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ABSTRACT

Transcription regulation is fundamental in many Idgical processes in all living
organisms. A particularly extensively studied areranscription regulation is that of genes, where
the major transcriptional program is governed layscription factors. These factors have affinity
to specific sequences in the DNA, upstream of tiuescription start site of the genes they regulate.
Yet, not all phenotypes can be explained by remgran the DNA level. For example, different
cell types, having the same DNA content, carrydifferent transcriptional programs. Hence, it is
clear that other factors participate in the comipyeand diversity of transcription regulation.

Another major factor, found in recent years to pky important role in transcription
regulation, is chromatin structure. A condensedowtatin structure can prevent the access of
external factors, such as transcription factorgrehy preventing execution of sequence-based
transcription programs. Many factors that influembeomatin structure have been identified, but
the transcriptional programs in which they parétgare still poorly understood. In various cases
chromatin modifiers participate in transcriptiomalntrol together with DNA bound transcription
factors. Novel high-throughput experimental methadlsw the genome-wide identification of
binding sites for transcription factors, as weltlas quantification of gene expression under variou
environmental and genetic conditions.

In this thesis we study the contribution of chromatructure to transcription. To do so we
have developed a new statistical model methodotbgy uses and the vast amount of available
data to dissect the intricate relationships of ofattn modifiers and transcription factors. Using ou
methodology we were able to measure and charaetdrez dependency of transcription factors on
specific chromatin modifiers in carrying out theainscriptional programs.

Our methodology was applied to one of the most lyidsed and basic eukaryote model
organism, Saccharomyces cerevisiad/e collected a diverse compendium of gene exjmess
profiles, comprising 170 experiments of strainsedé¥e for chromatin modifiers, taken from 26
different studies. Our method succeeds in ideinfknown intricate genetic interactions between
chromatin modifiers and transcription factors amtavers many novel genetic interactions. Our
analysis gives the first comprehensive picture ld tontribution of chromatin structure to

transcription in a eukaryote.
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1 INTRODUCTION

Transcription regulation is a basic mechanism fontilling biological processes in all
living organisms. In particular, the transcripticegulation of the genes, being the main functional
entities in the genome, is fundamental in contngllimany biological processes. Hence, the
characterization of the gene transcriptional progras central in the ongoing exploration of
biological processes.

Modern biology is undergoing an information revauat in the last decade, which is
apparent in a shift of thinking and practice. Tiheeegence of novel high-throughput technologies
enables the quantification of various biologicahtiges in a genomic scale. Although this
revolution has great advanced the analysis of dngptex regulatory networks, it generated a grave
need in tools from other research disciplines, ashomputer science, statistics and physics.

In this thesis we rely on the integration of methdaken from the field of mathematics and
concepts taken from biology. We describe the stedistools used, and also give many biological
examples and discuss their implication to futureeagch. The utilization of the high-throughput
information gives us the ability to understand bgital mechanism on the systemic level. Our goal
was to portray the influence of chromatin structarethe regulation of gene transcription. The
results of this thesis were recently publishedature Genetic§74].

We start with a brief review on the field of traription regulation, high throughput
methods and chromatin. We continue with underliniogr methods and introducing the
compendium of gene expression profiles we havenasgel. We finish with an exploration of the
intricate interplay between transcription factonsl @hromatin dynamics, which is a key part in the

transcriptional program.

1.1 Biological processes are regulated at the tremgtional level

The information necessary for carrying out mosthef biological processes in any cell is
encoded as genes in the DNA. According to the akmlogma of biological information flow,
biological processes begin at the DNA level, whitranscribed to mRNA and then translated into
protein. In the scope of this thesis we considgeme to be an open reading frame in the genome

that encodes for a protein. The proper functiomhefinformation flow in both the right time and



place is dependent on various levels of regulatiBath transcription (DNA to RNA) and
translation (RNA to protein) are regulated posiiva negatively by many cellular factors.

The fate of a given cell at any point in time idedimined by its particular program of gene
expression. In eukaryotic genomes, gene regulatiahe transcription level is governed mainly by
proteins that facilitate transcription by bindirg gene promoters and recruiting the transcription
machinery. Another set of proteins prevents trapgson of certain genes by binding to their
promoters and preventing the recruitment of thesiteption machinery. In this thesis we will refer
to both types of regulators (positive and negatbsedhe general term Transcription Factor (TF).

The current estimate is that there are about 25g@0@s in the human genome. In the yeast
S. cerevisiaewhich has a smaller genome, gene organizatiomigler and better understood and
the number of predicted genes is approximately@®,00is high number of genes, even in simple
organisms, constitutes a complex system that hasetdine tuned and regulated for specific
biological process. The major mechanism of regotats by usage of TFs. Both the binding and
activity of TFs can be regulated in order to cohtihe level of transcription of each gene. As such,
each gene has a specific transcriptional progrargely manifested by its TF binding sites, which
control the level of its expression at any givenet

1.2 High throughput technologies

With the emergence of new high throughput techriegghe classical way of analyzing a
biological phenomenon, with experiments aimed asetiting the role of one or two proteins in a
specific process, is starting to shift to examinihg@ phenomenon at the system level. New
technologies and algorithms enable the researohgerform experiments at a genomic scale, thus
allowing to ask much more wide-ranging questiortge Tapid collection of information needs to be
handled by organization methods and also be ardly®e methods taken from the field of
information theory. Not surprisingly methods deywsd in computer science are utilized in the
analysis of specific processes as well as in tlssedtion of the system as a whole. Here we
describe two applications for such novel techn@sdhat have revolutionized the way we explore

and examine biological systems.



1.2.1 DNA microarrays measure gene expression atrgamic scale

First introduced in 1995 [60], microarray technolag a powerful tool enabling, in one
experiment, to have a quantification of sequenéerimation at a genomic scale. Microarrays are
used for measuring both RNA (e.g transcripts lgyalisd DNA (e.g. DNA copy number variations
and SNP detection). The basic technology used anaairays consists of DNA fragments attached
covalently to a solid surface. The DNA fragments grouped according to sequence identity and
act as probes. By measuring the hybridization le¥e¢he tested sample to each fragment set, we
can quantify the amount of the features measuree.ability to generate a collection of probes that
represent the gene ensemble of an entire genotoeisathe researcher to measure each of the
genes transcript level in a particular environmeend time.

Two main array technologies are currently used:ttedoarrays and oligonucleotide
microarrays. In spotted arrays the probes are lyst2NAs or oligonucleotides that are spotted on
the array and correspond to mRNA. The experimeat ¢@mparison between two samples, each
labeled with different fluorophores (e.g. cyaninead cyanine 5), resulting in the ratio of
expression for each gene. In oligonucleotide arthggrobes are usually of a fixed length of about
25 nucleotides and are synthesized to match the genuestion. The design of proper controls
enables the absolute quantification of RNA levbls, to compare two strains, two arrays need to
be used.

The common use of expression profiling is to pimpgarticular genes that participate in a
biological process and indeed the microarray teldgyohas become a common tool in many
research laboratories, exploring any basic mecharfi®m heat shock responsekn coli [61] to
cell cycle progression i8. cerevisia¢62] and cancer prognosis in humans [63].

As gene expression profiles are accumulated imeapesitories, we can start to organize the
transcriptional programs imposed on the genes. Willsbe a first step in uncovering the key

players that participate in the regulation of bgyal processes.

1.2.2 TF binding via chromatin immuno-precipitation and microarrays

Recent studies have shown that DNA microarrays lsanused in combination with
immuno-precipitation, to associate genomic sequetwearticular cellular factors [1]. The method

called ChlP-on-chip or location analysis startstieatingin-vivo a cell population of interest with



formaldehyde. The formaldehyde cross-links protéinge DNA thus keeping the factors involved
in DNA-mediated regulation, such as TFs, boundh&DNA at the regulated sites. The next step is
fragmentation of the DNA (into fragments of 0.2-)Klsommonly done by sonication. Using
specific antibodies for the factor in study, the ®NMagments attached to the factor are precipitated
(hence, immuno-percipitation). At this step the mo@&ray is used to map each precipitated
fragment to the genome (total DNA is used as aeefe in the microarray analysis).

As described before, TFs bind upstream of theiuletgd genes, and various studies have
used location analysis to map the binding locatioina particular TF in the genome. In this case,
the microarray is designed to have probes for tlmenpters of each gene. The output of such
analysis is the gene set that is predicted to elated by the TF studied.

The accumulation of experiments carried out fofedént TFs in different environments
have redefined what we know about the network arigcriptional regulation and are fundamental
in understanding the transcriptional programsvimg cells.

The ChIP-on-chip technology is still improving, banh precipitation procedures, and also
in resolution and coverage of the microarrays. €rebsancements in technology provide data with

higher quality and facilitate the research of maymplex systems.

1.3 Chromatin structure and chromatin modificatiofactors

In all living cells the DNA is wrapped around prioie called histones, thus forming
chromatin. The repeating subunit of the chromathe nucleosome, consists of 146 DNA
nucleotides wrapped around the histone core, whkities one subunit of each of the four
histones: H2A, H2B, H3 and H4. The main function tbé chromatin is to pack the DNA
efficiently in the cell, but it was also shown tarficipate in crucial processes such as mitosis,
replication, DNA damage, and gene expression [@&fe important aspect of nucleosome
regulation is granted by the accessibility of th&tdne tails to various proteins. Each histone tail
the N-terminus of the histone, has unique charaties of amino acid composition and length. The
function of the histone tails is not clear, butyttave been shown to bind other proteins as well as
to undergo post translational modifications. Thesalifications can change the chromatin state

and thus patrticipate in the regulation of many ofabn related processes.



