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Abstract 

Technological breakthroughs in the past decade have enabled the collection of 

biomedical data on an unprecedented scale. Several methods are used to map 

diverse interactions among genes or gene products and their results can be 

collected into genome-wide networks. Other methods measure the activity or 

abundance of genes across different conditions. The data obtained by most 

available techniques are noisy, heterogeneous and difficult to interpret, making 

data integration essential. In addition, most cellular functions rely on the 

coordinated action of the products of multiple genes, often referred to as 

functional modules. A major goal of computational systems biology is to enable 

the delineation of these modules and to facilitate extraction of biological insights 

from the deduced modular structures. In this thesis we describe several methods 

for extraction of functional modules using heterogeneous data. We specifically 

focus on analysis of protein and genetic interaction networks and gene 

expression data, but our computational methodologies are suitable for handling 

additional data types. We demonstrated the effectiveness of these methods on a 

variety of biological systems in yeast and human. Our results include predictions 

of functions for genes and gene groups, delineation of novel pathways and 

complexes and the relationships between them, and prediction of functionally 

important interactions. In the context of human disease, the modules we identify 

provide a signature of the disease potentially useful for diagnosis, pinpoint 

possible pathways affected by the disease, and suggest targets for drug 

intervention. 
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1. Introduction 

1.1 Systems biology and modularity 

Biological research has undergone a paradigm shift over the last decade. 

Dramatic improvements in DNA sequencing enabled the determination of whole 

genome sequences, allowing us to identify the biological components serving as 

building blocks for cells and organisms. In parallel, other biotechnological 

breakthroughs allowed high-throughput screening of the abundance, localization 

and inter-relations of these building blocks. These developments enable 

researchers to inspect the cellular machinery at a genome-wide scale with an 

increasingly fine resolution, introducing systems biology [8, 9] as a new 

interdisciplinary science. Systems biology takes a holistic view of the biological 

system, trying to determine its global principles in order to understand and 

predict its behavior. 

One of the most extensively studied features of biological systems is their 

modularity. Most cellular functions rely on the coordinated action of the 

products of multiple genes, often referred to as functional modules [10]. The 

physiological functions of cells and organisms can be viewed as the coordinated 

and integrated activity of multiple genetic circuits. A major goal of computational 

systems biology is to enable the delineation of these modules and to facilitate 

extraction of biological insights from the deduced modular structures.  

1.2 Biological networks 

Diverse biological information can be represented as networks of interactions 

among genes or their protein products. In principle, if our knowledge of the 

cellular biology was complete, we could construct and use a genome-wide 

regulatory network that could predict, given the extracellular stimuli, the 

abundance, localization and activity of each molecule in the cell at any time point. 

The accuracy of these predictions would in theory be limited only by the 

inherent biological noise. Unfortunately, such a network is not yet available for 

any cell type, and we are still probably decades or even centuries away from 

being able to construct such a network for mammalian cells. In the meantime, 

many types of data derived using functional genomics technologies can be 

represented as networks, most of which are partial and noisy fragments of the 

complete gene regulatory network. Such networks can be constructed using both 

traditional low-throughput methods and novel post-genomic techniques. These 

networks summarize the knowledge on interactions between pairs of genes or 
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their protein products.  The combination of results from high- and low-

throughput experiments leads to the most comprehensive networks available in 

the public domain today. The following types of interactions are typically 

measured and studied today: 

• Protein-Protein interactions (PPIs): Two proteins have an interaction if 

there is a physical contact between them. Such interactions can now be 

derived using genome-wide screens, such as  yeast two-hybrid or co- 

immunoprecipitation [11]. High-throughput PPI screens were performed 

in several organisms, with the largest focus on the yeast S. cerevisiae [12-

14] and human [15-17]. In addition, PPIs from small-scale experiments 

curated from the literature can be combined into large scale networks 

[18, 19]. High-throughput methods for measuring PPIs are very useful, 

but notorious for their high rates of false positive and false negative calls 

[20, 21]. 

• Protein-DNA interactions (PDIs): Interactions reflecting physical 

contact between a transcription factor (TF) protein and a DNA sequence 

(typically the promoter sequence of a gene) can also be analyzed in a 

genome-wide fashion [22]. The established method for high-throughput 

measurements of such interactions is ChIP-chip [23, 24], but novel 

technologies such as ChIP-seq [25] and protein binding microarrays 

(PBMs) [26] are also becoming widely used. Experimental evidence about 

PDIs is currently available on a large scale in the yeast S. cerevisiae and for 

a limited number of TFs in mammals. These interactions can also be 

predicted computationally using the known binding preferences of 

transcription factors [27]. Note that unlike PPIs, PDIs are inherently 

asymmetric. 

• Metabolic interactions: The most comprehensive biological networks 

today are metabolic networks. Basic cellular metabolism has been 

extensively studied for decades and information about the interactions 

within diverse pathways is deposited in highly curated databases, such as 

KEGG [28]. A metabolic interaction between genes typically connects two 

enzymes catalyzing successive reaction steps in some metabolic pathway. 

An alternative representation shows the inputs and outputs of a reaction 

(reactants) as nodes connected by an edge and the enzymes regulating 

the reaction. 

• Signaling interactions: One of the key goals of systems biology is the 

reconstruction of the combinatorial regulation determining the 



13 

 

abundance and activity of each gene. PDIs form just one layer of signaling 

interactions. Mapping of other layers is also carried out, including kinase-

substrate [29, 30] and microRNA-target networks [31]. Combination of 

the layers leads to multi-level signaling networks, a useful resource for 

studying cellular responses [32, 33]. 

An additional class of biological networks, genetic interaction networks, will be 

described in detail in section 1.4. 

1.2.1 Computational methods for analysis of gene networks 

The intriguing properties and the vast potential of biological networks triggered 

the development of numerous novel computational methods. Initial studies 

focused on basic network properties and studied various topological coefficients 

[34], abundance of small network motifs [35] and network evolution [36]. 

Dozens of computational methods were developed for detection of dense 

subnetworks in PPI networks, aiming to detect novel protein complexes and 

predict protein function (reviewed in [37]). Another set of methods aimed to 

detect paths in PPI networks that may correspond to linear signaling cascades 

[38, 39]. Importantly, gene networks have been repeatedly shown to be highly 

useful for interpretation of other genomic data. The use of PPI and PDI networks 

for the interpretation of gene expression and genetic interactions is described in 

section 1.4.1. In addition, gene networks were successfully used for analysis of 

genotypes [40, 41], deletion phenotypes [42, 43] and human disease [44, 45].  

One of the obstacles to exploiting networks based on high-throughput 

experiments in general, and PPI networks in particular, is their high rate of false 

positive and false negative interactions [20, 46]. To better handle uncertainty in 

PPIs, several works devised probabilistic schemes to estimate the confidence of 

individual interactions [46-50]. 

1.3 High-throughput transcriptome profiling  

One of the most dramatic developments in molecular biology over the past 15 

years is the introduction of the microarray technology [51, 52]. Abstractly, a 

microarray is a dense array of oligonucleotides that can be used as probes for 

measuring the abundance of nucleic acids. To date, this technology has been 

mainly used for high-throughput profiling of mRNA abundance in the cell. A 

typical microarray profile gives the expression levels of several thousands of 

genes under a particular condition. As of April 2009,  nearly 300,000 profiles 

were available in NCBI Gene Expression Omnibus (GEO) database [53].  



14 

 

High-throughput profiling of mRNA abundance can be used for answering 

diverse biological questions. In one type of experiment, typically called time 

course experiment, cells are exposed to diverse treatments and mRNA levels are 

measured at several time points after the treatment. Classical studies used this 

approach to study progression through cell cycle [54, 55] and diverse stress 

responses [56-59]. In another type of experiment, expression profiles of cells 

taken from different tissues or different populations are compared [60, 61]. 

Clinical microarray studies typically compare profiles of tissues taken from 

individuals with different pathological status [62-65].  

1.3.1 Computational analysis of microarray data 

The high volume of microarray data (in a typical human study the levels of 

~20,000 transcripts are measured in tens to hundreds of samples) and the 

technical and biological noise in them require dedicated computational analysis 

tools. Hundreds of statistical and computational methods were developed for 

various subtasks of microarray analysis [66]. The low level analysis tasks include 

image analysis, the normalization of the data and removal of cross-hybridization 

effects. The high-level analysis tasks can be crudely divided into two types: 

unsupervised and supervised. In an unsupervised analysis, no prior knowledge 

about the nature of the samples is assumed, and clustering [67] or biclustering 

[68] methods are used to find groups of genes and/or samples that exhibit 

similar expression patterns. In a typical supervised analysis, two or more sample 

groups are compared, and the goal is to identify genes whose expression pattern 

can distinguish among those groups [69]. In other cases, the goal is to identify 

genes significantly related to some quantitative parameter describing the 

samples. As it is frequently difficult to suggest novel hypotheses based on 

individual genes with good accuracy, it is also desirable to identify differentially 

expressed sets of genes, or pathways. By considering together the whole 

pathway, correlations that would have been missed if we tested each gene 

separately can be revealed. One approach to this problem uses predefined gene 

sets describing pathways and quantifies the change in their expression levels 

[70-72]. Additional works proposed measures for scoring expression activity and 

co-expression in metabolic pathways [73, 74], complexes [75] and network 

neighborhoods [76]. Vert and Kanehisa [77] used kernel methods to identify 

expression patterns that characterize gene sets matching pathways in a given 

network. The drawback of all these approaches is that pathway boundaries are 

often difficult to assign, and in many cases only a fraction of the pathway is 

altered during disease. Moreover, activity changes in unknown pathways are 



15 

 

impossible to detect using this approach. As we shall describe below, using gene 

networks, one can address both of these problems to some extent. 

1.3.2 Combining results from microarray studies in the context of human 

disease 

To date, the main goal of the majority of microarray studies focused on human 

disease has been to identify a set of biomarkers that can be useful for diagnosis 

or prognosis [62]. In addition, these studies have the potential to improve the 

mechanistic understanding of the disease on the molecular level [78]. The 

current methods for analyzing disease data are mostly focused on comparing 

expression profiles derived in a single experiment, usually comparing several 

samples derived from diseased specimens and from normal specimens. A large 

variety of techniques from machine learning were applied to such data, with a 

primary focus on feature selection, i.e., detection of a gene subset that best 

distinguishes between the healthy and the diseased tissues [62, 79]. While the 

classification and feature selection problems in a specific study are of obvious 

interest, less effort was devoted to systematic computational analysis of disease-

related data aiming to shed light on the molecular characteristics of the disease 

in question. Such analysis is especially compelling when multiple independently 

derived datasets relevant to the same disease are available. 

How can one combine results of multiple studies comparing the same sample 

groups? The simplest approach is to compare the lists of ``interesting'' genes 

identified in different studies [80]. The prevalent methodology for identifying 

biological phenomena by combining expression profiles from multiple studies 

and platforms obtained under similar conditions is meta-analysis, which involves 

identifying the genes studied in all the experiments and combining their 

respective significance from all the experiments in a statistical framework [81, 

82]. 

Despite the success of these analyses, they are generally only applicable when all 

the datasets compare similar sets of conditions, and the variance between the 

datasets stems mainly from using different platforms or from the differences 

between the populations profiled in each experiment. Thus, they cannot handle 

situations where the data are coming from diverse tissues, diverse diseases and 

different organisms. A more detailed modeling of the data is required in these 

cases. 

Segal et al. [83] described a methodology for combining a large number of 

independent cancer-related datasets to identify modules of genes significantly 
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altered in a subset of human cancer subtypes. The proposed method starts from 

a large collection of biologically-relevant gene sets and iteratively refines them 

alongside the selection of the condition subset relevant to the module. A similar 

approach was recently proposed by Tomlins et al. [84], where 14,000 distinct 

gene sets from different perspectives and origins were used to analyze gene 

expression studies related to prostate cancer. 

In contrast to using predefined gene sets, several works focused on identifying 

gene sets de novo from a large compendium of expression data [85-87]. Such a 

framework usually involves applying a common normalization to all the 

expression datasets and subsequent application of data mining algorithms for 

identification of modules, consisting of subsets of genes alongside corresponding 

subsets of the experimental conditions in which these genes show a coherent 

expression pattern. 

Another available approach is to focus on the co-expression exhibited by gene 

pairs in the different experiments, postulating that functionally related genes are 

likely to exhibit co-expression in a significant number of experiments. 2nd-order 

expression analysis, described in [88], follows this paradigm. First, pairs of genes 

tightly co-expressed in several datasets, termed doublets, are identified. Then, 

pairs of such doublets exhibiting simultaneous high or low correlations across 

multiple datasets are sought, through the inspection of the 2nd-order 

correlations. This method can be generalized to find gene sets of arbitrary size, 

rather than gene pairs. In the CONDENSE algorithm [89], the transcription data 

from each study are converted into a co-expression network. These networks are 

then aggregated together in a single network, and dense patterns are sought in it. 

1.3.3 Combined analysis of interaction networks and expression profiles 

As described above, many fruitful algorithmic approaches were developed for 

dissection of network and expression data separately. However, methods 

analyzing together both information types have the potential to be more 

powerful, e.g., by highlighting biologically relevant expression changes that are 

too weak to be detected using only expression data, but emerge when that data 

are projected on the network structure. It has been established that genes 

connected by a PPI are more likely to be co-expressed [90, 91]. Exploiting this 

interconnection, co-expression is frequently used together with other genomic 

evidence for predicting PPIs (cf. [92]). PPI networks were shown to be very 

useful in interpreting gene expression data by improving sample classification 

using microarray data [93-95] and improving detection of differentially 

expressed genes [96-98]. 
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One of the most heavily studied ways of combining network and gene expression 

data is detection of subnetworks with a particular expression behavior. These 

approaches can be crudely divided into four groups:  

• Detection of subnetworks active in a single condition: Topological 

properties of interaction networks induced by genes active in one specific 

condition were studied [34, 99-101], and highlighted several basic 

biological principles such as just-in-time complex assembly [99], hub 

transience [100] and high centrality of cancer-related genes [101].  

• Subnetworks active in a subset of the studied conditions: Ideker et al. 

[102] introduced a successful algorithm for identification of active 

subnetworks, i.e., connected regions of the network that show significant 

changes in expression over a particular subset of the conditions. The same 

methodology was recently used in [103], utilizing shortest-path 

algorithms for module finding. Other groups described additional 

extensions of this method [104-106]. 

• Detection of subnetworks with correlated expression across all the 

conditions: Several approaches sought modules by jointly analyzing 

network information with co-expression across the entire dataset. The 

Co-clustering methodology [107] uses a distance function that combines 

similarity of gene expression profiles with network topology. The 

network distance between two nodes is an edge-weighted version of their 

topological distance in the network. The expression distance is one minus 

the Pearson correlation between the expression patterns. The two 

distances are combined into a similarity score, and standard hierarchical 

algorithms [108] are used for clustering. While generally successful, this 

approach sometimes produces clusters corresponding to highly 

disconnected subnetworks, since the network is only used as one of the 

sources of distance information, without requiring connectivity. Guo et al. 

[109] defined an expression similarity score, based on Pearson 

correlation of the expression patterns among interacting genes. The 

significance of a subnetwork was evaluated by comparing its score to 

random subnetworks with the same number of edges. Because the score 

of Guo et al. takes into account only expression similarity among 

interacting genes, some genes (those far from each other in the 

subnetwork) may exhibit low co-expression. Segal et al. [110] provided an 

interesting formulation of the integration problem, in which a module is 

expected to contain a significant portion of the possible interactions. A 
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probabilistic graphical model was used to extract a prespecified number 

of modules from gene expression measurements combined with a protein 

interaction dataset. Finally, the problem of clustering attribute data with 

connectivity constraints has also been studied in non-biological context 

[111]. 

• Subnetworks distinguishing among sample groups: These methods 

take as an input, in addition to the network and microarray data, two 

groups of samples, and the goal is to identify subnetworks whose 

expression distinguishes among them. Breitling et al. [112] proposed a 

simple method named GiGA which receives a list of genes ordered by 

differential expression scores (e.g., t-test p-values) and extracts 

subnetworks corresponding to the top scoring genes. Nacu et al. [113] 

proposed Gene eXpression Network Analysis (GXNA) which uses a t-

statistic based score and a search heuristic similar to that used in [102] to 

identify subnetworks containing genes that, on average, exhibit 

significant differential expression. A more complex statistical approach 

was recently proposed by Dittrich et al. [114]. In this method, weights are 

assigned for individual nodes based on the significance of their 

differential expression, and integer linear programming (ILP) is used to 

identify heavy subnetworks. 

1.4 Exploring the fitness of single and double deletion mutants 

Recent years have seen the emergence of novel technologies for high-throughput 

measurements of the fitness of single deletion mutants under diverse 

experimental conditions. These studies mostly focused on the yeast S. cerevisiae 

[115-118]. Such experimental essays are capable of determining the marginal 

contributions of individual genes towards the susceptibility of the organisms to 

changes in their environment. These studies have shown that only ~18% of S. 

cerevisiae genes are essential for growth on a rich medium [115]. Consequently, 

genetic buffering, in which partial redundancy between genes masks the effect of 

deleting one of them, is believed to be abundant in eukaryotes [119].  

Genetic interactions (GIs) convey information about the phenotype of a double 

mutant in comparison to the phenotypes of single mutants. GIs can be crudely 

classified into positive (alleviating), neutral and negative (aggravating) 

interactions [120, 121]. In a negative interaction, the fitness of the double mutant 

is lower than expected given that of the single mutants. The most extreme 

example of a negative interaction is synthetic lethality, in which the joint deletion 

of two nonessential genes leads to a lethal phenotype. In a positive interaction, on 
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the other hand, the double mutant is healthier than expected. The ‘expected’ 

fitness is usually defined using a multiplicative model, as the product of the 

fitnesses of the single mutants [120, 122, 123]. 

The first high-throughput screens for double knock-outs in S. cerevisiae used the 

SGA [124, 125] and dSLAM [126] methods and identified many events of 

synthetic lethality and synthetic sickness, which is a qualitative term for a non-

lethal, but significant, negative GI. Additional recent technological advances 

allowed high-throughput quantitative measurements of both negative and 

positive interactions [123, 127-129].  

1.4.1 Computational analysis of GI networks 

Initial studies have shown that proteins in the same region of the GI network are 

slightly more likely to physically interact [124, 125], and that a protein with 

many PPIs is likely to have also many GIs [130]. These findings suggested that 

integration of physical and genetic networks can lead to novel biological insights. 

The term physical interactions (PIs) usually refers to both PPIs and PDIs. Kelley 

and Ideker [131] defined a module (or pathway) as a group of proteins that are 

densely interconnected in the PI network, and studied the frequency of GIs 

within and between such modules. In a systematic analysis of large scale GI and 

PI data they concluded that between-pathway explanations of GIs are ≈ 3.5 times 

more abundant than within-pathway explanations, and that GIs mostly bridge 

redundant processes. Further arguments for the prevalence of between-pathway 

GIs were given by Ye et al. [132], who postulated that genes in the same pathway 

are expected to share common GI partners, and used similarity of GI patterns for 

successful function prediction. A module-based approach was also proposed for 

identifying groups of genes sharing a set of common negative GI partners [133]. 

Finally, Zhang et al. [134] and Le Meur and Gentleman [135] identified pairs of 

known complexes with many negative GIs between them.  

While the majority of negative interactions occur between partially redundant 

pathways, within-pathway negative interactions also exist: mutations in one of 

the two subunits of the same complex may have only a mild phenotype, as long 

as the complex survives. However, deletion of both subunits may lead to a 

complex failure and to an aggravating phenotype. Positive interactions were 

shown to occur mostly within pathways [127]. Most of the positive are probably 

the result of a drastic effect of any of the single deletions on pathway activity, 

which abolishes the effects of additional deletions. 
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Standard hierarchical clustering was initially used for the analysis of quantitative 

GI data [123, 127, 136]. Two studies have proposed dedicated approaches for 

analyzing such data. Bandyopadhyay et al. proposed an agglomerative clustering 

technique for clustering together PPI data  and quantitative GIs [137], and Pu et 

al. proposed a biclustering algorithm for quantitative GIs, that is capable of 

identifying overlapping gene modules [138]. Other computational methods used 

the GI network to predict of genetic novel GIs [139-143], to predict protein 

function [132] and to predict of genes targeted by chemical compounds [144]. 
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1.5 Summary of articles included in this thesis 

1. Identification of Functional Modules using Network Topology and High-

Throughput Data 

Igor Ulitsky and Ron Shamir 

Published in BMC Systems Biology [1]. 

Usually, separate and different analysis methodologies are applied to 

interaction networks and gene expression data. An integrated investigation of 

both data types can improve the quality of the analysis by accounting 

simultaneously for topological network properties alongside intrinsic features 

of the high-throughput data. We describe a novel algorithmic framework for 

this challenge. We first transform the high-throughput data into similarity 

values, (e.g., by computing pairwise similarity of gene expression patterns 

from microarray data). Then, given a network of genes or proteins and 

similarity values between some of them, we seek connected sub-networks (or 

modules) that manifest high similarity. We develop algorithms for this 

problem and evaluate their performance on the osmotic shock response 

network in S. cerevisiae and on the human cell cycle network. We demonstrate 

that focused, biologically meaningful and relevant functional modules are 

obtained. In comparison with extant algorithms, our approach has higher 

sensitivity and higher specificity.  

2. Regulatory Networks Define Phenotypic Classes of Human Stem Cell 

Lines 

Franz-Josef Müller, Louise C. Laurent, Denis Kostka, Igor Ulitsky, Ron Williams, 

Cristina Lu, Mahendra S. Rao, Ron Shamir, Philip H. Schwartz, Nils O. Schmidt, 

Jeanne F. Loring 

Published in Nature [2]. 

Stem cells are defined as self-renewing cell populations that can differentiate 

into multiple distinct cell types. However, hundreds of different human cell 

lines from embryonic, fetal and adult sources have been called stem cells, even 

though they range from pluripotent cells-typified by embryonic stem cells, 

which are capable of virtually unlimited proliferation and differentiation-to 

adult stem cell lines, which can generate a far more limited repertoire of 

differentiated cell types. The rapid increase in reports of new sources of stem 

cells and their anticipated value to regenerative medicine has highlighted the 

need for a general, reproducible method for classification of these cells. We 
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created and analyzed of a database of global gene expression profiles (which 

we call the 'stem cell matrix') that enables the classification of cultured human 

stem cells in the context of a wide variety of pluripotent, multipotent and 

differentiated cell types. Using an unsupervised clustering method to 

categorize a collection of approximately 150 cell samples, we discovered that 

pluripotent stem cell lines group together, whereas other cell types, including 

brain-derived neural stem cell lines, are very diverse. Using further 

bioinformatic analysis we uncovered a protein-protein network (PluriNet) 

that is shared by the pluripotent cells (embryonic stem cells, embryonal 

carcinomas and induced pluripotent cells). Analysis of published data showed 

that the PluriNet seems to be a common characteristic of pluripotent cells, 

including mouse embryonic stem and induced pluripotent cells and human 

oocytes. Our results offer a new strategy for classifying stem cells and support 

the idea that pluripotency and self-renewal are under tight control by specific 

molecular networks. 

3. Detecting Disease-Specific Dysregulated Pathways via Analysis of 

Clinical Expression Profiles 

Igor Ulitsky, Richard M. Karp and Ron Shamir 

Published in Proceedings of the Eleventh Annual International Conference on 

Research in Computational Molecular Biology (RECOMB 2008) [3]. 

We present a method for identifying connected gene subnetworks 

significantly enriched for genes that are dysregulated in specimens of a 

disease. These subnetworks provide a signature of the disease potentially 

useful for diagnosis, pinpoint possible pathways affected by the disease, and 

suggest targets for drug intervention. Our method uses microarray gene 

expression profiles derived in clinical case-control studies to identify genes 

significantly dysregulated in disease specimens, combined with protein 

interaction data to identify connected sets of genes. Our core algorithm 

searches for minimal connected subnetworks in which the number of 

dysregulated genes in each diseased sample exceeds a given threshold. We 

have applied the method in a study of Huntington’s disease caudate nucleus 

expression profiles and in a meta-analysis of breast cancer studies. In both 

cases the results were statistically significant and appeared to home in on 

compact pathways enriched with hallmarks of the diseases. 
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4. Detecting Pathways Transcriptionally Correlated with Clinical 

Parameters 

Igor Ulitsky and R. Shamir 

Published in Proceedings of Computational Systems Bioinformatics (CSB) 2008 [4]. 

We describe a novel methodology for extraction of connected network 

modules with coherent gene expression patterns that are correlated with a 

specific clinical parameter. Our approach suits both numerical (e.g., age or 

tumor size) and logical parameters (e.g., gender or mutation status). We 

demonstrate the method on a large breast cancer dataset, where we identify 

biologically-relevant modules related to nine clinical parameters including 

patient age, tumor size, and metastasis-free survival. Our method is capable of 

detecting disease-relevant pathways that could not be found using other 

methods. Our results support some previous hypotheses regarding the 

molecular pathways underlying diversity of breast tumors and suggest novel 

ones. 

5. Identifying Functional Modules Using Expression Profiles and 

Confidence-Scored Protein Interactions 

Igor Ulitsky and Ron Shamir 

Published in Bioinformatics [5].  

The analysis of expression data can be improved by its integration with 

protein interaction networks, but the performance of these analyses has been 

hampered by the uneven quality of the interaction data. We present 

CEZANNE, a confidence-based method for extraction of functionally coherent 

co-expressed gene sets. CEZANNE uses probabilities for individual 

interactions, which can be computed by any available method. We propose a 

probabilistic model and a weighting scheme in which the likelihood of the 

connectivity of a subnetwork is related to the weight of its minimum cut. 

Applying CEZANNE to an expression dataset of DNA damage response in S. 

cerevisiae, we recover both known and novel modules and predict novel 

protein functions. We show that CEZANNE outperforms previous methods for 

analysis of expression and interaction data.  

6. Pathway Redundancy and Protein Essentiality Revealed in the S. 

cerevisiae Interaction Networks 

Igor Ulitsky and Ron Shamir 

Published in Molecular Systems Biology [6]. 
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In this study we devised novel analytic tools for interpreting genetic 

interactions in a physical context. We extend the model of Kelley and Ideker to 

analyze together genetic and physical networks, which explains many of the 

known genetic interactions as linking different pathways in the physical 

network. Applying these tools on a large-scale Saccharomyces cerevisiae data 

set, our analysis revealed 140 between-pathway models that explain 3,765 

genetic interactions, roughly doubling those that were previously explained. 

Model genes tend to have short mRNA half-lives and many phosphorylation 

sites, suggesting that their stringent regulation is linked to pathway 

redundancy. We also identify 'pivot' proteins that have many physical 

interactions with both pathways in our models, and show that pivots tend to 

be essential and highly conserved. Our analysis of models and pivots sheds 

light on the organization of the cellular machinery as well as on the roles of 

individual proteins. 

7. From E-MAPs to Module Maps: Dissecting Quantitative Genetic 

Interactions Using Physical Interactions 

Igor Ulitsky, Tomer Shlomi , Martin Kupiec and Ron Shamir 

Published in Molecular Systems Biology [7]. 

Here, we extended the model used in the previous study in two ways: the new 

method can identify a collection of functional modules rather than module 

pairs, and it can use quantitative genetic interaction data, using both positive 

and negative interactions. We used the method to build a module map of yeast 

chromosome biology and show how it provides clues for the elucidation of 

function both at the level of individual genes and at the level of functional 

modules. 
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2. Identification of Functional Modules using 

Network Topology and High-Throughput Data 
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Abstract
Background: With the advent of systems biology, biological knowledge is often represented today by
networks. These include regulatory and metabolic networks, protein-protein interaction networks, and
many others. At the same time, high-throughput genomics and proteomics techniques generate very large
data sets, which require sophisticated computational analysis. Usually, separate and different analysis
methodologies are applied to each of the two data types. An integrated investigation of network and high-
throughput information together can improve the quality of the analysis by accounting simultaneously for
topological network properties alongside intrinsic features of the high-throughput data.

Results: We describe a novel algorithmic framework for this challenge. We first transform the high-
throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns
from microarray data). Then, given a network of genes or proteins and similarity values between some of
them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms
for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae
and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant
functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity
and higher specificity.

Conclusion: We have demonstrated that our method can accurately identify functional modules. Hence,
it carries the promise to be highly useful in analysis of high throughput data.

Background
The accumulation of large-scale interaction data on mul-
tiple organisms, such as protein-protein and protein-DNA
interactions, requires novel computational techniques
that will be able to analyze these data together with infor-
mation collected through other means. Such methods
should enable thorough dissection of the data, whose
dimensions have already extended far beyond the scope
that is amenable to traditional analysis and manual inter-
pretation. An important class of such biological informa-
tion can be represented in the form of similarity relations.
Quantitative molecular data, such as mRNA expression

profiles, are often analyzed in this context through cluster-
ing algorithms. Similarity between genes can also be
defined on other levels, such as function [1] or transcrip-
tion factor binding patterns [2].

Although many fruitful algorithmic approaches have been
developed for dissection of network and similarity data
separately, methods analyzing together both information
sources hold much promise. Several works have estab-
lished the interconnection between expression profile
similarity and protein interactions [3,4]. To exploit this
interconnection, pairwise gene expression similarities
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have been used together with other data sources for pre-
dicting pairwise protein interactions (e.g., [5]). Topologi-
cal properties of interaction networks induced by genes
active in different conditions were studied [6-9]. Several
software tools allow the visual inspection of the clustering
results in a network context [10]. However, ignoring the
network information in the clustering process and using
the rich and constantly growing network information
solely for cluster evaluation seems suboptimal, as the net-
work information can improve the cluster identification
process. The prevalence of modularity in molecular cell
biology has been widely recognized in the last decade. By
functional module one typically means a group of cellular
components and their interactions that can be attributed
a specific biological function [11]. Several approaches
sought modules by jointly analyzing network information
with gene expression data. Initial works [12,13] proposed
measures for scoring expression activity in metabolic
pathways (e.g. KEGG database [14]) and complexes [15].
Vert and Kanehisa [16] used kernel methods to identify
expression patterns that characterize gene sets matching
pathways in a given network.

The Co-clustering methodology [17] uses a distance func-
tion that combines similarity of gene expression profiles
with network topology. The network distance between
two nodes is an edge-weighted version of their topological
distance in the network. The expression distance is one
minus the Pearson correlation between the expression
patterns. The two distances are combined into a similarity
score, and standard hierarchical algorithms [18] are used
for clustering. While generally successful, this approach
sometimes produces clusters corresponding to highly dis-
connected subnetworks, since the network is only used as
one of the sources of distance information, without
requiring connectivity.

Ideker et al. [19] introduced a successful algorithm for
identification of active subnetworks, i.e., connected regions
of the network that show significant changes in expression
over a particular subset of the conditions. Unfortunately,
this method can be used only when one has an activity p-
value for every measurement, a situation which is rather
uncommon. In addition, the method cannot handle pair-
wise gene similarity input. The same methodology was
recently used in [20], utilizing shortest-path algorithms
for module finding. Segal et al. [21] provided another
interesting formulation of the integration problem, in
which a module is expected to contain a significant por-
tion of the possible interactions. A probabilistic graphical
model was used to extract a prespecified number of mod-
ules from gene expression measurements combined with
a protein interaction dataset.

In this study we seek functional modules by identifying
connected subnetworks in the interaction data that
exhibit high average internal similarity. We call such a
module a Jointly Active Connected Subnetwork (JACS). By
imposing network topology constraints on clusters of
expression data, the biological interpretation of the clus-
ters becomes easier, and, as we shall see, one can detect
weaker signals that were indistinguishable by extant
methods.

We develop a novel computational method for efficient
detection and analysis of JACSs, implemented in a pro-
gram called MATISSE (Module Analysis via Topology of
Interactions and Similarity SEts). The proposed method-
ology has a statistical basis, which allows confidence esti-
mation of the results. The algorithm assumes no prior
knowledge on the number of JACSs, and allows imposing
constraints on their size. We do not require precalculation
of the statistical significance of expression values. The
methodology is general enough to suit any type of net-
work data overlaid with pairwise similarities.

Our algorithm detects JACSs by identifying heavy sub-
graphs in an edge-weighted similarity graph while main-
taining connectivity in the interaction network. By
transforming edge weights to attain probabilistic mean-
ing, we are actually seeking subnetworks of maximum
likelihood. We show that this problem is computationally
hard, devise several heuristic methods and analyze their
practical performance.

When using gene expression similarity, analysis of known
pathways in yeast has shown that only a fraction of the
genes in a pathway are usually coherently regulated at the
transcription level (and thus highly similar) [22]. Our
method allows assignment of different priors to different
genes, reflecting their probability to be regulated at the
transcription level. We believe this is the first study to
allow such flexibility. In addition, the goal of our
approach is to detect non-overlapping JACSs rather than
to partition all the genes into clusters.

We first evaluate the performance of our algorithm on
synthetic data with planted modules, and verify its ability
to recover planted modules with high accuracy. Then, we
analyze two real systems for which large datasets are avail-
able: the osmotic shock response of S. cerevisiae, and the
cell cycle in human HeLa cells. For S. cerevisiae, we com-
piled and carefully annotated from diverse sources a pro-
tein-protein and protein-DNA interaction network
consisting of 6,230 nodes and 89,327 interactions. The
performance of MATISSE is shown to exceed that of extant
analysis schemes in terms of the ability to retrieve biolog-
ically relevant groups, as analyzed by four different anno-
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tation datasets. We identify specific subnetworks relevant
to different processes that are known to be activated and
repressed by the MAPK cascades following osmotic shock,
such as ergosterol biosynthesis and pheromone response.
In addition, we identify novel pathways, such as pyridox-
ine metabolism, as differentially expressed during
osmotic shock. Detailed analysis shows that some of the
involved processes can not be detected based on the
expression data alone. The human network contains
9,135 nodes and 25,086 protein-protein interactions col-
lected from several sources, including recently published
studies [23,24]. Our analysis identifies subnetworks active
in specific phases of the human cell cycle. These results
underly the ability of our approach to provide novel, pre-
viously undetected biological insights. The inspection of
"hubs" in the subnetworks delineated by MATISSE reveals
key regulators of the cell cycle.

Results and discussion
A framework for detection of jointly active subnetworks
Let us first state our problem abstractly. We are given an
undirected constraint graph GC = (V, E), a subset Vsim ⊆ V
and a symmetric matrix S where Sij is the similarity
between vi, vj ∈ Vsim. The goal is to find disjoint subsets U1,
U2,..., Um ⊆ V called JACSs, so that each JACS induces a
connected subgraph in GC and contains elements that
share high similarity values. We call the nodes in Vsim front
nodes and nodes in V\Vsim back nodes.

