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ABSTRACT  

During development enhancers play pivotal roles in regulating gene expression 

programs; however, their involvement in cancer progression has not been fully 

characterized. We performed an integrative analysis of DNA methylation, RNA-seq 

and small RNA-seq profiles from thousands of patients, including 25 diverse primary 

malignances and 7 body sites of metastatic melanoma. We found that enhancers are 

consistently the most differentially methylated regions (DMR) as cancer progress 

from normal to primary tumors and then to metastases, compared to other genomic 

features. Remarkably, identification of enhancer DMRs (eDMRs) enabled 

classification of primary tumors according to physiological organ systems and in 

metastasis eDMRs are the most correlated with patient outcome. To further 

understand eDMR role in cancer progression we developed a model to predict genes 

and microRNAs that are regulated by enhancer and not promotor methylation, which 

shows high accuracy with chromatin architecture methods and was experimentally 

validated. Interestingly, among all metastatic melanoma eDMRs the most correlated 

with patient survival were eDMRs that ‘switched’ their methylation patterns back and 

forth between normal, primary and metastases and target cancer drivers, e.g.: KIT. 

We further demonstrated that eDMR target genes were modulated in melanoma 

bone metastasis microenvironment, suggesting that eDMRs respond to 

microenvironmental cues in metastatic niches. Our findings that aberrant methylation 

in cancer cells mostly affects enhancers, which contribute to tumor progression and 

cancer cell plasticity, will facilitate development of epigenetic anticancer approaches. 
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INTRODUCTION 

The landscape of DNA methylation undergoes global changes in many cancers 

(Jones 2012) which contribute to genomic instability (Pogribny and Beland 2009), 

facilitate genetic mutations (You and Jones 2012), and alter gene expression 

programs (Easwaran et al. 2014). Most studies of DNA methylation changes in 

cancers have focused on promoter regions, since hypermethylation of promoters is a 

key mechanism for gene silencing (Esteller 2007). Less attention has been given to 

aberrant DNA methylation in other region of the genome, such as enhancers (Aran 

and Hellman 2013; Marzese et al. 2013; Ziller et al. 2013; Brocks et al. 2014), and to 

its influence on gene expression in cancer.  

During development enhancers play pivotal roles in regulating expression programs 

(Hnisz et al. 2013), are characterized by tissue-specific chromatin marks (Heintzman 

et al. 2009), and their activation corresponds with nucleosome and methylation loss 

(Zhou et al. 2011; Buecker and Wysocka 2012; Taberlay et al. 2014). Recent studies 

have used these features to predict enhancer-gene interactions (Aran and Hellman 

2013; Aran et al. 2013; Andersson et al. 2014; Aran and Hellman 2014; He et al. 

2014); however, these methods provide limited insight into the roles of enhancers in 

cancer, in particularly, the transcriptional consequences of abnormal enhancer 

methylation.  

Cancer plasticity refers to the ability of tumor cells to transition between states and 

evolve under selective pressure, facilitating metastagenesis (Friedl and Alexander 

2011; Tam and Weinberg 2013). Tumor heterogeneity and the microenvironment 

clearly impact cancer cell plasticity (Friedl and Alexander 2011; Brabletz 2012; 

Meacham and Morrison 2013). However, unlike genetic mutations, DNA methylation 

is a reversible modification, (Franchini et al. 2012), thus, we hypothesized that 

methylation changes could promote cancer progression by affecting cancer cell 

plasticity. To test this hypothesis, we extended the analysis of (Aran and Hellman 
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2013; Aran et al. 2013; Aran and Hellman 2014) and analyzed differential DNA 

methylation patterns in twenty five cancer types and seven sites of metastatic 

melanoma. Our analysis suggests that enhancer methylation changes can be 

indicative of patient outcome, and may contribute to cancer progression through 

cancer cell plasticity.  

RESULTS 

Enhancers exhibit highly dynamic methylation patterns upon malignant 

transformation 

In order to methodically examine DNA methylation changes involved in malignant 

transformation we analyzed 23 distinct cancer types (overall 25 datasets). We used 

the genome-wide scale Illumina HumanMethylation450 arrays (Dedeurwaerder et al. 

2011) to identify differentially methylated regions (DMRs) by analyzing over 6200 

DNA methylation profiles of patients’ tumor and normal tissue (Supplemental Table 

S1). We identified 123,649 DMRs (minimum region-wise mean methylation difference 

>0.3, false discovery rate, q<0.2). Interestingly, we found that enhancers had more 

DMRs than any other genomic region; promoters and CpG islands exhibited the less 

variation (Fig. 1A). This result suggests that alterations of enhancer methylation have 

a significant role in cancer progression, in support of data reported previously (Aran 

and Hellman 2013; Ziller et al. 2013; Aran and Hellman 2014; Taberlay et al. 2014). 

To test whether the selected threshold of 0.3 for differential methylation represented 

an optimal measure, we calculated the fraction of DMRs in each genomic feature 

using higher and lower thresholds (from 0.2 to 0.5); enhancers were consistently the 

most variable regions (Supplemental Fig. S1A). As the frequency of CpG 

dinucleotides varies with genomic features (Supplemental Fig. S1B), we repeated the 

differential methylation analysis using methylation levels of individual CpG sites in the 

array (Supplemental Fig. S1C), and observe consistent results, namely that CpG 
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methylation within enhancers are the most variable compared to all other genomic 

features.  