The efficiency of a TF in governing transcriptioepgnds on various elements. The affinity
of the TF for its promoters is one of them; anotbrrcial factor is the chromatin state of the
regulated genes. As stated above, chromatin caafign may determine the accessibility of the
promoter to external factors and also the perfomeaof the transcription machinery [2,3]. In
eukaryotic cells many proteins influence chromairucture; these are referred to as chromatin
modifiers (CMs). Most CMs are believed to work Wfeating histones along the chromatin. The
presence of such CMs at the vicinity of a transtilgene could change the efficiency of
transcription by enabling the formation of a chramatructure needed for TF activitizipure 1
A]. For example, some CMs confer a chromatin staeis condensed and compact. This "closed"”
chromatin structure is less accessible to the ¢rgstonal machinery. If it occurs in the gene's
promoter, it will diminish the transcription effemcy of that gene. CMs are also known to act in the
opposite direction, causing the chromatin to adolgss compact configuration, and thus enabling

gene expression.

CMs are usually divided into two main groups acecwydto their biochemical activity:
factors that utilize ATP, and factors that are AimBependent. Among the ATP-independent CMs
a widely explored group comprises the histone dicahsferases (HATs) and the histone
deacetylases (HDACSs) [2]. The addition of acetybugs to specific lysine residues on the N-
terminal histone tails by the HATs is believed teate a less condensed chromatin structure.
Previous work showed that hyperacetylated regiores ia general highly transcribed while
hypoacetylated regions are silent [4]. Other AT&ependent CMs are the histone
methyltransferases. The methylation of N-terministdme tail has been linked to transcription
activation and repression in many organisms [5Ad]ditional histone modifications such as
phosphorylation and ubiquitylation are known, ahe mechanisms by which these modifications
affect transcription constitute one of the mosivacareas of current research.

An additional group of CMs are the ATP-dependemburtatin remodelers [3]. These highly
conserved modifiers usually act as multi-proteimptexes that contain an ATPase subunit. The
mechanism by which they act is still unclear. Soramodelers are able to destabilize the
nucleosomes, allowing the binding of factors to DBIA; others can shift the position of

nucleosomes along the chromatin, affecting chrawsdtucture [2].
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Figure 1. A model for chromatin modifier-mediated t ranscription. A) In a
"closed" chromatin structure (upper diagram) the transcriptional machinery is less
accessible to the gene's promoter; in that situation the efficiency of transcription
diminishes. The activity of a CM relaxes the chromatin into an "open" structure (lower
diagram), which promotes transcription by facilitating accessibility. In some cases CMs are
known to act in the opposite direction, causing the chromatin to adopt a more compact
configuration, and thus preventing gene expression [3,4,6,34]. B) Upon activation of a TF,
each of the TF target genes is induced according to various parameters, among others its
chromatin structure. The interaction between TF and CM enables the activation of those
genes located in regions with "closed" chromatin (upper diagram). In strains mutated for
CM genes, the absence of the CM will lead to changes in the expression levels of those

genes that depend on the CM for transcription (lower diagram).
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1.4 The influence of chromatin modifiers on trangption

As both CMs and TFs carry out related functiondwwéspect to transcription, cooperation
is expected between them in transcriptional prograrBuch programs can be generated
combinatorially, where each factor has its own gr¢eohort) of regulated genes, and cohorts of
different factors intersect in various environmegésierating a specific program. In this thesis we
explore the physical cooperation of CMs and TFse @mple model of cooperation predicts that
some TFs might require the recruitment of a CMdailitate their activity [Figure 1 B]. In such
cases the CM could be seen as a cofactor of tiatisar.

The budding yeas§accharomyces cerevisjas an excellent organism to model eukaryotic
transcription regulation. It is one of the mostemdively explored eukaryotic organisms,
particularly in molecular biology. Most new techogies are implemented first on this yeast and as
such, vast amount of information has accumulategarckng its gene functions and their
transcriptional networks. In this model organismesal interactions between CMs and TFs have
been studied in detail [7-9]. We set out to systaraly exploring the nature of these interactions.

In this thesis we have assembled a large compendfugene expression experiments in
which various CMs were deleted or genetically malafed. Using a statistical approach, we have
carried out a systematic search for TF-CM paird foaction in concert. We show that our
compendium allows a system level overview of theatfof chromatin on transcription and also
pinpoints specific TF-CM interplays. We test ourthoal on known examples and shed light on the
regulation of such interactions. In addition, weawver many novel potential TF-CM interactions,

which may provide new insights into the mechanigrmhoomatin structure mediated regulation.

12



2 Results

2.1 The CM compendium

Two types of high-throughput data set were usdthigithesis. To obtain a complete list of
cohorts and their respective regulating TFs we ueedcomprehensive dataset of Harbison et al.
[1] (ChIP-on-chip, see Introduction),. In their ds¢t, a statistical model was applied on the raw
signals of the array and a measure of significdpeealue) was given for each TF and gene. This
p-value reflects the level of confidence for finglithe particular TF bound at a particular gene’s
promoter. Harbison et al. carried out location gsialfor 204 proteins presumed to have affinity to
the DNA and thus that could function as transaviptfactors. The location experiment were
conducted in YPD (Yeast extract Peptone Dextrasanal rich medium. For 84 TFs the location
analysis was carried out also in at least one noowralition. The conditions were chosen to
resemble to environments for which the TF is exgedb become active, as for some TFs the
appearance of a regulated cohort is dependenteoootidition in question. For example, Msn2 and
Msn4 together regulate the main general stresonssgp however, in rich medium their activity is
not expected. Thus, we would not expect to seecagbinding to the promoters of their cohort in
rich medium, and only in conditions of stress (sachextreme heat) their cohorts should be
notable. We selected for each of the analyzed Wesgroup of genes it binds to (its cohort), by
applying a strict binding threshold of p-value ©@L. According to the original publication, this
ensures a low level of false positives (<8 %) [1].

The second data set, a gene expression compendasngathered from the literature, and
contains experiments carried out with yeast stramsvhich particular CMs were deleted or
genetically modified to loose their catalytic caiip [ Supplementary Table A. This
compendium, consisting of 170 gene expression |psofiaken from 26 different publications,
covers more than 60 potential interacting CMs. Qiglgally operate in large complexes of proteins,
and in a manner that is not fully understood slmaa&y components, even between complexes of
opposite biochemical activity. The compendium isnpeehensive for CM complexes it covers,
having at least one member (usually the catalytie) @f most of the known CM complexesSn
cerevisiae Such complexes function as histone acetyl traasés (HATs: the NuA4, HAT1 and
SAGA complexes) and histone deacetylases (HDAGs:RRD3, HDA1 and SET3 complexes),

13



respectively, adding and removing acetyl groupsnfrconserved lysine residues on the histone
tails. Other complexes function as ATP dependendroatin remodelers (the SWI/SNF, SWR1,
INO80, ISWI and RSC complexes). For example, RS@patex is presumed to generate negative
supercoiled DNA [65] and the SWR complex substgut#2A histone by its variant H2A.Z (Htz1)
in the nucleosome, giving the nucleosome differemaracteristics [21]. Yet for most of the
remodelers, although clearly having important fiomg in the cell (e.g SWI/SNF), their
biochemical function is still not clear. In additido the two main sets of complexes described
above, the compendium also encompass histone rtretigfierases complexes (the COMPASS
complex), and other chromatin-affecting and codestsuch as Sptl0, Sir proteins, TBP, etc.
[Figure 2 A].

The compendium described above is the first attammllectively build a resource that
can be a starting point in any analysis of the ivement of CMs in transcription. The work
described in this thesis relates to that part ahgcription that is regulated by the transcription

factors, but other angles of research could béysasplemented.
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Figure 2A: The CM gene expression compendium. The expression profiles
available in the compendium. Each of the listed CMs has one or more profiles in the
compendium, created by a genetic alteration of the CM in the yeast genome. CMs that
belong to the same complex are circumscribed by an oval, with the complex name in bold.
Colors indicate the CM's proposed biochemical activity: HATs in light blue, HDACSs in red,
methyltransferases in orange, Ubiquitin-conjugating enzymes in magenta, chromatin
remodelers in green, TAF-related factors in dark blue, silencing factors in brown and
Histone subunits in black. The full references of the studies are available in

Supplementary Table A.
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Figure 2B: The CM gene expression compendium. B) Clustering of the
compendium. Rows represent TF cohorts and columns represent conditions. Colors
indicate CM-cohort K-S scores. To obtain a global view of the TF-CM interaction
landscape, we hierarchically clustered the cohorts and conditions according to their K-S
scores (positive scores in red and negative in green). Groups of functionally related TFs
(ordinate) and functionally related conditions (abscissa) are marked. Using the global view
we can see that mutations affecting general repressors, like Tupl, show a global
activation of most cohorts while mutations in general activators, such as the TATA Binding
Protein (TBP), exhibit the opposite effect. The detailed hierarchical clustering solution is

available in Supplementary Figure 1.
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2.2 The model

Our goal was to investigate whether there are Be¢emteractions between a TF and any of
the CMs in our compendium. The rationale was devi@: Mutations affecting a particular CM are
expected to have a broad effect on gene expressifmtting many genes. If, however, activation
or repression of genes by a specific TF dependscpkarly on the activity of a certain CM, we
expect to see that mutations in the CM cause aienetial effect on expression of the TF target
genes Figure 1 B]. To test whether the regulation by a particul&ri$ affected by deletion of a
CM, we partitioned the gene expression profile d@M-mutated strain into two groups: the TF
cohort (the genes bound by the TF and thus diregtulated by it) and the control group,
consisting of the rest of the genes in the gendimeo particular interaction (direct or indirect)
exists between the CM and the TF, we expect torebsbe same distribution of gene expression
levels in both groups. In contrast, if the TF and Cooperate in controlling the expression of a
subset of genes, deletion of the CM should caulifeaential change in expression of these genes
[Figure 1 B].