In the biological context, V represents genes or gene prod-
ucts (we shall use the term 'gene' for brevity), and E repre-
sents interactions between them. These can be known
protein-protein or protein-DNA interactions or alterna-

tively can originate from a known regulatory network
where arc orientations are ignored. Sij measures the simi-
larity between genes i and j, e.g., the Pearson correlation
between their gene expression patterns. The set Vsim may
be smaller than V as some of the genes may be absent
from the array, and others may show insignificant expres-
sion patterns across the tested conditions and thus
excluded. Hence, a JACS aims to capture a set of genes that
have highly similar behavior, and are also topologically
connected, and thus may share a common function, e.g.,
belong to a single complex or pathway. As elaborated in
Methods, we formulate the problem of JACS identifica-
tion as a hypothesis testing question. In this approach sta-
tistically significant JACSs correspond to heavy
subnetworks in a similarity graph, with nodes inducing a
connected subgraph in GC (Figure 1). The probabilistic
model we propose also accommodates the use of gene-
specific priors, reflecting our confidence that they are tran-
scriptionally regulated in the studied conditions.

As exact optimization is intractable, we designed and
tested several heuristics for solving the problem (see
Methods). The version that performed best on real biolog-
ical data had the following three phases: (1) detection of
relatively small, high-scoring gene sets, or seeds; for each
node, the set consisting of it along with the neighboring
nodes that are connected to it via positive-weighted edges
was a candidate seed; (2) seed improvement, and (3) sig-
nificance-based filtering (see Methods for full details).
This version, which we call MATISSE, was used in subse-
quent analysis.

Toy input exampleFigure 1
Toy input example. A toy example of an input problem with two distinct JACSs and with front and back nodes. Both JACSs 
(circled) are connected in the interaction network and heavy in the similarity graph. Note that the four front nodes in the left 
JACS form a connected subgraph only after the addition of the back node.
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Analysis of performance using simulated similarity values
In order to evaluate the ability of our method to detect
subnetworks of high pairwise similarity, we first tested its
performance on simulated similarity data. The simulation
used a connected subnetwork of 2,000 nodes from the S.
cerevisiae interaction network (described below) as the
constraint graph. The similarity data were generated by
"planting" a collection of JACSs with several defining
parameters in the network, using two similarity value dis-
tributions, where members of the same JACS tend to have
higher similarity, as described in Methods.

In order to test the effect of each parameter on the per-
formance of the different module finding algorithms, we
carried out simulations in which one parameter was var-
ied while keeping the rest at their default values. We also
tested simple clustering of the similarity data with the K-
means algorithm and with the Co-clustering approach of
Hanisch et al. [17], which proposes a distance measure
based on topology and expression. Since the latter
method does not readily provide clusters, we used that
measure with a K-means-like algorithm (with K = 15, and
moving genes between clusters based on average dis-
tance). Other methods (e.g., [21]) were not readily availa-
ble for comparison.

We evaluated the ability of the methods to recover the
planted components using Jaccard coefficient. The coeffi-
cient ranges between 0 and 1 with 1 indicating perfect
recovery (see Methods). The results are presented in Figure
2. MATISSE is able to retrieve the planted components
with good precision when there is a plausible separation
between the two similarity value distributions (above 1.3
standard deviations) and the fraction of the front nodes
exceeds 0.8. The performance of MATISSE exceeds that of
other methods for most of the parameter range.

Response to osmotic stress in S. cerevisiae
We generated a comprehensive S. cerevisiae protein-pro-
tein and protein-DNA interaction network by combining
information from the interaction databases SGD, BioG-
RID and BIND and recent high-throughput studies (e.g.,
[25], see our website for a complete list). This resulted in
a network containing 6,230 nodes and 89,327 interac-
tions. We also used 133 expression profiles of S. cerevisiae
under different perturbations and different environmen-
tal conditions focused on the osmotic stress response
[26]. The 2,000 genes whose patterns exhibit the highest
variation in the data were designated as front nodes. We
used Pearson correlation for scoring similarities between
expression patterns. The parameters of the probabilistic
model were assigned as described in Methods. Maps of the
subnetworks produced by MATISSE are provided on our
website and in the supplement [see Additional file 1].

Comparison of the modules produced by each method
We compared the performance of MATISSE to Co-cluster-
ing and to clustering based solely on the gene expression
data. We used the CLICK algorithm [27] for clustering, as
it was shown to outperform several extant gene expression
clustering algorithms, and since it can determine the
number of clusters and also leave some vertices unclus-
tered. The Ideker et al. method [19] could not be tested in
this setting, since measurement p-values could not be
computed.

Table 1 compares the properties of the modules produced
by every method. Expression homogeneity is calculated as
the average Pearson correlation between genes within the
same module. The edge density of a subgraph is the
number of edges it contains as a fraction of all its node
pairs. The clustering coefficient of a node is the fraction of
its neighbor pairs that are connected in the network [28].
The clustering coefficient of a module is the average coef-
ficient in the subgraph induced by the module. In the
"Random connected" and "Random" solutions, modules
were randomly sampled gene groups with and without
the requirement for network connectivity, respectively.
The sizes of the random groups were matched to the sizes
obtained by MATISSE.

Expression homogeneity
As expected, the most homogeneous clusters in terms of
expression similarity are obtained by CLICK, which opti-
mized this type of similarity. The homogeneity of the
MATISSE JACSs is higher than that of co-clusters. As previ-
ously reported [3], the expression homogeneity of a ran-
dom connected set is higher than that of a random
arbitrary set (average coherence of 0.063 for the random
connected solution, vs. 0.033 for random arbitrary solu-
tion).

Topological descriptors
MATISSE is designed to produce connected subnetworks.
The significance of this criterion is evident from the com-
parison to the other algorithms. In contrast to MATISSE,
both CLICK and Co-clustering produce modules that are
highly disconnected (averaging 80–90 components per
module). Interestingly, the subnetworks produced by
MATISSE are not denser than random connected compo-
nents in the network. This observation can be explained
by the fact that the network contains several dense com-
plexes that do not participate in the solutions, as their
components are not homogeneously expressed under the
examined conditions.

Functional enrichment
In order to compare the functional relevance of the mod-
ules found by the different methods we used four annota-
tion databases: (a) GO "biological process" ontology
(level 7; 474 categories) [29]; (b) GO complexes annota-
tion (subterms of "protein complex" term, 213 com-
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Table 1: Performance of the different module finding algorithms on the S. cerevisiae osmotic shock data

Solution No. of modules Total nodes Average size Expression 
homogeneity

Clustering coefficient Edge density No. of connected 
components

MATISSE 20 2107 105.35 0.361 0.073 0.035 1.00

Co-clustering 19 1991 104.79 0.354 0.035 0.010 89.67

CLICK 20 1988 99.40 0.438 0.030 0.011 77.61

Random connected 20 2107 105.35 0.063 0.050 0.036 1.00

Random 20 2105 105.35 0.033 0.004 0.003 89.78

Numbers in columns 4–8 are averages over all the modules in each solution.

Performance of different module finding procedures on simulated dataFigure 2
Performance of different module finding procedures on simulated data. Co-clustering: clustering based on the dis-
tance metric of [17]. K-Means: clustering of the similarity data. Random: random sampling of connected subnetworks matched 
in size and number to the planted components. The quality of solutions produced by the different procedures is evaluated by 
the Jaccard coefficient, (a) Performance as a function of the distance between the means of the mates and the non-mates distri-
butions (µm). (b) Performance as a function of the fraction of front nodes (pf). (c) Performance as a function of planted compo-
nent size (k).
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plexes); (c) MIPS deletion phenotype annotations [30]
(181 phenotypes); (d) KEGG molecular pathways (310
pathways) [14]. A relatively wide selection of annotations
was used to encompass diverse biological functions. Note
that the GO "molecular function" categories are not rele-
vant here, as the identified sets of genes are not expected
to have similar molecular mechanisms.

For each annotation and for each group of genes produced
by every method, the hypergeometric p-value was com-
puted (without correcting for multiple testing, see below).
We analyzed the percentage of the modules (Figure 3a)
and of the categories (Figure 3b) enriched with p-value ≤
10-3 in each solution. MATISSE exhibits high performance
in functional terms and in most cases the produced JACSs
show higher enrichment than expression clusters and co-
clusters. Co-clustering and CLICK perform slightly better
than MATISSE in covering KEGG categories. This is prob-
ably due to the overrepresentation of metabolic pathways
in KEGG. Metabolic pathways are generally poor in direct
protein-protein and protein-DNA interactions, and thus
less likely to be recognized by MATISSE, which relies also
on direct interactions, than by a clustering algorithm
based on expression alone.

As an additional comparison between MATISSE and Co-
clustering, we compared the p-values obtained by each
solution on each GO biological process (level 7) class
attaining enrichment of p ≤ 0.01 in at least one of the solu-
tions. The MATISSE modules gave better significance to
238 functions, while only 116 functions had higher signif-
icance in the Co-clustering solution.

In order to check the added value of incorporating net-
work constraints over using only expression profiles, we
compared the results to clustering of the expression pro-

files with CLICK. In the same pairwise comparison, 223
MATISSE functions exhibited a higher enrichment, com-
pared to 146 in CLICK. Several relevant functions, such as
pyridoxine metabolism, cellular response to phosphate
starvation, protein ubiquitination and post-Golgi trans-
port, were enriched with p < 10-5 in MATISSE, but were not
significantly enriched in any CLICK cluster. When seeking
functions enriched by the other clustering methods, the
only function enriched was "NAD biosynthesis" (p < 10-5)
discovered by CLICK. The six genes in our dataset that are
annotated with this category do not contain any interac-
tions between them and the average length of the shortest
path between them is 7.

Functional subnetworks identified by MATISSE
In the previous analysis we did not correct for multiple
testing since our goal was the comparison of the different
methods. To address the multiple testing problem, we
performed a GO functional enrichment analysis using the
TANGO algorithm [31]. The algorithm considers all levels
of the GO hierarchy and provides p-values corrected for
multiple testing and for category dependency using resa-
mpling (see Methods).

21 distinct functional terms were found to be enriched (p
< 0.05) in 14 distinct modules. The complete list of the
enriched functions and their respective JACSs is shown in
Table 2. Interactive maps of these JACSs can be found at
our website along with the corresponding expression data.
Note that JACSs were artificially limited to contain no
more than 120 nodes in order to provide a better separa-
tion between pathways with slightly similar expression
patterns. Nevertheless, it appears that this bound does not
cause substantial fragmentation of the true clusters, as
almost all the JACSs were enriched with distinct functions.
Reassuringly, most of the enriched functions are highly

Performance of different module finding algorithms on S. cerevisiae osmotic shock dataFigure 3
Performance of different module finding algorithmson S. cerevisiae osmotic shock data. (a) The fraction of the 
modules for which at least one category was enriched, (b) The fraction of the categories enriched in at least one module. 
Enrichment was defined as attaining hypergeometric p-value ≤ 10-3. Annotation sets: GO-Process: Level 7 of the GO "biological 
process" ontology; GO-Complex: subterms of "protein complex" term, GO:0043234; MIPS Phenotypes: MIPS deletion phenotype 
annotations; KEGG Pathways: KEGG molecular pathway participation.
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relevant to the conditions and the perturbations in the
data [32]. These include stress responses, such as repres-
sion of the translational machinery (JACSs 1–3) as well as
general stress response genes (JACS 11 and 17). In addi-
tion, a specific subnetwork relevant to the activation of
the pheromone response pathway following osmotic
shock in hog1 strain [32] was identified (JACS 5). Indeed,
since the HOG pathway shares protein kinases and phos-
phatases with other MAPK pathways, it was demonstrated
that perturbations in Pbs2 or Hog1 lead to osmostress-
induced stimulation of the pheromone response pathway
[33].

JACS 7 contains seven genes from the yeast membrane
ergosterol biosynthesis pathway which is strongly
repressed following osmotic shock in the WT strain but
not in hog1 strains. Lower levels of ergosterol make the
membrane more compact and less flexible and hence lead
to diminished transmembrane flux of glycerol, which is
important for recovery from both hyper-osmotic and
hypo-osmotic shock [32].

JACS 16 contains 19 genes members of the proteosome
complex. 9 of these are back nodes, underlying the ability
of MATISSE to use the network for linking co-activated
genes with biologically relevant partners. Inspection of
the expression data reveals a slight induction of the prote-
olysis genes following osmotic shock. This subtle
response is missed when clustering solely the expression
data, as no more than seven proteolysis genes are clus-
tered together in the CLICK solution. Ubiquitin-depend-
ent proteolytic mechanisms were linked to osmotic
responses before [32], and our findings support this
hypothesis.

Figure 4 shows JACSs 5 and 16. These subnetworks dem-
onstrate the use of different interaction types by MATISSE:
JACS 5 is dominated by protein-DNA interactions, involv-
ing the transcription factors (TFs) Tec1, Kss1 and Dig1;
JACS 16 is dominated by the protein interactions within
the proteosome and the mitochondrial ribosome com-
plexes. This subnetwork contains multiple back nodes
linking front nodes. In fact, Table 2 shows that some
JACSs make extensive use of nodes with no similarity
data.

Table 2: Functionally enriched modules found in the yeast osmotic shock data

JACS Size Front Enriched GO terms p-value TFs p-value

1 120 119 processing of 20S pre-rRNA < 0.001 Fhl1 4.82·10-16

rRNA processing < 0.001 Rap1 2.89·10-11

35S primary transcript processing < 0.001 Sfp1 2.98·10-8

ribosomal large subunit assembly and maintenance 0.019
rRNA modification < 0.001
ribosome biogenesis 0.029

2 120 118 translational elongation < 0.001 Fhl1 1.03·10-5

3 120 118 processing of 20S pre-rRNA < 0.001
rRNA processing 0.030

35S primary transcript processing 0.011
ribosomal large subunit assembly and maintenance 0.019

ribosomal large subunit biogenesis < 0.001
5 120 112 signal transduction during filamentous growth 0.010 Ste12 5.41·10-13

conjugation with cellular fusion < 0.001 Dig1 5.41·10-13

6 120 99 transcription from RNA polymerase III promoter < 0.001
transcription from RNA polymerase I promoter 0.006

7 120 107 ergosterol biosynthesis < 0.001
hexose transport 0.019

8 114 85 chromatin remodeling 0.050
11 120 114 pseudohyphal growth 0.010 Msn2 3.17·10-4

response to stress < 0.001 Msn4 1.82·10-12

14 120 102 ubiquitin-dependent protein catabolism 0.047
15 120 96 nuclear mRNA splicing, via spliceosome < 0.001
16 89 61 ubiquitin-dependent protein catabolism < 0.001 Rpn4 6.44·10-6

17 120 109 response to stress < 0.001 Msn4 1.74·10-3

mitochondrial electron transport < 0.001
18 87 59 nuclear mRNA splicing, via spliceosome 0.012
20 46 35 pyridoxine metabolism 0.045

The GO p-value was adjusted for multiple testing using the TANGO algorithm (see Methods). Enriched TF binding site motifs were detected using 
the PRIMA algorithm [35]. TF p-values were Bonferroni corrected for multiple testing.
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For several pathways, such as pyridoxine biosynthesis,
intracellular transport and chromatin-related complexes
(mainly SAGA, Cdc73, COMPASS and RSC) that were
linked by MATISSE to osmotic shock in S. cerevisiae, this
linking is novel. Pyridoxine was recently linked to osmotic
shock response in A. thaliana [34]. These findings underlie
the ability of MATISSE to produce testable hypotheses and
novel insights.

Promoter analysis
Based on the assumption that genes that exhibit similar
expression pattern over multiple conditions are likely to
be co-regulated and to share common cis-regulatory ele-
ments in their promoters, we searched for over-represen-
tation of known transcription factor binding site motifs in
the promoters of the genes in each JACS. When using the
PRIMA motif finding tool [35], six subnetworks showed
significant enrichment (p < 10-5) for at least one TF (Table
2). All the TFs corresponded to known regulators of the
processes enriched in the subnetworks. For example, JACS
5, enriched for pheromone response pathway genes, was
enriched with putative targets of Dig1 and Ste12, known
regulators of these pathways [36]. Subnetwork 11, associ-

ated with general stress response, contained multiple tar-
gets of the Msn2 and Msn4 stress TFs [37]. We validated
that these motif enrichments are not a byproduct of the
functional enrichment in the JACSs (p < 10-4, by random
sampling of gene groups with the same fraction of genes
from the corresponding functional category as in the
JACS). This analysis suggests that the JACS we obtained
indeed correspond to gene modules with a common tran-
scriptional regulation.

Cell cycle in human
We constructed a human protein-protein interaction net-
work by combining information from the BIND and
HPRD databases and from two recent large-scale yeast
two-hybrid studies on human cells [23,24]. The resulting
network contains 9,135 nodes and 25,086 interactions.
Expression profiles of the synchronized HeLa cell lines
from [38] were used. Only the 19 point time series
obtained for synchronization by thymidine-nocodazole
block was selected for the analysis, as it contains the
fewest missing values. Genes for which the maximal fold
change across the conditions was below 2 were filtered,
leaving 1,536 genes (front nodes).

Two of the JACSs identified in the S. cerevisiae analysisFigure 4
Two of the JACSs identified in the S. cerevisiae analysis. (a) The pheromone response subnetwork, (b) The proteolysis 
subnetwork. The front nodes are the yellow (light gray) rectangles and the back nodes and the blue (dark gray) ovals. The 
genes annotated with pheromone response (a) and proteolysis (b) are drawn with thicker border. Gene lists, expression matri-
ces and interactive display of all the subnetworks are available at the supplementary website.
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We performed MATISSE analysis using the All-Neighbors
heuristic, and the same parameters as in the previous sec-
tion, and obtained 14 significant JACSs. Maps of these
subnetworks are provided on our website and in the sup-
plement [see Additional file 1]. To check the ability to dis-
cover subnetworks active at different cell cycle phases, we
analyzed the overlap between the JACSs and annotations
of specific cell-cycle phases as provided in [38]. Indeed,
seven modules were enriched for specific phases of the cell
cycle with p < 0.05 after Bonferroni correction. The mod-
ule with the highest cell cycle enrichment (JACS 5, p =
2.85·10-17) is shown in Figure 5a.

The advantage of MATISSE is evident when comparing the
modules most enriched for the GO "cell cycle" category in
the MATISSE and the Co-clustering solutions. While the
MATISSE module is a single connected component of 120
genes, the corresponding co-cluster contains 110 con-
nected components and 519 genes, and thus is much less

amenable to interpretation in terms of the functional con-
nections between its genes.

Subnetwork hub analysis
We hypothesized that the topology of the JACSs obtained
by MATISSE can provide clues to the key players in the reg-
ulation of the cell cycle machinery. To test this, we looked
for "subnetwork hubs" in the JACSs, i.e., genes whose
degrees in a JACS were high both absolutely and relatively
to their network degree (see Methods). This analysis on
the 14 JACSs identified 52 hubs, 18 of them with "cell
cycle" annotation (p = 5.13·10-11). This set contained
many cell cycle master regulators such as p53, ATM, E2F1,
TGFβR, CDK4 and CDC42. Remarkably, 36 out of 52
hubs form a single connected subnetwork, displayed in
Figure 5b. This demonstrates that subnetwork hubs repre-
sent key regulators relevant to the experimental condi-
tions tested. The interactions between the subnetwork
hubs are putative regulatory interactions governing the
progression of the cell cycle. As only 33 of the 52 hubs are

Examples of the MATISSE analysis in the cell cycle data of human HeLa cellsFigure 5
Examples of the MATISSE analysis in the cell cycle data of human HeLa cells. Front nodes and back nodes are as 
indicated in Figure 4. (a) The highest scoring cell-cycle related JACS identified. The genes annotated with "cell cycle" are drawn 
with thicker border. Gene lists, expression matrices and interactive display of all the subnetworks are available at the supple-
mentary website, (b) Subnetwork hubs. The figure shows 36 nodes in the JACSs that were identified as subnetwork hubs and 
induced a connected component in the network. 16 additional hubs that had no interactions with other hubs are not shown. 
The known master regulators p53, ATM, E2F1, TGFβR, CDK4 and CDC42 are circled.
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front nodes in their respective JACS, this set could not be
identified using expression data alone.

Conclusion
We have developed a novel computational technique for
the integrated analysis of network and similarity data. The
method is aimed to dissect together topological properties
of gene or protein networks and other high-throughput
data. We used the method to analyze large-scale protein
interaction networks and genome-wide transcription pro-
files in yeast and human. The method was shown to iden-
tify functionally sound modules, i.e., connected
subnetworks with highly coherent expression showing
significant functional enrichment. In comparison to the
extant Co-clustering method, which aims to integrate sim-
ilar data, our method demonstrated substantial improve-
ment in solution quality. Comparison to solutions
produced by clustering highlights the advantage of utiliz-
ing topological connectivity in the hunt for functionally
sound modules. By construction, our method is specifi-
cally powerful in detection of regulatory modules, and
less fit for detection of metabolic modules. Our tech-
nique, implemented in the program MATISSE, is efficient
and can analyze genome-scale interaction and expression
data within minutes.

The proposed algorithm is very flexible and – unlike Co-
clustering – can handle situations where not all genes in
the network have similarity information or expression
patterns. In particular, MATISSE can determine the subset
on which similarity is computed using various criteria,
e.g., initial probe filtering, differential expression confi-
dence values, etc. As we demonstrate, even when only a
modest fraction of the overall network genes have expres-
sion/similarity information, the method finds meaningful
modules successfully.

The requirement for network connectivity as proposed in
our method can be viewed as problematic due to high rate
of false negative interactions. A natural extension of MAT-
ISSE which we intend to pursue is to take into account the
interaction confidence. As a first step towards this goal, we
assessed the composition of the interactions in the
reported subnetworks as follows: we compared the
observed and expected number of interactions within the
subnetworks, from each of the publications used as inter-
action sources in the S. cerevisiae interactions network. We
found a clear enrichment for interactions from recent
experiments, such as [39] and [40], opposed to an under-
representation of interactions from older works, such as
[41,42] and [43] (see supplementary table). As currently
the coverage of the protein interaction network is limited,
we suggest performing MATISSE analysis in addition to
standard clustering analysis.

The framework described in this work is directly applica-
ble to any kind of pairwise similarity data where the prob-
abilistic assumptions hold. While this study focused on
protein interaction networks and gene expression, the
approach is general enough to treat many other data
types. These include other types of interactions, such as
genetic interactions, regulation and protein-DNA binding
patterns, and other similarity measures, such as functional
similarity or similarity in protein-DNA binding profiles
[2]. We intend to extend MATISSE to these types of data as
well.

While the rapidly expanding resource of microarray data
is currently analyzed primarily using diverse clustering
techniques, methods for the analysis of network-type data
describing interrelations of genes and proteins are less
mature, and methods for joint analysis of the two data
types are in nascent stage. We expect the proposed method
to become widely used for dissecting expression data in
light of the interaction knowledge. Our initial results
show that despite the high complexity and the relatively
low coverage of the human interactome, biologically rele-
vant modules can be found in the human protein interac-
tion network through integrative analysis.

Methods
The probabilistic model

Recall that we formalize the problem as finding disjoint
node sets that induce connected subgraphs in the con-
straint graph and manifest high internal similarity. We
formulate this problem as a hypothesis testing question.
For this, we define a probabilistic model for the similarity
data, using ideas from [27] and [44]. Given a set U of k
genes, we compare two hypotheses: the null hypothesis H0:

U is a set of unrelated genes; and the JACS hypothesis H1: U

is a JACS. We assume that the observed pairwise similarity
values are a mixture of two Gaussian distributions: one for
pairs of genes that are highly co-expressed (such pairs are
called mates) and another for the rest. Let Mij denote the

event that i and j are mates. The similarity values between

mates (P(Sij|Mij)) are normally distributed with mean µm

and variance . The similarity levels of all non-mates

are distributed normally with the parameters µn and .

These assumptions are theoretically justified in certain sit-
uations [27]. Empirically, analysis using normal quantile
plots [45] indicates that they are valid for the biological
data analyzed in this paper (results not shown). We also
assume that the probability that a pair of genes are mates
is high if they belong to the same JACS and low otherwise.

σm
2

σn
2
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Differential regulation
Not all genes within the interaction network are regulated
on the expression level. Thus, when working with expres-
sion profiles, we would like the model to allow lower sim-
ilarity levels between genes that are not necessarily
regulated on the expression level, while penalizing heavily
for low similarity between transcriptionally regulated
genes. This allows flexibility on two levels in our setting.
First, the genes can be filtered prior to computing similar-
ities (e.g., only genes passing a threshold of observed fold
change or variation level are included in Vsim). Note that
genes that fail to pass the filter remain in the interaction
network and can be incorporated into a JACS, while not
used for its scoring. Second, a prior can be assigned to the
likelihood that a gene is regulated: we define Ri as the
event that gene i is regulated on the expression level under
the conditions studied and let P(Ri) designate the proba-
bility of that event.

The likelihood score
We assume that JACSs contain a much higher proportion
of mates than gene pairs that do not belong to the same
JACS. Specifically, we assume that a large fraction βm (e.g.
0.9) of the pairs of transcriptionally regulated genes
within the JACS are mates and thus their similarity levels
are distributed N(µm, σm). Then P(Mij|Ri ∧ Rj, H1) = βm. We
make the simplifying approximation that the scores of dif-
ferent gene pairs are independent. Consequently, the like-
lihood of a JACS U is decomposable on every pair of genes
in it:

Let  = βmP(Ri)P(Rj). Then:

P(Sij|H1) = P(Sij|Mij) + (1 - )P(Sij| )

The null hypothesis (H0) is that the fraction of mates in U

is not surprising: every two transcriptionally regulated
genes are mates with the probability expected from the
relative portion of mates among all the regulated genes,

denoted pm. Let  = pmP(Ri)P(Rj). The likelihood ratio

between the two hypotheses  is:

Define the similarity graph, GS = (Vsim, ES), where ES = (Vsim

× Vsim) and set

 as the weight

of the edge (vi, vj). The log-likelihood score for a given U

translates to the total edge weight of the subgraph induced
by U in GS.

JACS finding algorithm
Our goal is to find disjoint sets U1, U2,..., Um that induce
connected subgraphs in GC and heavy subgraphs in GS.
When weights can be both positive and negative (as is the
case in our formulation), even the problem of finding a
single heavy subgraph is NP-Hard (by a simple reduction
from Max-Clique using a complete constraint graph).
Hence, exact optimization is intractable, and we experi-
mented with several heuristic algorithms for solving the
problem. All the schemes share the following three
phases: (1) detection of relatively small, high-scoring gene
sets, or seeds, (2) seed improvement, and (3) significance-
based filtering.

Identifying seeds
We tested three different methods for generating high
scoring seeds. In all the methods a large set of non-over-
lapping potential seeds is first generated, and only seeds
passing a certain score threshold are passed to the next
phase.

Best-neighbors

In this method, high scoring seeds of a predefined size k
are constructed. The nodes of the graph are ranked based
on their total incident edge weights in GS (their weighted
degree). The algorithm repeatedly creates a seed and
removes its nodes from the graph. The seed generating
step picks the highest ranking node v, and selects a set of
k - 1 neighbors of v in GS that maximize the seed score. The
optimal neighbor set can be found through exhaustive
enumeration (enumeration is needed since the score for
different neighbor sets depends also on the weights of the
edges between them). When enumeration is computa-
tionally prohibitive, a heuristic that picks nodes with the
highest weighted degree within the immediate neighbor-
hood of v is utilized. Specifically, let Nv be the set of all the

immediate neighbors of v. For i ∈ Nv define

. The heuristic selects k - 1 nodes with

the highest wv values.

All-neighbors
This method is similar to Best-Neighbors, but instead of
selecting k - 1 neighbors for a potential seed, in this ver-
sion, all the neighbors of v with a non-negative edge score
(including neighboring back nodes with zero score) enter
the seed.
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Heaviest-subnet
This method is inspired by Charikar's 2-approximation
algorithm for the densest subgraph problem [46]. An
articulation node in a connected graph is one whose
removal disconnects the graph. The following algorithm
is executed independently on each connected component
in the constraint graph. The algorithm works in a "destruc-
tive" fashion: starting from the original constraint graph,
nodes are removed from the graph one at a time until
none remain. The next node to be removed is one with the
smallest weighted degree in the current similarity graph
that is not an articulation node in the current constraint
graph. It is easy to see that such a node always exists. After
each node removal, the overall score of the remaining
graph is recorded. After all nodes are removed, the high-
est-scoring (possibly size-constrained) subgraph that was
encountered is selected as the seed. That subgraph is then
removed from the graph and the next seed is sought.

Seed optimization
Once a set of high-scoring seeds is established, a greedy
algorithm aims to optimize all the seeds simultaneously.
In our tests, this strategy worked better than optimizing
each seed separately, as it produced more diverse JACSs.
The algorithm keeps a set of disjoint subnetworks at every
iteration and considers the following moves (Figure 6):

Node addition
Addition of an unassigned node to an existing JACS.

Node removal
Removal of a node from a JACS.

Assignment change
Exchange of a node between JACSs.

Toy examples of the moves performed by the optimization algorithmFigure 6
Toy examples of the moves performed by the optimization algorithm. (a) Node addition; (b) Node removal; (c) 
Assignment change; (d) JACS merge. In each case the affected nodes are in red (black).
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JACS merge
A new JACS is formed by taking the union of the nodes in
two existing JACSs. This step is particularly beneficial
when the original seeds are relatively small.

At every step a move is selected only if (1) it improves the
overall score of the solution, i.e., the sum of the weights of
all the JACSs and (2) the move maintains the connectivity
of the JACSs. If no such step exists, a "cleanup" procedure
iteratively removes from every JACS non-articulation back
nodes that are not found on any simple path between
front nodes. If the clean-up step does not remove any
nodes, the optimization halts. Note that the algorithm is
guaranteed to converge, as the global score is monotoni-
cally increasing. In addition, in order to obtain biologi-
cally meaningful JACSs, an upper bound on the size of a
JACS can be employed throughout the optimization. If a
JACS reaches this upper bound in the course of the opti-
mization, any node added to it causes a removal of a low-
scoring node, maintaining the JACS size. Note that this
procedure can add only front nodes.

Filtering
After a collection of putative JACSs is obtained, it is fil-
tered based on the significance of the JACS score. For that
purpose, for every candidate JACS, an empirical p-value of
its score is calculated using sampling randomly gene
groups of the same size. Only candidate JACSs with p-
value below a threshold p pass the filtering stage (p = 0.05
after Bonferroni correction was used). In a second step, to
avoid possible bias in the score, we empirically test the
JACS significance using only expression similarity scores.
The same sampling procedure is performed using the
average raw expression pairwise similarity values, and
JACSs whose average similarity is not sufficiently high
compared to the sampled sets of the same size are
removed. An efficient computation of this step is done as
suggested in [15].

Implementation issues
For efficient implementation, several slight modifications
were made to the algorithm described above:

Removal of non-contributing nodes
As in our framework only front nodes are used for JACS
scoring, back nodes will be incorporated into the subnet-
work only if they appear on some path between two front
nodes. Thus, prior to algorithm execution we remove
from GC all back nodes that are leaves (nodes with degree
smaller than 2). The procedure is iterated until no such
leaves remain in the graph. In practice, due to the nature
of the protein interaction network used, this step signifi-
cantly reduces the size of the network, without influenc-
ing the quality of the solution.

Similarity graph adjustment
When finding Heaviest-Subnet seeds, low edge density in
the graph is crucial for efficiency. We therefore remove

edges with low absolute weight from the graph, as their
contribution to the overall JACS score is small. All the
edges are used in the subsequent phases.

Finding heaviest-subnet seeds
Efficient implementation of this algorithm can be done
using a data structure similar to the one developed for the
dynamic connectivity problem [47]. This would take
O(|V|log4 |V|) time per seed. Instead, we used a simple
algorithm for detection of articulation nodes in each iter-
ation. Articulation nodes can be detected during a depth-
first traversal of the graph, by calculating the "lowpoint"
values of every node (cf. [48]).

This implementation required complexity of O(|V||ES|)
time per seed. Since this time can be too long for very large
graphs, we use a sampling approach when the component
contains more than 1,500 nodes: a connected subgraph of
a more modest size is randomly sampled (as described in
[49]) and then used for seed finding. This sampling is
repeated several times, with the highest scoring seed used
for further optimization.

Implementation
MATISSE was implemented as a Java stand-alone applica-
tion. In addition to the algorithmic engine, it contains a
visualization tool allowing flexible inspection of the
obtained subnetworks and diverse post-process analyses.
Running times are efficient enough to accommodate large
interaction networks and gene expression datasets. For
example, on a constraint graph of 4, 543 nodes and 1, 996
expression profiles, the processing took less than 15 min-
utes for All-Neighbors and Best-Neighbors methods and
78 minutes for Heaviest-Subnet, on a Pentium 4 3 GHz
machine with 2 GB memory. About 10 – 20% of the time
is needed to learn the parameters using EM, and this time
is saved in all subsequent runs on the same data. The run-
ning time depends sublinearly on the bound on the max-
imum size of the JACS (Figure 7). The application will
soon be available at [50].

Simulation setup
Our simulations used the real connected network of 2,000
yeast proteins described in Results, and synthetic similar-
ity values, generated as follows. First, a set of m disjoint
connected subnetworks P1,..., Pm of equal size k was ran-
domly selected as in [49]. Then, from each subnetwork a
subset of size k·pf was randomly selected to be included in
Vsim (front nodes). The resulting Vsim was expanded by
additional randomly selected nodes, to contain nsim nodes
in total. Similarity values were generated as in [27] using
two Gaussian distributions - Nm with parameters µm, σm
for similarity between mates and Nn with parameters µn,
σn for all other pairs.

Similarity values were determined independently for each
node pair, as follows: If the two nodes reside in the same
JACS, the value was drawn from Nm with probability βm
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and from Nn with probability 1 - βm. Otherwise, the value
was drawn from Nm with probability pm.

The default values for the simulations were set to nsim = 1,
000 (out of |V| = 2, 000);

m = 6;k = 100;pf = 0.7;µm = 0.5;µn = 0;σm = σn = 0.3;βm =
0.95;pm = 0.01.

Evaluating performance

The success of an algorithm in recovering the planted
components was measured using the Jaccard coefficient

[51]. It is defined as , where n11 is the

number of node pairs included both in the same planted
component and in the same JACS, n10 is the number of

pairs included in the same planted component but not in
the same JACS, and n01 is the number of pairs in the same

JACS but not in the same planted component. Hence, a
perfect fit of the two solutions would get a score of 1, and
lower scores indicate reduced fit.

Parameter estimation

To obtain meaningful results, a good assessment of the
parameters of the probabilistic model is prerequisite. We
tested different schemes for assessing P(Ri), and selected

the following scheme. We ranked the genes based on the
variation observed across their expression patterns and
then applied a logistic function to the normalized ranks to

obtain: P(Ri) = α + (1 - α) , where xi is the

normalized rank of gene i. The logistic parameters were

empirically set to α = 0.6, β = 24 and γ = 0.25. To evaluate
the effect of the specific form of the prior on the results,
we reran the JACS finding algorithms with different logis-

tic parameter settings (α = 0.4..0.8, β = 1..24, γ = 0.2..0.7).
The average expression homogeneity and the average
functional homogeneity of the produced JACSs (com-
puted as described in [1]) of the JACSs did not change by
more than 6%.