Given the parallels between embryonic development and oncogenic transformation 

(Hon et al. 2013), we examined the binding patterns of central pluripotent 

transcription factors (TFs) POU5F1, SOX2, and NANOG in various DMRs. We 

observed that multiple binding occurred more frequently at differentially methylated 

enhancers than at promoters or CpG islands (Fig. 1B). These results support 

previous findings (Göke et al. 2011; Whyte et al. 2013) suggesting that eDMRs 

bound by pluripotent TFs may mediate central expression programs. To qualitatively 

examine the altered enhancers, we analyzed information on ChromHMM states 

(Ernst and Kellis 2012). We found that compared to enhancers that were not 

differentially methylated (static enhancers), eDMRs were significantly enriched for the 

ChromHMM state of ‘strong enhancers’ (P<2e-16, Fig. 1C), similar to previous 

reports (Aran et al. 2013). This results suggest that enhancers altered in cancer, may 

regulate their target genes more strongly than do unaltered enhancers. It is known 

that promoter and island hypermethylation are associated with gene silencing in 

cancers (Bergman and Cedar 2013), and, indeed, we found that these regions were 

frequently hypermethylated (63% and 94%, respectively). In comparison, enhancers 

were mostly differentially hypomethylated (67%, Fig. 1D). Next, used chromatin 

marks to qualitatively determine the chromatin features of the hypermethylated and 

hypomethylated enhancers. Using data from the ENCODE Project (Rosenbloom et 

al. 2013), we found that differentially hypomethylated enhancers exhibited 

significantly higher levels of chromatin marks of active DNA (increased DNase I, 

H3K4me1, H3K4me2, H3K27ac, H2A.Z, EP300, POL2, and decreased CTCF). 

Whereas, differentially hypermethylated enhancers showed the footprints of closed 

and inactive DNA (Fig. 1E and Supplemental Fig. S1D-E), consistent with previous 

results (Zhou et al. 2011; Aran et al. 2013; Lam et al. 2014). Taken together, the 
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analysis of multiple tumor types strongly suggests that alteration of enhancer 

methylome is a frequent feature of transformed cells, and that it generally leads to 

chromatin activation, likely involved in cancer progression.  

 

Differential methylation patterns of eDMRs clusters tumors according to their 

organ system 

Next, we compared the patterns of methylation change in enhancers between the 

various types of cancer. Since enhancers show tissue-specific patterns of histone 

modifications and TF binding in normal cells (Bulger and Groudine 2011), we 

expected that alteration of methylation patterns would be cancer/tissue-specific. 

Indeed, most eDMRs (54%) were unique to a single cancer type (Fig. 2A). Strikingly, 

principal components analysis (PCA) of eDMRs showed a higher order clustering of 

cancers into groups related to the same organ system (Fig. 2B). For example, the 

central nervous system cluster includes cancers arising from glia and astrocytes (Fig. 

2B, green circle); similarly, the reproductive system cluster consists of breast, 

uterine, and prostate tumors (Fig. 2B, pink circle). Importantly, PCA analyses of 

differentially methylated islands, promoters, and intergenic regions showed no such 

clustering (Supplemental Fig. S2A-C). No library preparation batch affect was found, 

either (Supplemental Fig. S2D-E). This evidence provides confidence that our 

findings were not affected by batch effect, and strengthen our hypothesis that 

enhancer methylation changes may have meaningful biological roles.  

Next, in order to uncover the functional effect of altered enhancer methylation, we 

first compared the genomic neighborhood of eDMRs with static enhancers (those 

showing no differential methylation). We found that eDMRs were flanked by more 

genes and microRNA (miRNA) than were static enhancers (Supplemental Fig. S2F-

G). To identify which genes the eDMRs regulate, we developed an integrated model 
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combining multi-omics data for associating enhancers with their target genes (eDMR-

associated genes) (Fig. 2C and Supplemental Fig. S2H for pipeline). Since it is 

known that there is an inverse correlation between DNA methylation and chromatin 

activity (Zhou et al. 2011), we retained only inversely correlated eDMR-gene pairs, 

which represented the majority of our data (Supplemental Fig. S2I). In order to 

assess the validity of our eDMR-gene pair predictions, we compared our results to 

other methods that identify enhancer-promotor associations based on physical 

interactions IM-PET (He et al. 2014), ChIA-PET, Hi-C (Teng et al. 2015), and 

transcriptional activities of interacting enhancer-promoters (cap analysis gene 

expression. CAGE) (Andersson et al. 2014). Our model predicted eDMR-gene pairs 

separated by 400 kb or less at a precision rate of 75% or better (Fig. 2D), indicating 

that our model can reliably predict interacting enhancer gene pairs.  

Similar to their enhancers (Fig. 2B), the genes predicted to be regulated by the 

eDMRs, also showed organ system patterns of enrichment (Fig. 2E, 

Supplemental Table S3). Using our model we were identify known tissue-specific and 

ubiquitous oncogenic genes and microRNAs (miRNAs) (Fig. 2F-H), such as: ESR1 in 

breast cancer (Holst et al. 2012; Aran and Hellman 2014), ECT2 in lung cancer 

(Murata et al. 2014), and WNT3A in prostate cancer (Verras et al. 2004), hsa-miR-9-

1 (Ma et al. 2010) and the clustered miRNAs hsa-miR-200a and miR-200b (Korpal et 

al. 2008) (see Supplemental Table S4 for full list of predicted eDMR-gene pairs). 

Taken together, our model defines cancer-related eDMRs as organ-system-specific 

regulators of genes and miRNAs that are central to malignant transformation.  

 

Accumulation of eDMR hypomethylation correlates with likelihood of 

metastasis 
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Our analysis showed that changes in methylation patterns of enhancers in primary 

tumor tissues are influenced by their relation to the organ system (Fig. 2B), we were 

curious what would occur to DNA methylation patterns of cells that disseminate from 

the primary location, and colonize in metastatic sites. To evaluate this, we focused on 

melanoma, a highly metastatic cancer (Braeuer et al. 2014). We compared 

methylation data from metastatic melanoma patients (7 distinct locations) to data 

from patients with primary in situ melanoma (Supplemental Table S1). Consistent 

with our observation of differential methylation patterns in primary tumors (Fig. 1A), 

the majority of ‘metastatic DMRs’ occurred within enhancers (Fig. 3A), suggesting 

that enhancers play important roles, not only in malignant transformation, but also in 

metastatic progression. Additionally, metastatic eDMRs much better differentiate 

between patient outcomes than do DMRs from any other genomic feature (Fig. 3B 

and Supplemental Fig. S3A). The majority of eDMRs were specific to a single 

metastatic site (Fig. 3C and Supplemental Fig. S3B), and were mostly (74%) 

hypomethylated (Fig. 3D), similar to our observations in primary cancers (see Fig. 2A 

