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ABSTRACT 

Transcription regulation is fundamental in many biological processes in all living 

organisms. A particularly extensively studied area in transcription regulation is that of genes, where 

the major transcriptional program is governed by transcription factors. These factors have affinity 

to specific sequences in the DNA, upstream of the transcription start site of the genes they regulate. 

Yet, not all phenotypes can be explained by regulation in the DNA level. For example, different 

cell types, having the same DNA content, carry out different transcriptional programs. Hence, it is 

clear that other factors participate in the complexity and diversity of transcription regulation. 

Another major factor, found in recent years to play an important role in transcription 

regulation, is chromatin structure. A condensed chromatin structure can prevent the access of 

external factors, such as transcription factors, thereby preventing execution of sequence-based 

transcription programs. Many factors that influence chromatin structure have been identified, but 

the transcriptional programs in which they participate are still poorly understood. In various cases 

chromatin modifiers participate in transcriptional control together with DNA bound transcription 

factors. Novel high-throughput experimental methods allow the genome-wide identification of 

binding sites for transcription factors, as well as the quantification of gene expression under various 

environmental and genetic conditions.  

In this thesis we study the contribution of chromatin structure to transcription. To do so we 

have developed a new statistical model methodology that uses and the vast amount of available 

data to dissect the intricate relationships of chromatin modifiers and transcription factors. Using our 

methodology we were able to measure and characterize the dependency of transcription factors on 

specific chromatin modifiers in carrying out their transcriptional programs.  

Our methodology was applied to one of the most widely used and basic eukaryote model 

organism, Saccharomyces cerevisiae. We collected a diverse compendium of gene expression 

profiles, comprising 170 experiments of strains defective for chromatin modifiers, taken from 26 

different studies.  Our method succeeds in identifying known intricate genetic interactions between 

chromatin modifiers and transcription factors and uncovers many novel genetic interactions. Our 

analysis gives the first comprehensive picture of the contribution of chromatin structure to 

transcription in a eukaryote.  
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1 INTRODUCTION 

Transcription regulation is a basic mechanism for controlling biological processes in all 

living organisms. In particular, the transcription regulation of the genes, being the main functional 

entities in the genome, is fundamental in controlling many biological processes. Hence, the 

characterization of the gene transcriptional programs is central in the ongoing exploration of 

biological processes. 

Modern biology is undergoing an information revolution in the last decade, which is 

apparent in a shift of thinking and practice. The emergence of novel high-throughput technologies 

enables the quantification of various biological features in a genomic scale. Although this 

revolution has great advanced the analysis of the complex regulatory networks, it generated a grave 

need in tools from other research disciplines, such as computer science, statistics and physics.  

In this thesis we rely on the integration of methods taken from the field of mathematics and 

concepts taken from biology. We describe the statistical tools used, and also give many biological 

examples and discuss their implication to future research. The utilization of the high-throughput 

information gives us the ability to understand biological mechanism on the systemic level. Our goal 

was to portray the influence of chromatin structure on the regulation of gene transcription. The 

results of this thesis were recently published in Nature Genetics [74]. 

We start with a brief review on the field of transcription regulation, high throughput 

methods and chromatin. We continue with underlining our methods and introducing the 

compendium of gene expression profiles we have assembled. We finish with an exploration of the 

intricate interplay between transcription factors and chromatin dynamics, which is a key part in the 

transcriptional program. 

 

1.1 Biological processes are regulated at the transcriptional level 

The information necessary for carrying out most of the biological processes in any cell is 

encoded as genes in the DNA. According to the central dogma of biological information flow, 

biological processes begin at the DNA level, which is transcribed to mRNA and then translated into 

protein. In the scope of this thesis we consider a gene to be an open reading frame in the genome 

that encodes for a protein. The proper function of the information flow in both the right time and 
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place is dependent on various levels of regulation. Both transcription (DNA to RNA) and 

translation (RNA to protein) are regulated positively or negatively by many cellular factors. 

The fate of a given cell at any point in time is determined by its particular program of gene 

expression. In eukaryotic genomes, gene regulation at the transcription level is governed mainly by 

proteins that facilitate transcription by binding to gene promoters and recruiting the transcription 

machinery. Another set of proteins prevents transcription of certain genes by binding to their 

promoters and preventing the recruitment of the transcription machinery. In this thesis we will refer 

to both types of regulators (positive and negative) by the general term Transcription Factor (TF).  

The current estimate is that there are about 25,000 genes in the human genome. In the yeast 

S. cerevisiae, which has a smaller genome, gene organization is simpler and better understood and 

the number of predicted genes is approximately 6,000. This high number of genes, even in simple 

organisms, constitutes a complex system that has to be fine tuned and regulated for specific 

biological process. The major mechanism of regulation is by usage of TFs. Both the binding and 

activity of TFs can be regulated in order to control the level of transcription of each gene. As such, 

each gene has a specific transcriptional program, largely manifested by its TF binding sites, which 

control the level of its expression at any given time.  

 

1.2 High throughput technologies  

With the emergence of new high throughput technologies, the classical way of analyzing a 

biological phenomenon, with experiments aimed at dissecting the role of one or two proteins in a 

specific process, is starting to shift to examining the phenomenon at the system level. New 

technologies and algorithms enable the researcher to perform experiments at a genomic scale, thus 

allowing to ask much more wide-ranging questions. The rapid collection of information needs to be 

handled by organization methods and also be analyzed by methods taken from the field of 

information theory. Not surprisingly methods developed in computer science are utilized in the 

analysis of specific processes as well as in the dissection of the system as a whole. Here we 

describe two applications for such novel technologies that have revolutionized the way we explore 

and examine biological systems.   
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1.2.1 DNA microarrays measure gene expression at genomic scale  

First introduced in 1995 [60], microarray technology is a powerful tool enabling, in one 

experiment, to have a quantification of sequence information at a genomic scale. Microarrays are 

used for measuring both RNA (e.g transcripts levels), and DNA (e.g. DNA copy number variations 

and SNP detection). The basic technology used in microarrays consists of DNA fragments attached 

covalently to a solid surface. The DNA fragments are grouped according to sequence identity and 

act as probes. By measuring the hybridization level of the tested sample to each fragment set, we 

can quantify the amount of the features measured. The ability to generate a collection of probes that 

represent the gene ensemble of an entire genome, allows the researcher to measure each of the 

genes transcript level in a particular environment and time. 

Two main array technologies are currently used: spotted arrays and oligonucleotide 

microarrays. In spotted arrays the probes are usually cDNAs or oligonucleotides that are spotted on 

the array and correspond to mRNA. The experiment is a comparison between two samples, each 

labeled with different fluorophores (e.g. cyanine 3 and cyanine 5), resulting in the ratio of 

expression for each gene. In oligonucleotide arrays the probes are usually of a fixed length of about 

25 nucleotides and are synthesized to match the gene in question. The design of proper controls 

enables the absolute quantification of RNA levels, but to compare two strains, two arrays need to 

be used. 

The common use of expression profiling is to pinpoint particular genes that participate in a 

biological process and indeed the microarray technology has become a common tool in many 

research laboratories, exploring any basic mechanism, from heat shock response in E. coli [61] to 

cell cycle progression in S. cerevisiae [62] and cancer prognosis in humans [63]. 

As gene expression profiles are accumulated in the repositories, we can start to organize the 

transcriptional programs imposed on the genes. This will be a first step in uncovering the key 

players that participate in the regulation of biological processes.  

 

1.2.2 TF binding via chromatin immuno-precipitation and microarrays 

Recent studies have shown that DNA microarrays can be used in combination with 

immuno-precipitation, to associate genomic sequences to particular cellular factors [1]. The method 

called ChIP-on-chip or location analysis starts by treating in-vivo a cell population of interest with 
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formaldehyde. The formaldehyde cross-links proteins to the DNA thus keeping the factors involved 

in DNA-mediated regulation, such as TFs, bound to the DNA at the regulated sites. The next step is 

fragmentation of the DNA (into fragments of 0.2-1Kb), commonly done by sonication. Using 

specific antibodies for the factor in study, the DNA fragments attached to the factor are precipitated 

(hence, immuno-percipitation). At this step the microarray is used to map each precipitated 

fragment to the genome (total DNA is used as a reference in the microarray analysis). 

As described before, TFs bind upstream of their regulated genes, and various studies have 

used location analysis to map the binding locations of a particular TF in the genome. In this case, 

the microarray is designed to have probes for the promoters of each gene. The output of such 

analysis is the gene set that is predicted to be regulated by the TF studied.  

The accumulation of experiments carried out for different TFs in different environments 

have redefined what we know about the network of transcriptional regulation and are fundamental 

in understanding the transcriptional programs in living cells.  

The ChIP-on-chip technology is still improving, both in precipitation procedures, and also 

in resolution and coverage of the microarrays. These advancements in technology provide data with 

higher quality and facilitate the research of more complex systems. 