We adjusted the standard EM algorithm used for learning
a mixture of Gaussians (cf. [52]) in order to estimate µm,
σn, µn, σn and pm. A detailed description of the EM algo-
rithm can be found at our website ([50]). The produced
JACSs were constrained to the size range of 5–120 and βm
was set to 0.9. We verified that the reported results are
robust to changes in the value of βm by varying it between
0.75 and 0.99 and analyzing the obtained solutions. We
found that both the average expression homogeneity and
the average functional homogeneity did not change by
more than 3% across this parameter range.

Comparison of the heuristics
We evaluated the three proposed heuristics both in our
simulation setting and on the osmotic shock response in
S. cerevisiae. The results of the comparison on simulation
data are presented in Figure 8. Overall, as can be seen in
Figure 8, all three MATISSE variants show similar per-
formance. All the methods exhibit poor performance in
detection of small planted components (k < 50). Best-
Neighbors seems to be the preferred method on the sim-
ulated data. Best-Neighbors and All-Neighbors is that
Best-Neighbors does not incorporate back nodes at all,
while All-Neighbors may include some. As we shall show
below, using back nodes is in fact advantageous in real
biological data. The performance of the Heaviest-Subnet
seeding is highly variable, probably due to its relatively
significant dependency on the structure of the similarity
graph.

The results of the comparison on simulation data are pre-
sented in Figure 9. The Best-Neighbors variant performs
slightly better than All-Neighbors in terms of the fraction
of enriched modules, but All-Neighbors performs signifi-
cantly better in terms of category coverage, due to its
inclusion of back nodes. We therefore carried out all sub-
sequent analysis using the modules produced with the
All-Neighbors variant.

Functional enrichment analysis
We used the TANGO algorithm [31] for finding GO terms
enriched in the JACSs. The algorithm considers all levels
of GO and corrects p-values for multiple testing and for
category dependency using resampling. Briefly, TANGO
repeatedly selects random sets of genes to compute an

n
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Dependence of the running time on the size of the JACSFigure 7
Dependence of the running time on the size of the 
JACS. The running time of MATISSE with different maxi-
mum JACS size parameters. The execution did not include 
the weight calculation step, as it is not dependent on the 
JACS size.
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Performance of the three proposed heuristic in terms of annotation enrichmentFigure 9
Performance of the three proposed heuristic in terms of annotation enrichment. See Figure 3 for further details.

Performance of the three proposed heuristics on simulated dataFigure 8
Performance of the three proposed heuristics on simulated data. See Figure 2 for further details.
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empirical distribution of maximum p-values for func-
tional enrichment obtained across a random sample of
sets that maintain the same size characteristics of the ones
analyzed. TANGO uses this empirical distribution to
determine thresholds for significant enrichment on the
true clusters. The algorithm filters out redundant catego-
ries by performing conditional enrichment tests that
ensure that all the reported enriched categories are statis-
tically significant even after taking into account the
enrichment of their ancestor and children nodes in the
tree.

Extraction of subnetwork hubs
Given a JACS J, v ∈ J was called a hub if it satisfied three
requirements: (a) the degree of v within the subnetwork J
exceeds 7; (b) the degree of v in J is among the five highest
in J; (c) the degree of v in J is significantly high given its
degree in the whole network (p < 0.05 using hypergeomet-
ric distribution). Note that back nodes can also be hubs.
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Regulatory networks define phenotypic classes of
human stem cell lines
Franz-Josef Müller1,2, Louise C. Laurent1,3, Dennis Kostka4{, Igor Ulitsky5, Roy Williams6, Christina Lu1,
In-Hyun Park7, Mahendra S. Rao8,9, Ron Shamir5, Philip H. Schwartz10,11, Nils O. Schmidt12 & Jeanne F. Loring1,6

Stem cells are defined as self-renewing cell populations that can
differentiate into multiple distinct cell types. However, hundreds
of different human cell lines from embryonic, fetal and adult
sources have been called stem cells, even though they range from
pluripotent cells—typified by embryonic stem cells, which are
capable of virtually unlimited proliferation and differenti-
ation—to adult stem cell lines, which can generate a far more
limited repertoire of differentiated cell types. The rapid increase
in reports of new sources of stem cells and their anticipated value
to regenerative medicine1,2 has highlighted the need for a general,
reproducible method for classification of these cells3. We report
here the creation and analysis of a database of global gene express-
ion profiles (which we call the ‘stem cell matrix’) that enables the
classification of cultured human stem cells in the context of a wide
variety of pluripotent, multipotent and differentiated cell types.
Using an unsupervised clustering method4,5 to categorize a collec-
tion of 150 cell samples, we discovered that pluripotent stem cell
lines group together, whereas other cell types, including brain-
derived neural stem cell lines, are very diverse. Using further
bioinformatic analysis6 we uncovered a protein–protein network
(PluriNet) that is shared by the pluripotent cells (embryonic stem
cells, embryonal carcinomas and induced pluripotent cells).
Analysis of published data showed that the PluriNet seems to be
a common characteristic of pluripotent cells, including mouse
embryonic stem and induced pluripotent cells and human oocytes.
Our results offer a new strategy for classifying stem cells and
support the idea that pluripotency and self-renewal are under tight
control by specific molecular networks.

Cultured cell populations are traditionally classified as having the
qualities of stem cells by their expression of immunocytochemical or
PCR markers7. This approach can often be misleading if these mar-
kers are used to categorize novel stem cell preparations or predict
inherent multipotent or pluripotent features8. To develop a more
robust classification system, we created a framework for identifying
putative novel stem cell preparations by their whole-genome mes-
senger RNA expression phenotypes (Fig. 1). The core reference data
set, which we call the ‘stem cell matrix’, includes cultures of human
cells that have been reported to have either stem cell or progenitor
qualities, including human embryonic stem cells, mesenchymal stem
cells and neural stem cells. To provide the context in which to place
the stem cells, we included non-stem-cell samples such as fibroblasts
and differentiated embryonic stem cell derivatives. To avoid biasing

the classification methods, it was critical that we designated the input
cell types with terminology that carried as little preconception about

1Center for Regenerative Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. 2Center for Psychiatry, ZIP-Kiel, University Hospital
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California 92035, USA. 4Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany. 5School of
Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. 6The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. 7Division
of Pediatric Hematology/Oncology, Children’s Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA. 8Invitrogen Co, 3705 Executive Way, Frederick,
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Figure 1 | Sample collection and analysis for the stem cell matrix. Cell
preparations for the stem cell matrix are cultured in the authors’ laboratories
or collected from other sources worldwide. Samples are assigned source
codes that capture their biological origin and a relatively unbiased
description of the cell type (such as BNLin for brain-derived neural lineage).
Samples are collected and processed at a central laboratory for microarray
analysis on a single Illumina BeadStation instrument. The genomics data are
processed by unsupervised algorithms that are capable of grouping the
samples based on non-obvious expression patterns encoded in
transcriptional phenotypes. For pathway discovery, existing high-content
databases with experimental data (for example, protein–protein interaction
data or gene sets) are combined with our transcriptional database, a priori
assumed identity of cell types and bootstrapped sparse non-negative matrix
factorization (sample clustering) to produce metadata that can be mined
with GSA software and topology-based gene set discovery methods (systems-
wide network analysis). Web-based, computer-aided visualization
methodologies can be used by researchers to formulate testable hypotheses
and generate results and insights in stem cell biology. Two exemplary results
we report in this paper are the classification of novel stem cell types in the
context of other better understood stem cell preparations, and a molecular
map of interacting proteins that appear to function together in pluripotent
stem cells.

Vol 455 | 18 September 2008 | doi:10.1038/nature07213

401

 ©2008 Macmillan Publishers Limited. All rights reserved

www.nature.com/doifinder/10.1038/nature07213
www.nature.com/nature
www.nature.com/nature


their identity as possible. Our nomenclature (‘source code’) has two
components: the first is the tissue or cultured cell line of origin. The
second term captures a description of the culture itself.
Supplementary Tables 1–8 summarize the descriptions of the core
samples and their assigned source codes.

To sort the cell types we used an unsupervised machine learning
approach to cluster transcriptional profiles of the cell preparations
into stable distinct groups. Sparse non-negative matrix factorization
(sNMF) was adjusted for this task by implementing a bootstrapping
algorithm to find the most stable groupings (see also Supplementary
Discussion 1)4,5. The stability of the clustering9 indicated that the data
set most likely contained about 12 different types of samples (Fig. 2a
and Supplementary Methods 2). The composition of the stable clus-
ters revealed both predictable and unpredicted groupings of a priori
designations (Fig. 2b and Supplementary Fig. 1). The 20 samples
identified as undifferentiated human pluripotent stem cell (PSC)
preparations were grouped together in one dominant cluster
(Fig. 2, cluster 1) and one secondary cluster (Fig. 2, cluster 5).
Sixty-two of the samples were brain-derived cells that were described
as neural stem or progenitor cells based on their source, culture
methods and classical markers. Most of the designated neural stem
cells were distributed among multiple clusters, indicating a great deal
of diversity in neural stem cell preparations. But one group of the
brain-derived lines, those derived from surgical specimens from liv-
ing patients (HANSE cells, see below), remained together throughout
the iterative clusterings (Fig. 2, cluster 6; see also Supplementary Fig.
3 and Supplementary Methods 1). The HANSE cell group consisted
of transcriptional profiles that were derived from neurosurgical spe-
cimens following published protocols for multipotent neural pro-
genitor derivation and propagation10,11. These cells expressed
markers that are commonly used to identify neural stem cells12 (see
Supplementary Fig. 4), but the clustering clearly separated them from
the other samples that had been derived from post-mortem brains of
prematurely born infants (SC23 and SC30, see Fig. 2b)10,11.

We tested the ability of our data set to categorize additional pre-
parations by adding 66 samples comprising new cultures derived
from PSC lines that were already in the matrix, preparations that
were not yet included (but their presumptive cell type was already
represented), or new cell types. We chose two new types of cells: a
differentiated cell type (umbilical vein endothelial cells (HUVECs))
and a recently developed new source of pluripotent cells called
induced pluripotent stem cells13–16 (iPSCs, Supplementary Table 9).
iPSCs have been generated from somatic cells, including adult fibro-
blasts, by genetic manipulation of certain transcription factors13,15–17.
We re-computed clustering results including the test data set
(Supplementary Table 10). All of the HUVEC samples clustered
together and formed a distinct group. Most of the additional PSC
lines (human embryonic stem cells (embryonic PSCs; ePSCs) and
iPSCs) from several different laboratories were placed into a context
that contained solely PSC lines. Three additional germ cell tumour
lines clustered together with the tumour-derived pluripotent stem
cell (tPSC) line 2102Ep and samples of three human embryonic stem
(ES) cell lines: BG01v (ref. 18), Hues7 (ref. 19) and Hues13 (ref. 19).
BG01v is an established aneuploid variant line and the two Hues lines
are aneuploid variants of the originally euploid lines (not shown).

We used a combination of analysis tools to explore the basis of the
unsupervised classification of the samples in the core data set. Gene
Set Analysis20 (GSA) is a means to identify the underlying themes in
transcriptional data in terms of their biological relevance.

GSA uses lists of genes20 that are related in some way; the common
criterion is that the relationships among the genes in the lists are
supported by empirical evidence20. GSA highlighted numerous sig-
nificant differences among the computationally defined categories.
(See Supplementary Fig. 2, Supplementary Table 11, Supplementary
Methods and http://www.stemcellmatrix.org).

Although GSA is valuable for discovering specific differences among
sample groups, it is limited to curated gene lists and cannot be used to

discover new regulatory networks. The MATISSE algorithm6 (http://
acgt.cs.tau.ac.il/matisse) takes predefined protein–protein interac-
tions (for example, from yeast two-hybrid screens) and seeks con-
nected subnetworks that manifest high similarity in sample subsets.
The modified version used in this analysis is capable of extracting
subnetworks that are co-expressed in many samples but also signifi-
cantly upregulated or downregulated in a specific sample cluster.
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Figure 2 | Clusters of samples based on machine learning algorithm.
Samples were distributed on the basis of their transcriptional profiles into
consensus clusters using sNMF. a, Consensus matrix from consensus
clustering results (centre matrix plot). The consensus matrix is a visual
representation of the clustering results and the separation of the sample
clusters from each other. Blue indicates no consensus; red indicates very
high consensus. The numbers (1–12) on the diagonal row of clusters indicate
the number assigned to the cluster by sNMF. These numbers (cluster 1 to
cluster 12) are used throughout the text to indicate the group of samples in
that cluster. The bar graph above the consensus matrix plot shows the
summary statistics assessing the overall quality of each cluster. The cluster
consensus value (0–1) is plotted above the corresponding cluster in the
matrix plot. Note that most clusters (clusters 10, 12, 6, 4, 9, 1, 8, 11, 7 and 2)
have a high-quality measurement. To the left of the consensus matrix is
another view of the consensus data, visualized as a dendrogram. This is a
representation of the hierarchical clustering tree of the consensus matrix.
b, The content of the sample clusters resulting from the same sNMF run are
displayed. Numbers are the same cluster numbers assigned by the consensus
clustering algorithm that are used throughout the text and figures. For more
information on samples, source code and references see Supplementary
Tables 1–10. No., number of samples. The symbol ‘"’ indicates that samples
were derived from adult brain specimens.
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Figure 3 | Pluripotent stem-cell-specific protein–protein interaction
network detected by MATISSE. Clusters from the sNMF k 5 12 analysis
were used in combination with the transcriptional database to identify
protein–protein interaction networks enhanced in PSCs. A, A large
differentially expressed connected subnetwork (PluriNet) shows the
dominance of cell cycle regulatory networks in PSCs (see legend). All of the
dark blue symbols are genes that are highly expressed in most PSCs
compared to the other cell samples in the data set. Front nodes, as
represented by stem cell matrix expression data, and back nodes, as inferred
by MATISSE, are displayed with different colour shades6. Highlighted in red
are the interactions of a group of proteins associated with pluripotency in
murine ePSCs21. This subnetwork shows a significant enrichment in genes
that are targeted in the genome by the transcription factors NANOG
(P 5 5.88 3 1024), SOX2 (P 5 0.058) and E2F (P 5 1.29 3 10216, all
P-values are Bonferroni corrected). For an interactive visualization of
PluriNet, see http://www.stemcellmatrix.org. B, Heat-map-like visualization
of PluriNet genes for samples from the test data set: HUVECs (UC-EC,
a–c, derived from three independent individuals), germ cell tumour-derived
pluripotent stem cells (tPSC-UN, d–f, lines GCT-C4, GCT-72, GCT-27X,

derived from three independent individuals), induced pluripotent stem cells
(iPSC-UN, g–i, BJ1-iPS12, MSC-iPS1, hFib2-iPS5, three independently
derived lines from different somatic sources) and embryonic stem cells
(ePSC-UN, j–l, lines Hues22, HSF6, ES2, derived from three independent
blastocysts in three independent laboratories). Most PluriNet genes are
markedly upregulated in iPSC-UN and ePSC-UN cells. tPSC-UN cells show a
less consistent expression pattern. UC-EC cells show lower expression levels
of most PluriNet genes. See Supplementary Fig. 5 for a larger version of the
same heat maps. C, Analysis of genes from PluriNet in the context of
phenotypes that have been reported to result from specific genetic
manipulations (for example, gene knockout) in mice in the MGI 3.6
phenotype ontology database (http://www.informatics.jax.org/). We find
significant over-representation of phenotypes ‘lethality (perinatal/
embryonic)’, ‘tumorigenesis’, ‘cellular’, ‘embryogenesis’, ‘reproductive
system’ and ‘lifespan and ageing’ among the genes in PluriNet. Although
these broad categories might be rather unspecific surrogate markers for PSC
function in mammals, this analysis might point towards PluriNet’s role in
vivo. For more details, see also Supplementary Fig. 6 and Supplementary
Table 12.
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Because the PSC preparations were consistently clustered together we
used MATISSE to look for distinctive molecular networks that might
be associated with the unique PSC qualities of pluripotency and self-
renewal. A Nanog-associated regulatory network has been outlined in
mouse embryonic PSCs21, and we looked for the elements of this
network in human PSCs using our unbiased algorithm. We found
that the algorithm predicts that human PSCs possess a similar
NANOG-linked network (Fig. 3A; elements labelled in red).
However, we also discovered that the human NANOG network seems
to be integrated as a small component of a much larger protein–
protein interaction network that is upregulated in human PSCs
(Fig. 3). Notably, this PSC-specific network (termed pluripotency-
associated network, PluriNet) contains key regulators that are
involved in the control of cell cycle, DNA replication, DNA repair,
DNA methylation, SUMOylation, RNA processing, histone modifica-
tion and nucleosome positioning (see also Supplementary Discussion
2 and http://www.openstemcellwiki.org). Many of the genes in the
PluriNet have been linked to embryogenesis, tumorigenesis and age-
ing (Fig. 3C and Supplementary Fig. 6). We further explored the

hypothesis that pluripotency is closely linked to PluriNet expression
by analysing published gene expression data sets from human oocytes,
various types of PSCs and murine embryos (see Table 1 for a summary
of our findings in various model systems). Analysis of a microarray
data set22 that spans development from murine oocytes to the late
blastocyst stage revealed that the PluriNet expression is dynamic
and upregulated during early mammalian embryogenesis (Table 1
and Supplementary Figs 7–9)23. Also, our preliminary analyses indi-
cate that the PluriNet is strongly upregulated in mouse PSCs, mouse
iPSCs and mouse epiblast-derived stem cells24 when compared to
somatic cells. Therefore the PluriNet may be useful as a biologically
inspired gauge for classifying both murine and human PSC pheno-
types (Table 1 and Supplementary Figs 10–13).

Our data indicate that an unbiased global molecular profiling
approach combined with a transcriptional phenotype collection using
suitable machine learning algorithms can be used to understand and
codify the phenotypes of stem cells4,5,25. Although it is more extensive
than any stem cell data set reported so far, we consider our database
and the PluriNet to be a work in progress. As more direct evidence for
protein–protein interactions in human cells becomes available, it will
be possible to refine the networks we have defined and make them
more useful for testing hypotheses about the nature of stem cell plur-
ipotency and multipotency. Also, our sample collection is limited to
pluri- and multipotent stem cell types that grow well in culture, and
does not include some of the most well studied lineages, such as
haematopoietic stem cells. Resolution and reliability of a context-
based unsupervised classification can be expected to grow with the
breadth and depth of the database content26. Even with these limita-
tions, we have shown that the data set and PluriNet have already
proved useful for categorizing cell types using unbiased criteria. As
more stem cell populations become available, cultured by new meth-
ods, isolated from new sources, or induced by new methods, we will
use the PluriNet and the stem cell matrix as a reference system for
phenotyping the cells and comparing them with existing cell lines.

METHODS SUMMARY

For an overview of the general workflow, please also refer to Fig. 1. A detailed list

of the samples, culture methods and reference publications is provided in

Supplementary Information11. Generally, RNA from each sample was prepared

from approximately 1 3 106 cultured cells. Sample amplification, labelling and

hybridization on Illumina WG8 and WG6 Sentrix BeadChips were performed

for all arrays in this study according to the manufacturer’s instructions (http://

www.illumina.com) at a single Illumina BeadStation facility. We used the

Consensus Clustering framework9 to cluster transcription profiles and to assess

stability of the results. As the algorithm, we used sparse non-negative matrix

factorization5. For data perturbation, 30 subsampling runs were performed for

each considered number of clusters (k). In each run, 80% of the data was sub-

jected to ten random restarts. The R-script can be downloaded at http://

www.stemcellmatrix.org. Details on the application of GSA20, PAM27,

MATISSE6 as well as publicly available data sets used in this study can be found

in the Methods section. We modified the MATISSE6 computational framework

to fit the goals of this study. For the present analysis we used the human physical

interaction network that we had previously assembled6 and augmented it with

additional interactions from recent publications21,28,29. The 64 interactions in ref.

21 were mapped to the corresponding human orthologues using the NCBI

HomoloGene database.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Compilation of type collection. Samples were either grown in our own labor-

atory or provided by collaborators. Each sample was prepared from approxi-

mately 1 3 106 cultured cells, which were mechanically harvested, pelleted and

snap frozen in liquid nitrogen. Biological replicates were produced for almost all

samples. Details on the included cell lines and culture methods can be found in

the Supplementary Tables 3–8.

Neural progenitor cultures (HANSE) from neurosurgical specimens. Brain

tissue samples were obtained from patients who underwent surgery for intract-

able temporal lobe epilepsy at the Department of Neurosurgery, University
Medical Center Hamburg-Eppendorf, Germany (n 5 6; 4 males and 2 females;

mean age 33). All procedures were performed with informed consent and in

accordance with institutional human tissue handling guidelines. We used mod-

ifications of reported protocols for establishing neural progenitor cultures from

fetal and postmortem brain tissue10,30. A more detailed description can be found

in Supplementary Methods 1.

Whole-genome gene expression. All RNA was purified in our laboratory using

standard methods. Sample amplification, labelling and hybridization on

Illumina WG8 and WG6 Sentrix BeadChips were performed for all arrays in

this study according to the manufacturer’s instructions (Illumina) using an

Illumina BeadStation (Burnham Institute Microarray Core).

Microarray data pre-processing. Raw data extraction was performed with

BeadStudio v1.5 and probes with a detection score of less than 0.99 in all of

the samples were discarded. The resulting probes were then quantile-normalized

to correct for between-sample variation31. The sample data were quality con-

trolled before normalization using the quality parameters provided by

BeadStudio software. Before and after normalization the arrays were inspected

with signal distribution box plots and by using the maCorrPlot package32.
Parameters for unsupervised classification. The data sets and the sparseness

factor l were adjusted for the unsupervised clustering task following previous

reports4,5. Parameters we have used for this study are: SCM core data set (153

samples), l 5 0.01; SCM test data set (219 samples), l 5 0.1. The pre-processed

data sets used can be downloaded at http://www.stemcellmatrix.info.

Gene expression and gene set analysis. To screen for differentially expressed

groups of genes between computationally defined sample clusters we used the

Gene Set Analysis (GSA) methods proposed previously33,34. GSA was chosen

because it uses a stringent max-mean algorithm to identify significantly differ-

entially regulated gene sets. The cutoff P-value was adjusted to accommodate a

false discovery rate (FDR) of 10%. A translation file was built to use GSA with

Illumina expression data. We collected gene lists from recent publications and

public repositories (MolSigDB2, Stanford repository). These files can be down-

loaded from http://www.stemcellmatrix.org. To screen for differentially

expressed genes between computationally defined sample clusters we used stand-

ard t-test-based methods implemented in the R Bioconductor package35. The

cutoff P-value was adjusted to accommodate a FDR of 5%.

Detection of cluster-specific subnetworks using MATISSE. MATISSE6 (http://
acgt.cs.tau.ac.il/matisse) was adjusted to detect differentially expressed con-

nected subnetworks (DECSs), corresponding to connected subnetworks in a

physical interaction network that show a significant co-expression pattern.

The physical network used by MATISSE contains vertices corresponding to

genes and edges corresponding to protein–protein and protein–DNA interac-

tions. For the present analysis we used the human physical interaction network

that we had previously assembled6 and augmented it with additional interactions

from recent publications21,28,29. In total, the network contained 34,212 interac-

tions among 9,355 proteins.

Originally, MATISSE used the Pearson correlation coefficient as a measure of

similarity between the expression patterns of gene pairs. These similarity values

serve as a starting point for the computation of pair-wise weights using a prob-

abilistic model. The Pearson correlation between a pair of genes captures a global

similarity trend between their expression patterns. In this work we were inter-

ested in extracting groups of genes that are not only similar across the experi-

mental conditions, but also show significantly high or significantly low

expression values in a specific subset of the samples, identified using the

sNMF clustering scheme. To this end we devised a hybrid similarity score that
captures two features: (1) both genes show differential expression; (2) the genes

have similar expression patterns, regardless of their differential expression.

We denote the expression pattern of gene i by xi~(xi
1,xi

2,:::,xi
m). Assume that

we are interested in DECSs upregulated in a condition subset A(f1,:::,mg. To

address goal (1), we use an ‘ideal’ expression profile p 5 (p1,p2,…,pm) where

pi 5 1 if i[A and pi 5 21 otherwise. The signs are reversed if we are interested

in a DECS downregulated in A. rkp is the Pearson correlation coefficient between

xk and p. Intuitively, rkp is close to 1 if the corresponding transcript is strongly

upregulated in A compared to the other conditions, and close to 21 if it is

strongly downregulated in A. This measure has been suggested as an aparametric

differential expression score36. Note that the Pearson correlation is invariant

under normalization of the patterns to zero mean and standard deviation of 1.

For every gene pair (i,j) we compute Sdiff(i,j) 5 (rip 1 rjp)/2. To address goal (2)

we use the partial correlation coefficient between the gene patterns conditioned

on the ideal profile. Formally, Spart(i,j)~
rxi ,xj {rxi ,prxj ,pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{r2
xi ,p

)(1{r2
xj ,p

)
q , where ryz is the

Pearson correlation coefficient between the profiles y and z. Intuitively, Spart

conveys the information about how similar xi and x j are, regardless of their

differential expression in A. Finally, we use the similarity score S 5 lSdiff 1 Spart,

where l is a trade-off parameter setting the relative importance of the differential

expression in the similarity score. We used l 5 3 for the analysis described in this

paper. These S scores are then modelled using the probabilistic model described

previously6. The advantage of using this pair-wise scoring scheme over the use of

gene-specific differential expression scores, such as those proposed by others37, is

that it will prefer gene groups that are not only differentially expressed in the

specified condition subset, but also have coherent expression profiles.

To diminish the effect of the size difference between the clusters, we reduced

the number of conditions in clusters 1, 2, 3, 6, 9, 10 and 12, by including fewer

replicates. Overall, 105 samples were used in the MATISSE analysis and can be

downloaded at http://www.stemcellmatrix.org. We executed this MATISSE vari-

ant iteratively, each time setting A to contain all the samples of a single cluster or

a cluster pair. The upper bound on module size was set to 300 and the rest of the

parameters were as previously reported6. We then filtered the resulting networks

by removing DECSs that overlapped more than 50% with other, higher scoring

DECSs. The full set of the DECSs is available at http://www.stemcellmatrix.org.

Visualization. For visualization of the selected DECS we used Cytoscape 2.5 (ref.

38) and Cerebral 2.0 (ref. 39). Localization data from HRPD and the GO-

Molecular function categories were also used29. NANOG, POU5F1/OCT4 and

SOX2 promoter binding information was used to code the ESC-specific regu-

lation of nodes40. Permutmatrix was used for heat maps41. Data for the analysis of

human oocytes were accessed on the authors’ or the journals’ website42. For

analysis of iPSCs induced with LIN28, OCT4, NANOG and SOX2, the data set

was obtained from the Thomson laboratory15.

Classification based on PluriNet. We used the 299 genes from DECS

(Up(1,5)A) (PluriNet) with the PAM20 software package. Class probabilities

were re-computed 10,000 times; average scores are reported in Supplementary

Figs 10 and 12. We translated the human genes into their murine orthologues

from PluriNet using the NCBI HomoloGene database for re-analysing murine

expression profiles. The expression array data from murine fibroblasts, induced

pluripotent cells, epiblast-derived stem cells and murine embryonic stem cells

were downloaded from NCBI GEO21–24.
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Abstract

We present a method for identifying connected gene subnetworks significantly en-
riched for genes that are dysregulated in specimens of a disease. These subnetworks
provide a signature of the disease potentially useful for diagnosis, pinpoint possible
pathways affected by the disease, and suggest targets for drug intervention. Our method
uses microarray gene expression profiles derived in clinical case-control studies to iden-
tify genes significantly dysregulated in disease specimens, combined with protein inter-
action data to identify connected sets of genes. Our core algorithm searches for minimal
connected subnetworks in which the number of dysregulated genes in each diseased
sample exceeds a given threshold. We have applied the method in a study of Hunting-
ton’s disease caudate nucleus expression profiles and in a meta-analysis of breast cancer
studies. In both cases the results were statistically significant and appeared to home in
on compact pathways enriched with hallmarks of the diseases.

1 Introduction

Systems biology has the potential to revolutionize the diagnosis and treatment of com-
plex disease by offering a comprehensive view of the molecular mechanisms underlying
the pathology. To achieve these goals, a computational analysis extracting mechanis-
tic understanding from the masses of available data is needed. To date, such data in-
clude mainly microarray measurements of genome-wide expression profiles, with over
160,000 profiles stored in GEO alone as of August 2007. A wide variety of approaches
for elucidating molecular mechanisms from expression data have been suggested [1].
However, most of these methods are effective only when using expression profiles ob-
tained under diverse conditions and perturbations, while the bulk of data currently avail-
able from clinical studies are expression profiles of groups of diseased individuals and
matched controls. The standard “pipeline” for analysis of such datasets involves the
application of statistical and machine learning methods for identification of the genes
that best predict the pathological status of the samples [2]. While these methods are
successful in identifying potent signatures for classification purposes, the insights that
can be obtained from examining the gene lists they produce are frequently limited [3].

It is thus desirable to develop computational tools that can extract more knowledge
from clinical case-control gene expression studies. A challenge of particular interest
is to identify the pathways involved in the disease, as such knowledge can expedite



development of directed drug treatments. One strategy of solution to this problem uses
predefined gene sets describing pathways and quantifies the change in their expression
levels [4]. The drawback of this approach is that pathway boundaries are often difficult
to assign, and in many cases only part of the pathway is altered during disease. To
overcome these problems, the use of gene networks has been suggested [5]. The appeal
of using network information increases as the quality and scale of experimental data on
such interaction networks improve.

Several approaches for integrating microarray measurements with network knowl-
edge were described in the literature. Some (including us) proposed computational
methods for detection of subnetworks that show correlated expression [6, 7]. A suc-
cessful method for detection of ‘active subnetworks’ was proposed by Ideker et al. and
extended by other groups [8–12]. These methods are based on assigning a significance
score to every gene in every sample and looking for subnetworks with statistically sig-
nificant combined scores. Breitling et al. proposed a simple method named GiGA which
receives a list of genes ordered by their differential expression significance and extracts
subnetworks corresponding to the most differentially expressed genes [13]. Other tools
use network and expression information together for classification purposes [5, 14].

Methods based on correlated expression patterns do not use the sample labels, and
thus their applicability for case-control data is limited, as correlation between transcript
levels can stem from numerous confounding factors not directly related to the disease
(e.g., age or gender). The extant methods that do use the sample labels rely on the
assumption that the same genes in the pathway are differentially expressed in all the
samples (an exception is jActiveModules which can identify a subset of the conditions
in which the subnetwork is active [8]). This assumption may hold in simple organisms
(e.g., yeast or bacteria) or in cell line studies. However, in human disease studies, the
samples are expected to exhibit intrinsic differences due to genetic background, envi-
ronmental effects, tissue heterogeneity, disease grade and other confounding factors.
Here we propose a new viewpoint for analysis of clinical gene expression samples in
the context of interaction networks, which avoids the above assumption.

Our approach aims to detect subnetworks in which multiple genes are dysregulated
in the diseased specimens, while allowing for distinct affected gene sets in each patient.
We call such modules dysregulated pathways (DPs). Specifically, we look for minimal
connected subnetworks in which the number of dysregulated genes in each diseased
sample exceeds a given threshold. By comparing to statistics of randomized networks,
we can identify statistically significant DPs. As finding such modules is NP-hard, we
propose heuristics and algorithms with provable approximation ratios and study their
performance on real and simulated data. Our approach has several important advan-
tages over the existing methods: (a) the dysregulated genes in a DP can vary between
patients; (b) the method is robust to outliers (i.e., patients with unusual profiles); (c) the
DPs can contain relevant genes based on their interaction pattern, even if they are not
dysregulated; (d) it has only two parameters, both of which have an intuitive biological
interpretation; (e) while not guaranteeing optimality, the algorithmic backbone of the
method has a provable performance guarantee.

We first tested the performance of our method on simulated data. We then used it
to dissect the gene expression profiles of samples taken from the caudate nucleus of



Fig. 1. From case-control profiles to dysregulated pathways. (A) The first input to our method is the gene expression
matrix where the columns correspond to samples taken from case/control subjects and rows correspond to genes. (B) In
a preprocessing step, differential expression is analyzed and, for each gene, the set of cases in which it is differentially
expressed (up-regulated, down-regulated or both) is extracted. (C) A second input is a protein interaction network with nodes
corresponding to genes and edges to interactions. The row next to each gene is its dysregulation pattern (its row from B).
The goal is to find a smallest possible subnetwork in which, in all but l cases, at least k genes are differentially expressed. In
this example, the circled subnetwork satisfies the condition with k = 2, l = 1: (i) A and C are dysregulated in case 1; (ii)
A and B are dysregulated in case 3. (D) The bipartite graph representation of the data. Genes (left) are connected to the cases
(right) in which they are differentially expressed. Edges between genes constitute the protein interaction network. The genes
of the minimal cover and the samples covered by them are in green.

Huntington’s Disease (HD) patients. We reveal specific subnetworks that are up and
down regulated in cases in comparison to controls, and show that they are significantly
enriched with known HD-related genes. Finally, we performed a network-based meta-
analysis of six breast cancer datasets, extracting DPs associated with good and poor
outcome of the disease. In all cases, the DPs are significantly enriched with genes from
relevant pathways and contain both known and novel potential drug targets.

For lack of space, some details and proofs are not included in this manuscript.

2 Methods

2.1 Problem formulation

In this section we describe the theoretical foundations of our methodology (Fig. 1). The
known gene network is presented as an undirected graph, where each node (gene) has
a corresponding set of elements (samples) in which it is differentially expressed. Our
goal is to detect a DP, which is a minimal connected subnetwork with at least k nodes
differentially expressed in all but l analyzed samples (l thus denotes of the number of
allowed ‘outliers’).

We formalize these notions as follows. We are given an undirected graph G =
(V,E) and a collection of sets {Sv}v∈V over the universe of elements U , with |U | =



n. For ease of representation, we will use, in addition to G, a bipartite graph B =
(V,U,EB) where (v, u) ∈ EB , v ∈ V, u ∈ U if and only if u ∈ Sv (Fig. 1D). A
set C ⊆ V is a connected (k, l)-cover (denoted CC(k, l)) if C induces a connected
component in G and a subset U ′ ⊆ U exists such that |U ′| = n− l and for all u′ ∈ U ′,
|N(u′) ∩ C| ≥ k, i.e., in the induced subgraph (C,U ′) the minimal degree of nodes in
U ′ is at least k (N(x) is the set of neighbors of x in B). We are interested in finding a
CC(k, l) of the smallest cardinality. We denote this minimization problem by MCC(k,l).

2.2 Similar problems and previous work

If G is a clique, MCC(1, 0) is equivalent to the Set Cover problem [15]. For this classi-
cal NP-hard problem, Johnson proposed a simple greedy algorithm with approximation
ratio O(ln(n)) [15]. If k > 1 and G is a clique, the MCC(k, 0) problem is equivalent
to the set multicover problem, also known as the set k-cover problem, a variant of the
Set Cover problem in which every element has to be covered k times. The set multicover
problem can be approximated to factor of O(p), where p is the number of sets covering
the element that appears in the largest number of sets [15]. The greedy algorithm for set
multicover was shown to achieve an approximation ratio of O(log(n)) [16]. See [15]
for a comprehensive review of the available approximation results on set cover and set
multicover problems.

