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Abstract 
 

Gene expression measurements can help in understanding diseases, by identifying 

differences between the tissues of sick and healthy individuals. Differential expression 

analysis is a well-established way to find gene sets whose expression is altered in the disease. 

Recent approaches to gene expression analysis seek differential co-expression patterns, 

wherein the level of co-expression of a particular set of genes differs markedly between 

disease and control samples. Such patterns can arise from a disease-related change in the 

regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory 

networks. 

Here we present DICER, a new method for detecting differentially co-expressed gene sets. 

The method utilizes a novel probabilistic score for differential correlation. In addition, DICER 

detects meta-modules: pairs of modules, where each module is correlated across all samples 

but the amount of correlation between the two modules is different in the disease and in the 

normal samples.  We show that our method outperforms the state of the art in terms of 

significance and interpretability of the detected modules. Moreover, the gene sets discovered 

by DICER manifest regulation by disease-specific microRNA families. In a case study on 

Alzheimer's disease, DICER dissected biological processes and protein complexes into 

functional sub-units that are differentially co-expressed, thereby revealing inner structures in 

disease regulatory networks. 
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1. Introduction and Summary 
 

High throughput measurement technologies, e.g., microarrays, mass spectrometry and next 

generation sequencing, are often used to compare different classes of individuals. By utilizing 

data produced by these techniques, one can try to discriminate different groups of patients 

and to decipher biological mechanisms that underlie a specific phenotype. Because these 

technologies produce many thousands of numeric attributes for each sample, their analysis 

raises formidable computational challenges.  

Systems biology aims to dissect biological phenomena by integration of high-throughput data. 

Often, established biological knowledge is integrated in the analysis together with large-scale 

genomic measurements. For example, in discovery of pathways whose genes expression 

profiles are altered in a disease, the same data can be used to construct disease biomarkers 

[1-6]. Other methods integrate networks (e.g. protein-protein interaction network) with 

microarray experiments for finding differential genes that form dense sub-networks and 

utilize these data for improving classification [7-12]. Another key challenge in molecular 

biology is to understand the regulatory program that controls mRNA levels. The key 

components in this program are transcription factors (TFs) and microRNAs (miRNAs). TFs are 

proteins that activate or repress transcription by binding to short DNA sequences that 

typically reside in a gene's promoter. miRNAs are a class of endogenous non-protein-coding 

small RNAs, which repress gene expression at the posttranscriptional level by annealing to the 

3'UTR of the mRNA. Several attempts in computational reverse engineering of regulatory 

mechanisms were performed by combining gene set detection methods with sequence based 

analysis for motif finding [13-17].  

Complex supervised analysis of gene expression data has gone beyond identification of 

differential genes or pathways, to identify differential co-expression patterns. Differential co-

expression is a situation in which the co-expression of genes changes among different 

phenotypes. Using the premise that co-expressed genes are more likely to be co-regulated, 

major changes in co-expression patterns may indicate changes in regulation. Several studies 

identified differentially co-expressed transcriptional factors known to be involved in cancer 

whereas their mean expression levels had hardly changed [18-20]. Another main motivation 

for performing differential co-expression analysis emerged from the need to find disease 

specific alterations in regulatory systems [21], and several studies found specific evidence for 
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differential co-expression patterns [18-20, 22-28] (see [21] for review). For example, Mentzen 

et al.[27] identified gene modules that are enriched with cell adhesion and growth factor 

related genes, and that manifest a significant decrease in co-expression in mammary gland 

tumors compared to wild type. 

Here we describe DICER (Differential Correlation in Expression for meta-module Recovery), a 

new method for differential co-expression (DC) analysis. We developed a novel statistical 

score for DC, and show that it has significantly higher values in real data sets compared to 

randomized data sets. Given a set of gene expression profiles partitioned into different 

classes, DICER aims to detect gene sets that manifest correlation changes that are specific to 

a particular class of interest. DICER addresses two scenarios of differential correlation: (1) a 

group of genes that are differentially correlated in the tested class; we call such a group a 

differentially correlated cluster; and (2) a pair of gene sets where each set contains genes that 

are co-expressed in all classes and there is marked change in the correlation between the two 

sets in the tested class; we call such a pair a meta-module, and each of the sets is called a 

module. A meta-module can represent two (or more) sub-units of the same biological process 

where each of them is co-expressed throughout the tested phenotypes, but their 

interrelation is differs in a specific phenotype. This can happen, for example, if the regulation 

of one of the subunits is altered in the disease condition. Because meta-module detection is 

NP-hard to approximate within any constant factor, DICER uses heuristics to find meta-

modules. 

We tested the ability of DICER and other methods to find differentially correlated gene 

modules on five disease-related gene expression data sets. We discovered that DICER can 

detect more significant pathway enrichments, and that the modules discovered by DICER 

manifest higher correlation changes patterns. In addition, DICER modules are highly enriched 

with gene targets of miRNA families. These enrichments identify known miRNA-disease 

associations and suggest new miRNA candidates that affect the tested disease. In a case study 

on Alzheimer's disease data set we demonstrated how DICER can dissect known biological 

functions into biologically meaningful sub-units, which cannot be detected by standard 

differential expression analysis.  We also show that such analysis can explain changes of gene 

activity that are not detected by analyzing changes at the mRNA level. 
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2. Background 
 

This chapter lays out the background and terminology required for this thesis. In section 1 we 

shall introduce basic biological definitions and recent findings. We shall also discuss current 

available high throughput data that were used in this thesis, and give a brief introduction to 

neurodegenerative diseases. In section 2 we shall discuss and give formal definitions of the 

computational problems addressed. This section includes problems of: coexpression analysis, 

gene clustering, differential expression, large scale genetic networks, gene sets enrichment 

analysis, and differential coexpression. In the end of section 2 we shall give a background on 

computational complexity, the APX complexity class and discuss hardness of approximation 

schemes. 

 

2.1 Biological background 
 

In this section we introduce biological terms and definitions that are necessary for 

understanding the motivation of this thesis, and the computational problems that we deal 

with. 

2.1.1 Basic biology 

 

Here we present, briefly, basic biological terms. For more information on basic biology see 

[29, 30]. For additional information on gene regulation see [31, 32]. 

 

2.1.1.1 Historical background 

 

Modern genetic research originated in the 19'th century, when genetics was first considered 

as a set of principles, combined with analytical procedures, and the notion of a gene as the 

biological entity responsible for defining traits was first introduced. In 1859 Charles Robert 

Darwin published his book "On the Origin of Species" introducing the evolution theory with 

compelling evidence. In 1866, the Augustinian monk Gregory Mendel performed a set of 

experiments that revealed the basic inheritance mathematics. Remarkably, until 1944 it was 
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believed that proteins carry the genetic information, and that the information in deoxy-

ribonucleic acid (DNA) plays only a secondary role. Thanks to the outstanding experiments 

performed by Oswald Avery, Colin MacLeod and Maclyn McCarty this belief was shattered, 

and it was shown that the DNA is the major carrier of genetic material in living organisms. In 

1953, based on research done by Rosalind Franklin, James Watson and Francis Crick deduced 

the three dimensional double-helix structure of the DNA and inferred its method of 

replication [30]. Later on, in 1975, Frederick Sanger and Alan Coulson published the first DNA 

sequencing procedure. In February 2001, the first draft of the human genome was completed 

[33], marking the beginning of the informatics revolution of biology.  

 

2.1.1.2 What are cells? What are mitochondria? 

 

The cell is the basic structural and functional unit of all living organisms. It is the smallest unit 

of life classified as a living thing. The cell is separated from its surroundings by at least one 

membrane. Specialized sub-units of the cell that have a specific function, and are also 

surrounded by a membrane, are called organelles. There are two types of cells: prokaryotic, 

and eukaryotic. In eukaryotic cells the genetic information stored in the DNA molecule is 

surrounded by a membrane in an organelle called the nucleus, whereas in prokaryotic cells 

the DNA is not surrounded by a membrane. All multi-cellular organisms are comprised of 

eukaryotic cells. 

The mitochondrion (plural: mitochondria) is an organelle present only in eukaryotic cells. It is 

responsible for generating the cell supply of adenosine triphosphate (ATP), the main source 

of chemical energy in living cells. In addition, because of their main role in metabolism, the 

mitochondria are involved in a wide range of biological processes, such as signaling, cellular 

differentiation, programmed cell death (also called apoptosis), cell cycle, and cell growth [34]. 

Many, sometimes very different, diseases involve dysfunction of the mitochondria, of which 

many are brain disorders [35].  
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2.1.1.3 What is a gene? How is the genetic information used for producing real 

biological functionality? 

 

The DNA molecule is comprised of four building blocks called nucleotides. A gene is a DNA 

segment that codes for a specific biological functionality. Upon demand, parts of the DNA 

chain are exposed and copied into single stranded ribonucleic acid (RNA) chain in a process 

called transcription. Most of these RNA chains are used for synthesis of proteins in a process 

called translation. Nonetheless, some genes are non-coding and contain functional 

information that is not carried by proteins. The translation process is accomplished by cell 

components called ribosomes. The RNA template molecule for protein synthesis is called the 

messenger RNA (mRNA).  Gene expression is the process by which information from a gene is 

used in the synthesis of a functional gene product, or transcript. 

Most of the cell functions are done by proteins, the main players of the machinery within the 

living cell, and are also used as communication means between and within cells. Proteins take 

care of maintaining cell structure and activity, allowing the cell to cope with external 

environment. Proteins can also be used for cell-to-cell signaling, secreted outside and used 

within the cell upon demand. There are many types of proteins, so cells of different tissues, 

while having the same genetic information (i.e. the same DNA), may have different mixtures 

of proteins. Even within the same cell, the protein types and amounts (or concentrations) 

may change with time, depending on the cells internal state and on outside conditions (e.g. 

stresses). In many cases proteins cannot function alone, as they are parts of a protein 

complex in which partners must physically connect, and even include non-protein cofactors 

such as RNA molecules, to produce biological functionality. These complexes can be very 

large and some of them contain dozens of different proteins. One of the main complexes 

within a cell is the ribosome, which is responsible for synthesis of new proteins when those 

are required. 

A biological pathway is the set of molecular entities involved in a given biological process and 

the interrelations among those entities. While every protein in the pathway can be active on 

its own, the activity of most members of the pathway is needed for the pathway to carry out 

its biological process. Biological pathways can represent the flow of metabolic particles in a 

biological process and the genes responsible to carry out the chemical interactions. These 

pathways are called metabolic pathways. Biological pathways are also used to represent 

sequences of signaling interactions among different cellular entities in the cell. These 

pathways are called signaling pathways. Pathways are to some extent the biologist's 



16 
 

simplification or abstraction. Pathway boundaries are inherently fuzzy and somewhat 

subjectively defined, but they are valuable for understanding biology and organizing 

biological knowledge (e.g. a metabolic or signaling pathway). Although current knowledge 

about some biological pathways may be substantial and useful for systems-level analyses, not 

all genes that participate in and/or affect function of these pathways are known. For other 

pathways, only rudimentary information is known. 

 

2.1.1.4 Gene regulation 

 

The emergence of complex, multi-cellular life forms was accompanied and probably 

facilitated by increased complexity of gene regulation. Gene expression is tightly regulated to 

guarantee that the proper amount of gene product is present in the right cell at the correct 

time.  

At the transcriptional level, the key regulatory players are proteins that bind the DNA 

sequences and control the flow of genetic information from DNA to RNA. These factors are 

called transcription factors (TFs) and can either increase or decrease gene expression of 

specific genes. TFs bind to the DNA and can turn on or off the transcription machinery of a 

specific gene. Moreover, transcription will not be carried out without dedicated TFs. 

