
 1

Tel-Aviv University

Raymond and Beverly Sackler

Faculty of Exact Sciences

School of Computer Science

Feature selection methods for classification of

gene expression profiles

Thesis submitted in partial fulfillment of the requirements for

M.Sc. degree in the School of Computer Science, Tel-Aviv University

By

Michael Gutkin

The research work for this thesis has been carried out at

Tel-Aviv University under the supervision of

Prof. Ron Shamir and Prof. Gideon Dror

MARCH 2008

 2

 3

Acknowledgments

I deeply thank Prof. Ron Shamir for introducing me to the wonderful world of

Computational Biology and for supervising this research. His consistent support, advice,

thoroughness and patience have made this work possible. I would also like to sincerely

thank Prof. Gideon Dror for guiding me through the exciting world of Computational

Learning and co-advising to this research. His help had made a crucial contribution to

this work.

I want to thank my parents and my brother for giving me the best support a family can

give and for cleverly putting things in perspective. I also wish to thank my girlfriend,

Mor, for giving me the support I needed, and for accompanying me along the way.

I want to thank all my lab mates: Igor Ulitsky, Yonit Halperin, Ofir Davidovich, Daniela

Raijman, Chaim Linhart, Adi Maron-Katz, Irit Gat-Viks, Michal Ozery-Flato, Michal

Ziv-Ukelson, Rani Elkon, Seagull Shavit, Ofer Lavi, Guy Karlebach, Firas Swidan,

Panos Giannopoulos and Falk Hueffner - for the fruitful conversations, advices, and

especially for the laughs, arguments, and the great atmosphere in the lab.

Last, but not least, I would like to thank the GENEPARK project for showing me the

missionary aspect of the field, and a difference that can be made.

This research was supported in part by the GENEPARK project which is funded by the

European Commission within its FP6 Programme (contract number EU-LSHB-CT-2006-

037544).

 4

 5

Abstract

A key challenge in biomedical studies in recent years is the classification of samples into

categories such as cases and control (individuals who carry some illness and others who

do not). This is done by first learning how to classify, based on a training set containing

labeled samples from the two populations, and then predicting the label of new samples.

Each sample consists of gene expression measurements.

An important sub-problem in such studies is that of feature selection. Microarrays can

measure the levels of thousands of genes per sample. Using these data, the number of

features (gene expression levels) far exceeds the number of samples. Standard classifiers

do not work well in such situation. Selecting only the features that are most relevant for

the discrimination between the two categories helps in constructing better classifiers, both

in terms of accuracy and in terms of efficiency.

In this work we developed a novel family of methods for multivariate feature selection,

based on the Partial Least Squares algorithm. We performed a systematic comparison of

the family variants as well as common feature selection techniques. The comparisons

were done across a large number of real case-control datasets and using several

classifiers. We demonstrate the advantage of the new method and provide insights on the

preferable combinations of classifier and feature selection technique.

 6

 7

Contents

Acknowledgments ... 3

Abstract .. 5

Contents .. 7

1 Introduction and summary ... 9

2 Background ... 12

2.1 What is Classification ... 12

2.1.1 Introduction ... 12

2.1.2 Difficulties .. 14

2.1.3 Error estimation .. 15

2.2 Linear Discrimination ... 16

2.2.1 Introduction ... 16

2.2.2 Support Vector Machines ... 17

2.2.3 Kernels and SVM ... 23

2.3 Random Forests ... 25

2.3.1 Introduction ... 25

2.3.2 Decision trees .. 25

2.3.3 Random Forest .. 30

2.4 Instance-based learning .. 31

2.4.1 Introduction ... 31

2.4.2 K-Nearest Neighbor learning ... 32

2.5 Bayesian learning .. 35

2.5.1 Introduction ... 35

2.5.2 Bayes Theorem and maximum likelihood .. 36

2.5.3 The Naïve Bayes Classifier .. 37

2.5.4 Practical issues with Naïve Bayes classifiers.. 38

2.6 Feature selection and extraction ... 40

2.6.1 Introduction ... 40

2.6.2 Feature Selection .. 41

2.6.3 Linear feature extraction .. 45

3 SlimPLS .. 55

3.1 Considerations in applying PLS for feature selection .. 57

 8

3.2 The number of components and the number of features per component 58

3.3 Selecting features from a component... 59

3.4 Feature selection and feature extraction .. 60

3.5 Classification using PLS – prior studies .. 62

3.6 Implementation ... 63

4 Results ... 66

4.1 Datasets .. 66

4.2 Performance evaluation criteria ... 67

4.3 Results.. 71

4.3.1 The effect of the number of features ... 71

4.3.2 The effect of the classifier .. 73

4.3.3 The effect of the feature selectors .. 75

4.3.4 Evaluation of the leading methods .. 78

4.3.5 Correlation between selected features ... 80

4.3.6 Main conclusions .. 81

5 Concluding remarks ... 83

5.1 Discussion.. 83

5.2 Future work ... 84

6 Bibliography ... 88

7 Appendix ... 93

7.1 Two-dimensional comparison of methods ... 93

7.2 Further analysis of KNN and SVM-radial results ... 96

7.3 Rates of exceptional results ... 98

 9

1 Introduction and summary

Classification of samples, given as gene expression profiles, has become in the last few

years an active topic in biomedical research. Such classification aims to distinguish

between two types of samples. Usually, these two types are positive, or case samples (i.e.,

taken from individuals that carry some illness) and negative, or control samples (i.e.,

healthy individuals). One first obtains a collection of samples with known type labels and

uses it to build a classifier, which can later be used to classify unlabeled samples.

The use of gene expression microarrays allows simultaneous measuring of tens of

thousands of gene expression levels per sample. This high-throughput ability to measure

gene expression generates data with number of features (genes) far exceeding the number

of samples. The high dimension of the data poses a real problem for standard classifiers.

By selection only a subset of the features (a process called dimension reduction) several

goals are obtained:

• Improved performance of classification algorithms by removing irrelevant

features (noise).

• Improved generalization ability of the classifier by avoiding over-fitting (learning

a classifier that is too tailored to the training samples, but performs poorly on

other samples).

• By using fewer features, classifiers can be more efficient in time and space.

• It allows us to better understand the domain.

• It is cheaper to collect and store data based on a reduced feature set.

 10

Many feature selection techniques have been proposed. One of the most common

techniques in use are filters [1], which are univariate methods for selecting the most

relevant features one by one and filtering out the rest. Such techniques easily scale to

very high-dimensional datasets, they are computationally simple and fast, and they are

independent of the classification algorithm. As a result, feature selection needs to be

performed only once, and then different classifiers can be evaluated [1]. However, when

using filters, each feature is considered separately, thereby ignoring feature dependencies.

Multivariate techniques may overcome this shortcoming.

In this study, we developed a novel family of feature selection techniques based on the

Partial Least Squares (PLS) algorithm [2-4] , which we call SlimPLS. SlimPLS is a

multivariate feature selection method, thus incorporating feature dependencies. In order

to compare the performance of the SlimPLS based methods we used five classifiers –

linear Support Vector Machine (SVM), radial SVM, Random Forest, K-nearest-neighbors

(KNN), and Naïve Bayes. 19 different case-control expression profiles datasets were

collected and used for training and testing. Our results show a significant gain in

performance for some variants of the SlimPLS compared to filters techniques.

This thesis is organized as follows: in Chapter 2 we present the necessary background for

this work, and review some of the relevant literature. In Chapter 3 we present the

SlimPLS method and its variants. In Chapter 4 we present the datasets we collected and

the different criteria we used for the comparisons, and the results of the different

comparisons using several classifiers are presented. In Chapter 5 we discuss the results

and their implications and present some possible future directions. Some more

 11

evaluations and comparisons of the different feature selection techniques and classifiers

are included in the appendix.

 12

2 Background

2.1 What is Classification

2.1.1 Introduction

Supervised classification takes a set of data samples, each consisting of measurements on

a set of variables, with associated labels called the class types, and uses them to learn a

particular model. Using that model, the labels of new samples can be estimated. Figure

 2-1 gives an abstract illustration of the idea.

X

X

X

X

X

Figure 2-1. Two-dimensional points belonging to two different classes (circles and squares)

are shown in the figure. A classifier will learn a model using these points and then use the

model to accurately classify the new samples, marked by X.

Classification is used in various fields, e.g..

a) Biology. In recent years the study of gene expression microarrays became very

popular. Each microarray is a sample, which gives the expression level of many genes

 13

in an individual, and samples from different classes (e.g. sick and healthy individuals)

are given. Gene expression data were successfully used to classify patients into

different clinical groups, thus identifying new disease groups and the relevant genes

for this clinical phenomenon [5].

b) Optical Character Recognition (OCR) uses classification to translate images of

handwritten, typewritten or printed text (usually captured by a scanner) into machine-

editable text [6].

c) Document classification. The task is to assign an electronic document to one or more

categories, based on its contents. This is usually done using supervised classification

techniques, e.g. [7].

The classification problem can be formally stated as follows: A sample is a pair (xi , yi),

where xi is a p-dimensional data vector of measurements. Usually, xi ∈ R
p
. yi is the label

of the sample, indicating the class it belongs to. Formally, it is a categorical variable

taking values from a finite set of labels Ω=
1{ ,..., }cω ω . The input to the classifier is a set

of measurement vectors along with their known classes. This set, called the training set,

is used to build the classifier. Once the classifier is built, given a new test example, x, its

class can be predicted by the classifier.

The high dimensional nature of many classification tasks, i.e., the very large number of

available features, may pose a real problem for classifiers, especially when we have

relatively few samples (see Section 1). Therefore, in many cases we will need to select

only a small subset of the available features that will contribute most to the classification.

This task is called feature selection.

 14

In the next sections we will review several classifiers and feature selection methods. In

this work we concentrate on the two-class classification problem.

2.1.2 Difficulties

Our goal is to design a classifier that is as accurate as possible in classifying new test

samples. This challenge is difficult for several reasons.

The first problem is that we are often given a relatively small training set. Thus classifiers

have to infer a general behavior from relatively few samples. We assume that the training

set faithfully represents the test set, or the ‘real world’. However, when the sample is

small, it is less likely to faithfully represent the real world, and more likely to be biased

due to noise, population differences, etc.

Another problem is the complexity of the model and its generalizing capabilities. If the

classifier is too simple it may fail to capture the underlying structure of the data.

However, if the classifier is too complex and there are too many free parameters, it may

incorporate noise in the model, leading to over-fitting, where the learned model highly

fits the training set, but performs poorly on test samples. Thus, achieving optimal

performance on the training set (in terms of minimizing some error criterion) is not a

requirement. It may be possible for a classifier to achieve 100% classification accuracy

on the training set but the generalization performance – the expected performance on a

test data (or equivalently, the expected performance on the distribution from which the

training set was sampled) – is poorer than could be achieved by different methods.

 15

Another problem is the meaning of “optimal”. There are several ways of measuring

classifier performance. For binary classification problems the most common one is the

error rate, but even this is not a simple task, as the error rate needs to be estimated and

usually can not be directly calculated.

2.1.3 Error estimation

As was mentioned in the former section we seek to minimize the generalization error -

the expected error (performance) on test data or ‘real-world” data. In the next sections we

will describe different classifier mechanisms and see how they ‘infer’, i.e., how they use

the training data in order to classify new test samples as accurately as possible. But first

we need a way to measure the quality of such an inference.

There are many methods for estimating generalization error, e.g. test-set method, cross

validation, bootstrap, jackknife etc [11]. The focus in this work is on cross validation

techniques, in particular the leave-one-out-cross-validation method.

2.1.3.1 Cross Validation

Cross-validation calculates the error by repeatedly partitioning the given training set into

two disjoint subsets: the training subset and the test subset. When a sample belongs to the

test subset, its label is hidden from the classifier built based on the training subset only,

and the prediction of its class can be compared to its true class. The process is repeated

with several partitions and gives an estimate of the performance of the classifier.

2.1.3.1.1 K-fold cross-validation

 16

The k-fold cross-validation partitions the given training set into k subsets (preferably of

equal size). Then, training is done on k-1 subsets and testing is done on the remaining

subset. This process is repeated as each subset is taken to be a test set in turn.

2.1.3.1.2 Leave-one-out cross-validation

In this method we use k-fold cross-validation with k=n, the number of samples in the

training set. In each ‘fold’ we use n-1 samples as training set and test the classifier on the

remaining sample. This procedure is repeated for all samples. The estimated error is

simply the fraction of wrongly classified samples.

This method is computationally expensive as it requires the construction of n different

classifiers. However, it uses almost all the samples in each training subset, thus it is more

suitable for smaller datasets. This method is used in our work.

2.2 Linear Discrimination

2.2.1 Introduction

Linear Discrimination algorithms are classifiers that assign to each sample a real value

which is a linear combination of its feature values. A test sample is classified according

to its real value. We first make the assumption that the decision boundaries are linear –

i.e. samples from different classes can be separated using a linear function. Linear

discrimination can be used in binary classification and in multi-class classification.

The problem of a binary linear discrimination can be formulated as follows. Suppose we

have a set of training samples },...,1),,{(niyx ii = where
iy ∈ }1,1{ +− . We seek a linear

 17

function ()g x , consisting of weight vector w and a threshold 0w , such that its sign will

predict the label
iy :

(()) 0 1

(()) 0 1

i i

i i

sign g x y

sign g x y

≥ → = +

< → = −

for each sample
ix .

A sample ix will be classified correctly if () 0i ig x y⋅ > . Ideally, we would like to find

such ()g x that makes ()g x y⋅ positive for as many samples in the training set as possible.

This criterion minimizes the misclassification error on the training set. If indeed

() 0g x y⋅ > for all samples in the training set, the data are said to be linearly separable.

In non trivial problems it is not possible to find a perfect linear separation of the data.

Moreover, insisting on a perfect linear separation when the data are noisy can lead to

over-fitting. In some situations it is better to let some training samples be misclassified in

order to handle noise better.