and Fig. 1D). Strikingly, Fig. 3E shows that accumulation of hypomethylated 

enhancers highly correlates with the likelihood of forming metastases at distant 

organs (derived from (Meyers and Balch 1998)). For example, melanoma is more 

likely to metastasize to lymph nodes than to the brain, correspondingly, a greater 

number of enhancers are differentially hypomethylated in brain metastases than in 

lymph node metastases (2.24% and 0.33%, respectively; Fig. 3E). In contrast, we 

found no correlation between the fraction of differentially hypermethylated metastatic 

eDMRs and the frequency of spreading to organs (Supplemental Fig. S3C). These 

results are in agreement with studies suggesting that global hypomethylation is a 

common feature of diseased states (Pogribny and Beland 2009). Since widespread 

DNA methylation changes are associated with aging (Richardson 2003), we 

calculated the correlations between patient ages and accumulation of enhancers 

methylation changes. Encouragingly, we found no significant correlation between 
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eDMR methylation changes in metastatic tissues and the patient age (Supplemental 

Fig. S3D), suggesting that metastatic progression corresponds to cancer-related 

changes, and not age-related changes.  

In order to specifically explore whether melanoma eDMRs could promote metastatic 

growth, we identified genes differentially expressed between primary and metastatic 

melanoma, and compared the correlation of these genes with methylation patterns of 

differentially methylated enhancers and promoters (eDMRs and pDMRs, 

respectively). We found that eDMRs were significantly more correlated with 

differentially expressed genes than were pDMRs (Supplemental Fig. S3E). Next, we 

divided the genes into two groups: eDMR-associated genes and all other genes not 

identified by our model to be associated with eDMRs (control genes, Fig. 3F), and 

examined the differential expression patterns of these two groups. The percent of 

genes that were differentially expressed between normal and primary melanoma was 

similar for both groups (60% and 53% for eDMR-associated genes and control 

genes, respectively; Fig. 3F), however, between primary and metastatic melanoma 

the eDMR-associated genes were significantly more variable than the control genes 

(binomial distribution, P<2e-16; 57% and 3% respectively, Fig. 3F, marked by gray 

areas). This observation supports our notion that a functional interaction exists 

between the eDMRs and their predicted associated genes. Additionally, we note that 

a fraction of the control genes were downregulated in both primary and metastatic 

melanoma (Fig. 3F, left panel, marked with dashed box). This group was enriched 

(q<0.01, FDR corrected) with Gene Ontology (GO) terms associated with tissue 

development (GO:0008544, GO:0007398) and differentiation (GO:0030216, 

GO:0009913, GO:0030855), likely a feature of tumor de-differentiation (Brabletz 

2012).  
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Methylation plasticity of melanoma eDMRs is associated with increased patient 

mortality 

The transition of cancer from the in situ primary stage to the metastatic stage 

involves phenotypic plasticity (Craene and Berx 2013), which facilitate migration 

through tissues and adaptation to changing microenvironments. Underlying tumor 

plasticity are genetic and epigenetic regulatory layers that are reprogrammed in the 

context of cancer (Friedl and Alexander 2011). Interestingly, we found that 18% 

(N=277) of melanoma metastatic eDMRs (N=1539) switched the direction of 

methylation change as melanoma progressed (denoted ‘switched’ eDMRs; Fig. 4A, 

bottom circle). For example, regions that were hypermethylated between normal 

melanocytes and primary melanoma, were hypomethylated between primary and 

metastatic melanoma. We also defined two other eDMRs groups: ‘consistent’ and ‘de 

novo’. The ‘consistent’ eDMRs exhibited differential methylation changes in the same 

direction (e.g., hypomethylated between normal melanocytes and primary melanoma, 

and hypomethylated between primary and metastatic melanoma; Fig. 4A, right 

circle). The ‘de novo’ group exhibited differential methylation only between primary 

and metastatic melanoma samples, and not between normal melanocytes and 

primary tumors (Fig. 4A, left circle). We examined whether these three groups of 

eDMR differed with respect to metastatic progression, by comparing their ability to 

correlate with survival of patients (see Methods). To our knowledge, this is one of the 

first examples (Stone et al. 2015) of a survival analysis applied to DNA methylation 

patterns of enhancers. We identified 30 eDMRs that were associated with patient 

survival rates (marked ‘survival’ eDMRs, Fig. 4A, middle circle). Remarkably, these 

survival eDMRs were enriched with the switched eDMRs (Fig. 4A), whereas de novo 

eDMRs were significantly depleted (Fig. 4A). In addition, the switched eDMRs 

exhibited the highest conservation scores (Fig. 4B), and the fewest copy number 

variations (CNVs) in melanoma patients (Fig. 4C). These results suggest that 
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eDMRs, in particular the switched eDMRs that exhibit methylation plasticity, are 

functionally important in cancer.  

Given these results, we hypothesized that methylation plasticity may play important 

roles in melanoma metastatic progression. To examine this, we performed survival 

analyses also the eDMR-associated genes, using their expression patterns across 

patients. Remarkably, we found that 40% were able to significantly differentiate 

between survival outcomes (Chi-square, q<0.1, FDR corrected); these genes 

include: ATP2B1 (Lee et al. 2002), FMNL2 (Zhu et al. 2008), KIT (Tian et al. 1999), 

PRKCE (Sharif and Sharif 1999), and VGF (Mitra et al. 2008). Figure 4D represents 

such an example in which the oncogene KIT and the eDMR (located at 

Chr4:55708295-55709294, hg19/GRCh37) not only exhibit switched patterns of 

methylation and expression, but both independently distinguish between patient 

survival rates based on their expression and methylation patterns, respectively (Fig. 

4D, left and right panels). The KIT promoter was not differentially methylated, nor did 

the methylation pattern differentiate between survival times (Fig. 4D, middle panel).  

To experimentally test the role of enhancer methylation on the transcriptional 

regulation of KIT, we first examined KIT expression upon treatment with 5-aza-2'-

deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor. There was a significant 

decrease in KIT levels in treated compared with untreated cells (Fig. 4E). Next, we 

cloned the KIT enhancer upstream of luciferase reporter, and demonstrated that its 

expression was reduced upon enhancer methylation (Fig. 4F and Supplemental Fig. 