2.3 The statistical test

To evaluate the difference in the distribution ehg expression values in the two groups
(the cohort and the control) we used the KolmogeBavirnov (K-S) statistical test [10]. This test is
appropriate for two main reasons:

1) It is a non-parametric test. Due to its non-peetic nature, the test is robust and does
not require any linear normalization of the expi@ssvalues. This feature is imperative when
dealing with heterogeneous sources and thus,stiitable to our dataset which contains diverse
expression profiles originating from many studi@aother benefit that comes from this feature is
that no threshold is needed to be affixed. Thusjata is lost because of arbitrary thresholds (e.g.
two-folded expression of genes for the definitidractivation) and even the slightest trends can be
observed.

2) It provides an exact p-value. Under the asswnpdif gene independence (which is not
always true, but nevertheless many studies makéhd)test provides a p-value for the KS value
measured (the statistic). The KS statistic, plageaking, is the maximal percentile difference

between the two distributions over all possibleregpion values. As such, the p-value indicates the
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statistical significance of the difference betwdes two distributions (see Methods). This featsre i
also imperative when testing so many hypothesesh(é& and CM is a hypothesis test for their
interaction), as the alternative simulation procedo evaluate the significance of an interact®n i
too computational causative.

The log of the K-S p-value provides a measure efdiscrepancy in expression of the TF
cohort from the rest of the genes when the CM geneutated. In order to indicate the direction of
discrepancy, we have added to it a positive or tggaign and used it as a score to rank the CM-
TF interactions. Positive scores indicate that Tite cohort is activated in the particular CM
experiment, whereas negative scores imply redugpdession of the TF cohort (see Methods).
Hence, the K-S score expresses both the directidrsignificance of the disparity between the two

distributions.

2.4 Ume6 regulation

We first tested our method on the well-characteriegample of the TF Ume6, a central
regulator of early meiotic genes, which is knowrrégulate its cohort through interactions with
CMs [7]. During vegetative growth, binding of Ume@stream of specific early meiotic genes
facilitates the recruitment of the RPD3 complex (dBDAC) and ISW2 complex (an ATP
dependent chromatin remodeler) [11,12]. RPD3 corpias shown to remove acetyl groups from
histones H3 and H4 [13]. ISW2 complex is presuntelave the ability to slide nucleosomes along
the DNA thus alternating between open and closednehtin states. It is not clear what is the
sequence of event that leads to the recruitmettteofwo CMs, whether it is RPD3 or ISW2 that
arrives first and recruits the other, but the hygbgation by RPD3 complex and the chromatin
remodeling by ISW2 is presumed to create a condenbkeomatin structure that prevents gene
expression [11]. Thus, Ume6 keeps its cohort genes silent state, halting their function by
preventing their expression. During entry to meipddme6 preferentially interacts with the
activator Imel. This alternative interaction relEsaghe CMs, which promote expression of the
meiosis -related cohort [14].

The Ume6 cohort, as defined by Harbison et al. ¢@hsists of 131 genes. Due to its large
size, we can deduce with high statistical confidetie activity level of the Ume6 repressor in the
entire CM gene expression compendium. As expededtion ofUMESG leads to a significant shift
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in the expression pattern of the Ume6 cohdatle 1]. In particular, a strong effect was seen in an
experiment carried out by Fazzio et al. [11]: Wiikdetion of UMES6 did not lead to a general shift
in gene expression, the Ume6 cohort exhibited angtrde-repression that was articulated in
increase of their expression (K-S score = 12.F@jJre 3 A|.

Ume6 acts as a repressor only through its abiityetruit the RPD3 complex and the Isw2
chromatin remodeler to its binding location [11lcodrding to this dogma not only a deletion of
UMES®6 but also a double deletion ¢$W2 and RPD3 should de-repress all of Ume6-regulated
genes. For the synergistic cooperation of Isw2 Bpd3, a single deletion d6W2 or of RPD3
should result in a partial de-repression of the Broehort. Our results show exactly this effect:
while the Ume6 cohort exhibited a significant aatign in an experiment carried out with the
doubly deletedsw2 rpd3 strain Figure 3 B|, a less significant effect was seen for a strain
individually deleted foRPD3and no effect was observed in t8&V2deleted strainTable 1]. It is
important to note is that the activation of the Bneehort could in principle result from an indirect
repression of Umeé6 itself by each of the CMs. Thpression level of theaJME6 gene was
monitored in each of the experiments. No represefddMEG6 was observed in the single deleted
strains; in the doubly deleted stradME6 even showed a ~4-fold up-regulation, probably an
attempt to compensate for the mis-regulation ofdatisort Supplementary Table B. Examination
of the de-repressed genes (all genes with expregsscore > 1, see Methods) from the Ume6
cohort in both thaime6 and theisw2 rpd3 experiments reveals a significant overlap (hyper-
geometric p < 4.6*10-7)Higure 4 A]. The similar effect observed in both experimgmbints to

the common mechanism of regulation by Ume6 and Isitt2 Rpd3.
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Publication KS Score Condition

Fazzioet al *° 13.02 ume6

Sabeketal *° 11.29 rpd3 H3 Nvs.H3 N
Bernsteiret al *° 7.54 ume6é

Fazzioet al *° 6.7 isw2 rpd3
Bernsteinet al > 5.48 rpd3

Fazzioet al ** -0.36 isw2

Table 1: Response of the Ume6 cohort in various CM knockout experiments.
Six selected gene expression experiments taken from the CM compendium are listed. The
K-S score of the Ume6 cohort's disparity from the rest of the yeast genes is presented
(see Methods). A significant disparity is defined as scores with absolute value above 5.41
(Bonferroni corrected p-value < 0.05). The experiments were chosen to test the mutual
contribution of Isw2 and Rpd3 on the Ume6 cohort. The doubly deleted strain shows a

stronger effect on the Ume6 cohort compared to the corresponding singly deleted strains.
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Figure 3: Distribution of expression values for the Ume6 cohort in various CM

knockout experiments.  Distributions of expression levels (log2 transformed) are
presented for the Ume6 cohort and the control group (rest of the genes). Red: the Ume6
cohort. Green: the control group. A) Strain deleted for UME6 [11]. B) Strain doubly
deleted for ISW2 and RPD3 [11]. C) Strain deleted for RPD3 along with a deleted N-
terminus of histone H3 compared to an isogenic strain carrying only the histone mutation
[15 ].D) Strain deleted for RPD3 and a deleted N-terminus of histone H4 compared to an

iIsogenic strain carrying only the histone mutation [15].
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2.4.1 Expanding the analysis of Ume6 regulation

Reassured by the ability of our methodology to exepthe well-characterized contribution
of Isw2 and Rpd3 to Ume6 regulation, we carriedasistematic exploration of the Ume6 cohort
in the entire CM compendium. This exploration akalvus to uncover novel characteristics of
Ume6 regulation.

Sabet et al. [15] explored the relationship betwibentranscription regulation by Rpd3 and
the amino termini of histones H3 and H4. Sincedaletion of the N-terminal domain of histones
prevents their regulation by most ATP-independevsCstrains were constructed carrying mutant
versions of either histone H3 or histone H4, in akhihe N-terminus of the protein was deleted
(H3 N and H4 N, respectively). To test whether Rpd3 has an effattgene expression
independent of H3, thél3 N strain for whichRPD3 was also deleted was compared to the
isogenicH3 N strain. This experiment showed a highly significand specific disparity in the
expression of the Ume6 cohoRidure 3 C]. As in the previous experiments the activatiénhe
Ume6 cohort was not a consequence of the represtiome6 itself (Ume6 expression log2 value
of 0.7). The activated genes from the Ume6 cohdrs¢ore > 1) in this experiment share a
significant overlap with those de-repressed instnain deleted foUMEG, as well as with the strain
doubly deleted fotfSW2andRPD3 (hyper-geometric p < 10-3 and p < 10-4, respeltjjé-igure
4 A]. The commonality of affected genes in tH8 N strain experiment with thisSW2-RPD3and
UMES® strains points to a shared mechanism of regulation

Interestingly, in the parallel experiment carriegt evith H4 N no effect was observed
[Figure 3 DJ]. In vitro studies have implicated both the H3 and H4 hisandhe binding of Isw2
to nucleosomes [16-19]. The additive effect of RiRD3deletion to the H3 mutation, as opposed to
the H4 mutation, suggests that histone H4, butHtis likely to work with Rpd3. In addition, the
similar effects obtained in th@d3 strain lacking the N-terminus of histone H3 andharpd3
strain lackingSW2suggest that H3 tails play a central role in guitment of Isw2 by Ume6.