2.2.2 Support Vector Machines

2.2.2.1 Introduction

Support vector machines (SVMs) [8-10] are very popular linear discrimination methods

that build on a simple yet powerful idea: Samples are mapped from the original input

space into a high-dimensional feature space, in which a ‘best’ separating hyperplane can

be found. A separating hyperplane H is best if its margin is largest. The margin is defined

as the largest distance between two hyperplanes parallel to H on both sides that do not

contain sample points between them (we will see later a refinement to this definition). It

follows from the risk minimization principle (an assessment of the expected loss function,

 18

i.e., the mis-classification of samples [11]) that the larger the margin, the better the

generalization error of the classifier.

To demonstrate this idea let us consider Figure 2-2. We can see that for the same training

set, different separating hyperplanes can be found. The separating hyperplane that leaves

the closest points from different classes at maximum distance from it is preferred, as the

two groups of samples are separated from each other by a largest margin, and thus least

sensitive to minor errors in the hyperplane’s direction.

Figure 2-2. Separating hyperplanes and Margin. Two different possible separating hyperplanes are shown

(thick lines). (a) A separating hyperplane parallel to the y-axis. (b) A separating hyperplane that leaves the
closest points at maximum distance from it (the thin lines on the right identify the margin). This figure is

taken from [11].

2.2.2.2 Linearly separable data

As mentioned earlier all training samples are correctly classified if

0() () 0T

i i i ig x y w x w y⋅ = + ⋅ >

 19

for each training sample ix . We would now like to take the margin into consideration in

the above equation. Thus, changing it to

0()T

i iw x w y b+ ⋅ ≥

yields a solution for which all training samples
ix are at distance greater than

b

w
 from

the separating hyperplane. We can scale b ,
0w and w while still having the distance

unaltered. Therefore, without loss of generality 1b = is taken. Setting b to the value of 1

defines the canonical hyperplanes as follows.

1 0

2 0

: 1

: 1

T

T

H w x w

H w x w

+ = +

+ = −

In addition, all training samples
ix satisfy:

0 1
T

iw x w+ ≥ for 1iy = +

0 1
T

iw x w+ ≤ − for 1iy = −

The separating plane is defines by
0() 0

T
g x w x w= + = , and the distance between each of

the canonical hyperplanes and the separating hyperplane is
1

w
. This quantity is termed

the margin. See Figure 2-3.

 20

Figure 2-3. The geometry of the margin.
1H and

2H are the canonical hyperplanes. The margin is the

distance between the separating hyperplane (() 0g x =) and a hyperplane through the closest points

(marked by a ring around the data points). These are termed the support vectors. This figure is taken from

[11].

Now, we can formulate the learning problem of SVM as follows.

1
max()

w
 s.t.

0() 1T

i iw x w y+ ⋅ ≥ 1,..,i n=

where (,)i ix y is the set of training samples with their labels. It also can be written as

follows.

1
min()

2

T
w w s.t.

0() 1
T

i iw x w y+ ⋅ ≥ 1,..,i n=

This formulation enables us to use the Lagrange formalism: The non-negativity

constraints are multiplied by positive Lagrange multipliers iα and subtracted from the

margin

 21

objective function. This leads us to the primal form of the objective function pL , which is

given as follows.

0

1

1
(() 1)

2

n
T T

p i i i

i

L w w w x w yα
=

= − + ⋅ −∑

where { : 1,..., ; 0}i ii nα α= ≥ are the Lagrange multipliers. Solving the minimization

problem is equivalent to finding the values w ,
0w , and 0iα ≥ that minimize

pL . To do so,

we first differentiate
pL with respect to w and

0w . Then, by equating the derivates to

zero we get

1

n

i i i

i

w x yα
=

=∑ (when differentiating with respect to w)

1

0
n

i i

i

yα
=

=∑ (when differentiating with respect to
0w)

 Taking these two equalities and substituting into pL yields the dual form of the

Lagrangian. We want to maximize

∑∑∑
= ==

−=
n

i

n

j

j

T

ijiji

n

i

id xxyyL
1 11 2

1
ααα

subject to

0iα ≥
1

0
n

i i

i

yα
=

=∑

This optimization formulation is expressed using inner product of the training samples
ix ,

and the number of parameters is n – the numbers of training samples. The solution for

that problem is achieved by convex quadratic programming. Finding of the α -s that

maximize
dL enables the computation of w and

0w .

 22

After finding w and 0w , classification of a query pattern qx simply requires finding the

sign of
0() T

q qg x w x w= + .

2.2.2.3 Linearly non-separable data

In the previous section the SVM learning process was introduced as an optimization

problem, under the assumption that the data are linearly separable. However, in many

practical problems there will be no linear boundary separating the classes. Hence, looking

for a hyperplane in the former manner will yield no results: The optimization problem

will be infeasible. Therefore, a relaxation of the constraints is needed. This is done by

introducing new slack variables { : 1,..., ; 0}i ii nξ ξ= ≥ into the original constraints:

0() 1T

i i iw x w y ξ+ ⋅ ≥ −

This way, for a training point to be misclassified by the hyperplane, we must have 1iξ > .

Notice that this also allows a point to be inside the ‘sterile’ area of the margin, but to still

be correctly classified (for 0 1iξ< <).

The next step will be incorporating the additional cost due to the non-separability into the

objective function, using some kind of penalty:

1

1

2

n
T

i

i

w w C ξ
=

+ ∑

and the minimization problem will be given as

1

1
min()

2

n
T

i

i

w w C ξ
=

+ ∑ s.t.
0() 1T

i i iw x w y ξ+ ⋅ ≥ −

 23

The parameter C (called the regularization parameter) controls the penalty for ‘outliers’

and ‘softer’ margin. Optimal values of C are usually found by using the leave-one-out

procedure on the training samples, and finding the value that yields the lowest error.

The primal and dual forms of the Lagrangian are built in a similar way as in the previous

section. The dual form will be given as

1 1 1

1

2

n n n
T

d i i j i j i j

i i j

L y y x xα α α
= = =

= −∑ ∑∑

subject to

0 i Cα≤ ≤
1

0
n

i i

i

yα
=

=∑

Therefore, the only change to the maximization problem is the upper bound of the iα .

2.2.3 Kernels and SVM

Even when no separation is possible in the original space, samples can be mapped into

high-dimensional feature space, where a separating hyperplane can be found. This is the

principle behind many methods of classification: transform the input features nonlinearly

to a high dimensional space in which linear methods may be applied. This space is called

the feature space.

Suppose that we transform each sample
ix into a point ()ixφ in the new feature space

[12, 13]. In that space, we again look for the linear discriminating function

0() ()T
g x w x wφ= +

 24

and the dual form of the Lagrangian becomes

1 1 1

1
() ()

2

n n n
T

d i i j i j i j

i i j

L y y x xα α α φ φ
= = =

= −∑ ∑∑

where, as previously, 1iy = ± , i=1,…,n, are class labels values and { }iα are the Lagrange

multipliers satisfying

0 i Cα≤ ≤
1

0
n

i i

i

yα
=

=∑

for a given regularization parameter C.

Notice that the only effect of the non-linear transformation on the problem is using the

transformed vectors ()ixφ instead of ix , and more precisely, dL relies only on calculating

the dot product in the feature space instead of the input space.

Suppose there exists a function (,)i jk x x (a kernel function) satisfying

(,) () ()T

i j i jk x x x xφ φ=

then we can avoid computing the transformation ()xφ explicitly altogether and replace

the dot product with (,)i jk x x . In other words, we use a function that calculates the dot

product of two vectors in the feature space, where the two vectors are given in the input

space. The advantage of using such a kernel function is obvious - we do not need to

specify or compute φ explicitly.

There are many types of kernels that can be used in a SVM. Acceptable kernels must be

expressible as an inner product in some feature space. The methods of finding such

kernels are beyond of the scope of this work. Two common kernels are the Polynomial

kernel, (1)T d

i jx x+ , and the Gaussian kernel,
2

2exp(/)
i j

x x σ− −

.

 25

Notice that when using the linear kernel (i.e., the simple dot product in the input space)

one must provide only one parameter to the SVM algorithm – the ‘regularization’ factor.

However, when using non linear kernels, more parameters must be provided, which may

result in over-fitting.

2.3 Random Forests

2.3.1 Introduction

A Random Forest [14] is a classifier that uses a collection of decision trees, each of

which is a simple classifier learnt on a random sample from the data. The classification of

a query example is done by majority voting of the decision trees. We first describe

decision trees and then the Random Forest method.

2.3.2 Decision trees

Decision trees learning is a method for inferring a discrete-valued target function of the

samples (in our case – the sample’s class). The model is represented by a decision tree.

Assume temporarily, for simplicity, that the feature values are discrete. Each inner node

in the tree specifies a test of some features of the sample. Each branch from that node

corresponds to a possible range of values for these features. Each leaf corresponds to a

class label. Samples are classified by going down the tree from the root to some leaf

node, according to the branch conditions. Each path from the root to a particular leaf

corresponds to conjunction of feature values, thus the tree itself constitutes a disjunction

of these conjunctions.

2.3.2.1 Basic decision tree construction algorithm

 26

There are many algorithms for growing a decision tree. Most of them have a core

mechanism that employs a top-down, greedy construction of the decision tree.

The ID3 algorithm [15] is a good example of decision tree construction using a top-down

approach. It begins by determining which feature should be tested at the root of the tree.

This is done by evaluating each feature using a statistical test to examine how well it

alone classifies the training samples. The best feature is selected to be tested at the root

node of the tree.

Then, a branch is made for each possible value of this feature (or, as we will see later –

for some possible intervals for continuous values), and the training samples are sorted

accordingly. The entire process is then repeated using the training samples associated

with each child node. Only those training samples that have a value that matches the

particular branch are taken into account when finding a candidate test-feature for the

child node. When all features have been examined, a child leaf node is created with a

class label equal to the majority label of all samples associated with the path to this leaf

(or equal to one of the most common labels, randomly selected, in case of a tie). Note that

this method performs a greedy search for the decision tree, and it never backtracks to

reconsider earlier choices.

2.3.2.2 Choosing the best feature

As stated, the best feature under some criterion is chosen as the test at the root node, and

later other features are chosen in the same way as roots of subtrees. Several optional

criteria can be used. The ID3 algorithm uses the information gain measure, which

 27

computes how well a given feature separates the training samples according to their class

labels. To define it, we first introduce the entropy measure from information theory

2

1

() log
c

i i

i

Entropy S p p
=

≡ −∑

where c is the number of different classes (labels), and ip is the proportion of S (the

group of samples) belonging to class i.

Notice that the entropy is 0 if all members of S belong to the same class. If all the classes

contain an equal number of samples (
1

i
p

c
= for all i) then the entropy of S is equal

to 2log c , which equals the minimum number of bits needed to encode the classification

of an arbitrary sample in S, when c is a power of 2. In the specific case where c=2, if both

classes have the same number of samples then the entropy of S is equal to 1. This way,

entropy gives us a measure of the impurity of the sample group.

Now we can define the information gain measure. It is simply the expected reduction in

entropy caused by partitioning the samples according to a particular feature. The

information gain Gain(S, F) of a feature F, given a collection of samples S, is defined as

()

(,) () ()v

v

v Values F

S
Gain S F Entropy S Entropy S

S∈

≡ − ∑

where Values(F) is the set of all possible values for feature F, and
vS is the subset of S

consisting of samples for which feature F has the value v. Hence, Gain(S, F) is the

information provided (the reduction in entropy) about the target function value (the class

label), given the values of a particular feature F.

 28

2.3.2.3 Over-fitting

The ID3 algorithm aims to construct a tree that perfectly classifies the training samples.

This strategy can easily lead to over-fitting, especially if the training set is small, where

the tree structure can be highly sensitive to small changes in the data, as can be seen in

Figure 2-4.

Figure 2-4. Training data and associated (unpruned) trees. Consider the following n = 16 points in two

dimensions for training a binary tree. If the single training point marked * were instead slightly lower

(marked †), the resulting tree and decision regions would differ significantly. This figure is taken from

[68].

Over-fitting is a significant practical difficulty for decision tree learning. There are

several approaches to avoid over-fitting, and they can be grouped into two classes. The

first class of approaches stop growing the tree before it reaches its full potential size. The

 29

second class of approaches fully grow the trees (perhaps causing over-fit of the data), and

then prune it.

Although less direct, the pruning techniques have been found to be more useful [16], and

a common implementation is to use a separate set of samples (validation set) to evaluate

the benefit of pruning nodes from the tree.

For example, we can consider each of the decision nodes as a candidate for pruning.

Pruning it means removing the sub-tree rooted at that node, thus making it a leaf node.

The assigned class-label of this node is the majority class in the training samples

associated with that node. In this approach, nodes are removed when the resulting pruned

tree performs no worse than the original tree over the validation set. This approach is

called reduced-error pruning [17].

2.3.2.4 Continuous-valued features

Until now, we assumed that features had only discrete values. In that case all tests in each

node were of the form “does feature F equal to v?” When using continuous–valued

features we need to re-define these tests. For example, the algorithm can dynamically

create a new boolean feature
cF that is true if F c> and false otherwise. The problem is

to find this threshold. A possible way is to sort all samples according to feature F, and

identify a threshold c that best partitions the samples according to their different class

labels. The best partition can be chosen, e.g., by the information gain criterion.

 30

2.3.3 Random Forest

A random forest is an ensemble of many decision trees that were grown using a random

process. To classify a new sample, each of the trees assigns a class to it and the majority

class is selected [14].

2.3.3.1 Growing a single tree

Given N training samples, each having M features, each tree is grown as follows: First, N

instances are sampled at random (with replacement) from the training set. This sample is

the training set of the tree. Then, at each node, m M<< of the features are selected at

random. The best split on these m features is used to branch at the node. The same value

of m is used for all trees in the forest. Each tree is grown to the largest extent possible,

without pruning.