S4A). Finally, we examined the role of KIT upregulation on the invasive potential of 

melanoma cells (Fig. 4D). Remarkably, noninvasive melanoma cells (Golan et al. 

2015) acquired significant invasion ability upon KIT over-expression (Fig. 4G and 

Supplemental Fig. 4B). Taken together, our data demonstrate that enhancer 

methylation contributes to cancer progression by directly regulating oncogene 

expression. 
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Next, we asked whether the dynamics of eDMR methylation and eDMR-associated 

genes expression are a result of tumor heterogeneity, evolution of the disseminated 

cancer cells, or are induced by the metastatic niche. To assess this, we selected two 

eDMR-associated genes, CTYL1 and KIF14, which were differentially expressed only 

between primary and metastatic melanoma (not between normal and primary 

melanoma tissues). CYTL1 is a cytokine-like protein implicated in lung cancer and 

neuroblastoma (Kwon et al. 2012; Wen et al. 2012), and KIF14 is an oncogene 

essential for cytokinesis (Corson et al. 2005); both are upregulated in melanoma 

bone metastasis (P<0.05, Fig. 5A, top and bottom panels). High expression levels of 

these genes is correlated with poor patient survival rates (Fig. 5A, green stepwise 

curves; Chi-square q<0.1, FDR corrected). Enhancers of these genes were 

differentially methylated, yet their promoters were not (Fig. 5A middle and right 

panels, respectively). To experimentally analyze the role of enhancer methylation on 

the transcriptional regulation of CYTL1 and KIF14, we first examined whether their 

expression is sensitive to DNA methylation. CYTL1 and KIF14 expression was 

significantly upregulated upon treatment of cells with 5-aza-dC (Fig. 5B). Next, we 

cloned the identified enhancers of CYTL1 and KIF14 upstream to a luciferase 

reporter, and observed a decrease in the reporter expression upon enhancer 

methylation (Fig. 5C and Supplemental Fig. S4A). These results strengthen the 

validity of our model by demonstrating that the identified eDMRs, elicit response to 

changes in their methylation and directly regulate the expression of their associated 

genes: KIT, CYTL1, and KIF14. Finally, to assess changes in gene expression 

induced by metastatic melanoma cells colonization in the bone tissue, we first 

generated a melanoma cell line stably expressing the GFP gene, to enable tracking 

of the melanoma cells. Next, we established a co-culture of melanoma cells with 

human primary osteoblasts (Dillon et al. 2012) (Fig. 5D), and found that levels of 

CYTL1 and KIF14 were significantly increased, compared to their levels in melanoma 

cells cultured alone (Fig. 5E). Our data support the notion that homing into a new 
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microenvironment induces expression of pro-cancer genes, which are regulated by 

eDMRs in melanoma metastatic cells. Taken together, our data suggest that 

methylation changes at enhancers contribute to melanoma phenotypic plasticity and 

ultimately to the patient’s chance of survival.  

 

DISCUSSION 

Here we performed an analysis of DNA methylation alterations in over 6200 cancer 

patients from thirty-one cancer datasets, including twenty-three diverse primary 

malignant tumors, two benign tumors, and melanoma metastases to seven distinct 

organs. This extensive analysis revealed that most methylation variation occurs at 

enhancers (Fig. 1A, Fig. 3A and Supplemental Fig. S1C). Changes in methylation 

patterns could result from competition between methylation and de-methylation 

processes or from errors in replication (Jones 2012). Our findings support the latter 

hypothesis, for two reasons. First, replication-related methylation errors occur more 

frequently in methylated regions, such as enhancers, where replication errors lead to 

loss of methylation; this is what we observe (Fig. 1D). Second, expression of 

DNMT3B, which encodes a methylase enzyme was upregulated in many tumors, and 

hence, we would expect increased methylation, since we observed no significant 

differences in expression of TET genes, which encode demethylase enzymes 

(Supplemental Fig. S2J). However, since the majority changes in enhancers’ 

methylation involves demethylation, we hypothesize that loss of enhancer 

methylation could have occurred during replication. 

Enhancers play central roles in normal development and differentiation by 

responding to complex environmental cues. Cancer cells are exposed to changing 

environmental conditions that requires their adaptation; this mainly occurs through 

epigenetic reprogramming (Friedl and Alexander 2011; Goding et al. 2014). We 

hypothesize that in the context of cancer, enhancer methylation may be primed to 
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respond to microenvironmental signals. To test this, we mimicked the 

microenvironment of melanoma bone metastases, and recapitulated the perturbation 

of expression of eDMR-associated genes that were altered in the bone metastases. 

These results suggest that the metastatic niche can alter expression of eDMR-

associated genes. 

Interestingly, we show that in comparison to DMRs in other genomic features 

(islands, promoter, exons, introns, etc.) eDMRs can differentiate best between 

patient outcomes (Supplemental Fig. S4D). These results demonstrate the important 

role of alteration of enhancer methylation in cancer progression. However we do not 

exclude that other factors may drive cancer progression, nor are we suggesting a 

direct causality between enhancer methylation and cancer progression, it may well 

be that alteration of enhancer methylation is a secondary event of the malignancy.  

Nevertheless, we did observe that methylation patterns of eDMRs may be 

informative of patient survival rates (Fig. 3B). Within this group, was a subset (18%) 

of highly conserved eDMRs that displayed methylation plasticity (‘switched’ eDMRs, 

Fig. 4A-C), and provided insight into alteration of their associated genes (Fig. 4D). 

This is one of the first studies (Stone et al. 2015) to suggest that methylation patterns 

of enhancers can be used to predict patient outcome. Moreover, it is has been shown 

that in many diseases, including cancer, methylation changes are accumulative as 

the cancer progresses (Pogribny and Beland 2009); here we show that methylation 

plasticity may also play important roles in cancer progression (see Supplemental Fig. 

S4C for model of methylation plasticity and cancer progression). A prime example of 

the relationships between metastatic progression, methylation plasticity, and patient 

mortality is that of the eDMR-associated oncogene, KIT (Fig. 4D-F). Both the 

methylation of the eDMR and the expression of the KIT are display plasticity (Fig. 