 

 

1.3 Chromatin structure and chromatin modification factors 

In all living cells the DNA is wrapped around proteins called histones, thus forming 

chromatin. The repeating subunit of the chromatin, the nucleosome, consists of 146 DNA 

nucleotides wrapped around the histone core, which carries one subunit of each of the four 

histones: H2A, H2B, H3 and H4. The main function of the chromatin is to pack the DNA 

efficiently in the cell, but it was also shown to participate in crucial processes such as mitosis, 

replication, DNA damage, and gene expression [64]. One important aspect of nucleosome 

regulation is granted by the accessibility of the histone tails to various proteins. Each histone tail, 

the N-terminus of the histone, has unique characteristics of amino acid composition and length. The 

function of the histone tails is not clear, but they have been shown to bind other proteins as well as 

to undergo post translational modifications. These modifications can change the chromatin state 

and thus participate in the regulation of many chromatin related processes. 
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The efficiency of a TF in governing transcription depends on various elements. The affinity 

of the TF for its promoters is one of them; another crucial factor is the chromatin state of the 

regulated genes. As stated above, chromatin configuration may determine the accessibility of the 

promoter to external factors and also the performance of the transcription machinery [2,3]. In 

eukaryotic cells many proteins influence chromatin structure; these are referred to as chromatin 

modifiers (CMs). Most CMs are believed to work by affecting histones along the chromatin. The 

presence of such CMs at the vicinity of a transcribed gene could change the efficiency of 

transcription by enabling the formation of a chromatin structure needed for TF activity [Figure 1 

A]. For example, some CMs confer a chromatin state that is condensed and compact. This "closed" 

chromatin structure is less accessible to the transcriptional machinery. If it occurs in the gene's 

promoter, it will diminish the transcription efficiency of that gene. CMs are also known to act in the 

opposite direction, causing the chromatin to adopt a less compact configuration, and thus enabling 

gene expression.  

 

CMs are usually divided into two main groups according to their biochemical activity: 

factors that utilize ATP, and factors that are ATP-independent. Among the ATP-independent CMs 

a widely explored group comprises the histone acetyltransferases (HATs) and the histone 

deacetylases (HDACs) [2]. The addition of acetyl groups to specific lysine residues on the N-

terminal histone tails by the HATs is believed to create a less condensed chromatin structure. 

Previous work showed that hyperacetylated regions are in general highly transcribed while 

hypoacetylated regions are silent [4]. Other ATP-independent CMs are the histone 

methyltransferases. The methylation of N-terminal histone tail has been linked to transcription 

activation and repression in many organisms [5,6]. Additional histone modifications such as 

phosphorylation and ubiquitylation are known, and the mechanisms by which these modifications 

affect transcription constitute one of the most active areas of current research. 

An additional group of CMs are the ATP-dependent chromatin remodelers [3]. These highly 

conserved modifiers usually act as multi-protein complexes that contain an ATPase subunit. The 

mechanism by which they act is still unclear. Some remodelers are able to destabilize the 

nucleosomes, allowing the binding of factors to the DNA; others can shift the position of 

nucleosomes along the chromatin, affecting chromatin structure [2].  
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Figure 1: A model for chromatin modifier-mediated transcription. A) In a 

"closed" chromatin structure (upper diagram) the transcriptional machinery is less 

accessible to the gene's promoter; in that situation the efficiency of transcription 

diminishes. The activity of a CM relaxes the chromatin into an "open" structure (lower 

diagram), which promotes transcription by facilitating accessibility. In some cases CMs are 

known to act in the opposite direction, causing the chromatin to adopt a more compact 

configuration, and thus preventing gene expression [3,4,6,34]. B) Upon activation of a TF, 

each of the TF target genes is induced according to various parameters, among others its 

chromatin structure. The interaction between TF and CM enables the activation of those 

genes located in regions with "closed" chromatin (upper diagram). In strains mutated for 

CM genes, the absence of the CM will lead to changes in the expression levels of those 

genes that depend on the CM for transcription (lower diagram). 
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1.4 The influence of chromatin modifiers on transcription 

As both CMs and TFs carry out related functions with respect to transcription, cooperation 

is expected between them in transcriptional programs. Such programs can be generated 

combinatorially, where each factor has its own group (cohort) of regulated genes, and cohorts of 

different factors intersect in various environments generating a specific program. In this thesis we 

explore the physical cooperation of CMs and TFs. One simple model of cooperation predicts that 

some TFs might require the recruitment of a CM to facilitate their activity [Figure 1 B]. In such 

cases the CM could be seen as a cofactor of transcription.  

The budding yeast, Saccharomyces cerevisiae, is an excellent organism to model eukaryotic 

transcription regulation. It is one of the most intensively explored eukaryotic organisms, 

particularly in molecular biology. Most new technologies are implemented first on this yeast and as 

such, vast amount of information has accumulated regarding its gene functions and their 

transcriptional networks. In this model organism several interactions between CMs and TFs have 

been studied in detail [7-9]. We set out to systematically exploring the nature of these interactions. 

In this thesis we have assembled a large compendium of gene expression experiments in 

which various CMs were deleted or genetically manipulated. Using a statistical approach, we have 

carried out a systematic search for TF-CM pairs that function in concert. We show that our 

compendium allows a system level overview of the effect of chromatin on transcription and also 

pinpoints specific TF-CM interplays. We test our method on known examples and shed light on the 

regulation of such interactions. In addition, we uncover many novel potential TF-CM interactions, 

which may provide new insights into the mechanism of chromatin structure mediated regulation. 
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2 Results 

2.1 The CM compendium 

Two types of high-throughput data set were used in this thesis. To obtain a complete list of 

cohorts and their respective regulating TFs we used the comprehensive dataset of Harbison et al. 

[1] (ChIP-on-chip, see Introduction),. In their dataset, a statistical model was applied on the raw 

signals of the array and a measure of significance (p-value) was given for each TF and gene. This 

p-value reflects the level of confidence for finding the particular TF bound at a particular gene’s 

promoter. Harbison et al. carried out location analysis for 204 proteins presumed to have affinity to 

the DNA and thus that could function as transcription factors. The location experiment were 

conducted in YPD (Yeast extract Peptone Dextrose), normal rich medium. For 84 TFs the location 

analysis was carried out also in at least one more condition. The conditions were chosen to 

resemble to environments for which the TF is expected to become active, as for some TFs the 

appearance of a regulated cohort is dependent on the condition in question. For example, Msn2 and 

Msn4 together regulate the main general stress response; however, in rich medium their activity is 

not expected. Thus, we would not expect to see a strong binding to the promoters of their cohort in 

rich medium, and only in conditions of stress (such as extreme heat) their cohorts should be 

notable. We selected for each of the analyzed TFs, the group of genes it binds to (its cohort), by 

applying a strict binding threshold of p-value < 0.001. According to the original publication, this 

ensures a low level of false positives (<8 %) [1].  

The second data set, a gene expression compendium, was gathered from the literature, and 

contains experiments carried out with yeast strains in which particular CMs were deleted or 

genetically modified to loose their catalytic capability [Supplementary Table A]. This 

compendium, consisting of 170 gene expression profiles taken from 26 different publications, 

covers more than 60 potential interacting CMs. CMs usually operate in large complexes of proteins, 

and in a manner that is not fully understood share many components, even between complexes of 

opposite biochemical activity. The compendium is comprehensive for CM complexes it covers, 

having at least one member (usually the catalytic one) of most of the known CM complexes in S. 

cerevisiae. Such complexes function as histone acetyl transferases (HATs: the NuA4, HAT1 and 

SAGA complexes) and histone deacetylases (HDACs: the RPD3, HDA1 and SET3 complexes), 
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respectively, adding and removing acetyl groups from conserved lysine residues on the histone 

tails. Other complexes function as ATP dependent chromatin remodelers (the SWI/SNF, SWR1, 

INO80, ISWI and RSC complexes). For example, RSC complex is presumed to generate negative 

supercoiled DNA [65] and the SWR complex substitutes H2A histone by its variant H2A.Z (Htz1) 

in the nucleosome, giving the nucleosome different characteristics [21]. Yet for most of the 

remodelers, although clearly having important functions in the cell (e.g SWI/SNF), their 

biochemical function is still not clear. In addition to the two main sets of complexes described 

above, the compendium also encompass histone methyltransferases complexes (the COMPASS 

complex), and other chromatin-affecting and co-factors such as Spt10, Sir proteins, TBP, etc. 

[Figure 2 A].  

The compendium described above is the first attempt to collectively build a resource that 

can be a starting point in any analysis of the involvement of CMs in transcription. The work 

described in this thesis relates to that part of transcription that is regulated by the transcription 

factors, but other angles of research could be easily implemented. 



15 

  

 

 

Figure 2A: The CM gene expression compendium. The expression profiles 

available in the compendium. Each of the listed CMs has one or more profiles in the 

compendium, created by a genetic alteration of the CM in the yeast genome. CMs that 

belong to the same complex are circumscribed by an oval, with the complex name in bold. 

Colors indicate the CM's proposed biochemical activity: HATs in light blue, HDACs in red, 

methyltransferases in orange, Ubiquitin-conjugating enzymes in magenta, chromatin 

remodelers in green, TAF-related factors in dark blue, silencing factors in brown and 

Histone subunits in black. The full references of the studies are available in 

Supplementary Table A.  
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Figure 2B: The CM gene expression compendium. B) Clustering of the 

compendium. Rows represent TF cohorts and columns represent conditions. Colors 

indicate CM-cohort K-S scores. To obtain a global view of the TF-CM interaction 

landscape, we hierarchically clustered the cohorts and conditions according to their K-S 

scores (positive scores in red and negative in green). Groups of functionally related TFs 

(ordinate) and functionally related conditions (abscissa) are marked. Using the global view 

we can see that mutations affecting general repressors, like Tup1, show a global 

activation of most cohorts while mutations in general activators, such as the TATA Binding 

Protein (TBP), exhibit the opposite effect. The detailed hierarchical clustering solution is 

available in Supplementary Figure 1. 
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2.2 The model 

Our goal was to investigate whether there are selective interactions between a TF and any of 

the CMs in our compendium. The rationale was as follows: Mutations affecting a particular CM are 

expected to have a broad effect on gene expression, affecting many genes. If, however, activation 

or repression of genes by a specific TF depends particularly on the activity of a certain CM, we 

expect to see that mutations in the CM cause a preferential effect on expression of the TF target 

genes [Figure 1 B]. To test whether the regulation by a particular TF is affected by deletion of a 

CM, we partitioned the gene expression profile of a CM-mutated strain into two groups: the TF 

cohort (the genes bound by the TF and thus directly regulated by it) and the control group, 

consisting of the rest of the genes in the genome. If no particular interaction (direct or indirect) 

exists between the CM and the TF, we expect to observe the same distribution of gene expression 

levels in both groups. In contrast, if the TF and CM cooperate in controlling the expression of a 

subset of genes, deletion of the CM should cause a differential change in expression of these genes 

[Figure 1 B].  