2.3.3.2 Error rate

Breiman has shown in [14] that the error rate in classification is related to m. The optimal

value of m can be estimated as follows: Recall that in the process of growing a single tree

N samples are selected with replacement at random. This means that on average about a

third of the samples were not used for training that tree. Moreover, it means that any

sample i was not used for training in about a third of the trees in the forest and therefore

can be used as a test sample for them. We can classify sample i using only these trees and

thus get an error value for that sample. The average error value across all samples is the

called out-of-bag error rate.

 31

2.3.3.3 Forest size

Although each individual tree grown by the Random Forest algorithm can severely over-

fit the data, the whole Random Forest is very resistant to over-fitting, owing to the effect

of averaging over many different trees. In this respect, the larger the number of trees - the

better. Furthermore, the generalization error converges almost surely to a limit value [14].

Therefore, one can run as many trees as one desires.

2.4 Instance-based learning

2.4.1 Introduction

Most learning methods construct a general, explicit description or model of the target

function as training samples are provided. Instance-based learning methods simply store

the training samples. These samples might be pre-processed but no model is created.

Generalizing beyond these samples is postponed until a new instance is to be classified.

When a new query sample is introduced, its relationship to the stored training samples is

examined in order to assign a target function value for the new instance. More precisely,

a set of similar training instances is retrieved and used to classify the new query instance.

Because of this delayed processing, instance-based methods are sometimes referred to as

“lazy” learning methods.

 The “laziness” has some advantages [16]. They can construct a different approximation

to the target function for each distinct query instance. Moreover, many techniques

construct only a local approximation to the target function, which applies in the

neighborhood of the new query instance, in contrast to constructing a single

 32

approximation designed to perform well over the entire instance space. This has

significant advantages when the classifying function is very complex, but can still be

described by a collection of less complex local approximations.

Instance-based approaches have two main disadvantages. First, nearly all computation

takes place at classification time, and thus, the computational cost of classifying new

instances can be high. Therefore, techniques for efficiently indexing the training

examples are an important practical issue in reducing the computation required at

prediction time. The second disadvantage is that instance-based methods typically

consider all features of the samples when attempting to retrieve similar training examples

from memory. If the target concept depends only on a few of them, then the instances that

are truly most “similar” may appear as relatively distant in that high dimensional space.

2.4.2 K-Nearest Neighbor learning

The most basic instance-based algorithm is the k-Nearest Neighbor (KNN) algorithm [18,

19]. It assumes all instances correspond to points in the n-dimensional space R
n
. The

distance between instances is usually taken as the Euclidean distance, i.e., if an instance

ix is >=< n

iiii xxxx ,...,, 21 , where r

ix denotes the value of the r-th feature of instance
ix ,

then the distance between two instances xi and xj is ∑
=

−=
n

r

r

j

r

iji xxxxd
1

2)(),(. Other

distance metrics can be used as well.

 33

In this thesis we only consider discrete-valued target functions (classes) of the form f: R
n

� Ω , where Ω is the finite set },...,{ 1 sωω . As we will see, there is no difference when

using KNN for two-class classification or for multi-class classification.

The k-Nearest Neighbor algorithm [16] assigns a query sample to the class that has a

maximum number of representatives among the k training samples closest to it. Ties are

usually broken at random. If k = 1 then the kNN algorithm assigns the query to the class

of the nearest training sample. Figure 2-5 illustrates the kNN algorithm. In this example

the samples are points in the two-dimensional plane. The target function has a boolean

value “– “or “+” (false and true, respectively). The query point xq (sample) is shown in

the center. If we are to use 1-Nearest Neighbor algorithm then xq will be classified as

negative. However, if we use 5-Nearest Neighbor algorithm then xq will be classified as

positive.

 34

Figure 2-5. The kNN algorithm. Given the query point
qx , the k=5 closest points are determined, and the

class having a majority among them (class ‘+’ in this specific case) is assigned to the query. This figure is

taken from [16], with some modifications.

This example introduces the problem of choosing k – the number of relevant neighbors.

Although there is no rule for that, a common way (which was also used in this work) is to

select k among several possible values using cross validation on the training samples.

This way, each selection of k will lead to a different error estimation and the particular k

that had the lowest error estimation on the training set is chosen.

2.4.2.1 Distance-Weighted Nearest Neighbor algorithm

One variant of the kNN algorithm is the Distance-Weighted Nearest Neighbor algorithm.

The contribution of each of the k nearest neighbors is multiplied by a weight factor,

 35

according to its distance from the query point qx . A common weight factor of a neighbor

is the inverse square of its distance from
qx . Thus, the classification rule will be

^

1

() (, ())arg max
k

q i i

iv V

f x w v f xδ
=∈

= ∑

where ()if x is the known class label of
ix , (,) 1a bδ = if a b= and (,) 0a bδ =

otherwise,
1, ..., kx x are the k closest points to

qx and

2

1

(,)
i

q i

w
d x x

≡

2.5 Bayesian learning

2.5.1 Introduction

 Bayesian learning [19] is a probabilistic approach to classification that provides a

quantitative method for weighing the evidence supporting different hypotheses using

probability distributions together with observed data. As a result, it has several

advantages. First, it provides a flexible approach to learning, since each observed training

sample can decrease or increase the estimated probability that a particular hypothesis is

correct, but does not completely eliminate the hypothesis. A second advantage of

Bayesian learning is that it can output probabilistic hypotheses, e.g., “the patient has 90%

chance of not developing metastasis”. This is in contrast with many classifiers that either

just output a single most likely prediction, usually with some score that is not easily

interpretable. Other advantages include the ability to combine prior knowledge (e.g., use

 36

different prior probability for each candidate hypothesis), and to combine multiple

hypotheses by weighing their probabilities. One practical difficulty is that these methods

typically require initial knowledge of many probabilities. In case these probabilities are

not known, they are usually estimated based on background knowledge and the given

training data.

2.5.2 Bayes Theorem and maximum likelihood

A common problem in machine learning is determining the best hypothesis h from some

space H, given the observed data D. The best hypothesis is defined as the most probable

hypothesis, given the data D and any prior knowledge, or, more precisely, the hypothesis

that would make the most probable classification given the data D and any prior

information about the probabilities of the various hypotheses in H.

Bayes Theorem provides a direct way for calculating such probabilities. Bayes Theorem

is

(|) ()
(|)

()

P D h P h
P h D

P D
=

where ()P h is the initial probability that h holds, before we observed the data (the prior

probability of h). It may reflect any background knowledge about h. ()P D denotes the

prior probability that data D will be observed. (|)P D h denotes the probability to

observe data D given that hypothesis h holds. (|)P h D denotes the probability that h

holds given the observed data D – and this is the quantity we are looking for. (|)P h D

also called the posterior probability of h.

 37

In many learning applications the goal is to find the most probable hypothesis

h H∈ given the observed data D. This hypothesis is called a maximum a posteriori

(MAP) hypothesis, and it is defined as follows

(|) ()
arg max (|) arg max arg max (|) ()

()
MAP

h H h H h H

P D h P h
h P h D P D h P h

P D∈ ∈ ∈

≡ = =

The term ()P D is dropped in the final step as it is typically a constant independent of h.

If we assume that every hypothesis in H is equally probable a priori, then we can further

simplify the equation and only maximize the term (|)P D h . This term is called the

likelihood of the data D given h. The hypothesis h that maximizes (|)P D h is called

maximum likelihood (ML) hypothesis MLh . Therefore, when all ih -s are equally probable

a priori,
MLh is defined as

arg max (|)ML
h H

h P D h
∈

=

2.5.3 The Naïve Bayes Classifier

Denote the set of possible classes by Ω (e.g., },{ 21 ωω=Ω for the binary classification

problem). Denote the query x described by the vector of feature values >< n
xxx ,...,,

21 .

The most probable hypothesis that we wish to find is actually the most probable class
iω

of the query instance. Therefore, we would like to find the most probable class

(hypothesis), given the query instance (data):

),...,,|(maxarg
21 n

iMAP xxxPv
i

ω
ω Ω∈

=

 38

Using Bayes theorem we can now rewrite this expression

)()|,...,,(maxarg
),...,,(

)()|,...,,(
maxarg 21

21

21

ii

n

n

ii

n

MAP
PxxxP

xxxP

PxxxP
v

ii

ωω
ωω

ωω Ω∈Ω∈

==

It is easy to estimate)(iP ω by simply counting the frequency with which each target

value
iω occurs in the training set. However, estimating)|,...,,(

21

i

n
xxxP ω by counting

is not feasible unless we have a huge training set, as we need to observe every possible

feature values combination >< nxxx ,...,, 21 many times to obtain reliable estimates.

The naïve Bayes classifier estimates this term by assuming that the feature values are

conditionally independent given the target value, i.e.,

∏= j i

j

i

n
xPxxxP)|()|,...,,(21 ωω . Thus, the naïve Bayes classification rule is simply

∏
Ω∈

=
j i

j

iNB xPPv
i

)|()(maxarg ωω
ω

The training step is the estimation of the various)(iP ω and)|(i

j
xP ω , based on their

frequencies over the training data [16].

2.5.4 Practical issues with Naïve Bayes classifiers

2.5.4.1 Continuous features

In the Naïve Bayes algorithm, the relevant probabilities for the classes are found based on

their frequencies over the training data. While this is a simple task when dealing with

discrete features, it is more complicated when the features attain continuous values. A

simple but effective way of incorporating continuous features in Naïve Bayes classifier is

 39

by discretizing them. Discretization can be unsupervised (i.e., a fixed partition into bins)

or supervised (i.e., binning using information in training data).

A simple example of supervised discertization of the data is as follows. First, for each

feature, its average value (or median) in the training set is computed. Then, every

continuous feature value is replaced with zero if the value is lower than the average,

otherwise it is replaced with one. Now the learning phase (i.e., extracting all relevant

probabilities) can be done. In the prediction phase each feature value of the query sample

is discretized in the same fashion and the Bayes classification rule can be applied.

2.5.4.2 Estimating probabilities

If a certain combination of a class and feature values never occurs in the training set, then

its frequency-based probability estimate will be zero. This is problematic since it will

reset to zero all information in the other probabilities when they are multiplied. Poor

estimation occurs also when the number of observations of a particular value
ia of a

feature is small. In other words, we estimate)|(i

j
xP ω by the fraction c

n

n
, where n is

the total number of training samples the belong to class
iω , and

cn is the number of these

for which feature j equals
i

a . When
c

n is very small, this fraction provides a poor

estimation, and when
cn is zero it will reset to zero every prediction for a query sample

having feature i equals to ia .

To overcome these difficulties, and make sure that no probability is ever set to be exactly

zero, a small-sample correction of all probability estimates is often used. One such

correction is the m-estimate [20] defined as

 40

c
n mp

n m

+

+

where p is the prior estimate of the probability we wish to calculate, and m is a constant

that determines how to weight p relative to the observed data. A typical choice of p ,

when we have no other information, is to assume a uniform distribution, i.e., if a feature

has k possible values, then p =
1

k
.

The m-estimate can be interpreted as expanding the n actual samples by additional

m ’virtual’ samples distributed according to p . Notice that in the limit, as the number of

samples grows, this estimate converges to the simple estimate cn

n
.

2.6 Feature selection and extraction

2.6.1 Introduction

 Often, samples have many features (i.e., they are represented as vectors in a high-

dimensional space). The tasks of feature selection and feature extraction is to reduce the

dimension of the data as much as possible while still retaining as much information

relevant for the task at hand [11]. There are many reasons to perform such dimension

reduction. It may remove redundant or irrelevant information and thus yield a better

classification performance; subsequent analysis of the classification results is easier; low

dimension results may be visualized, and thus enable better understanding.

There are two main ways to achieve dimension reduction for classification problems. The

first way is to identify (by some criterion) those features that contribute most to the class

 41

separability. For example, one may select d features out of all the given features, using

some method of ranking (the univariate approach) or optimizing a criterion function (the

multivariate approach), that will most contribute to the classification task. This strategy is

termed feature selection. The other way is to find a transformation (linear or nonlinear)

from the original high-dimensional input space to a lower dimensional feature space. This

approach is termed feature extraction. This transformation may again be supervised or

unsupervised. In the supervised case, the task is to find the transformation for which a

particular criterion of class separability is maximized.

2.6.2 Feature Selection

The feature selection problem is defined as follows: “given a set of k measurements

(features) on n labeled samples, what is the best subset of d features that contribute most

to class discrimination?” The number of possible such subsets is
)!(!

!

dkd

k

−
, which can

be very large even for moderate values of k and d. Therefore, one resorts to various

heuristics for searching through the space of possible features.

There are many strategies for feature selection. For example, one can define an objective

function, e.g., one that measures accuracy on a fixed held out set, and use sequential

forward or backward selection. A sequential forward selection (SFS) is a bottom-up

search where new features are added to a feature set one at a time. At each stage, the

chosen feature is one that, when added to the current set, maximizes the objective. The

feature set is initially empty. The algorithm terminates when the best remaining feature

worsens the objective, or when the desired number of features is reached. The main

 42

disadvantage of this method is that it does not delete features from the feature set once

they have been chosen. As new features are found in a sequential, greedy way, there is no

guarantee that they should belong in the final set.

Sequential backward selection (SBS) is the top-down analog of SFS: Features are deleted

one at a time until d features remain. This procedure has the disadvantage over SFS that it

is computationally more demanding, since the objective function is evaluated over larger

sets of variables.

2.6.2.1 Feature Selection classes

Feature selection techniques can be organized into three categories, depending on the

way they combine the feature selection search with the construction of the classification

model: filter methods, wrapper methods, and embedded methods [1].

Filter methods choose the d best individual features, by first ranking the features by some

‘informativeness’ criterion [1], for example, using their Pearson Correlation with the

target. Then, the top d features are selected. Afterwards, this subset of features is

presented as input to the classification algorithm.

Wrapper methods [1] use a search procedure in the space of possible feature subsets

using some search strategy such as SFS or SBS, and various subsets of features are

generated and evaluated. The evaluation of a specific subset of features is obtained by

training and testing a specific classification model. In other words, the search for the

desired feature subset is “wrapped” around a specific classifier and training algorithm.

