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11  AAbbssttrraacctt  

In the past few years the gene expression microarray (GEM) technology has become a 

central tool in the field of functional genomics. This field deals with exploring the 

functions of different gene products, the control mechanisms regulating their activity, 

their expression levels and their interactions. In the GEM technology, the expression 

levels of thousands of genes in a biological sample are determined in a single 

experiment.  

 This work describes the development of a bioinformatics software tool called 

EXPANDER (EXPression ANalyzer and DisplayER), that was designed to help 

researchers in analyzing GEM data, and allow viewing the raw data and analysis 

results via convenient graphical displays. The tool incorporates several conventional 

GEM analysis algorithms and custom ones that have been developed in the 

computational genomics group in Tel-Aviv University, and provides them with an 

easy-to-operate user interface. Among the tool's capabilities are clustering, 

biclustering, functional enrichment and promoter analysis, in addition to a variety of 

visualizations. EXPANDER was programmed using the Java programming language 

and it can be run on several platforms, including Windows and Unix. It was written in 

an object oriented approach, suitable for such a large scale applications that requires 

many different modules that interact with one another. EXPANDER based analyses 

are demonstrated using three different biological datasets, and novel biological 

conclusions are drawn. 

The EXPANDER tool is freely available for academic research, and is broadly used 

both for in-house research projects in biology and medicine at Tel Aviv University, 

and in other institutions.  Over four hundred laboratories have downloaded the 

software over the last year. It is under ongoing development in order to keep it a state-

of-the-art research tool with unique capabilities. 

 

Key terms: Functional genomics, gene expression microarrays, software, cDNA 

microarrays, high-density oligonucleotide arrays, clustering, biclustering, functional 

analysis, promoter analysis. 



 

22  IInnttrroodduuccttiioonn  aanndd  ssuummmmaarryy  

2.1 Gene Expression Microarray technology 

The Gene Expression Microarray (GEM) technology plays a central role in the field 

of functional genomics. This field is based on the recent progress achieved in genome 

sequencing (Hieter et al. 1997) and other high throughput techniques. It deals with 

exploring the function of different gene products, the control mechanisms regulating 

their activity, their expression levels and their interactions. 

 In the GEM technology, the expression levels of thousands of genes in a biological 

sample are determined in a single experiment. Genes printed on a slide (usually glass) 

are hybridized against labeled probes, prepared from the cell lines that are being 

tested.   

There are currently two main methods implementing this technology: cDNA 

microarrays and high-density oligonucleotide arrays ("DNA chips"). They differ in 

the way genes are represented on the slide, the way the slide is prepared, and some of 

the experimental stages, but are used usually for the same needs. The methods used to 

analyze the data are similar, but while the first method produces relative expression 

level values, the second produces absolute values.   

 

2.1.1 cDNA Microarrays 

This method was developed in the department of Biochemistry of Stanford university 

in 1996, and has since been adopted by many laboratories. In this method a grid of 

cDNA dots is printed over a glass slide. Each dot contains cDNA molecules (0.2-2kb 

long) from a clone of a single gene. A grid containing 10000 such dots can be printed 

on a slide of size 2.5x2.5cm2 (Shalon et al. 1996).  Currently, newer, more advanced 

printing methods are being developed, that will allow the represention of a whole 

genome on a single array (Hughes et al. 2001). 

The experiment involves the following steps: (1) Extracting mRNA molecules from 

two cell populations (the test population and the reference population). (2) Reverse 



 

transcription of the mRNA molecules to create labeled cDNA molecules, by using 

fluorescent nucleotides (with different colors for the test population and for the 

reference population). (3) Co-hybridization of the cDNA from the test and the 

reference populations to the same array. (4) Scanning the array using a laser scanner. 

The last stage is performed separately for each of the two color frequencies, to create 

two image files.  

The expression levels evaluated in this method are relative (between the two cell 

populations) since the number of cDNA molecules that are printed in each spot cannot 

be accurately estimated. Therefore, a common reference population must be used 

when attempting to test expression level changes over several conditions.    

2.1.2 High-density oligonucleotide arrays 

This method was developed and is applied primarily by the company Affymetrix. In 

the oligonucleotide array each gene is represented by 10-20 different oligonucleotides 

of length 25bp. The oligonucleotides representing a gene are selected in a way that 

minimizes their homology to other known sequences, in order to increase their 

specificity. The representation of each gene by 10-20 probes increases probe-gene 

specificity significantly. The oligonucleotides are synthesized over a glass slide, using 

a photolithographic method. This method allows the representation of hundreds of 

thousands of genes on a single array at the size of about 1.5 square centimeters 

(McGall et al. 2002).     

The experiment is performed for a single population of cells (unlike in the cDNA 

microarray method), and involves the following steps: (1) Extracting mRNA 

molecules from the tested cell population. (2) Reverse transcription of the mRNA 

molecules, using a primer that contains a promoter for the T7 RNA Polymerase, to 

create labeled cDNA molecules. (3) Transcription of the synthesized cDNA template, 

using T7 RNA Polymerase and tagged nucleotides, to create tagged RNA molecules. 

This process causes a linear induction of the initial RNA concentration (up to 100 

fold), which allows determining also very low expression levels. (4) Breaking the 

tagged RNA molecules into sections of average length 50bp, and hybridizing them 

against the array. (5) Scanning the array using a laser to create an image file.  



 

It has been shown that the expression levels determined using this method are 

proportional to the amount of mRNA in the cell (Wodicka et al. 1997). 

 

2.2 Technology applications 

In this section, we will describe the main current applications of the GEM technology. 

2.2.1 Comparing two mRNA populations by identifying differentially 
expressed genes 
 

The purpose of these experiments is to identify genes that exhibit a distinct difference 

in expression levels between two tested populations, for example, cells before and 

after a certain treatment. This way, the involvement of novel genes in different 

biological processes can be revealed. This approach has been utilized in many studies 

e.g., to identify novel candidate genes involved in systemic metastases in lung cancer 

(Liu et al. 2004), novel candidate genes involved in neurodegenerative disease 

(Glanzer et al. 2004), genes regulated by p53 (Zhao et al. 2000) and E2F (Ishida et al. 

2001), and genes that comprise the peroxide stimulon in the cyanobacterium 

Synechocystis sp (Li et al. 2004). 

2.2.2 Identifying co-expressed genes 

The goal here is to discover genes sharing a similar expression pattern over a set of 

tested conditions. Such similarity may indicate their involvement in a common 

function (e.g., the same metabolic pathway), or in common regulatory mechanisms. 

Identifying such gene groups can be achieved using clustering algorithms, applied to 

GEM data containing several different conditions (Spellman et al. 1998, Sharan et al. 

2000). This approach has been utilized in many studies in order to extract new 

biological information from the GEM data (Shannon et al. 2003).  

2.2.3 Predicting gene functions 

The goal here is to find gene subgroups that share a common function, by detection of 

functions that are significantly overrepresented in one cluster of co-expressed genes. 

This criterion is called "Functional Enrichment". If a cluster is significantly enriched 



 

for genes having a certain function, other non-annotated genes in that cluster are more 

likely to have the same function. This approach has been successfully used on yeast to 

predict the function of over 800 uncharacterized genes (Tanay et al. 2004).  

2.2.4 Promoter signal analysis 

The goal here is to reveal cis-regulatory mechanisms that are activated as a result of 

exposing the cell to certain experimental conditions. To achieve this goal, promoters 

of genes in the same co-expression cluster are scanned to find gene subgroups that 

share common transcription factor binding sites in a statistically significant manner. It 

is plausible that the transcription factors that bind such sites directly regulate the 

genes that are responsible for the observed changes in expression levels. This 

approach has been used successfully for several organisms and tissues, including the 

yeast (Jelinsky et al. 2000, Pilpel et al. 2001) and human Hela cancer cells (Elkon et 

al. 2002). 

2.2.5 Tissue classification 

This can be done by identifying gene expression profiles that are typical for certain 

tissues (e.g., tissues from a certain type of cancer).  Such profiles constitute a 

molecular 'fingerprint' that can be used to identify the tissue. It has been shown that 

these profiles can help distinguish between a cancerous tissue and a normal tissue 

(Alon et al. 1999) and even between tissues of different types of cancer (van de Vijver 

et al. 2002, Dyrskjot et al. 2003, Golub et al. 1999, Eisen et al. 1998).  This 

application can have a major contribution in the field of medical diagnosis and 

treatment.  

2.2.6 Drug development 

The GEM technology assists in several stages in the process of drug development 

(Lord et al. 2004, Clarke et al. 2001, Marton et al. 1998, Braxton et al. 1998): (a) 

Choosing the target protein by tracing the genes that exhibit significant changes in 

expression levels between the normal and the pathological states. (b) Testing 

candidate drugs by comparing the cellular expression profile that is achieved after 

treatment to the normal (desired) profile (Waddell et al. 2004). (c) Identifying 

potential side effects by examination of the differences between the desired cellular 



 

expression profile and the profile achieved after treatment. (d) Predicting the toxicity 

of a drug (as explained in the next section). 

2.2.7 Toxicogenomics 

In this field, different toxic substances are characterized by the cellular expression 

profile that they induce. In recent years, several databases that characterize toxic 

substances according to their induced expression profile have been established (Lord 

2004, Irwin et al. 2004, Nuwaysir et al. 1999). It has been found that substances with 

similar toxic activity induce a similar expression profile. In the future, the toxic 

potential of a substance will be evaluated by comparing its induced expression profile 

to existing database records (Nuwaysir et al. 1999, Fredrickson et al. 2001).      

2.3 Existing analysis tools 

Computational analysis tools are crucial for the efficient exploitation of the large 

amounts of data produced by GEM experiments. Dealing with such large datasets 

requires the development and use of data analysis algorithms that will extract 

biologically meaningful information out of the raw data (Dresen et al. 2003, Eisen et 

al. 1998, Quackenbush et al. 2001). 

Many of the computational tools that are currently used for GEM analysis focus on 

one or several stages of the analysis. Hence, analysis requires the porting of the data 

between different software tools. This often requires reformatting the data according 

to the different software tools, and makes the employment of more than a small 

number of tools simultaneously very cumbersome. 