 

2.3 The statistical test 

To evaluate the difference in the distribution of gene expression values in the two groups 

(the cohort and the control) we used the Kolmogorov-Smirnov (K-S) statistical test [10]. This test is 

appropriate for two main reasons:  

1) It is a non-parametric test. Due to its non-parametric nature, the test is robust and does 

not require any linear normalization of the expression values. This feature is imperative when 

dealing with heterogeneous sources and thus, it is suitable to our dataset which contains diverse 

expression profiles originating from many studies. Another benefit that comes from this feature is 

that no threshold is needed to be affixed. Thus, no data is lost because of arbitrary thresholds (e.g. 

two-folded expression of genes for the definition of activation) and even the slightest trends can be 

observed. 

2) It provides an exact p-value. Under the assumption of gene independence (which is not 

always true, but nevertheless many studies make it), the test provides a p-value for the KS value 

measured (the statistic). The KS statistic, plainly speaking, is the maximal percentile difference 

between the two distributions over all possible expression values. As such, the p-value indicates the 
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statistical significance of the difference between the two distributions (see Methods). This feature is 

also imperative when testing so many hypotheses (each TF and CM is a hypothesis test for their 

interaction), as the alternative simulation procedure to evaluate the significance of an interaction is 

too computational causative. 

The log of the K-S p-value provides a measure of the discrepancy in expression of the TF 

cohort from the rest of the genes when the CM gene is mutated. In order to indicate the direction of 

discrepancy, we have added to it a positive or negative sign and used it as a score to rank the CM-

TF interactions. Positive scores indicate that the TF cohort is activated in the particular CM 

experiment, whereas negative scores imply reduced expression of the TF cohort (see Methods). 

Hence, the K-S score expresses both the direction and significance of the disparity between the two 

distributions.  

 

2.4 Ume6 regulation 

We first tested our method on the well-characterized example of the TF Ume6, a central 

regulator of early meiotic genes, which is known to regulate its cohort through interactions with 

CMs [7]. During vegetative growth, binding of Ume6 upstream of specific early meiotic genes 

facilitates the recruitment of the RPD3 complex (an HDAC) and ISW2 complex (an ATP 

dependent chromatin remodeler) [11,12]. RPD3 complex was shown to remove acetyl groups from 

histones H3 and H4 [13]. ISW2 complex is presumed to have the ability to slide nucleosomes along 

the DNA thus alternating between open and closed chromatin states. It is not clear what is the 

sequence of event that leads to the recruitment of the two CMs, whether it is RPD3 or ISW2 that 

arrives first and recruits the other, but the hypoacetylation by RPD3 complex and the chromatin 

remodeling by ISW2 is presumed to create a condensed chromatin structure that prevents gene 

expression [11]. Thus, Ume6 keeps its cohort genes in a silent state, halting their function by 

preventing their expression. During entry to meiosis, Ume6 preferentially interacts with the 

activator Ime1. This alternative interaction releases the CMs, which promote expression of the 

meiosis -related cohort [14]. 

The Ume6 cohort, as defined by Harbison et al. [1], consists of 131 genes. Due to its large 

size, we can deduce with high statistical confidence the activity level of the Ume6 repressor in the 

entire CM gene expression compendium. As expected, deletion of UME6 leads to a significant shift 
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in the expression pattern of the Ume6 cohort [Table 1]. In particular, a strong effect was seen in an 

experiment carried out by Fazzio et al. [11]: While deletion of UME6 did not lead to a general shift 

in gene expression, the Ume6 cohort exhibited a strong de-repression that was articulated in 

increase of their expression (K-S score = 12.72) [Figure 3 A].  

Ume6 acts as a repressor only through its ability to recruit the RPD3 complex and the Isw2 

chromatin remodeler to its binding location [11]. According to this dogma not only a deletion of 

UME6 but also a double deletion of ISW2 and RPD3 should de-repress all of Ume6-regulated 

genes. For the synergistic cooperation of Isw2 and Rpd3, a single deletion of ISW2 or of RPD3 

should result in a partial de-repression of the Ume6 cohort. Our results show exactly this effect: 

while the Ume6 cohort exhibited a significant activation in an experiment carried out with the 

doubly deleted isw2∆ rpd3∆ strain [Figure 3 B], a less significant effect was seen for a strain 

individually deleted for RPD3 and no effect was observed in the ISW2-deleted strain [Table 1]. It is 

important to note is that the activation of the Ume6 cohort could in principle result from an indirect 

repression of Ume6 itself by each of the CMs. The expression level of the UME6 gene was 

monitored in each of the experiments. No repression of UME6 was observed in the single deleted 

strains; in the doubly deleted strain, UME6 even showed a ~4-fold up-regulation, probably an 

attempt to compensate for the mis-regulation of its cohort (Supplementary Table B). Examination 

of the de-repressed genes (all genes with expression Z-score > 1, see Methods) from the Ume6 

cohort in both the ume6∆ and the isw2∆ rpd3∆ experiments reveals a significant overlap (hyper-

geometric p < 4.6*10-7) [Figure 4 A]. The similar effect observed in both experiments points to 

the common mechanism of regulation by Ume6 and Isw2 with Rpd3. 
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Publication KS Score Condition 

Fazzio et al. 
19

 13.02 ume6∆ 

Sabet et al.  
15

 11.29 rpd3∆ H3∆N vs. H3∆N 

Bernstein et al. 
59

 7.54 ume6∆ 

Fazzio et al. 
19

 6.7 isw2∆ rpd3∆ 

Bernstein et al. 
59

 5.48 rpd3∆ 

Fazzio et al. 
19

 -0.36 isw2∆ 

Table 1: Response of the Ume6 cohort in various CM knockout experiments. 

Six selected gene expression experiments taken from the CM compendium are listed. The 

K-S score of the Ume6 cohort's disparity from the rest of the yeast genes is presented 

(see Methods). A significant disparity is defined as scores with absolute value above 5.41 

(Bonferroni corrected p-value < 0.05). The experiments were chosen to test the mutual 

contribution of Isw2 and Rpd3 on the Ume6 cohort. The doubly deleted strain shows a 

stronger effect on the Ume6 cohort compared to the corresponding singly deleted strains.  
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Figure 3: Distribution of expression values for the Ume6 cohort in various CM 

knockout experiments. Distributions of expression levels (log2 transformed) are 

presented for the Ume6 cohort and the control group (rest of the genes). Red: the Ume6 

cohort. Green: the control group. A) Strain deleted for UME6  [11]. B) Strain doubly 

deleted for ISW2 and RPD3 [11]. C) Strain deleted for RPD3 along with a deleted N-

terminus of histone H3 compared to an isogenic strain carrying only the histone mutation 

[15 ].D) Strain deleted for RPD3 and a deleted N-terminus of histone H4 compared to an 

isogenic strain carrying only the histone mutation [15]. 



22 

2.4.1 Expanding the analysis of Ume6 regulation 

Reassured by the ability of our methodology to expose the well-characterized contribution 

of Isw2 and Rpd3 to Ume6 regulation, we carried out a systematic exploration of the Ume6 cohort 

in the entire CM compendium. This exploration allowed us to uncover novel characteristics of 

Ume6 regulation.  

Sabet et al. [15] explored the relationship between the transcription regulation by Rpd3 and 

the amino termini of histones H3 and H4. Since the deletion of the N-terminal domain of histones 

prevents their regulation by most ATP-independent CMs, strains were constructed carrying mutant 

versions of either histone H3 or histone H4, in which the N-terminus of the protein was deleted 

(H3∆N and H4∆N, respectively). To test whether Rpd3 has an effect on gene expression 

independent of H3, the H3∆N strain for which RPD3 was also deleted was compared to the 

isogenic H3∆N strain. This experiment showed a highly significant and specific disparity in the 

expression of the Ume6 cohort [Figure 3 C].  As in the previous experiments the activation of the 

Ume6 cohort was not a consequence of the repression of Ume6 itself (Ume6 expression log2 value 

of 0.7). The activated genes from the Ume6 cohort (Z score > 1) in this experiment share a 

significant overlap with those de-repressed in the strain deleted for UME6, as well as with the strain 

doubly deleted for ISW2 and RPD3 (hyper-geometric p < 10-3 and p < 10-4, respectively) [Figure 

4 A]. The commonality of affected genes in the H3∆N strain experiment with the ISW2-RPD3 and 

UME6 strains points to a shared mechanism of regulation. 

Interestingly, in the parallel experiment carried out with H4∆N no effect was observed 

[Figure 3 D]. In vitro studies have implicated both the H3 and H4 histones in the binding of Isw2 

to nucleosomes [16-19]. The additive effect of the RPD3 deletion to the H3 mutation, as opposed to 

the H4 mutation, suggests that histone H4, but not H3, is likely to work with Rpd3. In addition, the 

similar effects obtained in the rpd3∆ strain lacking the N-terminus of histone H3 and in the rpd3∆ 

strain lacking ISW2 suggest that H3 tails play a central role in the recruitment of Isw2 by Ume6.  