At the post-transcriptional level, numerous regulatory mechanisms were discovered in the 

past decades. These mechanisms can be very different, but most of them can be grouped 

under the umbrella of RNA regulation. RNA regulation processes exploit the chemical 

characteristics of the RNA molecule and the processes that synthesize mRNA.  For example, 

raw mRNA molecules created in the transcription processes contain segments that are 

removed in a process called splicing. The retained segments are called exons, whereas the 

removed segments are called introns. A post-transcriptional regulatory process called 

alternative splicing can create genetic variation by using different splicing patterns for the 

same gene. Another most important attribute of the mRNA molecule is a tail of adenine 

molecules that is added after the transcription process. This tail can be added in different 

sites along the RNA, thus regulation of this process can create different mRNA molecules [36]. 

Last but not least, mRNA regulation can be carried out by short RNA molecules, with no more 

than two dozens of nucleotides,   that bind to a sequence in the mRNA molecule and 

negatively regulate it (i.e. by promoting the degradation of the mRNA molecule). These short 
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RNA molecules are called micro-RNAs (miRNAs). They are abundant in many human cell 

types, and probably target most mammalian genes [37-39].    

A summary of regulatory mechanisms is presented in Figure B1. TFs and miRNAs are similar in 

that both bind nucleotide sequences and have the ability to change the activity level of a 

specific gene. In both cases, multiple miRNAs and TFs may target the same genes that can be 

regulators themselves. Moreover, regulation patterns can change extremely upon different 

situations in which the cell needs to adapt.  Thus, elucidating the regulators that are active in 

a specific phenotype and the interactions among them is a challenging problem of great 

importance. 

 

 

Figure B1 A summary of gene regulation mechanisms. The transcription factors bind the DNA molecule, 

typically before the start of the gene coding sequence (marked by an arrow). Many different 

mechanisms can regulate genes post-transcriptionally by controlling the mRNA molecule. Source: [32]. 
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2.1.2 Measuring gene expression 

 

In biological research, it is often required to acquire a global molecular "snapshot" of the cell 

at different situations. This snapshot can be later used for a comparative analysis to derive 

the molecular changes between different cells. If technology would allow it, the best option 

for such a snapshot would provide a quantification of the concentration of all proteins and 

metabolic particles in the cell. However, techniques for recording these quantities en masse 

are still under development. Alternatively, it is possible to measure the concentration of all 

RNA molecules in the cell using DNA microarrays or next generation sequencing (NGS) 

technologies, and use these measurements as approximation for the current activity of all 

genes (and indirectly their protein products). 

 A DNA microarray is a small solid surface consisting of thousands to millions of microscopic 

spots of DNA oligonucleotides called probes. Each probe can hybridize (bind) to specific RNA 

fragments, depending on its nucleotide content. In a specific design, the oligonucleotides of 

each probe are chosen so that it can hybridize to a single gene’s mRNA. Extracting RNA 

material from the cell, fragmenting it and creating physical contact between this material and 

the surface of a microarray allows for the probes to hybridize to the RNA that was present in 

the cell at the time of extraction. The larger the number of fragments present for a gene, the 

higher the hybridization intensity.  Later on, the microarray is scanned, and the amount of 

RNA bound to each probe is measured. This allows for measuring the transcription levels of 

all genes within a living cell or tissue. A gene expression profile is the set of all levels 

associated with all genes.  

Recently, a new generation of DNA sequencing technologies called Next Generation 

Sequencing (NGS) or Deep Sequencing have being developed. These methods can read 

millions of short DNA or RNA chains. These chains can be compared to a known sequence of a 

reference genome. For a short review of these methods and additional references see [40]. 

Recently, these methods were applied also to RNA sequencing (in a technique called RNA-

Seq), allowing for high throughput and accurate measurement of gene expression profiles. 

Producing such profiles is becoming cheaper and more accurate, but the challenges of 

analyzing these profiles are the same as in microarrays. All methods and gene expression 

analysis algorithms covered throughout this work are also applicable to expression profiles 

obtained by next generation sequencing, after an appropriate normalization of the mRNA 

reads and their summarization in expression profiles. 
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2.1.3 Neurodegenerative disorders 

 

Neurodegenerative disorders are a class of diseases in which progressive loss of neurons 

occur. Excitotoxicity and apoptosis are two main causes of neuronal death [41] , and related 

pathways ,e.g. oxidative stress and mitochondria impairment, were shown to play a key role 

in multiple neurodegenerative brain disorders [42]. In particular, many apoptotic signals 

emerge from the mitochondria [43]. For most of these disorders early steps in the disease 

cascade are still unknown [44]. For example, the role of the vascular system in the 

progression of the neurodegenerative process is still unclear. The traditional view explains the 

vascular lesion as an epiphenomenon, while other views relate this phenomenon as a 

possible cause of neurodegeneration [45, 46].  Several studies by Zlokovic and colleagues 

suggested that vascular damage in Alzheimer's disease (AD) occurs initially and leads to 

neurodegenerative changes [47]. 

Another interesting aspect of neurodegenerative diseases is the relation between neuron loss 

and the immune system. Traditionally, presence of immune cells in the central nervous 

system (CNS) was thought to be detrimental for the organism [48], as shown in multiple 

sclerosis [49], stroke [50] and depression [51]. A large variety of neurodegenerative diseases, 

including AD and PD, were shown to be associated with chronic neuroinflammation [52, 53].   

However, other studies suggested a physiological role of immune cells such as monocytes and 

T cells in brain repair [54-56]. In addition, immune-deficient mice were shown to suffer from 

cognitive impairment [57]. The findings in this growing field have initiated several clinical 

trials with the aim of boosting immune responses in the CNS of individuals with spinal cord 

injury, multiple sclerosis and AD [58]. 

AD is the most common progressive neurodegenerative brain disorder in human. AD is a 

complex progressive condition that involves sequentially interacting pathological cascades, 

including the interaction of amyloid-β (Aβ) aggregation with plaque development, and the 

hyperphosphorylation and aggregation of tau protein with formation of tangles. Together 

with associated processes, such as inflammation and oxidative stress, these pathological 

cascades contribute to loss of synaptic integrity and progressive neurodegeneration [59]. 
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2.2 Computational background 
 

In this section we lay out the computational background of this work. Each sub-section deals 

with different type of computational problems. Within each sub-section we give references 

for additional information that is not covered here.  

 

2.2.1 Data representation 

 

Gene expression data can be represented as a real matrix         , where   is the number 

of genes in the data and   is the number of samples. Each row in the matrix contains the 

expression pattern of a specific gene, and each column represents the expression profile of a 

sample. Thus, columns can represent different experiments, conditions, cells, or individuals. 

Each entry      can represent ratios or absolute values. In our settings we will consider only 

the latter. The pattern of gene   is the     row in  .  The expression profile of a sample   is the 

    column of  . In many cases we are also given a mapping of each sample (i.e. each column 

in  ) to a label that represents a disease. That is, each sample   is given a label   

          , where   is the number of labels in the data. The simplest case is where there are 

two possible labels: case (diseased) and control (normal). 

  

2.2.2 Co-expression analysis 

 

Gene coexpression analysis aims to detect gene pairs that are coordinated in their expression 

profiles. Co-expression is usually measured by similarity (or distance) between the vectors 

that represent the gene profiles. The biological rationale for this analysis is that genes that 

have similar expression patterns are more likely to be part of the same biological process 

than randomly selected genes. This paradigm is called "guilt by association". Another premise 

is that coexpressed genes are more likely to be co-regulated. Based on these assumptions, 

gene coexpression analysis has been widely used for gene function prediction [60-63]. 

 The Pearson correlation coefficient is a co-expression measure that quantifies the linear 

correlation of two vectors that represent expression profiles. Let    denote the average of a 
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vector of real numbers  . The Pearson correlation   of two gene profiles   and   is defined 

as: 

   
         
 
           

          
  

              
  

   

 . 

This score is between    and   inclusive. In the extreme case where the values of   and   

satisfy         and     then    . If     then       If   and   are independent 

then    . Pearson correlation equalizes the expression patterns by subtracting the mean 

and dividing by the standard deviation. Hence, the correlation reflects relative trends 

(common deviations) and not absolute values. A drawback of the Pearson correlation 

coefficient is its sensitivity to outliers. Two tested genes might have high correlation simply 

because of single "bad" condition that posses extremely high expression values [60]. 

A general probabilistic framework for coexpression analysis was presented in [64, 65]. 

Although the original goal of the algorithm was to find gene clusters that are highly co-

expressed, the statistical framework is generic and can be used for co-expression analysis. In 

this framework co- expression values are assumed to follow a bimodal distribution, i.e. values 

can belong to one of two distributions. The first distribution is of gene pairs form different 

clusters, denoted as non-mates, whereas the second distribution is of gene pairs from the 

same clusters, denoted as mates. For co-expression analysis, we assume instead that mates 

are gene pairs with similar expression patterns, whereas non-mates are gene pairs with 

dissimilar expression patterns.  Denote the distribution density functions as         and 

          . Assume that the probability that a gene pair belongs to the 'mates' distribution is  

 , independently for each pair. We define the log-likelihood ratio of a correlation value r as: 

           
            

                  
 

When using the Pearson correlation coefficient, the assumption that    and    are normal 

distributions (with possibly different means and standard deviations) has theoretical and 

practical justifications [65]. Under this assumption, we can derive a LLR score: 
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The LLR score can take positive and negative values. A positive value will be observed when 

the correlation between two genes is more likely to present mates than non-mates. All model 

parameters can be estimated using expectation maximization (EM) algorithm [64]. 

 

2.2.3 Gene Clustering 

 

Given a gene similarity matrix, the goal of gene clustering is to assign genes into groups called 

clusters, such that genes that are assigned to the same cluster are similar, whereas genes 

assigned to different clusters are non-similar.  There are many formulations for the clustering 

problem, and most of them are NP-hard. Therefore, approximations and heuristics are used. 

For example, in correlation clustering [66], the input is a complete graph in which nodes 

represent genes and edges can be labeled as similar or dissimilar. Similarity edges are labeled 

'+' and dissimilarity edges are labeled '-'. The number of agreements in a clustering solution is 

defined as the number of '+' edges within clusters plus the number of '-' edges between 

different clusters. The number of disagreements is the number of '-' edges inside clusters plus 

the number of '+' edges between clusters. Maximizing  agreements (and the equivalent 

problem of minimizing disagreements) is NP-hard, but Bansal et al. [66] give a constant 

approximation algorithm for minimizing disagreements, and a PTAS for maximizing 

agreements.  

Clustering methods have been used in vast number of fields. One of the most basic and 

intuitive approaches to clustering are hierarchical methods [13, 67-69]. These methods 

construct a tree-like structure to explore the relations among entities. For example, average 

linkage hierarchical clustering builds the tree structure by iteratively selecting the pair of 

entities with maximum similarity and uniting them to form a new cluster. Then, the similarity 

of this cluster with every other entity (which can be a gene or another cluster) is defined as 

the average similarity of its components to the components of the other object. This 

approach can be easily applied to distances instead of similarities by selection of the pair of 

entities with the minimal distances, while the averaging process remains the same. 

In many applications it is not necessary to form a partition of the genes. Several methods 

were developed to find homogeneous gene sets that not necessarily cover all genes [64, 70]. 

These methods hold the potential to remove outlier genes, and therefore are more robust. 