Among the commonly used analysis tools are: 

 

dChip (http://biosun1.harvard.edu/complab/dchip) – A windows application, that 

operates on high-density oligonucleotide arrays. The tool performs several 

normalizations, including tracing and omitting data in contaminated areas, or data that 

were cross hybridized (i.e., hybridization of  mRNA of one gene to probes of another 

gene that has a highly similar sequence) (Li et al. 2001), filtering out non informative 

genes, and identifying genes that are differentially expressed between two conditions.  

The program also performs hierarchical clustering and principal component analysis 



 

(PCA) on the processed data, and produces graphical displays. The software utilizes 

the R application (Ripley 2001) and operates on Windows 2000 operating system. 

GeneX-CyberT (http://visitor.ics.uci.edu/genex/cybert/) - a statistical program with a 

web interface that can be used on both cDNA microarray data and oligonucleotide 

arrays data for the identification of statistically significant differentially expressed 

genes. The analysis is based on Bayesian approach and generates text output files and 

a file of statistical charts. 

Cluster & TreeView - (http://rana.lbl.gov/EisenSoftware.htm) – These are an 

integrated pair of programs for analyzing and visualizing the results of both cDNA 

microarray and high density oligonucleotides experiments (Eisen et al. 1998). The 

Cluster program implements the following clustering and analysis methods: 

hierarchical clustering, self-organizing maps (SOM), k-means, PCA and hierarchical 

clustering. The program operates on Windows only. The TreeView graphical 

program enables viewing the results of clustering and other analyses from Cluster. It 

supports tree-based and image based browsing of hierarchical trees. It produces 

multiple output formats for the generation of images for publications. It operates only 

on Windows. Another visualization program, Maple Tree, which is cross-platform 

(i.e., runs on all operating systems) is now available from the same group. It allows to 

graphically browse the results of clustering analyses from the Cluster software, and 

many other clustering and analysis programs. 

JExpress (http://www.ii.uib.no/bjarted/jexpress/, Dysvik et al. 2001) – This program 

operates on cDNA microarray data. Performs high-level normalization, filtering and 

high-level analysis. The analysis methods implemented in JExpress are: Hierarchical 

clustering, SOM, PCA, K-means and profile search. The program contains several 

visualization tools.  

Genesis (http://genome.tugraz.at, Sturn et al. 2002) – A cross platform program that 

performs data normalization based on a variety of techniques, for sets of genes or 

experiments (mean centering, median centering, division by SD/RMS and log 

transformation) and data filtering (according to missing values and standard 

deviation). It implements several clustering algorithms (hierarchical clustering, k-

means, SOM) and provides also other analysis methods such as Principal Component 

Analysis (PCA), and support vector machines (SVM, a classification tool). The 



 

program utilizes several different similarity measurements (ranging from Pearson 

correlation to more sophisticated approaches, like mutual information). It supplies 

several visualizations to view the above analysis results and allows the mapping of 

gene expression data onto chromosomal sequences.  

Spotfire DecisionSite (http://www.spotfire.se/) – An application for microarray data 

analysis and visualization. It implements the following analysis methods: hierarchical 

and K-means clustering, expression profile searches and PCA. Other analysis methods 

require the R application (Ripley 2001) and include normalization schemes, variance 

analysis using ANOVA and rule induction analysis with decision trees. The 

application incorporates various visualizations such as box plots, pattern displays, 

matrix displays, pie charts and dendrogram trees. Annotation information from 

various sources can be loaded and integrated into the visualizations. DecisionSite 

operates on Windows only.  

GeneXPress (http://genexpress.stanford.edu/, Segal et al. 2004) – Given a clustering 

solution (or a file generated by the TreeView software), this application performs 

functional analysis and promoter analysis and provides various suitable displays.  

GeneCluster (http://www.broad.mit.edu/cancer/software/software.html, Reich et al. 

2004) – A cross platform program that facilitates filtering and preprocessing data in a 

variety of ways, clustering expression profiles using the SOM algorithm, and viewing 

the results. It also allows supervised classification, gene selection and permutation test 

methods (Permutation test methods are used to assess the significance of the score for 

each gene, i.e. the estimated signal to noise ratio). It includes algorithms for 

constructing and testing supervised models that will be able to predict different 

variables (e.g. tumor type, treatment outcome etc.) based on the expression values 

using weighted voting (WV) and k-nearest neighbors (KNN) algorithms. 

TM4 (http://www.tigr.org/software/tm4/, Dudoit et al. 2003) – A package that 

consists of four major applications, two of which (Microarray Data Analysis System, 

and Multi-experiment Viewer) perform high-level preprocessing, analysis and 

visualization of microarray data. These software tools were developed for spotted 

two-color arrays, but can be easily adapted to work with single-color formats such as 

high density oligonucleotide arrays. Both programs are cross platform. 

Microarray Data Analysis System (MIDAS) performs normalization using locally 



 

weighted linear regression (lowess) and total intensity normalization. It also performs 

filtering using several methods. MIDAS provides scatter plots that illustrate the 

effects of each algorithm on the data. It reads “.tav” files generated by TIGR 

Spotfinder program or retrieved from the database via MADAM (another TM4 

application). Multi-experiment Viewer (MeV) operates on normalized and filtered 

expression files. It incorporates several clustering algorithms such as: hierarchical 

clustering, K-means, SOM, SOT (Self Organizing Trees), Gene Shaving and 

QT_clust, along with other analysis algorithms such as PCA, Significance Analysis of 

Microarrays (SAM) etc. Results can be graphically displayed. MeV can handle 

several input file formats. 

DMT (http://www.affymetrix.com/products/software/specific/dmt.affx) - The Data 

Mining Tool (DMT) software, developed by Affymetrix, provides several tools for 

filtering and sorting microarray data generated using the Affymetrix GeneChips. Key 

features include: pairwise statistical analysis for replicate samples, clustering (SOM 

and a modified Pearson’s Correlation Coefficient method) and an option to integrate 

annotation information into the data. DMT operates on Windows only. 

 

2.4 Existing GEM Databases 

In this section I present some of the more commonly used GEM databases. 

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) – one of the 

most commonly used public repositories for a wide range of high-throughput 

experimental data. These data include single and dual channel microarray experiments 

measuring mRNA, genomic DNA and protein abundance, as well as non-array 

techniques such as serial analysis of gene expression (SAGE), and mass spectrometry 

proteomic data. It allows data browsing, query and retrieval. It currently contains over 

20,000 sample records (arrays). 

Array Express (http://www.ebi.ac.uk/arrayexpress/) – The main European public 

repository for microarray data, which is aimed at storing well annotated data in 

accordance with the Microarray Gene Expression Data (MGED) Society 

recommendations. The MGED society has defined the MIAME (minimum 

information about a microarray experiment) requirements in order to enable the 



 

interpretation of the results of the experiment unambiguously and potentially to 

reproduce the experiment (Brazma et al. 2001). The data deposited in Array Express 

is expected to fill these requirements. Array Express currently contains record from 

over 6000 profiles. 

GeneX (http://www.research.ibm.com/journal/sj/402/mangalam.html) – an open 

source gene expression database and integrated toolset that allows researchers to store 

and evaluate their gene expression data independently of the technology used to 

obtain the data.  

Gene Expression Database (GXD) 

(http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtm) - a community 

resource for gene expression information from the laboratory mouse. GXD stores and 

integrates different types of expression data and makes these data freely available in 

formats appropriate for comprehensive analysis. There is particular emphasis on 

endogenous gene expression during mouse development. 

Stanford Microarray Database (SMD) (http://genome-www5.stanford.edu/) - one 

of the first academic databases to be used on an institutional scale. It contains the 

largest amount of data of any academic database, due to its close association with one 

of the first groups to develop large-scale arrays. It stores raw and normalized data 

from microarray experiments, as well as their corresponding image files. It also 

provides interfaces for data retrieval, analysis and visualization. Data is released to the 

public at the researcher's discretion or upon publication. 

2.5 Summary of thesis results 

This work describes the development of a bioinformatics software tool called 

EXPANDER (EXPression ANalyzer and DisplayER), that was designed to help 

researchers in analyzing GEM data, and allow viewing the raw data and analysis 

results via convenient graphical displays. The tool incorporates several conventional 

GEM analysis algorithms and custom ones that have been developed in the 

computational genomics group in Tel-Aviv University, and provides them with an 

easy-to-operate user interface. Among the tools capabilities are clustering, 

biclustering, functional enrichment and promoter analysis, in addition to a variety of 

visualizations. EXPANDER was programmed using the Java programming language 



 

and it can be run on several platforms, including Windows and Unix. It was written in 

an object oriented approach, suitable for such a large scale applications that requires 

many different modules that interact with one another.  

EXPANDER based analyses are demonstrated using three different biological 

datasets, and novel biological conclusions are drawn. 

The EXPANDER tool is freely available for academic research (it can be downloaded 

from www.cs.tau.ac.il/~rshamir/EXPANDER). Over four hundred laboratories have 

downloaded the software over the last year. It is broadly used both for in-house 

research projects in biology and medicine at Tel Aviv University and in other 

institutions.  Among the in-house research projects that utilize EXPANDER are a 

microarray project that analyzes DNA damage responses in human cells and mouse 

tissues, conducted at Yossi Shiloh's laboratory in the Sackler medical school, a 

microarray project that studies inflammation processes in brain of mouse models for 

Alzheimer disease, conducted at Danny Michelson's laboratory in the George S. Wise 

faculty of Life Science and a microarray project that studies mis-regulated signaling 

pathways neuroblastomas, conducted at Yoel Klug's laboratory in the George S. Wise 

faculty of Life Science. EXPANDER is under ongoing development in order to keep 

it a state-of-the-art research tool with unique capabilities. 

A preliminary report on the EXPANDER project has been published in (Sharan et al. 

2003). 
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My objective in this research was to develop a computerized tool that will achieve the 

following goals: 

1) Incorporation of several analysis stages in one program:  

Bringing together different tools from all stages of GEM data analysis under a single 

platform. These include preprocessing tools, advanced downstream analysis tools and 

various visualization tools. The purpose of this integration is to help the user, partly 

by eliminating the work that is involved in formatting data to be transferred from one 

application to another. 

