of several key regulators of the G2/M phases of the cell cycle [203-206], in line with 

our observation of its significant enrichment in these phases. The transcriptional 

activity of Sp1 is modulated in a cell cycle-dependent manner through its 

phosphorylation by Cyclin A-CDK complexes [207]. In addition, several cell cycle 

regulators were reported to be controlled by Sp1 [208-211]. 

Our findings that E2F and NF-Y binding sites, as well as E2F and Sp1 binding 

sites, significantly co-occur in promoters of cell cycle-regulated genes suggest 

functional cooperation between these TFs in the regulation of cell cycle progression. 

Experimental evidence supports the existence of such relations. Physical interactions 

were demonstrated between members of the E2F and Sp1 families [212], and 

functional cooperation between E2F and Sp1 was reported in several cell cycle-

related promoters [212-216]. As for E2F and NF-Y, co-occurrence of functional 

binding sites for both TFs was reported in several promoters, including Cdc2, TK, 

POLA, Cyclin A, and several histone genes [217]. Functional synergism between E2F 

and NF-Y was demonstrated in the regulation of the E2F-1 promoter [218]. Our 

findings substantially expand the generality of these functional links, pointing to 

possible synergism between these TFs on dozens of cell cycle-regulated promoters. 
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Other TFs that were significantly over-represented in cell cycle-related promoters 

in our analyses have not been established as prominent regulators of the cell cycle, but 

data suggest they are involved in regulation of cellular proliferation. ATF/CREB is a 

family of over a dozen TFs that bind a common regulatory element, the ATF/CRE 

(cAMP Response Element) motif. One member of the family, CREB, undergoes cell 

cycle-regulated phosphorylation [219], and was recently reported to control the 

expression of multiple cell cycle regulatory genes [220]. Over-expression of another 

family member, ATF2, inhibits the G1/S phase transition in human cancer cell line 

[221], and is directly involved in the regulation of cyclin A [222] and cyclin D1 [223].                     

YY1 was reported to control several S-phase-induced genes [224, 225]. Over-

expression of YY1 was reported to induce DNA synthesis [226], and a cell cycle-

regulated physical interaction between YY1 and pRb was reported in the same study. 

These findings link YY1 to induction of the S phase. In contrast, we found the YY1 

PWM to be under-represented in the S phase, but significantly enriched in the M/G1 

cluster.  

Arnt forms a dimeric TF with the aryl hydrocarbon receptor (AhR). It is 

implicated in developmental processes and tissue homeostasis, and several studies 

have linked the AhR-Arnt dimer to cell cycle regulation. Activation of AhR was 

reported to induce G1 arrest [227, 228]. Recently, this negative regulation was shown 

to depend on physical interaction between AhR and pRb [229]. In agreement, we find 

the enrichment of the Arnt PWM in the G1/S cluster.  

Transition of cells from quiescence to proliferation increases the cell demand for 

energy. One way of responding to the increased demand for ATP is to modulate the 

activity of the respiratory chain components. NRF-1 regulates the expression of many 

genes required for mitochondrial respiratory function [230]. The hypothesis that we 
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raised in this study for the first time of a functional relationship between NRF-1 and 

E2F recently received strong support from a study by Cam et al. [231]. 

In addition, we found that several pairs of these TFs show a significant co-

occurrence rate; that is, some combinations of their binding site signatures form 

recurrent cis-regulatory modules that are embedded in multiple cell cycle-regulated 

promoters. We expect our findings will provide guidelines for experimental dissection 

of regulatory mechanisms that control cell cycle in mammalian cells. Moreover, the 

methods demonstrated in this study are general and can be applied to the analysis of 

transcriptional networks controlling any biological process.  

 

Computational identification of TFs associated with c-Myc. In the study presented in 

Section 4.4, we further demonstrated how computational promoter analysis can be 

utilized in the analysis of data obtained by the ChIP-on-chip technique. As a test case, 

we focused on promoters bound by c-Myc. We identified nine TFs whose binding site 

signatures were significantly over-represented on promoters of c-Myc target genes. 

We showed that the binding site signatures of most of these TFs were also enriched 

on the set of mouse homolog promoters, suggesting functional conservation of their 

putative association with c-Myc.  