Because genes can be a part of different biological processes or participate in multiple protein 
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complexes, several methods allow assigning genes to multiple clusters [71-76]. The solution 

provided by these methods is called fuzzy clustering.  

  

2.2.4 Differential expression analysis 

 

Gene expression studies of disease typically include a comparison of gene expression profiles 

among different classes. The simplest case is binary classification, where samples can take 

one of two possible labels, typically, diseased and healthy tissues.  Expression profile 

comparisons are usually done using a statistical test for significance of the difference in mean 

expression level of a single gene between the classes [77]. One of the simplest tests available 

is Student's t-test. It is a statistical hypothesis test where the null hypothesis is that the means 

of the gene expression values in the two classes are equal. It is based on the assumption that 

the expression values within each class follow a normal distribution with equal variance in 

both classes, and that the samples are independent from each other.  For a tested gene, we 

have two vectors of expression values   and  . The t-statistic is defined as: 

      

      
 
   

 
 
   

 

Where:                         
         

           
  

        
 

Here,    and    are the sizes of   and   respectively, and    
  and    

  are the estimated 

standard deviations of   and   respectively. Under the null hypothesis, this statistic follows 

the Student's t-distribution with     degrees of freedom, where           . Thus, 

statistical significance (p-value) can be calculated exactly.   

When performing many statistical tests the threshold for significance should be determined 

so that the number of false positives would remain low. The standard approach is called FDR 

(False Discovery Rate), and it ensures that the expected fraction of false positives, out of all 

accepted tests, would remain low [78]. All statistical tests performed in this thesis were set to 

0.05 FDR.  

Several methods were developed to calculate the significance of the differential expression 

for predefined sets of genes [3, 79-82].Usually these methods partition the genes within the 
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sets to differential and not differential, or weight the genes by their importance. In most 

cases, these methods identify cases of up-regulation, where the expression level in the cases 

is larger than in the control, and down-regulation, where the expression level in the cases is 

lower than in the control. For example, in GSEA (Gene Sets Enrichment Analysis) [3] all genes 

are ranked according to their differential expression measurement (where the first rank is the 

most up-regulated gene and the last rank is the most down-regulated gene). Given a set of 

genes, the genes tendency to appear concentrated in ranking is tested using the Kolmogorov-

Smirnov (KS) test. Thus, if the genes in the set are up-regulated then they would have high 

ranks, their rank distribution would tend to get lower rank-scores than the distribution of all 

other genes, and the KS p-value would be significant.  Lee et al. [2] used a very simple  

algorithm for selection of the most differentially expressed genes within pathways, where the 

goal is to find a subset of pathway genes such that if the selected gene patterns are averaged 

the resulting expression profile manifests the best differential expression score . The 

discriminative score of a pathway is defined as the t-test score of the expression pattern 

resulting from averaging the expression patterns of the selected genes. The selection of genes 

in the pathway is done in a greedy fashion, starting with the most differentially expressed 

gene and iteratively adding genes. In each iteration, addition of the gene with the next best t-

test score is considered, until no addition increases the discriminative score. As a result of the 

algorithm, pathways can be ranked according to their discriminative score. To determine the 

number of pathways to use, the top discriminative pathways are chosen using a cross-

validation process such that the number of selected pathways optimizes the area under the 

receiver operating characteristic (ROC score), of the classification quality. 

 

2.2.5 Differential co-expression analysis 

 

Complex supervised analysis of gene expression data has gone beyond identification of 

differential genes or pathways, to identify differential co-expression patterns. Differential co-

expression is a situation in which the level of co-expression of genes changes among different 

phenotypes. Figure B2 demonstrates a case in which co-expression in healthy individuals is 

markedly higher than in sick individuals.  Using the premise that co-expressed genes are more 

likely to be co-regulated, major changes in co-expression patterns may indicate changes in 

regulatory factors. 
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Figure B2 Example of differentially co-expressed gene pair. The x and y coordinates show the 

expression levels of two genes. Each dot shows the expression levels of the two genes in one 

individual. Left: healthy subjects. Right: sick subjects. The genes are highly correlated in healthy 

individuals and are un-correlated in sick patients. Source: [21]. 

 

 Several studies of cases patients and healthy controls identified differentially co-expressed 

transcription factor pairs known to be involved in cancer whereas their mean expression 

levels had hardly changed [18-20]. This demonstrates that differential co-expression provides 

a new type of discriminative information that is beyond what is merely obtained by looking at 

changes in expression intensities. This  motivation for performing differential co-expression 

analysis emerged from the need to find disease-specific alterations in regulatory systems [21]. 

Several studies found specific evidence for differential co-expression patterns that indicate 

changes in regulatory systems, or are characteristic of the cell state at specific phenotypes 

[18-20, 22-28] (see [21] for review). For example, Mentzen et al.[27] identified gene modules 

that are enriched with cell adhesion and growth factor related genes, and that manifest a 

significant decrease in co-expression in mammary gland tumors compared to wild type. 

 Several computational approaches were developed for performing differential co-expression 

analysis, including detection of differentially correlated gene modules or gene specific 

analysis [83-86]. Lai et al. [18] developed a statistical framework for analysis of a single gene 

of interest, and showed that genes associated with cancer may manifest differential co-

expression with many other genes. Gene Set Coexpression Analysis (GSCA) [87] was proposed 

to test for differential co-expression of known pathways. For each pathway, GSCA 

summarizes the change in co-expression over all gene pairs in the pathway and estimates 

significance using permutation tests. Below we describe in more detail two methods for 

finding differential co-expression on the gene set level. 
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2.2.5.1 CoXpress 

 

CoXpress  [85] finds coexpressed gene modules using one of the classes in the data, and then 

tests if these modules show a different co-expression pattern in  the other classes. First, 

hierarchical clustering is used to cluster the genes according to their similarity in the tested 

class. This is done using distance-based average linkage hierarchical clustering in which the 

distance between two genes is    , where    is the Pearson correlation between the 

expression profiles of two genes, restricted to the tested class. Gene clusters are determined 

by cutting the tree structure at a specific height. The next step assesses the significance of the 

clusters. Each cluster with more than three genes is tested for significance of differential 

coexpression. Significance is estimated by sampling random groups of the same size, in each 

class, and creating an empirical distribution of correlation within groups in each class. Then, a 

gene group is called differentially co-expressed if it manifests significantly high coexpression 

in the tested class, while its correlation is not significant in the other classes.  

CoXpress was extended to handle known gene sets (e.g. GO terms). It was successfully 

applied together with differential expression analysis, and complex discovery in protein-

protein interaction data, in a comparative study of mammary gland tumors development in 

mice [27] . While there were clusters that were up-correlated and up-regulated (i.e. gene sets 

that manifest higher expression values and higher co-expression in a specific class), some of 

the discovered gene modules were up-regulated in tumors, but had a decreased co-

expression pattern. This demonstrates the complex relations between differential expression 

and differential co-expression. 

 

2.2.5.2 DiffCoEx 

 

A recently proposed sophisticated method called DiffCoEx [86] looks for differentially co-

expressed gene modules. DiffCoEx has five steps. For simplicity we discuss here binary class 

data sets. First, the gene pair-wise correlation matrix is calculated for each class  : 

         
   

                    

Where the index   indicates that the correlation is calculated on samples in class   only. 

Second, the adjacency difference matrix is defined as: 
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In this matrix, high values of      indicate that the coexpression status of gene i and gene j 

changes significantly between the two conditions. This adjacency matrix is defined such that 

it only takes values between 0 and 1. Note that this score does not discriminate between up-

correlation and down-correlation when analyzing a specific class of interest, as it merely 

quantifies the level of absolute difference of correlation. The soft threshold parameter β is 

taken as a positive integer and is used to transform the correlation values so that the weight 

of large correlation differences is emphasized compared to lower, less meaningful, 

differences. In the DiffCoEx implementation β is set to 6. 

Third, derive a dissimilarity matrix from  : 

           
                

                            

 

The score      is between 0 and 1, and is called the topological overlap dissimilarity score [88]. 

Intuitively, a low value of      denotes high similarity of i and j in the differential coexpression 

network. Moreover, it means that gene i and gene j have significant correlation changes with 

the same large group of genes. This property of the dissimilarity score allows DiffCoEx to 

detect both gene modules that manifest a marked change in the correlation and module-to-

module changes.  

Fourth, the dissimilarity matrix is used as input to a hierarchical clustering algorithm, and 

modules are detected using a dynamic tree cut procedure [89]. This procedure starts by 

cutting the tree at the top (producing a small number of large clusters) and then explores the 

hierarchy structure. Through an adaptive process it splits large clusters that are likely to 

contain distinct sub-clusters, and merges close clusters that are neighbors in the hierarchy. 

This process terminates when the clusters become stable.  

Finally, the resulting gene modules are assessed for significance using permutation tests. Here 

the modules detected by DiffCoEx are compared to random gene sets of the same size 

similarly to the process described for CoXpress.  

In a separate post-processing optional step, the significance of the module-to-module 

relation can be compared to random gene set pairs of the same size. Since this process is not 

part of the module detection algorithm, DiffCoEx may produce gene modules even on 
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randomly created data sets. Moreover, DiffCoEx might produce both gene sets and gene set 

pairs that are not significantly differentially correlated.  

 

2.2.6 Large scale biological networks 

 

The holy grail of biology is to model the complex cellular systems to reveal fundamental 

biological processes. One step toward this goal is to obtain a system level overview. One such 

overview that is common today is to represent the set of molecular components as a 

biological network. In these networks, nodes represent cellular entities such as genes, 

proteins, or other molecules. Edges represent interactions between entities that are 

dependent or collectively carry out a biological function. For example, protein interaction 

networks describe physical relations between proteins. This information can help in modeling 

signaling pathways and in elucidating de novo protein complexes [90-92].  Another example is 

co-citation networks, in which an edge is added between two proteins that are mentioned 

together in a scientific text. In functional similarity networks, an edge is added between two 

proteins that are predicted to have the same function [93]. 

Today's models of biological networks are noisy and incomplete. They may contain many false 

positive edges due to inaccurate high-throughput methods and may miss many real edges 

due to partial knowledge. Nevertheless, computational methods were successfully applied on 

such networks and led to prediction of gene functions [94]. In this work we used such a tool 

called GENEMANIA [61, 95, 96]. This tool integrates many networks including protein 

interactions, co-localization, functional similarity, and predicted functional similarity. This tool 

is mainly applicable to small scale analysis in which we want to learn what is known about a 

single gene, or to summarize the known interactions among a small group of genes. 

 

2.2.7 Enrichment analysis 

 

Biological data available today can be helpful in determining the functionality of a particular 

gene. The data include metabolic and signaling pathways, biological processes, molecular 

function, protein complexes, and cellular localization. Moreover, we have today association of 

regulatory factors to their target genes. For example, several tools and databases provide 

predicted and validated miRNA targets [37, 97, 98]. Gene enrichment analysis uses biological 
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knowledge to assign biological meaning to some group of genes. In this process we ask if a 

group of genes is likely to be related to some biological process or is it under common 

regulation. Usually, we start with a group of genes that were detected by differential 

expression analysis, or with gene sets that were coexpressed in some experiment. In this 

section we shall discuss two enrichment analysis methods. The first is the hypergeometric 

test that is very general, and can be used as enrichment score in every application. The 

second is the FAME algorithm that was developed specifically for miRNA enrichment analysis. 