 43

In embedded methods [1] the search for an optimal subset of features is built into the

classifier construction. Features are selected as a part of the building of the particular

classifier, in contrast to the wrapper approach, where a classification model is used to

evaluate a feature subset that is selected without using the classifier. The embedded and

wrapper approaches are specific to a given classifier.

As the filter approach is the more common one [1], our study will focus on several filter

methods.

2.6.2.2 Filters

In this section we will introduce four different common filter methods for feature

selection.

2.6.2.2.1 Pearson Correlation Coefficient

The Pearson correlation coefficient is computed between each feature vector x (where

each entry represents its value in a particular sample) and the class vector y (having only

two values, e.g., “1” and “2”, to identify the class label). Pearson correlation coefficient

between two variables x and y sampled n times is defined as

1

()()

(1)

n

i i

i

xy

x y

x x y y

r
n s s

=

− −

=
−

∑

where x and y are the sample means of x and y ,
xs and

ys are the sample standard

deviations of x and y , and n is the number of samples.

The d features that yield the highest scores are selected. Pearson correlation is commonly

used in the analysis of microarrays [21].

 44

2.6.2.2.2 T-test

Those features whose measures are significantly different between the two classes of

samples are candidates for selection [22]. A simple t-test statistic [23] can be applied to

measure the statistical significance of a difference of a particular feature between the two

classes. Then, those d genes with the largest t-statistic (or, equivalently, the lowest p-

values) are selected. In this work we use a modified form of the t-statistic, known as the

Welch test [23], as the feature values in the two classes may have different variance.

Welch test is defined as

1 2

2 2

1 2

1 2

() ()

() ()

f f
t

s f s f

n n

µ µ−
=

+

where ()i fµ , ()is f and
in are the mean, standard deviation and sample size in class

i=1,2 of feature f in the training set.

2.6.2.2.3 Golub criterion

This filter was introduced in [24]. Let ()i fµ and ()is f be defined as above. Then, PS is

defined as

1 2

1 2

() ()
()

() ()

f f
PS f

s f s f

µ µ−
=

+

Features with larger PS are more informative. Hence, this filter selects those k features

with the largest PS.

2.6.2.2.4 Mutual information

 45

Mutual information I(X, Y) measures the mutual dependence between two random

variables X and Y [25]. It compares the observed joint distribution and what the joint

distribution would be if X and Y were independent. The mutual information of two

discrete random variables X and Y is defined as

(,)
(,) (,) log()

() ()y Y x X

p x y
I X Y p x y

p x p y∈ ∈

=∑∑

The needed probabilities are calculated by extracting relevant frequencies from the

training set. Thus, I(X, Y) =0 if and only if X and Y are independent. Mutual information

is calculated between each feature vector and the class vector. Of course, since the

probability distributions p(x), p(y), and p(x,y) are usually not known, they must somehow

be modeled or estimated. For example, when feature values are continuous one may

resort to discretizing them by binning the values.

2.6.3 Linear feature extraction

The methods described in the previous section select those features that contain the most

discriminatory information by some criterion. In feature extraction, all available features

are used, and the original data are transformed into a low dimensional space. Thus, the

original features are replaced by a smaller set of extracted features in the new space.

Both feature selection and feature extraction reduce the dimension of the data and aim to

provide a more relevant set of features for a classifier. In many cases, feature extraction

can reduce redundancy better, reveal meaningful behavior of data, and thus lead to

greater understanding of processes. In this section the focus will be on linear feature

extraction, and specifically Partial Least Squares methods.

 46

2.6.3.1 Partial Least Squares

Partial Least Squares (PLS) is a broad class of methods for modeling relations between

sets of observed features by means of latent variables called components [26]. It is an

iterative method that finds the relationship between a two-dimensional sample× feature

matrix X and the class vector y of the samples (in its most general form, PLS models

relations between two matrices, but we shall present first the version where the second

matrix is a vector, which is relevant to classification). PLS was developed by Herman

Wold and coworkers [2-4].

2.6.3.1.1 Notation

For reference and consistency, we shall use the following notation in this section.

v vector

v mean of vector v (a scalar)

M matrix

~ estimated value of a parameter, or a predicted variable

i
 variable in the i-th iteration of PLS

a number of desired components

n number of samples

k number of features

 47

m number of target functions that we wish to predict (If we wish only to predict the

class label then 1m =)

X n×k data matrix (specific matrix X)

y vector of n entries (specific vector y)

[]x j column j of matrix X (vector of length n)

2.6.3.1.2 The basic algorithm

The basic goal of PLS is to obtain a low dimensional approximation of a n k× matrix X

such that the approximation will be ‘as close as possible’ to an 1n× vector y . The

simplest approximation is one dimensional: One seeks a 1k × vector w such that 1w =

and cov(,)Xw y is maximal. Xw is called the component of X with respect to y , and

denoted by t . The approximation error is defined as T
E X tp= − where p is a 1k ×

vector minimizing TX t p− . Similarly, the approximation error of y is defined as

f y q t= − , where q is a scalar minimizing y q t− . p and q are called the loadings

of t with respect to X and y , respectively.

The same process can be repeated iteratively by taking

0

0

X X

y y

=

=
 ;

1

1

X E

y f

=

=

 48

Hence, in the second iteration, a second component of X with respect to y , is computed,

new approximation errors are obtained, which later can be used to compute the third

component, etc.

The substitution of X and y by their approximation errors is called deflation. The

desired number of components (hence, iterations) a is given to the algorithm as input.

This variant of PLS is called PLS1. The exact way of computing the approximations and

the residuals defines the different variants of PLS [27].

2.6.3.1.3 PLS variants

PLS Mode A

This variant deals with the general case where both X and Y are matrices. Hence, X is

defined as before, and Y is a n m× matrix, i.e., there are several target functions we wish

to simultaneously infer. In each iteration of PLS Mode A it seeks two weight vectors: a

1k × vector w , and an 1m× vector c that maximize cov(,)Xw Yc , such that

1w c= = . In this approach X and Y matrices are approximated using different

components, thus the approximation errors are

T
E X t p= − ; T

F Y u l= −

where t and p are as defined before, u Yc= , and l is an 1m× vector found in a similar

way to p , i.e., by minimizing TY u l− . Then, these approximation errors, also called

approximations residuals, are passed to the next iteration as the new X and Y matrices.

 49

This approach was originally designed by Herman Wold [28] to model the relations

between different blocks of data. This process treats X and Y symmetrically and seems

to be more appropriate for modeling existing relations between the blocks than for

prediction purposes [27].

PLS2

PLS2 is the multidimensional version of PLS1, i.e., y is no longer a vector but rather a

matrix Y. Both PLS1 and PLS2 are used as regression methods and are the most

frequently used PLS approaches.

In contrast to PLS Mode A, the PLS1 and PLS2 approaches are asymmetric, i.e., they use

only one type of components (
1{ }a

i it =) for the approximations. PLS1 and PLS2 find the

1{ }a

i it = components of matrix X, and use them to approximate both matrices X and Y using

the formulas T
E X tp= − and T

F Y t q= − (or f y t q= − for PLS1 mode). This

iterative procedure guarantees mutual orthogonality of the extracted components
1{ }a

i it =

[29]

PLS-SB

In the above variants of PLS, the
1{ }a

i it = components were calculated iteratively, by

finding the relevant weight vector w on each iteration. It can be shown that the weight

vector w can also be found by finding the first eigenvector of T TX YY X , i.e., by solving

the system

 50

T T
X YY Xw wλ=

PLS-SB variant deals with the problem of finding approximations to all the w vectors at

once by solving eigenvectors equations of the form above [29-31]. In contrast to PLS1

and PLS2, the extracted components 1
{ }a

i i
t = are in general not mutually orthogonal.

SIMPLS

This method was introduced in [32] and basically is avoiding the deflation steps at each

iteration of PLS1 and PLS2. It directly finds the weight vectors
1{ }a

i iw = , which are then

applied on the original, undeflated X matrix to obtain the components
1

{ }a

i i
t = (and

therefore the
1{ }a

i iw = vectors are different from the previously found weight vectors,

which were applied to the deflated X matrices). The mutual orthogonality of the

extracted components
1

{ }a

i i
t = is kept in this form.

As we use the PLS1 form in this work, its more detailed mechanism is explained in the

next section.

2.6.3.1.4 Classification with PLS1 Algorithm

The use of PLS1 in classification is done in two parts – learning and prediction. In the

learning part PLS1 extracts the
1

{ }a

i i
t = components, by finding the weight vectors

1{ }a

i iw = .

These components are used to approximate the X matrix (expression matrix) and the

y vector (class label vector).

 51

In the prediction part the 1{ }a

i it = components are extracted from the query sample z using

the weight vectors
1{ }a

i iw = found in the learning phase. Together with the loadings 1{ }a

i ip =

and
1{ }a

i iq = found earlier, PLS1 can then estimate the value of
zy% , i.e. the estimated value

of the class label of the query sample.

It should be emphasized that PLS1 is designed for regression, and as such it does not

predict the query sample’s class. However, for binary classification problem one can

represent the class variable by as a numeric variable with two possible values, typically 0

and 1. In such representation PLS1 can output, for example, “0.92” as the query

sample’s approximated class label.

The detailed algorithm is given as follows [33]:

Learning

1. From each column j of the matrix X and vector y , subtract their mean ([]x j and

y , respectively). Call the resulting arrays 0X and 0y , respectively.

2. For 1,...,i a= do the following:

a. Find a weight vector
iw% that maximizes the covariance between the linear

combination
1i iX w−
% and

1iy − under the constraints that 1T

i iw w =% % . This

corresponds to finding a unit vector
iw% that maximizes

1 1

T T

i i iw X y− −
% , the

scaled covariance between
1iX − and

1iy − . The solution is
1 1

T

a i iw cX y− −=%

 52

where c is the scaling factor that makes the length of aw% equal to one, i.e.,

1

2
1 1 1 1()T T

i i i ic y X X y
−

− − − −= .

b. Calculate the component
1i i it X w−=% % .

c. Estimate the regression coefficients
ip by finding the Least Squares (LS)

approximation of 1

T

ii i
X t p E− = +% . Thus, 1

T

ii
i T

i i

X t
p

t t

−=
%

%
% %

.

d. Estimate the regression coefficient
iq by finding the LS approximation

of
1 ii iy t q f− = +% . Thus,

1

T

ii

i T

i i

y t
q

t t

−
=

%

%
% %

.

e. Compute X and y approximation residuals by subtracting their

estimations:

1

1

T

ii i

ii i

E X t p

f y t q

−

−

= −

= −

% % %

% % %

f. Replace the former
1iX − and

1iy − with the new residuals E% and f% , and

continue with the next iteration, i.e.

i=i+1

i

i

X E

y f

=

=

%

%

 53

The complexity of each iteration is ()O n k× , as this is the complexity of

calculations of matrix products needed for the component construction. Therefore,

The total complexity of the learning stage is ()O a n k× × .

Prediction

1. Given , a 1k × query instance z , subtract from each feature the mean value of

that particular feature found in the learning step. Denote the resulting vector by

0z .

2. For 1,...,i a= , perform the following steps:

a. Using
iw% , calculate new

1

T

i i it z w−=% % .

b. Using
ip% , compute new residual

1i i i iz z t p−= − % %

3. Using y , and using
1{ }a

s sq =
% , predict the target function value of the query sample

z by

1

tf ()
a

s s

s

z y t q
=

= +∑ % %

4. Determine the inferred class by rounding tf ()z .

The prediction stage is similar to the learning stage -
1{ }a

i it = components are calculated

using the
1{ }a

i iw = weight vectors found earlier. However, now, we are only dealing with

only one sample (z), and not with a group of samples as in the learning stage. Therefore,

each calculated component is actually a scalar (as a linear combination of features from

 54

one sample yields a single number). Because of that, in each iteration we have ()O k

calculations, and the overall complexity of this step is ()O a k× .

 55

3 SlimPLS

Ranking-based filters utilize a univariate approach when selecting features. In some cases

they can produce reasonable feature sets, especially if the features in the original set are

uncorrelated. However, since the method ignores multivariate relationships, the chosen

feature set will be suboptimal when the features of the original set are highly correlated:

Some of the features will add little discriminatory power, although ranked relatively high

[1, 11]. In these cases it is sometimes better to combine a more predictive feature (having

a high rank according to some criterion) with some less predictive ones that correlate less

with it. This way, the added features will be able to better ‘explain’ unexplained (or

residual) 'behavior' of the samples than when using only top-scoring features. Moreover,

in some cases the individual features are not highly predictive, but when combined

together they gain predictive power. See Figure 3-1 for example.

 56

Figure 3-1. Example of synergy between two genes. The plot shows the expressions of genes Hsa.9025
and Hsa.1221 from a colon cancer dataset [34]. White dots represent sick patients and black dots normal

controls. The combination of the two genes clearly distinguishes the two conditions, while the individual

genes do not. This figure is taken from [35].

PLS is a good candidate for overcoming these problems, due to several reasons:

1. The PLS components are orthogonal and uncorrelated.

2. Each component tries to approximate the residual (or error) left after using all former

components.

However, the method – in its original form – uses all the features without selection. Each

component is constructed by a linear combination of all features using the weight vector

w. By manipulating this vector, we can use PLS for feature selection or feature

extraction, as will be described below. This way, we will choose only the most relevant

features from each component before advancing to the next component. We call this

technique SlimPLS.

 57

3.1 Considerations in applying PLS for feature selection

The application of PLS for feature selection requires several decisions:

1. How many features should be selected? The performance of classification and feature

selection methods depends, among other things, on the number of features that are

selected. Too few features will not have enough classification power, while too many

features may add noise and cause overfitting. Our analysis (see Section 4.3.1) showed

clear improvement in performance when increasing the number of related features

from 20 to 50, but no clear improvement when increasing the number of features

beyond 50. Therefore, we used 20 and 50 feature configuration in our studies.