Our computational analysis sheds more light on the mechanisms by which c-Myc 

promotes cell growth and transformation. Among the TFs we found enriched in the c-

Myc/Max target promoter set were the pivotal regulators of the transcriptional 

program associated with cell cycle progression, E2F and NF-Y. Functional links 

between c-Myc and E2F are well documented [232-235]. Myc promotes cell cycle 

progression by coordinated activation of cell cycle driving genes (e.g., Cdc25A, Cdk4, 

and Cyclins D2, E and A), and by suppression of cell cycle arrest genes (such as p15, 
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p21, p27 and GADDs) [233]. Some of the cell cycle promoting genes are common 

targets of c-Myc and members of the E2F family TFs [236]. As for the link between 

c-Myc and NF-Y, physical interaction between c-Myc and the NF-YB and NF-YC 

subunits of the NF-Y trimer has been demonstrated [237, 238].  

Another TF whose binding signature was highly enriched in the c-Myc target 

promoters is EGR-1, which is rapidly activated by many types of stress, including 

hypoxia, DNA damage and vascular injury, and has a central role in angiogenesis — 

the formation of new blood vessels from pre-existing vasculature [239, 240]. The 

possible functional links between c-Myc and EGR-1 is intriguing because of the 

pivotal role of EGR-1 in angiogenesis. Uncontrolled angiogenesis plays an important 

role in tumor growth, and the sprouting of new blood vessels into tumors suggests that 

angiogenesis is necessary for the progression of malignancy. Recent reports 

underscored the critical roles of both EGR-1 and c-Myc in angiogenesis. Fahmy et al. 

[239] reported that inhibition of EGR-1 expression repressed neovascularization and 

blocked angiogenesis and tumor growth in mouse and rat models. Baudino et al. [241] 

reported that c-Myc is also required for the proper expression of several major 

angiogenic factors, and that c-Myc(-/-) ES cells are dramatically impaired in their 

ability to form tumors in immune-compromised mice, and the small tumors that do 

develop are poorly vascularized. Here, we proposed a possible synergism between c-

Myc and EGR-1 in transcriptional regulation of target genes, and experimentally 

demonstrated the binding of both c-Myc and EGR-1 to several target promoters. 

Computational identification of enriched TF hits on a set of co-expressed genes 

points to a role of the respective TF in the regulation of these genes. However, such 

an in-silico approach alone cannot precisely and uniquely decipher the regulatory 

effect of the TF. It is possible that the enriched TF acts as an activator and hence its 
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binding to the regulatory elements is necessary for the induction of the analyzed 

genes. On the other hand, it cannot be ruled out that the enriched TF acts as a 

suppressor, and the removal of its binding to the gene promoters is required for their 

induction. For example, we identified a significant enrichment for NF-Y binding site 

signature on promoters of genes whose expression peaks in the G2 phase of the cell 

cycle. This observation alone does not tell us whether NF-Y is an activator or 

repressor of these promoters at this cell cycle phase. Additional experiments are 

needed to understand the nature of the regulatory effect of this TF. The expression 

pattern of a TF may point to its role in cases where its activity is regulated at the 

transcriptional level. In the above example, if the expression of NF-Y itself was to 

peak at G2 as well, it would strongly suggest that it acts as an activator, and vice 

versa. Similarly, regulatory modules that are identified computationally based on 

significant co-occurrence of TF hits cannot by themselves reveal the regulatory effect 

of each member of the module, nor the nature of the interplay between them. For 

example, we identified significant co-occurrence of c-Myc and EGR1 binding site 

signatures, which suggests the involvement of both TFs in the regulation of a large set 

of common targets. But we cannot know whether these two elements are synergistic 

or antagonistic in the induction of their targets. Nor can computational means tell us 

whether these two TFs bind their common targets simultaneously, or their binding is 

mutually exclusive. It is also possible that these two TFs control a common set of 

genes but each regulator is activated in response to different triggers. Again, 

correlations between the expression of these regulators and that of the genes 

putatively regulated by this module can elucidate the regulation logic.  

Dissection of DNA damage responses using a combination of microarrays and RNAi. 