 

2.2.7.1 The hypergeometric test 

 

This is the most broadly used enrichment analysis. Formally, given an underlying set   of all 

genes, a gene set   and an a priori defined group of genes   we test the significance of the 

intersection of   and  .   can denote a group of genes in a biological process, a pathway, a 

protein complex, or the targets of some regulatory factor. The null hypothesis of the test is 

that the genes in   are randomly selected from the group  . Thus under the null hypothesis 

the size of the intersection between   and   follows a hypergeometric distribution, where 

    is the number of sampling trials,     is the number of successes and     is the population 

size. The probability to for        , where                 is: 

        
 
   
 
  

        
     

 

 
   
   

 
 

Thus, the p-value is: 

       

             

       

 

Although this test is straightforward and intuitive, when testing different defined groups of 

genes    with the same group  , it does not take into account dependencies among different 

tested sets. In addition, if N gene sets are analyzed vis-à-vis M predefined gene groups, the 

number of statistical tests amounts to N*M. Thus, multiple test correction (e.g. FDR) is 

mandatory in order to control the number of false positives.   
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2.2.7.2 The FAME algorithm for miRNA enrichment analysis 

 

FAME (Functional Assignment of MicroRNAs via Enrichment) [99] is a permutation-based 

statistical method that tests for over- and under- representation of miRNA targets in a set of 

target genes. Unlike standard enrichment analysis tools, this method addresses specific 

characteristics of miRNA regulation process during the analysis, and therefore has superior 

statistical power. In addition, unlike most enrichment analysis procedures, FAME integrates 

the analysis of many gene groups (i.e. the group of targets of every miRNA) and corrects for 

the multiple testing. FAME uses both computationally predicted and biologically validated 

gene targets as the set of genes targeted by each miRNA. For robustness, only conserved 

miRNA target sites are taken into account when testing for over representation.  

FAME accounts for the predicted strength of each miRNA-target pair, and for the number of 

miRNAs regulating each gene. First a weighted bipartite graph             is 

constructed in which miRNAs families (constituting the set M) are connected to their 

predicted target genes (which constitute the set T). For every hit of the miRNA sequence in 

the 3'UTR of a gene, an edge is added to E, weighted by the strength of the prediction (an 

integer value, available in TargetScan [37]). Thus, parallel edges are allowed. Following the 

construction of the graph,        random graphs are created using degree preserving 

permutations: For each possible edge weight  , a long sequence of independent edge 

shuffling steps is performed, by replacing a pair of edges             of weight   by the pair 

            of the same weight. This step preserves the number of edges with weight    of 

each node in the graph. The number of random edge shuffles for each random graph is     . 

The randomized graphs are used to evaluate the significance of the overlap between a miRNA 

   and a set of genes   . For each such pair let          be the sum of weights between    

and    in  . This score is compared to the same scores induced by    and    in the random 

graphs and an empirical p-value is calculated. Finally, all p-values are corrected using the FDR 

procedure.    
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2.2.8 Complexity theory background 

 

In this section we provide a background on computational complexity theory and focus on 

hardness of approximation. We start with some basic definitions of optimization problems 

and then discuss gap problems and APX-hard problems. For more details on basic concepts in 

complexity theory see [100, 101].  For more information on hardness of approximation see 

[102]. 

The main effort in complexity theory is to classify problems according to the amount of 

resources they require. The central resource is the amount of time needed, as a function of 

the length of the input. Many classical problems in computation theory are formulated as 

decision problems. Given an alphabet  , a set      is called a language over  . A string   in 

   is called a positive input if     and a negative input if    . A polynomial time mapping 

reduction, also denoted as Karp reduction,   from a decision problem   to a decision 

problem  , is a polynomial time procedure that maps each positive input of   to a positive 

input of  , and each negative input of   to a negative input of  . We mark       to denote 

the case where a Karp reduction from   to   exists.    

The most fundamental time complexity classification is into problems that can be solved 

efficiently and those that not. The class P represents the set of problems that can be solved in 

polynomial time, and is considered roughly to be the set of efficiently solvable problems. 

Proving that a problem cannot be solved efficiently is occasionally achievable, but in most 

cases it is not known how to prove that. Many problems are not known to be in P, nor proven 

to be outside P, and are part of the NP class, the class of all problems for which there is a 

polynomial time verifier. The most fundamental open question in computer science is 

whether      . While this problem is still open, we are able to classify problems as NP-

hard. A computational problem L is NP-hard is every other problem in NP is reducible to L by a 

polynomial time procedure.  

  

2.2.8.1 Optimization and gap problems 

 

In many cases we are interested in optimization problems. Here, given an input   for 

problem  ,   has a set of possible (feasible) solutions, and each solution   is scored 

according to an objective function        . An optimization algorithm should return a best 
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solution. For example, we are given as input a graph and the optimization problem is to find 

an independent set (IS) – a group of nodes that induces an edge-free graph – of maximum 

size. For simplicity, from now on we discuss only maximization problems, and assume that 

feasible solutions have positive values. 

For an optimization problem   and an input  , denote        as the value of an optimal 

solution for an input  .    is called an algorithm for   if for every input   it produces a 

feasible solution   to   (not necessarily one with an optimal value) .    is called a constant 

factor approximation algorithm if its solution deviates from the optimal solution by at most a 

factor of   for all inputs. For maximization problem  , the outcome of    is a solution   for   

satisfying:  

        

      
   

Note that here   is between 0 and 1. For a minimization problem we can replace the left hand 

side by its inverse.  The APX class of optimization problems is the set of problems for which 

there exists a polynomial time constant factor approximation algorithm [103, 104].The class 

PTAS (Polynomial Time Approximation Scheme) is the set of optimization problems for which 

for every        there is a polynomial time algorithm that guarantees an approximation 

factor of    . The degree of the polynomial is dependent on  , and can even be an 

exponential function of 
 

   
. By definition, every problem that has a PTAS is also in APX. 

Another type of decision problems that are closely related to optimization problems are gap 

problems. For maximization problem  , a function      that quantifies the size of the input 

 ,  and real values         define the gap problem            that assigns a possible 

input   to one of the three options: 

 If                then   is a positive input. 

 If                then   is a negative input. 

 Else (                         is called a "don't-care" input. 

An algorithm for this problem must accept all positive inputs, reject all negative inputs and 

may either accept or reject any other input. For example, for the maximum IS      is the 

number of nodes in the graph and        . 

Lemma: Given a polynomial time approximation algorithm    for A that guarantees an 

approximation factor  
 

 
, it can be used to solve the decision problem             
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Proof:   We use the following algorithm: Fix the size function g(x). Run    on   to get a 

feasible solution  . If                 then declare   as a negative input. Otherwise 

declare   as positive.  

If   is a positive instance then                 and the solution   obtained by    

satisfies            
 

 
               and the algorithms accepts. If   is a negative 

instance then               . Since                   the algorithm rejects.    

Corollary:  If            is NP-hard then so is the  
 

 
  approximation of  .  

A gap-preserving reduction   is a polynomial time Karp reduction from a gap problem 

           to another gap problem            such that for every positive input   

for           ,      is a positive input to           , and for every negative input   

for           ,      is a negative input to           . The don't-care inputs can be 

mapped to good arbitrarily. We denote the reduction by   . 

 

2.2.8.2 Hardness of approximation 

 

Problems that cannot be approximated within a constant factor unless      are problems 

whose approximation within any constant factor   is NP-hard. In most practical cases only 

heuristics can be used to solve them. Clearly, such problems are APX-hard. 

 As a result of the corollary in the previous section, a way to prove that a problem   has no 

constant factor approximation algorithm (unless P=NP) is to show that for every constant   

there exist an NP-hard gap problem           , such that  
 

 
  .  A problem shown to be 

NP-hard to approximate within any constant factor problem is the maximum clique problem 

[105, 106]. In this problem we are given an un-weighted, undirected graph   and the 

optimization objective is to find a maximum cardinality clique.  Thus, NP-hardness of 

approximation of a maximization problem   can be proved if for every constant factor   there 

exists a gap-preserving reduction: 

                                   

Where  
 

 
   , and     .  
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We note that a strong non-approximability result was later proved by Hastad for the 

maximum clique problem, under stronger complexity assumptions [107].   
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3. A novel measure of class specific 

differential correlation 
 

Given two genes and two classes, a naïve approach to measure the differential correlation 

between the genes would be to calculate the absolute difference in correlation between the 

classes. For multi-class data sets, different pairs of classes may manifest different 

distributions in their differential correlation and normalization is required. We assume that 

gene similarities within each class are distributed normally, such that each class has different 

mean and standard deviation. We estimate the distribution parameters of each class directly 

from the gene expression data. When analyzing two specific classes, we calculate the 

differential correlation scores of all gene pairs and standardize them. We use the class 

distributions to estimate the expected distribution of differences in co-expression, and score 

a pair by subtracting from its co-expression difference the mean difference and dividing by 

the standard deviation. The result is called the T-score of the pair. In multi-class data sets, this 

class pair-wise analysis produces several T-scores for the same pair of genes. Because we are 

interested in T-scores that quantify the differential correlation with respect to a specific class, 

we calculate the T-score of the specific class of interest with each of the other classes and 

integrate the different scores by taking the minimum (in absolute value) if the sign of all T-

scores are consistent, and assign a zero score otherwise. 

 

3.1 A normalized score of differential correlation 
 

For genes u,v and a class D of profiles, define   
     to be the Pearson correlation between u 

and v in that class. Given two classes    and    and a pair of genes u and v we assume that 

the correlations within each class are normally distributed with class-specific parameters: 
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We also assume that the correlations are independent. Hence the expected distribution of 

the difference satisfies: 

   

       

                  
    

   

All class-specific parameters (           ) are directly evaluated from the input data. We can 

then calculate the normalized score, which we call the T-score (or the pairwise differential 

correlation score) of u and v: 

      

     
    

       

             

   
    

 

 

In multi-class data sets, for two genes u and v, multiple T-scores are calculated. When 

analyzing the differential correlation with respect to a specific class   , we perform a "one vs. 

all" analysis. For each pair of genes u and v we check if all T-scores, calculated between    

and all other classes, have the same sign (i.e.  for the class    and each other class j, we check 

the sign of       

   ). If the sign is consistent for all classes     then we define the aggregated 

T-score as: 

           
             

                                    

              

                                   
  

Otherwise we set            .  Under this definition, positive aggregated scores mark the 

cases in which the correlation under    is higher than under all other classes. We call this 

situation 'up-correlation'. Negative aggregated scores indicate lower correlation of the pair 

under   . We call this situation 'down-correlation'. Zero score is obtained when the 

differential correlation of u and v is not consistent when    is compared to the other classes. 

 

3.2 Experimental tests  
 

In order to test if differential correlation is a wide phenomenon in real biological data we 

analyzed five categorical disease gene expression data sets (Table 1). For every data set we 

performed random permutations of the sample labels and calculated the integrated T-scores. 

If differential correlation is prevalent we expect that the real data sets will have higher T-
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scores (in absolute values) than the randomized data sets. We compared the distributions of 

the real scores and the random scores on each data set. Figure 1a shows the T-score 

distributions for each data set. In the two-class data sets (AD, NDD and Lung cancer) there is a 

clear separation between the real and random distributions: both distributions are centered 

on zero T-score, whereas the variance in the real data sets is larger. In the multiclass case 

(IBD, SLE), because we assign non-zero T-scores only to the cases in which the sign of the T-

score is consistent, at least 40% of the scores are zero both for real and random data sets. 