2) Incorporation of novel analysis algorithms which are developed in the 

computational genomics laboratory in Tel-Aviv University:  

Several GEM analysis tools have been developed in the computational genomics 

laboratory in Tel-Aviv University and are available for academic use, e.g., the 

SAMBA (Statistical Algorithmic Method for Bicluster Analysis) algorithm for 

biclustering GEM data (Tanay et al. 2002) and the PRIMA (Promoter Integration for 

Microarray Analysis) algorithm for promoter analysis (Elkon et al. 2003)). The 

incorporation of these tools into the program will provide them with an easy-to-

operate user interface, and will enable viewing and manipulating their results via 

convenient graphical displays.  

3) Generation of original graphical visualizations: 

Such visualizations will hopefully provide an additional point of view on the 

biological data, in order to promote the discovery of new insights by analyzing GEM 

experiments. 

4) Cross platform application: 

Our program was designed to run on the two most commonly used operating systems 

(Windows and Unix). 

 

Such a program may encourage the usage of the tools and improve the ability of the 

user to analyze and extract new biological knowledge from GEM data.  
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In this chapter we describe the algorithms and procedures that are included in 

EXPANDER, and provide examples of their output. The technical implementation 

details will be described in chapter 6. 

4.1 The analyzed data 

The analysis methods described below are performed on data matrices, in which each 

row corresponds to a gene and each column corresponds to an experimental condition. 

Thus, a row vector is the expression pattern of a gene, and a column vector is the 

expression profile under a particular condition. 

The values in the matrix represent the relative (in cDNA microarray data) or absolute 

(in high-density oligonucleotide data) measured expression levels. For example, the 

value in the ith row and the jth column represents the expression level of the ith gene in 

the dataset, as measured in the jth experimental condition. 

  

4.2 Preprocessing 

The purpose of preprocessing is to remove insignificant and useless expression 

patterns, and bring all remaining data into a unified form on which downstream 

analysis (such as gene clustering, biclustering etc.) can be performed. To achieve this 

goal the data from different experiments should be adjusted to the same scale, and 

data size should usually be reduced by filtering out non-informative patterns, so that 

downstream analysis will run in a reasonable time and will provide meaningful 

results.   

4.2.1 Normalization 

Normalization is the process of reducing sources of variation of non-biological origin 

between arrays (Bolstad et al. 2003). In EXPANDER, normalization schemes are 

implemented only for oligonucleotide arrays (it is assumed that for cDNA 

microarrays, entries are given in log red/green values that are already normalized). 



 

EXPANDER implements two non-linear normalization schemes presented and tested 

by Bolstad et al. (2003): 

a) The first method, "Quantile normalization" (Bolstad et al. 2003), is a complete 

data method (i.e., it is applied to all arrays together). This method is aimed at 

creating an identical distribution to each array in the data set, by ranking the 

entries in each condition (breaking ties arbitrarily), and replacing each entry 

by the average of the entries of its rank in all conditions. 

b) The second method, "Non linear baseline normalization", is a baseline method 

(i.e., all arrays are normalized according to one selected baseline array). In this 

method a non-linear regression is used in order to map each array expression 

values to the baseline array (Schadt et al. 2002). An XY-scatter plot is created 

using the values in the array that is being normalized as the X values and the 

corresponding values from the baseline array as the Y values. A nonlinear 

regression is performed on this scatter plot using a Lowess (locally weighted 

smoothing scatter plots)-like function, in which each x value is mapped to the 

average y value of its n nearest neighbors (i.e., the average y of the center of 

the window to which it belongs). This normalization should be performed 

using a subset of the genes that is considered relatively non-variant (under the 

experimental conditions). For this purpose, the user can choose between using 

all genes (in case data set is expected to contain mostly non-differential genes) 

and using a rank invariant subset of genes. Calculating the rank-invariant set is 

based on the method presented by C. Li and W.H.Wong (2001).   

4.2.2 Filtration 

Genes that do not exhibit significant changes in their expression levels under the 

tested conditions do not add relevant information to the analysis. Thus, it is preferable 

to filter out such genes before performing any downstream analysis such as clustering 

or bi-clustering.  

EXPANDER implements two filtration schemes: 

a) Fold change filter – only genes whose expression level varies by at least k fold 

across the tested conditions are selected. k, as well as the reference array are 

determined by the user (the reference array can be set to the array with 



 

minimal expression level). The user can also set an additional requirement of a 

minimal (>1) number of conditions in which the required fold change in must 

occur.   

b) Variation filter - the k genes that exhibit the highest variation in expression 

levels throughout all conditions are selected (k is a parameter that is 

determined by the user). Variance is used to measure variation for cDNA 

microarray data, and coefficient of variation is used to measure variation for 

oligonucleotide data. 

4.2.3 Standardization 

When the range of expression values of different genes is very different, but their 

general expression patterns are similar (i.e., they have high correlation coefficient), 

we would like to see this similarity when looking on a pattern display. Since the 

absolute values of expression are different, a manipulation is required in order to view 

the patterns on the same scale. This manipulation is called standardization. 

EXPANDER implements two standardization schemes: 

a) Mean 0 and variance 1 – the expression pattern of each probe is set to have a 

mean equal to 0 and a variance equal to 1. This method is suitable in most 

cases when working on genes. 

b)  Fixed norm – for each probe, expression levels are divided by the norm of 

that expression vector (the root of sum of squares of that vector's entries). This 

method is suitable in cases where we expect to find different means between 

patterns, or different variance values. For example, when working on time 

series conditions, we may expect larger variance in later phases of a response. 
 

4.3 Clustering 

Clustering is the process of partitioning elements (in our case, usually expression 

patterns of genes) into subsets, which are called clusters, so that two criteria are 

satisfied: homogeneity – high similarity between elements from the same cluster, and 

separation - low similarity between elements from different clusters (Sharan et al. 



 

2000). There is very rich literature on cluster analysis (Hartigan 1975, Everitt 1993, 

Mirkin 1996, Hansen & Jaumard 1997). 

4.3.1 K-means 

K-means is a classical clustering algorithm (Tavazoie et al. 1999), which assumes that 

the number of clusters (k) is known. It aims to minimize the distances between 

elements and the centroids of their assigned clusters. The algorithm maintains a 

partition of the elements into k clusters. Each iteration of k-means modifies the 

current partition by checking all possible modifications of the solution, in which one 

element is moved to another cluster, and making the change that minimizes the 

following error function: 

? ??
?

?
?

?
?

?
k

m cj

n

i
xx

m

miji

1 1

2
 

Where: k is the number of clusters, Cm is the set of indices of elements in cluster m, n 

is the pattern length (the number of conditions), and mx  is the mean pattern of cluster 

m, i.e.                                            ?
?

?
Cmj

ji
m

mi x
c

x
||

1
. 

 Hence, each iteration reduces the sum of distances between elements and the centers 

of their clusters. This procedure is repeated until no further improvement is achieved. 

The above error function uses Euclidian distance as the distance measure. Other 

distance measurements can be used in the same way. 

4.3.2 Self Organizing Maps 

The Self Organizing Maps (SOM) (Tamayo et al. 1999) algorithm assumes that the 

number of clusters is known. Those clusters are organized as a set of nodes in a two 

dimensional kxl grid, where k*l is the number of clusters. Each of the nodes is 

associated with a reference vector of the same dimension as the expression patterns. 

The algorithm iteratively selects a random data point (p), identifies its nearest 

reference vector np, and updates all reference nodes according to a learning function. 

In that function the extent of change in vector j is proportional to the proximity of its 

node n j to node np in the grid, and also decreases with iteration number.   



 

The learning function used in EXPANDER is the 'neighborhood function' (Tamayo et 

al. 1999):  
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Here I is the total number of iterations, i is the current iteration number and the 

constant value is set to 3. a(i) is called the 'learning rate' and decreases with the 

iteration number. d(x,y) is distance between the grid points corresponding to x and y. 

After calculating the learning function, the algorithm updates reference vectors using 

the following function:  

                          nj (i,k) = nj (i-1,k)  + f(nj, np, i )*(xpk- nj (i-1,k) ) 

Where nj (i,k) is the value of reference vector j in position k after i iterations, and xpk is 

the value of the randomly chosen data-point (vector) p in position k.   

4.3.3 CLICK  

The CLICK algorithm (CLuster Identification via Connectivity Kernels) was 

developed in the Computational Genomics group of Tel-Aviv University (Sharan et 

al. 2000). It uses a graph theoretic approach to clustering. The input data are 

represented as a weighted graph, in which each gene is represented by a vertex, and 

the similarity between the expression patterns of each two genes is used to calculate 

the weight of the edge connecting their vertices. 

 The algorithm recursively partitions the current set of elements into two subsets by 

computing a minimum weight cut. If the sub graph induced by the current set of 

elements has a positive minimum cut value, then it is declared a kernel. Otherwise, 

=f(nj, np, i)



 

the set is split into two subsets separated by the minimum cut. The set of kernels and 

the set of singletons (elements not assigned to kernels) serve as a basis for the 

eventual clusters that are obtained by merging singletons and kernels heuristically. 

 CLICK uses a probabilistic model in order to determine the weights on graph edges 

and the stopping criterion. The key probabilistic assumption of the model is that 

pairwise similarity values between elements, S(x,y),  are normally distributed, i.e. 

S(x,y) ),(~ 2
TTN ??  if (x,y) are 'mates', and S(x,y) ),(~ 2

FFN ??  if (x,y) are 'non 

mates', where µT >µF. This assumption often holds on real data. These parameters as 

well as the probability that two elements are 'mates' (pmates), are estimated using the 

EM algorithm (see e.g., Mirkin et al. 1996). 

EXPANDER operates CLICK via an external module written in C++ by Naama 

Arbily and Dr. Roded Sharan from the Computational Genomics group of Tel-Aviv 

University. 

4.3.4 Hierarchical clustering 

Hierarchical clustering does not partition the genes into subsets. Instead it creates a 

hierarchy of the elements that can be represented by a dendrogram. This can be done 

using the 'agglomerative' method (Eisen et al. 1998), which starts with an initial 

partition into single element clusters and successively merges clusters until all 

elements belong to the same 'cluster'.  