The results in Section 4.5 represent another test-case study. Fine dissection of 
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complex transcriptional responses has posed a long-standing challenge in the signal 

transduction field. External and internal stimuli may activate complex networks 

whose analysis by traditional biochemistry can be daunting. The DNA damage 

response is an example of such a complex network. This highly branched signaling 

web spans numerous aspects of cellular metabolism and involves a vigorous wave of 

gene transcription across the genome. The combination of gene expression 

microarrays, manipulation of genes activity using siRNAs, and powerful 

computational tools holds promise for systematic and rapid dissection of such 

networks.  

Our analysis provides a proof-of-principle for the power of this combined 

experimental approach, despite possible nonspecific effects of RNAi [180-183], 

which can be neutralized by controlled experimental design and computational 

analysis of the data. One way to filter out off-target effects is to use several different 

siRNA sequences against the same target on the assumption that completely different 

siRNAs will not induce the same off-target effects [37, 183]. Following this logic, 

dissecting a signaling pathway that is mediated by several regulators using 

independent targeting of these regulators should also boost confidence. In this case, 

overlapping sets of genes whose expression is attenuated by knocking down different 

regulators are unlikely to be a result of off-target effects. It is also important to show 

that the observed effects are not a general consequence of the expression of siRNAs in 

the cells.  

In our study we focused on two arms in the DNA damage-induced network that 

are mediated by the ATM/NF-κB and the ATM/p53 regulators. First, we identified a 

set of genes whose induction in response to DNA damage was abrogated in cells 

knocked-down for two different components of the damage-induced signaling 
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pathway, ATM and the Rel-A subunit of NF-κB. Importantly,  the induction of these 

genes was not disrupted in cells expressing siRNA against LacZ and was only mildly 

attenuated in cells knocked-down for p53, indicating that the loss of induction was not 

a general nonspecific consequence of siRNA expression. Moreover, computational 

promoter analysis showed that the set of promoters of these genes was highly and 

specifically enriched for the binding site signature of NF-κB, providing independent 

evidence of the accuracy of this analysis. We then identified a set of genes whose 

induction in response to DNA damage was significantly abrogated in cells knocked-

down for ATM and p53, but not in cells knocked-down for the Rel-A subunit of NF-

κB, or in the LacZ control. Again, it is unlikely this dissection of the ATM/p53-

mediated arm can be ascribed to nonspecific or off-targets effects. According to 

computational promoter analysis, this set was highly enriched for the binding 

signature of ATF2/ATF3/Jun, a secondary-transcriptional pathway whose induction 

was indeed p53-dependent in our data. This observation is in agreement with several 

studies that reported p53-dependent activation of this transcriptional pathway in 

response to DNA damage [186, 187]. However, evidence suggests that p53-

dependence of the induction of the ATF2/ATF3/Jun pathway depends on the cellular 

context, the type of DNA lesion or the extent of damage, as p53-independent 

induction of this pathway was observed in other studies [242, 243]. 

In summary, we have dissected the network into two major arms, the ATM/NF-

κB- and the ATM/p53-dependent arms. Statistical tests coupled with computational 

promoter analysis demonstrated that this dissection was highly accurate. Given the 

success of this pilot study, we are pursuing this strategy to obtain finer dissection of 

the cellular responses to DNA damage. Cellular systems knocked-down for all the 

TFs that are known to be involved in DNA damage responses are being established in 
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our lab. Analyzing these systems at several timepoints after exposure to damaging 

agents will allow us to delineate kinetic waves in the induced network. The results we 

obtained indicated that, in the cells we used, a large component of the p53-dependent 

transcriptional response was mediated by activation of a second wave of 

transcriptional induction controlled by ATF/Jun TFs. Examination of the damage 

response in cells knocked-down for these regulators will allow us to test this model. 

Our results also suggested that most of the first wave of the transcriptional response is 

transmitted by the ATM-dependent activation of p53 and NF-κB. It will be interesting 

to probe the transcriptional response induced by DNA damage in cells knocked-down 

for both p53 and NF-κB. In our follow-up studies we will construct systems knocked-

down for combinations (pairs, triplets) of regulators. This should allow further 

elucidation of interlinks among key players in this network. 