4D), and significantly distinguish between patient survival rates. Our results suggest 
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that enhancer methylation patterns may be informative of patient outcomes, and that 

they may influence malignant progression via methylome plasticity.  

 

 

FIGURE LEGENDS 

Figure 1 

Enhancers exhibit highly dynamic methylation patterns upon malignant 

transformation 

(A) Heatmap shows that across 25 cancer datasets (x-axis) differential methylation 

occurs mostly within enhancer regions. Colors indicate high (pink) to low (green) 

relative amount of DMRs in Illumina HumanMethylation450 arrays (see Supplemental 

Fig. S1C for differentially methylated CpG sites, and Fig 3A for regions differentially 

methylated between primary and metastatic cancer). (B) ChIP-seq signals of 

pluripotency transcription factors (TFs): POU5F1, SOX2, and NANOG are higher 

within differentially methylated enhancers (eDMRs) than within differentially 

methylated islands or promoters; average peaks across all cancer datasets are 

shown. (C) ‘Strong enhancer’ ChromHMM chromatin annotation state (see 

Supplemental Table S2 for cell lines) is more enriched within differentially methylated 

enhancers (‘eDMRs', orange area) than within enhancers that are not differentially 

methylated (‘static enhancers’, gray area). (D) Direction of methylation change 

between normal tissue (N) and primary cancer (P) in differentially methylated 

enhancers, islands, and promoters. Coloring indicates high (blue) to low methylation 

levels (yellow); heatmap heights are relative to amount of the differentially methylated 

enhancers. (E) Hypomethylated eDMRs exhibit footprints of open chromatin marks: 

increased DNase I hypersensitivity, increased POL2 and EP300occupancy, 

increased H2A.Z, H3K4me1, H3K4me2 and H3K27ac marks, and decreased CTCF 
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binding. In contrast, hypermethylated eDMRs exhibit footprints of closed chromatin. 

P-values were calculated with two sample Student’s t-tests and FDR adjusted. See 

Supplemental Fig. S1D-E for chromatin marks in other cell states and Supplemental 

Table S2 for cell lines information. All figures refer to DMRs determined between 

normal samples and primary tumors. 

 

Figure 2 

Variation in enhancer methylation classifies primary tumors according to their 

organ systems 

(A) Pie chart shows that most eDMRs are unique (77% of the eDMRs appear in only 

one or two cancers; excluding the same cancer type, e.g., GBM1 and GBM2). (B) 

Principal components analysis (PCA) shows that differential methylation patterns of 

eDMRs are similar for cancers belonging to the same organ systems (circled and 

colored similarly). First and second principal components (x-axis: PC1; y-axis: PC2) 

account for 72% of variation (see Supplemental Fig. S2A-C for PCA analysis of 

methylation changes within islands, promoters and intergenic regions). (C) 

Schematic of method for identification of eDMR-gene and eDMR-miRNA pairs (see 

Supplemental Fig. S2H for flowchart). (D) Top: Precision of eDMR-gene pair 

predictions is compared to predictions from CAGE (Andersson et al. 2014), IM-PET 

(Teng et al. 2015), ChIA-PET, and Hi-C (Teng et al. 2015) methods (see text). 

Bottom: Percent of predicted eDMR-gene pairs. Results in both plots are divided into 

groups based on the distances between methylation site and transcription start site. 

Most predictions (>56%) lie within a distance of <500 kb (abbreviations: 100K, 0-

100,000 bp, 200K: 100,001-200,000 bp, and so forth. (E) EDMR-associated genes 

are distinctly enriched for genes involved in diseases related to a particular organ 

system. Disease-related genes were derived from the DISEASES database (see 
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Methods). Scores represent -log10(FDR corrected P-values). (F) Scatter plots (a 

point for each patient) show examples of tissue-specific genes linked to cancer risk 

and their eDMRs (the same six cancer types shown in panel E). Spearman’s 

correlations between eDMRs methylation and associated-gene expression are 

shown. (G) Landscape of two differentially hypomethylated eDMRs in uterine (UCEC) 

and head and neck (HNSC) cancers, associated with a single miRNA, miR-9-1, 

which is upregulated in both cancers. (H) Landscape of two differentially 

hypomethylated eDMRs in breast (BRCA) and colon (COAD) cancers associated 

with two miRNAs of the same family, miR-200a and miR-200b; each is upregulated in 

the respective tumors. In figures G -H, yellow arrows mark hypomethylated eDMRs, 

green arrows mark upregulated miRNAs; gray boxes mark eDMR and miRNA 

regions in the hg19/GRCh37 genome; distances between miRNAs and eDMRs are 

indicated on arrows. All figures refer to DMRs determined between normal samples 

and primary tumors. 

 

Figure 3 

Accumulation of eDMR hypomethylation correlates with likelihood of 

metastasis and patient outcome 

(A) Heatmap shows that enhancers are more differentially methylated than other 

genomic features (y-axis; sorted according to fraction of DMRs in each category; see 

Fig. 1A). (B) Enhancers are significantly more enriched with DMRs that can 

differentiate between patient survival times (see Methoda). Green colors represent 

enrichment and red depletion, respectively. Y-axis represents the -log10(FDR 

corrected P-values) significance (binomial distribution). (C) Most melanoma eDMRs 

(70%) are exclusive to one metastatic site (see Figure 2A). (D) Heatmaps shows that 

in most eDMRs are hypomethylated between primary and metastatic melanoma 
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(74%). (E) Accumulation of eDMR hypomethylation is negatively correlated with the 

likelihood of forming melanoma metastases at each body location (Pearson’s 

correlation, r=-0.71, P=0.039, one-sided hypothesis testing). (F) Compared to all 

other genes (control genes; y-axis, right panel), genes associated with eDMRs (y-

axis, left panel) are differentially expressed between primary melanoma and 

metastatic melanoma (57% and 3%, respectively; marked by gray areas). Whereas, 

differential expression between melanocytes and primary melanoma is similar for 

both groups (control genes, 53%, right panel, eDMR-associated genes 60%, left 

panel, x-axes). Abbreviations: adrenal, metastases to adrenal glands; gastro, 

metastases to the gastrointestinal tract; lymph, metastases to lymph nodes; and 

subcut, sub-cutaneous metastases. All figures refer to differential methylation 

between patients with primary melanoma and patients with metastatic melanoma. 