Hence, in the case of the intricate transcriptiegutation by Ume6 our method enabled the
discovery of known Ume6 CM co-factors solely by leximg the behavior of the Ume6 cohort in
various experiments. Our results also shed new ighsw2 patrticipation in the Ume6 repression
mechanism and support the involvement of histoneNHt8rminus in the regulation of expression

by Isw2.
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Figure 4: Overlap in altered cohort genes. Level of overlap between altered
cohorts in various gene expression experiments (see Methods). A) Overlap in de-
repressed Ume6 cohort genes in three experiments. Out of 131 Ume6 cohort genes, 45
showed a notable induction (Z-score > 1) in a UMEG deleted strain [11], 41 in a doubly
deleted ISW2 RPD3 strain [11] and 44 in strain deleted for RPD3 along with a deleted N-
terminus of histone H3 compared to an isogenic strain carrying only the histone mutation
[15]. The significance of the overlap between each pair of strains is indicated (hyper-
geometric p-value). B) Overlap in activated Gecn4YPD cohort genes in three experiments.
Out of 75 Gcn4YPD cohort genes, 32 showed a notable induction in a PHO23 deleted
strain, 27 in a RXT1 deleted strain and 20 in a SIN3 deleted strain [25].
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2.5 Systematic exploration of all CM-TF interactiaen

To reduce the number of hypothesis testing, onlycbRorts with a sufficiently large
number of genes were taken for analysis. Out of2# TFs analyzed by Harbiset al. !, 49
generate cohorts large enough; out of these 19 amab/zed in more than one environment. In
total we were able to analyze 75 cohorts (see Misthd he behavior of each of these cohos
tested against the entire compendium. Our testrgeate4645 TF-CM pairs with a K-S p-value <
0.05 and, after Bonferroni correction for multiglkesting, 531 significant pairs remained (|K-S
score| > 5.41, see MethodSupplementary Table B.

The significant pairs were obtained from 55 différeohorts (defined for 35 TFs) and 129
gene expression experiments, covering most of tmeptexes known to participate in chromatin
structure regulationdigure 2]. In total we obtained 287 unique pairs of TF-C®upplementary
Table F| giving a first comprehensive picture of the TFntidution in chromatin structure
regulation in a eukaryote.

The average number of significant pairs for eachcdRort is 9.6 and it is 4.1 for each CM
profile. Some TFs define cohorts that behave mooenjscuously; the Hap4 cohort, for example,
shows significant disparity in 26 experiments, whassociate it to 16 different CMs, as opposed to
the Rebl cohort that shows disparity in only onpeexnent. Several factors may determine this
behavior: (1) Better quality of the location an@yesesults may lead to a better definition of the
cohort. The reduction of noise from the cohort witlable to detect more subtle trends. (2) Cohorts
containing a larger number of genes usually proviiger statistical significance. As described
above many TFs were excluded from the analysihi@s tohorts were too small, eluding many
potential interactions. (3) The biological activity the TF should be relevant to both the location
analysis and the gene expression experiment. Foidéntification of a TF that is active only in
particular conditions, we would need to have atiocaanalysis result in this condition to focus on
its cohort, but also we would need a gene expregsiofiling of a deleted strain of its interacting
CM in that same condition.

Similarly, some CM mutants lead to a preferentl@mmge of expression in several cohorts
(e.g.: 18 cohorts (from 11 TFs) with significantvi@dion in thessn6 experiment [20] and only
one cohort for theps72 experiment [21]). The number of significant cokgoer CM is effected
by: (1) as for the TF, the quality of the expresspmrofiling and the condition for which the
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experiment was carried on. Some CM might functiomparticular environments. (2) The level of
robustness in the system, where the effect shaarg due to the level of the CM importance. CM
complexes share many component and overlap in éoal function (more then 4 complexes
that are considered HDACs or HATSs). Catalytic merab#f the CM complexes are expected to
have, in general, a more widespread effect.

A global view of the compendium and its interplayhathe TF cohorts is obtained by dual-
hierarchical clustering of CMs and of TFs accordimgimilarity of their K-S score profiles across
all experimental conditions and cohorisadure 2 B]. This procedure enables, on one hand, the
visualization of common trends of different cohantsesponse to all the CM perturbations, and on
the other hand, the detection of CMs with similpedficity according to their effect on the
cohorts. The resulting representation shows thatcékorts are grouped according to various
biological processes: cell cycle, amino acid bidlsgsis, mating and more. The inclusion of two
TFs in the same group is sometimes due to a higtl & overlap between their cohorts, but in
many cases reflects common CM-mediated mechani$megolation. Our results suggest that the
genome is organized along functional similaritielso we show that cohorts that are involved in
common biological processes are affected by sindlMs. In the case of cell cycle progression, for
example, TFs affecting different stages are nometkegrouped together, implying a common
interplay with CMs. Interestingly, the well charagzed TF Ume6 (see the section above) is placed
in the hierarchical clustering near the cell cytkes, although the Ume6 cohort shares almost no
gene with the cell cycle cohorts. Inspection of ¢h&bal view indeed reveals that, like Ume6, all
the cell cycle TFs show a relative induction inieas experiments in which tHeRPD3 complex
members were mutateBigure 2 B].

When clustering the CMs according to the similanfytheir K-S scores in each cohort,
well-defined complexes are grouped together. Famgpte experiments with strains deleted for
members of the NuA4 complex (Eaf3, Eaf5, Eaf7, Yndad2l, Epll and Arp4) were
hierarchically clustered along with Rsc8 (RSC) &wil (ISWI) (both shown to interact physically
and genetically with the NuA4 complex [21-23]). $isé remarkable, taking into consideration that
the data were derived from experiments carriednotlt yeast of different genetic backgrounds and
using different experimental protocols (e.g., Nu&deriments were taken from three different
publications [21,24,25]). Similarly, whenever a GMletion was analyzed independently in two

laboratories, the results cluster nicely togethemaddition, factors that are known to act as globa
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activators/repressors, like the TATA Binding Proter the Tupl repressor, manifest a global effect
on the genome, reflected by the joint inductionfespion of many of the cohortsSifjure 2 BJ. In

the disturbance of the TATA binding protein (seetie®m ahead) this comprehensive down
regulation, which is defined by comparing the TlRa to the rest of the genes, seems paradoxical
- if all cohorts are down, then who is up? But thessults point to the fact that genes that have a
strong binding of TF in their promoters, are morpehdent on the TATA binding protein
mechanism of transcription induction. On the othand, deletion oTUP1 (see section ahead),
which is a know repressor of genes, manifest a cehgmsive de-repression of the TFs that are

know to be regulated by its repression mechanism.

2.6 CM-TF interaction results

Our analysis reveals many novel putative TF-CMraatgons. In the previous section we
described the overall CM-TF interaction landscdpehis section we focus on several interesting
cases where a mutation in a specific CM has afgignt effect on a TEohort. The full table of

results is available &upplementary Table B

2.6.1 Gen4 as aepressorof amino acid biosynthetic genes

The Gcnd TF activates many genes under conditidnangno acid (AA) starvation
(reviewed in [26]). In accordance with the positreée of Gen4, its cohort was strongly repressed
in the expression profile of gcn4 strain [20] and strongly activated in a strain egepressing
GCN4?, Initiation of transcription by Gen4 was shownb® dependent on many co-activators [9],
including the CMs SWI/SNF and SAGA. These chromatiodification complexes (a chromatin
remodeler and a histone acetyltransferase, respbgtiare recruited by Gcn4 in response to AA
starvation [27,28], as such Gcn4 is a good candiftatthe exploration of other cooperation with
chromatin modification complexes.

As an activator of many AA biosynthesis pathways tnechanism by which Gcn4
promotes the transcription of its cohort when sdrfor an AA is tightly and complexly regulated.
This feature makes Gcn4 a good example of a codigx¢ndent transcription factor. As described
above, the cohort defined by each location analgsigeriment is highly dependent on the

experimental conditions. Exploring cohorts defirfed the same TF under different conditions
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assists us in the study of the TF's regulatory progHarbisonet al. * defined the Gen4 cohort in

an experiment carried out in rich medium (Gep4h), but also in cells exposed to sulfometuron
methyl (SM), an inhibitor of several AA biosynthegiathways (Gcrgy). The Gengp cohort is
larger and consists of 189 genes, but interestittldyGen4 pp cohort, which consists of only 75

genes, is a subset of the SM cohort [1]. Thesdtsesudicate that Gen4 binds to its core cohort
under optimal growth conditions, and not only afy deprivation. The reason for the binding of
Gcen4 to its core cohort is not clear and might ptina function Gen4 maintains even in its non
active state in rich media.

In an experiment done by Keogt al. [25] the RPD3 complex was thoroughly analyzed
using biochemical and genetic tools, among othergsmenunoprecipitation of each member of
RPD3 complex. The authors defined two distinct RRD@iplexes, RPD3(L) and RPD3(S), which
share a core of three proteins: Rpd3, Sin3 and Ureei3 and Rcol uniquely belong to the
RPD3(S) small complex, whereas Pho23, Rxtl and Rx& specific to the larger RPD3(L)
complex. Surprisingly, our results show a cleaivation of the Gen4 cohort when subunits of the
large RPD3(L) complex are deletefiable 2. Gen4 activation was not due to activation of &cn
itself (expression levels o6GCN4 are available inSupplementary table B. Moreover, the
activated genes in each RPD3(L)-deleted strain raxpat were highly overlappindg-[gure 4 B]
emphasizing the essential contribution of the RRP8pmplex, and not a particular member, to
the regulation by Gcen4. Interestingly, when sulsioit the small RPD3(S) complex were deleted,
the cohort showed no disparity from the rest ofghees Table 2]. And accordingly core member
that belong to both complexes show a milder eff@dtus, the RPD3(S) results provide an
appropriate control and show that, in addition he specific linkage of the RPD3(S) to Set2
methyl-transferase [25], the two complexes have flactionally divergent roles in the regulation
by Gcnd. Probably in the affinity specificationdther factors, such as Gen4.