2. How many components of the PLS algorithm should be used? Typically, components

computed at later iterations are much less predictive than former ones, as they

approximate the residual of the residual etc., but one should determine the best

number of components to use via some principled method.

3. How many features should be selected from each component? Exactly how should

they be selected?

4. Should one use the selected features themselves as the output of the process, or

perhaps use the extracted PLS component (a linear combination of the selected

original features) as the output?

We considered several possible answers to each question, and tested systematically

algorithm variants implementing combinations of such choices.

 58

3.2 The number of components and the number of features per

component

We studied two possible approaches to partitioning the number of features across the PLS

components.

a) A constant partition approach (named CONST): Prespecify the number of total

features x sought and the number of features from each component y. We denote such

variant by x-y. For example, CONST-50-10 chooses a total of 50 features, 10 features

from each component, thus iterating over five components; CONST-50-25 uses two

components, selecting 25 features from each one; CONST-50-50 uses one component

and chooses all features from it.

b) A dynamic partition approach based on computing p-values (named PVAL): This

approach selects the number of components and the number of features from each

component according to the properties of each component. A correlation coefficient is

computed between each component and the original label vector (the y vector) and a

p-value for that correlation is calculated [23]. Components participate in the feature

selection only if they achieve p-values lower than a given threshold θ . Then,

according to the distribution of the magnitudes of the p-values (-log (p-value)) of the

relevant components, the numbers of the features taken from each component are

determined.

For example, suppose the threshold θ is set to 5×10
-3

, and p-values for the correlation

between the first ten components and the original label vector are calculated. The first

 59

component has a p-value of 1.7×10
-12

, the second has 5.2×10
-5

, the third one 0.02, and

all other components have p-values larger than 0.02. Since only the first two

components have p-values smaller than the given threshold, features will be selected

using only these components. Now, we have to decide how many features will be

selected from each component. Beginning with the pair of p-values (1.7×10-12,

5.2×10-5) we calculate the –log (p-value): (11.77, 4.28). Then, we divide each score

by the sum of all scores (11.77 + 4.28), to get the relevant proportions - (0.73, 0.27).

The number of features is selected from each component according to these

proportions. For example, if we wish to select 50 genes, then 37 will be chosen from

the first component and 13 from the second.

After selecting the desired number of features from a particular component, we modify

the original weight vector w by putting zeroes in all entries other than the selected

features and then re-normalizing w . This way a modified component is constructed

(using the modified w vector) instead of the original component. Approximations to the

X matrix and the y vector are computed using this new component, and then continuing

to the next iteration, as in the original PLS algorithm.

3.3 Selecting features from a component

After finding the number of components and the number of features per component we

need to find the features themselves. We studied two possible approaches.

 60

a) Pick the top features in each component (variant HIGH): If we are to choose k

features from a given component, we simply pick the k features that have the largest

absolute weights in the weight vector w calculated for that component.

b) A hill-climbing improvement approach (variant HC): Use the group of features

obtained in (a) as a base group, and begin a search using hill climbing [36] for a

group of features of the same size that yield a lower approximation error

(TE X t p= − , where t is the constructed component using the selected group of

features, and p is its loading) of the current y vector by this component. At each step

of hill climbing, we randomly look for a better group of features, constructed by

replacing one feature that currently belongs to the group by another feature that does

not. The first switch that yields a lower approximation residual is chosen. This

procedure ends when no improvement is found after given number of times (we used

the number 50 in this study). The search is done separately for each component.

3.4 Feature selection and feature extraction

After finding the desired features in each component we can use them in two ways:

a) Use the selected features as the output. This approach is called TOP.

b) Use the components as extracted features: In each component use the selected

features to modify the original weight vector w of that component, putting zeroes in

all entries other than entries that belong to the selected features and then normalizing

w . The constructed modified components are the output. Hence, these components

are the new extracted features, and each of them is a linear combination of some

 61

original features. The total number of original features used is still as prescribed. In

this approach the number of extracted features is the number of iterated PLS

components. This approach is called TCOMP.

For examples, 50-HC-TCOMP-5×10-2 selects 50 features. The number of components

and number of features in each component are selected using the PVAL approach

with a threshold of 5×10
-2

. Finally, this variant returns the modified components as

the new extracted features.

Table 3-1 summarizes the different SlimPLS variants described in Section 3.2 through

Section 3.4.

Family Feature Selector Description

CONST High-K-L-TOP Select the L top features from each component

CONST

High-K-L-TCOMP As above, but use the modified components as the extracted
features

CONST HC-K-L-TOP Select L features from each component by hill climbing
from the L top ones

CONST HC-K-L-TCOMP As above, but use the modified components as the extracted
features

HIGH-
PVAL

K-High-TOP-p Select only components that show correlation p-value < p

with the label vector; select the no. of features from each
component according to their relative p-values

HIGH-
PVAL

K-High-TCOMP-p As above, but use the modified components as the extracted
features

HC-
PVAL

K- HC-TOP-p Select only components that show correlation p-value < p

with the label vector; select the no. of features from each

component according to their relative p-values; Improve by
hill climbing;

HC-
PVAL

K-HC-TCOMP-p As above, but use the modified components as the extracted
features

Table 3-1. A summary of the SlimPLS variants and their properties. In all variants, the parameter K refers

to the total number of features used. (In most tests below, K was set to 50 and the parameter is omitted
from the feature selector’s name).

 62

3.5 Classification using PLS – prior studies

The concept of using PLS for classification is not new. There are several studies that

constructed classifiers using PLS. In [37] the authors construct a classification procedure

that involves dimension reduction using PLS and then classification using Logistic

Discrimination (LD) and Quadratic Discrimination Analysis (QDA), which use the

constructed components of PLS as the new extracted features. In addition, not all the

genes are used for the construction of the components, but only a smaller sample is

selected using t-test. In [67] the authors extend this two-step procedure to support

multiclass classification. In [38] a two-class classification using PLS and penalized

regression is described. First, q PLS components are constructed and a linear regression

is built using the components. Then, using a penalizing procedure, only those genes that

have coefficients larger than some threshold λ are kept. Both q and λ are determined in

cross validation. The classification itself is made using the penalized linear regression. A

similar procedure is done in [39] in order to combine information from two different

datasets of gene expression (aiming to measure of the same phenotype) in order to

achieve better classification.

The combination of PLS and linear regression techniques is further studied in [40]. In

[41] a classification using PLS with penalized logistic regression is described. In this

study different variants of PLS were studied resulting several variants of classifiers. This

study, similarly to [37], usually used t-test filter before applying PLS. The discriminating

abilities of PLS is studied in [42]. This study shows connection between PLS and Linear

Discriminant Analysis in terms of classification. In addition, nonlinear extensions of PLS

 63

were also published as kernel methods (e.g., [43, 44]), and their use together with SVM is

described in [45].

All the above studies used PLS for classification, and when feature selection was

involved, it was implicitly used. For example, in [38], where a penalizing process is

applied to reduce the number of genes, the threshold parameter λ , which implicitly

determines the number of features, is found using cross validation. Again, the goal in [38]

is to construct a classifier rather than a feature selection technique that can be used with

different classifiers.

For this reason, the SlimPLS method is novel in the sense it is dedicated to feature

selection and does not propose a new classification procedure. As a result, it can be used

with different classifiers, as a pre-process procedure. We shall use this fact in order to

evaluate the performance of SlimPLS with different classifiers. For this reason, we shall

compare the SlimPLS variants to other feature selection methods, and not to the PLS

based classification methods mentioned above.

3.6 Implementation

Datasets were collected and stored as tab-delimited files of two-dimensional matrices of

features (genes) and samples (a single file for each dataset). We used the R package [46]

for the implementation of the SlimPLS methods, and used publicly available packages for

the classifiers implementation (e1701 [47] for SVM and Naïve Bayes, class [47, 48] for

KNN, and randomForest [47, 49] for Random Forest). When running linear SVM, we

used the grid 1 2 3 4{10 ,1,10,10 ,10 ,10 }− of possible scores to find C . The Random Forest

procedure was run with 1500 trees and m M= . When running KNN, we used the grid

 64

{1,3,5,7} of possible number of neighbors to find k. When using the mutual information

filter we used ten equal-sized bins.

The implementation of the original PLS algorithm was done according Section 2.6.3.1.4,

which is taken from [33]. The main function gets as an input the configuration file (tab-

delimited) of the desired tests (which classifiers, feature selection techniques and datasets

to use) and invokes the appropriate functions.

The main consideration of the implementation was the ability to monitor and continue

long runs even if they are stopped in the middle. Therefore, files are written to the hard

drive at several points in each iteration, which slows down the implementation.

The tests were done on three different platforms:

1. Windows XP, Intel Pentium 4 CPU, 3.00GHz, 2GB of RAM

2. Linux, Intel Xeon 5160 CPU, 3.00GHz, 4 GB of RAM

3. Linux, Intel Xeon 5150 CPU, 2.66GHz, 4 GB of RAM

To present some comparison of running times we used the HD caudate dataset [51]

(containing 70 samples and 20223 features) and two classifiers – SVM-radial and KNN.

We ran leave-one-out cross-validation on the dataset using the two classifiers, where, in

each iteration, selected features were chosen and classification using both classifiers was

made. Then, we repeated this procedure, only this time we did not use any classifiers, and

only the feature selection phase was done. We used platform 2 above in these

comparisons. Table 3-2 summarizes the average running time of a single iteration when

using different feature selection techniques.

 65

Feature selection

technique

Feature

selection time

Classification

time

Correlation filter

4.00 4.86

HC-50-50-TOP

9.71 4.71

HC-5×10-2-TCOMP

27.00 3.00

HC-5×10-2-TOP

26.29 5.43

HC-5×10-3-TCOMP 27.57 2.43

HC-5×10-3-TOP

27.86 4.43

HIGH-50-50-TOP

1.43 4.29

HIGH-5×10
-2

-TCOMP

4.86 1.71

HIGH-5×10
-2

-TOP

4.86 4.43

HIGH-5×10-3-TCOMP

4.57 1.71

HIGH-5×10-3-TOP

4.43 4.71

Table 3-2. Average running time of for different feature selection techniques. Times are seconds per

iteration, performing leave-one-out cross validation. The SVM-radial and KNN classifiers were used after
the feature selection phase.

Table 3-2 shows that HC variants are more time consuming. This is not surprising as the

local search is added to these variants. In addition we can see that HC-50-50-TOP, which

is HC-CONST variant, takes less time than other HC variants, as it does not use the

dynamic evaluation of number of features per component.

When no hill climbing is used, i.e., the HIGH variants are used, a considerable

improvement in the running time can be noticed. Some variants, such as the HIGH-

CONST variants (only one variant of this family is shown – HIGH-50-50-TOP), achieve

better running time than the correlation filter.

Another noticeable result is the shorter classification time when TCOMP variants are

used. This is due to the fact that only few features (the extracted components) are given

to the classifiers, thus making them faster.

 66

4 Results

4.1 Datasets

We collected 19 datasets reported in the literature, of sample sizes 31-173 containing

2000-22283 features. The list of datasets appears in Table 4-1.

#

D
at

aS
e
ts

P
u
b

M
e
d

ID

P
ap

er

#
S

a
m

p
le

s

#
C

la
ss

 A

#
C

la
ss

 B

#
P

ro
b
e
s

1 HD blood 16043692 [50] 31 14 17 22283

2 HD caudate 16467349 [51] 70 32 38 20223

3 Leukaemia 10521349 [24] 72 47 25 7129

4 HD cerebellum 16467349 [51] 66 27 39 20223

5 Prostate Cancer 12086878 [52] 102 50 52 12533

6 Breast Cancer 11823860 [21] 78 44 34 16783

7 Colon Cancer 10359783 [34] 62 40 22 2000

8 Crohn Disease blood 16436634 [53] 101 42 59 22215

9 Breast Cancer 17157792 [54] 118 43 75 22215

10 Liver Cancer 14675778 [55] 60 20 40 7070

11 Breast / Colon Cancer 16436632 [56] 104 62 42 22215

12 Lung Cancer 12118244 [57] 86 62 24 7129

13 Liver Cancer 12648972 [58] 60 40 20 7129

14 Prostate Cancer 11518967 [59] 53 19 34 4344

15 Breast Cancer 11507038 [60] 58 28 30 2166

16 Breast Cancer 11562467 [61] 49 25 24 2166

17 Ovarian Cancer 15897565 [62] 54 30 24 22283

18 Neural tissue (Mouse Muscle) 16002470 [63] 150 100 50 12488

19 Myeloma and Bone lesions 14695408 [64] 173 137 36 12625

Table 4-1. The Datasets that are used in this study. Datasets 12-19 were used in [65].

 67

Our goal is to find the more informative features. However, different features have

different scales, and in order to compare them a standardization of the data is needed.

Therefore, we normalized each gene to have mean zero and a standard deviation equal to

1. This data standardization is a common pre-processing approach in microarray studies

and was done previously when using PLS [38].

4.2 Performance evaluation criteria

Using the benchmark of 19 datasets, we tested five classifiers and 36 feature selection

variants: four filters and 14 SlimPLS variants, and selecting a total of 20 and 50 features

in each test. This gives a total of 180 combinations of classifiers and feature selection

variants. To avoid confusion, we will call a feature selection algorithm simply a feature

selector (FS), and reserve the term “method” for a combination of FS and classifier.

Hence, we have to assess a total of 180 methods.