Hence, in the case of the intricate transcription regulation by Ume6 our method enabled the 

discovery of known Ume6 CM co-factors solely by exploring the behavior of the Ume6 cohort in 

various experiments. Our results also shed new light on Isw2 participation in the Ume6 repression 

mechanism and support the involvement of histone H3 N-terminus in the regulation of expression 

by Isw2. 
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Figure 4: Overlap in altered cohort genes. Level of overlap between altered 

cohorts in various gene expression experiments (see Methods). A) Overlap in de-

repressed Ume6 cohort genes in three experiments. Out of 131 Ume6 cohort genes, 45 

showed a notable induction (Z-score > 1) in a UME6 deleted strain [11], 41 in a doubly 

deleted ISW2 RPD3 strain [11] and 44 in strain deleted for RPD3 along with a deleted N-

terminus of histone H3 compared to an isogenic strain carrying only the histone mutation 

[15]. The significance of the overlap between each pair of strains is indicated (hyper-

geometric p-value). B) Overlap in activated Gcn4YPD cohort genes in three experiments. 

Out of 75 Gcn4YPD cohort genes, 32 showed a notable induction in a PHO23 deleted 

strain, 27 in a RXT1 deleted strain and 20 in a SIN3 deleted strain [25]. 
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2.5 Systematic exploration of all CM-TF interactions 

To reduce the number of hypothesis testing, only TF cohorts with a sufficiently large 

number of genes were taken for analysis. Out of the 204 TFs analyzed by Harbison et al. 
1
, 49 

generate cohorts large enough; out of these 19 were analyzed in more than one environment. In 

total we were able to analyze 75 cohorts (see Methods). The behavior of each of these cohorts was 

tested against the entire compendium. Our test generated 4645 TF-CM pairs with a K-S p-value < 

0.05 and, after Bonferroni correction for multiple testing, 531 significant pairs remained (|K-S 

score| > 5.41, see Methods) [Supplementary Table B].  

The significant pairs were obtained from 55 different cohorts (defined for 35 TFs) and 129 

gene expression experiments, covering most of the complexes known to participate in chromatin 

structure regulation [Figure 2]. In total we obtained 287 unique pairs of TF-CM [Supplementary 

Table F] giving a first comprehensive picture of the TF contribution in chromatin structure 

regulation in a eukaryote. 

The average number of significant pairs for each TF cohort is 9.6 and it is 4.1 for each CM 

profile. Some TFs define cohorts that behave more promiscuously; the Hap4 cohort, for example, 

shows significant disparity in 26 experiments, which associate it to 16 different CMs, as opposed to 

the Reb1 cohort that shows disparity in only one experiment. Several factors may determine this 

behavior: (1) Better quality of the location analysis results may lead to a better definition of the 

cohort. The reduction of noise from the cohort will enable to detect more subtle trends. (2) Cohorts 

containing a larger number of genes usually provide higher statistical significance. As described 

above many TFs were excluded from the analysis as their cohorts were too small, eluding many 

potential interactions. (3) The biological activity of the TF should be relevant to both the location 

analysis and the gene expression experiment. For the identification of a TF that is active only in 

particular conditions, we would need to have a location analysis result in this condition to focus on 

its cohort, but also we would need a gene expression profiling of a deleted strain of its interacting 

CM in that same condition.  

Similarly, some CM mutants lead to a preferential change of expression in several cohorts 

(e.g.: 18 cohorts (from 11 TFs) with significant deviation in the ssn6∆ experiment [20] and only 

one cohort for the vps72∆ experiment [21]). The number of significant cohorts per CM is effected 

by: (1) as for the TF, the quality of the expression profiling and the condition for which the 
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experiment was carried on. Some CM might function in particular environments. (2) The level of 

robustness in the system, where the effect should vary due to the level of the CM importance. CM 

complexes share many component and overlap in biochemical function (more then 4 complexes 

that are considered HDACs or HATs). Catalytic members of the CM complexes are expected to 

have, in general, a more widespread effect.  

A global view of the compendium and its interplay with the TF cohorts is obtained by dual-

hierarchical clustering of CMs and of TFs according to similarity of their K-S score profiles across 

all experimental conditions and cohorts [Figure 2 B]. This procedure enables, on one hand, the 

visualization of common trends of different cohorts in response to all the CM perturbations, and on 

the other hand, the detection of CMs with similar specificity according to their effect on the 

cohorts. The resulting representation shows that TF cohorts are grouped according to various 

biological processes: cell cycle, amino acid biosynthesis, mating and more. The inclusion of two 

TFs in the same group is sometimes due to a high level of overlap between their cohorts, but in 

many cases reflects common CM-mediated mechanisms of regulation. Our results suggest that the 

genome is organized along functional similarities; also we show that cohorts that are involved in 

common biological processes are affected by similar CMs. In the case of cell cycle progression, for 

example, TFs affecting different stages are nonetheless grouped together, implying a common 

interplay with CMs. Interestingly, the well characterized TF Ume6 (see the section above) is placed 

in the hierarchical clustering near the cell cycle TFs, although the Ume6 cohort shares almost no 

gene with the cell cycle cohorts. Inspection of the global view indeed reveals that, like Ume6, all 

the cell cycle TFs show a relative induction in various experiments in which the RPD3 complex 

members were mutated [Figure 2 B].  

When clustering the CMs according to the similarity of their K-S scores in each cohort, 

well-defined complexes are grouped together. For example experiments with strains deleted for 

members of the NuA4 complex (Eaf3, Eaf5, Eaf7, Yng2, Vid21, Epl1 and Arp4) were 

hierarchically clustered along with Rsc8 (RSC) and Isw1 (ISWI) (both shown to interact physically 

and genetically with the NuA4 complex [21-23]). This is remarkable, taking into consideration that 

the data were derived from experiments carried out with yeast of different genetic backgrounds and 

using different experimental protocols (e.g., NuA4 experiments were taken from three different 

publications [21,24,25]). Similarly, whenever a CM deletion was analyzed independently in two 

laboratories, the results cluster nicely together. In addition, factors that are known to act as global 
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activators/repressors, like the TATA Binding Protein or the Tup1 repressor, manifest a global effect 

on the genome, reflected by the joint induction/repression of many of the cohorts [Figure 2 B]. In 

the disturbance of the TATA binding protein (see section ahead) this comprehensive down 

regulation, which is defined by comparing the TF cohort to the rest of the genes, seems paradoxical 

- if all cohorts are down, then who is up? But these results point to the fact that genes that have a 

strong binding of TF in their promoters, are more dependent on the TATA binding protein 

mechanism of transcription induction. On the other hand, deletion of TUP1 (see section ahead), 

which is a know repressor of genes, manifest a comprehensive de-repression of the TFs that are 

know to be regulated by its repression mechanism. 

 

2.6 CM-TF interaction results 

Our analysis reveals many novel putative TF-CM interactions. In the previous section we 

described the overall CM-TF interaction landscape. In this section we focus on several interesting 

cases where a mutation in a specific CM has a significant effect on a TF cohort. The full table of 

results is available as Supplementary Table B. 

 

2.6.1 Gcn4 as a repressor of amino acid biosynthetic genes 

The Gcn4 TF activates many genes under conditions of amino acid (AA) starvation 

(reviewed in [26]). In accordance with the positive role of Gcn4, its cohort was strongly repressed 

in the expression profile of a gcn4∆ strain [20] and strongly activated in a strain over-expressing 

GCN4 
29

. Initiation of transcription by Gcn4 was shown to be dependent on many co-activators [9], 

including the CMs SWI/SNF and SAGA. These chromatin modification complexes (a chromatin 

remodeler and a histone acetyltransferase, respectively) are recruited by Gcn4 in response to AA 

starvation [27,28], as such Gcn4 is a good candidate for the exploration of other cooperation with 

chromatin modification complexes.  

As an activator of many AA biosynthesis pathways, the mechanism by which Gcn4 

promotes the transcription of its cohort when starved for an AA is tightly and complexly regulated.  

This feature makes Gcn4 a good example of a context-dependent transcription factor. As described 

above, the cohort defined by each location analysis experiment is highly dependent on the 

experimental conditions. Exploring cohorts defined for the same TF under different conditions 
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assists us in the study of the TF’s regulatory program. Harbison et al.  
1
 defined the Gcn4 cohort in 

an experiment carried out in rich medium (Gcn4YPD), but also in cells exposed to sulfometuron 

methyl (SM), an inhibitor of several AA biosynthesis pathways (Gcn4SM). The Gcn4SM cohort is 

larger and consists of 189 genes, but interestingly the Gcn4YPD cohort, which consists of only 75 

genes, is a subset of the SM cohort [1]. These results indicate that Gcn4 binds to its core cohort 

under optimal growth conditions, and not only after AA deprivation. The reason for the binding of 

Gcn4 to its core cohort is not clear and might point to a function Gcn4 maintains even in its non 

active state in rich media. 