For a general G, MCC(1, 0) is the Connected Set Cover problem, which has been
recently studied in the context of wavelength assignment of broadcast connections in
optical networks [17]. It was shown to be NP-Hard even if at most one vertex of G has
degree greater than two, and approximation algorithms were suggested for the cases
where G is a line graph or a spider graph. Both of these special cases are not applicable
in our biological context.

2.3 Greedy algorithms for MCC(k, l)

We tested two variants of the classical greedy approximation for Set Cover. For simplic-
ity we will describe them for MCC(1, 0). The first algorithm, ExpandingGreedy works
as follows: Given a partial cover W ⊆ V and the set of corresponding covered elements
X ⊆ U , the algorithm picks a node v ∈ V that is adjacent to W and that covers the
largest number of elements of U \ X , adds v to the cover and adds N(v) ∩ U to X .
Initially W = ∅, X = ∅ and the first node is picked without connectivity constraints.
Unfortunately, ExpandingGreedy can be shown to give a solution that is O(|V |) times
the optimal solution. Specifically, it runs into difficulties in cases where all the nodes
in the immediate neighborhood of the current solution have equal benefit, and the next
addition to the cover is difficult to pick. The second algorithm, ConnectingGreedy, first
uses the simple greedy algorithm [15] to find a set cover that ignores the connectivity
constraints and then augments it with additional nodes in order to obtain a proper cover.
The diameter of a graph is the maximum length of a shortest path between a pair of
nodes in V . It can be shown that ConnectingGreedy guarantees an approximation ratio
of O(D log n) for MCC(1, 0), where D is the diameter of G.



2.4 The CUSP algorithm

We next describe an algorithm called Covering Using Shortest Paths (CUSP). Let d(v, w)
be the distance in edges between v and w in G. For each root node r and for each el-
ement u ∈ U the algorithm computes distances (M [r, u]1, ...,M [r, u]k) and pointers
(P [r, u]1, ..., P [r, u]k) to the k nodes closest to r that cover u. This can be done by
computing the distances from r to all the nodes in V that cover u, and then retrieving
the k closest nodes, which is an instance of the selection problem and can be solved in
expected linear time [18]. Now take Xr, the union of the paths to the nodes covering
the n − l elements for which maxq{d(r, P [r, u]q), 1 ≤ q ≤ k} are the smallest. Xr is
a proper CC(k, l): (a) it is a subtree of T and thus induces a connected component in
G; (b) n − l elements of U are covered k times by the corresponding {P [r, u]i}. The
final solution is X = arg minv |Xv|. This algorithm can be proved to give a k(n − l)-
approximation for MCC(k, l).

In terms of computational complexity, the total amount of work for each choice of r
is O(|V |+ |E|+ |EB |) and the overall complexity is O(|V |(|V |+ |E|+ |EB |)). Note
that it is not necessary to execute the algorithm from every root node, but only from the
l + 1 nodes that cover elements from U ′ ⊆ U for which maxu′∈U ′ |N(u′)| is minimal.

2.5 Practical heuristics and implementation details

In order to improve the performance of the proposed algorithms, we implemented sev-
eral practical heuristics.
CUSP∗ - starting from high coverage cores: A drawback of CUSP is that it ignores
the number of elements covered by each node, and treats the coverage of every element
separately. We therefore also implemented the CUSP∗ heuristic: For each root, it uses
dynamic programming to identify a subnetwork of k nodes that offers a good coverage
of the elements, and then extends it to a proper CC(k, l) as in CUSP.
Clean-up: The DPs produced by all the described algorithms may contain superfluous
nodes that are not necessary neither for the cover requirements nor for subnetwork con-
nectivity. In all algorithms we therefore perform a clean-up step that iteratively removes
such nodes until no further reduction is possible.
Shortest path tree construction: While the approximation bound of CUSP holds re-
gardless of the shortest paths used, some sets of such paths may eventually give rise
to smaller covers than others. We used the following heuristic in the BFS algorithm: at
each level of the constructed BFS tree, we sort the nodes in descending order based on
the added coverage they offer. The nodes are then scanned in this order and the next
level of the tree is built.
Starting points: The performance of the algorithms depends on the number of starting
points/seeds used. In all the results described here we executed all algorithms starting
from the 30 nodes that had the highest degrees in B.
Assessment of DP significance: CUSP produces a set of DPs for a range of k values.
To select the most significant DP, 200 random networks were generated by degree-
preserving randomization [19]. CUSP was executed on each network, for a range of k
values, and an empirical p-value was computed. The k value for which the size of the
DP was most significant was subsequently used. In case of a tie, a normal distribution



was fitted to the random scores, and k yielding the subnetwork with the most significant
z-score was selected.
Finding multiple DPs: After recovering the first DP V1, we seek additional DPs by
removing all the edges adjacent to V1 from EB and reapplying the search procedure.
This is repeated until no significant DP is found.
Our algorithms were implemented in Java, and source code of the implementation is
available upon request. A user-friendly graphical interface for the algorithms described
here is currently in development.

3 Results

Human protein interaction network: We compiled a human protein-protein interac-
tion network encompassing 7,384 nodes corresponding to Entrez Gene identifiers and
23,462 interactions. The interactions are based mostly on small-scale experiments and
were obtained from several interaction databases. The network and the sources infor-
mation are available at our website http://acgt.cs.tau.ac.il/clean.

3.1 Simulation

We first evaluated the algorithms on simulated data in which a single DP is planted.
We used the human protein interaction network as G, created a biclique between a con-
nected subgraph of G and a specified number of elements in U and added noise to
B by randomly removing and inserting edges. In the simulations (results not shown)
ExpandingGreedy generally found the smallest covers. The results produced by CUSP
and CUSP∗ were only slightly inferior. However, the covers produced by CUSP and
CUSP∗ were much more compact, giving a much lower mean shortest path length be-
tween nodes in the cover.

3.2 Analysis of Huntington’s disease caudate nucleus expression profiles

Huntington’s disease (HD) is a devastating autosomal dominant neurological disorder
caused by an expansion of glutamine repeats in the ubiquitously expressed huntingtin
(htt) protein. HD pathology is well understood at a histological level but its effect on the
molecular level in the human brain is poorly understood. Recent studies have shown that
mutant huntingtin interferes with the function of widely expressed transcription factors,
suggesting that gene expression may be altered in a variety of tissues in HD. Hodges
et al. reported gene expression profiles in grade 0-2 HD brains obtained using oligonu-
cleotide arrays [20]. We focused our analysis on 38 patient samples and 32 unaffected
control samples from that study, all taken from the caudate nucleus region of the brain,
as this is the region where the disease is manifested the most. For every sample (patient),
differentially expressed genes were selected based on comparison to the controls. The
expression pattern of each gene was first standardized to mean 0 and standard deviation
of 1. For every gene v, a normal distribution was fitted to its expression values in the
control group, and for every HD sample u, a one-tailed p-value pu

v was computed. We



Fig. 2. Subnetwork identified by the CUSP algorithm as down-regulated in the caudate nucleus of HD patients.
(A) Comparison of the minimal cover size obtained by the greedy and the CUSP algorithms. (B) Comparison of the average
shortest path length between nodes in the minimal cover obtained by the greedy and the CUSP algorithms. (C) The subnet-
work obtained for k = 25 and l = 8. HD modifiers described in [21] are in yellow. KEGG HD pathway genes are drawn
with thick border. Note that HD is the official name of huntingtin (htt). (D) Heat map of the normalized expression values of
the subnetwork genes in the control and HD groups. (E) The subnetwork genes and their differential expression in each HD
samples. Red cells correspond to significantly down-regulated genes.

then introduced an edge (v, u) to EB if and only if pu
v < 0.05. At this significance

level, 1,073 (1,696) genes were selected as down (up) regulated in a sample on average.
We first describe the results on down-regulation (Fig. 2), using l = 8. While CUSP,

CUSP∗ and ExpandingGreedy found minimal covers of similar size (Fig. 2A), the cov-
ers found by CUSP were the most compact, as evident from the average shortest path
length between a pair of nodes in the subnetwork (Fig. 2B). As compact and dense sub-
networks are more likely to correspond to real biological pathways, we used the results
of CUSP in further analysis.

Our significance evaluation of the results showed that for values of k between 10
and 40 the cover found was significantly smaller than the one obtained at random, in-
dicating that genes dysregulated in HD are indeed clustered in the network. The most
significant DP was obtained for k = 25 (p < 0.005). It contained 34 genes (Fig. 2C-E),



CUSP GiGA jActiveModules t-test top t-test FDR < 0.05

Number of genes 34 34 282 34 1762

Contains Huntingtin? Yes No No No Yes

HD modifiers 6 (7.7 · 10−10) 3 (1.55 · 10−4) 12 (3.15 · 10−11) 2 (0.001) 16 (3.47 · 10−5)

HD relevant 7 (4.29 · 10−11) 2 (0.008) 14 (1.42 · 10−9) 1 (0.124) 18 (6.06 · 10−5)

KEGG HD pathway 4 (7.95 · 10−7) 0 4 (0.003) 0 8 (0.03)

Calcium signaling 6 (9.23 · 10−7) 5 (1.99 · 10−5) 10 (5.68 · 10−4) 3 (0.005) 49 (2.97 · 10−12)

Table 1. Comparison of gene sets identified as down-regulated in HD caudate nucleus using different methods.
GiGA was implemented as described in [13] and used to produce a subnetwork of 34 nodes. jActiveModules [8] was executed
from Cytoscape and yielded five subnetworks. The reported results are for the highest scoring subnetwork. ‘t-test top’ refers
to the 34 down regulated genes with the most significant t-scores. HD modifiers are taken from [21]. HD relevant genes are
taken from [23]. Calcium signalling genes are taken from MSigDB [4].

with the htt protein as the major hub. Indeed, mutations in htt are the cause of the HD
pathology. Moreover, the network contains six additional genes identified as genetic
modifiers of the HD phenotype in a fly model of the disease [21] (the modifiers are
highlighted in Fig. 2C). The network is also enriched with genes from the KEGG HD
pathway (p = 7.95 · 10−7). Furthermore, the network contains at least six genes related
to regulation of calcium levels (data taken from MSigDB [4], p = 9.23 · 10−7), which
is known to be intimately related to HD [22]. An inspection of the expression patterns
(Fig. 2D) indicates the importance of the outlier parameter l. A few of the samples (pa-
tients 16,103,86) have profiles that differ from those of the other patients, but this fact
does not affect the algorithm.

A comparison of the DP we identified with gene sets identified using other methods
(Table 1) reveals that the subnetwork produced by our method is more significantly
enriched with most hallmarks of HD. The subnetwork identified by jActiveModules is
also enriched for these hallmarks, but this subnetwork is an order of magnitude larger,
and thus less focused. The output of jActiveModules consists of (i) the ‘active’ subnet-
work; and (ii) the samples in which the subnetwork is active. In this dataset, the active
subnetwork produced by this algorithm was based on a single sample, and thus it does
not reflect common dysregulation across most patients in the study.

The running time on this dataset, for k = 25, was 10.6 seconds on a PC with two
2.67GHz processors and 4GB of memory. A search for additional down-regulated DPs
(see Methods) did not produce significant networks.

Similar analysis of genes up-regulated in HD samples identified a marginally sig-
nificant subnetwork (k = 10, p = 0.11) of 14 nodes centered at BRCA1 and p53, which
are master regulators of DNA damage response, and are known to be hyperactive in HD
affected cells [24]. Interestingly, p53 and BRCA1 are not differentially expressed in
most HD samples, and the functional category ‘DNA damage response’ is not enriched
in the 100 genes most significantly up-regulated in the HD samples (as obtained by a t-
test). This further underlines the ability of our method to extract relevant pathways even
if only part of the pathway is differentially expressed in diseased specimens. Another
hub in this focused subnetwork is HDAC1, a histone deacetylase known to be elevated
in HD neurons [25]. Sodium phenylbutyrate, a histone deacetylase inhibitor, is currently
tested as a potent drug for HD [26], and was shown to revert HD transcriptional dysreg-



ulation in mouse and human brain and blood tissues [27, 28]. Hence, the inclusion of
HDAC1 in a focused subnetwork identified as up-regulated in diseased caudate nuclei
demonstrates the ability of our method to detect potential therapeutic targets.

3.3 Meta-analysis of breast cancer studies

In order to test our methodology on other diseases and on inter-study comparisons we
performed meta-analysis of six breast cancer studies, spanning together expression pro-
files of 1,004 patients. Full details on the studies are available at our website. These
studies compared breast cancer tumor samples, for which follow-up outcome informa-
tion was available. We focused on comparison of tumors with good and poor prognosis
(defined as development of distant metastases within five years [2]). In each study, us-
ing a one-tailed t-test, we extracted a set of differentially expressed genes between good
and poor prognosis patients (p = 0.05 was used as a threshold). Here we applied CUSP
to the genes vs. studies matrix. The most significant DP up-regulated in poor prognosis
cancers is shown in Fig. 3A (k = 40, l = 2, p < 0.005). This network is highly en-
riched with cell-cycle genes (28 out of 51 genes are associated with cell-cycle in GO,
p = 2.44 · 10−26). Cell cycle and proliferation genes are known to be associated with
higher grade, poor prognosis tumors in numerous studies (see [29] and the references
therein). In addition, this DP contains 15 genes shown to be regulated by YY1 (as found
in [30], p = 2.42 · 10−16), known to be associated with overexpression of the ERBB2
oncogene and with poor prognosis of breast cancer [31]. We recovered an additional
significant DP which is described on our website.

The most significant DP down-regulated in poor prognosis cancers (k = 25, p <
0.005, Fig. 3B) is enriched with genes associated with drug resistance and metabolism
(Source:MSigDB, p = 3.54 · 10−9), p53 signalling (p = 3.54 · 10−9) and the JAK-
STAT signalling pathway (p = 3.68 · 10−4). The latter pathway mediates the signals of
a wide range of cytokines, growth factors and hormones, making its aberrant activation
prone to lead to malignancy. This pathway was also linked specifically to breast cancer
[32]. Our results indicate the down-regulation of this pathway on the expression level
is associated with cancers with poor prognosis. Interestingly, this subnetwork, but not
the up-regulated one, was enriched with genes that are frequently mutated in cancer in
general (p = 1.14 · 10−7) and in breast cancer in particular (p = 3.2 · 10−4, both sets
taken from [33]). A search for additional DPs did not yield significant results.

4 Discussion

We have developed a novel computational technique for network-based analysis of clin-
ical gene expression data. The method is aimed at identifying pathways in the interac-
tion network that exhibit ample evidence of disruption of transcription that is specific
to diseased patients. Application of the method to a large-scale human protein-protein
interaction network and a Huntington’s disease study as well as meta-analysis of six
breast cancer studies has shown its potential in outlining subnetworks with a high rele-
vance to the mechanisms of pathogenesis. Comparison to extant techniques for analysis



Fig. 3. DPs identified in breast cancer meta-analysis. In the differential expression maps (right) red cells correspond to
differentially expressed genes. (A) a DP up-regulated in poor prognosis breast cancers (k = 40, p < 0.005). Cell cycle
genes (from GO) are in yellow. YY1 regulated genes are drawn with thick border. (B) DP with a lower expression in poor
prognosis breast cancers (k = 25). Drug resistance pathway genes appear in pink. JAK-STAT signalling pathway genes are
drawn with thick border.

of gene expression data highlights the advantages of our approach in identifying clini-
cally sound pathways.

While the results presented here are encouraging, there is certainly room for further
development of these methods. Currently, we look for multiple subnetworks by itera-
tively finding and removing the most significant DP from the network. Better methods
are needed to detect overlapping DPs. Furthermore, one can obtain significance scores
for individual nodes in the DPs using established statistical methods such as bootstrap-
ping [34].

Our problem formulation used a fixed k value, thus requiring that the same least
number of genes is altered in all patients (or studies). All the algorithms and proofs pre-
sented are generalizable to the scenario where different samples have different thresh-
olds. This case can be attractive if, for example, the number of differentially expressed
genes varies significantly among patients or studies, and the goal is to detect subnet-
works covering a fixed percentage of the differentially expressed genes. The value of l
used in the examples presented here was set to 20% of the elements (cases or studies) in
the dataset. While we observed that our method is rather robust to l values in the range
of 15-40% of the cases, the methodology for a more rigorous selection of the l value is
also an interesting subject for further research.

One of the main goals of case-control studies using microarrays is the detection of
biomarkers, leading to an improved characterization of the pathologies of each patient.
We believe that the fact that the subnetworks that we identified for HD and breast cancer
contain numerous established therapeutic targets carries the promise that an integrative
analysis of such studies with complementary molecular datasets can also indicate spe-
cific points for medical intervention.
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The recent explosion in the number of clinical studies involving microarray data calls for novel computational methods for their 

dissection. Human protein interaction networks are rapidly growing and can assist in the extraction of functional modules from 

microarray data. We describe a novel methodology for extraction of connected network modules with coherent gene expression patterns 

that are correlated with a specific clinical parameter. Our approach suits both numerical (e.g., age or tumor size) and logical parameters 

(e.g., gender or mutation status). We demonstrate the method on a large breast cancer dataset, where we identify biologically-relevant 

modules related to nine clinical parameters including patient age, tumor size, and metastasis-free survival. Our method is capable of 

detecting disease-relevant pathways that could not be found using other methods. Our results support some previous hypotheses 

regarding the molecular pathways underlying diversity of breast tumors and suggest novel ones. 

1.   INTRODUCTION 

Systems biology has the potential to improve the 

diagnosis and management of complex diseases by 

offering a comprehensive view of the molecular basis 

behind the clinical pathology. To achieve this, a 

computational analysis extracting mechanistic 

understanding from the available data is required. 

Such data include many thousands of genome-wide 

expression profiles obtained using the microarray 

technology. A wide variety of approaches have been 

suggested for reverse engineering of mechanistic 

molecular networks from expression data
1-3

. However, 

most of these methods are effective only when using 

expression profiles obtained under diverse conditions 

and perturbations, while the bulk of data currently 

available on human clinical studies are expression 

profiles of groups of individuals sampled from the 

natural population. The standard methodologies for 

analysis of such datasets usually include: (a) 

unsupervised clustering of the samples to reveal the 

basic correlation structure, and (b) focus on a specific 

clinical parameter and the application of statistical 

methods for identification of a gene signature that best 

predicts it. While these methods are successful in 

identifying potent signatures for classification 

purposes
4,5

, the insights that can be obtained from 

examining the gene lists they produce are frequently 

limited. 

It is thus desirable to develop novel computational 

tools that will utilize additional information in order to 

extract more knowledge from gene expression studies. 

Various parameters are commonly recorded in such 

studies, and they can be classified into two types: (a) 

logical parameters (e.g., gender or tumor subtype) and 

(b) numerical parameters (e.g., patient age or tumor 

grade). A key question is how to identify genes 

significantly related to a specific clinical parameter. 

As it is frequently difficult to suggest novel 

hypotheses based on individual genes, it is desirable to 

identify the pathways that are correlated with a 

clinical parameter. By considering together the whole 

pathway, correlations that would have been missed if 

we tested each gene separately can be revealed. One 

approach to this problem uses predefined gene sets 

describing pathways and quantifies the change in their 

expression levels
6-8

. The drawback of this approach is 

that pathway boundaries are often difficult to assign, 

and in many cases only part of the pathway is altered 

during disease. Moreover, unknown pathways are 

harder to find in this approach. To overcome these 

problems, the use of gene networks was suggested. 

Several approaches for integrating microarray 

measurements with network knowledge have been 
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proposed, some of which can be applied also for 

binary clinical parameters. Some proposed 

computational methods for detection of subnetworks 

that show correlated expression
9-11

. A successful 

method for detection of `active subnetworks' was 

proposed by Ideker et al.
12

 and extended by other 

groups
13-16

. These methods are based on assigning a 

significance score to every gene in every sample and 

looking for subnetworks with statistically significant 

combined scores. Breitling et al.
17

 proposed a simple 

method named GiGA which receives a list of  

genes ordered by expression relevance and extracts 

subnetworks corresponding to the most relevant genes. 

Other tools use network and expression information 

together, but for sample classification
18,19

. 

The most basic parameter in clinical studies is the 

binary disease status (case vs. control). Other studies 

provide more clinical information in the form of 

additional parameters. For example, in the breast 

cancer expression data published by Minn et al.
20

, 

each sample was accompanied by up to 10 different 

parameters (Table 1). These parameters include 

general characteristics of the patients (e.g., age), 

pathological status of the tumor and follow-up 

information. Given such data, we wish to identify 

pathways whose transcription is dysregulated in a 

manner that is consistent with a particular clinical 

parameter. This information can then be used both  

for predictive purposes and for improving our 

understanding of the biology underlying the disease 

progression. This requires identifying subnetworks 

with expression patterns correlated to numerical or 

multi-valued logical parameters with more than two 

possible values. 

We have previously developed the MATISSE 

algorithm for extraction of functional modules from 

expression and network data
9
. It receives as input a 

protein interaction (PI) network alongside a collection 

genome-wide mRNA expression profiles. The output 

of MATISSE is a collection of modules: connected 

subnetworks in the PI graph, whose corresponding 

mRNAs exhibit significantly correlated expression 

patterns. Here we describe an extension of the 

MATISSE algorithm aimed at extraction of modules 

of genes whose expression profiles are not only 

correlated to one another, but also correlated with one 

of the clinical parameters. These two requirements 

aim to identify subnetworks that constitute functional 

modules in the cell and are involved with a specific 

clinical phenotype. 

We used a human PI network consisting of 

10,033 nodes and 41,633 interactions (see Methods) 

and applied our algorithm to 99 breast cancer samples 

(BC dataset
20

) in conjunction with 10 numerical and 

logical parameters (Figure 1). This analysis identified 

several modules significantly correlated with various 

parameters such as patient age, tumor size, Her2  

status and metastases-free survival period length. 
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Fig. 1. Study outline. Clinical parameters are used to generate a collection of parameter profiles. The parameter profiles are used, together with 

gene expression data, to generate gene similarity scores. These scores, together with a protein interaction network serve as an input to 

MATISSE, which identifies a set of modules for each parameter. The modules are then filtered and a collection of non-redundant modules is 

produced. 
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Importantly, our results provide support for the 

correlation between the expression levels of several 

pathways, such as the ribosomal proteins and the 

patient prognosis. However, this is not always the 

case, as we did not find support for the correlation 

between survival and the levels of the unfolded 

protein response pathway genes. Finally, we show that 

the specific disease-related insights suggested by our 

method can not be picked up using existing alternative 

methods. 

2.   METHODS 

2.1.   The basic methodology 

Our approach builds on the MATISSE methodology 

for identifying co-expressed subnetworks
9
. We first 

outline that methodology here. The input to MATISSE 

includes an undirected constraint graph G
C
 = (V, E), a 

subset 
sim

V V⊆ and a symmetric matrix S where Sij is 

the similarity between ,  
i j sim

v v V∈ . The goal is to find 

disjoint subsets 
1 2
, ,...,

k
U U U V⊆  called modules, so 

that each subset induces a connected subgraph in G
C
 

and contains elements that share high similarity 

values. We call the nodes in Vsim front nodes and 

nodes in V\Vsim back nodes. 

In the biological context, V represents genes or 

gene products (we shall use the term 'gene' for 

brevity), and E represents interactions between them. 

Sij measures the similarity between genes i and j. 

Originally, we used the Pearson correlation between 

gene expression patterns as a similarity metric
9
. The 

set Vsim is smaller than V in several cases. For 

example, when using mRNA microarrays, some of the 

genes may be absent from the array, and others may 

be excluded due to insignificant expression changes 

across the tested conditions. Hence, a module aims to 

capture a set of genes that have highly similar 

behavior, and are also topologically connected, and 

thus may belong to a single complex or pathway. The 

quantification of gene similarity is obtained by 

formulating the problem as a hypothesis testing 

question. In this approach statistically significant 

modules correspond to heavy subnetworks in a 

similarity graph, with nodes inducing a connected 

subgraph in G
C
. A three-stage heuristic is used to 

obtain high-scoring modules. 

2.2.   Identifying modules correlated 
 with clinical parameters 

Here, we are interested in extracting groups of genes 

that are not only similar across the experimental 

conditions, but also exhibit significant correlation with 

one of the clinical parameters. To this end we devised 

a hybrid similarity score that reflects these two 

phenomena. Importantly, our scheme can handle both 

numerical and logical parameters. The advantage of a 

uniform scheme is that the modules identified for 

different parameters are directly comparable, and in 

case of overlaps, the more significant module can be 

picked. 

Formally, we are given a set of parameters 

P1,…,Pm (numerical and logical) and we wish to 

quantify, for each gene pair (i,j), the extent to which 

the genes are correlated to Pk and to each other. For 

each parameter we first discard the samples for which 

the value of the parameter is not available. Let m be 

the number of samples that survived this filter.  

Then, we compute one or more parameter profiles 
1 2

( , ,..., )
m

ij ij ij ij
p p p p= . If Pi is a numeric parameter,  

it is assigned a single parameter profile vector pi1,  

Table 1. Parameters from the breast cancer dataset that were used in this study. 
 

Parameter Samples* Type Distribution 

Age at diagnosis 99 Numerical 55.80±13.6 

Tumor Size (cm) 99 Numerical 3.62±1.7 

Positive Lymph Nodes 99 Numerical 3.59±6.3 

Estrogen receptor (ER) status 99 Logical  

Progesterone receptor (PR) status 98 Logical  

Her2 staining (grade) 88 Numerical 0.53±0.98 

Metastasis after 5 years? 68 Logical  

Metastasis free survival (years) 82 Numerical 5.17±2.3 

Lung metastasis free survival (years) 82 Numerical 5.50±2.3 

Bone metastasis free survival (years) 82 Numerical 5.34±2.3 

* Number of samples for which the parameter was available 
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and 
1

k

i
p  equals the value of Pi in sample k. If Pi is a 

logical parameter that attains with k different values 
l

iii ccc ,...,, 21
, then for each 1 j l≤ ≤  we compute  

a 0/1 parameter profile vector 
1 2

( , ,..., )
m

ij ij ij ij
p p p p=  

where 1
k

ij
p =  if the value of Pi in sample k is cj and 0 

otherwise. 

We denote the expression pattern of gene k by 
1 2( , ,..., )m

k k k k
x x x x= . We are interested in quantifying 

the similarity between pij and xk. Let rijk be the Pearson 

correlation coefficient between pij and xk. If P is 

numerical, then rj1k is close to 1 if the transcript and 

the parameter are strongly correlated. If P is logical, 

rijk is close to 1 if the transcript levels are high when 

the value of Pi is cj and low otherwise. Transcript 

correlation to such 0/1 profiles was previously used 

successfully as a differential gene expression score
21

.  

Recall that we are interested in gene pairs a,b that 

are: (i) correlated with pij and (ii) correlated with each 

other. To address (i) we would like the similarity score 

of genes a and b to be high only if both a and b are 

correlated with the parameter. We thus first set 

( , ) min{ , }
diff ija ijb

S i j r r= . To address (ii) we use the 

partial correlation coefficient between the gene 

patterns conditioned on pij. Formally:  

where ra,b is the Pearson correlation coefficient 

between the profiles of genes a and b. Intuitively, Scorr 

conveys the information about how similar a and b 

are, given their correlation to pij. Finally, we use the 

similarity score: 

where λ is a tradeoff parameter setting the relative 

importance of the correlation with the clinical 

parameter. For each parameter profile S scores were 

computed for both positive and negative correlations 

with the parameter. Note that the values of S are 

always between -1 and 1. Note that standard Pearson 

correlation can also be used as Scorr. We chose to use 

partial correlation in this work, as it allows us to 

penalize gene pairs for which most of the correlation 

can be explained by their separate correlations with 

the clinical parameter. The S scores are then modeled 

using the probabilistic model described previously
9
. 

2.3.   Finding high-scoring modules 

MATISSE uses a three-step heuristic to identify high-

scoring modules. The heuristic consists of (a) 

identification of small high-scoring seeds; (b) seed 

optimization using a greedy algorithm; (c) 

significance filtering. The seed finding step was 

performed as described previously
9
. The greedy 

algorithm was improved in this study. To allow 

improvement of modules that reached the maximum 

size limit, we added two additional operation types: 

(a) a "replace" operation in which a node is added to a 

module replacing the node that contributes least to the 

module score; (b) a "swap" operation, in which 

module assignments of two nodes are swapped. Both 

operations are performed only if they improve the 

total solution weight jeopardizing the connectivity of 

the modules. 

In order to evaluate the statistical significance of 

the modules found in a dataset, we randomly shuffled 

the expression pattern of each gene and re-executed 

the algorithm. This process was repeated 100 times 

and the best score of a module in each run was 

recorded. These scores were then used to compute an 

empirical p-value for modules found in the real data. 

Only modules with p<0.1 were retained. 

2.4.   Filtering overlapping modules 

We removed modules that overlapped by >50% with 

another module that was more significantly correlated 

with a clinical parameter. 

2.5.   MATISSE parameters 

We used λ=4 for the analysis described in this paper. 

The upper bound on module size was set to 120. The 

rest of the parameters were set as described 

previously
9
. 

2.6.   Network and expression data 

A human PI network was compiled from the HPRD
22

, 

BIND
23

, BioGrid
24

, HDBase (http://hdbase.org/), 

and SPIKE
25

 databases. The resulting network 

consisted of 10,033 proteins (mapped to Entrez Gene 

entries) and 41,633 interactions. 

The expression dataset was obtained from GEO 

(Accession GSE2603). We used the normalized 

expression values available in the respective GEO 

records. Affymetrix probe identifiers were mapped to 

1

diff corr
S S

S
λ

λ

+ ⋅
=

+

,

2 2
( , | )

(1 )(1 )

a b ija ijb

corr ij

ija ijb

r r r
S a b p

r r

−
=

− −
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Entrez Gene. If several probes mapped to the same 

Entrez Gene, the highest intensity was used in every 

sample. Values <20 were set to 20 and values >20,000 

were set to 20,000. 2,000 genes that showed the 

highest gene pattern variance were used as front 

nodes. 

2.7.   Module annotation 

We annotated the modules using  Gene Ontology 

(http://www.geneontology.org/) and MSigDB 

(http://www.broad.mit.edu/gsea/, "curated gene 

sets" collection
6
). Gene Ontology enrichment p-values 

were computed using TANGO
26

, which uses 

resampling to correct for multiple testing and 

annotation overlap. All other p-values were 

Bonferroni corrected for multiple testing. 

3.   RESULTS 

3.1.   Breast cancer dataset 

The breast cancer (BC) dataset contained 99 

expression profiles of tumor samples from the 

MSKCC cohort
20

. 15 different parameters were 

available for each sample, some of which were not 

sufficiently clear or redundant. The 10 parameters we 

used are listed in Table 1. For 9 parameters at least 

one significant module was identified. After filtering 

module overlaps (see Methods) we identified 10 

significant non-redundant modules, with sizes ranging 

from 84 to 118 (Table 2). 

Using GO and MSigDB annotations (see 

Methods) we found that 6 modules (60%) were 

significantly enriched with at least one GO biological 

process and all 10 modules (100%) were enriched 

with at least one MSigDB category (Table 2). Seven 

modules (70%) were enriched with at least one of the 

16 MSigDB gene sets related to breast cancer. 

Overall, eight of the breast cancer related gene sets 

were enriched in at least one module. 

Module BC-1 was positively correlated with the 

age of the woman at the time of breast cancer 

diagnosis. Inspection of the expression data revealed 

that the module was particularly up-regulated in 

women above age 72 (Figure 2). The module did not 

show significant GO enrichment categories. When 

examining 27 MSigDB gene sets related to aging, we 

found a significant between BC-1 and the MSigDB 

  

category "AGED_RHESUS_UP" (8 genes, p=0.002), 

which contains genes identified as up-regulated in the 

muscles of aged rhesus monkeys when compared to 

young ones
27

. One of these eight genes is RELA, a 

transcription factor component of the NFκB complex. 

BC-1 contained two additional genes from the PKC 

pathway which activates NFκB – NFKBIA and  

PKCA (MSigDB gene set PKCPATHWAY, p=0.04). 

Increased activity of the NFκB pathway has been 

recently implicated in aging in a study utilizing 

diverse expression data and transcription factor 

binding motifs
28

. Adler et al. have also shown that 

blocking of this pathway can reverse the age-related 

transcriptional program. Note that our methodology 

connecting NFκB to aging is completely different: 

Adler et al. sought motifs over-represented in age-

dependent genes in various microarray datasets, 

whereas we looked for connected PI subnetworks that 

are correlated with age on the expression level.  Our 

results thus provide further support for the relationship 

between NFκB and age-dependent transcriptional 

changes.  

BC-2 is an apoptosis-related module that is 

positively correlated to the size of the tumor. This 

module is also significantly enriched with genes 

related to unfolded protein response (UPR) and  

the TNF pathway. Accordingly, this module also 

significantly enriched with heat shock factor (HSF) 

targets (p=0.03) and genes localized to the ER (from 

GO, p=6.81*10
-9

). Interestingly, heat shock protein 

level has been traditionally associated with poor breast 

cancer prognosis and higher metastasis likelihood
29

. 

However, BC-2 was only weakly correlated with 

metastases-free survival period in our dataset 

(r=0.038). 

Two modules, BC-3 and BC-4, were identified as 

negatively correlated with tumor size. Both modules 

were enriched with genes previously associated with 

ER-positive tumors. However, the correlation of the 

module profiles with ER status was very weak in our 

dataset (r=0.001 and r=0.008, for BC-3 and BC-4, 

respectively). However, we did find a significant 

overlap between genes in BC-3 and the recently 

mapped targets of the estrogen receptor
30

 (p=1.13* 

10
-4

). Finally, estrogen receptors Esr1 and Esr2 both 

appeared in BC-3. This suggests that increased ER 

transcription factor activity could result in smaller 

tumors. 
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Fig. 2. BC-1 module related to age at diagnosis. (A) The subnetwork view of the module. Front nodes have a brighter background color. Gene 

overlapping the MSigDB RHESUS_AGING_UP category have thicker border. The arrow points at the RELA transcription factor. (B) Average 

expression levels of BC-1. Numbers on top indicate the age of diagnosis. The error bars represent ± one standard deviation.  
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Table 2. Modules identified in the breast cancer dataset of Minn et al. Front nodes are nodes for which expression data are used 

(see Methods). GO enrichment p-values were computed using TANGO. MSigDB enrichment p-values are Bonferroni corrected. 

For MSigDB, up to 5 most significantly enriched gene sets are shown. 