However, when we focus on the upper tail of the distributions (T-score > 0.5) we observe that 

the distribution of the real data set has a heavier upper tail than the distribution of the 

permuted data sets. Figure 1b shows a comparison of the standard deviations of each 

distribution in each data set. Since there is no large difference in the mean of the 

distributions (the difference was below 0.05 in all data sets) and there was a large difference 

in the variance, we conclude that high (absolute) T-scores are more likely on real data sets 

than on the permuted data sets.  
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GEO ID 

(ref)  
samples  

Class of 

interest  
classes  

Data set 

name  
Data set description  

GSE15222 [38]  363  
Alzheimer’s 

disease (AD) 
 2  AD  

Brain samples of patients with 

Alzheimer’s disease and controls   

GSE26927  

[n/a] 
118  

Neuro-

degenerative 

disorder (NDD) 

2  NDD  

Brain samples from 6 different 

neurodegenerative diseases and 

control   

GSE3365 [39]  128  Crohn’s disease  3  IBD  

Blood samples from healthy controls 

and Bowel diseases: Crohn, ulcerative 

colitis.  

GSE4115 [40]  187  Cancer  2  
Lung 

cancer  
Healthy controls vs. lung cancer   

GSE22098 [98]  270  

Systemic lupus 

erythematosus  

(SLE) 

6  SLE  
Inflammatory and infectious diseases 

and healthy individuals    

 

Table 1  The data sets used in this study. Gene expression profiles from five studies were 
obtained from GEO[108] using the series matrix of each data set. To reduce noise and focus 
on genes that vary across the study, in each data set we used the 3000 probes showing 
maximum variation and then merged probes by the probe to Entrez ID mapping. 

 

 

 



39 
 

  

 

 

 

Figure 1 T-score distributions in real and randomized data sets. a) The distributions of the T-scores in the real 
and randomized data sets. The variance of the distributions is larger for the real T-scores, whereas the 
average might not change. Since in the IBD and SLE data sets most T-scores are around zero, we also show 
the upper tails of the distributions. b) The standard deviation of the T-scores in the real and randomized data 
sets. The standard deviation is larger in all tested data sets, indicating that high T-scores (in absolute values) 
are more probable in the real data sets. Randomized data sets were generated by shuffling sample labels. 
Results are the average of 50 randomized datasets. 
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4. The DICER Algorithm 
 

4.1 Algorithm overview 
 

We developed a novel algorithm, called DICER (Differential Correlation in Experssion for meta 

module Recovery) for extracting gene modules that manifest differential correlation, with 

respect to a specific phenotype. Figure 2 shows an overview of the algorithm. Generally, our 

algorithm has four phases: (1) normalizing the T-scores, (2) finding class-specific up or down 

correlated gene pairs and clusters, (3) consistent similarity analysis, and (4) integration to find 

meta-modules. Our method detects two different types of gene sets: differentially correlated 

gene sets (clusters) and meta-modules. A class-specific differentially correlated gene cluster is 

a group of genes that are significantly more correlated (or significantly less correlated) in the 

tested class. We denote up-correlated gene cluster as UCC and down-correlated gene cluster 

as DCC. A meta-module is a pair of gene modules, in which each module is a set of genes that 

are correlated across all phenotypes, whereas two genes that belong to different modules are 

differentially correlated. We denote an up-correlated meta-module as UCMM and a down-

correlated meta-module as DCMM.  

Figure 3 shows two examples of gene sets detected by DICER in the Alzheimer's disease (AD) 

and Lung cancer data sets (ref). Figure 3a shows an up-correlated gene cluster of 242 genes 

that was discovered in the AD data set. The average correlation of these genes in the controls 

class is 0.437 whereas the average correlation in the AD class is 0.715. This cluster is 

significantly enriched with many functional terms (p< 0.05 after FDR correction). It contains 

80 genes related to cerebellum activity (p=3.7E-10), 13 Spliceosome genes (p=1.29E-6) and 

genes that belong to protein complexes related to miRNA processing: large Drosha complex 

(6 genes, p=7.53E-6) and DGCR8 multiprotein complex (5 genes, p=3.1E-5). Hence, AD 

patients show higher levels of correlation of these processes. Figure 3b gives an example of 

down-correlated meta-module in the Lung cancer data set. This meta-module contains two 

modules of sizes 39 and 77, the average correlation between the modules is -0.43 in the 

controls class and -0.86 in the Lung cancer class. The average correlation within the modules 

is above 0.75 in the two classes. The large module is significantly enriched with C complex 

Spliceosome (4 genes p=8.4E-3) and protein complexes related to miRNA processing: large 

Drosha complex (3 genes, p=4.4E-3) and DGCR8 multiprotein complex (3 genes, p=9.7E-4). 
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Unlike the AD case, the miRNA related complexes in this data are correlated in all classes. 

Most genes in the small module are poorly functionally annotated as most genes (>95%) are 

not assigned to GO biological processes and Kegg pathways. Thus, the meta-module 

presented in Figure 3b can provide new candidate genes that are related to lung cancer 

phenotype.   Figure 3c shows the expression values of two genes of the meta-module, ALPK1 

and RAD23B. They are negatively correlated in the lung cancer class samples (r=-0.76) but are 

un-correlated in the controls (r=-0.12). 

 

 

Figure 2 Overview of the class specific differential correlation analysis. The input is a set of 
expression profiles from different classes of samples. T-scores are computed for the class of 
interest and are normalized using the T-scores calculated on random data sets, created by 
shuffling the sample labels. The normalized scores are then used to find gene clusters that 
manifest differential correlation in the tested class compared to all other classes (up/down-
correlated modules; blue edges indicate class-specific differential co-expression). A second 
similarity analysis is performed in order to detect gene pairs that are co-expressed in all 
classes. In each class an EM algorithm is used to divide the correlations to high ('denoted as 
'mates', red distribution) and low (denoted as 'non-mates', green distribution) and consistent 
similarities are defined as cases in which gene pairs are mates in all classes. The normalized T-
scores and the consistent correlations are used to find pairs of gene modules in which each 
module is a group of consistently correlated genes (red edges), whereas the correlation 
between the modules is differential (blue edges), these module pairs are denoted as meta-
modules.   
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Figure 3  Examples of differential correlation patterns. a) An up-correlated 242-gene cluster 
discovered in the AD data set. The correlation matrices of the cluster genes in the AD and 
control classes are shown. The average correlation is 0.72 and 0.44 in the AD and the control 
classes, respectively. b) A down-correlated meta-module discovered in the lung cancer data. It 
contains two gene modules of sizes 39 and 77. The correlation matrices of the meta-module 
genes are shown for the lung cancer and the control classes.  The correlation between the two 
modules is -0.43 in the control class, whereas the correlation in the lung cancer class drops to -
0.86. Each module is a group of genes that are highly correlated in both classes: the average 
correlation within each module is > 0.75.  c) The correlation between genes RAD23B and 
ALPK1. The two genes are marked by arrows in b. Each dot corresponds to a patient and the 
axes mark the logarithm of expression values of the two genes in that patient. The genes are 
negatively correlated in the lung cancer class (r=-0.76) but are un-correlated in the controls (r=-
0.12). 
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In the first analysis of DICER, we calculate the T-scores with respect to a specific class of 

interest. We then create synthetic data sets by randomly shuffling the patients' labels, and 

compare the original T-scores to the ones calculated on the randomized data sets. By 

calculating the log likelihood ratios (LLR) between the two samples, positive scores are 

assigned to gene pairs whose T-score is  not likely to occur by chance. We use the LLR scores 

as edge weights between genes to construct two graphs: up correlations graph (denoted 

as    ) and down correlations graph (denoted as      ). We then use hierarchical clustering 

[67, 68] on both graphs to find UCCs and DCCs (Figure 2, top right). Clusters are determined 

by going up the hierarchy as long as the sum of LLR scores within a group is positive. This 

statistical model for scoring a cluster is similar to that of [64] , and ensures that the accepted 

gene clusters are likely to represent a significant phenomenon. Only clusters that contain at 

least 15 genes are accepted.  

In addition, we perform statistical analysis to detect gene pairs that are consistently 

correlated in all classes. Our analysis follows the model presented in [64]. The goal is to find 

gene pairs that are co-expressed in all classes.  For each class we compute the gene 

correlations and divide them, using an Expectation Maximization (EM) algorithm, into pairs 

showing high correlation ('mates') and low correlation ('non-mates'). We then calculate, for 

each correlation score, the LLR score between the mates probability and the non-mates 

probability. Gene pairs that are co-expressed in all classes will induce a positive LLR score in 

each class; therefore, we assign for each gene pair the minimal LLR score. We denote the 

resulting graph as the Consistent Correlation graph (CG).  

The final step of the algorithm finds meta-modules (Figure 2, bottom right). The algorithm 

receives as input two weighted graphs: the CG graph and a class-specific differential 

correlation (DC) graph (i.e. either     or      ). A simple greedy procedure iteratively finds a 

meta-module and removes its genes from the graphs. The procedure takes an edge with high 

DC weight and examines the local neighborhoods of its endpoints. We remove genes that do 

not manifest high scores in CG in their own neighborhood and genes that do not manifest 

high scores with the other neighborhood in the DC graph. Figure 4a shows a simple example 

of a module pair discovery. We improve the initial solution by merging meta-modules (Figure 

4b) and adding single genes to a meta-module (Figure 4c). Figure 4d shows the final meta-

module. 
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Figure 4  Overview of the steps of the meta-module discovery algorithm. The seeds that will 
form the basis for modules of a meta-module are encircled with dashed lines in a-c. Blue 
edges correspond to differentially correlated gene pairs. Red edges correspond to 
consistently correlated gene pairs. a) The construction starts from the edge between the 
yellow nodes. A seed is formed around each of them, containing a set of consistently 
correlated genes, whereas edges between the two seeds correspond to differentially 
correlated genes. Genes that are consistently correlated with one of the seeds but are not 
differentially correlated with the other are excluded. Genes that are differentially correlated 
with one seed but are not consistently correlated with the other are removed as well. b)  
Merging two meta-modules. The resulting meta-module has high differential correlation 
between the two sides and high consistent correlation within each side. c) Addition of a single 
gene to a meta-module. The gene colored green is added to seed2 because is differentially 
correlated with seed1 and consistently correlated with seed2. d) The final meta-module. The 
two sub-groups of the meta-module are denoted as modules.  

 

We discovered that in many cases our algorithm produces many meta-modules, therefore we 

scored each meta-module by the sum of LLR scores between the modules and use the top ten 

UCMMs and top ten DCMMs as output. As we shall show, the large number of modules that 

we produce compared to other method does not come at the expense of their quality.  

 

4.2 The probabilistic framework  
 

We adopted the framework of [64]. In the following sections we will use this framework to 

compare the            on real and random data sets, and to compare high and low 

correlation values within each class. Therefore, we first describe here this framework in a 

generic manner. We assume that scores belong to one of two distributions with density 
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functions    and   , where the probability of belonging to the first distribution is   , and 

define the log-likelihood ratio score of a score s as: 

           
        

          
 

In our analyses we assume that    and    are normal distributions with different means       

and standard deviations      .     is the prior probability that a score is sampled from   . 

Hence we transform a score   into a LLR score: 

               
               

                 
    

    
        

  
       

 

   
  

       
 

   
  

 

Define         to be a weighted undirected graph, in which the nodes correspond to 

genes and edge weights correspond to LLR scores. Given a set of edge scores   we would like 

to test the following two hypotheses: 

  
                                          

  
                                          

 

Let     
      be the posterior probability of   

  for      . Under a simplifying assumption 

that the set of random variables within   are independent, define: 

    
         

       
   

   
             

Thus:                                               
    

     

    
     

                

For a set of scores   we accept   
  if and only if     

           
     . Thus we accept   

   

if and only if                . 
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4.3 Class-specific differential correlation analysis 
 

We first perform an analysis of a specific class     against all other classes by calculating the  

     score for each gene pair. We denote the resulting distribution as     
    . Next, we create 

random data sets by permuting class labels and calculate the      scores. The process is 

repeated 20 times and we denote the resulting distribution     
      .  We then transform the 

    
     scores to LLR scores as described above using the distributions of     

     and     
      . 