In an experiment done by Keogh et al. [25] the RPD3 complex was thoroughly analyzed 

using biochemical and genetic tools, among others co-immunoprecipitation of each member of 

RPD3 complex. The authors defined two distinct RPD3 complexes, RPD3(L) and RPD3(S), which 

share a core of three proteins: Rpd3, Sin3 and Ume1. Eaf3 and Rco1 uniquely belong to the 

RPD3(S) small complex, whereas Pho23, Rxt1 and Rxt2 are specific to the larger RPD3(L) 

complex. Surprisingly, our results show a clear activation of the Gcn4 cohort when subunits of the 

large RPD3(L) complex are deleted [Table 2]. Gcn4 activation was not due to activation of Gcn4 

itself (expression levels of GCN4 are available in Supplementary table B). Moreover, the 

activated genes in each RPD3(L)-deleted strain experiment were highly overlapping [Figure 4 B] 

emphasizing the essential contribution of the RPD3(L) complex, and not a particular member, to 

the regulation by Gcn4. Interestingly, when subunits of the small RPD3(S) complex were deleted, 

the cohort showed no disparity from the rest of the genes [Table 2]. And accordingly core member 

that belong to both complexes show a milder effect. Thus, the RPD3(S) results provide an 

appropriate control and show that, in addition to the specific linkage of the RPD3(S) to Set2 

methyl-transferase [25], the two complexes have also functionally divergent roles in the regulation 

by Gcn4. Probably in the affinity specification to other factors, such as Gcn4. 

 The gene expression experiments carried out by Keogh et al. were not done in AA -limiting 

conditions but in rich medium. However, the Rpd3 effect can be seen on all Gcn4 cohorts. The 

additional targets, available in the Gcn4SM cohort, preserve the described trend and even exhibit 

stronger activation in the experiments carried out with RPD3(L) deleted members, which 

strengthen the significance of the result. The specificity of this result is strengthened by the fact 
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that, like the Gcn4YPD cohort, in the RPD3(S) deleted members the additional targets match the 

control distribution [Table 2].  

 

The effect described above points to a wide participation of the RPD3 complex in the 

regulation by Gcn4, an effect that is seen even on weak targets of Gcn4 in rich medium. Gcn4 has 

been shown to use SAGA, a histone acetyl transferase, to activate its cohort [9]. Our results point to 

the opposite biochemical reaction, removal of acetyl groups from histones, performed by the RPD3 

HDAC complex, as a mechanism that can maintain its target genes in an inactive state. Functional 

analysis on the activated genes in the experiments in which RPD3(L) members were deleted reveals 

an over-representation of arginine biosynthesis genes (all 8 genes involved in arginine biosynthesis 

present in the Gcn4YPD cohort show increased expression, p<0.001). Thus, our results suggest that 

Rpd3 and Gcn4 act as negative regulators of the arginine biosynthesis pathway under optimal 

growth conditions. 
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Gcn4SM KS score Gcn4YPD KS score Constituent of Condition 

17.34 7.73 RPD3(L) pho23∆ 

13.01 5.92 RPD3(L) rxt1∆ 

6.69 4.71 RPD3(L) rxt2∆ 

10.15 4.05 Core Complex sin3∆ 

9.16 2.8 Core Complex rpd3∆ 

6.42 2.71 Core Complex ume1∆ 

0.004 0.06 RPD3(S) eaf3∆ 

0.040 0.022 RPD3(S) rco1∆ 

 

Table 2: K-S scores for the Gcn4 cohorts in RPD3C deleted members. Two 

cohorts were defined, one in rich medium (Gcn4YPD) and another in AA limiting medium 

(Gcn4SM). The table presents the K-S scores of each cohort in strains deleted for various RPD3 

complex members [25]. The RPD3 complex contains two alternative sub-complexes, RPD3(L) and 

RPD3(S), which share the core Rpd3-Sin3-Ume1 proteins. Expression profiles were obtained for 

deleted members of both complexes. Significant K-S scores are highlighted (p<0.05, corrected for 

multiple testing). A significant activation of Gcn4YPD cohort is notable specifically in the 

RPD3(L) deleted members strains only. The activation becomes stronger for the extended Gcn4SM 

cohort, and covers also the deleted core complex strains. 
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2.6.2 Regulation of Yap6 through repression by Tup1 

Having tested our methodology on the well characterized example of Gcn4, we asked 

whether novel interactions could be revealed for other TFs. In particular, a lot can be learned about 

a TF by examining its interaction with CMs, so we decided to focus on the TF Yap6. Yap6 has 

sequence similarity to AP-1 [30] and has been linked to lithium and sodium resistance [31], other 

than that very little is known about the Yap6.  

Examination of the behavior of the Yap6 cohort against the entire compendium reveals a 

range of potential interactions with various CMs [Supplementary Table B], which is surprising 

given the anonymity of Yap6. A good example of such interaction is a significant activation of the 

Yap6 cohort in a strain deleted for HDA1 (K-S score = 9.03) [Figure 5 A]. Hda1 is the catalytic 

member of the HDA1 HDAC complex known to be involved in gene expression and silencing [32]. 

An interesting feature of Hda1, among other, is its participation in the repression mechanism of 

Tup1 [33]. This example is interesting since Tup1 is an example of a repressor that acts as a 

mediator between TFs and CMs. Tup1 has the ability to recruit CMs to confer repressed chromatin 

structure [34]. Since Hda1 is one of the Tup1 -recruited CMs we were interested in the relation 

between Tup1 and Yap6. To test whether Yap6 works through Tup1 we examined the Yap6 cohort 

behavior in a gene expression experiment carried out in a strain deleted for TUP1 [20]. Indeed the 

Yap6 cohort exhibits a strong activation in the tup1∆ strain experiment (K-S score =18.6) [Figure 5 

B], implying that Tup1 indeed participates in the regulation by Yap6. This activation was also 

found to be even stronger than in the hda1∆ strain experiment which strongly suggesting that Hda1, 

although fundamental, is not unique in the repression mechanism of Yap6 cohort by Tup1 and that 

other CMs might participate as well [34]. Another confirmation that indeed Tup1 and Hda1 repress 

these genes by a common mechanism, is the high level of overlap between the activated genes (Z 

score > 1) in both experiments (23 genes, hyper-geometric p < 0.003) [Supplementary Figure 2]. 

A brief exploration of characteristics and function of the genes affected in both HDA1 and 

TUP1 deleted strains, reveals that they are mostly subtelomeric (15 out of 23 genes; p < 10-10) and 

are highly enriched for members of the hexose-transport family (5 genes, p < 0.001). Thus, our 

results clearly indicate a role for Yap6 in the regulation of sugar transport that, surprisingly, is 
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affected by Tup1 and Hda1, and not by the CMs usually implied in silencing of subtelomeric genes, 

such as the Sir proteins and Set1/Isw1 [35].  

Following the Gcn4 example described in the previous section, we went on to search for 

CMs that affect the Yap6 cohort in a manner opposite to that of Tup1-Hda1. We found that the 

Yap6 cohort is significantly down regulated in a strain deleted for SPT3 (K-S score = 7.9) [Figure 

5 C], a key member of the SAGA complex [36]. SAGA is a well-characterized HAT complex that 

acts as a global inducer [37]. Interestingly, although Spt3 is a SAGA member and was shown to be 

required for the recruitment of the TATA-Binding-Protein (TBP) to various SAGA-regulated genes 

38,39
, no effect on the expression of the Yap6 cohort was observed in mutants deleted for either 

GCN5 (SAGA's catalytic subunit) or in strains carrying various mutations in TBP (data not shown). 

Many of the SAGA complex components can also be found in a different complex, named SAGA-

Like complex (SILK), which also acts as an inducer of genes [40]. Spt3 was previously shown to 

regulate genes through SILK in a manner that does not require SAGA’s HAT activity [41], and this 

kind of mechanism is suggested by our results as well. Thus, our results uncover a collaboration 

between Yap6 and Spt3 that is independent of GCN5, suggesting the existence of an 

uncharacterized interactor that provides HAT activity.  

Analysis of the genes of Yap6 that are repressed (Z score > 1, see Methods) in SPT3 

deletion demonstrate an extensive overlap with those activated in strains deleted for HDA1 (14 

genes, p < 0.009) [Supplementary Figure 2]. The high overlap between the genes suggests an 

acetylation homeostasis achieved by the Tup1-Hda1 and Spt3 -related HAT activities. 
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A          B     C 

Figure 5: Distribution of expression values for the Yap6 cohort in various CM 

knockout experiments. Distributions of expression levels (log2 transformed) are 

presented for the Yap6 cohort and the control group (the rest of the genes). Legends are 

as in Figure 3. A) strain deleted for HDA1 [58]. B) Strain deleted for TUP1 [20]. C) Strain 

deleted for SPT3  [37]. 
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2.6.3 TBP -dependent Transcription Factors 

As described above, CMs interact with TFs to regulate gene expression. The same principle 

should be applicable to additional proteins that, like the CMs, have a wide influence on 

transcription. The TATA Binding Protein (TBP), a central activator of transcription, is such a 

factor. The TBP regulates gene expression by binding AT-rich sequences called TATA boxes, 

affecting transcription of most of the genome, and collaborates with co-factors, many of which are 

CMs.  Among the TBP co-factors we can find Mot1 (SWI/SNF like), Spt3 (HAT), Taf1 (HAT) and 

the inhibitor NC2 (reviewed in [42]). 

To explore possible interactions between TFs and TBP and to check the involvement of 

each of the TBP co-factors in that regulation, we employed our method on the gene expression data 

set generated by Chitikila et al. [43]. As TBP is an essential component of the cell a gene 

expression profiling of a strain deleted for TBP is not possible. Chitikila et al. overcome this 

problem by creating strains mutated for various component of the TBP. By over-expressing the 

TBP mutants in the cell they managed to modify the activity of the TBP. Taf1 contains a domain 

called TANDI, which mimics the TATA box and competitively inhibits the TBP interaction with 

the TATA box [43]. Another TBP inhibition mechanism is through TBP self dimerization. 