Delineation of transcriptional responses to ionizing radiation in murine lymphoid 

tissues. In the study described in Section 4.6, we reversed-engineered components of 

the transcriptional network induced by IR in murine lymphoid tissue. Using the 

microarray technology, we first identified a prominent cluster of genes whose 

activation by IR was Atm-dependent. Then, using a computational method, we 

searched the promoters of these genes for over-represented cis-regulatory elements. 

Without any bias of prior knowledge, PRIMA revealed highly significant enrichment 

for NF-κB and p53 binding site signatures, suggesting that these two transcription 

factors are the major transcriptional regulators in the Atm-dependent response to IR in 

lymphoid tissues. These results are in agreement with previous studies that reported 

compromised IR-induced activation of both NF-κB and p53 in murine Atm-deficient 

tissues and in cell lines derived from A-T patients [244-247]. Focusing on the putative 

NF-κB-mediated arm, we biochemically validated the Atm dependence of IR-induced 
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enhancement in DNA binding activity of NF-κB in lymphoid cells. Our approach 

could thus dissect two major arms in the Atm-mediated transcriptional response, 

according to the transcriptional regulators that function downstream of Atm.  

The mechanisms by which ATM activates and stabilizes p53 are well-established. 

ATM directly phosphorylates p53 as well as its inhibitor and E3 ubiquitin ligase, 

Mdm2, and the checkpoint kinase Chk2, which in turn phosphorylates p53 on yet 

another site (reviewed by Shiloh, 2003 [93]). p53's response to DNA damage also 

depends on Mdm2-dependent proteolysis of Mdmx, a homologue of Mdm2 that 

represses p53's transactivation function [248]. Recently, Yaron Pereg of our lab 

showed that efficient damage-induced degradation of human Hdmx depends on its 

direct phosphorylation by ATM in response to DSBs [116]. All these ATM-dependent 

modifications contribute to the stabilization and rapid accumulation of p53 in 

response to IR-induced DNA damage. In contrast, the mechanisms by which ATM 

activates the NF-κB pathway remain elusive. Li et al. [245] demonstrated that ATM is 

required for DSB-induced activation of the NF-κB pathway, including activation of 

the IKK complex that phosphorylates IκBα, NF-κB's inhibitor. Recently, Hur et al. 

[249] reported the death domain kinase RIP to be an essential component upstream to 

IKK in the activation of NF-κB by DNA damage. Importantly, RIP was demonstrated 

to physically interact with IKK upon exposure of cells to DNA damaging agents, and 

this interaction was ATM-dependent. The direct substrate(s) of ATM in this signaling 

pathway and how the alarm signal is propagated from the nucleus to the cytoplasm 

remain to be determined. A recent study pointed to the IKBKG (NEMO/IKKγ) 

subunit of the IKK complex as a key player, which shuttles between the nucleus and 

the cytoplasm, in the transmission of the signal [250]. 
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Importantly, we observed that the Atm-dependent response contained several p53-

direct targets with major pro-apoptotic role, as well as several NF-κB-direct targets 

with anti-apoptotic function. Taken together, our findings suggest a model in which, 

in the response of lymphoid cells to IR, pro- and anti-apoptotic signals are induced in 

parallel, the former being mediated by NF-κB and the latter by p53, while the 

activation of both is Atm-dependent. This model is in strong agreement with the 

results recently reported by Stankovic et al. [199], who examined IR-responses in 

three groups of B-CLL tumor cells: ATM/TP53-proficient, ATM-mutant/TP53-w.t. 

and ATM-w.t./TP53-mutant B-CLL tumors. In line with our results, Satnkovic et al. 

observed parallel induction of pro-apoptotic ATM- and p53-dependent transcriptional 

response, and ATM-dependent, p53-independent pro-survival response. Applying 

PRIMA to this dataset pointed to NF-κB as the missing piece in the puzzle, i.e., the 

major regulator downstream to ATM that mediates the anti-apoptotic arm in lymphoid 

cells. Indeed, Weston et al. [251] very recently showed that increased NF-κB 

signaling confers acute lymphoblastic leukemia tumors with resistance to IR-induced 

apoptosis. However, a model that depicts the ATM-p53 and ATM-NF-κB pathways 

as parallel, linear and independent is probably over-simplified. Accumulating data 

derived from several cell types suggest that the p53- and NF-κB-mediated arms 

maintain multiple cross-talks [252-255], which indicate that the logic of the IR-

induced response network and the balance between apoptotic and survival signals are 

highly intricate and depend on the cellular context.  