An important parameter in this process is the prior   assigned for     
    . By decreasing this 

parameter we can control the number of T-scores that receive a positive score. Setting low 

prior means that less T-scores will get a positive LLR score. Because this parameter depends 

on the tested data set we set it to: 

       
            

              
        

We note that if     
     and     

        are equal then by using this prior almost all LLR scores 

would be negative. 

Next, we define two weighted, undirected graphs in which we assign a node for each gene 

and an edge between each gene pair. The first graph is denoted      and its edge weights are 

defined as: 

           
         

         
                                                    

       
         

                                                        
  

The rationale here is that only gene pairs that were up-correlated in    will be assigned 

positive scores. Similarly, we define the second graph, denoted as      : 

             
         

         
                                                    

       
         

                                                        
  

We then use average linkage hierarchical clustering [67, 68] to find sub-graphs in       and 

    . Going from the leaves up, we merge two gene sets as long as the sum of edge scores 

between the merged sets is positive. Sets of size > 15 are defined as clusters. The rationale is 

that these sets correspond to gene modules that are differentially correlated, as they are 

more likely to represent a real correlation change than expected by chance.   
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4.4 The consistent correlation graph 
 

In this analysis we calculate all gene-pair correlations in every class. We then divide the 

correlation scores to high correlations (denoted as 'mates') and low correlations (denoted as 

'non-mates') within each class. We assume that the mates and non-mates distributions are 

normal, and use expectation maximization (EM) algorithm to represent the data as a mixture 

of two Gaussians [109].  The EM evaluates their parameters and the prior probability that two 

randomly chosen elements are mates. Because the distributions may vary among different 

classes, we perform the EM step in each class separately. We use these parameters to 

calculate the LLR scores as in the previous section. Gene pairs that are co-expressed in all 

classes will induce a positive LLR score in each class; therefore, to ensure that only gene pairs 

that are consistently co-expressed in all classes would be assigned with a positive score, we 

assign for each gene pair the minimal LLR. We use these scores as weights of edges in the 

undirected graph of consistent correlations, denoted as   .   

 

4.5 Finding meta-modules 
 

4.5.1 Hardness of approximation 

 

We show here the hardness of the problem of finding a maximal meta-module.  

The formal statement of the problem is as follows: we are given two edge-weighted graphs 

G=(V,E) and G'=(V,E') with the same vertex set V. A meta-module is two disjoint vertex sets S, 

T in V such that the sum of edge weights of S and T in G is positive and the sum of weights 

between S and T is positive in G'. The goal is to find a meta-module of maximum cardinality 

     . 

Theorem: Finding a maximum size meta-module is NP-hard to approximate within any 

constant factor. 

Proof: We show that the problem is NP-hard to approximate within a constant factor via a 

gap preserving reduction from the max-clique problem . Given the input graph G'' = (V'',E'') 

with n nodes for the maximum clique problem, we define the node set for G and G' as 

          where    and    are copies of V''. For every edge (   ) in E'', let       and 

       be the copies of   and   respectively.  In G we set            and           . In 



48 
 

G' we set           ,           ,           , and           . All other edges 

are scored -   .  The reduction is clearly polynomial. 

Note first that any module in a meta-module cannot contain a negative edge, since the sum 

of the weights in such a module would be negative. Hence, every module must correspond to 

a clique in G''. If there is a clique C with at least b nodes in G'', then it will induce a meta-

module with at least 2b nodes in G and G', by taking the two copies of C in G and G' as the 

modules. If a meta-module with at least 2k nodes exists in G and G', then one of its modules 

has at least k nodes, and such a module corresponds to a clique in G''. In other words, if there 

is no clique of size a in G'' then there is no meta-module of size 2a in G and G'. Thus, we have 

shown a gap preserving reduction: 

                                          

Since the max-clique problem is NP-hard to approximate within a constant factor [105-107], 

we conclude that the maximal meta-module detection is also NP-hard to approximate within 

a constant factor.  

 

4.5.2 Heuristic   

 

In the final analysis we use the graphs    and either       or     to find meta modules.  We 

describe the analysis using    and    ; the analysis of    and       is analogous. We define 

two disjoint gene sets   and   as         if the sum of edge weights between   and    in 

    is positive. Using the probabilistic framework, two modules that are friends are more 

likely to represent a real correlation change than expected by chance. We define an up-

correlated meta-module    as a pair of non-overlapping gene modules         that satisfy: 

(1) each module    is a sub-graph of    with a positive sum of edge weights, and (2)    and 

   are        .  

We now present our algorithm for meta-module detection. We developed a three-phase 

heuristic for meta-modules detection: (1) initial module pairs detection, (2) a greedy merge of 

pairs, and (3) addition of single genes to pairs. In the next section we shall describe each 

phase of the algorithm. 
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Initial module-pairs detection 

 

We use a simple greedy local heuristic to find pairs of initial modules, which we call seeds. 

Using the definition of    , we assume that only a small fraction of the edges would be 

assigned with positive scores. Let    be the set of positive edges in    , and let     

       be the un-weighted graph induced by   .  We iteratively select the edge       in 

   such that u and v have together a maximal number of neighbors. Let    be the set of 

nodes that are neighbors of   and not neighbors of  , and let    be the set of nodes that are 

neighbors of   and not neighbors of  . We repeatedly remove nodes from     whose sum of 

edge weights with    in    is non positive, or have a non positive sum of edge weights 

       in    .  

To determine the order of node removal we score each node by the sum of scores in    with 

its set plus the sum of scores with the other set in    . When inspecting which node to 

remove we consider three possible candidates: (1) the node that has the minimal score, (2) 

the node that has the minimal score with the other set in     , and (3) the set that has the 

minimal score with its own set in   . If all three candidates have positive scores we stop and 

accept the meta-module. We found out that in many cases the first candidate manifests 

negative scores both within its group (in CG) and with the other group (in    ). Therefore, in 

these cases we remove this gene. However we observed cases in which node (1) manifests 

positive score within its group (in CG) or with the other group (in    ), while having a 

negative score. In these cases we use node (1) as a "guide" for the removal stage: if it has a 

negative score in     (with the other set) then the edges between the two seeds in     are 

not heavy enough, and we remove node (2). Otherwise we remove node (3). Once a pair is 

detected, its genes are removed and the process repeats. 

 

Greedy merge of module pairs 

 

In the second phase we improve the solution by merging meta-modules. Let 

              be the current set of meta-modules discovered in phase 1, where each 

meta-module    is a pair of two non-overlapping gene modules. A pair of meta-modules 

       
    

   and         
    

    can be merged if one of the merging options 

   
    

    
    

   or    
    

    
    

   leads to a gain in the scores both within the 
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modules and between them. We iteratively merge the best gain meta-module pair until the 

gain is negative. 

 

Adding single genes to meta-modules     

 

In the third phase we improve the solution by adding single genes that do not belong to any 

module to meta-modules. A gene   can be added to a meta-module        
    

   if one 

of the merging options    
      

   or    
    

     leads to a gain in the scores within the 

modules and between them. We iteratively look for the best gene and meta-module gain, 

and add the gene to the appropriate module. We stop this process when the best gain is 

negative. 
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5. Experimental results 
 

5.1 Comparison with other differential correlation gene module 

discovery methods 
 

Extant differential correlation-based methods look for gene modules with altered correlation 

patterns among different classes. For example, the CoXpress method [85]  uses hierarchical 

clustering to find gene modules, and tests their significance using random sampling. A recent 

method called DiffCoEx [86]  transforms the correlation differences to a distance matrix in 

which two genes are close if both have significant correlation changes with the same group of 

genes. Unlike DICER,   DiffCoEx does not output module pairs, and even if two modules are 

differentially correlated, the correlation within each module can be differential as well. 

Another difference is that the DICER algorithm uses statistical normalization of the DC scores 

to ensure that the accepted modules are significant.  

We compared DICER with DiffCoEx and CoXpress on the five data sets described in Table 1. In 

all cases CoXpress did not find significant clusters that contain at least 15 genes. DiffCoEx and 

DICER detected modules in all data sets. On average DiffCoEx solution covers 29% of the 

genes (in 4.2 modules on average) whereas our approach covers 34% of the genes (in 23 

modules on average, see Supplementary Table 1 for module statistics). DICER detected 

differentially correlated gene clusters only in the AD and SLE data sets.  

We first compared DICER and DiffCoEx in terms of the significance of differential correlation 

change. For every method and each pair of modules we created 200 random module pairs of 

the same sizes, calculated the average absolute change of correlation between the modules, 

and measured the fold change between the real module pair and the average of the random 

module pairs. In addition, for each DiffCoEx module we created 200 random modules of the 

same size, calculated the average absolute change in correlation within each module, and 

measured the fold change between the real module and the average of the random modules. 

Because many of DiffCoEx modules and module pairs did not manifest a fold change above 1, 

we compared the average fold-change of all DICER meta-modules to those of the top two 

DiffCoEx modules. We also included in the comparison out of all possible DiffCoEx module 

pairs, the ones with fold change above 1.1. The results are shown in Figure 5a. In five data 

sets the fold change between DiffCoEx modules was higher than within modules, and the fold 
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change of DICER meta-modules was higher than both. In addition, the fold change within 

DiffCoEx modules is close or below one. Thus, in most cases DiffCoEx can be used to discover 

differentially co-expressed module pairs. We also inspected the within- and between- module 

absolute correlation change. Results on the AD and Lung cancer data sets are shown in Figure 

5b. Both methods achieve a marked separation between the within-module and between-

modules correlation changes. The between-module correlation change distribution of DICER 

is significantly shifted towards higher absolute correlation  changes  compared to the 

between-module distribution of DiffCoEx (Kolmogorov-Smirnov p < 1E-20). 
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a 

 

 
Figure 5 The distribution of within and between-module scores for DICER and DiffCoEx. a) The 
discovered differential co-expression pattern compared to patterns derived from random gene sets. 
For each discovered module and module pair we created 200 random gene sets of the same size and 
calculated their absolute differential co-expression. We then calculated the fold change between the 
real modules and the average of the random gene sets. Similarly, for every module pair we generated 
200 random module pairs of the same size and calculated the fold change of absolute correlation 
change between the real module-pairs and the average of the random module-pairs. The green bars 
show the average of the top two DiffCoEx modules in each dataset. For testing DiffCoEx module pairs 
(purple bars) we took into account only module pairs with fold change above 1.1. For DICER (blue 
bars), the top ten up-correlated and the top ten down-correlated module pairs were taken into 
account. b) The distribution of within- and between-module absolute correlation for DICER and 
DiffCoEx, in the AD and lung cancer data sets.  
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We also compared the functional enrichment of DICER and DiffCoEx modules, by performing 

KEGG pathways enrichment analysis (FDR threshold of 0.05 followed by redundancy filtering, 

see section 5.4). The number of significantly enriched pathways by each method is shown in 

Figure 6a. Both methods did not achieve significant enrichment on the IBD data set. DiffCoEx 

did not achieve significant enrichment in both the AD and Lung cancer data sets either, while 

DICER results had 14 and 24 enriched pathways respectively. In the NDD and SLE data sets the 

two methods reported similar numbers of pathways. In addition we calculated the average 

enrichment factor of the accepted terms. Enrichment factor is defined as the ratio between 

the fraction of pathway genes in the tested module and the fraction of the pathway genes 

among all expressed genes in the data set. Therefore high enrichment factor scores indicate 

specificity of the gene set to the tested pathway. The results are shown in Figure 6b. In all 

cases DICER had an advantage of 50% or more in terms of average enrichment factor. 