In order to characterize inhibition mechanisms, Chitikila et al. thus created mutations that 

affected TBP dimerization (TBPd), interaction with Taf1 through deletion of the TANDI region 

(DeltaT) or interaction with NC2 through a mutation in the NC2 –binding region (NC2). The NC2 

complex and Taf1 are considered inhibitors of the TBP transcription induction [42]. NC2 acts by 

competitively inhibiting the TBP association to TFIIA and TFIIB [43].  

Over-expression of the TBPd mutations leads to a preference in the use of the non-

dimerizing mutated TBP. As such this loss of dimerization leads to a reduced functional capability 

[43]. The loss of function attributed to the TBPd mutation allowed us to use it in our analysis to 

search for TBP-dependent TFs. The other mutants were used to investigate the regulatory 

contribution of NC2 and Taf1. 

Our results support the generally positive regulatory function of the TBP: a clear reduction 

in gene expression of many cohorts was observed [Figure 2 B]. Among the TBP -dependent TFs 

we focused on Hap1, Skn7 and Swi4, three TFs that illustrate different mechanisms for their TBP 

regulation interaction and also the contribution of each of the cofactors NC2/Taf1 [Table 3].   



34 

 

 

 

 

 

 

 

 

 

KS score WT TBPd DeltaT NC2 TBPd DeltaT 

Hap1 -1.18 -6.83 1.44 8.21 -6.45 

Skn7 -2.67 -12.36 5.81 4.15 -7.47 

Swi4 0.21 -7.95 0.73 3.5 -6.55 

 

Table 3: K-S scores in experiments disrupting various TBP interactions. The 

K-S scores for the cohorts of the TFs Skn7, Swi4 and Hap4 were computed based on 

expression profiles carried out for over-expressed TBP mutants [43]. WT: an empty 

vector. TBPd: disruption of TBP dimerization by the TBP mutation V161E. DeltaT: 

disruption of TBP-Taf1 interaction using a strain with a TAND I deleted form of TAF1. 

NC2: disruption of TBP-NC2 interaction using the TBP mutation F182V. While none of the 

cohorts exhibit a significant activity in the WT profile experiments, in the TBP dimerization 

disruption, a significant repression is notable. The significant K-S scores are highlighted 

(Bonferroni corrected p-value < 0.05). 
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Although TATA box-containing genes comprise only ~20% of the yeast genome [47], an 

analysis of the distribution of TATA-box occupancy (Supplementary Table D) shows that, as 

expected, the TBP-dependent cohorts are highly enriched (~40%) for TATA box-containing genes 

(Hap1, Skn7 and Swi4 cohorts with hyper-geometric p < 10-14, p < 10-20 and p < 10-9, 

respectively) which illustrates the essential contribution of the TBP in the transcription regulation 

of these cohort. As noted before, for each of these TFs, expression level by itself was not sufficient 

to explain the proposed trend of its cohort (TF expression levels are available in Supplementary 

Table B).  

Hap1 is a TF with roles in the cellular response to heme and oxygen [44]. Its cohort, 

consisting of 141 genes, is significantly repressed in a strain carrying the TBPd mutations (K-S 

score = -6.45). These results are an indication that Hap1 is dependent on TBP to induce its genes. A 

deletion of the TANDI region of TAF1 (DeltaT) has no effect on Hap1 cohort which points to a 

TBP induction mechanism that is independent for Taf1. Interestingly, mutations that affect NC2 

binding caused a strong increase in the expression of the Hap1 cohort (K-S score = 8.21). As stated 

above, NC2 is a cofactor of the TBP that acts as an inhibitor of the TBP regulation. The strong de-

repression of the Hap1 cohort gives NC2 a strong contribution to the repression mechanism through 

Hap1. We can conclude that Hap1 is a good example of a transcription factor that promotes the 

transcription of its target genes by TBP recruitment but uses the NC2 complex to regulate these 

genes in the opposite manner.  

Another distinctive example of TBP dependent regulation is that of Skn7. Skn7 is a TF 

associated with various stress responses, in particular with the oxidative stress response [45]. Its 

cohort consists of 187 genes, and like Hap1 cohort, exhibits a strong de-activation in strains 

carrying the TBPd mutations (K-S score = -12.36). However, unlike Hap1, the Skn7 cohort also 

exhibits a significant induction in the DeltaT strain (K-S score = 5.81) and to a lesser extent also in 

the strain defective in NC2 interaction (K-S score = 4.16). The activation of Skn7 cohort in the two 

deletions shows that both cofactors, Taf1 and NC2, participate in the regulation of Skn7. Unlike 

NC2 contribution to Hap1 regulation, the de-repression of Skn7 cohort is less significant in both 

deletions. The less significant effect of Taf1 and NC2 on the Skn7 cohort could arise from a third 

cofactor that has higher contribution to the repression mechanism of Skn7 cohort, or alternatively 

can be due to a complementary repression by the two mechanisms, each with its own repression 

targets. Unfortunately it is hard to test the proposed hypotheses as no expression profiling is 
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available for either a deletion of other TBP cofactors or the double mutated strain, DeltaT and NC2. 

In spite the lack of additional information, very little overlap is observed among genes affected in 

each of the DeltaT and NC2 mutations [Supplementary Figure 2], which gives support to the 

complementary repression mechanism. We can conclude that Skn7 is an example of a transcription 

factor that promotes the transcription of its target genes by TBP recruitment and uses both 

cofactors, NC2 and Taf1 to regulate its genes in the opposite manner.  

The last example in this thesis that illustrates a regulation mechanism that is dependent on 

TBP is that of Swi4. Swi4 is a central cell cycle TF that together with Swi6 promotes transcription 

of late G1 genes [46]. The Swi4 cohort, consisting of 156 genes, is also significantly repressed 

upon mutation in the TBP dimerization domain (K-S score = -7.95), but unlike Hap1 and Skn7 its 

cohort depends neither on Taf1 nor on the NC2 repressor (K-S scores 0.73 and 3.5 respectively). 

Thus, in the case of Swi4, if there is a repression mechanism that works through the TBP, it is 

conferred by factors other than the ones tested here (Taf1, NC2).  

From the examples above another principle can be learned about the regulation mechanism 

of the TBP. In all the experiments carried out in strains lacking both TBP dimerization and the 

TANDI region (TBPd-DeltaT), a strong reduction of expression is observed, similar to the one seen 

in strains affected for dimerization only [Table 3]. This epistatic effect of the TBP destabilizing 

mutation points to a need for a functional TBP in the Taf1-mediated regulation.  

Thus, our analysis shows that the TBP plays a central role in the regulation carried out by 

several TFs. Furthermore, by analyzing a data set [43] created originally to explore the participation 

of Taf1 and NC2 in the TBP regulation, we were able to analyze not only TBP dependency, but 

also the contribution level of each of the TBP co-factors. 
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3 Discussion 

Chromatin organization plays a central role in many biological mechanisms, and 

particularly in transcription. Although many factors were found to participate in the regulation of 

the chromatin structure, to date there has been no systematic study of their global contribution to 

transcription. In this work, using a compendium of genome-wide profiles of strains defective in CM 

activity, we lay the infrastructure to the study of the contribution of the CMs to transcription and 

transcription regulation through their interactions with TFs. We show that this approach is able to 

detect cooperation between a TF and CMs even when complex combinatorial regulation is 

involved. Our systematic analysis of all available TF cohorts against the large gene expression 

compendium provides the first comprehensive picture in a eukaryote of the complex regulation by 

TFs in the context of chromatin organization. We have shown that our method is robust enough to 

detect novel regulation mechanisms of well-characterized TFs (e.g., Ume6, Gcn4), as well as to 

characterize regulation features of uncharacterized TFs, such as Yap6. Furthermore our method is 

applicable even to general factors, such as Tup1 and TBP. Note that our test cannot distinguish 

between direct and indirect CM-TF interaction. The difficulty in separating direct effects from 

indirect ones is prevalent in many studies on gene regulation networks [48-51]. 

In the sequel we refer to some limitations of our approach and suggest directions for future  

work. 

3.1 Expanding the CM compendium 

The gene expression profiles collected in this work cover a comprehensive compendium of 

CM complexes in the yeast S. cerevisiae, by containing at least one member of each of the known 

yeast CM complexes. In the example of Gcn4 and RPD3 complex illustrated above, different 

functional attributes could be assigned to the RPD3 complex only due to the available extensive 

profiling of each of the RPD3 complex members. As additional profiles are accumulating in the 

public repositories, the current compendium could be expanded to include comprehensive 

characterization of other CM complexes. The addition of other CM related profiling will allow us 

to understand at a finer resolution the contribution of each CM complex in the regulation of 

transcription. 
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Another aspect that is expected to be better understood with the addition of other CM 

related profiles is the mechanism by which environmental conditions lead to differential gene 

expression. The majority of the profiles in the current compendium were measured under standard 

growth conditions (e.g., rich medium). By using our method on transcriptional profiles obtained in 

other environments we can start to investigate this question. As the number of CMs analyzed under 

many environmental conditions grows, we expect to obtain insights into the complex mechanisms 

that control environmental responses. 