Taken together, our findings on the lymph nodes and B-CLL datasets further 

elucidate the molecular network induced by IR, and might have implications for 

cancer management. They suggest that restoring the p53-mediated apoptotic arm 

while blocking the NF-κB-mediated pro-survival arm could effectively increase the 
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radiosensitivity of lymphoid tumors. This may point the way to the development of 

new, effective therapeutic protocols for leukemias of lymphoid origin.   

 

Future prospects.   

Phylogenetic footprinting. A major difficulty in computational promoter analysis 

stems from the fact that cis-regulatory elements recognized and bound by TFs are 

typically very short and highly flexible. Therefore, genome-wide computational scans 

for putative TF binding sites inevitably yield many false positive hits. We have 

demonstrated that this problem does not prevent successful reverse engineering of 

transcriptional networks in human cells. However, because of the significant false 

positive rate, our analyses were focused on the identification of global statistical 

phenomena in the studied target set of promoters, and less on yielding high 

confidence lists of putative TF targets. The availability of the genome sequences of 

multiple species in addition to the human genome is expected to greatly boost the 

specificity of in-silico identification of regulatory elements embedded in the genome 

[81-83, 256, 257]. The higher selective pressure imposed on functional elements 

makes them more conserved than their surrounding non-functional DNA. Several 

studies demonstrated the utility of computational identification of evolutionary 

conserved elements, an approach called phylogenetic footprinting, in drastically 

reducing false-positive hit rates [81, 82, 257]. Thus, we downloaded genome-wide 

promoter data for twelve organisms and searched for conservation of various motifs 

across species. In a preliminary analysis, we identified core promoter elements that 

are conserved throughout evolution from yeast to humans, as well as elements 

specific to certain species groups. We intend to integrate multi-organism data in our 

promoter analysis tool. This should allow us not only to reveal the major regulators 
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that control observed transcriptional programs, but also to point out, by computational 

means alone and with very high specificity, target genes that are controlled by each 

transcription factor. 

Future generation gene expression microarrays. Probes deposited on most current 

gene expression microarrays do not allow the distinction between splice variants of 

the target genes. Therefore, this important layer of modulation of gene activity is left 

completely uncovered by most expression profiling studies. Yet, it is becoming clear 

that alternative splicing occurs in a large proportion of mammalian genes and is a 

central contributor to increasing the diversity of the mammalian proteome [258]. A 

major development in this field is the design of microarrays deposited with exon-

specific or exon-junction probes [259, 260]. Using such chips will shed new light on 

roles of alternative splice variants in different developmental stages, and on the 

involvement of specific variants in pathological conditions. The use of such exon-

chips should also boost our ability to decipher regulatory signals that control 

alternative splicing and determine which variant is expressed in which spatial-

temporal conditions. 

Another major advance in the field is the development of genome-tiling 

microarrays with probes that will eventually cover the entire genome. These arrays 

will enable measuring transcription from various regions of the genome without bias 

towards location of known genes. Several pioneering studies with such chips turned 

up evidence of large amounts of transcription outside the boundaries of known genes 

[261-264], suggesting that the universe of gene expression is much broader than 

currently thought (these newly identified entities in the cellular transcriptome were 

recently referred to as the 'dark matter' in the genome [265]). Of special note is the 

constantly growing family of genes encoding for regulatory micro-RNAs (miRNAs) 
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[266, 267]. miRNAs are endogenous, ~ 22 nt RNAs that are assumed to play 

important regulatory roles in animal development by controlling gene activity through 

targeting mRNAs for degradation or translational repression. In human, as of 2004 

some 170 unique miRNAs have been identified and validated [266]. The total number 

of genes that encode for miRNA precursors is probably much higher. Elucidation of 

these genes and their functions will be significantly enhanced with the maturation of 

genome-tiling microarrays. 