 

a 

 

b 

 

Figure 6 KEGG pathway enrichment analysis. The modules of DiffCoEx and DICER were tested for KEGG 
pathway enrichment using the hyper-geometric test with 0.05 FDR for multiple tests correction.  Both 
methods did not report significant enrichment on the IBD data set. a) The number of enriched pathways. b) 
Average enrichment factors of the enriched sets. The enrichment factor is defined as the ratio between the 
fraction of the pathway genes in the tested set and the fraction of the pathway genes in the data set. 
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5.2 Discovered gene sets are highly enriched with miRNA targets 
 

Under the assumption that genes that are co-expressed are more likely to be co-regulated, 

changes in co-expression may be due to changes in regulatory patterns. Therefore, we tested 

if differentially correlated gene modules are significantly enriched with genes that are targets 

of specific miRNA families, and if there are cases in which the discovered gene targets emerge 

from different modules within the same meta-module. We used the FAME algorithm [99] for 

miRNA binding site enrichment analysis. Acceptance threshold was set to 0.05 after FDR 

correction. We tested for miRNA enrichment in the three types of gene sets that were 

discovered by DICER: (1) consistently co-expressed modules, (2) meta-modules, and (3) 

differentially correlated clusters. The results are shown in Figure 7. Except for the modules in 

the lung cancer data, in every data set and gene set type combination, DICER revealed 

significant enrichments (see Supplementary Table 2 for full list of families in each case). 

Notably, in some cases the same miRNA was found in different gene sets. For example, 

miRNA family mir-124/506 was detected in two meta-modules in the AD data set. However, 

in all cases some miRNA families were detected only in the meta-modules or only in the gene 

clusters. In contrast, DiffCoEx obtained very few miRNA enrichment results: no miRNA 

families were detected in the IBD, SLE and lung cancer data sets, one in AD and one in the 

NDD data set. 

To test if the discovered miRNA families are known to be associated with the tested disease, 

we used the mir2disease database [110] and tested if the overlap between the detected 

miRNA families and the annotations in mir2disease is significant (see section 5.4). 

Mir2disease contained miRNA-disease associations for three out of the five diseases in our 

experiments: AD, NDD, and lung cancer (marked results in Supplementary Table 2).  In the AD 

case, significant overlaps were obtained in clusters (six known AD-related miRNAs, p=0.0023), 

and marginally significant overlaps were detected in modules (six miRNA families, p=0.068). 

In the NDD data set, significant overlap was obtained for modules (all five miRNAs detected in 

the modules are associated with NDD, p=0.0016). In the lung cancer, seven out of 12 enriched 

miRNA families detected in meta-modules are associated with the disease (p=0.037).  In 

contrast, the DiffCoEx algorithm obtained no significant enrichments. We conclude that 

disease-specific miRNAs can be detected by focusing on differential correlation patterns. 
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Figure 7  microRNA target enrichment in gene sets constructed by DICER. For every dataset we used the 
FAME algorithm to test for enrichment in targets of miRNA families in the gene sets generated by DICER. 
These included gene clusters, meta-modules and modules (the sub-groups of meta-modules). P-values 
were corrected for multiple testing (0.05 FDR). Because the modules are sub-groups of meta-modules we 
also calculated the intersection between enriched miRNA families in meta-modules and modules. Note 
that all data sets except the AD are on the same scale. 
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5.3 Case study: Alzheimer's disease  
 

Alzheimer's disease (AD) is the most common progressive neurodegenerative brain disorder 

in human. AD is a complex progressive condition that involves sequentially interacting 

pathological cascades, including the interaction of amyloid-β (Aβ) aggregation with plaque 

development, and the hyperphosphorylation and aggregation of tau protein with formation 

of tangles. Together with associated processes, such as inflammation and oxidative stress, 

these pathological cascades contribute to loss of synaptic integrity and progressive 

neurodegeneration [59]. 

 

We compared the enriched miRNA families that were detected by DICER on differentially 

correlated clusters or meta-modules to the mir2disease database. These miRNA families 

cover 10 (24%) of the miRNAs that are associated with AD: mir-101, mir-106, mir-124a, mir-

125, mir-26b, mir-29a, mir-29b-1,mir-363, mir-9, and mir-93. Furthermore, three of these 

miRNAs were annotated as causal for AD: mir-106, mir29a and mir-29b-1. The mir-17-

5p/20/93.mr/106/519.d family was detected in an up-correlated gene cluster, and these 

miRNAs where  shown  to target the amyloid precursor gene (APP), and therefore have 

potential relevance to human neurodegenerative disorders [111]. Down regulation of these 

miRNAs may favor high APP levels in AD [112]. Mir-106, which is annotated as causal in 

mir2disease, was shown to interact with APP [113]. mir-101 was shown to be down-regulated 

in sporadic AD brains [113].  Mir-124, together with mir-125, was shown to be abundantly 

represented in AD hippocampus [114] . It was also shown that mir-124 is involved in nervous 

system development by regulation of neuron-specific alternative splicing [115].  Loss of mir-

29a\b-1 in sporadic AD patients was shown to be correlated with increased BACE1/beta-

secretase expression, where the cleavage of BACE1/beta-secretase is known to be the rate 

limiting stage of Aβ production [116]. mir-9, together with mir29-a and mir29-b1, was shown 

to regulate BACE1 expression in vitro [116].In addition to finding known AD-related miRNAs 

the FAME analysis of the DICER modules provides new candidate miRNAs with relevance to 

AD. For example, mir-216 was found enriched in a UCMM (p=0.001), and was predicted by 

FAME to target the solute-carrier family member gene SLC1A2, which is important in 

excitatory glutamate clearance in the central nervous system. This miRNA was shown to be 

expressed in glioblastoma and astroblastoma cell lines [117]. Together with mir-203, which 

was enriched in a UCM (p=5E-4), this miRNA was validated to target GABA receptor α1 

subunit [118]. GABA receptors are known as the inhibitory receptors in the central nervous 

system [119]. Taken together, this shows that DICER can detect well established disease-
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related regulatory factors, and can also point out new candidates that may affect the tested 

disease.     

 

 
 

a 

b 
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Figure 8 Differential correlation map of modules enriched with KEGG pathways discovered in 
the Alzheimer's disease (AD) data. a) An overview of the pathways differential correlation. 
Nodes represent gene modules, the node label reflects a pathway that was enriched in the 
gene module, and edges correspond to differential correlation (Blue edges mark increased 
correlation in AD. Red edges mark decreased correlation in AD). Node size is proportional to 
the size of the module. The enriched pathways are noted on the module. NDD pathways refer 
to Parkinson's disease (PD), Huntington's disease, Alzheimer's disease and oxidative 
phosphorylation. CAMs refer to cell adhesion molecules pathway; b) Analysis of the 
differential correlation between the PD and the NDD modules (the circled sub-graph in a). 
Left: the set of known interactions according to GENEMANIA. Most known interactions are 
between the modules. Right: co-expression networks of the same genes for AD patients and 
controls. Rectangular nodes are genes related to oxidoreductase activity, hexagons indicate 
genes related to phosphate metabolic process. An edge between two genes indicates 
correlation > 0.3 in the tested class. The average correlation between the modules was 0.3 in 
the controls and 0 in the AD class. Node colors indicate the differential expression between 
case and control, measured as log-p-value (t-test) of the tested gene. The genes encircled in 
the NDD pathway module are also part of the PD pathway. These genes are also down-
correlated in AD, whereas all other genes show only mild differential expression. 

 

 

Unlike GSCA [3], which searches for differential correlation patterns among known pathways, 

DICER does not use known pathway information. Therefore by analyzing the meta-modules 

found by DICER we can detect differential relations between genes of different biological 

processes. Moreover, we can dissect the genes of a biological process into sub-groups that 

are differentially correlated. We demonstrate these abilities of DICER for pathways and 

protein complexes related to AD. 

 We created the differential correlation map of modules enriched with KEGG pathways (0.05 

FDR followed by redundancy filter, see section 5.4). A summary map is shown in Figure 8a. 

For example, a module enriched with cell adhesion molecules (CAMs) was found to be up-

correlated with a module enriched with genes related to Parkinson's disease (PD). Two 

modules that were enriched with pathways that are directly related to NDD (oxidative 

phosphorylation, PD, AD, and HD) were down-correlated. Figure 8b shows these two modules 

in detail. GENEMANIA analysis [61, 95, 96] shows that known interactions are mainly between 

the modules (co-expression and predicted interactions were excluded). The DICER analysis 

suggests that although the modules share similar functionality, their genes can be partitioned 

into two so that each sub group is highly homogeneous (correlation above 0.8 both in cases 

and controls), whereas the correlation between sub-groups is lower in AD samples (class 

specific co-expression networks are shown). In addition, both groups contain genes related to 

PD (all genes in group 1, and the encircled genes in group 2) and oxidoreductase activity 
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(rectangular nodes; group 1 contains COX4l2, COX5B and NDUFA13, group 2 contains 

COX7A2L, SOD1 and UQCRFS1). In contrast, only group 2 contains genes that are related to 

phosphate metabolic process (hexagon nodes, genes UQCRC2, ATP6AP1, SOD1, ATP5G3, 

PPA1). This group is consistently correlated with PD genes that are strongly down-correlated 

(the encircled genes in group 2). Both groups contain cytochrome c oxidase (COX) genes. COX 

impairment is well established in AD [120, 121]. The first group contains the gene COX7A2L 

that is down-regulated in AD, whereas the second group contains the genes COX4I2 and 

COX5B that do not show a significant differential correlation. The differential co-expression 

between these subparts of COX can be explained by the association of APP with the 

mitochondria import channels, causing a blockage for incoming of the nuclear-encoded COX 

subunits 4 and 5B[121]. This can also explain why the genes COX4I2 and COX5B are not 

necessarily down-regulated at the mRNA level, while COX is impaired. This example 

demonstrates that disease-specific DC-based analysis can detect differential networking of 

functional sub-units within pathways without using any prior knowledge, and thus lead to 

new hypotheses regarding their roles.  