Module Parameter

Average 

correlation

Total 

nodes

Front 

nodes

Score 

FDR 

GO biological 

process p-value MSigDB gene set p-value 

HUMAN_MITODB_6_2002 0.016

MITOCHONDRIA 0.022

BRCA_ER_POS 0.026

PKCPATHWAY 0.04

ST_TUMOR_NECROSIS_FAC

TOR_PATHWAY

9.36E-10

BRCA_ER_NEG 8.76E-08

STEMCELL_NEURAL_UP 9.11E-08

APOPTOSIS 3.79E-07

APOPTOSIS_GENMAPP 1.68E-06

BRCA_ER_POS 2.13E-09

ALZHEIMERS_DISEASE_DN 1.92E-05

BREASTCA_TWO_CLASSES 3.05E-04

DRUG_RESISTANCE_AND_M

ETABOLISM

9.96E-04

CARM_ERPATHWAY 0.034

BRCA_ER_POS 0.002

AKAPCENTROSOMEPATHWA

Y

0.009

P53PATHWAY 0.023

BRCA_ER_NEG 1.32E-09

STEMCELL_NEURAL_UP 1.41E-05

TARTE_PLASMA_BLASTIC 7.84E-05

PENG_GLUTAMINE_DN 8.87E-04

ALZHEIMERS_DISEASE_DN 0.004

ALZHEIMERS_DISEASE_DN 2.74E-08

HUMAN_MITODB_6_2002 9.84E-05

FLECHNER_KIDNEY_TRANSP

LANT_REJECTION_DN

2.83E-04

PGC 3.67E-04

MITOCHONDRIA 9.48E-04

RIBOSOMAL_PROTEINS 9.23E-33

JISON_SICKLECELL_DIFF 3.86E-08

FLOTHO_CASP8AP2_MRD_DI

FF

3.32E-07

HCC_SURVIVAL_GOOD_VS_

POOR_DN

3.43E-04

TRANSLATION_FACTORS 0.009

antigen 

processing

<0.001 WIELAND_HEPATITIS_B_IND

UCED

1.09E-11

antigen 

presentation

<0.001 PROTEASOME 9.97E-11

FLECHNER_KIDNEY_TRANSP

LANT_WELL_UP

5.12E-08

PROTEASOMEPATHWAY 7.40E-08

TCRAPATHWAY 3.04E-06

RIBOSOMAL_PROTEINS 1.40E-33

JISON_SICKLECELL_DIFF 4.30E-11

FLOTHO_CASP8AP2_MRD_DI

FF

2.22E-10

MYC_TARGETS 6.95E-04

HCC_SURVIVAL_GOOD_VS_

POOR_DN

0.003

RIBOSOMAL_PROTEINS 7.08E-11

NFKBPATHWAY 3.23E-06

JISON_SICKLECELL_DIFF 7.28E-06

ST_TUMOR_NECROSIS_FAC

TOR_PATHWAY

1.96E-05

APOPTOSIS_GENMAPP 3.04E-04

0.004translation

<0.001

response to 

unfolded 

protein

positive 

regulation of I-

kappaB 

kinase/NF-

kappaB 

cascade

modification-

dependent 

protein 

catabolism

positive 

regulation of I-

kappaB 

kinase/NF-

kappaB 

cascade

<0.001

0.009

0.02

<0.001

BC-1 Age at 

diagnosis

0.196 90 64 0.08

BC-2 0.188 118 82

translation

-0.157 97

<0.01

86 <0.01

107

BC-3 Tumor Size -0.175 115

Tumor Size

60 0.09

BC-5 Positive 

lymph nodes

-0.143 84 66 <0.01

BC-4 Tumor Size

BC-6 Her2 staining 0.204

86 0.02

BC-7 Metastasis 

after 5 years?

-0.203 96

80 0.01

74 0.04

91 <0.01

BC-8 Metastasis 

after 5 years?

BC-9 Mestassis 

free survival 

0.191 118

0.224 116

74 0.01BC-10 Lung 

metastatis 

free survival

0.195 102
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 Three modules (BC-7, BC-9 and BC-10) were 

significantly enriched with ribosomal proteins (RPs). 

Expression levels of these modules were correlated 

with Her2- and ER-positive longer metastases-free 

survival in the lungs and in the bone marrow. High 

expression of RPs is indicative of a higher metabolic 

rate within malignant cells. High levels of RP 

expression have been previously associated with Her2 

overexpression in BC cell lines
31

. RP over-expression 

was also associated with less aggressive ovarian 

tumors
32

. Our results provide additional support for 

the notion that RP expression is positively correlated 

with longer survival. Surprisingly, two of the  

modules enriched for ribosomal proteins (BC-7  

and BC-9) were enriched with the MSigDB class 

"HCC_SURVIVAL_GOOD_VS_POOR_DN" described 

as representing genes associated with poor survival in 

hepatocellular carcinoma. However, this class is not 

associated with any publication and BC-7 and BC-9 

were not enriched with other gene sets related to 

survival in MSigDB, so further corroboration is 

required here. 

BC-8 was significantly enriched with proteasomal 

genes and associated with shorter metastases-free 

survival periods. This module contained 16 different 

proteasomal subunits, all as front nodes. It also 

contained multiple genes associated with antigen 

representation and the immune response. Interestingly, 

this module was also significantly enriched with  

genes located on chromosome 6 (p=1.29*10
-6

, the 

most significant module-chromosome association). 

Therefore, it is possible that the up-regulation results 

from aberrations of this chromosome in a subset of the 

tumors. 

3.2.   Comparison with other methods 

We first compared the parameter-correlated modules 

(PCMs) to the modules obtained using the standard 

MATISSE algorithm with the same parameters. 

MATISSE identified 19 modules covering 996 genes. 

8 of the modules (42%) were significantly enriched 

for a GO category and 11 (58%) were enriched for an 

MSigDB category (all 11 were enriched with at least 

one breast-cancer related category), indicating that a 

larger percentage of PCMs are functionally relevant 

compared to MATISSE modules. However, 18 GO 

annotations were enriched in the MATISSE solution 

only, compared to 5 in the parameter-correlated 

solution only (195 vs. 47 for MSigDB gene sets), 

indicating a trade-off between specificity and 

selectivity in functional module selection. As 

expected, the MATISSE module genes were more 

strongly correlated on the expression level (average 

r=0.3 vs. 0.14), whereas PCMs were more strongly 

correlated with clinical parameters (average maximum 

correlation of 0.14 per PCM, compared to 0.12 for 

MATISSE modules). 

Some of the insights described above could not be 

revealed using MATISSE: only two small modules (9 

genes each) were slightly correlated with age and they 

did not overlap the rhesus aging signature; (b) the 

MATISSE modules that were slightly correlated with 

tumor size were not enriched for the UPR pathway; (c) 

no MATISSE modules were enriched for ribosomal or 

other translation-related proteins; (d) the maximum 

enrichment for same-chromosome genes was 

significantly lower (p=0.002 vs. p=1.29*10
-6

). Thus 

we conclude that while using expression correlation 

alone can lead to more diverse functional modules, 

using clinical parameter correlation enables detection 

of more specific disease-relevant modules that are 

missed otherwise. 

The insights also could not be based on parameter 

correlation alone. When taking the 200 genes with the 

highest enrichment with the parameters: (a) the genes 

correlated with age at prognosis were not enriched 

with the rhesus gene set and did not contain RELA; 

(b) the genes correlated with tumor size were not 

enriched with UPR pathway genes; (c) the genes 

negatively correlated with tumor size were not 

enriched with ER targets; (c) the genes correlated with 

metastases-free survival were not enriched with 

ribosomal proteins. 

Finally, logical parameters can be analyzed using 

GSEA
6
. GSEA found 130 (9) gene sets associated 

with poor (good) prognosis at FDR<0.1. 31 (3) were 

associated with negative (positive) ER status, none of 

them breast cancer related. No gene sets were 

significantly associated with PR status. Similar to our 

analysis, GSEA identified the correlation between 

survival and the levels of the ribosomal proteins and 

the proteasome. However, only one breast cancer 

related gene set appeared in the GSEA results 

(BRCA_ER_POS), and none of the pathways we 

identified using continuous parameters could be found 

using GSEA. 



 257 

4. DISCUSSION 

The increasing availability of network and expression 

data in multiple species led to development of several 

methods for detecting modular structures through joint 

analysis of network and expression data
9,11-17

. As the 

coverage and quality of the interaction networks 

improve, we expect that these tools will play a central 

part in the analysis of microarray data. A prominent 

current challenge is to enable these tools to use as 

much additional information as possible in order to 

produce more accurate and biologically relevant 

results. Clinical parameters of the profiled tissue can 

help in association of genes and pathways with 

clinical phenotypes. 

To the best of our knowledge, the method we 

described here is the first capable of jointly analyzing 

interaction data, expression profiles and continuous 

numerical clinical parameters. A simple alternative for 

joint analysis of the three sources is to first apply a 

module finding algorithm to network and expression 

data, and then associate modules with parameters. As 

our results show, module finding algorithms are 

indeed successful at identifying multiple functional 

modules. However, clinically important pathways are 

missed if the clinical data are used only in the post-

processing of the modules. 

While the results we present are encouraging, 

there is certainly room for improvement. In particular, 

it would help to incorporate confidence levels for 

individual interactions
33

 and to further improve  

our optimization algorithm. Our methodology for 

integrating parameter data currently analyzes each 

parameter in isolation, ignoring correlations between 

parameters. Another important frontier is to associate 

modules with combinations of different parameter 

values, e.g., up-regulation in poor prognosis and in 

ER-negative tumors. 

Finally, we are currently developing a user-

friendly interface to the methods described here that 

will allow analysis through the MATISSE software 

(http://acgt.cs.tau.ac.il/matisse). 
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ABSTRACT

Motivation: Microarray-based gene expression studies have great
potential but are frequently difficult to interpret due to their
overwhelming dimensions. Recent studies have shown that the
analysis of expression data can be improved by its integration with
protein interaction networks, but the performance of these analyses
has been hampered by the uneven quality of the interaction data.
Results: We present Co-Expression Zone ANalysis using NEtworks
(CEZANNE), a novel confidence-based method for extraction of
functionally coherent co-expressed gene sets. CEZANNE uses
probabilities for individual interactions, which can be computed
by any available method. We propose a probabilistic model and
a weighting scheme in which the likelihood of the connectivity
of a subnetwork is related to the weight of its minimum cut.
Applying CEZANNE to an expression dataset of DNA damage
response in Saccharomyces cerevisiae, we recover both known and
novel modules and predict novel protein functions. We show that
CEZANNE outperforms previous methods for analysis of expression
and interaction data.
Availability: CEZANNE is available as part of the MATISSE software
at http://acgt.cs.tau.ac.il/matisse.
Contact: rshamir@tau.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The use of microarrays for gene expression profiling has recently
become widespread in biomedical research. While microarray
gene expression profiles can provide answers to many biological
questions and suggest novel hypotheses, they are frequently difficult
to interpret due to the large volumes of data and the noise
inherent in the biological and experimental systems. Integration of
microarray data with additional data sources can help overcome
these problems.

Protein–protein interaction (PPI) networks were shown to be very
useful in interpreting gene expression data by improving sample
classification using microarray data (Chuang et al., 2007; Rapaport
et al., 2007) and improving detection of differentially expressed
genes (Li and Li, 2008; Ma et al., 2007; Wei and Pan, 2008). Here,
we focus on using network information to enhance detection of
modules of co-expressed genes. Ideker and colleagues pioneered

∗To whom correspondence should be addressed.

this approach, proposing a method for detecting subnetworks active
in a subset of the profiled samples (Ideker et al., 2002), an approach
that was extended and improved by several groups (Cabusora et al.,
2005; Guo et al., 2007; Liu, et al., 2007; Nacu et al., 2007;
Rajagopalan and Agarwal, 2005). We and others proposed methods
for identifying subnetworks co-expressed across all the sampled
conditions (Hanisch et al., 2002; Segal et al., 2003; Ulitsky and
Shamir, 2007). Our method, called MATISSE, has several important
advantages: (i) it does not require the number of modules to be
specified in advance; (ii) modules can incorporate genes that are
not affected on the transcription level; (iii) it can handle not only
expression profiles but also any type of data that can be represented
as a similarity matrix. A slightly modified version of MATISSE
was recently employed to identify a key subnetwork up-regulated
in human pluripotent stem cells (Muller et al., 2008).

One of the obstacles to exploiting PPI networks is their high rate
of false positive and false negative interactions (Suthram et al.,
2006; von Mering et al., 2002). To better handle uncertainty in
PPIs, several works devised probabilistic schemes to estimate the
confidence of individual interactions (Collins et al., 2007; Li, et al.,
2008; Rhodes et al., 2005; Suthram et al., 2006; von Mering,
et al., 2007). To the best of our knowledge, none of the existing
methods for identifying functional modules using network and
expression data make use of these confidence scores. Here, we
develop and employ CEZANNE (Co-Expression Zone ANalysis
using NEtworks), a novel methodology for extracting subnetworks
with correlated expression profiles (co-expression modules) that
uses a confidence-based interaction network. CEZANNE builds
upon MATISSE and extends it with a novel probabilistic model
for subnetwork connectivity. We show that, with an appropriate
edge weighting scheme, identifying modules connected with high
confidence is equivalent to identifying subgraphs in which the
weight of the minimum cut exceeds a threshold. We then show how
to identify such modules efficiently. Our probabilistic model and
methodology are general and can be employed with other methods
that use network connectivity.

In order to evaluate its performance, we applied CEZANNE to a
dataset of gene expression of Saccharomyces cerevisiae following
treatment with various DNA damaging agents (Gasch et al., 2001).
Our analysis identified well characterized co-expressed protein
complexes, such as the ribosomes, as well as novel splicing and
actin-related modules. In several cases, we were able to predict
novel protein functions based on module assignment. A comparison
with other methods showed that the use of confidence levels can
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significantly improve the integration of network and expression data
for extraction of functional modules.

2 METHODS

2.1 The basic methodology
Our approach builds on the MATISSE methodology for identifying
co-expressed subnetworks (Ulitsky and Shamir, 2007). We outline that
methodology and describe the improvements in CEZANNE. A pseudocode
of the algorithm appears in the Supplementary Material. The input to
MATISSE includes an undirected constraint graph GC = (V , E), a subset
Vsim ⊆ V and a symmetric matrix S where Sij is the similarity between vi

and vj , where vi,vj ∈Vsim. The goal is to find disjoint subsets U1,U2, … ,Um,
called modules, with each subset inducing a connected subgraph in GC and
containing elements that share high similarity values. We call the nodes in
Vsim front nodes and the nodes in V\Vsim back nodes.

In the biological context, V represents genes or gene products (we use
the term ‘gene’ for brevity), and E represents interactions between them. Sij

measures the similarity between genes i and j, e.g. the Pearson correlation
between their gene expression patterns. The set Vsim may be smaller than
V . For example, when using mRNA microarrays, some of the genes may
be absent from the array, and others may show insignificant expression
patterns across the tested conditions and therefore be excluded. Since
a module is a set of genes that have highly similar behavior and also
induce a connected component in the constraint graph, it should capture
genes that belong to a single complex or pathway and therefore share a
common function. The quantification of module similarity is obtained in
MATISSE by formulating the problem as a hypothesis-testing question.
This formulation leads to a full weighted similarity graph whose vertices
correspond to Vsim. Statistically significant modules correspond to heavy
subnetworks in this graph (i.e. subnetworks having high co-expression score),
with nodes inducing a connected subgraph in GC. This score is described in
the Supplementary Material. A three-stage heuristic was developed in Ulitsky
and Shamir (2007) to obtain high-scoring modules. Here, we use the same co-
expression score, but replace the connectivity condition by the requirement
that modules must be connected with high confidence. We will next describe
a novel methodology for identifying such modules.

2.2 The probabilistic model for module connectivity
The following is a description of our model for using interaction confidence.
In addition to the constraint graph GC = (V , E), we are given, for every edge
e∈E, the probability that the edge exists p(e)∈(0,1). Edge occurrences are
assumed to be mutually independent. We can assume that GC is a complete
graph; otherwise, it can be completed by adding all the missing edges with
zero probability. The key difference in our model here is that since edge
occurrences are probabilistic, connectivity must also be accounted for in
a probabilistic sense. We call a set of vertices U ⊆V q-connected if, for all
U ′ ⊂U, the probability that at least one edge connects U ′ with U\U ′ is at
least q (Fig. 1). We now show the relationship between this characteristic
and the weight of the minimum cut in the subgraph induced by the set. A cut
in a graph is a partition of its nodes into two disjoint sets. A minimum cut in
a graph is a cut for which the total weight of the edges between the two sets
is minimal (see Supplementary Material for a formal definition). Let G(U)
be the subgraph induced by U in G. Let E(U,W ) denote the event that at
least one edge connects a node from W with a node from U\W . Then U is
q-connected if and only if P(E(U, W ))<1 – q for every W ⊂U. Assuming
edge appearances are independent, we get

P (E (U,W ) )=
∏

e∈ (W ,U\W )

(
1−p (e )

)
.

Note that if we set w(e)=−log(1−p(e)), then

P (E (U,W ,q ) )<1−q⇔
∑

e∈(W ,U\W )

w(e)≥−log(1−q)

Fig. 1. A q-connected module for q = 0.9. The numbers of the edges indicate
edge probabilities. The probability of missing edges is 0. For every possible
partition of the nodes into two sets, the probability that at least one true
interaction connects the two sets exceeds 0.9. Four such partitions are shown.

When setting w(e)=−log(1−p(e)),U is q-connected if the weight of
every cut exceeds T =−log(1−q). Hence, it is enough to check that the
weight of the minimum cut exceeds T . From this point on, we will refer to
−log(1−p(e)) as the confidence weight of an edge e.

2.3 Finding q-connected modules
CEZANNE is designed to identify modules that are q-connected and have
maximum co-expression score. The CEZANNE framework consists of three
basic steps: (i) identification of high-scoring seeds; (ii) greedy optimization;
and (iii) significance filtering.

2.3.1 Seed identification Our tests show that modules consisting of
single nodes provide poor starting points for a local search algorithm with
minimum-cut constraints, such as the algorithm we use here (results not
shown). Thus, we devised the following seed-finding algorithm. We first
execute MATISSE on an unweighted graph containing only edges that pass a
certain confidence threshold. This yields a collection of disjoint initial seeds.
We then assign the confidence weights to the edges and extract q-connected
seeds by recursively computing the minimum cut and using it to split the
initial seed into two. This procedure is repeated until the weight of the
minimum cut exceeds T . The resulting modules with more than two genes
constitute the set of seeds for the optimization phase.

2.3.2 Optimization We use a greedy algorithm to optimize the initial seeds
while maintaining their q-connectivity. The basic greedy algorithm described
in Ulitsky and Shamir (2007) aims to optimize together a collection of sets
(and singletons). It allows the following operations: (i) addition of a singleton
to a module; (ii) removal of a node from a module; (iii) reassignment of a
node from one module to another; and (iv) merging of two modules. The
algorithm iteratively seeks the highest scoring operation and performs it.
Here, unlike in Ulitsky and Shamir (2007), edge weights must be taken into
account. In order to maintain q-connectivity throughout the optimization
procedure, we must make sure that no operation causes the minimum cut
in a module to drop below T . This problem is a dynamic minimum cut
problem (Thorup, 2007) for a weighted graph. Its simple (but expensive)
solution is to solve a new minimum cut problem for every tested operation.
Instead, we use the following heuristic. We use an implementation of the
Stoer–Wagner algorithm (Stoer and Wagner, 1997) for each minimum cut
computation, which requires O(mn+nlogn) on a graph with n nodes and
m weighted edges. The observations below allow us to perform a relatively
limited number of such computations, keeping the running time of the entire
algorithm practical on a standard PC. Our optimization first considers all
possible node additions and module merges. Node removal or reassignment
is considered only if no such operation can improve the score.
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Node addition and module merging. Let C(U) be the weight of the
minimum cut in the subgraph induced by the module U. We observe that,
since the confidence weights are non-negative,

C
(
U ∪{x})�min

{
C

(
U

)
,
∑
u∈U

w
(
x,u

)}

Suppose that U is q-connected, and we are considering adding x to U. If∑
u∈U (x,u)�T , then U ∪{x} will also be q-connected. The total weight of

the edges between every node x and every module U can be easily maintained
in O(m) after each operation performed. Similarly, in module merging,

C
(
U1 ∪U2

)
�min


C

(
U1

)+C
(
U2

)
,

∑
x∈U1,y∈U2

w
(
x,y

).

In that case, it is enough to maintain the total weight of the edges between
every pair of modules. This enables addition and merging operations to be
checked efficiently without executing the full minimum cut computation.

Node removal or reassignment. Since C(U\{x}) can be significantly
smaller than C(U), we must explicitly validate that node removal does
not violate the q-connectivity of the module. We call a node v∈M min-
cut essential if C(M\{v})<T . The set of min-cut essential nodes can
be maintained throughout the optimization, and recomputed only when
necessary using the Stoer–Wagner algorithm. Specifically, the min-cut
essential nodes are recomputed every time the removal of any node v from
module U can improve the score, unless U has not changed since the last
time its minimum cut was computed.

2.3.3 Evaluation of statistical significance An empirical P-value for
module significance was computed as follows: we randomly shuffled the
expression pattern of each gene and re-ran the algorithm. This process was
repeated 100 times and the highest co-expression score obtained in each run
was recorded. Modules in the real dataset were given P-values according
to the distribution of these recoded scores. Only modules with P <0.1 were
retained.

2.4 Module annotation with gene functional categories
We used the TANGO algorithm (Shamir et al., 2005) to find annotations
enriched in the modules. TANGO considers all levels of gene ontology
(GO) and uses the standard hypergeometric test to compute raw enrichment
P-values. It then uses resampling to correct these P-values for multiple
testing and for category dependency. Briefly, TANGO repeatedly selects
random sets of genes to compute an empirical distribution of maximum
P-values for annotation enrichment obtained across a random sample of sets
that maintain the same size characteristics as the ones analyzed. TANGO uses
this empirical distribution to determine thresholds for significant enrichment
on the true clusters. The algorithm filters out redundant categories by
performing conditional enrichment tests.

3 RESULTS

3.1 DNA damage response in S. cerevisiae
Our method was applied to a dataset containing expression profiles
measured over time in wild-type and mutant yeasts exposed to
DNA damage caused by methylmethane sulfonate (MMS) or
by ionizing radiation (IR) (Gasch et al., 2001). This dataset
contained 47 expression profiles of 6167 genes. The 2074 genes
that showed at least 2-fold change in the expression levels across
the conditions were used as front nodes (Section 2). The network
and confidence values were based on purification enrichment (PE)
scores, as described by Collins et al. (2007). Importantly, the

GO classifications we later used to compare CEZANNE to other
methods were not used to calculate these scores. In order to enhance
computational efficiency confidence values below 0.1 were set to 0.
The distribution of confidence scores is shown in Supplementary
Figure 1. Analysis of the data with CEZANNE resulted in 14
modules encompassing 471 genes (Table 1 and Supplementary
File 1). The modules varied greatly in size, ranging from 3 to 346
genes (average 33.6 genes). By using confidence weights, we were
not required to set an artificial upper limit on module size, which was
necessary with MATISSE (Ulitsky and Shamir, 2007). Enrichment
analysis using TANGO (Section 2) found significantly enriched
‘biological process’ categories in all 14 modules and ‘molecular
function’ categories in 11 modules (79%). When using GO-slim
protein complex annotations, 85.7% of the CEZANNE modules
were enriched for at least one complex. The enriched GO annotations
are listed in Table 1 and in Supplementary File 1.

3.2 Comparison to other methods
The modules obtained by CEZANNE were compared with
those obtained on the same data by several other methods:
MATISSE (which ignores the edge confidence values), co-clustering
of network and expression data (Hanisch et al., 2002) and
two clustering algorithms (which work only on the expression
data): k-means and CLICK (Sharan and Shamir, 2000).
Enrichment was computed using the standard hypergeometric
test without correction (see Supplementary File 1 for P-values
corrected for multiple testing). For each method, we measured
the fraction of annotations that are enriched in at least one
module at P < 10−4 (sensitivity) and the fraction of modules
enriched with at least one annotation at P < 10−4 (specificity).
We summarized the two terms using the F-measure defined
as F = 2 ×Sensitivity × Specificity/(Sensitivity + Specificity) (Van
Rijsbergen, 1979). Modules extracted using CEZANNE were
significantly superior to those extracted by other methods in terms
of the enrichment significance for GO biological process, GO-slim
complex annotations and MIPS complex annotations (Fig. 2 and
Supplementary Fig. 2).

We also compared, for each annotation, the lowest P-value it got
in any module identified by each algorithm. When both CEZANNE
and a competing algorithm identified the same annotation enriched at
P<10−4, the enrichment P-values in CEZANNE modules tended to
be more significant (sign test, P < 0.01). The improved performance
in comparison to clustering, which uses only expression data and
is oblivious of the network, is expected, since it was observed
that genes connected in the PPI network tend to be functionally
related (Wu et al., 2006). This fact is also reflected in the better
performance of network-based co-clustering method in comparison
to k-means clustering. We verified that the performance comparisons
are not biased by a single predominant module (Module 1), which
is enriched for many functional categories (Supplementary Fig. 3).
We got similar results when using another expression dataset, for
the osmotic shock response in yeast (Supplementary Fig. 4).

3.3 DNA damage response modules
The modules found by CEZANNE identify both known and
novel pathways involved in S. cerevisiae DNA damage response.
The largest module, Module 1 with 346 genes, consists of
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Table 1. Modules identified in the response of S. cerevisiae to DNA damage

Module (size) GO biological process P-value GO-slim protein complexes P-value

1 (346) Ribosome biogenesis and assembly 1.2·10−117 Ribosome 5.9·10−91

Translation 1.0·10−85 Eukaryotic 43S preinitiation complex 3.8·10−49

rRNA processing 7.5·10−79 Small nucleolar ribonucleoprotein complex 1.5·10−41

35S primary transcript processing 4.6·10−44 DNA-directed RNA polymerase III complex 3.1·10−17

Ribosome assembly 4.3·10−39 Exosome (RNase complex) 4.4·10−15

Ribosomal large subunit biogenesis 9.2·10−14 DNA-directed RNA polymerase I complex 5.7·10−14

rRNA modification 4.4·10−12 Noc complex 3.2·10−6

2 (38) Protein catabolism 1.8·10−46 Proteasome complex (sensu Eukaryota) 5.7·10−71

Proteolysis 9.0·10−44 Proteasome core complex (sensu Eukaryota) 9.4·10−32

Ubiquitin cycle 1.1·10−42

3 (12) Histone acetylation 3.6·10−13 Histone acetyltransferase complex 2.1·10−12

Chromatin modification 5.9·10−11

Transcription from RNA polymerase II promoter 1.4·10−6

4 (12) Translation 1.1·10−14 Ribosome 1.4·10−15

5 (12) Nuclear mRNA splicing, via spliceosome 3.5·10−21 Spliceosome complex 3.5·10−17

Small nuclear ribonucleoprotein complex 2.5·10−15

6 (10) Barbed-end actin filament capping 4.8·10−6 F-actin capping protein complex 4.8·10−6

Endocytosis 1.1·10−5

Cytoskeleton organization and biogenesis 2.8·10−5

7 (8) Establishment and/or maintenance of chromatin
architecture

1.1·10−5 Chromatin remodeling complex 4.6·10−6

8 (7) Glycogen metabolism 3.0·10−8 Protein phosphatase type 1 complex 3.3·10−5

Sporulation (sensu Fungi) 2.0·10−6

9 (6) Translation 1.1·10−7 Ribosome 4.0·10−8

10 (6) tRNA processing 2.5·10−14 Ribonuclease P complex 9.2·10−8

rRNA processing 2.2·10−9

11 (4) Trehalose biosynthesis 6.8·10−14 Alpha, alpha-trehalose-phosphate synthase
complex (UDP-forming)

6.8·10−14

12 (4) Ubiquitin-dependent protein catabolism 5.2·10−7

13 (3) Pseudohyphal growth 9.8·10−7 cAMP-dependent protein kinase complex 9.6·10−7

14 (3) Proteasome assembly 3.2·10−6

Protein folding 3.9·10−6

P-values listed in the table are raw hypergeometric enrichment scores. Corrected p-values, accounting for multiple testing, appear in Supplementary File 1. All the annotations in
this table attained a corrected P-value <0.05. Only the seven most significantly enriched GO biological process categories are shown for Module 1.

Fig. 2. Performance of several module finding methods. All GO annotations
were used in the comparison. The F-measure evaluates sensitivity and
specificity (see text).

ribosomal biosynthesis proteins, probably the best characterized
transcription program in yeast (Gasch et al., 2000). These proteins
are strongly downregulated in a Mec1-dependent way following
both MMS and IR treatments. The second largest module, Module 2
(Fig. 3A), consists of the proteasome, a large complex strongly
transcriptionally co-regulated by Rpn4 under various conditions,
including DNA damage (London et al., 2004). The transcription
levels of the genes in the module exhibit mild upregulation
following DNA damage, which is stronger after MMS than after
IR treatment.

Module 4 (Fig. 3B) consists of 11 known genes from the small
subunit of the mitochondrial ribosome that are downregulated
following mock irradiation. It also contains SWS2, which is a
putative mitochondrial ribosomal protein (Gan et al., 2002). SWS2
is significantly correlated to the other genes in the module on the
expression level (r = 0.46 on average), but is not linked to them
using MATISSE, CLICK or other approaches based on expression
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Fig. 3. Modules identified in S. cerevisiae response to DNA damage. For each module, the expression heat-map is presented together with the interaction
network. In each subnetwork, the genes belonging to the dominant annotation are highlighted. (A) Members of the proteasome are in yellow. (B) Small
mitochondrial ribosome subunit genes (from MIPS) are in yellow. (C) Genes annotated with ‘nuclear mRNA splicing’ in GO are in yellow. (D) Genes
localized to actin in (Huh et al., 2003) are in yellow.

data (Tanay et al., 2005; Wapinski et al., 2007). Our analysis
thus provides further support for the role of SWS2 in the small
subunit of the mitochondrial ribosome, adding to evidence based
on localization (Huh et al., 2003), sequence (Gan et al., 2002) and
deletion phenotypes (Steinmetz et al., 2002). Members of the large
mitochondrial ribosomal subunit are enriched in a different module,
Module 9.

Module 5 (Fig. 3C) consists of 12 spliceosome-related genes,
whose transcription is weakly but consistently downregulated in
a Mec1-dependent manner following DNA damage. This raises
the interesting possibility of the spliceosome’s involvement in the
DNA damage response. Nine of the 12 genes in Module 5 are
essential and therefore were not tested in systematic screens for
MMS-affected genes. However, deletion of two of the non-essential
genes, LEA1 and LSM7, caused MMS sensitivity (Parsons et al.,
2006).

Module 6 (Fig. 3D) is a 10-gene module strongly upregulated after
DNA damage and other stresses, as evident in the Gasch et al. (2000)
stress dataset. Module 6 contains members of two known complexes:
two members of the F-actin capping protein complex and two of
the eisosome complex. Interestingly, six of the module’s genes
are localized to actin (Huh et al., 2003) (P= 4.8•10−6), including
YIR003W, a protein of unknown function. CMD1 (calmodulin) is

known to be required for actin organization (Desrivieres et al.,
2002). Surprisingly, this module also contains MRP8, a putative
mitochondrial ribosomal protein that was shown to have a different
transcriptional program than the known mitochondrial ribosome
proteins (Matsumoto et al., 2005). Our results further suggest that
MRP8 has a role unrelated to mitochondria, perhaps one involving
cytoskeleton organization. Module 6 was strongly upregulated in
response to treatment with a variety of DNA damaging agents,
without dependence on Rpn4, in another DNA damage dataset
(Jelinsky et al., 2000), and was strongly upregulated following
a variety of other stresses in a stress dataset (Gasch et al.,
2000). The phenotypic profile of the �yir003w strain in (Brown
et al., 2006) was similar to that of the �abp1 and �cap1 strains
(Pearson correlations of 0.49 and 0.12, respectively) in that all
three deletion mutants show sensitivity to Calcofluor, a phenotype
related to cell wall biosynthesis. Taken together, these findings
suggest that Module 6 corresponds to a novel transcriptionally co-
regulated complex or pathway with cellular localization at actin
microfilaments.

These findings demonstrate the ability of CEZANNE to extract
modules that correlate well with the known biology of transcriptional
responses, and to point to novel functional associations between
genes and processes.
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3.4 Robustness to noise in the interaction network
In order to test the effect of noise in the network on the performance
of CEZANNE, we randomly removed or added edges to the
interaction network and reevaluated the sensitivity and specificity
of the obtained modules using GO and MIPS gene annotations.
The results are presented in Supplementary Figure 5. We find that
removal of up to 20% of the edges or randomly doubling the number
of edges degrades performance by not more than 20%. The better
tolerance to edge addition compared to edge removal is probably
due to CEZANNE’s ability to ignore edges that do not connect
co-expressed genes.

3.5 Implementation and user interface
A graphical user interface to CEZANNE is available as part of
the MATISSE software (http://acgt.cs.tau.ac.il/matisse). It allows
full setting of the methods parameters, execution on network and
expression data from any organism, visualization of the network
and expression data for each module and functional annotation of the
obtained modules. The Java source code for CEZANNE is available
upon request.

4 DISCUSSION
We have presented a novel approach that makes better use of
PPI networks for the interpretation of microarray study results.
Augmented with proper search algorithms, our methodology can
be used to improve other methods involving network connectivity,
such as those described in (Chuang et al., 2007; Ideker et al., 2002;
Nacu et al., 2007; Ulitsky et al., 2008). The approach is not specific
to PPI networks and can applied directly to other networks with
differential interaction confidence, such as protein-DNA (Lee et al.,
2002) and functional linkage (von Mering et al., 2007) networks.

We note that the interaction probabilities we use here correspond
to the confidence in the existence of an interaction, and are not the
probability that an interaction takes place in the cell at any particular
time point. However, if information on the latter becomes available
it can also be used by our method.

While the results of our method are promising, there is room for
many algorithmic improvements. The greedy optimization algorithm
we currently employ can converge to local minima, in terms of both
the co-expression score and the minimum cut requirements. Our
approach can be improved by better search initialization algorithms
and by allowing more complex optimization moves (e.g. adding two
nodes simultaneously). The latter approach will probably demand a
more efficient optimization algorithm, one that requires less time
per iteration for maintaining the minimum cut.

Which method should be used for future data analysis—
MATISSE or CEZANNE? The answer depends on the availability
and the quality of the interaction confidence data. Information on
functional interactions for several species is available in the STRING
database (von Mering et al., 2007). Confidence of individual PPI
interactions is yet to be systematically assessed in most species.
Given a confidence-based network for the studied organism, as our
results show, CEZANNE should be the method of choice. In the
absence of reliable confidence values MATISSE is more useful.