The mechanism by which miRNAs exert their regulatory role is believed to 

share many features with RNAi mechanisms [266]. According to current models, pre-

miRNAs that acquire hairpin double-stranded secondary structure are processed by 

the Dicer complex, resulting in short single-stranded miRNAs that are loaded onto the 

RNA-induced silencing complex (RISC). The loaded miRNAs direct the RISC 

apparatus to downregulate the expression of their target genes either by mRNA 

cleavge or repression of mRNA translation into proteins. Both processes are assumed 

to be mediated by various degrees of complementarity between miRNAs and their 

mRNA targets; high homology is believed to favor degradation while more modest 

homology between miRNA and its target mRNA is believed to favor translational 

repression. Regulatory elements through which many of the miRNA discovered to 

date are embedded in the 3'-UTR region of their mRNA targets. Current knowledge 

on such regulatory elements is scant. Adopting a strategy that combines gene 

expression profiling with genome-tiling microarrays and phylogenetic footprinting 

focused on 3'-UTR regions is expected to disclose many new functional elements that 

control gene expression by means of miRNA-directed suppression. A promising 

indication for the potential of the comparative genomics approach in deciphering 3'-

UTR regulatory elements was recently demonstrated by Xie et al. [268], who 
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computationally identified more than a hundred 3'-UTR motifs likely involved in 

post-transcriptional regulation. 

Proteomic technologies. Measurement of protein levels and post-translational 

modifications is much more challenging than nucleic acid measurements. It is not 

surprising, therefore, that technologies for large-scale profiling of the cellular 

proteome lag behind those for profiling the transcriptome. Nevertheless, one can 

expect considerable progress in the proteomics technologies in the coming years. 

Availability of robust proteomic chips, in addition to the genome-tiling ones, will 

allow simultaneous profiling of TF-DNA interactions, gene expression and protein 

levels and modifications. Reverse engineering of cellular regulatory networks (not 

limited to the tier of transcriptional regulation) from such multi-layer data will 

necessitate the development of novel algorithms, and pose one of the greatest 

bioinformatics challenges in the years to come. Having such experimental and 

computational tools will allow generating detailed mechanistic models for the cellular 

function. This will eventually pave the way to models that are detailed and accurate 

enough to implement computational simulations of the living cell [269, 270]. The 

impact of accurate simulations of the functions of human cellular systems on 

biomedical research cannot be overestimated.  

We do, however, anticipate intriguing findings that may throw into question some 

basic assumptions. One such surprising finding that still averts scientific attention 

relates to our interpretation of gene expression data. The interpretation of expression 

data for analysis of genes function rests on several assumptions. First, it is assumed 

that evolutionary selection was tight enough to ensure that genes are expressed only 

under conditions in which their products are needed for the proper functioning of the 

cell/tissue. Second, it assumes that regulation of transcription is the pivotal factor for 
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regulation of gene activity. These assumptions are shaken by experiments 

documenting low correlation between changes in mRNA and protein levels in cells 

[271, 272], and poor overlap between genes induced in response to perturbations and 

genes whose deletion compromises fitness of the cells to the same perturbations [273, 

274]. It is conceivable that some fraction of gene expression has no significant 

functional role. Future studies will have to address this issue.   

  

In this work, we developed several novel functional genomics approaches and 

applied them to the study of cellular responses to DNA damage. Our results 

demonstrated that the new paradigm of systems biology provides global delineation of 

complex cellular networks. Although systems biology is in its infancy, it is already a 

vital part of modern biomedical research. Its potential benefits are enormous in both 

scientific and practical terms. Advances in the field will enable us to construct 

mechanistic models for the operation of the cellular systems, test and refine them 

using experimental approaches, and gradually witness the emergence of robust, 

dynamic, adapting, and developing systems from the information encoded in the 

genomes. Gaining such understanding will elucidate causal relationships between 

defective components (e.g., mutated genes) and compromised biological systems (i.e., 

abnormal phenotypes of organisms). Thus, systems biology is expected to impact on 

clinical medicine as well as on pharmaceutical industries. This emerging field will 

eventually provide us with detailed mechanistic models for the etiology of diseases, 

pointing the way to novel strategies for rational intervention in pathological 

conditions and the design of improved personalized drugs. 
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