Figure 4 

Methylation plasticity of melanoma eDMRs is associated with patient mortality 

(A) Venn diagram of three types of eDMRs found in metastatic melanoma: ‘de novo’, 

‘consistent’, and ‘switched’ (described in text). Heatmaps display differential 

methylation between normal melanocytes and primary melanoma (N->P), and 

between primary and metastatic melanoma (P->M). ‘Switched’ eDMRs are enriched 

for ‘survival’ eDMRs and ‘de novo’ eDMRs are depleted (hypergeometric distribution, 

*, P=9.4e-5; **, P=1.6e-2, respectively). Numbers represent amount of eDMRs in 

each category. (B) PhastCons conservation scores of enhancer average 

conservation (See Methods). ‘Switched’ eDMRs have the highest conservation (two-

way ANOVA analysis, *, P=4.2e-6, **, P=9.9e-10, ***P=2.9e-11); bars represent 

average sequence conservation, error bars represent standard deviation. (C) Copy 

number variations (CNVs) are infrequent within eDMRs compared to static 

enhancers (two-way ANOVA analysis, ***, P<2e-16). (D) Top panel: Schematic 

representation of the eDMR-gene pair: Chr4:55708295-55709294 and KIT gene. The 
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eDMR (pink) is interacting with the promoter (cyan) of KIT gene (green) through 

chromatin looping. The distance between the eDMR and TSS. Bottom panel: Left: 

Kaplan-Meier survival plot shows significant differences between survival times of 

patients based on the methylation levels of the eDMR (located at Chr4:55708295-

55709294) of the gene KIT (Chi-squared, ****, P=2.9e-4). Patients were divided into 

two groups of higher (blue) and lower (yellow) levels compared to the median (see 

Methods). Middle: Plot shows that patients with higher and lower methylation of the 

KIT promoter show no significant difference in survival rates. Right: Plot shows 

significant differences between survival times of patients with higher (green) and 

lower (red) expression levels of KIT (Chi-squared, ***, P=2.4e-3). Insets: Left and 

Right insets: Both eDMR methylation and KIT expression exhibit switched patterns 

between normal melanocytes (N), primary melanoma (P) and metastatic melanoma 

(M). Middle inset: KIT promoter does not exhibit switched methylation patterns. 

q<0.05, *, q<0.01, **. (E) Inhibition of DNA methylation increases KIT expression. 

WM3682 melanoma cells were treated with 10 μm 5-aza-dC or with DMSO (control), 

KIT mRNA expression was normalized to levels of GAPDH. Data are relative to 

levels in control treated cells. Error bars represent ± SEM, P<0.05, *; (N=3). (F) 

WM3682 melanoma cells were transfected with methylated KIT-eDMR reporter 

plasmid, unmethylated KIT-eDMR reporter, or reporter without eDMR (control). 

Firefly luciferase activity was normalized to Renilla luciferase activity. Fold-changes 

are relative to control. Error bars represent ± SEM; P<0.05, *; (N=3). (G) KIT 

overexpression increases melanoma invasiveness. WM3682 melanoma cells were 

transfected with KIT expression vector or empty vector (control), invasion ability was 

analyzed. Error bars represent ± SEM, P<0.05, *; (N=3). Bottom panel: a 

representative image of invading cells. 

  

Figure 5 
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Melanoma co-culture with osteoblasts alters pro-cancer eDMR-associated gene 

expression  

(A) Schematic representation of the eDMR-gene pairs: Chr4:5019792-5020791 for 

CYTL1 and Chr1:201198504-201199503 for KIF14. The eDMR (pink) is interacting 

with the promoter (cyan) of KIT gene (green) through chromatin looping. Kaplan–

Meier survival plots (left panels) show significant differences between patient 

outcomes at high and low expression levels (green and red curves, respectively) of 

CYTL1 and KIF14 genes. Insets: Bar graphs show upregulation of CYTL1 and KIF14 

in melanoma bone metastases. Middle panel: Methylation of the promoters of these 

genes does not vary between primary melanoma (P) and melanoma bone 

metastases (M). Right panel: Enhancers are differentially hypomethylated in 

melanoma bone metastases (Wilcoxon rank-sum tests, *, q<0.15, **, q<0.05; FDR 

adjusted). (B) WM3682 melanoma cells were treated with 10 μm 5-aza-dC or with 

DMSO (control) followed by quantification of CYTL1 and KIF14 mRNA levels that 

were normalized to GAPDH. Data are relative to levels in control-treated cells. Error 

bars represent ± SEM, *, P<0.05 (N=3). (C) WM3682 melanoma cells were 

transfected with methylated CYTL1-eDMR or KIF14-eDMR reporter plasmids, 

unmethylated eDMR reporter or reporter without eDMR (control). Firefly luciferase 

activity is normalized to Renilla luciferase. Fold-changes are relative to control, error 

bars represent ± SEM, *, P<0.05 (N=3). (D) Experimental design scheme. (E) Levels 

of CYTL1 and KIF14 mRNA were determined in melanoma cells before and after co-

culturing with osteoblasts. Data were normalized to levels of actin. Error bars 

represent ± SEM, *, P<0.05 (N=3). 
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METHODS 

TCGA and GEO patients data sources: DNA methylation, RNA-seq, smRNA-seq 

Publically available data of DNA methylation, RNA-seq gene expression, and small 

RNA-seq miRNA expression from cancer patient tissues were obtained from The 

Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga) and from the 

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) repository (http://www.ncbi.nlm.nih.gov/gds). See Supplemental Table S1 

dataset information.  

Chromatin marks, transcription factors (TFs), sequence conservation and copy 

number variation data  

For analysis of chromatin marks (Fig. 1E and Supplemental Fig. 1D-E), we 

downloaded RNA polymerase II (POL2), histone modifications: H2A.Z, H3K4me1, 

H3K4me2 and H3K27ac, histone acetyltransferase (EP300), CCCTC-binding factor 

(CTCF), DNase I hypersensitivity and Chromatin State Segmentation by HMM 

(ChromHMM) from the ENCODE Project. Replicate experiments were averaged. See 

Supplemental Materials for URL and description and Supplemental Table S2 for 

ENCODE Project cell types.  