The modules found by CEZANNE in the DNA damage response
of S. cerevisiae accurately identify complexes with known roles
in DNA repair, such as the RPA and complexes whose regulation

is known to be related to stress response in S. cerevisiae, such
as the ribosomes and the proteasome. In addition, we identify
rather large modules that were not previously associated with DNA
damage response. This highlights the main goal of integrating
network into gene expression analysis: achieving higher sensitivity
in identifying transcriptional programs that are missed when the
analysis if performed on the level of an individual gene. Together
with the user-friendly interface that we provide, we hope that
CEZANNE will be highly instrumental in the analysis of future
microarray studies.
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The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and
Ideker proposed a method to analyze together genetic and physical networks, which explains many
of the known genetic interactions as linking different pathways in the physical network. Here, we
extend this method and devise novel analytic tools for interpreting genetic interactions in a physical
context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis
reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those
that were previously explained. Model genes tend to have short mRNA half-lives and many
phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy.
We also identify ‘pivot’ proteins that have many physical interactions with both pathways in our
models, and show that pivots tend to be essential and highly conserved. Our analysis of models and
pivots sheds light on the organization of the cellular machinery as well as on the roles of individual
proteins.
Molecular Systems Biology 17 April 2007; doi:10.1038/msb4100144
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Introduction

Gene knockout studies have shown that only B18% of
Saccharomyces cerevisiae genes are essential for growth on a
rich medium (Giaever et al, 2002). Consequently, buffering on
the genetic level is believed to be abundant in eukaryotes
(Hartman et al, 2001). To better understand the role of
nonessential genes, several large-scale studies performed
double knockouts (Pan et al, 2004; Tong et al, 2004) and
identified many events of synthetic lethality, where a mutant
carrying deletions of two nonessential genes is lethal, and
synthetic sickness, where the mutant shows a weaker
phenotype. We will use here the term genetic interaction (GI)
for the interaction of two genetic perturbations in affecting the
phenotype, whether lethal or sick. The graph that has genes as
nodes and edges corresponding to GIs is called the GI network.

Recent technologies also enable a systematic mapping of
protein–protein (Ito et al, 2001) and protein–DNA (Lee et al,
2002) interactions (physical interactions (PIs)), yielding large
PI networks. As the networks get larger, the need for
computational tools for dissecting them is mounting. The
integrated analysis of PI and GI networks is a compelling
challenge, as they carry important and complementary
biological signals. Initial studies have shown that proteins in
the same region of the GI network are slightly more likely to

interact physically (Tong et al, 2001, 2004), and that a protein
with many PIs is likely to have also many GIs (Ozier et al,
2003).

The modular nature of the cellular organization has been
widely recognized (Hartman et al, 2001). Many methods
have been developed for detecting functional modules
within PI networks. Such modules, often termed pathways,
represent physically interacting proteins involved in carrying
out a particular function. Depending on the detection
method, pathways may represent molecular complexes
(Bader and Hogue, 2003) or signaling cascades (Rives and
Galitski, 2003). Kelley and Ideker (2005) defined a pathway
as a group of proteins that are densely interconnected in the
PI network, and studied the frequency of GIs within and
between such pathways. In a systematic analysis of large-scale
GI and PI data, they concluded that between-pathway
explanations of GIs are B3.5 times more abundant than
within-pathway explanations, and concluded that GIs mostly
bridge redundant processes. Further arguments for the
prevalence of between-pathway GIs were given by Ye et al
(2005), who postulated that genes in the same pathway are
expected to share common GI partners, and used similarity of
GI patterns in a successful function prediction. Similar results
were established recently on the DNA damage system (Pan
et al, 2006).
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Results and discussion

Assembly of GI and PI networks

We assembled a GI network (Figure 1A) by taking from the
BioGRID database version 2.0.19 (Stark et al, 2006) 13 632
synthetic lethality and synthetic fitness interactions for
S. cerevisiae, covering 2682 genes. By focusing on genes with
at least two interactions, we obtained a GI network of 1869
genes and 12 850 interactions. Our PI network, consisting of
protein–protein and protein–DNA interactions from multiple
sources (Supplementary information 1), contained 68172
interactions covering 6184 proteins.

Pathway definitions and between-pathway models

Our starting point was the computational framework of Kelley
and Ideker (2005) for detection of between-pathway inter-
pretations for GIs. Kelley and Ideker define a ‘pathway’ as a
densely connected set of proteins in the PI network, and a
‘between-pathway model’ as a disjoint pair of pathways that
are densely interconnected in the GI network (Figure 1B).
Models are defined probabilistically and are found using a
greedy algorithm. While the requirement of high PI density is
appropriate for complexes, many other known biological
pathways (e.g. linear signaling cascades) do not induce dense
subnetworks in the physical network. We therefore chose to
employ an alternative definition, in which a pathway is simply

a connected subnetwork in the PI network (a connected
pathway, described in Materials and methods). An example
of two sparse pathways is presented in Figure 2A. The
buffering between the mechanism of DNA repair through
homologous recombination and the response to oxidative
stress is indeed only partially recovered when using the dense
pathway definition (not shown). We define a between-pathway
model (BPM) as in Kelley and Ideker (2005), but using the new
notion of a pathway (Figure 1C). The scoring of models and the
model detection algorithm are defined in Materials and
methods. A comparison of our models with those found using
dense pathways on the same interaction data (Supplementary
information A) shows that we construct more between-
pathway explanations of GIs (3765 versus 3117), while
maintaining the significant functional content of models. Our
models also allow more direct interpretation of specific
buffering cases than congruence methods (Supplementary
information B).

A comprehensive model map in S. cerevisiae

Our BPM finding approach generated 140 models and
provided between-pathway explanations for 3765 GIs, a 2.7-
fold increase from the 1377 interactions explained in Kelley
and Ideker (2005). This is mainly due to the incorporation of
more GIs (12 850 instead of 4125) and to a lesser extent due
to using more PIs (68172 versus 27 604), as we use those only

Figure 1 Study outline and methodology. (A) Overview of the analysis methods and the reported results. (B) A BPM constructed from two dense pathways in the PI
network. (C) A BPM constructed from two connected pathways in the PI network. (D, E) Examples of two biological explanations for pivot proteins. In (D), the pivots
correspond to shared members of two linear pathways, where the signal flow is indicated by the arrow directions, and in (E), they correspond to shared complex
members. Note that the pivots in (E) are not redundant, as they are densely connected to both pathways with physical interactions and do not have a genetic interaction
between them.
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to create ‘scaffolds’ of pathways and not for scoring models.
The gene content of the models is available in a supplementary
archive. A full description and an interactive visualization of
the models are available at http://acgt.cs.tau.ac.il/bpm.

Functional enrichment of models

We utilized the TANGO algorithm (Shamir et al, 2005) in order
to test the functional enrichment of the models in GO
categories (Ashburner et al, 2000). A total of 71.4 and 69.3%
of the BPMs were enriched with at least one functional
category from the ‘biological process’ and the ‘cellular
compartment’ ontologies, respectively (Supplementary Table
S1). Of the complexes annotated in SGD GO-slim (Cherry et al,
1998), 46.3% were enriched in at least one BPM. Despite the
low coverage of the GI network, the coverage of complexes is
comparable to that achievable by direct analysis of the PI
network (Supplementary information C).

Phenotypic coherence within and between
pathways

To what extent do the two pathways in a BPM have the same
function? To answer this question, we used the phenotypic
contribution of non-essential genes in S. cerevisiae, as
measured by the fitness of deletion mutants in diverse
treatments (Brown et al, 2006). We found that a BPM pathway
is significantly more coherent in its phenotypic response pattern
than random connected groups of the same size in the physical
network (Pearson correlation of 0.384 versus an average of 0.0382,

Po0.001; Supplementary Figure S2). The correlation between the
pathways in a BPM is also higher than expected (0.112 versus
0.0378 expected, Po0.001; Supplementary Figure S2).

Identification of pivot proteins

As we established that the pathways within models frequently
represent coherent functional units, and as functional units
within the cell sometimes share components (Krause et al,
2004), we tested the possibility of computationally detecting
such shared components within the PI network. To this end,
for each model, we sought proteins that are densely connected
to both of its pathways (Figure 1D and E, Materials and
methods), and called them the pivot proteins for the model.
Altogether, we identified 124 distinct pivots in 40 models. On
average, 1.09 pivots were found in each model, and each pivot
appeared in 1.22 models.

We systematically analyzed the representation of proteins
that are known to take part in several distinct processes in the
group of pivots. To this end, we identified proteins participat-
ing in several complexes or pathways (see Materials and
methods), and also used a curated set of multicomplexed
genes (Krause et al, 2004). As summarized in Table I, the
pivots were enriched in all three sets. One example of such
overlap is in BPM 96 (Figure 2B). In a model containing as
pathways parts of the SWR1 and Ino80 complexes involved in
chromatin remodeling, we identified the pivot proteins Arp4,
Rvb1 and Rvb2, three out of the four proteins known to
participate in both the SWR1 and the Ino80 complexes (Shen
et al, 2000; Krogan et al, 2003). In BPM 97 (Figure 2C), Sus1,
which has been shown to take part both in the nuclear pore

Figure 2 Model examples. Rectangles represent genes, and the two pathways are shown in different colors. The blue ovals are the pivot nodes. Essentials genes are
drawn with thicker border. See main text for discussion of each of the BPMs (A–E). In (A), for clarity, 52 genetic interactions between the pathways are not shown.
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and the SAGA complex (Rodriguez-Navarro et al, 2004) was
identified as a pivot in a model representing GIs between the
two pathways. When pivots do not correspond to known
complex or pathway overlaps, they frequently represent
general purpose genes cooperating with multiple pathways.
For example, in BPM 87, the general transcription factor Spt15
was identified as a pivot of a model that contains components
of the distinct transcription-related complexes RSC, SWR1 and
SAGA (Figure 2D).

Essentiality and evolutionary retention of pivot
proteins

The two pathways that form a model are often partially
redundant in function, and as the pivots represent proteins
that are active in both pathways, we hypothesized that the
pivots will frequently correspond to essential genes. Indeed, 72
of the pivots were found to be essential, a highly significant
fraction given the total number of essential genes in the
network (22.6 essentials expected, P¼1.42�10�23). Although
we observed a general strong correlation between degree and
essentiality (P¼5.87�10�85 using rank-sum test), as pre-
viously reported (Jeong et al, 2001), the high prevalence of
essential genes among pivots is far beyond what can be
explained by their degrees alone (39.98 essentials expected,
Po10�5). The essential pivots also tend to have closer
functions to their BPMs (Supplementary information D).
Essentiality was recently shown to be connected to the
evolutionary retention of genes in eukaryotes (Gustafson
et al, 2006). Using the data from Gustafson et al (2006) we
found that the pivots are significantly retained in evolution
(P¼9.79�10�9), even when controlling for the large fraction
of essential genes (P¼0.029).

Example: the spindle checkpoint model

An interesting example of using models and pivots for
understanding cellular mechanisms is BPM 66 (Figure 2E).
This model represents buffering between different compo-
nents of the kinetochore, a complex bound to the centromeres
of chromosomes during mitosis. Together with its pivots, the
model is composed of members of three known subcomplexes
of the inner kinetochore: Ndc80, COMA and MIND (De Wulf
et al, 2003). Specifically, the pivots Mtw1 and Dsn1 correspond
to a distinct unit of the MIND complex, which bridges
different kinetochore subcomplexes (De Wulf et al, 2003;
Westermann et al, 2003). The two subunits of the Ndc80
complex, Nuf2/Spc24 and Tid3/Spc25, which were shown to

be at least partially redundant (McCleland et al, 2003), are
placed in different pathways. Note that even though the four
subunits of the Ndc80 complex show all possible GIs and PIs
between pairs, the biologically correct partition of this
complex into pathways was obtained by taking into con-
sideration the other GIs in the model. For example, Mad1
physically connects only with the Tid3/Spc25 subunit and
genetically interacts only with the Nuf2/Spc24 subunit. These
additional external interactions cause the biologically correct
partition to score higher than other alternatives.

Mad1, a highly conserved protein with a specific function in
the spindle cell cycle checkpoint, is of additional interest. At
the spindle checkpoint, the cells are arrested in metaphase
until all chromosomes successfully attach to microtubules.
Tid3 and Spc25, members of the Ndc80 complex, which
appear in the pathway with Mad1, were specifically linked to
the spindle checkpoint in several organisms (summarized in
Bharadwaj et al, 2004). Moreover, the recruitment of Mad1
was shown to be dependent on Spc25 and Tid3 in Xenopus and
human cells (McCleland et al, 2003; Bharadwaj et al, 2004) and
the spindle checkpoint was shown to be defective in spc25
mutants (Wigge and Kilmartin, 2001). How exactly does Mad1
attach to the kinetochore is currently not known. Although
Mad1 shows a yeast two-hybrid interaction with Spc25 in
S. cerevisiae (Newman et al, 2000) and with Tid3 in human
cells (Martin-Lluesma et al, 2002), attempts to demonstrate a
biochemical interaction between Ndc80 and Mad1 have been
reported unsuccessful (Martin-Lluesma et al, 2002; McCleland
et al, 2003).

In our model, Mad1 is linked to the pivot Smc1, a member of
the cohesin complex, required for sister chromatid cohesion
during mitosis. Smc1 was shown to localize to the kinetochore
during meiosis and to interact with Tid3 in yeast and human
cells (Zheng et al, 1999; Gregson et al, 2002). Furthermore,
Smc1 was shown to be required for proper assembly of the
mitotic spindle in human cells (Gregson et al, 2001), but its
exact function in the metaphase is unknown. Our findings
suggest that the connection of Mad1 to the kinetochore in
general and to the Ndc80 complex in particular, is mediated
through Smc1. Note how the use of pivots provides additional
clues to BPM annotation and to the understanding of inter-
pathway organization.

Physiological properties of models

Recently, the physiological properties of the PI network hubs
were extensively analyzed (Batada et al, 2006). As many
proteins in our models were such hubs, we asked whether

Table I Multiple roles of pivot proteins

No. of proteins Pivots Expected Significance

GO complexes 206 21 4.35 P¼1.27�10�9

KEGG pathways 390 11 8.24 P¼0.200
Filtered KEGG pathways 71 6 1.50 P¼3.68�10�3

Known complex overlaps 39 8 0.55 P¼7.49�10�9

The enrichment of proteins known to participate in multiple physical pathways within the set of pivot proteins. GO complexes are taken from SGD ‘macromolecular
complex GO-slim’ ontology. The filtered KEGG pathways are KEGG pathways in which at least 50% genes formed a connected component in our physical network.
Known complex overlaps are taken from Krause et al (2004). Significance was evaluated using hypergeometric distribution.
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their physiological properties differed from those of other
hubs. Here, we focus on the analysis of mRNA stability (Wang
et al, 2002) and the number of putative phosphorylation sites
(Obenauer et al, 2003), two properties manifesting the
turnover and regulation of the gene. Detailed analysis,
covering additional properties, is described in Supplementary
information E and Supplementary Table S2.

Our tests show that BPM genes behave significantly unlike
other genes. The average mRNA half-life of BPM genes was
21.4, versus 26.2 in all other genes (P¼9.97�10�10, rank-sum
test). The average number of phosphorylation sites was 5.1,
versus 4.0 for all other genes (P¼3.13�10�9). Both parameters
were significantly correlated between the two pathways that
constitute a BPM (intraclass correlations of 0.408 and 0.189,
Po10�4 and P¼0.0184, respectively). This finding cannot be
explained by the high degrees of model genes (Supplementary
Table S2).

Note that the mRNA half-lives are experimentally derived,
whereas the phosphorylation sites are computationally in-
ferred from sequence. On all the 3552 genes for which both
parameters are available, they are not correlated (r¼�0.0182
P¼0.276). However, the parameters are significantly corre-
lated on the genes within BPMs (566 genes, r¼�0.132,
P¼1.6�10�3). These results remain highly significant when
controlling for key functions enriched in the model partici-
pants (Supplementary Figure S4). These findings suggest that
genes in BPMs might experience more stringent regulation. A
possible hypothesis is that in pathways for which redundant
mechanisms are available, a tighter regulation allows the cell
to switch between the alternatives faster. However, this
conclusion has to be revalidated when GIs covering a wider
functional range become available.

Our results indicate that despite the limitations of today’s GI
and PI networks, their integrated analysis is a powerful
approach for understanding the organization of the yeast
cellular system. We expect that such analysis will provide
insights into the large picture of genetic redundancy in higher
eukaryotes as well.

Materials and methods

Scoring models

We build upon the probabilistic score described in Kelley and Ideker
(2005) and Sharan et al (2005) to identify between-pathway explana-
tions for GIs by finding BPMs within the GI and the PI networks. Let
GG¼(V, EG) be the GI network and let GP¼(V, EP) be the PI network.
Note that nodes in V represent both the genes and their products,
depending on the context. A BPM is a pair of disjoint sets V1, V2, such
that (a) |V1|, |V2|X2, (b) each Vi induces a connected subgraph in GP

and (c) there are unusually many GIs between V1 and V2 (Figure 1C).
We call each Vi a pathway. Property (c) reflects the assumption that
genetic buffering implies a dense set of GIs between the pathways.

We now quantify property (c). We derive a log-odds score reflecting
the likelihood that the density of GIs between the two pathways is
unusually high. We compare two hypotheses: under the BPM
hypothesis, every pair of genes, one from V1 and the other from V2,
genetically interact with a high probability b, independently of all other
gene pairs, and the likelihood of a model (V1, V2) is thus
P(a, b)A(V1�V2)bI(a, b)þ (1�b)(1�I(a, b)), where I(a, b) equals 1 if
there exists a GI between a and b and otherwise equals 0; in the null
hypothesis, every pair (a, b) is connected with probability ra, b,
representing the chance of observing this interaction at random, given
the degrees of a and b in GG. We estimate ra, b by generating a random

ensemble of networks with the same degree sequence and counting
what fraction of them contain an interaction between a and b. The log-
odds score is then

SðV1;V2Þ ¼ log
PðV1;V2jMBPMÞ
PðV1;V2jMnullÞ

¼
log

Q
ða;bÞ2V1�V2

bIða; bÞ þ ð1 � bÞð1 � Iða; bÞÞ
Q

ða;bÞ2V1�V2
ra;bIða; bÞ þ ð1 � ra;bÞð1 � Iða; bÞÞ

The main difference between this score and the score described in
Kelley and Ideker (2005) is in the structure imposed by the BPMs in the
PI network. Here we do not score the model for density of PIs within
each pathway, and instead require that each is connected in GP.

Model finding algorithm

The model finding procedure described in Kelley and Ideker (2005) is a
greedy network search algorithm that uses as seeds single GIs. We
improve this procedure by initializing the algorithm with better seeds
that are maximal bicliques in the GI network (a biclique is a disjoint
pair of node sets such that every node in each set has edges to all nodes
in the other set). The following procedure is performed for each u, v
such that (u, v)AEP

1. Identify B—the set of nodes adjacent to both u and v in GG. Proceed
only if |B|Xkmin.

2. Partition B into connected components in GP: B1, B2,y, Bl.
3. For each Bi such that |Bi|Xkmin, identify the set Ai of nodes

adjacent to all the nodes in Bi in GG.
4. For each Ai, partition it into the connected components it induces in

GP, Ai
1, Ai

2,y, Ai
m and add (Bi, Ai

j) to the set of seeds if |Ai
j|Xkmin.

This algorithm produces maximal bicliques (V1, V2) in GG, such that
each Vi induces a connected component in GP and has size Xkmin. The
produced set of seeds is then filtered for overlaps. We used kmin¼2 in
all tests. Owing to the relatively sparse nature of both interaction
networks, this method is very efficient in practice.

The optimization phase starts with each seed as a candidate model,
and greedily tries to improve the score of the current model through
addition, removal or exchange of nodes between the two pathways
while keeping each pathway connected in the PI network. In order to
efficiently keep track of the connectivity requirement, we use the
notion of articulation nodes. An articulation node in a connected graph
is a node whose removal disconnects the graph. Articulation nodes can
be efficiently detected during a depth-first search traversal of the
graph, by calculating the ‘lowpoint’ values of every node (cf. Even,
1979). The algorithm maintains the connectivity of each pathway by
dynamically updating, for each pathway, its set of articulation nodes.
This set is used to ban optimization moves which disrupt connectivity.
After the optimization, a filtering step removes models that overlap by
450% in both pathways to higher scoring models. An additional
model filtering step computes an empiric P-value by sampling 1000
random gene groups of the same size, and retains only BPMs with
Po0.05 (see Supplementary information F).

Identification of pivot proteins

Given a model (V1, V2), we seek nodes that are densely connected to
both pathways in the physical network. Specifically, for every vAV,
denote by Ni(v) the nodes in Vi that are adjacent to v in GP. We call v a
pivot if, for i¼1, 2, |Ni(v)|Xlmin and |Ni(v)| is significant, given the
degree of v in GP (PoPmax, using hypergeometric test). In the actual
analysis described in this paper, we used lmin¼2 and Pmax¼0.05. In
addition, to filter master regulator genes that are involved in many
processes, such as protein folding chaperons, we only considered as
pivots proteins with degree o250 in GP.

Statistical analysis

Correlation analysis was performed using the non-parametric Spear-
man test, unless otherwise indicated. All P-values reported when
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controlling for a specific gene class (e.g. essential genes) were obtained
by random sampling of a large number of gene groups with the same
fraction of genes from that class. The P-values reported when
controlling for the degrees were calculated by first binning all the
genes into 40 equal-size bins based on their degree, and then sampling
genes from the bins, while maintaining the proportion of genes from
each bin.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Recent technological breakthroughs allow the quantification of hundreds of thousands of genetic
interactions (GIs) in Saccharomyces cerevisiae. The interpretation of these data is often difficult, but
it can be improved by the joint analysis of GIs along with complementary data types. Here, we
describe a novel methodology that integrates genetic and physical interaction data. We use our
method to identify a collection of functional modules related to chromosomal biology and to
investigate the relations among them. We show how the resulting map of modules provides clues for
the elucidation of function both at the level of individual genes and at the level of functional
modules.
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Introduction

One of the central tasks of current cell biology is to reveal and
understand the functional relationships between cell compo-
nents. Physical interaction (PI) and genetic interaction (GI)
data provide largely complementary functional information
that can be used to elucidate these relationships. In particular,
quantitative GIs can be a powerful source for understanding
both functions of individual genes and the interplay between
pathways in the cell.

GIs convey information about the phenotype of a double
mutant in comparison to the phenotypes of single mutants. GIs
can be crudely classified into alleviating, neutral and
aggravating interactions (Segre et al, 2005; Beyer et al, 2007).
In an aggravating interaction, the fitness of the double mutant
is lower than expected given that of the single mutants. The
most extreme example of an aggravating interaction is
synthetic lethality, in which the joint deletion of two non-
essential genes leads to a lethal phenotype. In an alleviating
interaction, on the other hand, the double mutant is healthier
than expected. The ‘expected’ fitness is usually defined using a
multiplicative model, as the product of the fitnesses of the
single mutants (Schuldiner et al, 2005; Segre et al, 2005;
St Onge et al, 2007). High-throughput mapping of aggravating
interactions, in particular synthetic lethality, has first been
performed in Saccharomyces cerevisiae using the SGA (Tong
et al, 2004) and dSLAM (Pan et al, 2006) methods. Recently,

the exploration of GI data was pushed forward by the
development of the Epistatic MiniArray (E-MAP) technology,
building on SGA and allowing a quantitative estimation of both
aggravating and alleviating information (Schuldiner et al,
2005; Collins et al, 2007b). The largest published E-MAP to
date (Collins et al, 2007b) covers GIs between 743 S. cerevisiae
genes involved in various aspects of chromosome biology (we
will refer to this map as the ChromBio E-MAP). It was shown
that the use of quantitative data can significantly increase the
amount of information on gene function (Collins et al, 2007b).

The computational analysis of E-MAPs has to address
several problems. First, due to technical and biological
difficulties, the ChromBio E-MAP contains as many as 40%
missing values. Imputation of these values is difficult, and the
computational methods require the development of ad hoc
techniques to handle missing data. Second, as the single
deletion mutants are not measured in the same experiment, a
multiplicative model cannot be directly fitted to the data and
thus it is difficult to properly interpret every individual GI. For
this reason, the insights derived from the E-MAP data were so
far mostly based on correlations of GI profiles, and not on the
GIs themselves (Schuldiner et al, 2005; Collins et al, 2007b;
Ihmels et al, 2007).

The development of high-throughput GI assays has occurred
in parallel to the development of methods for genome-wide
mapping of protein–protein interactions (PPIs; Collins et al,
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2007a). It was recently shown that joint analysis of GIs and PIs
can shed additional light on the organization of cellular
pathways. This integration is particularly appealing due to the
complementarity of the two interaction types: PIs describe
direct spatial association between molecules, whereas GIs
refer to functional associations between genes, connecting the
physical architecture to phenotypes (Beyer et al, 2007). The
integration of genetic and physical data was used to classify
GIs as occurring between or within different pathways (Kelley
and Ideker, 2005). Between-pathway GIs usually indicate
partial pathway redundancy, as deletion of a single gene affects
only one of the pathways, while deletion of two genes from
distinct pathways leads to the inactivation of both (Tucker and
Fields, 2003). Accordingly, it was found that most aggravating
interactions occur between pathways (Kelley and Ideker,
2005). Zhang et al (2005) mapped pairs of complexes with
many aggravating GIs between them. We have previously
extended the analysis of between-pathway explanations for
GIs and shown that further physical evidence can shed light on
additional properties of such pathway pairs (Ulitsky and
Shamir, 2007b). However, within-pathway aggravating inter-
actions also exist: mutations in one of the two subunits of the
same complex may have only a mild phenotype, as long as the
complex survives. However, deletion of both subunits may
lead to a complex failure and to an aggravating phenotype. On
the other hand, alleviating interactions were shown to occur
mostly within pathways (Collins et al, 2007b). These are the
result of a drastic effect of any of the single deletions on
pathway activity, which abolishes the effects of additional
deletions.

In this study, we propose a novel methodology for
integrating GI and PI data. While extant methods (Kelley and
Ideker, 2005; Ulitsky and Shamir, 2007b) have used GI data to
characterize a single pathway or a pathway pair at a time, we
propose a method for analyzing all the available data together
and producing a set of modules identified in the data,
alongside the module pairs that exhibit significant comple-
mentarity, as evidenced by the presence of multiple aggravat-
ing GIs (Figure 1). Our method can be viewed as a clustering
algorithm that explicitly addresses the relation between each
pair of modules (which can be complementary or unrelated).
By extracting a collection of related modules, rather than a set
of module pairs as in Ulitsky and Shamir (2007b), we are able
to identify weaker signals in the data and extract a consistent
set of modules. Similar ideas have been successfully used by
Segre et al (2005) for in silico analysis of GIs.

Previous studies analyzed E-MAP data primarily using
hierarchical clustering, and successfully recovered known
and novel pathways and complexes (Schuldiner et al, 2005;
Collins et al, 2007b). Our method has several advantages over
hierarchical clustering: (a) it readily provides the pairs of
modules exhibiting complementarity; (b) it produces a set of
disjoint modules corresponding to putative pathways, rather
than a tree; (c) the number of modules is determined by the
algorithm and does not have to be determined by the user and
(d) hierarchical clustering considers only similarity between
pairs of gene profiles. By considering GIs between module
pairs in addition to the gene similarity, our method can pick up
modules based on a consistent module-wise GI pattern, even if
gene profile similarity is relatively weak, e.g. due to missing

values. As we shall show, these theoretical advantages indeed
yield practical advantage, as we are able to identify important
module relations that cannot be identified using gene
similarity alone.

We applied our method to the ChromBio E-MAP and
obtained a collection of modules as well as a map of related
module pairs. In particular, we provided the first comprehen-
sive map of the relationships among ChromBio modules,
which could not be obtained by prior means. The results
improve over extant methods in terms of the functional
enrichment of the obtained modules. Using a collection of
single-deletion phenotypes we found that although the
modules are based on GIs measured in rich medium, they
remain cohesive functional units under other conditions,
emphasizing the power of the E-MAP coupled with our
methodology in recovering functional modules. We showed
that the module map can be utilized for function prediction on
several levels: to suggest with high confidence novel functions
for individual genes, to identify novel functions of complete
modules and to highlight interplay between modules. In
particular, we provided genetic and physical evidence for (1) a
new role for the nuclear pore in the mitotic spindle checkpoint;
(2) a new role for proteolysis in mitosis and (3) an interplay
between the THO complex and deubiquitination.

Results

A novel methodology for partitioning E-MAPs
into functional module

We developed four methods for partitioning of E-MAPs into
functional modules and identifying complementing module
pairs (CMPs). The methods are described in detail in Materials
and methods. The methods use models that differ in the way
they treat inter-module GIs and in their use of PIs. There are
two basic models, ‘Alleviating’ and ‘Correlated’. Both prefer
partitions in which GIs between CMP modules are mostly
aggravating. The Alleviating model scores highly partitions in

Physical interaction

Aggravating interaction 

Module

Complementing module
pair

yy zz

xxww

A

B

C

D

Figure 1 Toy example of a modular partition. The genes are partitioned into
four modules. Each module induces a connected component in the PI network.
Modules A and B have multiple aggravating GIs between them and are thus
designated as a CMP. The same is true for modules B and C. Module D is not
involved in any CMP. Genes w, x are siblings; genes w, y are cousins; genes y, z
are cousins; genes x, z are strangers.
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which intra-module GIs are mostly alleviating. The Correlated
model scores highly partitions in which the correlation
between GI profiles are high within each module. The
‘Connected’ variants of the two basic models, termed
‘AlleviatingConnected’ and ‘CorrelatedConnected’, also re-
quire that each module induce a connected component in the
PI network.

Analysis of the ChromBio E-MAP and comparison
with other methods

We analyzed the E-MAP of GIs among 743 S. cerevisiae genes
involved in chromosome biology (the ChromBio E-MAP;
Collins et al, 2007b) alongside a network containing 2061 PIs
between the genes contained in the E-MAP. The PIs were taken
from SGD and BioGrid databases (Cherry et al, 1998; Stark
et al, 2006) (Supplementary information). We excluded yeast
two-hybrid interactions from the analysis as we found that
this improved the results (results not shown).

We compared the results obtained under each of our four
formulations and of other methods for extracting modules
from these data types: hierarchical clustering of the GI profiles,
clustering of the GI profiles using Markov clustering (MCL;
Enright et al, 2002), clustering of the PI network using MCL
and previous methods for combining binary GI and PI data
(Kelley and Ideker, 2005; Ulitsky and Shamir, 2007b). MCL was
chosen for clustering PI data as it was recently shown to
outperform other alternatives for this task (Brohee and van
Helden, 2006). Different parameter values were tested for MCL
and hierarchical clustering (see Materials and methods).
Results were measured in terms of the enrichment for (a) GO
‘biological process’ annotations, (b) MIPS complexes and (c)
genes with similar phenotype (taken from SGD; Cherry et al,
1998). In all cases, we considered all the annotations that

contained at least two genes in the ChromBio E-MAP (see
Supplementary information for annotation lists). Statistics on
the modules found by each method are given in Table I. The
fraction of annotations enriched in at least one module (which
we refer to as ‘recall’) and fraction of modules enriched with at
least one annotation (which we refer to as ‘precision’) are
shown in Figure 2.

We summarized recall and sensitivity using the F-measure
(Van Rijsbergen, 1979), which is the weighted harmonic
mean of precision and recall: F¼2?(precision?recall)/(preci-
sionþ recall). The F-measures of the different methods are
listed in Table I. It is evident that both ‘Correlated’ variants
usually outperform the corresponding ‘Alleviating’ variants.
An inspection of well-characterized yeast complexes (Supple-
mentary Figure 2) reveals the reason for this superiority.
Except for a few complexes (e.g., prefoldin and SWR1), pairs of
genes within the same complex generally do not exhibit strong
alleviating GIs. We found many cases in which the S-scores
between members of the same complex were missing (e.g. in
the mediator complex), neutral or aggravating (e.g., in the
SAGA complex). Our results thus indicate that although
positive S-scores (corresponding to alleviating GIs) do, to
some extent, enable extraction of functional modules, correla-
tions of S-score profiles are more helpful for this task.

As expected, it is also evident that using information on the
PI network allows for a more biologically meaningful solution,
as the ‘CorrelatedConnected’ formulation usually outperforms
the ‘Correlated’ one (an exception is the phenotype analysis,
where connectivity seems to worsen the results, see also
Supplementary Figure 4). When considering all three bench-
marks together, using GIs together with PIs improves upon
using the PI data alone for module identification, as evident by
higher F-measures of our methods when compared to MCL
clustering of the PI network.

Table I Comparison of the modules found by different methods

Algorithm Reference Number of
modules

Genes in
modules

F-measure

GO biological process MIPS complexes SGD phenotypes

CorrelatedConnected This study 62 313 0.629 0.496 0.233
AlleviatingConnected This study 29 182 0.389 0.423 0.276
Connected This study 53 446 0.420 0.316 0.262
Alleviating This study 54 457 0.257 0.213 0.187
US Ulitsky and Shamir (2007b) 46 229 0.559 0.381 0.188
KI Kelley and Ideker (2005) 98 305 0.602 0.468 0.167
MCL:PPI I=1.2 Enright et al (2002) 22 597 0.397 0.202 0.113
MCL:PPI I=2 Enright et al (2002) 116 585 0.620 0.425 0.117
MCL:PPI I=3 Enright et al (2002) 154 552 0.574 0.333 0.114
MCL:PPI I=4 Enright et al (2002) 161 517 0.553 0.292 0.078
MCL:PPI I=5 Enright et al (2002) 158 477 0.528 0.259 0.082
MCL:E-MAP I=3 Enright et al (2002) 3 754 0.179 0.065 0.220
MCL:E-MAP I=5 Enright et al (2002) 10 750 0.326 0.211 0.249
MCL:E-MAP I=7 Enright et al (2002) 21 735 0.381 0.330 0.225
MCL:E-MAP I=9 Enright et al (2002) 33 690 0.425 0.284 0.196
MCL:E-MAP I=11 Enright et al (2002) 40 654 0.378 0.267 0.170
Hierarchical t=0.2 Collins et al (2007b) 110 736 0.407 0.212 0.210
Hierarchical t=0.3 Collins et al (2007b) 124 567 0.508 0.271 0.198
Hierarchical t=0.4 Collins et al (2007b) 90 384 0.547 0.314 0.209
Hierarchical t=0.5 Collins et al (2007b) 78 269 0.526 0.250 0.209
Hierarchical t=0.6 Collins et al (2007b) 52 167 0.429 0.198 0.105
Hierarchical t=0.7 Collins et al (2007b) 29 92 0.337 0.169 0.138

Only modules with at least two genes are considered. The highest F-measure (see Results) in each column is in bold. In MCL clustering, the I parameter is the ‘inflation’
parameter of the algorithm. In hierarchical clustering, the t parameter is the threshold used to extract modules from the clustering tree (see Materials and methods).
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A comparison of the methods thus reveals that the
‘CorrelatedConnected’ formulation outperforms other alter-
natives. We therefore used the results of the CorrelatedCon-
nected formulation (Figure 3) in all subsequent analysis.
Figure 3 presents a ‘heatmap’ of the solution focusing on
intra-module and inter-complementing module pairs (CMP)
interactions. An alternative presentation showing all inter-
actions is shown in Supplementary Figure 3. A searchable
interface to the module collection obtained using this method
is available at http://acgt.cs.tau.ac.il/emap/chromBio/.