Figure 9a shows the differential correlation map of modules enriched with protein complexes 

(0.05 FDR), in the AD data. Here again we detect differential correlation between different 

protein complexes, for example, decreased correlation between the spliceosome and 

ribosome genes. In Figure 9a two up-correlated gene modules that were enriched with 

ribosomal genes are marked. The first group was enriched with cytoplasmatic ribosomal 

genes (seven genes, p=0.002), whereas the second was enriched with both 60S ribosomal unit 

genes (seven genes, p=1.68E-7, enrichment factor 21.3) and in genes that belong to the 

Nop56p-associated pre-rRNA complex (six genes, p=5.09E-6, enrichment factor 12.2). We 

note that these two complexes highly overlap: only two out of six Nop56 genes are not 

annotated as members of the 60S complex. In addition, only the first group contains 40S 

ribosomal unit genes (four genes). Figure 9b focuses on these two modules. GENEMANIA 

analysis of the modules indicates that all ribosomal genes, from both modules, are highly 

connected in all three types of interactions: co-localization, physical interaction, and pathway 

(co-expression and predicted interactions were excluded). However, by comparing the co-

expression in controls and AD (Figure 9b) we observe that the modules are highly correlated 

only on AD. In addition, 40S complex genes are up-regulated in AD, whereas 60S genes show 

only mild differential expression. Thus, we observe both increased coordination of the 

ribosome sub-complexes, and increased activity of 40S, indicating major transcriptomic 

changes in AD. 
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Figure 9 Ribosomal sub-complexes discovered in the Alzheimer's disease (AD) data. a) 
Overview of the differential correlation map of modules enriched with protein complexes. 
Node size is proportional to the size of the module. The enriched pathway names are noted 

a 

b 



62 
 

on the module. 40S: 40S cytoplasmatic Ribosome complex, 60S: 60S cytoplasmatic Ribosome 
complex, Nop56: Nop56p-associated pre-rRNA complex. Blue and red edges mark increased 
and decreased correlation in AD, respectively. ; b) Analysis of the differential correlation in 
the Ribosome and 60S, Nop56 meta-module encircled in a. Left: the known interactions 
between the meta-module genes according to GENEMANIA. Right: co-expression networks of 
the same genes for AD patients and controls. An edge between two genes indicates 
correlation > 0.5 in the tested class. The average correlation between modules was 0.4 and 
0.75 in the controls and AD class, respectively. Node colors show differential expression 
between AD and control, measured by the log-p-value (t-test) of the tested gene. Encircled 
subgroups: proteins belonging to 40S cytoplasmatic Ribosome and Nop56 complex. 40S 
complex genes are up-regulated in AD, whereas 60S genes show only mild differential 
expression.  

 

5.4 Technical notes 
 

5.4.1 Finding differentially correlated gene modules using DiffCoEx 

 

We used the R implementation of DiffCoEx with default parameters. 

 

5.4.2 Enrichment analysis of pathways and protein complexes 

 

We performed KEGG [122] and protein complex enrichment analysis of gene sets by 

calculating hyper-geometric p-values and false discovery rate correction for multiple testing 

[78]. The background set of the hyper-geometric score was set to be the (filtered) set of 

genes in the tested data set. Human protein complex annotations were extracted using 

BioMart [123, 124]. 

Because many KEGG pathways are highly overlapping, after performing the initial enrichment 

analysis, we used redundancy filtering of the KEGG pathway enrichment results. For every 

cluster, we checked every two enriched terms, and if the Jaccard coefficient between the 

gene sets of these terms in the tested cluster, was above 0.5, we kept the term with the 

lower p-value.   

 

 

 



63 
 

5.4.3 Enrichment analysis of miRNA families 

 

We used the FAME algorithm [99] to test for enrichment of miRNA families in gene sets. We 

used 2000 sampling steps for evaluating enrichment p-values and corrected for multiple 

testing (FDR, 0.05).  

 

5.4.4 Enrichment analysis of known disease and miRNA associations 

 

Given a set of miRNA families detected in a data set of a specific disease we tested if the 

overlap with the associations in mir2disease is significant. To perform this test we converted 

the associations in mir2disease from MirBase ids [97] to miRNA families. We then calculated 

the hyper-geometric p-value for the overlap between the tested miRNAs set and the set of 

miRNA families associated with the tested disease. The background set for this test was all 

miRNA families that had at least one gene target in the tested data set.  
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Supplementary Tables  

 
 

Data set DiffCoEx meta-modules DICER meta-modules 

 Number average size Number average size 

AD 3 48.66 50 60.1 

NDD 5 80.2 16 37.15 

IBD 2 36.5 3 35.66 

Lung cancer 2 278.5 20 69.2 

SLE 9 232 24 53.16 

Supplementary Table 1: DiffCoEx and DICER meta-module statistics. 

 

6  
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Data Set Gene set miRNA 
Number of 
genes 

P-value 
(FDR 0.05) 

Enrichment 
factor 

Meta modules  

AD 

DCMM2 mir-124/506 28 5.00E-04 2.112 

DCMM5 mir-876-5p 4 5.00E-04 6.976 

DCMM5 mir-499/499-5p 7 5.00E-04 3.602 

DCMM7 mir-377 8 0.001 3.607 

DCMM8 mir-504 4 0.001 6.982 

DCMM9 mir-125/351 4 0.01 4.346 

UCMM6 mir-216/216b 4 0.001 5.413 

UCMM9 mir-124/506 10 5.00E-04 3.065 

UCMM9 mir-340/340-5p 7 0.005 2.972 

NDD 

DCMM1 mir-410 4 0.003 5.18 

DCMM1 mir-183 4 0.003 4.44 

DCMM8 mir-182 5 0.014 2.802 

DCMM8 mir-124/506 6 0.017 2.416 

UCMM5 

mir-30a/30a-
5p/30b/30b-
5p/30cde/384-5p 4 0.028 2.975 

UCMM6 mir-9 4 0.004 3.747 

Lung 

DCMM1 mir-320/320abcd 29 5.00E-04 2.19 

DCMM4 mir-149 4 5.00E-04 8.762 

DCMM4 mir-9 6 0.005 3.058 

DCMM4 mir-300 5 0.026 2.807 

DCMM5 mir-141/200a 9 0.001 3.259 

DCMM6 

mir-34a/34b-
5p/34c/34c-
5p/449/449abc/699 4 5.00E-04 6.909 

DCMM8 
mir-
25/32/92/92ab/363/367 6 0.004 2.814 

UCMM1 mir-15/16/195/424/497 4 0.028 2.498 

UCMM1 mir-203 4 0.028 2.874 

UCMM1 mir-200bc/429 4 0.036 2.456 

UCMM3 mir-590/590-3p 7 0.001 3.552 

UCMM5 mir-130/301 4 0.015 3.309 

SLE 

DCMM2 mir-590/590-3p 5 0.004 3.855 

DCMM2 mir-124/506 6 0.019 2.536 

DCMM2 mir-182 4 0.026 2.664 

DCMM3 mir-182 10 0.001 2.682 

DCMM6 mir-383 4 5.00E-04 7.853 

DCMM6 mir-205 5 0.002 3.942 

DCMM6 mir-216/216a 4 0.006 5.04 
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DCMM6 mir-155 4 0.015 3.238 

DCMM9 mir-1/206 6 0.002 3.936 

UCMM2 mir-590/590-3p 4 0.008 3.749 

Differential gene clusters 

AD 

DCC11 mir-543 6 0.001 3.757 

DCC11 mir-101 6 0.011 2.998 

DCC12 mir-200bc/429 5 0.024 2.52 

DCC12 mir-590/590-3p 4 0.027 2.566 

DCC2 mir-9 4 0.028 2.922 

DCC5 mir-9 4 0.012 3.063 

DCC6 mir-140/140-5p/876-3p 4 0.003 4.759 

DCC9 mir-29abc 4 0.03 3.186 

UCC0 mir-203 4 5.00E-04 11.549 

UCC1 mir-410 4 0.004 4.328 

UCC1 mir-186 4 0.005 3.571 

UCC10 mir-26ab/1297 4 0.014 3.689 

UCC10 mir-124/506 6 0.035 2.509 

UCC3 mir-148/152 4 0.004 4.246 

UCC4 mir-29abc 4 0.037 2.905 

UCC4 
mir-17-
5p/20/93.mr/106/519.d 4 0.046 2.517 

UCC6 
mir-
25/32/92/92ab/363/367 4 0.013 3.588 

UCC8 mir-124/506 4 0.042 2.52 

SLE DCM0 mir-9 4 0.009 3.883 

Modules 

AD 

up_2 mir-199/199-5p 4 0.003 5.05 

up_4 

mir-30a/30a-
5p/30b/30b-
5p/30cde/384-5p 7 5.00E-04 3.299 

up_4 mir-183 4 0.003 5.038 

up_4 mir-590/590-3p 6 0.005 3.123 

up_4 mir-133 5 0.029 2.897 

up_10 mir-300 5 0.005 3.581 

up_10 mir-181 4 0.034 2.381 

up_10 mir-27ab 4 0.046 2.233 

up_10 mir-590/590-3p 4 0.048 2.488 

up_13 mir-216/216b 4 5.00E-04 5.975 

up_14 mir-128 4 0.029 2.937 

up_14 
mir-17-
5p/20/93.mr/106/519.d 4 0.04 2.537 

up_16 mir-590/590-3p 7 0.002 3.442 

up_16 mir-15/16/195/424/497 6 0.026 2.271 

up_16 mir-320/320abcd 4 0.027 2.827 

up_17 mir-205 4 7.50E-04 6.441 
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up_17 mir-204/211 5 0.002 4.504 

up_17 mir-125/351 4 0.006 4.202 

up_17 mir-153 4 0.013 3.625 

up_18 mir-124/506 10 5.00E-04 3.644 

up_18 mir-340/340-5p 6 0.004 3.25 

down_0 mir-200bc/429 20 5.00E-04 2.251 

down_1 mir-590/590-3p 17 5.00E-04 3.032 

down_4 mir-300 4 0.022 3.243 

down_4 mir-590/590-3p 4 0.035 2.791 

down_5 mir-124/506 28 5.00E-04 2.492 

down_7 mir-96/1271 5 0.002 3.695 

down_10 

mir-34a/34b-
5p/34c/34c-
5p/449/449abc/699 4 0.014 3.1 

down_10 mir-448 4 0.016 3.156 

down_11 mir-124/506 15 0.001 2.254 

down_11 let-7/98 8 0.004 2.973 

down_13 mir-19 4 0.017 3.173 

down_13 mir-200bc/429 4 0.025 3.08 

down_14 mir-377 6 5.00E-04 4.314 

down_14 mir-26ab/1297 7 0.003 2.735 

down_15 mir-15/16/195/424/497 6 0.014 2.654 

down_15 mir-200bc/429 5 0.041 2.285 

down_16 
mir-17-
5p/20/93.mr/106/519.d 6 0.008 2.61 

down_17 mir-135 4 0.011 3.622 

down_19 mir-125/351 4 0.008 5.117 

NDD 

up_0 mir-103/107 4 0.001 7.761 

up_7 mir-9 7 0.015 2.601 

up_7 mir-26ab/1297 4 0.019 2.941 

up_11 

mir-30a/30a-
5p/30b/30b-
5p/30cde/384-5p 4 0.028 2.913 

down_4 
mir-17-
5p/20/93.mr/106/519.d 4 0.02 3.012 

SLE 

up_5 mir-590/590-3p 4 0.001 6.266 

up_9 mir-124/506 4 0.035 2.385 

down_1 mir-15/16/195/424/497 6 5.00E-04 4.517 

down_1 mir-182 4 0.015 3.253 

down_4 mir-590/590-3p 5 5.00E-04 7.188 

down_4 mir-124/506 4 0.014 3.357 

down_6 mir-182 6 0.002 3.612 

down_6 mir-96/1271 5 0.016 3.104 

down_12 mir-383 4 5.00E-04 11.699 

down_12 mir-26ab/1297 4 0.029 2.742 

down_18 mir-1/206 4 0.012 3.746 

down_18 

mir-30a/30a-
5p/30b/30b-
5p/30cde/384-5p 4 0.029 2.888 
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Supplementary Table 2: miRNA family enrichment analysis results. For each module, meta-

module and cluster detected by DICER the enrichment was tested using the FAME algorithm. 

Names bolded indicate miRNA that have known relation with the disease according to the 

mir2disease database. Down and up-correlated meta-modules are indicated as DCMM and 

UCMM, respectively. Modules are indicated by up and down followed by their number. 

Differential gene clusters are indicated by DCC and UCC.  
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