The gene expression experiments carried out byykKebal were not done in AA -limiting
conditions but in rich medium. However, the Rpd&eif can be seen on all Gen4 cohorts. The

additional targets, available in the Ggpg cohort, preserve the described trend and everbigxhi

stronger activation in the experiments carried @ath RPD3(L) deleted members, which

strengthen the significance of the result. The ifipéyg of this result is strengthened by the fact
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that, like the Gengpp cohort, in the RPD3(S) deleted members the adititargets match the

control distribution Table 2].

The effect described above points to a wide paditon of the RPD3 complex in the
regulation by Gcn4, an effect that is seen eveweak targets of Gen4 in rich medium. Gen4 has
been shown to use SAGA, a histone acetyl transdetasactivate its cohort [9]. Our results point to
the opposite biochemical reaction, removal of dagriyups from histones, performed by the RPD3
HDAC complex, as a mechanism that can maintaitaitget genes in an inactive state. Functional
analysis on the activated genes in the experimentdiich RPD3(L) members were deleted reveals
an over-representation of arginine biosynthesiegdall 8 genes involved in arginine biosynthesis
present in the Gengpp cohort show increased expression, p<0.001). Tdwrstesults suggest that

Rpd3 and Gcn4d act asegativeregulators of the arginine biosynthesis pathwaglennoptimal
growth conditions.
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Gcendsy KS score Gcen4pp KS score Constituent of Condition

17.34 7.73 RPD3(L) pho23
13.01 5.92 RPD3(L) rxtl
6.69 4.71 RPD3(L) IXt2
10.15 4.05 Core Complex sin3
9.16 2.8 Core Complex rpd3
6.42 2.71 Core Complex umel
0.004 0.06 RPD3(S) eaf3
0.040 0.022 RPD3(S) rcol

Table 2: K-S scores for the Gend cohorts in RPD3C d  eleted members . Two

cohorts were defined, one in rich medium (Ggp#) and another in AA limiting medium
(Gends)\y)- The table presents the K-S scores of each cahatrains deleted for various RPD3

complex members [25]. The RPD3 complex containsditernative sub-complexes, RPD3(L) and
RPD3(S), which share the core Rpd3-Sin3-Umel prstdtxpression profiles were obtained for
deleted members of both complexes. Significant 8c&es are highlighted (p<0.05, corrected for

multiple testing). A significant activation of Goppp cohort is notable specifically in the
RPD3(L) deleted members strains only. The activatiecomes stronger for the extended (pp4

cohort, and covers also the deleted core comptainst
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2.6.2 Regulation of Yap6 through repression by Tupl

Having tested our methodology on the well char@mger example of Gecn4, we asked
whether novel interactions could be revealed foepfFs. In particular, a lot can be learned about
a TF by examining its interaction with CMs, so wecided to focus on the TF Yap6. Yap6 has
sequence similarity to AP-1 [30] and has been lintelithium and sodium resistance [31], other
than that very little is known about the Yap6.

Examination of the behavior of the Yap6 cohort agathe entire compendium reveals a
range of potential interactions with various CN&ipplementary Table B, which is surprising
given the anonymity of Yap6. A good example of simthraction is a significant activation of the
Yap6 cohort in a strain deleted fAIDAL (K-S score = 9.03)Higure 5 A]. Hdal is the catalytic
member of theHDAL1 HDAC complex known to be involved in gene expressand silencing [32].
An interesting feature of Hdal, among other, ispésticipation in the repression mechanism of
Tupl [33]. This example is interesting since Tuplan example of a repressor that acts as a
mediator between TFs and CMs. Tupl has the albditgcruit CMs to confer repressed chromatin
structure [34]. Since Hdal is one of the Tupl uied CMs we were interested in the relation
between Tupl and Yap6. To test whether Yap6 wdniaugh Tupl we examined the Yap6 cohort
behavior in a gene expression experiment carriédnoa strain deleted foFUP1 [20]. Indeed the
Yap6 cohort exhibits a strong activation in tapl strain experiment (K-S score =18.6jgure 5
B], implying that Tupl indeed participates in th@ukation by Yap6. This activation was also
found to be even stronger than in tigal strain experiment which strongly suggesting thdaH
although fundamental, is not unique in the repagssiechanism of Yap6 cohort by Tupl and that
other CMs might participate as well [34]. Anothen@irmation that indeed Tupl and Hdal repress
these genes by a common mechanism, is the highdéwwerlap between the activated genes (Z
score > 1) in both experiments (23 genes, hypemgéric p < 0.003)$upplementary Figure 3.

A brief exploration of characteristics and functiohthe genes affected in bottDA1 and

TUP1deleted strains, reveals that they are mostlyesoimeric (15 out of 23 genes; p <"18) and
are highly enriched for members of the hexose-paristamily (5 genes, p < 0.001). Thus, our

results clearly indicate a role for Yap6 in theulagion of sugar transport that, surprisingly, is
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affected by Tupl and Hdal, and not by the CMs UWsuraplied in silencing of subtelomeric genes,
such as the Sir proteins and Setl/Isw1 [35].

Following the Gcn4 example described in the prewisaction, we went on to search for
CMs that affect the Yap6 cohort in a manner oppomtthat of Tupl-Hdal. We found that the
Yap6 cohort is significantly down regulated in east deleted foSPT3(K-S score = 7.9)Higure
5 C], a key member of the SAGA complex [36]. SAGA isvall-characterized HAT complex that
acts as a global inducer [37]. Interestingly, alitfo Spt3 is a SAGA member and was shown to be
required for the recruitment of the TATA-Bindinge®ein (TBP) to various SAGA-regulated genes
3839 o effect on the expression of the Yap6 cohors whserved in mutants deleted for either
GCN5(SAGA's catalytic subunit) or in strains carrywvayious mutations in TBP (data not shown).
Many of the SAGA complex components can also badadn a different complex, named SAGA-
Like complex (SILK), which also acts as an inducégenes [40]. Spt3 was previously shown to
regulate genes through SILK in a manner that doésaguire SAGA’s HAT activity [41], and this
kind of mechanism is suggested by our results ds Weus, our results uncover a collaboration
between Yap6 and Spt3 that is independent GEN5 suggesting the existence of an
uncharacterized interactor that provides HAT attivi

Analysis of the genes of Yap6 that aepressed(Z score > 1, see Methods) BPT3
deletion demonstrate an extensive overlap withdtamdivatedin strains deleted foHDA1 (14
genes, p < 0.009)Supplementary Figure 3. The high overlap between the genes suggests an
acetylation homeostasis achieved by the Tupl-Hdd1Spt3 -related HAT activities.
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Figure 5: Distribution of expression values for the Yap6 cohort in various CM

knockout experiments. Distributions of expression levels (log2 transformed) are
presented for the Yap6 cohort and the control group (the rest of the genes). Legends are
as in Figure 3. A) strain deleted for HDAL1 [58]. B) Strain deleted for TUP1 [20]. C) Strain
deleted for SPT3 [37].
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2.6.3 TBP -dependent Transcription Factors

As described above, CMs interact with TFs to relguigene expression. The same principle
should be applicable to additional proteins thdte Ithe CMs, have a wide influence on
transcription. The TATA Binding Protein (TBP), anteal activator of transcription, is such a
factor. The TBP regulates gene expression by bindif-rich sequences called TATA boxes,
affecting transcription of most of the genome, antlaborates with co-factors, many of which are
CMs. Among the TBP co-factors we can find Mot1 (8MF like), Spt3 (HAT), Tafl (HAT) and
the inhibitor NC2 (reviewed in [42]).

To explore possible interactions between TFs an® BBd to check the involvement of
each of the TBP co-factors in that regulation, weyed our method on the gene expression data
set generated by Chitikilet al. [43]. As TBP is an essential component of the eelgene
expression profiling of a strain deleted for TBPnist possible. Chitikilaet al. overcome this
problem by creating strains mutated for various ponent of the TBP. By over-expressing the
TBP mutants in the cell they managed to modifydbevity of the TBP. Tafl contains a domain
called TANDI, which mimics the TATA box and compately inhibits the TBP interaction with
the TATA box [43]. Another TBP inhibition mechanigamthrough TBP self dimerization.

In order to characterize inhibition mechanisi@sijtikila et al. thus created mutations that
affected TBP dimerization (TBPd), interaction willafl through deletion of the TANDI region
(DeltaT) or interaction with NC2 through a mutationthe NC2 —binding region (NC2). The NC2
complex and Tafl are considered inhibitors of tiB# Transcription induction [42]. NC2 acts by
competitively inhibiting the TBP association to TA&lnd TFIIB [43].

Over-expression of the TBPd mutations leads to efepence in the use of the non-
dimerizing mutated TBP. As such this loss of dimnation leads to a reduced functional capability
[43]. The loss of function attributed to the TBPditation allowed us to use it in our analysis to
search for TBP-dependent TFs. The other mutante weed to investigate the regulatory
contribution of NC2 and Tafl.