The algorithm iteratively merges clusters whose similarity value is the highest. After 

merging two clusters the dissimilarity (distance) matrix changes, and the new 

distances (between the merged clusters and all the other clusters) are calculated in one 

of three schemes: 

a) Single-linkage: ? },min, k jk ijik ddd ??  

b) Complete-linkage: ? },max, k jk ijik ddd ??   
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 where ni is the number of elements in cluster 

i. 

In EXPANDER, hierarchical clustering is performed using the above method, and 

distance calculation scheme can be selected by the user. 



 

4.4 Biclustering 

In gene expression data, a bicluster is a subset of the genes exhibiting consistent 

patterns over a subset of the conditions. Biclustering overcomes some of the 

limitations of clustering: first, in clustering one assumes that related genes behave 

similarly across all measured conditions. This assumption does not hold for large 

datasets containing hundreds of heterogeneous conditions from many experiments.  

Second, a clustering solution is a partition of the genes into disjoint sets, implying an 

association of each gene with a single biological function or process, which may be an 

oversimplification of the biological system (Tanay et al. 2002). 

4.4.1 SAMBA  

The SAMBA algorithm for biclustering (Statistical Algorithmic Method for Bicluster 

Analysis) was developed in the computational genomics group of Tel-Aviv University 

(Tanay et al. 2002).  It detects significant biclusters in a large expression dataset, 

using a graph theoretic approach coupled with statistical modeling of the data. The 

data is represented as a bipartite graph G=(U,V,E), where: U is the set of conditions, 

V is the set of genes, and there exists an edge e=(u,v) if and only if  u responds to v 

(expression level of gene u changes significantly in condition v).  

The SAMBA algorithm detects significant biclusters by using graph algorithms to 

find sub-graphs of the described bipartite graph that are relatively dense. For more 

details see (Tanay et. al. 2002).  

EXPANDER operates SAMBA via an external module written in C++ by Amos 

Tanay from the Computational Genomics group of Tel-Aviv University. 

 

4.5 Analysis of clustering solutions 

After clustering/bi-clustering gene expression data, we wish to explore the biological 

quality and meaning of the results. Several methods are implemented in EXPANDER 

to assess the quality of a clustering solution and to explore its biological meaning.  



 

4.5.1 Homogeneity and separation scores 

Homogeneity and separation measurements can be used in order to assess the quality 

of a clustering solution. In EXPANDER the extent of homogeneity within each 

cluster is calculated by averaging the similarity of all pairs of genes that belong to that 

cluster. The extent of separation is calculated by averaging the similarity of all pairs 

of elements from different clusters.   

4.5.2 Functional analysis 

The functional analysis calculation is performed in order to detect clusters that are 

significantly enriched for genes from a certain functional class. Enrichment is 

evaluated by comparing the frequency of genes of a certain function in the cluster to 

the frequency of that function in the set of all genes, which is called the background 

set. To achieve this EXPANDER utilizes functional annotations (supplied in external 

files for mouse, human and yeast), which use the standard vocabulary introduced by 

the Gene Ontology (GO) consortium (Ashburner et al. 2000). To identify enriched 

functional categories a hyper geometric calculation is performed and a p-value is 

calculated for each pair of a cluster C and functional class f: 
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Where n is the size of the background set, Kc is the number of genes in cluster C that  

belong to functional class f, and Kb is the number of genes in background set that 

belong to functional class f. If a p-value is below a certain threshold, then the cluster 

appears to be enriched with that functional category. 

EXPANDER operates functional analysis via an external module written in Perl by 

Amos Tanay from the Computational Genomics group of Tel-Aviv University. In this 

implementation the user can control the level of the functional class in the GO tree by 

setting a parameter of 'maximal class size' so that classes larger than that size are not 

taken into account (they are considered too general). If two groups of genes 



 

corresponding to two functional classes in the same cluster are very similar, both 

functions are treated as one. This is performed in order to reduce the level of 

degeneracy in the results.  

The background set used for calculation is determined by the user. It can be the whole 

dataset, the filtered data set or a set provided by the user.  

Currently, no correction for multiple tests is applied when performing functional 

analysis via EXPANDER. The used functional attributes are highly redundant and 

strongly inter-dependent, and the subject of multiple tests correction when tests are 

not independent is still being studied. Thus, correction will have to be added in the 

future (A conservative Bonferroni correction would multiply the p-values by the total 

number of tests, i.e., the number of clusters times the number of functional classes). 

 

4.5.3 Promoter analysis 

The goal of promoter analysis is to identify the transcription factors that bring about 

the observed differences in gene expression in the data. To achieve this, EXPANDER 

employs a promoter analysis software called PRIMA (PRomoter Integration in 

Microarray Analysis) that was developed at the computational genomics group in Tel-

Aviv University (Elkon et al. 2003).  

Based on the assumption that genes exhibiting similar expression patterns across 

multiple conditions will share cis-regulatory elements in their promoters, PRIMA 

seeks out these common sequence elements. Given a target set of promoters (e.g., the 

promoters of genes in an identified cluster), a background set of promoters and a 

collection of known binding site profiles (see below), PRIMA performs statistical 

tests (using a hyper-geometric calculation) in order to identify transcription factors 

(TFs) whose binding site profiles are significantly more prevalent in the target set 

than in the background set. For each cluster and each TF binding site profile a p-value 

is calculated.  

The background set used for calculation is determined by the user. It can be all genes, 

the genes left after filtering or a set of genes provided by the user. If the p-value is 

sufficiently low, then the cluster appears to be enriched with that binding site. At the 

user's request, the Bonferroni multiple tests correction can be applied on the results. 



 

In order to perform this analysis efficiently, TF motif fingerprint files for each species 

(currently human and mouse) are supplied with EXPANDER. A set of 19,244 human 

promoter sequences, spanning from 1000 bp upstream the transcription start site 

(TSS) to 200 bp downstream the TSS, was scanned using PRIMA in order to locate 

putative binding sites (hits). The binding sites are modeled as a position-specific 

weight matrix, or PWM. The scan was performed for each TF motif in the Transfac 

database (Matys et al. 2003) version 7.4 (April 2004). The number of hits of a PWM 

in each promoter is called the PWM's fingerprint. The human promoter sequences 

were downloaded from Ensembl (http://www.ensembl.org), release 19.34b. Another 

set of fingerprints was prepared on mouse promoters (19,923 promoters, Ensembl 

release 19.30). 

EXPANDER operates PRIMA via an external module written in C++ by Chaim 

Linhart from the Computational Genomics group of Tel-Aviv University. 
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In this chapter we describe the main visualization methods used in EXPANDER.  

Two datasets are used in the following examples: the first, referred to as dataset A, is 

yeast cell cycle data that is constructed of 698 genes over 72 conditions (Spellman et 

al. 1998). The second, referred to as dataset B, is expression profiles of mouse lymph 

nodes of wild-type and ATM-/- mice at different time points after irradiation. Genes in 

dataset B were filtered using the fold change method (see section 7.1) and the filtered 

dataset used here is constructed of 1205 genes over 6 conditions (see section 7.1).  

Additional examples are provided in chapter 7. 



 

5.1 Matrix displays 

5.1.1 Expression matrix 

This tool is very similar to "heat map" 

matrix representation introduced by Eisen 

et al. (1998).  Gene-expression data are 

rendered on the screen either in color or 

gray levels (colors can be configured via 

the 'Settings' dialog, accessible from the 

'Options' menu of the main menu bar). In 

the color display blue (green) indicates 

under-expression, and yellow (red) 

indicates over-expression.  In the grayscale 

display a darker rectangle indicates a 

higher expression value. 

 A color scale appears next to the matrix 

(upper right side) and is also available as a 

mobile frame through the 'Options' menu 

(or through the right click pop-up menu).   

When data are clustered, this visualization 

is available also with rows ordered 

according to clusters. Columns appear in 

their original order in the matrix. 

 

 

 

Figure 5.1.1.a: An example of the matrix visualization of dataset 
A. Only 20 out of 72 conditions are shown here (the user can 
select which conditions will appear in the visualization). Row and 
column orders here are as in the input, but reordering can be done 
in several ways (see below). 

 

 

 

 



 

In grayscale display grey levels can take values between 0 (black) and 255 (white). 

The value is calculated using the following equation: 
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Where SV is the value of color switching and Xi, Xmax and Xmin are as described 

above. The logarithmic scale is used since it is more sensitive to small values and less 

influenced by higher extreme values.  

In order to reduce the influence of extreme values on the color scale, the maximal, 

minimal and average expression values are calculated using a sample vector of 

numbers that are randomly selected from the matrix, and disregarding the top and the 

bottom 5%. 

 



 

5.1.2 Similarity matrix 

This tool shows the similarity matrix representation used by Ben-Dor et al. (1999). It 

presents similarity values between expression patterns of all pairs of genes. The 

similarity measurement used in EXPANDER is the Pearson correlation coefficient. 

The symmetric similarity matrix has rows and columns corresponding to elements 

(usually genes). Similarity values are rendered on the screen either in color or gray 

levels (colors can be configured through the ‘Matrix Display’ dialog box, accessible 

from the 'Options' menu of the main menu bar). 

In the color display, yellow (red) 

indicate a similarity value above 

average, and blue (green) indicate 

a similarity value below average. 

In the grayscale display, a darker 

cell indicates a higher similarity. A 

color scale appears next to the 

matrix (upper right side) and is 

also available as a mobile frame 

through the `Options` menu (or the 

right click pop-up menu).  

When data are clustered, this 

visualization is available also with 

rows ordered according to clusters. 
 

Figure 5.1.2.a. a similarity matrix display for clustered 

gene expression data of dataset A. Rows and columns here 

are ordered according to the clustering solution, so that 

clustered elements appear contiguously. The clusters are 

noticeable as rectangles along the main diagonal.   

 



 

5.2 Pattern displays 

5.2.1 Mean cluster patterns 

This tool displays the mean pattern of each cluster in a separate panel. In each panel 

the x-axis contains the conditions and the y-axis is the expression value. The mean 

pattern is displayed along with error bars representing standard deviations. 

 

Figure 5.2.1.a. Mean patterns display of the clustering solution of dataset A. Only 8 conditions are 
displayed (can be determined by the user) so that pattern differences will be noticeable. (The clustering 
is the same as in fig 5.1.2.a). 

Upon clicking on one of the panels, a frame is opened containing a list of all genes in 

the cluster (probe IDs and gene symbols). The list can be sorted according to one of 

the columns by clicking on the column header. 