Functional characterization of the modules

When correcting for multiple testing using TANGO (Shamir
et al, 2005), we found that 27 out of 62 modules were
significantly enriched (Po0.05) for GO ‘biological process’
and 32 were enriched for a GO ‘cellular compartment’ (looking
only at subterms of ‘protein complex’). Together, 45 modules
(72.5%) were enriched with a known annotation. Manual
inspection of the remaining 17 modules revealed that 11 of
them in fact match known complexes, which are not annotated
in GO. A full listing of the modules and their functions appears
in Supplementary information. The fact that the vast majority
of the modules (56 out of 62) correspond to known protein

complexes demonstrates the ability of our approach to identify
functionally cohesive units. In addition, as we show below, it
appears that the main power of the modular approach is in
identifying novel protein functions.

Protein function prediction

As our method can extract functionally coherent modules, it
can reveal novel gene functions through ‘guilt by association’.
When a module is significantly enriched with a function,
unannotated genes in the module can be predicted to have the
same function. Using cross-validation (see Materials and
methods), we estimate that this method can predict the correct
function for a protein in 161 out of 204 (78.9%) of the cases.
This figure is likely to be an underestimate of the specificity of
our method, as even for some of the most studied proteins not
all the functions are known. After manual evaluation of the
obtained modules, we identified several cases where our
predictions had some support from other experimental
evidence:

� Gbp2 is a poly(Aþ ) RNA-binding protein, involved in the
export of mRNAs from the nucleus to the cytoplasm. It
shares a module together with four members of the NuA4
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histone acetyltransferase complex, as well as with a histone
methyltransferase (Set2) and Rco1, part of the Rpd3S
histone deacetylase complex (Figure 4A). Evidence for co-
transcriptional processing of RNA has accumulated in the
recent years, and it is becoming clear that RNA expression,
stability and export from the nucleus are tightly regulated
(Keene, 2007). Indeed, ChIP experiments have shown that
Gbp2 is localized to the promoters of actively transcribed
genes (Hurt et al, 2004). We thus propose that the
interaction between Gbp2 and chromatin remodelers plays
a role in the coupling of transcription with mRNA export.

� YDL176W is a non-essential gene of unknown function,
which appears in module 17, together with five genes
involved in the ubiquitination of fructose-1,6-bisphospha-
tase (FBPase), as part of the gluconeogenesis pathway
(Figure 4B). Indeed, a structure-based study has recently

suggested that this protein is involved in glycolysis and
gluconeogenesis (Ferre and King, 2006). The fact that our
method suggests the same function, using a completely
different methodology and data, further supports the
conjecture that YDL176W is involved in gluconeogenesis.
The five genes in module 17 with a known role in FBPase
degradation were identified using a genome-wide reverse
genetics screen (Regelmann et al, 2003). We suggest that
analysis of the stability of an FBPase-b-galacosidase fusion
in strains deleted for YDL176W can be carried out to further
analyze its function.

� Module 25 contains YTA7 (YGR270W), an ATPase of
unknown function, alongside five genes involved in
chromatin silencing at the telomeres and other heterochro-
matic regions (Figure 4C). Indeed, it has been found that
mutations in YTA7 lead to shortened telomeres (Askree

Figure 3 A summary map of the modules found in the ChromBio E-MAP. (A) The heat map shows the ChromBio S-scores between genes appearing in modules with
at least two genes found using the CorrelatedConnected method. Rows and columns correspond to genes, ordered so that genes in the same module appear
consecutively. Selected module names and functions are listed on the right. Green lines separate modules. Modules are sorted by their size. To facilitate recognition of
CMPs, rectangles corresponding to NMPs are drawn in black. In rectangles corresponding to CMPs, the S-scores are colored by scale (blue––alleviating, red––
aggravating, white––neutral). Missing values are in gray. (B) Module examples. The node labels correspond both to the gene and to the protein and therefore
capitalised. Edges correspond to protein–protein interactions. In each module, the genes having the GO annotation most enriched in the module are in yellow. Module
networks were drawn using MATISSE (Ulitsky and Shamir, 2007a). (C) A blowup of the submatrix showing the S-scores between genes in modules 15, 14 and 8.
Modules 15 and 8 form a CMP; Modules 15 and 14 form a CMP; modules 14 and 8 do not.
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et al, 2004). In addition, YTA7 was recently shown to be
required for preventing the spreading of silencing beyond
the heterochromatic HMR locus (Jambunathan et al, 2005).
A better characterization of its role will require genomic
location studies to characterize its genomic distribution
(Ren et al, 2000).

� Module 27 contains YKL023W, a protein of unknown
function, together with three known members of the SKI
complex (Ski2, Ski3 and Ski8; Figure 4D). The SKI complex
is involved in exosome-mediated 30–50 mRNA degradation
and the inhibition of translation of non-poly(A) mRNAs.
YKL023W was shown to physically interact with a fragment
of Nmd2, involved in nonsense-mediated mRNA decay (He
et al, 1997). We thus suggest that YKL023W is involved in
mRNA degradation. Further insights into this role will
require characterization of some RNA forms processed by
the exosome, such as U4 snRNA (van Hoof et al, 2000), in a
strain deleted for YKL023W.

Phenotype analysis

Our algorithm partitions the genes into modules based on GIs
and PIs, both of which are usually measured in rich medium.
We tested the similarity between the phenotypes exhibited by
mutants of genes in the same module in other growth
conditions. To this end, we used data from the high-
throughput phenotype profiling performed by Brown et al
(2006). We defined phenotypic similarity as the Pearson
correlation between the phenotypic profiles of the mutants.
We found that genes within the same module tended to exhibit
phenotypic similarity far greater than expected at random
(average r¼0.424, Po0.01). Examples of highly coherent
modules include the modules 50 (‘Postreplication DNA repair’,

the genes are required for survival following treatment with
DNA-damaging factors such as UV, IR, cisplastin and
oxaloplatin), 20 (‘HIR’, a strong phenotype in environments
with a high or low pH and high salt) and 14 (‘Elongator’, a
strong phenotype after treatments with antimycin, benomyl,
idarubicin and in elevated pH and salinity). The full list
appears in Supplementary information.

We also examined the phenotypic similarity in CMPs. The
average phenotypic similarity between genes in different
modules that constitute a CMP was 0.156, as opposed to
0.087 between non-complementary module pairs (Po0.001).
Interestingly, we also observed several CMPs with very
dissimilar phenotypic profiles. The most dissimilar pair
(r¼�0.25) was formed by modules 49 and 18 (‘SAGA’;
Supplementary Figure 5). Both modules contain deubiquitina-
tion complexes, and in particular the ubiquitin-specific
proteases Ubp3 and Ubp8. In this case, the negative correlation
probably results from the combination of largely different
specificity of the proteases (Zhang, 2003), and partial
functional buffering, reflected in the aggravating GIs between
the modules.

A map of modules and their relations

One of the merits of our approach is its ability to identify, on
top of the modular decomposition, complementarity between
modules. We identified 153 CMPs in the ChromBio E-MAP. A
map of the modules we identified in the ChromBio E-MAP and
their relationships is shown in Figure 5. We used the various
annotations and, where possible, manually assigned module
names, which are used below (listed in Supplementary
information). Coarse-grained annotation of the module map
into main cellular processes (Figure 5) reveals a complex
picture of interplay between modules, indicating the pleio-

Figure 4 Modules with proposed novel protein functional annotations. Edges correspond to PIs. In each module, genes associated with the main annotation are drawn
in yellow and with a thick border. (A) Module 14. The highlighted (yellow) genes belong to the NuA4 histone acetyltransferase complex. (B) Module 17. Genes
associated with gluconeogenesis are highlighted. (C) Module 25. Genes associated with chromatin silencing at the telomere are highlighted. (D) Module 27. SKI
complex genes are highlighted.
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tropy of the genes involved in chromosome biology. Evidently,
most CMPs are formed by modules annotated by similar
biological processes (Figure 5). In addition, a large number of
CMPs link transcription with chromatin modification and DNA
repair with DNA replication. Using GO semantic similarity
(Lord et al, 2003), we found a significant negative correlation
between the average S-scores and the functional similarity
over all module pairs (Spearman correlation r¼�0.105,
P¼7.38�10�6). Importantly, this correlation was much higher
than the correlation between functional similarity and S-scores
for individual gene pairs (r¼�0.023). This suggests that
redundancy is manifested more strongly at the level of the
functional unit, i.e. the module, than on the level of individual
genes. We provide several examples of how CMPs formed by
seemingly functionally unrelated modules can lead to biolo-

gical insight. Note that these relationships could not be
identified by methods using solely S-score profile similarity,
as in all cases the similarity between the S-score profiles of
genes from different modules was close to 0 (Figure 6).

The role of nuclear pore in the mitotic spindle
checkpoint

An interesting CMP linking seemingly unrelated processes
consists of modules 21 (‘mitotic spindle checkpoint’) and 63
(Figure 6A). Module 63 contains two genes: SAC3 and THP1,
both associated with the nuclear pore, with roles in transcrip-
tion regulation and mRNA export. Some evidence of a
relationship between the nuclear pore and the mitotic spindle
checkpoint can be found in the literature. The spindle

DNA replication 

Chromatin maintenanceGO semantic similarity

0.25 1.0

Transcription

DNA repair 

RNA metabolism

Proteolysis

Mitotic spindle related

Figure 5 Modules identified in the ChromBio E-MAP and relationships among them. Every node in the network represents a module. Node radius is proportional to the
module’s size. Node labels are the module number or its primary annotation. Edges connect pairs of modules that form a CMP. The edge width is inversely proportional
to the average S-score between the two modules in the CMP: thicker edges correspond to stronger aggravating GIs, dashed edges correspond to weak aggravating GIs
(�3p S-score p0). Edge color is proportional to the GO semantic similarity (Lord et al, 2003) between cousins in the CMP. Figure was produced using Cytoscape
(Shannon et al, 2003).
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checkpoint proteins Mad1 and Mad2 (both part of the module
21) were shown to reside predominantly at the nuclear pore
throughout the cell cycle (Iouk et al, 2002). Several compo-
nents of the nuclear pore complex (such as Nup170) are
specifically associated with chromosome segregation (Iouk
et al, 2002; Scott et al, 2005). Furthermore, Mad1 has a role in
transport of specific proteins, such as Pho4, through the
nuclear pore (Iouk et al, 2002). A role for nuclear pore
complexes in the spindle assembly was also shown in higher
eukaryotes (Orjalo et al, 2006). However, we found no reports
of this novel relationship between the Sac3-Thp1 complex and
the mitotic spindle checkpoint proteins. sac3 deletion mutants
accumulate in mitosis as large budded cells with extended
microtubules, and have an increased rate of chromosome loss
compared to wild-type strains (Bauer and Kolling, 1996). As
evident in Figure 5, the genes in both modules exhibit GIs with
several other modules, and thus the specific elucidation of the
connection between Sac3-Thp1 and the mitotic spindle
checkpoint would have been very difficult without a focused
module map such as the one presented here. Moreover, this
connection could not be picked up using S-score correlations
alone, as the smallest hierarchical clustering subtree that

contained the genes in modules 21 and 63 consisted of 231
genes.

The role of the proteasome in mitosis

Another CMP that crosses process boundaries and connects
seemingly unrelated modules links module 12 (‘Proteasome’)
with module 46 (Figure 6B). Module 46 contains three proteins
(Kar3, Cik1 and Vik1) involved in microtubule-related
processes in mitosis and meiosis. Kar3 is a kinesin-14 protein
that forms heterodimers with both Cik1 and Vik3 and acts as a
motor to pull chromosomes apart. The proteasome (the
complex in charge of most protein degradation in the cell) is
known to affect progression through cell cycle (Gordon and
Roof, 2001; May and Hardwick, 2006). Inspection of single-
deletion phenotypes reveals that mutants of genes from
module 12 (in particular Rpn10, Sem1 and Ump1) show
relative benomyl resistance (Brown et al, 2006). Benomyl is an
antimitotic drug that destabilizes microtubules and inhibits
microtubule-mediated processes, including nuclear division,
nuclear migration and nuclear fusion (Hampsey, 1997). The
fact that we observe particularly strong aggravating GIs
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4
2
0

–2
–4

Physical interaction
Aggravating interaction

Module 63
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Figure 6 CMP examples. In each example, on the left the two subnetworks forming the pair are shown in different colors. In the middle, the S-scores between the
genes in the CMP are color-coded. Blue rectangles correspond to alleviating GIs and red rectangles correspond to aggravating GIs. On the right, the correlations
between the S-score profiles of genes in the CMP are color-coded. Green lines separate the modules.

From E-MAPs to module maps
I Ulitsky et al

8 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group



between the proteasome and the three members of module 46
suggests another link between proteolysis and the mitotic
spindle, involving the Kar3 kinesin. One possible explanation
for this relation is that alternative kinesin motors are prevented
from functioning by a protein(s) that is a substrate for
proteasomal degradation. Thus, lack of proteasome activity
is genetically equivalent to lack of the alternative motor,
exhibiting strong aggravating GIs. A similar parallel pathway is
the one that restricts the activity of the alternative kinesin
motors Cin8 and Kip1 by CDK-mediated proteasomal degrada-
tion (Crasta et al, 2006).

Deubiqutination and the THO complex

Module 49 contains Bre5 and Ubp3, which together form a
deubiquitination complex with known roles in regulating
vesicle traffic (Cohen et al, 2003), transcriptional regulation
through TFIID (Auty et al, 2004) and DNA damage (Bilsland
et al, 2007). These roles closely correspond to the CMPs that
include module 49 (Figure 5). Our map shows a strong GI
between this module and module 31, which contains three
proteins from the THO complex, involved in transcription
elongation and its coupling to mRNA export (Figure 6C). Our
analysis thus uncovers a coordinated activity of the Bre5-Ubp3
deubiquitination and the THO complexes, most likely during
transcription elongation. Such coordination might be required
to prevent DNA damage from occurring during transcription;
indeed, mutations in members of either complex result in
increased sensitivity to DNA-damaging agents and hyper-
recombination (Bilsland et al, 2007; Garcia-Rubio et al, 2008).
In addition, recent experiments demonstrate a new role for the
THO complex in transcription-coupled DNA damage repair
(Gaillard et al, 2007). A connection was found between THO
complex activity during transcription, and an alternative DNA
repair pathway involving ubiquitin-mediated inactivation of
RNA polymerase II (Somesh et al, 2005). On the basis of our
results, we propose that under specific circumstances,
deubiquitination of RNA polymerase II by the Bre5-Ubp3
complex may allow resumption of transcription.

Discussion

Analysis of GI data is an important challenge in computational
biology. It was previously demonstrated that integrated
analysis of GIs and PIs is a powerful approach for outlining
pathways and for identifying pairs of complementing path-
ways (Kelley and Ideker, 2005; Ulitsky and Shamir, 2007b).
Here, we have shown how this integration can be extended in
two important directions. First, we handle a richer source of GI
data, provided by the E-MAP technology. Second, we describe
an algorithmic approach that is capable of extracting a
comprehensive map of multiple modules along with their
relationships, rather than focusing on a single module or on a
module pair. This approach is capable of identifying significant
modules that exhibit weak but consistent GIs.

As our formulation of the module-finding problem is
computationally hard, we use an efficient greedy heuristic
for finding high-scoring partitions. As a very large percentage
of the modules we identify correspond to known complexes or

pathways, it is evident that this heuristic performs quite well in
detecting functional modules. However, as a local search
algorithm, our algorithm may converge to a local minimum.
More precise algorithms for the problem could further improve
the results. Addition of an ability to assign confidence to
individual predictions is also expected to boost the applic-
ability of our method. In the PPI network used in this study, we
chose to exclude yeast two-hybrid interactions as we found
that this improved the results. However, this exclusion may
bias our current results toward detection of protein complexes.
PI confidence schemes (Qi et al, 2006; Suthram et al, 2006)
should be helpful for a better incorporation of all possible
interaction evidence into our framework.

The terminology of a ‘module’ is frequently used in different
settings in systems biology (Hartwell et al, 1999). On some
level, the entire collection of genes tested in the ChromBio
E-MAP can be considered a module, as they were all selected
based on their role in chromosome biology. Some methods for
analysis of GI data (e.g. Segre et al, 2005; Collins et al, 2007b)
produce a hierarchical collection of modules. This approach
has some advantages as description of biological processes is
inherently hierarchical (e.g., different chromatin remodeling
complexes form a ‘chromatin remodeling’ module). However,
systematic prediction of gene function and module function is
more difficult in this setting. A hierarchical tree for the
ChromBio E-MAP encompasses hundreds of highly over-
lapping modules. Here, we use PI data in an attempt to identify
distinct modules of genes acting cooperatively in the cell,
which can be used for systematic prediction.

We compared two methods for scoring gene similarity: one
based on alleviating interactions and another based on
similarity of GI profiles across the entire E-MAP. Our results
indicate that the use of profile similarity is generally superior
when analyzing the ChromBio E-MAP. A recent study by
Bandyopadhyay et al (2008), which was published while this
article was in revision, used a combination of PIs and GIs, and
found that modules enriched with aggravating interactions are
also of interest, as they frequently correspond to essential
complexes. It was also suggested that pairs of pathways could
exhibit multiple alleviating interactions between them in some
cases (Segre et al, 2005). Therefore, further research on
alternative scoring schemes may reveal other types of
interactions within functional modules.

The main contribution of our approach to the analysis of E-
MAP data is in our ability to identify not only the modules in
the data but also the relationships among them. As we
illustrate above, analysis of the data in light of the CMP
relationship is a powerful tool for improving our under-
standing of the roles played by the modules.

Materials and methods

Problem formulation and the probabilistic model

We are given a PI network G¼(V, E) and a matrix of GI scores S (which
we denote S-scores as in Collins et al, 2006). We are interested in
obtaining a partition of the network nodes into subsets M¼{M1,y ,
Mm, R}, in which each module Mi corresponds to a cohesive biological
unit and R is a set of singleton genes that do not belong to modules. We
distinguish between two types of module pairs: (a) module pairs
exhibiting a large number of aggravating GIs, which we call CMPs and
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(b) pairs of unrelated modules, which we call neutral module pairs
(NMPs). We refer to a pair of genes as: (a) siblings if both genes
are assigned to the same module; (b) cousins if they are assigned to
two different modules that together form a CMP and (c) strangers
otherwise (see toy examples in Figure 1). The modular decomposition
we seek to score consists of the partition M alongside the set of CMPs
C¼{(Mi, Mj)}.

We tested four different problem formulations; the formulations
differ in the way they treat within-module similarity and connectivity
of a module. We denote the different formulations Alleviating,
AlleviatingConnected, Correlated and CorrelatedConnected. In all
formulations, we modeled the set of S-scores as coming from a
mixture of three Gaussian distributions: Gm for pairs of genes with
exceptionally high scores (corresponding to alleviating GIs); Gf for
pairs of genes with exceptionally low scores (corresponding to
aggravating GIs) and Gn for pairs with neutral S-scores. These
assumptions have a theoretical justification (Sharan and Shamir,
2000), and we verified that they hold on the E-MAP data using quantile
plots (see Supplementary Figure 1 and Supplementary information).

The Alleviating model

We first describe the Alleviating model formulation. In this variant, we
looked for modules with the following properties: (a) siblings exhibit
mostly alleviating GIs and (b) cousins exhibit mostly aggravating GIs.
We formulate the score of a putative solution as a hypothesis-testing
question. Given the partition M and the set of CMPs C, the null
hypothesis H0 is: M is a random partition, and the modular hypothesis
H1 is: M exhibits a biologically plausible modularity. Formally, in the
modular hypothesis: (a) the S-scores between siblings come from Gm

with a high probability bm and from Gn otherwise; (b) the S-scores
between cousins come from Gf with a high probability bf and from Gn

otherwise and (c) The S-scores between strangers come from
distribution Gm with probability pm, from Gf with probability pf, and
from Gn otherwise. Thus, the likelihood of an S-score between two
genes under the module hypothesis is:

PðSijjH1Þ ¼
bmPGm ðSijÞ þ ð1 � bmÞPGn ðSijÞ if i; j are siblings
bfPGf

ðSijÞ þ ð1 � bfÞPGf
ðSijÞ if i; j are cousins

pmPGm ðSijÞ þ pfPGf
ðSijÞ þ ð1 � pm � pfÞPGn ðSijÞ if i; j are strangers

0
@

1
A

Under the null hypothesis, for each gene pair, the probability that its
S-score comes from distribution Gx is px. The probability under the null
model is thus: PðSijjH0Þ ¼ pmPGm ðSijÞ þ pfPGf

ðSijÞ þ pnPGn ðSijÞ. By
setting the partition score to log PðSjH1Þ=PðSjH0Þ, we get that
by maximizing this score we obtain partitions of maximum likelihood
ratio. Assuming independence between gene pairs, the partition score
can be decomposed over all pairs of nodes:

log
PðSjH1Þ
PðSjH0Þ

¼ logð
Y
i;j

PðSijjH1Þ
PðSijjH0Þ

Þ ¼
X

i;j

log
PðSijjH1Þ
PðSijjH0Þ

Note that if we denote

Wsði; jÞ ¼ log
bmPGm ðSijÞ þ ð1 � bmÞPGn ðSijÞ

pmPGm ðSijÞ þ pfPGf
ðSijÞ þ pnPGn ðSijÞ

and

Wcði; jÞ ¼
PðSijjH1Þ
PðSijjH0Þ

¼
bfPGf

ðSijÞ þ ð1 � bfÞPGn ðSijÞ
pmPGm ðSijÞ þ pfPGf

ðSijÞ þ pnPGn ðSijÞ
the partition score is Wp ¼

P
i;j2siblings Wsði; jÞ þ

P
i;j2cousins Wcði; jÞ:

The Correlated model

The Correlated model formulation scores GIs between cousins as
before, but differs in scoring GIs between siblings. Instead of scoring a
pair of genes based on the single GI between them, it scores the pair
based on their full GI profiles. The same score was used with
hierarchical clustering in Collins et al (2006). Let Cij denote the
correlation between the GI profiles of genes i and j (which we call the
C-score). We model the distribution of C-scores as a mixture of two
Gaussian distributions, Gm

C for siblings and Gn
C for non-siblings (see

Supplementary Figure 1 and Supplementary information). In the

model hypothesis, we assume that correlations between the profiles of
genes within the same module come from Gm

C with probability bm
C and

from Gm
C otherwise. The likelihood of the C-score under the module

hypothesis is thus:

PðSijjH1Þ ¼
bC

mPGC
m
ðCijÞ þ ð1 � bC

mÞPGC
n
ðCijÞ if i; j are siblings

bfPG
f
ðSijÞ þ ð1 � bfÞPGn

ðSijÞ if i; j are cousins

pmPGm ðSijÞ þ pfPGf
ðSijÞ þ pnPGn ðSijÞ if i; j are strangers

0
B@

1
CA

Connectivity requirements

We tested two variants for each of the two models described above: one
that used solely the E-MAP data and another in which each module
was required to induce a connected subnetwork in G. We denote the
latter models as AlleviatingConnected and CorrelatedConnected.

Finding high-scoring partitions

We first established that the problems we are studying are computa-
tionally hard by a reduction from the related correlation clustering
problem (see Supplementary information). While several approxima-
tion algorithms for the latter problem are available (Demaine and
Immorlica, 2003; Demaine et al, 2006), they cannot be applied directly
in our setting. We thus developed a greedy heuristic for detection of
high-scoring partitions. Starting from a partition in which each module
contains a single node from V, we iteratively apply two update steps. In
the first step, the node whose module re-assignment provided the
highest score improvement is selected and re-assigned accordingly.
When no such node is found, we look for pairs of modules that could
be merged to improve the partition score. In the Connected formula-
tions, we require that the re-assignments maintain the connectivity of
all the modules. In the second step, the set of CMPs is re-computed. For
every pair of modules Mi and Mj, we compute the contribution to the
score of the solution if (Mi, Mj) is included in the set of CMPs:
Sx2Mi ; y2Mj

Wcðx; yÞ. The pair is included in the CMP set if this
contribution is significantly high (see below).

We found that the above algorithm has difficulties in finding good
improving moves when starting from singleton sets. We therefore
developed a two-phase approach: we first execute the greedy algorithm
until convergence when using only the first step, i.e. keeping C empty.
In the second phase, we execute the full algorithm as described above.

Identifying significant CMPs

To assess each candidate CMP (M1, M2), we evaluated the significance
of the aggravating GIs between the modules given their overall GI
profiles. To this end, for every gene giAM1, we compared the values of
the Wp weights between gi and the genes in M2 to the entire weight
profile of gi using the Wilcoxon rank-sum test. Let us denote the
significance by pi

1. {pi
1} is then transformed into a single significance

level using the z-transform (Stouffer’s method; Hedges and Olkin,
1985). p2 is computed in a similar way, evaluating the significance of
the weights between M1 and M2 given the weight profiles of the genes
in M2. Finally, M1 and M2 are declared as CMPs if and only if
max(p1, p2)o0.005. Note that these P-values are not corrected for
multiple testing due to evaluation of a large number of possible CMPs
by the algorithm. Therefore, this score is a heuristic, which, as we shall
show, is successful as identifying biologically meaningful CMPs.

Parameter estimation

The parameters of the Gaussian distributions (including pm and pf)
were estimated using a standard expectation-maximization algorithm
(Bilmes, 1997). In all the results reported here, we used bm¼bf¼0.7.
We validated that the results reported here are robust to the choice of
these parameters (see Supplementary information).

Hierarchical clustering analysis

Hierarchical clustering of the E-MAP data was performed using
average linkage as in Collins et al (2007b). Pearson correlation was
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used as a distance measure between pairs of GI profiles. When
computing the correlation between profiles Xi and Xj, only positions in
which neither profile had missing data were used. For comparison with
other methods, modules were constructed using the hierarchical
clustering tree, by extracting maximal subtrees in which the average
correlation of the GI patterns was above a threshold t.

Assessing the reliability of function prediction

We performed cross-validation to assess the reliability of function
prediction using the modular partition. The following process was
repeated for each annotated gene in every module. We hid the gene’s
annotation and predicted it based on the annotations of the rest of the
module’s genes. We used the GO biological process annotation and
predicted a function only if its enrichment in the module had Po0.001.
A prediction was considered correct if the majority of the predicted
biological processes were correct, and wrong otherwise. The reliability
was defined as the fraction of correct predictions. All GO biological
process categories with at least two genes in the E-MAP were
considered. To predict a relatively narrow function, we considered
only genes that shared at least one GO category with no more than 30
other genes in the E-MAP. In total, 204 genes were considered.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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9. Discussion 

In this thesis we described our study on molecular networks and their 

integration with diverse genomic data. We specifically focused on algorithms for 

identifying modules through joint analysis of PPI networks and either gene 

expression profiles or GIs. The research in this thesis integrates concepts from 

biology, computer science, and statistics. We approached the problems from the 

computer science perspective, and then analyzed real biological data to 

demonstrate the biological implications of our methods. Moreover, we 

demonstrated the advantages of our methodology over extant methods. 

We repeatedly validated and developed our methods in two channels. First, we 

utilized publically available datasets of gene networks and gene expression. 

Second, we established collaborations with leading biological laboratories in 

Israel, United States, Germany, France, Austria and the United Kingdom, and 

conducted joint research that combines our computational methods and their 

experimental data. Of particular note is our extensive collaboration with the 

Loring lab at the Scripps Institute in San Diego. Two studies that were performed 

as part of this collaboration have been published [2, 145], two others are 

submitted for publication, and several others are still under way. Except for the 

study described in Chapter 4, these works are not included in this thesis. Our 

collaborations have served as the stimulus for the development of several 

methods, and in particular those described in Chapters 5 and 5. 

In this chapter we first summarize the methods introduced in this thesis and 

discuss how they can be used to explore biological questions, and how their 

performance can be assessed. Finally, we discuss potential future directions that 

can stem from the results in this thesis. 

9.1 Exploiting modularity in biological systems 

The idea that many crucial biological processes are carried out by functional 

modules, rather than by individual molecules, became widely accepted in the last 

decade [10, 14, 120, 146]. Such modules can be predicted through computational 

analysis of diverse data types, and in particular by combining networks of 

physical interactions, such as the PPI networks that we mainly exploit here, with 

complementary information, such as gene expression and genetic interactions. 

The basic ingredient of the methods we describe here is a requirement that each 

module forms a connected component in the PPI network. On top of this 

requirement, we developed various scores based on gene expression or genetic 
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interactions. Optimization of these scores results in a collection of functional 

modules.  

9.1.1 Identifying modules using PPI networks and gene expression data 

In order to identify modules using PPI networks and gene expression data, we 

first developed the MATISSE algorithm (Chapter 2) which detects PPI 

subnetworks that exhibit coherent expression patterns across the entire dataset. 

MATISSE overcomes several drawbacks of previously suggested approaches, 

such as bias towards dense pathways [110] or discovery of modules that do not 

form connected subnetworks [107]. The MATISSE approach was further 

improved in Chapter 6, which introduced CEZANNE, in which the basic 

connectivity criterion is replaced with a requirement for confident connectivity, 

based on confidence values for individual interactions in the PPI network. This 

improvement addresses the noisy nature of current PPI networks [20, 46].  

Although using Pearson correlation as a criterion for expression similarity 

typically results in biologically relevant modules (Chapters 2 and 6), other 

criteria could be more appropriate when the samples are labeled with clinical or 

other parameters. In this case it is frequently desirable to identify subnetworks 

whose expression is correlated with one of the parameters. For example, when 

samples represent different cell line groups (as in Chapter 3), it is desirable to 

extract subnetworks that are differentially expressed in specific groups. In 

addition to the levels of differential expression, information about co-expression 

can also be useful in this context, as it is possible that, e.g., several distinct 

pathways are up-regulated in a specific sample group. In this case, the members 

of each cluster are expected to be tightly co-expressed both within the sample 

group and outside it. Thus, our approaches described in Chapters 3 and 5 use an 

expression score that combines differential expression and co-expression. 

Most methods for quantifying differential expression of pathways, including 

those we proposed in Chapters 3 and 5, share an underlying assumption that a 

differentially expressed module consists of genes all of which are significantly 

differentially expressed. This assumption can be too restrictive in human disease 

studies, as mounting evidence suggests that, at least in cancer, different diseased 

individuals harbor distinct sets of genetic and transcriptional dysregulations, 

which tend to occur in specific disease-relevant pathways [147-149]. In such 

cases, the differential expression of most pathway genes may not be significant 

when analyzed across the entire case-control dataset, but each individual case 

will carry some alternations in pathway genes. We addressed this problem in 
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Chapter 4, and designed a computational framework that is capable of 

uncovering disease-related pathways. 

9.1.2 Combining physical and genetic interactions 

Transcriptional and genetic evidence tends to implicate distinct genes and 

pathways in a specific phenotype [150]. Thus, using genetic evidence for module 

finding is expected to reveal insights complementary to those identified using 

expression data. In Chapters 7 and 8 we described two approaches for 

identifying functional modules by combining GI and PPI networks. In Chapter 7 

we described an approach that is capable of identifying pairs of partially 

redundant pathways using PPIs and qualitative negative GIs. In Chapter 8 we 

extended this approach to handle both positive and negative quantitative GIs, 

and to identify simultaneously a collection of modules. In both cases we showed 

that in addition to facilitating module identification, the PPI and the GI data can 

be used for organizing modules into high-order structures, through identification 

of pivot proteins connected to pairs of partially redundant pathways (Chapter 7) 

and construction of module maps where complimentary modules are connected 

by multiple negative GIs (Chapter 8).  

9.2 Biological questions that can be addressed by a module-

based approach 

Assignment of genes into modules can be useful for diverse tasks, some of which 

were exemplified in this thesis: 

• Discovery of novel pathways: If most of the discovered modules 

correspond to known pathways, it is likely that some of the other modules 

correspond to novel pathways. In addition, if the modules are based on a 

specific gene expression dataset, it is likely that the novel pathways are 

related to the specific conditions in which these genes are differentially 

expressed. We exemplified this approach by identifying a putative new 

cytoskeleton-related pathway involved in DNA damage response (Chapter 

6).  

• Discovery of relationships between modules: By comprehensive 

modeling of high-throughput data it is possible not only to identify 

modules, but also to construct a map of inter-modular relations. In a 

module map we constructed using a PPI network and quantitative GIs 

(Chapter 8), pairs of modules are connected if they are linked by many 

negative GIs. It is thus likely that these module pairs are functionally 

related. Indeed, we find that such module pairs tend to share common 
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functions. In four cases where no common function was previously 

reported, we predicted novel functional connections. 

• Prediction of protein function: When a significant fraction of the genes 

in a module are annotated with a common function, the rest of the genes 

in the same module can be predicted to share this function. This guilt by 

association principle has been previously used in studies utilizing PPI 

networks (reviewed [37], a review that is not part of this thesis), and in 

studies combining together heterogeneous data [85]. We used this 

method to predict novel functions using modules based on PPIs and 

expression profiles (Chapter 6), or PPIs and GIs (Chapter 8).  

• Prediction of functionally important interactions: One of the 

advantages of defining modules as subnetworks rather than as gene sets 

is the fact that the edges in the subnetwork can provide further biological 

insight. For example, PluriNet, a module we identified as up-regulated in 

human pluripotent stem cells (Chapter 3), consisted of at least two 

distinct sub-modules, one related to the transcription factor NANOG and 

another to cell cycle progression. As suggested in Chapter 3, it is likely 

that several edges connecting members of these sub-modules are crucial 

for the regulation of cell cycle progression by regulators of pluripotency. 

• Prediction of candidate drug targets: If gene expression data from 

disease studies are used for module finding, and some modules are 

identified as up-regulated in diseased individuals, the members of this 

module constitute possible targets for therapeutic intervention. For 

example, we identified a focused 14-gene subnetwork as up-regulated in 

Huntington’s disease (HD, Chapter 4). One of the genes in this 

subnetwork, HDAC1, is a target of HDAC inhibitors, currently tested as 

promising drugs for treatment of HD [151-153]. Another gene in the same 

module, MSH6, was recently suggested as a potential target for therapy 

that can decrease the length of the CAG repeat that causes HD [154]. 

• Discovery of novel biological phenomena: A collection of functional 

modules can be used to deduce global organization principles of specific 

biological systems. Such discoveries were presented in Chapters 7 and 8. 

For example, we find that genes connected to at least two modules that 

exhibit genetic buffering between them (which we call pivot proteins) 

tend to be essential and conserved in evolution.  
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9.3 Evaluating performance 

We utilized several methods for the evaluation of the performance of our module 

finding methods, and their comparison with other methods. The most common 

method for evaluating the quality of a collection of putative functional modules is 

by testing the enrichment of each module for sets of genes that are known to be 

functionally-related. In the studies described in this thesis we utilized for these 

tests Gene Ontology (GO) annotations [155], and occasionally gene sets from 

other databases, such as KEGG [28], MIPS [156], MSigDB [70] and SGD [157]. 