Our results support the generally positive reguiafonction of the TBP: a clear reduction
in gene expression of many cohorts was obsergglife 2 B]. Among the TBP -dependent TFs
we focused on Hapl, Skn7 and Swi4, three TFs logtrate different mechanisms for their TBP
regulation interaction and also the contributioreath of the cofactors NC2/Tafldble 3.
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KS score WT TBPd DeltaT NC2 TBPd DeltaT

Hapl -1.18 -6.83 1.44 8.21 -6.45
Skn7 -2.67  -12.36 5.81 4.15 -1.47
Swi4 0.21 -7.95 0.73 3.5 -6.55

Table 3: K-S scores in experiments disrupting vario us TBP interactions. The
K-S scores for the cohorts of the TFs Skn7, Swi4 and Hap4 were computed based on
expression profiles carried out for over-expressed TBP mutants [43]. WT: an empty
vector. TBPd: disruption of TBP dimerization by the TBP mutation V161E. DeltaT:
disruption of TBP-Tafl interaction using a strain with a TAND | deleted form of TAF1.
NC2: disruption of TBP-NC2 interaction using the TBP mutation F182V. While none of the
cohorts exhibit a significant activity in the WT profile experiments, in the TBP dimerization
disruption, a significant repression is notable. The significant K-S scores are highlighted

(Bonferroni corrected p-value < 0.05).
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Although TATA box-containing genes comprise only0%2 of the yeast genome [47], an
analysis of the distribution of TATA-box occupantyupplementary Table D shows that, as

expected, the TBP-dependent cohorts are highlgleedi (~40%) for TATA box-containing genes

(Hapl, Skn7 and Swi4 cohorts with hyper-geometricc 1014 p < 1020 and p < 1€P,
respectively) which illustrates the essential abation of the TBP in the transcription regulation
of these cohort. As noted before, for each of tidsg expression level by itself was not sufficient
to explain the proposed trend of its cohort (TFregpion levels are available $upplementary
Table B).

Hapl is a TF with roles in the cellular responsehéme and oxygen [44]. Its cohort,
consisting of 141 genes, is significantly repressed strain carrying the TBPd mutations (K-S
score = -6.45). These results are an indicationHapl is dependent on TBP to induce its genes. A
deletion of the TANDI region oTAF1 (DeltaT) has no effect on Hapl cohort which potatsa
TBP induction mechanism that is independent forlTéfiterestingly, mutations that affect NC2
binding caused a strong increase in the expresditre Hapl cohort (K-S score = 8.21). As stated
above, NC2 is a cofactor of the TBP that acts amlaibitor of the TBP regulation. The strong de-
repression of the Hapl cohort gives NC2 a stromgritution to the repression mechanism through
Hapl. We can conclude that Hapl is a good exanfp&tmnscription factor that promotes the
transcription of its target genes by TBP recruitimieut uses the NC2 complex to regulate these
genes in the opposite manner.

Another distinctive example of TBP dependent retjuhais that of Skn7. Skn7 is a TF
associated with various stress responses, in pkatigvith the oxidative stress response [45]. Its
cohort consists of 187 genes, and like Hapl colethibits a strong de-activation in strains
carrying the TBPd mutations (K-S score = -12.36dwedver, unlike Hapl, the Skn7 cohort also
exhibits a significant induction in the DeltaT stréK-S score = 5.81) and to a lesser extent also i
the strain defective in NC2 interaction (K-S scer4.16). The activation of Skn7 cohort in the two
deletions shows that both cofactors, Tafl and N&22ticipate in the regulation of Skn7. Unlike
NC2 contribution to Hapl regulation, the de-reps®f Skn7 cohort is less significant in both
deletions. The less significant effect of Tafl &n@d2 on the Skn7 cohort could arise from a third
cofactor that has higher contribution to the regiggs mechanism of Skn7 cohort, or alternatively
can be due to a complementary repression by thentechanisms, each with its own repression

targets. Unfortunately it is hard to test the pimEb hypotheses as no expression profiling is
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available for either a deletion of other TBP cofastor the double mutated strain, DeltaT and NC2.
In spite the lack of additional information, veritle overlap is observed among genes affected in
each of the DeltaT and NC2 mutatior&upplementary Figure 3, which gives support to the
complementary repression mechanism. We can conthateskn7 is an example of a transcription
factor that promotes the transcription of its targenes by TBP recruitment and uses both
cofactors, NC2 and Tafl to regulate its genesenojposite manner.

The last example in this thesis that illustratesgulation mechanism that is dependent on
TBP is that of Swi4. Swi4 is a central cell cycle that together with Swi6 promotes transcription
of late G1 genes [46]. The Swi4 cohort, consistrigl56 genes, is also significantly repressed
upon mutation in the TBP dimerization domain (Kedre = -7.95), but unlike Hapl and Skn7 its
cohort depends neither on Tafl nor on the NC2 szpire(K-S scores 0.73 and 3.5 respectively).
Thus, in the case of Swi4, if there is a repressm@athanism that works through the TBP, it is
conferred by factors other than the ones tested {Te&fl, NC2).

From the examples above another principle can dradel about the regulation mechanism
of the TBP. In all the experiments carried out fraies lacking both TBP dimerization and the
TANDI region (TBPd-DeltaT), a strong reduction odpeession is observed, similar to the one seen
in strains affected for dimerization onlydble 3. This epistatic effect of the TBP destabilizing
mutation points to a need for a functional TBPhe Tafl-mediated regulation.

Thus, our analysis shows that the TBP plays a akerdte in the regulation carried out by
several TFs. Furthermore, by analyzing a datadsdtdreated originally to explore the participation
of Tafl and NC2 in the TBP regulation, we were dabl@analyze not only TBP dependency, but

also the contribution level of each of the TBP aotbrs.
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3 Discussion

Chromatin organization plays a central role in mabiplogical mechanisms, and
particularly in transcription. Although many factowere found to participate in the regulation of
the chromatin structure, to date there has beesystematic study of their global contribution to
transcription. In this work, using a compendiungehome-wide profiles of strains defective in CM
activity, we lay the infrastructure to the studytb&é contribution of the CMs to transcription and
transcription regulation through their interactiomish TFs. We show that this approach is able to
detect cooperation between a TF and CMs even wloemplex combinatorial regulation is
involved. Our systematic analysis of all availaBleé cohorts against the large gene expression
compendium provides the first comprehensive piciara eukaryote of the complex regulation by
TFs in the context of chromatin organization. Weehahown that our method is robust enough to
detect novel regulation mechanisms of well-charaztd TFs (e.g., Ume6, Gcn4), as well as to
characterize regulation features of uncharacteri#es| such as Yap6. Furthermore our method is
applicable even to general factors, such as Tupll T8P. Note that our test cannot distinguish
between direct and indirect CM-TF interaction. Tdi#ficulty in separating direct effects from
indirect ones is prevalent in many studies on gegalation networks [48-51].

In the sequel we refer to some limitations of gopraach and suggest directions for future

work.

3.1 Expanding the CM compendium

The gene expression profiles collected in this wapker a comprehensive compendium of
CM complexes in the yeaSt cerevisiagby containing at least one member of each oktievn
yeast CM complexes. In the example of Gecn4 and RE@8plex illustrated above, different
functional attributes could be assigned to the RED®plex only due to the available extensive
profiling of each of the RPD3 complex members. Aditonal profiles are accumulating in the
public repositories, the current compendium coulel dxpanded to include comprehensive
characterization of other CM complexes. The additb other CM related profiling will allow us
to understand at a finer resolution the contributaf each CM complex in the regulation of

transcription.
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Another aspect that is expected to be better utabatswith the addition of other CM
related profiles is the mechanism by which envirental conditions lead to differential gene
expression. The majority of the profiles in thereat compendium were measured under standard
growth conditions (e.g., rich medium). By using aoethod on transcriptional profiles obtained in
other environments we can start to investigateghestion. As the number of CMs analyzed under
many environmental conditions grows, we expecthtaio insights into the complex mechanisms

that control environmental responses.

3.2 Improving the statistical model

Our analysis used Kolmogorov-Smirnov (K-S) analysigest whether a set of genes is
over- or under-expressed in a given gene expressmiile. This K-S test was found to be robust
for our data sets, and helped to reveal known CMiitEraction along with novel CM-TF
interactions. One shortcoming of the K-S analysishiat it is more sensitive for deviation of the
target set in the middle of the distribution. Ehreent analysis is very popular in the field of
functional genomics and some groups have usedianvaf the K-S to compensate for the K-S
limitations (e.g. GSEA [66]). Recent work even cargal various enrichment analysis tools, and
although it was shown that K-S analysis is the nsestsitive tool, the authors emphasize the
benefit of combining results from more than ondistiaal test in the analysis [67]. It would be
interesting to improve our statistical predictiondombining the results from other tools (e.g. the
Wilcoxon rank sum test).

Another aspect in our analysis that will probabhgprove our predictions is a better
definition of the TF cohort. Various studies hahewn that when binding is binarized by taking a
simple binding p-value cutoff in ChIP-on-chip déeg., p<0.001, as was used by our methodology
and by many others), a lot of valuable informai®ioverlooked [68,69]. A more flexible cutoff on
the data set or even a regression approach midtimeexploring TFs that have weak binding
specificities. Also, as precipitation methodologiesprove and better characterization of TF

cohorts is being generated, our methodology coeldui to a better use.