 

5.2.2 Cluster contour 

This tool displays a contour of a 

particular cluster selected by the 

user. A contour of a cluster 

consists of two sets of line 

segments, one representing the 

mean pattern plus one standard 

deviation, and the other 

representing mean pattern minus 

one standard deviation. 

 

Figure 5.2.2.a. A contour of cluster number 1 from a 
clustering solution for dataset A. Only 8 conditions are 
displayed (can be determined by the user). 

  

5.2.3 Patterns of all genes in a cluster 

This tool displays a graph of all 

gene patterns in a particular 

cluster selected by the user. Each 

pattern appears in a different 

color. 

Upon clicking on the panel, a 

frame is opened containing a list 

of all genes in the cluster. The list 

can be sorted according to one of 

the columns by clicking on the 

column header. 

 

Figure 5.2.3.a. Patterns of all genes in cluster number 1 
from a clustering solution for dataset A. Only 8 conditions 
are displayed (can be determined by the user). 



 

5.3 Scatter plots 

5.3.1 PCA analysis display 

This tool transforms the original 

data from an n-dimensional space 

(where n is the original pattern 

length) to a 2 dimensional space, 

so that each gene is represented 

by a dot on an XY scatter plot. 

The transformation is based on 

the PCA (Principal Component 

Analysis) algorithm 

(Raychaudhuri et al. 2000). 

If clustering is performed before 

operating the tool, the dots 

representing the genes on the 

chart appear in different colors, 

according to their cluster 

numbers.  The display tool tip 

shows the name of the gene 

represented by the dot located 

under the curser. 

Figure 5.3.1.a. A PCA analysis display of dataset A after it 
has been clustered. Each color represents a different 
cluster. Cursor position on the scatter plot corresponds to 
the gene SRI1. 

 

 



 

5.3.2 Data plots of two arrays 

This tool displays a scatter plot of two 

arrays, selected by the user. The ith point 

is (x,y) if the expression value of the ith 

gene is x in array 1 and y in array 2. For 

normalized data, points should be located 

around the y=x line (marked on the 

scatter plot). Two additional lines 

corresponding to y=x+1 and y=x-1 are 

also marked on the plot.  Genes that 

deviate markedly from these bounds 

indicate significant overexpression in one 

array (condition) versus the other, and 

may be potentially useful for explaining 

the biological differences between the 

conditions.  

Figure 5.3.2.a. A scatter plot of two arrays from 
dataset B. The displayed arrays are wt0 - wild 
type before treatment with ionizing radiation vs. 
wt30 – wild type 30 min. after treatment with 
ionizing radiation.  Data are well normalized, 
thus, most points are located around the y=x line. 
Cursor position corresponds to affymetrix probe 
with id: 101578_f_at. 

 

5.4 Histograms 

5.4.1 Functional analysis display 

After performing functional analysis (see section 4.4.2 for details) this tool displays a 

histogram for each cluster, containing a column for each significant functional class 

(i.e., one that is much more frequent than would be expected at random). The 

definition of significance depends on the user’s selection of threshold p-value. The 

height of a column is proportional to the percentage of the corresponding functional 

class in the cluster.   

 



 

 

Figure 5.4.1.a. The display of functional analysis performed on a clustering solution dataset A. 
Threshold p-value had been set to 5*10-10.  

 

 

 

Upon clicking on a column, a dialog box is displayed 

containing the class name, p-value, and a list of the 

genes in the cluster that belong to the class. For mouse 

and human these lists are connected to the web, so that 

when a user clicks on an item in the list, the relevant 

LocusLink page is displayed with information 

regarding the gene. 

 

Figure 5.4.1.b. A dialog box which 
is displayed upon clicking the 
DNA metabolism column in the 
histogram shown in Figure 
5.4.1.a. 

 



 

5.4.2 Promoter analysis display 

After performing promoter analysis (see section 4.4.3 for details), this tool displays a 

histogram for each cluster, containing a column for each significantly enriched 

transcription factor motif. The required significance level is determined by the user’s 

selection of threshold p-value.  

The height of a column is proportional to the ratio of the frequency of the TF motif in 

the cluster vs. its frequency in the background set.  Upon clicking on a column, a 

dialog box is displayed containing the TF name, p-value, the percentage of promoters 

in the cluster that contain the motif, relative abundance (frequency in cluster divided 

by frequency in background set) and a list of the genes in the cluster that contain the 

motif in their promoters. For mouse and human these lists are linked to the web, so 

that when a user clicks on an item in the list, the relevant LocusLink 

(http://www.ncbi.nlm.nih.gov/LocusLink/) page is displayed with information 

regarding the gene. 

 

 

Figure 5.4.2.a. The display of promoter analysis performed on a clustering solution of dataset B. 
Threshold p-value has been set to 0.05, and the Bonferroni correction for multiple tests has been used.   



 

5.5 Dendrogram trees 

5.5.1 Hierarchical clustering results display 

After performing a hierarchical 

clustering (see section 4.2.4 for 

details) this tool displays the 

resulting dendrogram tree in one 

of the following manners 

according to the user's selection: 

a) A stand alone vertical tree 

with gene names next to the 

leaves. 

b) A vertical tree at the left side 

of an expression matrix, so that 

the matrix rows are ordered 

according to the order of the tree 

leaves. 

c) A tree that appears both 

vertically (at the left side) and 

horizontally (above) the 

similarity matrix, with rows and 

columns ordered according to 

the order of the tree leaves. 

 

 

Figure 5.5.1.a. A display of hierarchical clustering results 
on dataset A. The complete linkage scheme had been used to 
calculate distances. In this example the dendrogram tree is 
displayed next to the expression matrix. 

 



 

5.6 Data tables 

5.6.1 Biclustering results data table 

After performing biclustering (see section 4.3 for details), this tool displays a table of 

all biclusters. Filtering can be performed according to: bicluster score, number of 

genes, number of conditions or maximum p-value for enriched functional class. 

 

 

Figure 5.6.1.a. Part of the data table displaying the results of biclustering of dataset A. Functional 
analysis had been performed on the biclusters. Here the biclusters are sorted alphabetically according 
to the name of the most enriched functional category. 

 



 

Upon selecting (double clicking) a line in 

the table, an expression matrix is 

displayed (see section 5.1.1 for details). It 

shows the sub-matrix of the expression 

data for the genes and conditions that 

belong to the bicluster. An additional 

column is displayed for each significantly 

enriched functional class that appears in 

the table, indicating for each gene, 

whether it belongs to that class. Gene and 

condition names appear next to the 

matrix.   

 

 

Figure 5.6.1.b. An expression matrix of bicluster 
#31 from the biclustering results shown in Figure 
5.6.1.a. The first two columns correspond to 
functional classes that were detected as 
significantly enriched in this bicluster. A red mark 
in such a column indicates that the gene belongs 
to this functional class. We can see that there are 
13 'cell cycle' genes of which 10 are 'DNA 
replication and chromosome cycle' genes in this 
bicluster. 

 



 

66  SSooffttwwaarree  ddeevveellooppmmeenntt  aanndd  aarrcchhiitteeccttuurree  

In this chapter we describe the software development process and outline the 

architecture and its main building blocks. We also explain our considerations in 

making the key decisions regarding the development.   

6.1 Selecting the development language 

EXPANDER was developed in Java for the following reasons: 

? The java programming language is object oriented, and thus suitable for such a 

large scale application that requires many different modules that interact with one 

another. 

? A code written in Java is cross platform, i.e., it runs with little or no changes on 

different operating systems. This enables biologists to use the application on any 

operating system. 

? The Java language incorporates graphical implementations for window 

application programming, that give solutions to differences between windowing 

systems of different operating systems (e.g. Win32 vs. Linux), and can be easily 

expanded. This is very important to the development of graphical visualization 

tools such as this one.   

? It is relatively simple to run external modules written in other (more efficient) 

programming languages via an application written in Java. This is achieved by 

using the Runtime class supplied by SUN. 

6.2 Architectural considerations and overview 

6.2.1 Architecture considerations 

The main guidelines leading me in my design were: 

? Create a clear separation between data management, data analysis and graphic 

display.    

? Exploit the advantages of object oriented programming (inheritance, 

encapsulation etc.) in order to make the code as simple and elegant as 

possible, and to simplify the addition of new functionalities.   



 

6.2.2 Overview 

The considerations described above led to the planning of the scheme described in 

Figure 6.2.2.a. The program structure is presented as three main modules, the Data 

Management module that consists of the Data package, the Data Analysis module 

that consists of the Algorithm and the Visualization Tools packages and the 

Graphical Interface module that consists of the Display, Display Frame and Dialog 

packages. During the program operation the modules interact with each other.  The 

Utility Package contains several classes that are used by all modules, and thus, is an 

open access package. A more detailed overview scheme will be given in section 6.8, 

after the components have been described. 

 

 
Figure 6.2.2.a. A scheme describing the general design of the functional modules in the program. Each 
general module (package) is represented by a rectangle, and interactions between modules are 
represented by arrows.   
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6.3 Data management 

The following classes are used in EXPANDER to store and access the data, while the 

application is running:  

6.3.1 The FloatMatrix class 

This class was created in order to simplify operations on matrices containing numbers 

in floating point representation. Such matrices are often used in the program. Each 

object contains a two dimensional array of floating point numbers, and some 

additional parameters such as the average value, whether or not the matrix is 

transposed, etc. In addition to ordinary 'get' and 'set' methods, this class also contains 

some matrix normalization and standardization schemes that can be applied on any 

matrix, and are used for microarray data normalization and standardization. 

 

6.3.2 The BasicElement and ElementArray classes 

The BasicElement class was created in order to represent one gene or one condition in 

the data. For each gene/condition, an object of BasicElement is created, containing its 

name, id, whether or not it is being used for current calculations and a few other 

details. 

The ElementArray class holds and manages the entire set of genes/conditions in the 

data. It contains an array of objects of type BasicElement. In addition to ordinary 'get' 

and 'set' methods, this class can perform variable queries regarding the data such as: 

getting an element index by its name, getting an array of names of the used elements 

only (elements that are currently flagged as used for analysis), etc.  