 A key question is how to evaluate performance. As some datasets are harder to classify

than others, evaluating performance by the number of errors in each would give these

datasets higher weight. Relative ranking of performance gives equal weight to all

datasets, but it ignores the absolute magnitude of the errors. For theses reasons we chose

to use several criteria, each revealing a different aspect of the performance. Error rates

were calculated using leave-one-out cross validation and performance was measured

using five criteria:

 68

a) Rank sum p-value. Define a three-dimensional array E where (, ,)E i j k is the error

rate of classifier i and feature selector j on dataset k . Hence, the dimensions of E

are 5 36 19× × . Define an array R of the same dimensions where (, ,)R i j k is the rank

of (, ,)E i j k among (, ,)E i k∗ . Hence, (, ,)R i j k ranks feature selector j compared to

all others for classifier i and dataset k . The score of a subset feature selectors

1{ ,..., }nS j j= for classifier i is computed by comparing the distribution of the values

(, ,)R i S k to the distribution of the values of (, ,)R k∗ ∗ , using the Wilcoxon rank-sum

test [23]. This test determines to what extent a particular group of values (e.g., the

error rates of one feature selector) tends to have low rank compared to the rest. The p-

values calculated on each dataset were combined using Fisher’s method [66]. This

score compares the different combinations of classifier and feature selectors. This

way, it also incorporates comparison between classifiers.

Similarly, for each dataset, another comparison was made. This time the distribution

of the values (, ,)R i S k is compared to the distribution of the values of (, ,)R i k∗ and a

rank-sum score is computed as above. This score is used to compare the feature

selectors using different individual classifiers, since it evaluates the performance of

the different feature selectors using a particular classifier.

We used the two scores defined here to compare combinations of a ‘family’ of feature

selectors and classifier. In other words, we did not compare one feature selector to

another, but compared groups of similar variants.

 69

b) Average Rank. While the rank sum test determines the significance of the tendency of

a method (or a feature selector) to be ranked higher or lower, we would also like to

see the absolute differences between methods’ ranks. For that reason we define

another score that compares the average rank of a method. Formally, for classifier i

and feature selector j , we define the score
1

(, ,)
19 k

R i j k∑ . Like (a), the values

themselves do not matter, and only their relative ranking is considered. Unlike (a),

this score is not assigned a probability. We use this score to compare between

individual feature selectors using a particular classifier.

c) L2 distance. For a given classifier, 19 different error rates were calculated for a

particular FS – one for each dataset. These values are the entries in a vector called

method-scores vector. In addition, for the given classifier, another 19-dimensional

vector is constructed, whose i-th entry is the minimal error rate achieved by any

feature selector for dataset i. This is called the minimum-scores vector. The score of a

method is the L2 distance between its method-scores vector and the minimum-scores

vector. Formally, fix the classifier i . Let ikα = min (, ,)
j

E i j k . Then the L2 score of

feature selector j (using classifier i) is
1

2 2(((, ,)))ik

k

E i j k α−∑ . This criterion was

used in [65]. Unlike (a) and (b) it is not ranking-based, and it measures across all

datasets how far a particular feature selector is from attaining the best score, given the

classifier.

 70

The next two criteria compare the methods in terms of exceptionally good scores and

best scores over all datasets and classifiers (and not specifically for a particular

classifier like the L2 distance criterion).

d) 95% confidence interval. Let (, ,)E i k∗ be the vector of error-rates of all feature

selectors using classifier i on dataset k . Compute the average and 95% confidence

interval of the average on each vector. Compute for each feature selector the fraction

of dataset×classifier combinations on which it does better than the 95% confidence

interval. Hence, this measure scores how often a feature selector obtains an

exceptionally good score.

e) Best value rate. Calculate for each feature selector the proportion of tests on which it

achieves the best score among all datasets and classifiers.

f) Binomial tail p-value. We used only 50 features configuration for the comparisons

using this method. Let (, ,)E i j k be defined as before, using only the 50 features

version of the feature selectors. Hence, the dimensions of E are 5 18 19× × . (, ,)R i j k

is defined as the rank of (, ,)E i j k among (, ,)E k∗ ∗ . To compare two methods
1m

and
2m , where the first one is combined of classifier

1i and FS
1j , and the second one

is combined of classifier
2i and FS

2j , we compare the two vectors
1 1(, ,)R i j ∗ and

2 2(, ,)R i j ∗ . Let
1 1 1 2 2

{ | (, ,) (, ,)}n k R i j k R i j k= > and let

 71

)},,(),,(|{ 22112 kjiRkjiRkn <= . Then 21 nnnd += is the number of datasets in

which the ranks using method 1m and method 2m differ. Our null hypothesis is that

the two methods show similar performance. In other words, after removing the entries

that have identical values we assume that),,(),,(2211 kjiRkjiR > has a probability of

0.5. Therefore, 1n has a binomial distribution (, 0.5)dB n . The p-value for observing

at least 1n cases where method 1m is ranked above method 2m

is: ()
1

1 () (0.5)
d

d d

n
n n

l

l n

P n n
=

≥ = ∑ .

4.3 Results

In this section we will present and analyze the results of the different classifiers and

feature selectors using the criteria described in the previous section.

4.3.1 The effect of the number of features

As was mentioned earlier, too few features will not have enough classification power,

while too many features may add noise and cause overfitting. In order to compare the

behavior of a particular feature selector j using a particular classifier i , we calculated

the average error rate achieved by this feature selector using the particular classifier.

Formally, we calculated
1

(, ,)
19 k

E i j k∑ . Notice that we use here the error rates, as we

wish not to compare different feature selectors but the performance of a particular feature

selector when using a different number of selected features.

 72

For a given classifier, we calculated this average error rate for six different variants of

SlimPLS: HC/HIGH-K-K-TOP, HC-5e-02-TOP/TCOMP and HC-5e-03-TOP/TCOMP

when using nine different numbers of selected features – 20, 30, …, 100. Then, the

average error rate over these feature selectors was calculated for each number of selected

features. The results are summarized in Figure 4-1 for two classifiers – KNN and SVM-

radial.

Figure 4-1. Average error of six different SlimPLS based feature selectors using the KNN and SVM-radial
classifiers using different number of features.

As the number of selected features grew from 20 to 50, the improvement in classification

was very clear. As the number of selected features grew even further, no additional

improvement was noticeable and the average error rate usually got worse. Therefore, we

will focus mainly on 50 feature configurations in the rest of the results, and will refer to

the results with 50 features only, unless specified otherwise.

 73

4.3.2 The effect of the classifier

The average rank-sum p-values of each classifier were calculated over three families of

feature selectors:

a) Filters: The four filters used in this work.

b) CONST-50-50: The two variants that choose a constant number of features per

component HIGH-50-50-TOP and HC-50-50-TOP.

c) HC-PVAL: The four variants that choose a variable number of features per

component, depending on the p-values: HC-TCOMP-5e-03, HC-TOP-5e-03, HC-

TCOMP-5e-02 and HC-TOP-5e-02.

The results are summarized in Figure 4-2. Among of the HC-PVAL variants, SVM

(linear and radial) and KNN showed better performance than RF and NB. Moreover,

these three classifiers together with the four HC-PVAL variants achieve the highest

scores among all combinations. When using filters only, the RF classifier performs the

best and SVM classifiers show second best performance. The worst performance of

filters is obtained when using KNN classifier. In this classifier the difference in

performance of HV-PVAL variants and filters is the most substantial (see discussion,

Section 5.1).

 74

Rank-sum p-values

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

SVM-linearSVM-radialRF-1500KNNNB

FILTERS (50)

CONST-50-50

HC-PVAL (50)

Figure 4-2. Rank-sum p-value of different classifiers using three families of feature selectors.
-log(p values) of the combined Wilcoxon rank-sum tests for three families of methods using five different

classifiers are shown. See test for the family definitions.

As SVM and KNN classifiers obtained the highest results we will show further focused

analysis using these two methods in Section 7.2 (appendix).

Figure 4-2 shows that SVM-linear obtained quite similar results to SVM-radial. When

using the NB and RF-1500 classifiers, the HC-PVAL FS variants outperformed other

feature selectors, but, in these cases the relative improvement is less dramatic.

To get a clearer understanding of the influence of the feature selectors on the different

classifiers, we performed the second variant of the rank-sum test, as presented in Section

4.2(a), i.e., this time we performed a comparison between the different feature selectors

for each specific classifier separately. The results can be seen in Figure 4-3. The HC-

 75

PVAL FS variants have a clear advantage over the other feature selectors. While the

differences are mild when using RF-1500, they are stronger in the other classifiers.

Classifier-specific rank-sum p-value

0

2

4

6

8
SVM-linear

SVM-radial

RF-1500 KNN

NB

FILTERS (50)

CONST-50-50

HC-PVAL (50)

Figure 4-3. Rank-sum p-value of three families of feature selectors calculated separately for each classifier.

-log(p values) of the combined Wilcoxon rank-sum tests for the three families using five different

classifiers are shown. The concentric pentagons show the –log(p-value) scale. The results on separate
classifiers are shown on the separate axes. This representation aims to emphasize the relative performance

of each FS on each classifier separately, and not relative performance across classifiers. See text for the
description of the families.

As in Figure 4-2, the greatest advantage of HC-PVAL feature selectors over the filters is

attained when using the KNN classifier.

4.3.3 The effect of the feature selectors

To summarize the results we constructed dominance maps. These are graphs where each

node is a method and a directed edge from method 1m to method 2m indicates that

 76

method 1m has significantly better performance (p-value 0.05≤) than method 2m .

Performance is measured using the binomial tail for the relative accuracy of the two

methods across the datasets. See section 4.2 (f) for more details.

We constructed five different maps, one for each classifier. Singletons, i.e., methods that

were not significantly comparable to any other method (corresponding to isolated vertices

in the map), are omitted. In addition, transitive edges were removed, i.e. if there three

edges A�C, A�B and B�C exists, then edge A�C is removed. Out of the four

variants of the HC-PVAL family of methods only two were taken – HC-PVAL-5e-03-

TCOMP and HC-PVAL-5e-03-TOP. Finally, nodes (representing feature selectors) were

categorized into five different groups of families and were colored accordingly. Figure

 4-4 summarizes the results.

 77

Figure 4-4. Dominance maps of feature selectors using different classifiers – (a) SVM-linear (b) SVM-
radial (c) Random Forest (d) KNN (e) Naïve Bayes. An edge A�B indicates that A significantly
outperforms B. In (d) the second and the third layer from the top were originally one layer that was divided

into two rows for display purposes only. Methods in upper layers perform better than methods in lower
ones.

 78

One can notice a clear tendency of the HC-PVAL variants (the blue nodes) to appear in to

the upper row, which consists of the better performing FS for the given classifier. The

HC-PVAL nodes also tend to have more outgoing edges – showing dominance over a

large set of other feature selectors.

In addition to the HC-PVAL variants, the FILTERS variants (green nodes) and CONST-

50-50 variants (yellow nodes) also tend to perform well. A very strong dominance of the

HC-PVAL variants is observed when the KNN classifier is used (Figure 4-4 (d)).

Four feature selectors were never dominated by others – HC-5e-03-TOP, HC-5e-03-

TCOMP, HIGH-50-50-TOP and COR, the correlation filter (in some of the maps some of

these methods are not visible as they are singletons).

4.3.4 Evaluation of the leading methods

In order to compare the different methods we used two-dimensional plots, where each

point (,)x y in the graph represents a method and where x is the average error rate and

y is the average rank of the method. The full evaluation is described in the appendix,

Section 7.1. Here we show a different analysis focusing on the leading methods only.

We created another dominance map (Figure 4-5) containing only four feature selectors

and all classifiers. We selected only these feature selectors that were not dominated by

any others in the analysis in Section 4.3.3. These are: HC-5e-03-TOP, HC-5e-03-

TCOMP, HIGH-50-50-TOP and COR.

 79

All four methods using SVM-radial appear in the map in the upper layer. The

combinations of SVM-linear and KNN with HC-5e-03-TCOMP dominate the largest

number of others.

Figure 4-5. Dominance of the consistently dominant feature selectors using all classifiers. Singletons are
omitted. Additional singletons not shown in the picture: KNN - HC-5e-03-TOP and HIGH-50-50-TOP,

SVM-linear - HIGH-50-50-TOP and COR, RF - HC-5e-03-TOP, NB - HC-5e-03-TCOMP.

Most combinations involving the Naïve Bayes classifier (except for the combination with

HC-5e-03-TCOMP, are dominated by others. This is consistent with Figure 4-2, where

Naïve Bayes showed in general worse performance than other classifiers (the single

exception is filters, which perform worse using the KNN classifier).

In views of these results, and consistently with the results in Section 4.3.2, further

focused analysis on the KNN and SVM-radial classifiers was done , and it can be found

in the Appendix.

 80

4.3.5 Correlation between selected features

Features found by univariate approaches, like filters, tend to select correlated features.

Multivariate approaches should have a lower average pairwise correlation between

selected features, because features are selected as a group (or several groups). Less

individually predictive features may be selected along with higher individually predictive

ones and this will lead to lower average pairwise correlation between these features.

Moreover, two features that are perfectly correlated will never be selected together by

multivariate methods, since one will be redundant given the other. To measure these

correlation values, for each dataset we found the features that were selected at least half

of times in the leave-one-out cross-validation iterations, and measured their average

pairwise correlation. We also recorded the number of such features. Then, we averaged

both measures over all datasets. Figure 4-6 summarizes these results.

Average pairwise correlation and number of features chosen at least half

of times in loo-cv iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

CORTTESTGOLUBMIHIGH-5e-

03

HIGH-5e-

02

HIGH-20-

10-50-25

HIGH-20-

20-50-50

HC-5e-

03

HC-5e-

02

HC-20-

10-50-25

HC-20-

20-50-50

20

50

Figure 4-6. Average pairwise correlation and number of all features selected at least half of times in the
leave-one-out cross-validation. Bars heights indicate the average pairwise Pearson correlation between the

 4
0
.8

 9
.3

 1
7

.4

 2
.9

 3
6
.1

 8
.4

 3
6
.7

 8
.1

 4
9
.1

 1
9
.7

 4
4

.9

 1
6

.9

 4
3

.7

 1
7
.2

 4
5
.8

 1
8
.4

 4
6
.6

 1
8

.5

 4
7

.6

 1
9
.3

 4
8

 1
9

.1

 4
7

.5

 1
9

 81

expression patterns of the selected genes. The numbers written on top of the bars are the average numbers

of selected features. Here, we do not distinguish between TOP and TCOMP variants, as the new extracted
features returned by TCOMP variants are constructed using the same features selected in TOP variants, and

it is their average pairwise correlation that we wanted to examine.