For the transcription factor analysis (Fig. 1B), we downloaded processed ChIP-seq 

data of POU5F1, SOX2, and NANOG downloaded from NCBI/GEO (GSE46130). 

Replicate experiments were averaged. The TF peaks were overlapped with the 

coordinates of the differentially methylated enhancers, promoters, and islands.  
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For the conservation analysis of enhancer (Fig. 4B) we used 100-way PhastCons 

conservation data.  

Copy number variations (CNVs) for skin cutaneous melanoma (SKCM) were 

obtained from the TCGA database as genomic segments after removal of germline 

CNV (TCGA_SKCM_GSNP6noCNV_gSeg).  

 

Defining differentially methylated regions (DMRs) 

First, we mapped the CpG codes in the Illumina HumanMethylation450 microarray to 

their genomic coordinates using the microarray platform (NCBI/GEO record 

GPL13534; human genome release hg19/GRCh37. Second, we annotated the CpGs 

using the information in this record, identifying CpG sites belonging to islands, 

shores, shelves, enhancers and UTRs. Given that this record does not have 

information of CpG sites in promoters, exons or introns, we used the UCSC table 

‘knownGene’ to identify these sites. Third, some CpG sites had several annotations, 

thus, we divided the CpGs into unique (non-overlapping) genomic features using the 

following prioritization: 1) promoters, 2) islands, 3) enhancers, 4) introns, 5) exons, 6) 

UTRs, 7) shores, 8) shelves and 9) intergenic regions. Fourth, for each separate 

genomic feature we constructed intervals using a window of 500 bp directly upstream 

and downstream of the CpG coordinate. Overlapping intervals (same genomic 

feature) were joined, and extended into a larger interval. 69% of the regions had a 

length of 1000 bp, 28% a length greater than 1000 bp and less than 2000 bp, no 

region was greater in length than 7500 bp. Fifth, we used these genomic intervals to 

calculate region-wise methylation levels based on the average methylation of all CpG 

sites within the interval, we performed this for all normal and all tumor samples in 

each cancer dataset. Sixth, we used the two-sample Wilcoxon test to identify 

differentially methylated regions (DMRs) between normal and primary samples 
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(methylation threshold >0.3, q<0.2, FDR corrected); metastatic DMRs were identified 

by comparing primary and metastatic melanoma (methylation threshold >0.2 and 

q<0.2). The fractions of DMRs in each genomic feature presented in Fig. 1A, Fig. 3A 

and Supplemental Fig. S1C were normalized to the amount of intervals in each 

genomic feature in the Illumina HumanMethylation450 array (Dedeurwaerder et al. 

2011).  

 

Gene and miRNA differential expression analysis  

A fold-change of 1.25 was used to determine differentially expressed genes and 

miRNAs (q<0.05, FDR corrected; see Supplemental Methods for description). 

 

Model for prediction of gene-eDMR associations 

We developed an integrated model to predict genes or miRNAs regulated by eDMRs 

(Fig. 2C and flowchart in Supplemental Fig. S2H). First, we calculated the differential 

methylation in enhancer and promoter regions, retaining the eDMRs, and using the 

level of promoter methylation change in the third step. Second, we computed 

Spearman’s correlations between eDMR methylation patterns and gene/miRNA 

expression patterns across the same (matched) patients. Highly correlated eDMR-

genes or eDMR-miRNAs pairs were retained (negative correlation below -0.4). Third, 

we filtered out genes for which promoter differential methylation was greater than 0.2, 

enriching for genes with expression change due to enhancer, rather than by 

promoter, methylation variability (performed only for predicting eDMR-associated 

genes and not associated-miRNAs, since annotation for miRNA promoters is 

incomplete). Fourth, we selected eDMR-gene and eDMR-miRNA pairs located on the 

same chromosome, with a maximal linear distance of 1 Mbp between the center of 

the enhancer and the transcription start site (for genes) or pre-miRNA start position 
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(for miRNAs). Fifth, we ranked eDMR-gene predictions (see Supplemental Table S4 

and section Ranking eDMR-gene pairs predictions). 

Ranking eDMR-gene pairs predictions 

In order to provide confidence that the predicted eDMR-gene pairs represent active 

enhancer-gene interactions, we applied an integrated scoring function. Our scoring 

scheme combined quantitative and qualitative features of the eDMR-gene pairs. 

First, we ranked each eDMR-gene pair based on the following quantitative features: 

(a) Spearman’s correlation between the eDMR and gene, (b) greater enhancer 

differential methylation, (c) greater gene expression fold-change, and (d) shorter 

eDMR-gene distances. Second, we used qualitative features which could increase 

ranking if existed: (a) eDMR overlap with H3K4me1, H2A.Z, or DNase I peaks, (b) 

promoter overlap with H3K4me3 or DNase I peaks. We summed up the scores for 

each eDMR-gene pairs (ties were given an average ranking score), sorted them 

based on their overall score, yielding ranked predictions (Supplemental Table S4). 

Gene enrichment analysis for diseases  

We used the DISEASES website (http://diseases.jensenlab.org) (Pletscher-Frankild 

et al. 2014) to evaluate enrichment for diseases in particular organ systems (Fig. 2E). 

Diseases were identified using keywords: digestive (digest-, gastro-, gastric, 

stomach), endocrine (endocrine-, gland disease, gland cancer, gland neoplasm, 

thyroid, pancreas), renal (kidney, renal, nephron-, nephri-), reproductive (reproduct-, 

breast, prostate, uterine, cervic-, cervix, uterus), respiratory (lung, respirator); 

duplicate genes were removed to ensure unique values for hypergeometric 

distribution significance testing and FDR corrected.  

Survival analysis  

Survival time was derived from the ‘overall survival’ column of the clinical data files 

obtained for TCGA samples. First, patients were divided into two groups (high and 
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low) by comparing the eDMR methylation level to the median methylation the eDMR 

across all patients. Similarly, for gene expression survival analysis, patients were 

divided into two groups by comparing to the median expression of gene across all 

patients. Significant differences between the two groups were determined using the 

Chi-squared distribution (q<0.1, FDR corrected).  