Once we established which modules are significantly enriched for specific 

functional annotations, we measured specificity (fraction of modules enriched 

for at least one annotation) and sensitivity (fraction of annotations enriched in at 

least one module). 

An alternative way of evaluating performance is to test the method for 

robustness to parameter choices (c.f., Chapter 8) and robustness to noise in the 

input data (c.f., Chapter 6). Finally, when we focused on detection of 

subnetworks pertinent to a particular disease, we also tested whether the 

subnetworks contained genes mutations in which increase the susceptibility to 

the disease (Chapter 4). 

9.4 Access to the tools described in this thesis 

Importantly, we developed a graphical user interface for most of the methods 

described here. The MATISSE software package (http://acgt.cs.tau.ac.il/matisse) 

contains an implementation of the methods described in Chapters 2, 4 and 6. 

Since its release in 2007, it was downloaded by over 200 different users and has 

been used with our support for research in the Loring lab at UCSD [2], Shiloh lab 

at TAU, Yarden lab at the Wezimann Institute, Department of Oncology in 

University of Cambridge and at Stanford University. In addition, we added an 

implementation of the MATISSE algorithm (Chapter 2) to version 5.0 of the 

Expander microarray analysis suite (http://acgt.cs.tau.ac.il/expander), which is 

used in hundreds of labs worldwide. Finally, several components of our 

computational infrastructure for network analysis were used in the development 

of two tools for analysis of biological networks, MetaReg [158] and SPIKE [33], 

which are not included in this thesis.  
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9.5 Future research 

The studies described in this thesis can serve as a basis for several research 

directions.  

• Performance improvements. All the major computational problems that 

we formulated and addressed in this thesis are NP-Hard. The basic 

problem underlying the formulations described in Chapters 2, 3, 5 and 6 

is finding the heaviest subgraph in a graph that contains edges with both 

positive and negative weights. We have proven the hardness of this 

problem using a simple reduction from Max-Clique in Chapter 3. The 

problem we described in Chapter 4 is NP-Hard by reduction from Set-

Cover. Finally, the problems we described in Chapters 7 and 8 are NP-

Hard by reductions from Maximum Weight Biclique and from Correlation 

Clustering, respectively. Therefore, in most cases, we proposed heuristic 

algorithms. Exceptions are our algorithms for detection of dysregulated 

pathways (Chapter 4), for three of which we proved an approximation 

bound. Development of novel algorithms with provable approximation 

bounds for the problems described in this thesis could significantly 

improve the accuracy and utility of the identified modules. Another 

frontier is development of efficient exact algorithms for these probes, 

such as those based on Integer Linear Programming, which has been 

successfully used in related problems [114, 159]. 

• Detection of subnetworks differentially expressed in a subset of the 

conditions. The approaches based on gene expression data that are 

described in Chapters 2, 3, 5 and 6 are all based on expression similarity 

across all the studied conditions. They are therefore similar to clustering 

of gene expression patterns. It should be possible to extend the MATISSE 

model to a biclustering method, which will extract subnetworks whose 

genes exhibit high similarity across a subset of the expression profiles. 

This extension can be based on the SAMBA framework [160], where the 

expression data are represented as a bipartite graph G=(U,V), in which U 

is a set of conditions, V is the set of genes, and an edge (u,v) connects v to 

u if v is differentially expressed in u. The goal is to detect heavy subgraphs 

(U’,V’). By adding connectivity constraints to U’ we get a problem similar 

both to the problem described in Chapter 2 and to the one in Chapter 7. A 

combination of our approaches described in those chapters has a 

potential to be successful in detecting such bicluster-like subnetworks. 
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• Detection of pathways targeted by small molecules. The biclustering-

like extension described above can be further adjusted to accommodate 

data on cell line drug sensitivity. Kutalik et al. [161] have recently 

described an approach that uses a combination of gene expression 

profiles of untreated cell lines with data on cell line drug sensitivity to 

identify co-modules (G,C,D), which consist of G – a group of genes, C- a 

group of cell lines and D – a set drugs, such the genes in G are 

differentially expressed in C, and the cell lines in C are sensitive to the 

drugs in D. This approach was shown to accurately predict drug-gene 

associations (based on the co-appearance in co-modules). Introduction of 

network-connectivity constraints to G is likely to increase the likelihood 

that co-modules represent actual cellular pathways. Computationally, this 

problem can be modeled as a heaviest subgraph problem in a tri-partite 

graph of genes vs. conditions vs. drugs. Several ideas described in this 

thesis (for example, the biclique identification algorithm in Chapter 7) 

should be useful for designing efficient heuristics for this problem. 

• Using genotypes and gene expression to identify pathways 

dysregulated in human disease. High-throughput DNA sequencing 

makes it possible to study the genome-wide genetic landscape of complex 

diseases on an unprecedented scale. Recent studies of several cancer 

types using next-generation sequencing techniques revealed that even 

though the relatively common mutations are restricted to a small 

percentage of the affected individuals, in several key pathways at least 

one protein is mutated in most sick individuals [147-149]. So far, these 

pathways were identified manually, using prior knowledge on disease 

biology. By extending our method described in Chapter 4 to handle 

genetic information on mutations in protein-coding genes it may be 

possible to detect disease-relevant pathways at higher accuracy.  

In this thesis, we described several novel methods for identifying functional 

modules using diverse genomic data. Application of these methods to large scale 

genomics data enables identification of novel pathways alongside the cellular 

context in which they are active.  In addition, as we have shown, our module-

based approach is powerful for elucidating questions about individual genes and 

relationships between pathways. Such modular approaches are expected to play 

a key role in the upcoming genomic challenges, as scientists will use datasets of 

increasing dimensions to improve our understanding of cellular biology and to 

identify the pathways relevant for diagnosis and treatment of human disease.  
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Appendix 

Acronyms 

ChIP – Chromatin Immunopercipitatioin 

E-MAP – Epistatic Mini-Array Profiles 

GEO – Gene Expression Onmibus 

GI – Genetic Interaction 

GO – Gene Ontology 

HD – Huntington’s Disease 

ILP – Integer Linear Programming 

miRNA - MicroRNA 

PBM – Protein Binding Microarray 

PDI – Protein-DNA Interaction 

PPI – Protein Protein Interaction 

TF – Transcription Factor 
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        תמציתתמציתתמציתתמצית

 במימדים רפואי- ביו מידע איסוף מאפשרות האחרון בעשור בביוטכנולוגיה דרך פריצות
 מסוגים קשרים של היקף רחב מיפוי מאפשרות חדשניות שיטות מגוון. תקדים חסרי
 לייצוג ניתן מסוים מסוג הקשרים אוסף. החלבוניים תוצריהם בין או גנים בין שונים
 גנים של והפעילות הכמות את למדוד מאפשרות אחרות תשיטו. גנומית-כלל כרשת

, לפירוש וקשה רועש הוא הקיימות השיטות רוב באמצעות שנאסף המידע. שונים בתנאים
 רוב, בנוסף. ניתוחם ביכולת רבות לסייע יכול שונים ממקורות נתונים שילוב ולכן

 הנקראים, גנים כמה תוצרי של מתואמת פעילות ידי על מתבצעות התאיות הפעילויות
 אלה מודולים לזהות הוא החישובית הביולוגיה של מרכזי אתגר. פונקציונאלי מודול יחד

  . ביולוגיות תגליות בעזרתם ולגלות
 מידע באמצעות פונקציונאליים מודולים למציאת חישוביות שיטות מספר פיתחנו זו בתזה
 קשרים רשתות, בוןחל-חלבון קשרי רשתות של בניתוח התמקדנו). הטרוגני( מגוון

 נתונים לסוגי גם מתאימים שפיתחנו החישוביים הכלים אך, גנים ביטוי על ומידע, גנטיים
 מערכות במגוון שנאספו נתונים באמצעות הללו השיטות של היעילות את הדגמנו. נוספים

 בודדים גנים של תפקידיהם חיזוי מאפשרות שיטותינו. ובאדם האפייה בשמר ביולוגיות
, ביניהם והקשרים חדשים וקומפלקסים מולקולאריים מסלולים מציאת, גנים וצותקב ושל

 יכולים שזיהינו המודולים, הקליני בהקשר. פונקציונאלית חשיבות בעלי קשרים של וחיזוי
 שנפגעים המולקולאריים המסלולים על מצביעים, מחלות למספר דיאגנוסטי כסמן לשמש

     . תרופתי טיפול של לפיתוח תאפשריו מטרות ומציעים, אלה במחלות



 

 

   



 

 

        תקצירתקצירתקצירתקציר
    כלליכלליכלליכללי    רקערקערקערקע

 של הרצף קביעת את אפשרו א"דנ ריצוף בטכנולוגיות עצומים שיפורים, האחרון בעשור
 התפתחויות, במקביל. התאית המערכת של הבניין אבני רוב זיהוי ואת שלמים גנומים

 מם מיקו, רכיביםה כמות של היקף רחב מיפוי אפשרו הביוטכנולוגיה של אחרים בתחומים
 במחקר מטירד לשינוי הובילו אלה התפתחויות. םקשרים ביניהומגוון הבתוך התא 

 ביולוגיה. חדש תחומי- בין כמדע מערכותמערכותמערכותמערכות    שלשלשלשל    ביולוגיהביולוגיהביולוגיהביולוגיהה של מואצת ולהתפתחות הביולוגי
 העקרונות את לפענח ומנסה, כוללת בראייה הביולוגית מערכתה את בוחנת מערכות של

  .התנהגותה את ולחזות להבין נתמ על שלה הגלובליים
 רוב. שלהן תתתתמודולאריומודולאריומודולאריומודולאריוה היא ביולוגיות אחת התכונות המרתקות של המערכות

, רבים גנים של קבוצות תוצרים של מתואמת פעילות על מסתמכים בתא התהליכים
 תאים של הפיזיולוגי התפקוד את לראות ניתן. ]10[ םםםםפונקציונאלייפונקציונאלייפונקציונאלייפונקציונאליי    מודוליםמודוליםמודוליםמודולים ותהנקרא

 המרכזיות מהמטרות אחת. אלה מודולים של ומשולבת מתואמת כפעילות ואורגניזמים
 הביולוגית ההבנה ושיפור הללו המודולים מציאת היא החישובית הביולוגיה של

        .שלהם הניתוח באמצעות

            ביולוגיותביולוגיותביולוגיותביולוגיות    רשתותרשתותרשתותרשתות
 התוצרים בין או גנים בין קשרים של רשתות ידי לע מיוצג להיות יכול מגוון ביולוגי מידע

 יכולנו, מלא היה התאית הביולוגיה לגבי שלנו הידע אם, בעקרון. שלהם החלבוניים
בצורה  לחזות היה ניתן שבאמצעותה גנומית-כללבקרה  ברשת ולהשתמש להרכיב

 בהלמר. נתון זמן בכל בתאפרודה  כל של הפעילות ורמת המיקום, הכמות מהימנה את
 ולא, אורגניזם באףהושג עד היום  לא כאלה ורזולוציה היקף בעלת רשתמיפוי של , הצער
פענוח רשתות  מאפשרות ביוטכנולוגיות שיטות מספר, זאת למרות. שנים הקרובותב צפוי

קשרים בין גנים ניתנים למדידה הן . המלאה בקרהה הרשת של מסוימים חלקים המייצגות
-כלל שיטות מספר באמצעות והן בודדים בגנים מתמקדותש קלאסיות שיטות באמצעות

 שילוב. רעשהמדידות מכילות כמויות ניכרות של  המקרים בשני אולם, חדשניות גנומיות
. למחקר היום שזמינות ביותר המקיפות רשתותיצר את ה הניסויים סוגי משני מידע

 שני בין פיזי מגע על המעידים    חלבוןחלבוןחלבוןחלבון- - - - חלבוןחלבוןחלבוןחלבון    קשריקשריקשריקשרי) 1: (כוללים הללו ברשתות הקשרים
 גורםכ המשמש חלבון בין פיזי מגע על המעידים אאאא""""דנדנדנדנ- - - - שעתוקשעתוקשעתוקשעתוק    גורםגורםגורםגורם    קשריקשריקשריקשרי) 2( ;החלבונים

גן  שבהםבקרה בקרה בקרה בקרה     קשריקשריקשריקשרי) 3( ;אחר גן של פרומוטרנמצא לרוב בש א"דנ רצף לבין שעתוק
 קשר של אחד סוג הם א"דנ-שעתוק גורם קשרי. אחראת הפעילות של גן  מבקר אחד

 לגן א"רנ- מיקרו ובין שלו לסובסטרט מזרחן חלבון בין קשר הם נוספים סוגים. בקרה



 

 

 משמש אחד אנזים של שתוצר כך על המעידים מטבולייםמטבולייםמטבולייםמטבוליים    קשריםקשריםקשריםקשרים) 4. (שלו המטרה
 המתקבל שהפנוטיפ כך על המעידים גנטייםגנטייםגנטייםגנטיים    קשריםקשריםקשריםקשרים) 5. (אחר אנזים של כסובסטרט

 הנגרמים הפנוטיפים לפי הצפוי מזה משמעותית במצב של חוסר של שני גנים שונה
    .בנפרד מחוסר של כל אחד מהגנים

        ביולוגיותביולוגיותביולוגיותביולוגיות    רשתותרשתותרשתותרשתות    שלשלשלשל    חישוביחישוביחישוביחישובי    ניתוחניתוחניתוחניתוח
המרתקות והפוטנציאל העצום של הרשתות הביולוגיות הובילו לפיתוח מספר  התכונות

המחקרים הראשוניים התמקדו בתכונות בסיסיות של . רב של שיטות חישוביות חדשות
, ]35[גרפים קטנים -שכיחות של תתי, ]162[הרשתות וחקרו מדדים טופולוגיים שונים 

רשתות -עשרות שיטות חישוביות פותחו לזיהוי תתי. ]36[ואת האבולוציה של הרשת 
ם ולחזות תפקידים חדשים לגנים על מנת לזהות קומפלקסים חלבוניים חדשי, צפופות

מסלולים ארוכים ברשתות קשרי  מגלהקבוצה נוספת של שיטות . )]37[-ראה סקירה ב(
  . [39 ,38]מסלולים ליניאריים להעברת סיגנל התאים לל יםחלבונים שעשוי

 מסייעא "דנ- שעתוק גורםחלבון ו- עבודות רבות הראו ששימוש ברשתות קשרי חלבון
השימוש ברשתות לפירוש מידע על ביטוי גנים ועל . ות אחריםמקורמפירוש מידע גנומי ב

תוך שימוש ברשתות תואר עבור ניתוח משופר , בנוסף. קשרים גנטיים מתואר להלן
  .[45 ,44]ומחלות , [43 ,42]פנוטיפים של חוסרים בגנים , [41 ,40]גנוטיפים 

        הגנטיהגנטיהגנטיהגנטי    הביטויהביטויהביטויהביטוי    רמותרמותרמותרמות    שלשלשלשל    היקףהיקףהיקףהיקף    רחבותרחבותרחבותרחבות    מדידותמדידותמדידותמדידות
השנה האחרונות  15- אחת ההתפתחויות המשמעותיים ביותר בביולוגיה מולקולארית ב

של  ךא מכיל מער"שבב דנ. [52 ,51]א "היא הפיתוח של הטכנולוגיה של שבבי דנ
בניסוי אחד . ות של חומצות גרעיןוישמשמשים כגלאים לכמ םנוקליאוטידיאוליגו

עד . א ניתן למדוד את רמות הביטוי של אלפי גנים בתנאי מסוים"המשתמש בשבבי דנ
נכון . שליח א"ת היקף של כמויות רנבא שימשו בעיקר למדידה רח"שבבי דנ, היום

  .[53]פרופילים כאלו זמינים במאגרים הציבוריים  300,000כמעט , 2009לאפריל 

. לפתרון מגוון שאלות ביולוגיותלעזור יכולה  שליח א"מדידה רחבת היקף של כמויות רנ
נמדדות שליח א "בסוג אחד של ניסויים התאים נחשפים לטיפולים שונים ורמות הרנ

ניסויים קלאסיים מסוג זה חקרו את התקדמות מחזור . במספר נקודות זמן אחרי הטיפול
של מגוון נוסף . [56-59]ת שונות  בשמרים ובבני אדם והתגובה לעקו [55 ,54]התא 

 ,60]ניסויים משווה בין פרופילי ביטוי של תאים הלקוחים מרקמות או מאוכלוסיות שונות 



 

 

ים לרוב רקמות הלקוחות מאנשים א משוו"ניסויים קליניים המשתמשים בשבבי דנ. [61
  .[62-65]חולים לאלו של אנשים בריאים 

        אאאא""""דנדנדנדנ    שבבישבבישבבישבבי    תוצאותתוצאותתוצאותתוצאות    שלשלשלשל    חישוביחישוביחישוביחישובי    ניתוחניתוחניתוחניתוח
 ביטוי רמות מודד אנושיים בתאים טיפוסי מחקר( א"דנ בשבבי ניסויים של הגדול ההיקף

פיתוח  דורשים והביולוגי הטכני והרעש )דגימות מאות ואף בעשרות גנים 20,000-כ של
ביצוע שלבים שונים בניתוח מידע ל שיטות מגוון. המידע לניתוח ייעודיים חישוביים כלים

 של צבירים למציאת קיבוץ שיטות כוללות אלה שיטות. [66] היום עד פותחוא "משבבי דנ
 על מידע באמצעות דגימות ולסיווג, [68 ,67] דומות ביטוי תבניות בעלי ותנאים גנים

 שונה שלהם שהביטוי גנים למציאת פותחו סטטיסטיות שיטות מספר. [69] הגנים ביטוי
 רציף קליני לפרמטר חזק במתאם נמצא או דגימות של סוגים ינש בין מובהקת בצורה

 גנים של משתנה ביטוי סמך על חדשות היפותזות להציע ניתן שלרוב למרות .]164, 163[
השייכים לתהליך תאי  גנים קבוצת של המשתנ ביטוי של זיהוי, קרובות לעתים, בודדים
 נחשפים שאינם, חלשים אותות לגלות העשויגישה זו  .יותר אף מועיל להיות יכולמסוים 
 גנים של מוגדרות בקבוצות משתמש זו לבעיה אחת גישה. בנפרד מנותח גן כל כאשר

 [74 ,73] מטאבולי מסלול לאותו כמשתייכים, [70-72] משותפת פונקציה כבעלי שתויגו
 אילו העיקבהקושי שב הם אלה שיטות של החסרונות. [75] חלבוני קומפלקסלאותו  או

 משתנה המולקולארי מהמסלול חלק רק, רבים ושבמקרים, אלה לקבוצות משתייכים גנים
 להועיל יכול ,חלבונים קשרי ברשתות ובפרט, גנים ברשתות השימוש. שלו הביטוי ברמת

  . זו בעיה בפתרון
 שינויי את להבליט יכולות גנים ויביט על ומידע רשתות לשילוב האלגוריתמיות השיטות
 נוטים חלבונים קשרי ברשת המחוברים גנים. הביולוגית המשמעות בעלי הביטוי

 סיווג לשיפור הועיל חלבונים קשרי ברשתות ושימוש, [91 ,90] דומה בצורה להתבטא
 בדגימות שונה ביטוי בעלי גנים ובגילוי [93-95] גנים ביטוי רמות באמצעות דגימות
 וביטוי מרשתות מידע בשילוב העיקריים המחקר מתחומי אחד. [96-98] שונים מסוגים

 הללו הגישות את לסווג ניתן .דפוס ביטוי מעניין בעלות רשתות-תתי זיהוי הוא גנים
-99 ,34] ספציפית בדגימה הפעילות רשתות- תתי זיהוי) 1: (עיקריות קבוצות לארבע

) 3(; [102-106] שנבדקו התנאים של קבוצה בתת הפעילות רשתות תתי זיהוי) 2(; [101
, 109, 107[ התנאים כל לאורךהדדי גדול  מתאם מראים ןשבה שהגנים ותרשת-תתי גילוי



 

 

 .]112-114[ תנאים קבוצות שתי בין מבדיל שלהן שהביטוי רשתות תתי זיהוי) 4(; ]110
 לתנאים הקשורים רבים םפונקציונאליי וליםמוד של זיהוי אפשר אלה בשיטות שימוש

        .שונות ולמחלות מגוונים ביולוגיים
        גנטייםגנטייםגנטייםגנטיים    קשריםקשריםקשריםקשרים    רשתותרשתותרשתותרשתות
 היקף רחב למיפוי והוביל ,אחרים ביוטכנולוגיים ופיתוחים א"דנ בשבבי שימוש, לאחרונה

. S. cerevisiae [115-118] בשמר בעיקר, בודדים גניםשל  יםחוסר של פנוטיפיםה של
 עשיר מצע על לגידול חיוניים זה אורגניזםב מהגנים %18-כ שרק הראו אלה מחקרים

 בשמרים מאוד נפוץ גנטי) buffering( שגיבוי לקביעה הובילה זו תוצאה. ]115[
כאשר הפנוטיפ של מוטנט החסר שני גנים שונה מהצפוי לפי  .]119[ אחרים ובאורגניזמים

. נקבע כי בין הגנים הללו קיים קשר, הפנוטיפים של המוטנטים החסרים כל גן בנפרד
    קשרקשרקשרקשר. [121 ,120] ושליליים נייטרליים, חיוביים לקשרים הגנטיים הקשרים את לסווג ניתן
    קשרקשרקשרקשרו מהצפוי נמוכה הגנים שני את החסר מוטנט של השרידות כאשר נקבע    שלילישלילישלילישלילי    גנטיגנטיגנטיגנטי
ידי - לרוב על נקבעת הצפויה השרידות. מהצפוי גבוהה שרידותה כאשר נקבע    חיוביחיוביחיוביחיובי    גנטיגנטיגנטיגנטי

 שיטות מספר. [123 ,122 ,120] בודד גן החסרים המוטנטים של רידויותשה מכפלת
  . ]123-129[ גנטיים קשרים של היקף רחב מיפוי מאפשרות חדשות מולקולאריות

 נוטים גנטיים קשרים בעלי שגנים והראמחקרים מוקדמים על רשת הקשרים הגנטיים 
 בעלי ושגנים, [125 ,124] )א"דנ-שעתוק גורםו חלבון- חלבון קשרי( פיזי קשר גם לחלוק
 הובילו אלה מחקרים. ]130[ פיזיים רבים קשרים גם לקיים נוטים רבים גנטיים קשרים

 להוביל עשוי פיזיים קשרים של רשת עם הגנטיים הקשרים רשת של ששילוב למסקנה
 שאם הראה Ideker [131]-ו Kelley של המשך מחקר. חדשניות ביולוגיות למסקנות
 מחברים השליליים הגנטיים הקשרים שרוב מגלים הרשתות שתי את יחד משלבים
. [132-135] זו מסקנה אשררו יותר מאוחרים מחקרים. הפיזית ברשת מקבילים מסלולים

 תהליך לאותו השייכים גנים בין לרוב מתרחשים החיוביים הגנטיים הקשרים, מתםלעו
 הגורם אפקט, התהליך פעילות לע הגנים באחד חוסר של חזק מאפקט ונובעים, [127]

  .השפעה חסר הוא תהליך מאותו נוסף בגן שחוסר לכך

. [136 ,127 ,123] היררכי קיבוץ באמצעות לרוב נעשה םכמותיי גנטיים קשרים ניתוח
 נתונים עם היררכי קיבוץ המשלבות אלה רשתות לניתוח חדשות שיטות הוצעו, לאחרונה

 של חופפים צבירים לגלות המאפשר) biclustering(קיבוץ -דו או [137] פיזיים קשרים על



 

 

 גנטיים קשרים לחיזוי הגנטיים הקשרים ברשת משתמשות נוספות שיטות. [138] גנים
 ידי על המעוכבים גנים ולחיזוי [132] חדשים גנים תפקידי לחיזוי, [139-143] חדשים

 .[144] כימיות תרכובות

  

            



 

 

        בתזהבתזהבתזהבתזה    הכלוליםהכלוליםהכלוליםהכלולים    המאמריםהמאמריםהמאמריםהמאמרים    תקצירתקצירתקצירתקציר
 הוצגו או מדעיים עת בכתבי התפרסמו אשר, מאמרים שבעה על מסתמכת זו עבודה

    :המאמרים תקצירי פירוט להלן. מדעיים בכנסים

1. Identification of Functional Modules using Network Topology and High-

Throughput Data 

Igor Ulitsky and Ron Shamir 

Published in BMC Systems Biology [1]. 

 כלל בדרך מתבצע גנים ביטוי על היקף רחבי ונתונים חלבונים קשרי רשתות ניתוח
 את לשפר עשוי המידע סוגי שני של משולב חקר. שונות שיטות ובאמצעות בנפרד
 הנגזרות תכונות עם הרשת של טופולוגיותה תכונותה שילוב ידי-על הניתוח איכות

. זו לבעיה חדשה אלגוריתמית מסגרת מתארים אנו זו בעבודה. הגנים ביטוי מתבניות
 בשלב. הגנים כלל של הביטוי תבניות בין הדמיון את מחשבים אנו, ראשון בשלב
 מחפשים אנו, הגנים זוגות כלל בין הדמיון וערכי חלבונים קשרי רשת בהינתן, השני
 אלגוריתמים פיתחנו. לזה זה דומים שבהן שהגנים) מודולים או( קשירות רשתות-תתי

 .S השמר תגובת על נתונים באמצעות שלהם הביצועים את והערכנו, זו לבעיה

cerevisiae האנושי התא מחזור במהלך גנים ביטוי על ונתונים גבוהה למליחות .
 םפונקציונאליי מודולים לקבל ניתן המוצעת השיטה שבאמצעות מראות שלנו התוצאות
  . יתביולוג משמעות ובעלי ממוקדים

  

2. Regulatory Networks Define Phenotypic Classes of Human Stem Cell Lines 

Franz-Josef Müller, Louise C. Laurent, Denis Kostka, Igor Ulitsky, Ron Williams, 

Cristina Lu, Mahendra S. Rao, Ron Shamir, Philip H. Schwartz, Nils O. Schmidt, 

Jeanne F. Loring 

Published in Nature [2]. 

סוגים  למגוון להתמייןבעלי יכולת  תאים של מתחדשתה כאוכלוסיי מוגדרים גזע תאי
, פלוריפוטנטיים מתאיםהחל , מתייחס למגוון תאים רחב' גזע תאי'המונח . רחב

 ועד, מגבלות ללא כמעט ולהתמיין להתחלק יכולים אשר, עובריים גזע תאי כדוגמת
ריבוי הדיווחים על  .יותר מוגבלת בעלי יכולת התמיינות הרבה, בוגרים גזע תאי

 מחדשת ברפואה מרכזי תפקיד ימלא שהם יהוהציפי גזע תאי של חדשים מקורות
)Regenerative Medicine ( הללו התאים לסיווג הומהימנ כללית שיטההצריך .



 

 

 stem‘( גנים ביטוי של גנומיות-כלל תבניות של נתונים מסד וניתחנו יצרנו, זו בעבודה
cell matrix’ (של רחב מגווןאמצעות מידע על ב אנושיים גזע תאי של סיווג שמאפשר 

 12- ל תאים דגימות 150-כ סיווגנו קיבוץ שיטתבאמצעות . ממוינים ותאים גזע תאי
 שתאים בעוד, אחד לצביר יחד מתקבצים פלוריפוטנטיים גזע שתאי גילינוו צבירים
 באמצעות. מגוונים הרבה יותר הם, העצבים מערכת של גזע תאי כגון, אחרים מסוגים

 את מייחד שלה שהביטוי חלבונים קשרי של רשת-תת גילינו נוסף חישובי ניתוח
תת רשת זו ב שהגנים הראה אחרים ממחקרים מידע ניתוח. הפלוריפוטניטים התאים

 ביצית ותאי בעכברים עובריים גזע תאי כגון, מתבטאים בתאים פלוריפוטנטים נוספים
 ברעיון ותומכת גזע תאי לסיווג חדשה אסטרטגיה מציעה זו עבודה. אנושיים

 .מורכבות בקרה רשתות ידי על ותמבוקר והתחדשות שפלוריפוטנטיות
  

3. Detecting Disease-Specific Dysregulated Pathways via Analysis of Clinical 

Expression Profiles 

Igor Ulitsky, Richard M. Karp and Ron Shamir 

Published in Proceedings of the Eleventh Annual International Conference on 

Research in Computational Molecular Biology (RECOMB 2008) [3]. 

 מובהקת בצורה המועשרות קשירות רשתות- תתי לזיהוי שיטה מציעים אנו מאמר זהב
 רשתותה תתיב להשתמש ניתן. מצב של מחלהב משתבש שלהם הביטוי אשר בגנים
 ולמציאת, המשפיעים עליה מולקולאריים מסלולים לזיהוי, אבחון המחלהל הללו

 על במידע משתמשת ושלנ השיטה, ראשון בשלב. תרופתי לטיפול אפשריות מטרות
 שביטויים גנים של קבוצות ומזהה, בריאות אוכלוסיותבחולים בהשוואה ל גנים ביטוי

 שבהן קשירות רשתות-תתי מחפשים אנו, שני בשלב. מהחולים אחד בכל השתבש
 תתי מחפש שלנו המרכזי האלגוריתם. החולים ברוב רבים ביטוי שיבושי התרחשו
 סף מעל הוא חולה בכל המשובשים הגנים מספר ןשבה תמינימאליו קשירות רשתות
 caudate( זנבי גרעין באזור הגנים ביטוי את חקרנו זו שיטה באמצעות. מסוים

nucleus (על ביצענו ניתוחו הנטינגטון במחלת ובחולים בריאים באנשים המח של 
)meta-analysis( תתי קיבלנו המקרים בשני. השד סרטן על מחקרים שישה של -

 לגורמים ספציפיים הסברים סיפקו אשר סטטיסטית מובהקות עלותב רשתות
 .אלה מחלות של םהמולקולאריי

  



 

 

4. Detecting Pathways Transcriptionally Correlated with Clinical Parameters 

Igor Ulitsky and R. Shamir 

Published in Proceedings of Computational Systems Bioinformatics (CSB) 2008 [4]. 

 ביטוי תבניות עם קשירות רשתות תתי למציאת חדשה שיטה מתארים אנו זו דהבעבו
 השיטה. של הדגימות שנבדקו כלשהו פרמטר עם במתאם שנמצאות קוהרנטיות

 לפרמטרים וגם, גידול גודל או גיל כמו, רציפים לפרמטרים גם מתאימה המוצעת
 בסרטן מחולות נתונים מנתחים אנו השיטה באמצעות. גנוטיפ או מין כגון, קטגוריים

, החולה גיל כולל, שונים קליניים פרמטרים לתשעה הקשורים מודולים ומגלים, שד
 מסלולים לגלות מסוגלת שלנו השיטה. גרורות ללא השרידות ומשך, הגידול גודל

 של התוצאות. אחרות שיטות ידי על מזוהים אינם אשר למחלה הקשורים מולקולאריים
 לשונות התורמים המולקולאריים המסלולים לגבי היפותזות במספר תומכות העבודה

 .חדשות היפותזות מספר ומציעות, יםהגידול בין
  

5. Identifying Functional Modules Using Expression Profiles and Confidence-

Scored Protein Interactions 

Igor Ulitsky and Ron Shamir 

Published in Bioinformatics [5].  

מושפעות  ,יםחלבונ קשרי רשתות עם גנים ביטוי של נתונים לשילוב השונות שיטותה
 אנו, זו בעבודה. ברשת הקשרים של באמינותם המשמעותית לרעה על ידי השונות

 חלבון- חלבון קשרי של אמינות במדדי המשתמשת שיטה, CEZANNE את מציגים
. יחדיו וגם מבוטאים תפונקציונאלי מבחינה לזה זה הקשורים גנים של קבוצות למציאת

 כך שהסבירות ,הרשת של לקשתות חדש המשמש כבסיס הסתברותי מודל מציעים אנו
 יהמינימאל החתך מיוצגת על ידי משקל ברשת קשירות רכיב יוצרת הגנים שקבוצת

 של חשיפה אחרי גנים ביטוי על נתונים לניתוח CEZANNE-ב משתמשים אנו. בגרף
 דוליםמו מספר עם יחד ידועים מגוון מודולים ומזהים, א"דנ לנזק S. cerevisiae השמר

 חדשים תפקידים מספר לזהות לנו מאפשר החדשה בשיטה השימוש, בנוסף. חדשים
 הביצועים על עולים  CEZANNE של שהביצועים מראים אנו, לבסוף. ספציפיים לגנים

  .ורשתות גנים ביטוי על מידע לניתוח אחרות שיטות של

 

  



 

 

6. Redundancy and Protein Essentiality Revealed in the S. cerevisiae Interaction 

Networks 

Igor Ulitsky and Ron Shamir 

Published in Molecular Systems Biology [6]. 

 קשרים של בהקשר גנטיים קשרים לניתוח חדשים אנליטיים כלים פיתחנו זו בעבודה
 שלנו המודל. Ideker-ו Kelley ידי על בספרות שהוצע מודל של הרחבה תוך, פיזיים
 מולקולאריים מסלולים בין המחברים כקשרים הגנטיים מהקשרים רבים מפרש

 .S בשמר רשתות לניתוח הזה במודל משתמשים אנו. הפיזית ברשת מקבילים

cerevisiae 3,765 יחדיו המסבירים מקבילים מסלולים של מודלים 140 ומגלים 
 אלה במודלים שנמצאים הגנים. כן לפני שדווח מזה כפול כמעט מספר, גנטיים קשרים
 תכונות, זרחון אתרי יותר ולהכיל יותר קצר חיים יתמחצ זמן בעלי להיות נוטים

 בשל פעילותם במסלולים הדוקה רגולציה עוברים אלא שגנים כך על המצביעות
 המסלולים לשני רבים פיזיים קשרים בעלי' ציר חלבוני' מזהים אנו, בנוסף. יתירים

 שלנו יתוחהנ. ושמורים חיוניים להיות נוטים אלה שחלבונים ומראים, מודל המרכיבים
 גנים עבור חדשים תפקידים מספר וחושף, התא מנגנוני של הארגון על חדש אור שופך

 .  מסוימים
  

7. From E-MAPs to Module Maps: Dissecting Quantitative Genetic Interactions 

Using Physical Interactions 

Igor Ulitsky, Tomer Shlomi, Martin Kupiec and Ron Shamir 

Published in Molecular Systems Biology [7]. 

 בעוד. היבטיםבשני  הקודמת בעבודה שהצענו המודל את מרחיבים אנו זו בעבודה
 החדשה השיטה, םפונקציונאליי מודולים של זוגות רק לזהות יכלה הקודמת שהשיטה
 מתאים החדש המודל, בנוסף. םמודולי של כלשהו אוסף סימולטנית למצוא מאפשרת

 זו בשיטה השתמשנו. ושליליים חיוביים קשרים כולל, גנטיים קשרים על כמותי למידע
 לכרומוזומים הקשורים השונים המולקולאריים המנגנונים של למיפוי מודולים

 בודדים גנים של תפקידים לגילוי חשובים רמזים מספקת שהמפה והראנו, בשמרים
 .םשלמי מודולים ושל

 