As expected, average correlation drops when using the slimPLS based methods,

especially the HC variants, which actually have more potential for inter-feature variation

because of the local search for a better subgroup of features. One exception is the HIGH-

K-K variant, which presents similar results to the filters. Recall that this variant selects

the K top absolute weighted features (where K is the total number of features to be

selected) from the first component only. When no hill climbing is used, we found that

features selected from the first component tend to be similar to features selected by the

correlation filter (not shown). Therefore, this variant has a similar behavior to the

correlation filter (as we also saw in Figure 7-4 and Figure 7-5).

4.3.6 Main conclusions

Here we summarize the main conclusions of our analysis.

• Classifiers achieved a lower error rate when using 50 selected features compared to

using 20 selected features. Increasing the number of features further did not show

consistent improvement (Figure 4-1, see also Figure 7-5).

• Three families of feature selectors performed better than others: filters, CONST-K-K

and HC-PVAL (Figure 4-4, see also Figure 7-2).

• Overall, the HC-PVAL variants showed the best performance among all the tested

variants (Figure 4-2, Figure 4-3, Figure 4-4).

 82

• The combination of the KNN classifier and the HC-TCOMP-5e-03 feature selector

had the lowest average error-rate (see Figure 7-2). The combination of KNN and HC-

TCOMP-5e-02 had the second lowest average error-rate (not shown). However, KNN

tended to perform the worst when using filters (Figure 4-2).

• SVM-radial showed consistently high performance when using the better feature

selectors (Figure 4-5).

• Although the HC-PVAL variants showed a slight advantage using the RF-1500

classifier (Figure 4-2 and Figure 4-3), this classifier gave the most minor

differentiation between feature selectors (Figure 4-3), and is therefore not

recommended for SlimPLS variants.

• The filter methods tend to attain best performance when using the RF classifier

(Figure 4-2).

 83

5 Concluding remarks

5.1 Discussion

Our results show that the HC-PVAL variants of SlimPLS tended to outperform the other

tested variants (Figure 4-3 and Figure 4-4). This family of variants selects the number of

features per component based on their significance and tries to improve the feature set by

local search. Within this family, the TCOMP variants, which employ feature extraction,

tend to achieve slightly better results than the TOP variants (e.g., Figure 7-3 and Figure

 7-4). This is not surprising as the components (that are actually the extracted features) are

found in that way that maximizes the match to the class vector, i.e., the components are

aimed to provide a good approximation of the class prediction. The TOP variants use the

selected features for classification, but without the formulas that dictate how to re-build

these components (i.e., the weight vectors). This way, the task of constructing the

formulas, i.e., finding the relevant relationships between these features to get a good

classification is left for the classifiers. When using the TCOMP variants we usually get

one to three components, which already incorporate some ‘collective’ behavior of

features found by SlimPLS. Moreover, each component tries to approximate the residual

or the ‘unexplained’ behavior of the previous component. Therefore, these new extracted

features show better contribution to the classification.

Another noticeable result is that the improvement achieved by the HC-PVAL variants

compared to the filters is more dramatic when using the KNN classifier (Figure 4-3).

This is an interesting result, as the KNN classifier is very sensitive to the selected features

 84

(see Section 2.4.1). This fact may imply that SlimPLS based feature selection techniques

manage to find good informative groups, especially when these groups are translated into

new features, extracted in TCOMP variants.

As we indented, we can see that the average pairwise correlation between the features

consistently selected in the leave-one-out cross-validation iterations is smaller when

using the HC-PVAL variants (Figure 4-6). There are two reasons for that. The first is

that when selecting features in a univariate fashion the top ranked features tend to highly

correlate, as features are ranked individually. The second reason is the PLS mechanism.

As the PLS components are orthogonal, the features taken from different components,

which are most relevant to the construction of these components, tend to have a lower

pairwise correlation.

5.2 Future work

We have shown that SlimPLS based feature selectors yielded improved performance

compared to the very common used filters. Specifically, the HC-PVAL variants showed

the best performance. Some future work directions in this area include:

a) Improving PVAL methodology, i.e., the dynamic methodology of choosing the

number of components and the number of features per component. There are several

options here:

• The p-value threshold to PVAL variants can be calculated from the correlation

significance of the first components. The faster the significance drops for

 85

constructed components, the more significant a component will have to be to

pass the threshold.

• Using a minimum number of features per component. In other words, the

algorithm decides how many features will be taken from each component that

passes the p-value threshold. Another parameter m can be used so that at least

m features from each component will be taken, thus enabling the algorithm to

‘capture’ the component’s behavior. If the algorithm chooses only k<m

features from a particular component, it then excludes this component and

takes another k features from the previous one.

b) Improving the local search methodology, i.e., the search for a better subgroup of

features. Currently we use hill climbing, but different approaches can be used.

• Using simulated annealing. Simulated annealing [36] lets us explore regions

in the search space that may not be explored by hill-climbing, as it can

occasionally choose a different subgroup, even if does not yield a better score

for the objective function. Thus, it has some mechanism to escape local

maxima. Simulated annealing needs a parameter for its run – the ‘cooling’

parameter, and a good way to determine its value should be found.

• Keep using hill climbing, but stop its run after a prescribed number of runs or

after achieving a desired percentage of improvement of the objective function.

This may be done to avoid over-fitting.

• Allowing a switch (i.e., moving from one subgroup of features to another by

replacing one of the features currently selected with another one that is not)

 86

only if the improvement (absolute or relative) of the target function is higher

that some threshold.

c) Further research of the impact of the number of selected features on the overall scores

of particular feature selectors and classifiers.

d) Inserting some biology-based logic to the hill climbing search. The greedy search

tries to find a switch that improves the target function. A mechanism that does

prevent some switches (even if they improve the target function) can be inserted. This

way, e.g., one gene can be switched with another only if they belong to the same

module in a given biological network. Alternatively, a switch can be allowed only if

there are representative genes from at least (or at most) k different modules of the

biological network in the resulting subgroup.

In this study we did not compare SlimPLS performance to previous methods using PLS,

since those methods mix the feature selection and classification steps. Still, some of the

PLS-based classification procedures discussed in Section 3.5 can be adjusted to operate

as feature selectors. For example, the λ parameter from [38] can be set so that only a

desired number of features will be selected, and then return this list of features rather than

continue with the linear regression classification, or alternatively, more powerful

classifiers can be used in that step. Comparing such feature selector to SlimPLS can be

interesting, as it does not consider explicitly which feature to select from each component

 87

(as SlimPLS does), but filters out features after constructing a linear regression using all

calculated components.

 88

6 Bibliography

1. Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in

bioinformatics. Bioinformatics 2007, 23(19):2507-2517.

2. Wold H: Soft modeling: the basic design and some extensions. Systems

Under Indirect Observation 1982, 2:1-53.

3. Wold H: Partial least squares. “Encyclopedia of the Statistical Sciences”

1985, 6:581–591.

4. Wold S, Ruhe H, Wold H, Dunn W, J, III: The collinearity problem in linear

regression. The partial least squares (PLS) approach to generalized inverse.

SIAM Journal of Scientific and Statistical Computations 1984, 5:735–743.

5. Tarca AL, Carey VJ, Chen XW, Romero R, Draghici S: Machine learning

and its applications to biology. PLoS Comput Biol 2007, 3(6):e116.

6. LeCUN: Comparison of learning algorithms for handwritten digit

recognition. In: International Conference on Artificial Neural Networks:

1995; Paris: EC2 & Cie; 1995: 53-60.

7. Joachims T: Text Categorization with Support Vector Machines: Learning

with Many Relevant Features. In: Machine Learning: ECML-98 10th

European Conference on Machine Learning: 1998; 1998: 137-142.

8. Vapnik V: Statistical Learning Theory. New York: John Wiley and Sons,

Inc.; 1998.

9. Vapnik V: The Nature of Statistical Learning Theory. New York: Springer-

Verlag; 1995.

10. Vapnik V: Estimation of Dependences Based on Empirical Data, Addendum

1. New York: Springer-Verlag; 1982.

11. Webb A: Statistical pattern recognition, 2 edn: Wiley; 2002.

12. Boser B, E., , Guyon I, M., Vapnik V: A training algorithm for optimal

margin classifiers. In: Fifth Annual Workshop on Computational Learning

Theory: 1992; Pittsburgh: ACM; 1992: 144-152.

13. Aizerman M, A, Braverman E, M, Rozoner L, I Theoretical foundations of

the potential function method in pattern recognition learning. Automation and

Remote Control 1964(25):821-837.

14. Breiman L: Random forest. Machine Learning 2001(45):5-32.

15. Quinlan J, R: Induction of decision trees. Machine Learning 1986, 1(1):81-

106.

16. Mitchell TM: Machine Learning: McGraw-Hill International Editions; 1997.

 89

17. Quinlan J, R. : Rule Induction with statistical data – a comparison with
multiple regression. Journal of the Operational Research Society

1987(38):347-352.

18. Cover T, Hart P: neighbor pattern Classification. IEEE Transactions on

Information Theory 1967, 13:21-27.

19. Duda T, Hart P: Pattern Classification and scene analysis. New York: John

Wiley & Sons; 1973.

20. Cetnik B: Estimating Probabilities: A crucial task in machine learning. In:

Ninth European Conference on Artificial Intelligence: 1990; London; 1990:

147-149.

21. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse

HL, van der Kooy K, Marton MJ, Witteveen AT et al: Gene expression

profiling predicts clinical outcome of breast cancer. Nature 2002,

415(6871):530-536.

22. Hastie T: The Elements of Statistical Learning: Springer; 2001.

23. Everitt BS, Hothorn T: A Handbook of Statistical Analyses Using R:

Chapman & Hall/CRC Taylor & Francis Group; 2006.

24. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,

Coller H, Loh ML, Downing JR, Caligiuri MA et al: Molecular classification

of cancer: class discovery and class prediction by gene expression

monitoring. Science 1999, 286(5439):531-537.

25. Hamming RW: Coding and Information Theory: Prentice-Hall Inc.; 1980.

26. Rosipal R, Kramer N: Overview and recent advances in partial least squares.
Subspace, Latent Structure and Feature Selection 2006, 3940:34-51.

27. Rosipal R, Kramer N: Overview and Recent Advances in Partial Least

Squares. . In Subspace, Latent Structure and Feature Selection Techniques,

Series: Lecture Notes in Computer Science 2006, 3940:34-52.

28. Wold H: Path models with latent variables: The NIPALS approach.

Quantitative Sociology: International perspectives on mathematical and

statistical model building 1975.

29. Hoskuldsson A: PLS Regression Methods. Journal of Chemometrics 1988,

2:211-228.

30. Sampson PD, Streissguth AP, Barr HM, Bookstein FL: Neurobehavioral

effects of prenatal alcohol: Part II. Partial least squares analysis. Neurotoxicol

Teratol 1989, 11(5):477-491.

31. Wegelin J, A: A survey of Partial Least Squares (PLS) methods, with

emphasis on the two-block case. In. Seattle: Department of Statistics,

University of Washington; 2000.

 90

32. Dejong S: Simpls - an Alternative Approach to Partial Least-Squares
Regression. Chemometrics and Intelligent Laboratory Systems 1993,

18(3):251-263.

33. Martens H, Naes T: Multivariate Calibration: John Wiley & Sons; 1989.

34. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ:

Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad

Sci U S A 1999, 96(12):6745-6750.

35. Hanczar B, Zucker JD, Henegar C, Saitta L: Feature construction from

synergic pairs to improve microarray-based classification. Bioinformatics

2007, 23(21):2866-2872.

36. Russell SJ, Norvig P: Artificial Intelligence: a modern approach, 2 edn:

Prentice Hall; 2003.

37. Nguyen DV, Rocke DM: Tumor classification by partial least squares using

microarray gene expression data. Bioinformatics 2002, 18(1):39-50.

38. Huang X, Pan W: Linear regression and two-class classification with gene

expression data. Bioinformatics 2003, 19(16):2072-2078.

39. Huang X, Pan W, Han X, Chen Y, Miller LW, Hall J: Borrowing information

from relevant microarray studies for sample classification using weighted
partial least squares. Computational biology and chemistry 2005, 29(3):204-

211.

40. Ding B, Gentleman R: Classification Using Generalized Partial Least

Squares. In: Bioconductor Project. 2004.

41. Fort G, Lambert-Lacroix S: Classification using partial least squares with

penalized logistic regression. Bioinformatics 2005, 21(7):1104-1111.

42. Barker M, Rayens W: Partial least squares for discrimination. journal of

chemometrics 2003, 17:166-173.

43. Rosipal R, Trejo L: Kernel Partial Least Squares Regression in Reproducing

Kernel Hillbert Spaces. journal of Machine Learning Research 2001, 2:97-

128.

44. Momma M, Kristin P, Bennet: Sparse Kernel Partial Least Squares

Regression.

45. Rosipol R, Trejo LJ, Matthews B: Kernel PLS-SVC for Linear and Nonlinear

Classification. In: Twentieth International Conference on Machine Learning:

2003; Washington DC; 2003.

46. The R Project for Statistical Computing [http://www.r-project.org/]

47. The Comprehensive R Archive Network / Packages [http://cran.r-

project.org/]

 91

48. Venables WN, Ripley BD: Modern Applied Statistics with S, 4 edn:

Springer; 2002.

49. Random Forests [http://stat-www.berkeley.edu/users/breiman/RandomForests/]

50. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM,

Hogarth P, Bouzou B, Jensen RV et al: Genome-wide expression profiling of

human blood reveals biomarkers for Huntington's disease. Proc Natl Acad

Sci U S A 2005, 102(31):11023-11028.

51. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston

LA, Hartog C, Goldstein DR, Thu D et al: Regional and cellular gene

expression changes in human Huntington's disease brain. Hum Mol Genet

2006, 15(6):965-977.

52. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P,

Renshaw AA, D'Amico AV, Richie JP et al: Gene expression correlates of

clinical prostate cancer behavior. Cancer Cell 2002, 1(2):203-209.

53. Burczynski ME, Peterson RL, Twine NC, Zuberek KA, Brodeur BJ, Casciotti

L, Maganti V, Reddy PS, Strahs A, Immermann F et al: Molecular

classification of Crohn's disease and ulcerative colitis patients using

transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn

2006, 8(1):51-61.

54. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL,

Lapuk A, Neve RM, Qian Z, Ryder T et al: Genomic and transcriptional

aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006,

10(6):529-541.

55. Okada T, Iizuka N, Yamada-Okabe H, Mori N, Tamesa T, Takemoto N,

Tangoku A, Hamada K, Nakayama H, Miyamoto T et al: Gene expression

profile linked to p53 status in hepatitis C virus-related hepatocellular

carcinoma. FEBS Lett 2003, 555(3):583-590.

56. Chowdary D, Lathrop J, Skelton J, Curtin K, Briggs T, Zhang Y, Yu J, Wang

Y, Mazumder A: Prognostic gene expression signatures can be measured in

tissues collected in RNAlater preservative. J Mol Diagn 2006, 8(1):31-39.

57. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L,
Chen G, Gharib TG, Thomas DG et al: Gene-expression profiles predict

survival of patients with lung adenocarcinoma. Nat Med 2002, 8(8):816-824.

58. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, Takao T,

Tamesa T, Tangoku A, Tabuchi H et al: Oligonucleotide microarray for

prediction of early intrahepatic recurrence of hepatocellular carcinoma after

curative resection. Lancet 2003, 361(9361):923-929.

59. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K,

Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers
in prostate cancer. Nature 2001, 412(6849):822-826.

 92

60. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M,

Peterson C, Meltzer PS: Estrogen receptor status in breast cancer is

associated with remarkably distinct gene expression patterns. Cancer Res

2001, 61(16):5979-5984.

61. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H,

Olson JA, Jr., Marks JR, Nevins JR: Predicting the clinical status of human

breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A

2001, 98(20):11462-11467.

62. Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, Lee P, Murphy S,
Dressman HK, Febbo PG, West M et al: Patterns of gene expression that

characterize long-term survival in advanced stage serous ovarian cancers.
Clin Cancer Res 2005, 11(10):3686-3696.

63. Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, Tennant R,

Tynan W, Broide RS, Helton R, Stoveken BS et al: Adult mouse brain gene

expression patterns bear an embryologic imprint. Proc Natl Acad Sci U S A

2005, 102(29):10357-10362.

64. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy

JD, Jr.: The role of the Wnt-signaling antagonist DKK1 in the development

of osteolytic lesions in multiple myeloma. N Engl J Med 2003, 349(26):2483-

2494.

65. Song L, Bedo J, Borgwardt KM, Gretton A, Smola A: Gene selection via the

BAHSIC family of algorithms. Bioinformatics 2007, 23(13):i490-498.

66. Fisher RA: Combining independent tests of significance. American

Statistician 1948, 2(5).

 93

7 Appendix

7.1 Two-dimensional comparison of methods

In order to compare and evaluate all the different methods, we constructed a two-

dimensional plot. Each method, combined of classifier i and feature selector j, is

represented by a point (,)x y , where x is the average error rate of the method and y is

its average ranking. Formally,
1

(, ,)
19 k

x E i j k= ∑ and
1

(, ,)
19 k

y R i j k= ∑ . E and R are

hree dimensional matrices as defined in Section 4.2(f). Again, we use only the 50 feature

configurations for this comparison.

We present the plot in two ways. In the first way, each point (which represents a method)

is colored according to the classifier. In the second way, each point is colored according

to the feature selector. The results are summarized in Figure 7-1 and Figure 7-2,

respectively.

Most points are aligned along a straight line, indicating a high correlation between the

rank and the error rate of the methods. The methods that do best in both criteria are on the

‘north-west’ corner of that line.. The best two methods in terms of both criteria are KNN

based, using HC-PVAL based feature selectors (The corresponding feature selectors can

be seen in Figure 7-2). Figure 7-1 also shows that, overall, the Naïve Bayes classifier

based methods tend to have poorer performance than others (consistent with Figure 4-2)

 94

Method evaluation - colored by classifier

0

10

20

30

40

50

60

70

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

Average error rate

A
v

e
ra

g
e

 r
a

n
kSVM-linear

SVM-radial

RF

KNN

NB

Figure 7-1. Two-dimensional evaluation of methods, where points colored by according to the classifier.
Higher rank value means better performance.

Method evaluation - colored by FS

0

10

20

30

40

50

60

70

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

Average error rate

A
v
e

ra
g

e
 r

a
n

k

FILTERS

HC-PVAL

HIGH-PVAL

CONST-K-K

HIGH-CONST-50-25

HC-CONST-50-25

Figure 7-2. Two-dimensional evaluation of methods, where points colored by according to the feature
selector. Higher rank value means better performance. The circled point corresponds to the KNN classifier

and the HC-TCOMP-5e-03. This combination had the lowest average error rate.

 95

Some points do not follow the straight line of most points. These points are methods that

use Random Forest or Naïve Bayes classifier. This is due to the following reason. The

versions of RF and NB that we used (from the R package) could not classify samples

using only one feature. This is the case when using the PVAL-TCOMP variant, where

only one component is chosen and returned as a new single feature. This case often

occurs when the dataset is easy to classify. Therefore, the results from that datasets

cannot be taken, and the average error rates for the Random Forest and the Naïve Bayes

classifier are calculated using only the ‘harder’ datasets (for the PVAL-TCOMP

variants). Hence, the average error rates in these cases compared to others are biased

towards higher values. This, however, has little effect on the average rank.

Figure 7-2 shows a clear advantage to the HC-PVAL based methods, while the HIGH-

PVAL based methods tend to have the poorest performance. While the HIGH-CONST

variants select constant number of features from each component, the HIGH-PVAL

variants dynamically calculate the number of features that are selected from each

component. This has the effect of usually choosing more features from the first

component and fewer features from the other components. Therefore, the 'structure' of the

latter components is poorly expressed, and an improved set of features from these

components ought to be found to have a better description of the components. This is

done by the local search, which also improves the features set taken from the first

component.

 96

7.2 Further analysis of KNN and SVM-radial results

The noticeable difference in performance between the HC-PVAL variants and the filters

using the KNN classifier (Figure 4-2) is shown also in Figure 7-3 and Figure 7-4, where

we compare the L2 distance and average rank, respectively, of the various feature

selectors when using the KNN classifier.

L2 distance - KNN

0

0.1

0.2

0.3

0.4

0.5

0.6

CORTTESTGOLUBMIHIGH-

TCOMP

5e-03

HIGH-

TOP 5e-

03

HIGH-

TCOMP

5e-02

HIGH-

TOP 5e-

02

HIGH-

20-10-

50-25-

TCOMP

HIGH-

20-10-

50-25-

TOP

HIGH-

20-20-

50-50-

TOP

HC-

TCOMP

5e-03

HC-TOP

5e-03

HC-

TCOMP

5e-02

HC-TOP

5e-02

HC-20-

10-50-

25-

TCOMP

HC-20-

10-50-

25-TOP

HC-20-

20-50-

50-TOP

L2 d(20)

L2 d(50)

Figure 7-3. L2 distance score of the different feature selectors using KNN classifier.

We can see in Figure 7-3 the relatively low L2 distance scores of HC-PVAL variants

compared to other methods. Specifically, the TCOMP variants of HC-PVAL, i.e., HC-

TCOMP-5e-03 and HC-TCOMP-5e-02 attained the best score and second best score,

respectively. We can also see that CONST-50-50 variants (HC-50-50-TOP and HIGH-

50-50-TOP) perform better than the filter variants, except for the correlation filter that

shows comparable results.

 97

Average Rank - KNN

0

5

10

15

20

25

CORTTESTGOLUBMIHIGH-

TCOMP

5e-03

HIGH-

TOP 5e-

03

HIGH-

TCOMP

5e-02

HIGH-

TOP 5e-

02

HIGH-20-

10-50-

25-

TCOMP

HIGH-20-

10-50-

25-TOP

HIGH-20-

20-50-

50-TOP

HC-

TCOMP

5e-03

HC-TOP

5e-03

HC-

TCOMP

5e-02

HC-TOP

5e-02

HC-20-

10-50-

25-

TCOMP

HC-20-

10-50-

25-TOP

HC-20-

20-50-

50-TOP

20

50

Figure 7-4. The average rank score of the different methods using KNN classifier.

Figure 7-4 shows the average rank results on the same combinations. Again, we see a

noticeable advantage in favor of the two 50-HC-TCOMP variants. Moreover, these two

variants, together with the KNN classifier, have the lowest average error-rates among all

feature selectors and classifier combinations (not shown). High scores were also attained

when using the HC-TOP and HC/HIGH-50-50-TOP variants.

Figure 7-3 and Figure 7-4 also show again that the performance of the methods is in

most cases better when selecting a total of 50 features rather than 20 features.

The SVM classifiers, SVM-radial and SVM-linear, showed high performance as well on

the 19 datasets (see Figure 4-2). The summarized average rank scores of the different

feature selectors using SVM-radial can be viewed in Figure 7-5. The HC-PVAL variants,

as well as the HC-K-K variant, show best performance. Similarly to Figure 7-4 one can

notice a consistent drop in scores when selecting 20 features in total, instead of 50.

 98

Average Rank - SVM-radial

0

5

10

15

20

25

CORTTESTGOLUBMIHIGH-

TCOMP

5e-03

HIGH-

TOP 5e-

03

HIGH-

TCOMP

5e-02

HIGH-

TOP 5e-

02

HIGH-20-

10-50-

25-

TCOMP

HIGH-20-

10-50-

25-TOP

HIGH-20-

20-50-

50-TOP

HC-

TCOMP

5e-03

HC-TOP

5e-03

HC-

TCOMP

5e-02

HC-TOP

5e-02

HC-20-

10-50-

25-

TCOMP

HC-20-

10-50-

25-TOP

HC-20-

20-50-

50-TOP

20

50

Figure 7-5. The average ranking score of the different methods using SVM-radial classifier

Notice in Figure 7-4 and Figure 7-5 the resemblance of HIGH-K-K variant scores to the

correlation filter scores (as was seen in Figure 4-6).

7.3 Rates of exceptional results

Figure 7-6 and Figure 7-7 provide an overall look on the performance of the different

feature selectors using all datasets and all classifiers. Figure 7-6 summarizes the 95%

confidence rates (see Section 4.2 for definitions). Similar to Figure 4-2, we can notice

that HC-PVAL variants have a clear advantage over other methods. These variants obtain

lower than average error rate more often than the other methods.

 99

Exceptionally good score proportion (%)

0

10

20

30

40

50

60

70

80

CORTTESTGOLUBMIHIGH-

TCOMP

5e-03

HIGH-

TOP 5e-

03

HIGH-

TCOMP

5e-02

HIGH-

TOP 5e-

02

HIGH-

20-10-

50-25-

TCOMP

HIGH-

20-10-

50-25-

TOP

HIGH-

20-20-

50-50-

TOP

HC-

TCOMP

5e-03

HC-TOP

5e-03

HC-

TCOMP

5e-02

HC-TOP

5e-02

HC-20-

10-50-

25-

TCOMP

HC-20-

10-50-

25-TOP

HC-20-

20-50-

50-TOP

20

50

Figure 7-6. 95% confidence interval rates of each feature selectors. The rate-score of a method to perform
better than the 95% confidence interval of the average using all classifiers and datasets.

The same behavior is observed in Figure 7-7, where the frequency of performing

exceptionally bad is shown. The HC-PVAL methods have only about 10% or less error-

rate scores that are significantly worse than the average score. We can also see in Figure

 7-6 and Figure 7-7 that performance drops when selecting only 20 features.

 100

Exceptionally bad score proportion (%)

0

10

20

30

40

50

60

70

CORTTESTGOLUBMIHIGH-

TCOMP

5e-03

HIGH-

TOP 5e-

03

HIGH-

TCOMP

5e-02

HIGH-

TOP 5e-

02

HIGH-

20-10-

50-25-

TCOMP

HIGH-

20-10-

50-25-

TOP

HIGH-

20-20-

50-50-

TOP

HC-

TCOMP

5e-03

HC-TOP

5e-03

HC-

TCOMP

5e-02

HC-TOP

5e-02

HC-20-

10-50-

25-

TCOMP

HC-20-

10-50-

25-TOP

HC-20-

20-50-

50-TOP

20

50

Figure 7-7. Exceptianlly bad score. The rate-score of a method to perform worse than the 95% confidence
interval of the average using all classifiers and datasets.

The relatively better performance of the HC-PVAL variants is also reflected in their rate

of attaining the best score. Figure 7-8 compares these scores among the different feature

selectors. A concentration of relatively high scores is shown in the HC-PVAL variants.

Among them, HC-TCOMP-5e-02 has the highest rate, and HC-TOP-5e-02 has the second

highest rate. Among the 20 feature configurations the mutual information (MI) filter has

the highest rate. This filter and GOLUB filter have higher proportion of best score

achieved when using 20 features.

 101

Best score proportion

0

5

10

15

20

25

30

35

CORTTESTGOLUBMIHIGH-

TCOMP

5e-03

HIGH-

TOP 5e-

03

HIGH-

TCOMP

5e-02

HIGH-

TOP 5e-

02

HIGH-

20-10-

50-25-

TCOMP

HIGH-

20-10-

50-25-

TOP

HIGH-

20-20-

50-50-

TOP

HC-

TCOMP

5e-03

HC-TOP

5e-03

HC-

TCOMP

5e-02

HC-TOP

5e-02

HC-20-

10-50-

25-

TCOMP

HC-20-

10-50-

25-TOP

HC-20-

20-50-

50-TOP

20

50

Figure 7-8. The percentage of best score achieved using all classifiers and datasets.