Enrichment for association of DMRs with patient survival (Fig. 3B) was determined by 

comparing the amount of DMRs that can significantly differentiate between patient 

outcomes, with the amount of static regions that can do the same (determined 

separately for each genomic feature).  

Multiple testing 

All significance tests were corrected for false discovery rates (FDR) using the 

Benjamini & Hochberg adjustment (Benjamini and Hochberg 1995).  

Computational data analysis  

Data analyses were performed using R statistical language (R Core Team 2015). We 

used the following packages for R in the analysis ‘GenomicRanges’ (version 1.16.4) 

(Lawrence et al. 2013), ‘TxDb.Hsapiens.UCSC.hg19.knownGene’ (version 3.1.2) 

(Carlson 2015), ‘survival’ (version 2.37-7) (Therneau 2015) and ‘reshape2’ (version 

1.4.1) (Wickham 2007). Custom R scripts for determining differentially methylation 

regions, predicting and ranking eDMR-gene pairs are provided, together with a 

sample datasets derived from the TCGA are available in the Supplemental data (see 

‘INFO_README.txt’ file). 

Primary human osteoblasts and melanoma cells co culture  

Primary human osteoblasts were isolated using a protocol described by Dillon et al. 

(Dillon et al. 2012). In short, trabecular bone was obtained from healthy donors 

undergoing total knee arthroplasty. Written and informed consent was obtained from 
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all subjects. The protocol was approved by the institutional Ethics Committee at Tel-

Aviv Sourasky Medical Center, in accordance with the Helsinki Declaration on the 

use of human subjects in research. The trabecular bone fragments were diced into 

small pieces and washed with sterile PBS. The diced bone extracts were then placed 

on a tissue culture plate with Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 20% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml 

streptomycin (all from GIBCO, Life Technologies) and incubated at 37 °C and 5% 

CO2. Five days later, the medium was replaced; medium was then replaced twice a 

week until the cells reached confluency. Osteoblasts were then seeded 24 hour prior 

to addition of melanoma cells in a ratio of 1:5 melanoma cells to osteoblasts). In 

control plates, only melanoma cells were seeded.  

Cell culture and FACS sorting 

WM3682 melanoma cells were generously provided by Dr. Levi A. Garraway 

(Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-

Farber Cancer Institute, Boston, MA). Cells were cultured in DMEM medium 

supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1% 

penicillin/streptomycin/glutamine (Invitrogen). For establishment of stable cell lines, 

cells were transfected with GFP-expressing plasmid and selected with 1 μg/ml 

puromicyn (Sigma-Aldrich). For co-culture, WM3682-GFP cells were cultured 

with bone cells for five days. Cells were collected by flow cytometry using BD 

FACSAria cell sorter. 

RNA purification and qRT-PCR 

Total RNA was purified from sorted melanoma cells using TRIzol (Invitrogen) 

according to manufacturer's instructions followed by treatment with RNase-free 

DNase (QIAGEN). RNA was quantified based on OD260/280. For qRT-PCR analysis 

RNA was subjected to one-step qRT-PCR using a MultiScribe RT-PCR kit (Applied 

Biosystems) and FastStart Universal SYBR Green Master Mix (Roche). 
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Plasmids and cloning  

EDMRs of the human KIT, CYTL1, and KIF14 loci (Chr4:55708294-55709294, 

Chr1:201198480-201199526, Chr4:5019645-5020678, respectively) were amplified 

from human genomic DNA (see Supplemental Table S5 for primer sequences used 

in cloning). The CYTL1 eDMR (1033 bp) and KIF14 eDMR (1046 bp) fragments were 

digested with NheI-XhoI restriction enzymes and inserted into the pGL3-promoter 

vector (Promega) upstream of minimal promoter and firefly luciferase reporter gene 

(both were kindly provided by Prof. Eran Bacharach, Department of Cell Research 

and Immunology, Faculty of Life Sciences, Tel-Aviv University, Israel). The KIT 

eDMR (1000 bp) fragment was cloned into PGL3-promoter reporter plasmid digested 

with SmaI-XhoI restriction enzymes. pCDNA3-KIT expression vector was kindly 

obtained from Prof. Lars Rönnstrand (Division of Translational Cancer Research and 

Lund Stem Cell Center, Lund University, Medicon Village, SE-22381 Lund, Sweden). 

 

In vitro methylation, transfections and dual luciferase assay 

The KIT, CYTL1, and KIF14 eDMR firefly luciferase reporter vectors were in vitro 

methylated using the methylase SssI (New England Biolabs), according to 

manufacturer’s recommendations, followed by purification using Wizard SV PCR 

clean-up system (Promega). Successful methylation was verified by restriction 

enzyme digestion with the methylation-sensitive (HpaII) and methylation-insensitive 

(MspI) enzymes and (New England Biolabs). The digestion patterns were analyzed 

by agarose gel electrophoresis. WM3682 melanoma cell lines were co-transfected 

using jetPEI™, with methylated eDMR- luciferase reporter plasmid, unmethylated 

reporter, or reporter plasmid without eDMR (as control) and with pRL-plasmid 

(Promega). Luciferase activity was measured 48 hours after transfection using Dual 

Luciferase kit (Promega). Firefly luciferase activity was normalized to the Renilla 

luciferase.  
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Invasion assay 

WM3682 melanoma cell lines were transfected with KIT expression vector or empty 

vector (as control) using jetPEI™. 48 hours post transfection invasion assay was 

performed as previously described (Golan et al. 2015).  

 

5-aza-deoxycytidine treatment  

WM3682 melanoma cell lines were treated with 10 μM 5-aza-dC (Sigma-Aldrich) for 

48 hours, following by RNA purification and qRT-PCR as described. Baseline 

expression was established by mock treatment of cells with DMSO. 
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Figure 1: Enhancers exhibit highly dynamic methylation patterns upon malignant transformation
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Figure 2: Variation in enhancer methylation classifies primary tumors according to their organ systems
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