3.2 Improving the statistical model 

Our analysis used Kolmogorov-Smirnov (K-S) analysis to test whether a set of genes is 

over- or under-expressed in a given gene expression profile. This K-S test was found to be robust 

for our data sets, and helped to reveal known CM-TF interaction along with novel CM-TF 

interactions. One shortcoming of the K-S analysis is that it is more sensitive for deviation of the 

target set in the middle of the distribution. Enrichment analysis is very popular in the field of 

functional genomics and some groups have used a variant of the K-S to compensate for the K-S 

limitations (e.g. GSEA [66]). Recent work even compared various enrichment analysis tools, and 

although it was shown that K-S analysis is the most sensitive tool, the authors emphasize the 

benefit of combining results from more than one statistical test in the analysis [67]. It would be 

interesting to improve our statistical prediction by combining the results from other tools (e.g.  the 

Wilcoxon rank sum test). 

Another aspect in our analysis that will probably improve our predictions is a better 

definition of the TF cohort. Various studies have shown that when binding is binarized by taking a 

simple binding p-value cutoff in ChIP-on-chip data (e.g., p<0.001, as was used by our methodology 

and by many others), a lot of valuable information is overlooked [68,69]. A more flexible cutoff on 

the data set or even a regression approach might help in exploring TFs that have weak binding 

specificities. Also, as precipitation methodologies improve and better characterization of TF 

cohorts is being generated, our methodology could be put to a better use. 

 

3.3 Working with different organisms 

In recent years it has become evident that chromatin modifications are involved in many 

important biological processes in higher eukaryotes. Since modifications on histones are correlated 
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with transcription, these chromatin modifications are commonly studied in the context of 

transcriptional regulation. However, it is clear that additional processes, related to DNA, , such as 

repair, replication and recombination, are affected and regulated by histone modifications [70]. 

Recent studies even link histone modifications to other central mechanisms such as RNA 

interference and DNA methylation [71]. It is not surprising, then, to find CMs over-expressed and 

mutated in many cancer cells [72]. In fact, inhibitors of deacetylases are now in phase I and II 

clinical trials [73]. 

As many CMs are evolutionarily conserved [52], similar mechanisms of regulation are 

expected to be observed in higher eukaryotes. The accumulation of data sets similar to those used 

in our analysis in higher eukaryotes [53,54] will allow the application of our methodology on those 

organisms. We believe that this kind of analysis will help in understanding whether the regulatory 

functions unveiled in yeast are also conserved in higher eukaryotes, and will also provide insights 

into the overall global regulatory mechanisms that underlie many central processes. 

Our understanding of transcription regulation has undergone several transformations over 

the last decade, and the emerging picture is very complex. Alternative splicing, RNA-based 

regulation and chromatin organization are today recognized as central regulatory mechanisms of 

gene expression. Still, our understanding of each of these processes is incomplete. We hope that the 

proposed methodology will be able to shed light on the effects of chromatin modifications on 

transcription factors and on transcription regulation in general. 
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4 Methods 

4.1 K-S analysis 

Given two samples of values, the Kolmogorov-Smirnov (K-S) test [10] is designed to 

examine whether they have the same value distribution. The main advantage of this test is that it 

makes no assumption on the distributions from which the samples originated. This is important 

when dealing with expression profiles from different sources. 

For each value v the K-S test measures the difference in the fraction of genes that have an 

expression value lower than v between the control and the cohort samples. The K-S statistic is 

defined to be the maximum absolute value of that difference. 

In the case of the null hypothesis (the two samples originate from the same distribution) the 

distribution of the statistic can be calculated and a p-value K-Sp-value can be assigned to the 

disparity between the two samples [10]. 

The K-S score is defined as: K-Sscore = -log10(K-Sp-value) if the statistic is positive and 

log10(K-Sp-value) otherwise. Hence, the absolute value of the K-Sscore indicates significance of 

the disparity, and its sign indicates the direction of the disparity: a positive sign shows that the 

cohort genes tend to have higher values than the rest of the genes. 

4.2 Yeast genome 

6646 Yeast ORFs were retrieved from Saccharomyces Genome Database 

(www.yeastgenome.org)  (version July 2005). To avoid cross-hybridization biases in the gene 

expression and location data set, 103 ORFs, containing mitochondrial genes and short dubious 

ORFs were ignored in the analysis [Supplementary Table C]. 

4.3 Data preparation  

170 gene expression profiles obtained with strains mutated for various CMs were collected 

from 26 publications. The complete list of publications and experiments is available in 

Supplementary Table A. Data were downloaded from papers’ web supplements. Normalization 

was done as in [55]. 
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TF-DNA binding profiles were obtained from Harbison et al. [1]. A p-value cutoff of 0.001 

was used to define the set of genes bound by a particular TF (the TF cohort).  

To account for the strong correlated response of the ribosomal genes [55] in most 

experiments, all TFs that were found to be significantly enriched (p<0.001) in ribosome related GO 

terms were excluded from the analysis (Supplementary Table E). Our analysis used the remaining 

75 cohorts, containing at least 50 genes, that were originated from 49 TF tested in different 

environments. 

4.4 Altered gene groups and their overlap test 

 A gene is considered altered in a gene expression experiment if its Z-score is greater than 1. 

Given a gene expression experiment E with average µ and SD σ, and a TF cohort S (the TF target 

gene group), the elevated cohort genes are defined as: TFE = {g in S| E(g) > µ + σ } while the set of 

declining genes is defined as: {g in S| E(g) < µ - σ }. 

Given two altered (elevated or reduced) sub-groups S1 and S2 from S, the significance of 

their overlap is calculated using the hyper-geometric distribution, where S is considered as the 

samples pool.  

4.5 Annotation enrichment 

 All GO annotations were taken from the Gene Ontology database [56] (version July 2005). 

Annotation enrichments were obtained using the TANGO program [57]. TANGO finds GO terms 

that are enriched with the target set in study. The strength of TANGO is to provide a p-value for 

that enrichment using simulation of random samplings. 

4.6 Hierarchical clustering 

Hierarchical clustering of the cohorts and the experimental conditions based on the 

significant K-S scores matrix (all |K-S scores| > 1.3) was carried out using the EXPANDER 

analysis and visualization tool (Version 3.0) [57]. 
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Appendix: Supplements 

Supplementary Table A: The publications from which the gene expression data 

were obtained 

The CM gene expression compendium is composed from 26 assays taken from different publication. 

This table refers to the relevant publications. 

Name 
Pubmed 
ID Full Name 

Sudarsanam et al. 10725359 Whole genome expression analysis of snf/swi mutants of S.cerevisiae 

Geisberg et al. 11283253 
yeast NC2 associates with the RNA polymerase II pre-initiation complex and 
selectively affects transcription in vivo 

Angus-Hill et al. 11336698 rsc3/rsc30 zinc cluster dimmer 

Krogan et al. 15353583 
Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 
chromatin remodeling complex, and the histone acetyltransferase NuA4 

Fazzio et al. 11533234 
Widespread collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling 
Complexes in Transcriptional Repression 

Meneghini et al. 12628191 
Conserved histone variant H2A.Z protects euchromatin from the ectopic 
spread of silent heterochromatin 

Mizuguch et al. 14645854 
ATP-driven exchange of histone H2A.Z variant catalyzed by SWR1 chromatin 
remodeling complex 

Bernstein et al. 11095743 Genome-wide studies of histone deacetylase function in yeast 

Bernstein et al. 12060701 Methylation of histone H3 Lys 4 in coding regions of active genes. 

Chitikila et al. 12419230 Interplay of TBP inhibitors in global transcriptional control 

Martin et al. 15280228 
Redundant Roles for histone H3 N-terminal lysine residues in subtelomeric 
gene repression in Saccharomyces cerevisiae. 

Sabet et al. 15456858 
Genome-wide analysis of the relationship between transcriptional regulation by 
Rpd3p and the histone H3 and H4 amino termini in budding yeast. 

Keogh et al. 16286008 
Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive 
Rpd3 complex. 

Huisinga et al. 14992726 
A genome-wide housekeeping role for TFIID and a highly regulated stress-
related role for SAGA in Saccharomyces cerevisiae. 

Ingvarsdottir et al. 15657441 
H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module 
within the Saccharomyces cerevisiae SAGA complex. 

Orlandi et al. 14623890 
Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene 
expression and insurgence of oxidative stress response 

Rosaleny et al. 16023114 
Yeast HAT1 and HAT2 deletions have different life-span and transcriptome 
phenotypes 

Eriksson et al. 16199888 
Global regulation by the yeast Spt10 protein is mediated through chromatin 
structure and the histone upstream activating sequence elements. 

Xu et al. 15882620 Acetylation in histone h3 globular domain regulates gene expression in yeast. 

Attikum et al. 15607975 
Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-
Dependent Chromatin Remodeling with DNA Double-Strand Break Repair. 

Kaeberlein et al. 15126388 
Saccharomyces cerevisiae SSD1-V confers longevity by Sir2p-independent 
mechanism. 

Boa et al. 12845608 
Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of 
histone H3 and is required for efficient gene expression. 

Hughes et al. 10929718 Functional discovery via a compendium of expression profiles. 

Mnaimneh et al. 15242642 Exploration of Essential Gene functions via Titratable Promoter Alleles. 

Dasgupta et al. 11880621 
Mot1 activates and represses transcription by direct, ATPase-dependent 
mechanisms. 
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Durant et al. 16537921 
Genome-wide relationships between TAF1 and histone acetyltransferases in 
Saccharomyces cerevisiae. 
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1
Supplementary Table B: All KS scores.  

 

Supplementary Table C: All the ORFs excluded from our analysis. To avoid cross-

hybridization biases in the gene expression and location data set, 103 ORFs, containing 

mitochondrial genes and short dubious ORFs were ignored in the analysis. 