 

6.3.3 The MainData class 

 
Figure 6.3.3.a. A scheme describing the structure of the MainData module of the program. Each 
rectangle represents an object of a class. Class names are written in the rectangle. The names of all 
main data members in the MainData class are written in the MainData rectangle, and the arrows are 
pointing at the corresponding class objects.   

  

This class holds and manages most of the data used by the program. A single object of 

this type exists at any given time, and is initialized when the user requests to load data 

from an input file. The structure of the class is described in Figure 6.3.3.a. 

The class contains two objects of type ElementArray (one for genes and one for 

conditions) and three objects of type FloatMatrix (for input expression data, 

preprocessed expression data and similarity data). It also contains some additional 

parameters such as the recently used standardization method, the used similarity type, 

the input data type, etc. In addition to ordinary 'get' and 'set' methods, this class also 

contains methods for loading input data from file, for preprocessing data (filtering, 

normalizing and standardizing expression data), calculating similarity matrix 

according to expression data, and writing data into files (this is required for operating 

external modules via EXPANDER).   

6.3.4 The Bicluster and BicSet classes 

The Bicluster class was created in order to contain all information regarding one 

bicluster calculated by operating a biclustering algorithm. It contains a vector of 
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indices of all genes in the bicluster and a vector of indices of all conditions in the 

bicluster, as well as a score. It also contains required 'get' and 'set' methods. 

The BicSet class holds and manages the entire set of Bicluster objects generated by a 

biclustering algorithm. In addition to the set of objects of type Bicluster, this class 

also contains a vector of significant functional annotations for each bicluster (if 

calculated). It contains some simple 'get' and 'set' methods as well as several query 

methods such as getting an array of all gene/condition names in a particular bicluster, 

or getting a FloatMatrix object containing expression data of a particular bicluster. 

6.3.5 The Preferences class 

This class contains all of the user's preferences for the application settings. These 

include the threshold p-value for functional enrichment analysis, the organism being 

studied, matrix display preferences (colors etc.), biclustering algorithm parameters, 

and more. Only one object of this type exists when the application is running, and it 

reads and writes itself from and into a preferences file, saved after the application is 

closed, so that user preferences will be saved from one session to another. 

  

6.4 Data analysis 

Each of the top level analysis methods used by EXPANDER is incorporated in a class 

that is derived from the general abstract class Algorithm.  

6.4.1 The Algorithm class 

The Algorithm class is an abstract class that represents a general algorithm. It is used 

as a super-class from which all algorithm classes in the program are derived. It 

contains a reference to the MainData object, as well as a list of temporary files that 

are to be deleted after completing the operation of Algorithm by incorporating a 

clean-up method. It also contains the virtual getType and operate methods (these are 

methods that must be implemented in derived classes). 



 

6.4.2 The ClusteringAlgorithm class 

The ClusteringAlgorithm class is derived from the Algorithm class and is a super-class 

of all clustering algorithm classes. It contains an array of integers that holds the 

clustering results, and some additional data such as clusters homogeneity and 

separation measurements. 

This class implements all operations that are to be performed by all clustering 

algorithms, such as calculating homogeneity and separation of clustering solutions, 

calculating the mean patterns of clusters, writing a clustering solution into a file, and 

more. 

6.4.3 Classes extending ClusteringAlgorithm 

A separate class has been created for each clustering algorithm implemented by 

EXPANDER. Each such class is derived from the ClusteringAlgorithm class, and 

contains a different implementation for the 'operate' method. The SOMAlgorithm and 

KMeansAlgorithm classes contain the algorithm steps in the code, whereas the 

ClickAlgorithm class operates an external module, and reads the resulting output into 

its clustering results vector. 

6.4.4 Classes extending Algorithm 

Some of the algorithms implemented by EXPANDER are not clustering algorithms. 

These are also derived from the generic Algorithm class. An example for such a class 

is the PCAAlgorithm class which implements the PCA algorithm in order to project 

each expression pattern from n dimensions to two dimensions.  

6.4.5 Handling external modules via Algorithm classes 

Some of the algorithms act as interfaces which operate external modules in order to 

perform the required analysis. An example for such an algorithm is the CLICK 

clustering algorithm or the functional analysis algorithm. These classes are required to 

operate an external script/application located under the EXPANDER directory. To 

handle the operation of such external modules we have used the java class Process. In 

order to overcome a documented Java bug which causes the Process object to 'hang' 

during operation, we have created the class ExternalProcessHandler. An object of 



 

this class is created for each process, and operates by reading the input and error 

streams generated by the process, and generating relevant messages to be displayed 

by EXPANDER. 

6.4.6 From data analysis to display: the visualization tools 

In the process of generating and manipulating a visualization in EXPANDER, some 

calculations are carried out (with or without using an Algorithm class), after which, a 

suitable display object is created. In some cases, additional input is requested from the 

user. These stages are all performed   by the visualization tool. 

The visualization tool is the 'glue' that connects the data, the analysis and the display. 

It is created by the main frame when the user requests the use of a tool (for example: 

expression matrix). The tool has constant access to the main data objects, and it 

creates the display panel and frame to display analysis results. 

 Each visualization tool is defined in a class that is derived (directly or indirectly) 

from the abstract super-class VisualizationTool. 

The VisualizationTool class 

The VisualizationTool class is a super class from which all visualization tool classes 

are derived. It creates and holds a DisplayPanel object and a DisplayFrame object. It 

also holds a reference to the MainData object. It defines all operations that are 

required in all or most of the visualization tools (such as the method for creating a 

display frame).    

The VisualizationToolWithClust class 

The VisualizationToolWithClust class is derived from the VisualizationTool class. It 

holds a reference to a ClusteringAlgorithm object, as well as methods designed to 

handle clustering results (e.g., a special method for creating a table that contains 

clustering information). All visualization tools that operate on clustered data only are 

derived from this class. Two examples for such classes are the 

FunctionalAnalysisTool and the PromoterAnalysisTool that are both derived from the 

VisualizationToolWithClust class. The FunctionalAnalysisTool class operates an 

external module that calculates the significance of different functional classes in the 



 

each cluster, and detects significantly enriched classes (for details see section 4.5.2). 

The PromoterAnalysisTool class operates an external module, the PRIMA software, 

that performs statistical tests in order to identify transcription factors (TFs) whose 

binding site profiles are significantly enriched in the different clusters (for details see 

section 4.5.3). Both classes utilize the ExternalProcessHandler class, described in 

section 6.4.5, to handle these external processes. 

6.5 The graphical Interface 

The graphical interface is composed of the input dialogs (used for data input) and the 

different display panels that are used for visualizations and display of analysis results. 

The Dialog package contains the classes that are used for requesting input data from 

the user. All are derived from the java class Dialog.  

To generate the different displays, a class was defined for each display type. Each 

display class is derived (directly or indirectly) from the abstract super-class 

DisplayPanel (described below). The Display package contains all classes that are 

used to display graphical visualizations on the screen. Drawing on the screen is 

performed using the Swing graphical user interface library 

(http://java.sun.com/docs/books/tutorial/uiswing/).  

6.5.1 The DisplayPanel class 

The DisplayPanel class is derived from the Swing class JPanel. It implements all 

operations that are required for the graphical displays such as: a print method that 

enables sending its contents to be printed, a paint method that is called whenever the 

panel is repainted on the screen, and a mouse motion listener event handler that 

detects mouse motions and operates a method that updates the tool-tip text according 

to the position of the cursor on the display.  

6.5.2 Displaying matrices 

The matrix display is performed using the MatrixDisplayer class, which is derived 

from the DisplayPanel class. Matrix colors are rendered according to the float values 

in each position in the matrix.  



 

Color rendering is performed once upon display initiation, and saved for as long as 

the displayer object exists. This is because recalculating the colors each time a 'paint' 

event takes place is very time consuming. The colors are kept in a data structure 

called colorMatrix, which is an array of objects of type ColorArr. Each ColorArr 

represents one color, and contains a vector of positions on screen (x,y) which are to be 

colored in that color. 

Whenever a 'paint' event takes place, the matrix is repainted on the screen via the 

'onDisplay' method which uses the Java Graphics class to change the color and then 

fill all rectangles that are to be colored in that color (according to the colorMatrix data 

structure). Rectangle size is determined according to the scale used, and is changed 

when the user operates the zoom in/out option. 

6.5.3 Displaying charts 

The following chart displays are implemented in EXPANDER: XY scatter plot, 

pattern displayer and histogram. These are implemented in three separate classes, 

XYScatterDisplayer, PatternDisplayer, and Histogram, which are all derived from the 

Chart super-class.  

The Chart  super-class holds all parameters and methods required for drawing the axis 

system and labels. The display magnitude (scale) is determined according to the size 

of the frame, and is updated automatically whenever the frame is resized (i.e., 

whenever a 'paint' event takes place).  

The XYScatterDisplayer class holds a vector of points (x, y, point name, point color)  

to be displayed on the chart. Points are painted on the screen in the form of a '+' 

symbol, which is centered round the relevant (x, y) values. This class also holds a 

vector of point positions in pixels on the screen. This vector is updated whenever the 

display is repainted on the screen. It is used in order to efficiently display the 

appropriate tool-tip text whenever the cursor is placed on or very close to one of the 

points.    

The PatternDisplayer class holds a vector of patterns. Each pattern is described by a 

series of float numbers that represent the y values of the pattern, a name, a series of 

error bar sizes (one for each point) and a color (the x values of the pattern are 

consecutive, e.g., time points). This class also holds a vector of pattern positions in 



 

pixels on the screen. This vector is updated whenever the display is repainted on the 

screen. It is used in order to efficiently display the appropriate tool-tip text whenever 

the cursor is placed on or very close to one of the patterns.    

The Histogram class holds a vector of all histogram columns. Each column is 

described by its position, width, height, name, color and reference to a dialog box that 

contains some information regarding the column. On the display each column is 

defined by the application as a button, which when clicked, causes the display of the 

associated dialog box. 

6.5.4 Displaying data tables 

Data tables are used by EXPANDER to display clustering results, bi-clustering 

results, the contents of a selected cluster, and other types of required information. The 

Swing class JTable is used in order to display a data table. Data are input into a table 

using a table model (implemented in class ClusteredDataTableModel). In order to 

allow sorting a table according to the contents of a column, a TableSorter class was 

written. 