3.3 Working with different organisms

In recent years it has become evident that chranmmabtdifications are involved in many

important biological processes in higher eukarydBtsce modifications on histones are correlated
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with transcription, these chromatin modificationse acommonly studied in the context of
transcriptional regulation. However, it is cleaatladditional processes, related to DNA, , such as
repair, replication and recombination, are affecéed regulated by histone modifications [70].
Recent studies even link histone modifications tbep central mechanisms such as RNA
interference and DNA methylation [71]. It is notrgusing, then, to find CMs over-expressed and
mutated in many cancer cells [72]. In fact, intobst of deacetylases are now in phase | and Il
clinical trials [73].

As many CMs are evolutionarily conserved [52], $amimechanisms of regulation are
expected to be observed in higher eukaryotes. Toenaulation of data sets similar to those used
in our analysis in higher eukaryotes [53,54] wilba the application of our methodology on those
organisms. We believe that this kind of analysil aelp in understanding whether the regulatory
functions unveiled in yeast are also conservedghdr eukaryotes, and will also provide insights
into the overall global regulatory mechanisms thaterlie many central processes.

Our understanding of transcription regulation hadergone several transformations over
the last decade, and the emerging picture is vemptex. Alternative splicing, RNA-based
regulation and chromatin organization are todaygazed as central regulatory mechanisms of
gene expression. Still, our understanding of ed¢hese processes is incomplete. We hope that the
proposed methodology will be able to shed lighttbe effects of chromatin modifications on

transcription factors and on transcription regolatin general.
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4 Methods

4.1 K-S analysis

Given two samples of values, the Kolmogorov-Smirr{gvS) test [10] is designed to
examine whether they have the same value distobufihe main advantage of this test is that it
makes no assumption on the distributions from whiah samples originated. This is important
when dealing with expression profiles from differsaurces.

For each value v the K-S test measures the difteram the fraction of genes that have an
expression value lower than v between the contndl the cohort samples. The K-S statistic is
defined to be the maximum absolute value of thifrdince.

In the case of the null hypothesis (the two samgpi@gnate from the same distribution) the

distribution of the statistic can be calculated @ang-value K-g.yajye can be assigned to the
disparity between the two samples [10].

The K-S score is defined as: Ksgre= -10910(K-Sp-valug if the statistic is positive and
logy o(K-Sp-valug otherwise. Hence, the absolute value of thegippeindicates significance of

the disparity, and its sign indicates the directairnthe disparity: a positive sign shows that the

cohort genes tend to have higher values than gief¢he genes.

4.2 Yeast genome

6646 Yeast ORFs were retrieved from Saccharomycesno@e Database
(www.yeastgenome.org) (version July 2005). To dvoioss-hybridization biases in the gene
expression and location data set, 103 ORFs, congaimitochondrial genes and short dubious
ORFs were ignored in the analys&upplementary Table g.

4.3 Data preparation

170 gene expression profiles obtained with streangated for various CMs were collected
from 26 publications. The complete list of publioas and experiments is available in
Supplementary Table A Data were downloaded from papers’ web supplem&tasmalization
was done as in [55].
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TF-DNA binding profiles were obtained from Harbisehal. [1]. A p-value cutoff of 0.001
was used to define the set of genes bound by ewartTF (the TF cohort).

To account for the strong correlated response ef ribosomal genes [55] in most
experiments, all TFs that were found to be sigaifity enriched (p<0.001) in ribosome related GO
terms were excluded from the analy$Ssiplementary Table B. Our analysis used the remaining
75 cohorts, containing at least 50 genes, that weiginated from 49 TF tested in different

environments.

4.4 Altered gene groups and their overlap test

A gene is considered altered in a gene expressiperiment if its Z-score is greater than 1.
Given a gene expression experimenwith average and SD , and a TF cohort S (the TF target
gene group), the elevated cohort genes are dedisietie = {g in S| E(g) > + } while the set of
declining genes is defined as: {gin S| E(g) < }.

Given two altered (elevated or reduced) sub-grdepand S from S, the significance of
their overlap is calculated using the hyper-geometistribution, where S is considered as the

samples pool.

4.5 Annotation enrichment

All GO annotations were taken from the Gene Omjpldatabase [56] (version July 2005).
Annotation enrichments were obtained using the TEAN@ogram [57]. TANGO finds GO terms
that are enriched with the target set in study. 3inength of TANGO is to provide a p-value for

that enrichment using simulation of random samgling

4.6 Hierarchical clustering

Hierarchical clustering of the cohorts and the expental conditions based on the
significant K-S scores matrix (all |K-S scores| 3)1lwas carried out using the EXPANDER

analysis and visualization tool (Version 3.0) [57].
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Appendix: Supplements

Supplementary Table A: The publications from which the gene expression dat a

were obtained

The CM gene expression compendium is compose®Bansays taken from different publication.

This table refers to the relevant publications.

Name

Sudarsanam et al.

Geisberg et al.
Angus-Hill et al.

Krogan et al.
Fazzio et al.
Meneghini et al.

Mizuguch et al.
Bernstein et al.
Bernstein et al.
Chitikila et al.

Martin et al.
Sabet et al.
Keogh et al.

Huisinga et al.

Ingvarsdottir et al.

Orlandi et al.
Rosaleny et al.

Eriksson et al.
Xu et al.

Attikum et al.

Kaeberlein et al.

Boa et al.
Hughes et al.
Mnaimneh et al.

Dasgupta et al.

Pubmed
ID

10725359

11283253
11336698

15353583

11533234

12628191

14645854
11095743
12060701
12419230

15280228

15456858

16286008

14992726

15657441

14623890

16023114

16199888
15882620

15607975

15126388

12845608
10929718
15242642

11880621

Full Name

Whole genome expression analysis of snf/swi mutants of S.cerevisiae

yeast NC2 associates with the RNA polymerase Il pre-initiation complex and
selectively affects transcription in vivo

rsc3/rsc30 zinc cluster dimmer

Regulation of chromosome stability by the histone H2A variant Htz1, the Swrl
chromatin remodeling complex, and the histone acetyltransferase NuA4
Widespread collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling
Complexes in Transcriptional Repression

Conserved histone variant H2A.Z protects euchromatin from the ectopic
spread of silent heterochromatin

ATP-driven exchange of histone H2A.Z variant catalyzed by SWR1 chromatin
remodeling complex

Genome-wide studies of histone deacetylase function in yeast

Methylation of histone H3 Lys 4 in coding regions of active genes.

Interplay of TBP inhibitors in global transcriptional control

Redundant Roles for histone H3 N-terminal lysine residues in subtelomeric
gene repression in Saccharomyces cerevisiae.

Genome-wide analysis of the relationship between transcriptional regulation by
Rpd3p and the histone H3 and H4 amino termini in budding yeast.
Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive
Rpd3 complex.

A genome-wide housekeeping role for TFIID and a highly regulated stress-
related role for SAGA in Saccharomyces cerevisiae.

H2B ubiquitin protease Ubp8 and Sgfll constitute a discrete functional module
within the Saccharomyces cerevisiae SAGA complex.

Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene
expression and insurgence of oxidative stress response

Yeast HAT1 and HAT?2 deletions have different life-span and transcriptome
phenotypes

Global regulation by the yeast Spt10 protein is mediated through chromatin
structure and the histone upstream activating sequence elements.

Acetylation in histone h3 globular domain regulates gene expression in yeast.
Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-
Dependent Chromatin Remodeling with DNA Double-Strand Break Repair.
Saccharomyces cerevisiae SSD1-V confers longevity by Sir2p-independent
mechanism.

Saccharomyces cerevisiae Setlp is a methyltransferase specific for lysine 4 of
histone H3 and is required for efficient gene expression.

Functional discovery via a compendium of expression profiles.

Exploration of Essential Gene functions via Titratable Promoter Alleles.

Motl activates and represses transcription by direct, ATPase-dependent
mechanisms.
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Genome-wide relationships between TAF1 and histone acetyltransferases in
Durant et al. 16537921 Saccharomyces cerevisiae.
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'Supplementary Table B: All KS scores.

Supplementary Table C: All the ORFs excluded from o  ur analysis . To avoid cross-
hybridization biases in the gene expression andatlon data set, 103 ORFs, containing

mitochondrial genes and short dubious ORFs wererigghin the analysis.

C0OS2 YHLO50C YMR325W
COSs7 YBL111C YLLO25W
COS4 YHR218W YIR041W
COS12 YFLO66C YBL108C-A
COS6 YLR464W Q0010
COS8 YELO76C Q0017
COS5 YFLOG68W Q0032
COS9 YELO76W-C COX1
COS3 YLR463C All
Cos1 YHLO49C Al2
COS10 YBL112C AI3
PAU7 YFLO67W Al4
PAU3 YPR203W AIS_ALPHA
PAU2 YFLO65C AIS_BETA
PAUS YLR465C AAP1
PAU1 YPR202W ATP6
PAU4 YFLO64C Q0092
PAUG6 YELO75C COB
YRF1-1 YER189W BI2
YRF1-2 YLR462W BI3
YRF1-3 DAN1 Bl4
YRF1-4 DAN2 OoLI1
YRF1-5 DAN3 VAR1
YRF1-6 DAN4 Q0142
YRF1-7 YGR294W Q0143
YOR396W YHLO46C Q0144
YML133C YIL176C SCEI
YLLO66C YDR542W Q0182
YIL177C YLLO64C COX2
YJL225C YALO68C Q0255
YELO77C YGL261C COX3
YLLO67C YOL161C Q0297
YHR219W YKL224C HXT12
YPR204W YOR394W SDC25
YBL113C YPL282C

! Long supplements are not included in the thesis are available via thdlature Geneticsupplemental

information pagéittp://www.nature.com/ng/journal/v39/n3/suppinfol®8§5_S1.html
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Supplementary Table D: The full cohort-TATA box occ  upancy level .