COS2 

COS7 

COS4 

COS12 

COS6 

COS8 

COS5 

COS9 

COS3 
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Supplementary Table D: The full cohort-TATA box occupancy level. 

The total number of genes that are targeted by a TF is 3698 (see the paper methods section). 

According to Basehoar et al. 764 of the above mentioned, TF targeted, genes contain a TATA box 

(~20%). This Table presents the TATA box frequency for each of the TF cohorts analyzed in our 

work. 

Cohort Name 
Cohort 
Size 

Number of Genes with 
TATA box in Cohort  

% Genes with 
TATA box in 
Cohort 

Log (hyper-
geometric p) 

SKN7_H2O2Lo 187 73 0.39 -20.22 

NRG1_H2O2Hi 126 51 0.4 -15.88 

CIN5_YPD 150 57 0.38 -15.05 

HAP1_YPD 141 54 0.38 -14.63 

SUT1_YPD 69 30 0.43 -11.62 

SOK2_BUT14 73 31 0.42 -11.39 

HSF1_H2O2Lo 102 39 0.38 -10.99 

DAL81_RAPA 95 37 0.38 -10.97 

HSF1_H2O2Hi 125 45 0.36 -10.69 

MSN2_H2O2Hi 79 32 0.4 -10.59 

CIN5_H2O2Lo 127 45 0.35 -10.26 

SWI4_YPD 156 52 0.33 -9.77 

YAP6_YPD 91 33 0.36 -8.46 

PHD1_BUT90 106 37 0.34 -8.43 

GLN3_RAPA 68 26 0.38 -7.9 

GCN4_SM 189 57 0.3 -7.73 

RLM1_YPD 55 22 0.4 -7.61 

SKN7_H2O2Hi 99 34 0.34 -7.58 

NDD1_YPD 85 30 0.35 -7.37 

SWI6_YPD 153 47 0.3 -7.11 

SWI5_YPD 102 34 0.33 -7.03 

ASH1_BUT14 51 20 0.39 -6.79 

MSN4_H2O2Hi 70 25 0.35 -6.6 

XBP1_H2O2Lo 68 24 0.35 -6.24 

NRG1_YPD 72 25 0.34 -6.2 

YAP7_H2O2Lo 152 45 0.29 -6.16 

GCR2_SM 54 20 0.37 -6.05 

PHD1_YPD 67 23 0.34 -5.69 

STE12_BUT14 128 38 0.29 -5.55 

YAP7_H2O2Hi 141 41 0.29 -5.49 

GCN4_RAPA 160 45 0.28 -5.27 

STE12_YPD 54 19 0.35 -5.25 

RIM101_H2O2Lo 54 19 0.35 -5.25 

FKH2_H2O2Hi 106 32 0.3 -5.21 

STE12_BUT90 78 25 0.32 -5.15 

YAP6_H2O2Lo 59 20 0.33 -5.03 

GCN4_YPD 75 24 0.32 -5 

MBP1_YPD 130 37 0.28 -4.85 
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SKN7_YPD 67 21 0.31 -4.38 

CIN5_H2O2Hi 80 24 0.3 -4.3 

YAP1_YPD 72 22 0.3 -4.26 

UME6_YPD 131 35 0.26 -3.95 

CBF1_SM 279 67 0.24 -3.84 

HAP4_YPD 67 20 0.29 -3.83 

MBP1_H2O2Hi 133 35 0.26 -3.79 

UME6_H2O2Hi 102 28 0.27 -3.78 

YAP6_H2O2Hi 79 22 0.27 -3.47 

PUT3_H2O2Lo 88 22 0.25 -2.8 

STE12_Alpha 115 26 0.22 -2.54 

FKH2_YPD 121 27 0.22 -2.52 

OAF1_YPD 59 15 0.25 -2.51 

AFT2_H2O2Lo 98 22 0.22 -2.42 

MCM1_Alpha 106 23 0.21 -2.38 

RCS1_H2O2Hi 52 13 0.25 -2.34 

DIG1_BUT14 63 15 0.23 -2.32 

DAL82_SM 55 13 0.23 -2.21 

ROX1_YPD 67 15 0.22 -2.2 

SMP1_YPD 77 16 0.2 -2.18 

TYE7_YPD 56 13 0.23 -2.17 

RTG3_RAPA 52 12 0.23 -2.12 

AFT2_H2O2Hi 61 13 0.21 -2.08 

DAL82_RAPA 56 12 0.21 -2.05 

FHL1_YPD 188 13 0.06 0 

FKH1_YPD 142 25 0.17 0 

MCM1_YPD 77 14 0.18 0 

MGA1_YPD 63 5 0.07 0 

PDR1_YPD 68 11 0.16 0 

PHO4_YPD 72 10 0.13 0 

RAP1_YPD 162 23 0.14 0 

REB1_YPD 146 15 0.1 0 

SUM1_YPD 59 9 0.15 0 

YAP5_YPD 56 7 0.12 0 

FHL1_SM 204 20 0.09 0 

STP1_SM 68 10 0.14 0 

FHL1_RAPA 191 14 0.07 0 

MSN4_RAPA 54 7 0.12 0 

REB1_H2O2Hi 59 7 0.11 0 

MBP1_H2O2Lo 58 8 0.13 0 

RCS1_H2O2Lo 260 29 0.11 0 

RPN4_H2O2Lo 100 14 0.14 0 

DIG1_Alpha 60 12 0.2 0 
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Supplementary Table E: All cohorts found to be enriched in ribosomal related GO 

terms using TANGO. 

Ribosomal genes are known to be highly sensitive to any environmental change. To reduce 

artificial CM assignments, cohort rich in ribosomal associated genes were excluded from the 

analysis. This table presents only those TF cohorts that were found to be rich in ribosomal 

associated genes. GO annotations were taken from the Gene Ontology database (version July 

2005). Annotation enrichments were obtained using the TANGO program.  

 

 

 

TF name GO ID 

Uncorrected 
Hypergeometric 
p-value (log10) 

Corrected 
Hypergeometric 
p-value (log10) 

Fraction of Genes 
with Annotation in 
the Cohort 

Number of 
Genes with 
Annotation in 
the Cohort 

FHL1_YPD GO:0005830 -156.236 -3 0.61 115 

FHL1_YPD GO:0003735 -133.941 -3 0.61 116 

FHL1_YPD GO:0005840 -124.924 -3 0.63 119 

FHL1_YPD GO:0005842 -84.1339 -3 0.33 63 

FHL1_YPD GO:0005843 -71.8443 -3 0.27 52 

PDR1_YPD GO:0005842 -9.1932 -3 0.16 11 

RAP1_YPD GO:0005830 -73.3795 -3 0.43 70 

RAP1_YPD GO:0003735 -63.4241 -3 0.43 71 

RAP1_YPD GO:0005842 -44.6747 -3 0.25 41 

RAP1_YPD GO:0042257 -9.6891 -3 0.08 13 

YAP5_YPD GO:0005830 -9.1447 -3 0.23 13 

FHL1_SM GO:0005830 -134.706 -3 0.52 108 

FHL1_SM GO:0003735 -114.827 -3 0.53 109 

FHL1_SM GO:0005843 -62.963 -3 0.24 49 

SFP1_SM GO:0005830 -39.3035 -3 0.67 31 

SFP1_SM GO:0003735 -36.6689 -3 0.69 32 

FHL1_RAPA GO:0005830 -143.568 -3 0.57 110 

FHL1_RAPA GO:0003735 -123.031 -3 0.58 111 

FHL1_RAPA GO:0005842 -81.3824 -3 0.32 62 

FHL1_RAPA GO:0005843 -62.3605 -3 0.25 48 

FHL1_RAPA GO:0042257 -14.7904 -3 0.09 18 
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2
Supplementary Table F: All unique pairs of TFs and CMs taken from Supplementary Table B. 

Each TF and each CM could be represented by various experiments. This table presents the unique 

pairing of TFs and CMs. For each pair the highest K-S score is given followed by the significant 

interaction numbers, taken from Supplementary Table B, that support this pairing.  

 

2
Supplementary Table G: All Pairs of TF cohorts that share a significant amount of genes. 

For each pair of TF cohorts defined in the same condition, a hyper-geometric p was calculated on 

their intersection. Presented are all the intersections that were found to be significant, after 

bonferroni multiple correction (p<0.01). 
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Supplementary Figure 1: Detailed clustering of the compendium. As in Figure 2B, 

rows represent TF cohorts and columns represent conditions. Colors indicate CM-cohort K-S 

scores. To obtain a global view of the TF-CM interaction landscape, we hierarchically 

clustered the cohorts and conditions according to their K-S scores (positive scores in red and 

negative in green). Groups of functionally related TFs (ordinate) and functionally related 

conditions (abscissa) are marked. TFs that share a significant number of genes with the TF 

immediately above them are marked with asterisks. Clustered cohorts of the same TF (under 

different conditions) are marked by dots.  
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Supplementary Figure 2: Overlap of altered genes of the Yap6 and Skn7 cohorts in 

three experiments. 

A) Out of the 91 genes in the Yap6 cohort, 35 showed a notable induction in a hda1D strain, 42 

showed induction in a tup1D strain, and 23 a notable repression in a strain deleted for SPT3. The 

significance of the overlap is indicated (hyper-geometric p-value). B) Out of 187 genes in the Skn1 

cohort, 45 showed a notable induction in the DeltaT strain, 49 a notable induction in the NC2 

strain, and 63 a notable repression in the TBPd strain. The significance of the overlap is indicated 

(hyper-geometric p-value). 
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