The biclustering results table can be filtered according to the user selection. This is 

performed in the 'updateTable' method of the class BicResDisplayer by using a 

BicsFilter object. The BicsFilter class holds various parameters that define a filter 

operation, such as: minimal and maximal score, minimal and maximal number of 

conditions per bicluster, minimal and maximal number of genes per bicluster, 

threshold functional annotation p-value, etc. This class implements a method that 

receives a Bicluster object, and returns whether or not it should be displayed under the 

current filter definitions. 

6.5.5 Displaying dendrogram trees 

Dendrogram trees are used in EXPANDER to display the results of a hierarchical 

clustering algorithm. The TreeNode class is used to hold all dendrogram tree data. In 

order to display a dendrogram tree on the screen the DisplayTree class was defined. 

This class holds the tree in the form of a TreeNode object as well as an array of leaf 

labels and leaf positions on screen. It also implements several drawing methods that 

are used to draw the tree on the screen.  



 

6.5.6 Creating the display frames 

In order to show a display panel on the screen, a frame that contains this panel must 

be created. This frame is created using the DisplayFrame class (or one of the classes 

derived from it). An object of that type is created by the visualization tool in the 

'createDisplayFrame' method. The display frame contains a separate menu bar, which 

enables the user to perform operations on the display, such as zoom in, zoom out, save 

etc.  

Each DisplayFrame object contains one DisplayPanel object, a tool bar containing 

buttons that enable operations on the display, a pop-up menu and a dialog box with 

information regarding the display. Most of the methods implemented in the 

DisplayFrame class are event handlers for handling different menu options.  

6.6 The Main Frame - How it all comes together  

 
Figure 6.6.a. A scheme describing the MainFrame class and its key components. Data members of the 
class are listed in the MainFram rectangle, and arrows are pointing at the rectangles representing the 
different objects that comprise them. 
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 The main frame contains the main menu bar, through which the user operates the 

different analysis and display tools, as well as a status bar, through which the 

application can send messages to the user regarding the application's status. When an 

input data file is loaded by the user, the main frame creates and holds the MainData 

object. The clustering and biclustering algorithms are also created and operated by the 

main frame upon user's request, and are kept as data members. The main frame also 

holds a vector containing all open displays, and an object of type Preferences, 

containing all currently selected application settings. 

Most of the methods implemented in the main frame class are event handlers for 

handling different menu options. 

6.7 The utility Package 

This package contains classes for which no objects are formed. These classes are 

designed to contain information/methods that are relevant for the whole application at 

all times. 

6.7.1 Handling float vectors – the VecCalc class 

The VecCalc class contains various methods that are designed to handle floating 

number vectors. It implements operations such as sort, find maximal value, find 

minimal value, calculate average, calculate standard deviation, etc. The methods can 

be used by all objects in the application, and do not require the existence of an object 

of this type. 

6.7.2 The Strings class 

All constant strings used by the application (e.g., messages to the user) are defined in 

the Strings class. This simplifies the process of changing text since it allows all 

changes to be performed only once, and in a well known, fixed place.  

The Strings class also defines several string manipulation methods that are not 

available in the Java.String class, and are required by several classes in the 

application. An example for such a method is the floatToStr method, which deals with 

displaying a float number as a string.  



 

6.7.3 The Constants class 

All constant integers (enumerations) that are used in more than one place in the 

application are defined in the Constants class. Again, this simplifies the process of 

changing such enumerations, since it allows all changes to be performed only once, 

and in a well known, fixed place.  

6.7.4 Connecting to the WEB – the URLHandler class 

Some of the data tables displayed by EXPANDER contain gene names, which can be 

used as links to web pages containing information regarding those genes (upon 

clicking such a name, a web browser is opened, and displays the relevant 

information). To implement this feature I have created the URLHandler class. The 

URLHandler class operates the web browser via the Java.Runtime object, by sending 

the appropriate command line, selected according to the operating system on which 

the application is running. In case of failure, this class generates the proper error 

message. Once again, the methods can be used by all objects in the application, and 

do not require the existence of an object of this type. 

6.8 A detailed overview 

We are now ready to view in more detail the overall architecture of the system. Figure 

6.8.a shows a detailed version of the scheme displayed in Figure 6.2.2.a. The main 

classes in each package are displayed within the package rectangle. The relations 

between the different classes are described using arrows.    

 



 

 

Figure 6.8.a. A General scheme, describing the different packages, the central classes that they contain and 
the different relationships among them. The MainFrame class creates and manages all other components. 
Classes of the Algorithm package can access instances of the Data package classes. Classes of the 
Visualization tool package can access, create and manage instances of classes from the Data package, 
Algorithm packages, Dialog package and Display Frame package, that are required for the operation of these 
tools. The Utility package has open access since it contains classes that are required by all components.   
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In this chapter we present three examples of EXPANDER-based analysis of 

biological datasets. This allows us to demonstrate various capabilities of the software 

and to draw novel biological conclusions.   

7.1 Example 1: Analysis of oligonucleotide array data from 

the mouse lymph nodes 

7.1.1 The data  

The data we describe here were generated as part of an attempt to dissect the DNA 

damage response using gene expression profiles. The experiments were conducted by 

Sharon Rashi-Elkeles, Ran Elkon from the Shiloh lab in cooperation with Nir 

Weizmann and Ari Barzilai from the George S. Wise Faculty of Life Science in Tel-

Aviv University, Ninette Amariglio and Gideon Rechavi from the Department of 

Pediatric Hemato-Oncology unit of Functional Genomics at the Sheba Medical 

Center, and Chaim Linhart, Roded Sharan and Ron Shamir from the computational 

genomics laboratory in Tel Aviv University.  

Atm is a protein kinase encoded by the gene that is mutated in the human disorder 

ataxia-telangiectasia (A-T). The disease which is characterized by progressive 

neurodegeneration that leads to severe ataxia and many other defects including 

immune deficiencies, cancer proneness, chromosomal instability, and ionizing 

radiation sensitivity (Chong et al. 2000). Atm activity is required in cell cycle 

checkpoints and DNA repair after exposure to ionizing radiation. ATM-deficient cells 

exhibit an extremely high sensitivity to ionizing radiation and to multiple double 

stranded breaks.  

In this study, global transcriptional responses were recorded in wild-type and in Atm-

deficient lymph node tissues of mice exposed to whole body irradiation with 15 Gy of 

IR. mRNA was collected 0, 30 and 120 min after irradiation.  Affymetrix GeneChips 

MGU74Av2 were used in this study. The chips containing above 12,000 probe sets, of 

which 6000 correspond to functionally characterized mouse genes and the rest 



 

correspond to ESTs. Samples from untreated mice were probed in independent 

hybridization triplicates (three repetitions) and samples from irradiated mice were 

probed in independent hybridization duplicates (two repetitions). A representative 

expression level for each probe set in each of the six tested conditions was computed 

by averaging the probe-set signal intensities in the replicate arrays. This study has not 

been published yet. 

 

7.1.2 Loading the data 

The input file used in this analysis contains data for 6982 gene probes (Affymetrix 

IDs) and 6 conditions. These genes remained after filtering out all genes that were 

marked "Unpresent" by the Affymetrix software (i.e., genes that are not expressed in 

lymph node cells under any of the 6 conditions). Expression levels under 40 were 

arbitrarily set to 40. The conversion file contains the LocusLink IDs corresponding to 

probe Affymetrix IDs. Figure 1.1.2.a contains an image of the input dialog box that 

was used to load the data. 

 
Figure 1.1.2.a. The file input dialog box that was used to load the input data. The Raw Data File Name 
field contains the name of the expression data file. The IDs Conversion File field contains the name of 
the file that contains the LocusLink IDs corresponding to each gene ID from the expression file. The 
Data Type field was set to Oligonucleotide Array.  



 

7.1.3 Preprocessing the data 

A fold change filter was applied, so that only genes 

changed by a factor of at least 1.75 across the six 

tested conditions were selected. 1205 of the probe 

sets met this criterion. The remaining genes were 

displayed in a list shown in Figure 7.1.3.a.  

 

 

Figure 7.1.3.a. Part of the list of genes 
that remained after applying the fold 
change filter.  

 

Next, data were standardized so that the expression levels of each gene would have 

mean 0 and variance 1. Figure 7.1.3.b shows the menu option and dialog box that 

were used to operate the standardization.  

 
Figure 7.1.3.b. The menu option and dialog box that were used to operate the standardization. 



 

7.1.4 Viewing raw data 

The raw data were viewed using the Raw 

Data Matrix visualization. Figure 7.1.4.a. 

shows the displayed matrix. The resolution 

was changed using the Zoom in and Zoom 

out options. When using high resolution, 

gene names were displayed next to their 

corresponding rows in the matrix (not 

shown in figure).  

 
Figure 7.1.4.a. A fraction of the raw 
data matrix display of the data after 
filtration and standardization have been 
performed. A color scale appears at the 
top right corner of the display.  

7.1.5 Clustering the data 

The CLICK algorithm was used to 

cluster the genes into distinct 

subsets. CLICK identified 15 

clusters, out of which 9 contain 

more than 40 genes, and left 4 

outlier genes unclustered 

(singletons). For each cluster, the 

size and homogeneity are specified. 

The overall average homogeneity is 

0.8468 and the overall average 

separation value is  -0.0737.  

 
Figure 7.1.5.a. The clustering info dialog 
that was displayed after running the 
CLICK algorithm.  

 



 

7.1.6 Viewing clustered data 

A general impression of the clustering results was achieved 

by using the clustered expression matrix and the clustered 

similarity matrix visualizations.  

Figure 7.1.6.a. shows the clustered matrix display. The order 

of the six conditions here and in all other displays is: wild 

type time points 0, 30, 120, ATM-/- time points 0, 30, 120. For 

example, clusters 1 and 2 contain genes that respond 

primarily in the mutant, at time points 30 and 120 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.6.a. A clustered data matrix visualization of the CLICK 
clustering solution that was described in section 7.1.5. Patterns of genes 
that were clustered together appear consecutively. Clusters are separated 
by white lines.   