The total number of genes that are targeted by @&sT3698 (see the paper methods section).
According to Basehoar et al. 764 of the above meetl, TF targeted, genes contain a TATA box
(~20%). This Table presents the TATA box frequéncgach of the TF cohorts analyzed in our

work.
% Genes with
Cohort Number of Genes with TATA box in Log (hyper-

Cohort Name Size TATA box in Cohort Cohort geometric p)

SKN7_H202Lo 187 73 0.39 -20.22
NRG1_H20O2Hi 126 51 0.4 -15.88
CIN5_YPD 150 57 0.38 -15.05
HAP1_YPD 141 54 0.38 -14.63
SUT1_YPD 69 30 0.43 -11.62
SOK2_BUT14 73 31 0.42 -11.39
HSF1_H202Lo 102 39 0.38 -10.99
DAL81_RAPA 95 37 0.38 -10.97
HSF1_H2O2Hi 125 45 0.36 -10.69
MSN2_H20O2Hi 79 32 0.4 -10.59
CIN5_H202Lo 127 45 0.35 -10.26
SWI4_YPD 156 52 0.33 -9.77
YAP6_YPD 91 33 0.36 -8.46
PHD1_BUT90 106 37 0.34 -8.43
GLN3_RAPA 68 26 0.38 -7.9
GCN4_SM 189 57 0.3 -7.73
RLM1_YPD 55 22 0.4 -7.61
SKN7_H202Hi 99 34 0.34 -7.58
NDD1_YPD 85 30 0.35 -7.37
SWI6_YPD 153 47 0.3 -7.11
SWI5_YPD 102 34 0.33 -7.03
ASH1 BUT14 51 20 0.39 -6.79
MSN4_H20O2Hi 70 25 0.35 -6.6
XBP1_H202Lo 68 24 0.35 -6.24
NRG1_YPD 72 25 0.34 -6.2
YAP7_H202Lo 152 45 0.29 -6.16
GCR2_SM 54 20 0.37 -6.05
PHD1_YPD 67 23 0.34 -5.69
STE12 _BUT14 128 38 0.29 -5.55
YAP7_H202Hi 141 41 0.29 -5.49
GCN4_RAPA 160 45 0.28 -5.27
STE12_YPD 54 19 0.35 -5.25
RIM101 _H202Lo 54 19 0.35 -5.25
FKH2_H2O2Hi 106 32 0.3 -5.21
STE12 BUT90 78 25 0.32 -5.15
YAP6_H202Lo 59 20 0.33 -5.03
GCN4_YPD 75 24 0.32 -5
MBP1_YPD 130 37 0.28 -4.85
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SKN7_YPD
CIN5_H202Hi
YAP1_YPD
UME6_YPD
CBF1_SM
HAP4_YPD
MBP1_H2O02Hi
UMEG6_H202Hi
YAP6_H202Hi
PUT3_H202Lo
STE12_Alpha
FKH2_YPD
OAF1_YPD
AFT2_H202Lo
MCM1_Alpha
RCS1_H202Hi
DIG1_BUT14
DAL82_SM
ROX1_YPD
SMP1_YPD
TYE7_YPD
RTG3_RAPA
AFT2_H2O02Hi
DAL82_RAPA
FHL1_YPD
FKH1_YPD
MCM1_YPD
MGA1_YPD
PDR1_YPD
PHO4_YPD
RAP1_YPD
REB1_YPD
SUM1_YPD
YAP5_YPD
FHL1_SM
STP1_SM

FHL1 _RAPA
MSN4_RAPA
REB1_H2O02Hi
MBP1_H202Lo
RCS1_H202Lo
RPN4_H202Lo
DIG1_Alpha

67
80
72
131
279
67
133
102
79
88
115
121
59
98
106
52
63
55
67
77
56
52
61
56
188
142
77
63
68
72
162
146
59
56
204
68
191
54
59
58
260
100
60

21
24
22
35
67
20
35
28
22
22
26
27
15
22
23
13
15
13
15
16
13
12
13
12
13
25
14

11
10
23
15

20
10
14

~

29
14
12
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0.31
0.3
0.3

0.26

0.24

0.29

0.26

0.27

0.27

0.25

0.22

0.22

0.25

0.22

0.21

0.25

0.23

0.23

0.22
0.2

0.23

0.23

0.21

0.21

0.06

0.17

0.18

0.07

0.16

0.13

0.14
0.1

0.15

0.12

0.09

0.14

0.07

0.12

0.11

0.13

0.11

0.14
0.2

cNeoNeoNeolNolNolNoNolNolNolNolNolNolNolNololNolNolNo]



Supplementary Table E: All cohorts found to be enri
terms using TANGO.

ched in ribosomal related GO

Ribosomal genes are known to be highly sensitivany environmental change. To reduce

artificial CM assignments, cohort rich in ribosomaksociated genes were excluded from the

analysis. This table presents only those TF cohtivtd were found to be rich in ribosomal

associated genes. GO annotations were taken franGdne Ontology database (version July

2005). Annotation enrichments were obtained udwegfANGO program.

TF name
FHL1 _YPD
FHL1 YPD
FHL1 YPD
FHL1 YPD
FHL1 YPD
PDR1 _YPD
RAP1_YPD
RAP1_YPD
RAP1_YPD
RAP1_YPD
YAP5_YPD
FHL1 SM
FHL1 SM
FHL1 SM
SFP1_SM
SFP1_SM
FHL1 RAPA
FHL1 RAPA
FHL1 RAPA
FHL1 RAPA
FHL1 RAPA

GO ID

G0:0005830
G0:0003735
G0:0005840
G0:0005842
G0:0005843
G0:0005842
G0:0005830
G0:0003735
G0:0005842
G0:0042257
G0:0005830
G0:0005830
G0:0003735
G0:0005843
G0:0005830
G0:0003735
G0:0005830
G0:0003735
G0:0005842
G0:0005843
G0:0042257

Uncorrected
Hypergeometric
p-value (log10)
-156.236
-133.941
-124.924
-84.1339
-71.8443
-9.1932
-73.3795
-63.4241
-44.6747
-9.6891
-9.1447
-134.706
-114.827
-62.963
-39.3035
-36.6689
-143.568
-123.031
-81.3824
-62.3605
-14.7904

Corrected

Hypergeometric

p-value (log10)
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Fraction of Genes
with Annotation in

the Cohort

0.61
0.61
0.63
0.33
0.27
0.16
0.43
0.43
0.25
0.08
0.23
0.52
0.53
0.24
0.67
0.69
0.57
0.58
0.32
0.25
0.09

Number of
Genes with
Annotation in
the Cohort

115
116
119
63
52
11
70
71
41
13
13
108
109
49
31
32
110
111
62
48
18



“Supplementary Table F: All unique pairs of TFs ar@Ms taken from Supplementary Table B.
Each TF and each CM could be represented by varoperiments. This table presents the unique
pairing of TFs and CMs. For each pair the highesSkcore is given followed by the significant

interaction numbers, taken from Supplementary TBblgat support this pairing.

“Supplementary Table G: All Pairs of TF cohorts thahare a significant amount of genes.
For each pair of TF cohorts defined in the samedttoon, a hyper-geometric p was calculated on
their intersection. Presented are all the intergmts that were found to be significant, after

bonferroni multiple correction (p<0.01).

2 Long supplements are not included in the thesib @e available via thdlature Geneticsupplemental

information pagéittp://www.nature.com/ng/journal/v39/n3/suppinfol®8§5_S1.html
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Supplementary Figure 1: Detailed clustering of the compendium . As in Figure 2B,
rows represent TF cohorts and columns representlitons. Colors indicate CM-cohort K-S
scores. To obtain a global view of the TF-CM intdi@n landscape, we hierarchically
clustered the cohorts and conditions accordinghteirt K-S scores (positive scores in red and
negative in green). Groups of functionally relat€ffs (ordinate) and functionally related
conditions (abscissa) are marked. TFs that shamgaificant number of genes with the TF
immediately above them are marked with asterisksst€red cohorts of the same TF (under
different conditions) are marked by dots.
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Supplementary Figure 2: Overlap of altered genes of

three experiments.

the Yap6 and Skn7 cohorts in

A) Out of the 91 genes in the Yap6 cohort, 35 sd@waotable induction in a hdalD strain, 42

showed induction in a tup1D strain, and 23 a notatglpression in a strain deleted for SPT3. The
significance of the overlap is indicated (hyper-getric p-value). B) Out of 187 genes in the Sknl

cohort, 45 showed a notable induction in the Del&rain, 49 a notable induction in the NC2

strain, and 63 a notable repression in the TBPdistrThe significance of the overlap is indicated

(hyper-geometric p-value).

Yap6 Cohort (91)

p<0.009

p<0.003 0<0.06

tup1A

Skn7 Cohort (187)

p <0.03

DeltaT

p < 0.002 0 <10°

TBPd
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