 

The clustered similarity matrix display can give a general impression of the 

similarity/dissimilarity between different clusters and the similarity of genes within 

the same cluster. In Figure 7.1.6.b. for example, we can see that cluster 1 is very 

different from clusters 2-5, 8, 9 and 13, and more similar to clusters 6-7, 10-12 and 

14.  

  

 
Figure 7.1.6.b. A clustered data similarity matrix display of the CLICK clustering solution. It can be 
seen that similarity within clusters is much higher than the similarity between genes from different 
clusters. An impression of the similarity between clusters is also given here.  

 

Cluster patterns were examined by using the 'All clusters mean patterns' visualization, 

shown in Figure 7.1.6.c. Cluster 1, for example contains 209 genes, which have an 

expression peak in experimental condition 5 (at30). Biologically, this cluster seems to 

contain genes that are over-expressed in Atm deficient mice shortly after exposure to 

IR (30 min.), and then return to basal level.  

Cluster 3 contains 175 genes, which have an expression peak in experimental 

condition 3 (120 min after exposure of wt cells to IR). Biologically, this cluster seems 

to contain genes that respond more slowly in wild-type mice after exposure to IR 

("second wave" response), but do not respond to IR in Atm-deficient mice. These may 



 

be genes that are directly or indirectly under regulatory control of ATM, and therefore 

the knock-out prevents their upregulation in response to irradiation. 

 
Figure 7.1.6.c. A mean patterns display of the CLICK clusters. Cluster number and size appear at the 
top of each panel. The X axis contains the condition numbers, and is interpreted in the legend at the 
right side of the frame. The Y axis contains the expression values. Error bars represent ±1standard 
deviation. In this display patterns seem to be very different from each other, indicating high separation 
between clusters, while error bars are not very big, indicating high homogeneity within clusters.    

 

Cluster content can be viewed by 

clicking the relevant panel in the 

display. This brings up a dialog box, 

containing all genes that belong to 

that cluster (fig. 7.1.6.d). 

 
Figure 7.1.6.d. A part of the cluster contents list that 
was displayed upon clicking the mean patterns display 
of cluster 1. 



 

7.1.7 Performing functional analysis on clusters 

In order to characterize the biological processes activated following IR, a functional 

analysis was performed on the clustered data. First, parameters were set through the 

settings dialog box (this box is reached from the Options menu). Mouse was selected 

as the examined organism, annotation type was set to 'GO' (using all three type of GO 

categories: process, function and location), analysis background set was set to 

'Original Data' (unfiltered) and threshold p-value set to: 5*10-6 (fig. 7.1.7.a). 

 

 
Figure 7.1.7.a. A snapshot of the Functional analysis settings dialog box, as it was configured prior to 
the functional analysis that is described in this section.  

 

The results of the analysis are shown in Figure 7.1.7.b. The p-values, frequency of 

classes within clusters and the lists of genes for each column were displayed upon 

clicking the relevant columns in the histogram (not shown). Cluster 2 was found to be 

highly enriched for genes of the immune response functional class (p = 7.3*10-14) and 

with genes of the response to pest/pathogen/parasite functional class (p = 4.54*10-9). 

Since cluster 2 contains genes that exhibit an expression pattern of "second wave" 

response in ATM-/- mice only, a possible biological explanation for these results is 

that the absence of a normal response in the cell to irradiation damages causes an 

inflammatory reaction in which the genes in cluster 2 are highly expressed.   



 

 Cluster 5 was found to be highly enriched for genes of the muscle development  and 

muscle contraction functional classes (p = 7.78*10-14 and 1.4*10-10 respectively). It 

was also found to be enriched for genes of the actine cytoskeleton and the 

cytoskeleton functional classes (p = 6.78*10-7 and 7.03*10-7 respectively). We found 

no good biological explanation for these results. 

  

 
Figure 7.1.7.b. A snapshot of the Functional analysis results display.  



 

7.1.8 Performing promoter analysis on clusters 

In order to reveal regulators whose activation is compromised in Atm-deficient 

tissues, promoter analysis was performed, assuming that genes that exhibit similar 

transcriptional expression patterns across multiple conditions will share cis-regulatory 

elements in their promoters. 

Parameters were set through the settings dialog. 'mouse' was selected as the examined 

organism, fingerprint file was selected, the background set was set to "Original Data" 

(unfiltered), and the threshold p-value was set to 0.05 with FDR Bonferroni correction 

(fig. 7.1.8.a). 

 
Figure 7.1.8.a. A snapshot of the promoter analysis settings dialog box, as it was configured prior to 
the analysis that is described in this section.  

 

The results of the analysis are shown in Figure 7.1.8.b. 



 

 

Figure 7.1.8.b. A snapshot of the resulting display of promoter analysis performed on the clusters 
described in section 7.1.5. p-values, relative frequencies and gene lists were displayed by clicking on 
the relative columns.  

 

Cluster 3 was found to be highly enriched with promoters that contain binding sites 

for NF-kappaB (NF?B_73 is another PWM for NF-kappaB), NF-kappaB_(p65) 

(which is a subunit of  NF-kappaB) and p53. The display shows that the incidence of 

the p53 binding profile is 4-fold higher among the promoters of cluster 3 than in the 

background set (p = 0.0041), and the incidence of the NF-kappaB binding profile is 3-

fold higher among the promoters of cluster 3 than in the background set (p = 0.0204).  

The results suggest that genes in cluster 3 might be regulated by one or more of these 

transcription factors, which are well established stress-induced transcriptional 

regulators (Amudson et al. 2003). These results support previous studies that reported 

compromised IR-induced activation of both NF-kappaB and p53 in Atm-deficient 

tissues and in cell lines derived from A-T patients (Banin et al., 1998; Li et al., 2001c; 

Piret et al., 1999 ; Saito et al., 2002). 

  



 

7.2 Example 2: Analysis of yeast cDNA microarray data 

concerning responses to environmental changes   

7.2.1 The data 

In this example we analyze a published dataset dealing with yeast stress responses. 

DNA microarrays were used to measure changes in transcript levels over time for the 

yeast genes, in response to a variety of stress conditions. These include temperature 

shocks, hydrogen peroxide, menadione (a superoxide-generating drug), diamide (a 

sulfhydryl-oxidizing agent), dithiothreitol (a disulfide-reducing agent), hyper-osmotic 

shock, amino acid starvation, nitrogen source depletion and progression into 

stationery phase. The expression levels were also measured under several 

environmental change conditions that are not considered stressful, such as 

temperature change from 37° to 25° and hypo-osmotic shock. The dataset contains 

gene expression measurements for all 6153 putative yeast genes in 15 different time 

series under various environmental conditions, generating a set of 173 expression 

profiles (Gasch et al. 2000).  

7.2.2 Loading the data 

Data was loaded without a conversion file since gene IDs in the input file match the 

IDs in fingerprint and annotation files supplied by EXPANDER.  



 

7.2.3 Biclustering the data 

Biclustering was performed on the entire 

dataset using default parameters. 124 

biclusters were detected. A part of the 

results is shown in Figure 7.2.3.a. 

Note the variability in the dimensions of 

the biclusters, with the number of 

conditions varying between 5 and 73 and 

the number of genes varying between 79 

and 350.  

 
 

 

 

 

 

Figure 7.2.3.a: A part of the biclusters table. 
Biclusters are sorted according to their score, and 
only the top scoring biclusters are displayed. 

 

7.2.4 Performing functional analysis on biclusters 

Functional analysis was performed on the biclusters. The whole dataset was used as 

background set, and only "Process" annotations were tested. Threshold p-value was 

set to 5*10-4 (Figure 7.2.6.a). 



 

  

Figure 7.2.4.a: Functional analysis settings used to analyze biclustering results. 

 

The resulting biclusters table contained also information on the significant functional 

classes in each bicluster. Part of the table is shown in Figure 7.2.6.b. 53 out of all 124 

biclusters scored higher than 1000. Over half of the biclusters consist of more than 

100 genes, and almost all of them consist of less than 40 conditions. 

 

Figure 7.2.4.b. Part the biclusters table that contains also significantly enriched functional classes. 
Four columns are used to describe each enriched functional class. These include annotation name, p-
value, percentage in bicluster and the number of genes in the cluster that have this annotation. Scroll 
bars facilitate browsing through the data. 



 

7.2.5 Viewing biclusters and significant functional classes  

Biclusters with high scores are viewed by clicking on the corresponding rows in the 

table. For each bicluster, an expression matrix is displayed. For each significant 

functional class, a column is added to the matrix display, indicating for each gene, 

whether or not it belongs to that class.  

Bicluster #99 has the highest score (13,163.5), and it consists of 306 genes and 73 

conditions. It was found to be enriched with the following functional classes:  

 

Class Name: Go ID: p-value: 
ribosome GO:0005840 Under 10-45 

cytosolic ribosome GO:0005830 Under 10-45 

Ribonucleoprotein complex  GO:0030529 Under 10-45 

cytosolic large ribosomal subunit (sensu Eukarya) GO:0005842 5.12*10-42 
cytosol GO:0005829 3.43*10-39 
   

Figure 7.2.7.a shows a part of the expression matrix of bicluster #99. According to the 

expression matrix, the genes in this bicluster are suppressed under most of the tested 

stress conditions, but are not suppressed under environmental conditions that are not 

considered stressful (i.e., hypo-osmotic shock in columns 8,9 and temperature change 

from 37° to 25° in columns 3, 4). A cluster with a similar expression profile and 

enriched functional classes was detected in the research that was previously 

performed on this data by Gasch et al., where different methods were used for 

analysis (Gasch et al. 2000). These results support previous observations of 

repression of ribosomal protein genes during multiple stress responses (Warner 1999; 

Sakaki et al. 2003). These results support the conclusion, presented by Gasch et al., 

that suppression of genes involved in protein synthesis is a general feature of the 

"environmental stress response" (ESR) (Gasch et al. 2000). 

 

 



 

 
Figure 7.2.7.a: Part of the expression matrix of bicluster #99. Yellow indicates over-expression and 
blue indicates under expression. 

 

Bicluster #103 consists of 192 genes and 66 conditions.  It was found to be enriched 

with the following functional classes:  

Class Name: GO ID: p-value: 
nucleolus GO:0005730 Under 10-45 

Ribosome biogenesis and assembly GO:0042254 3.18*10-42 

Ribosome biogenesis GO:0007046 4.41*10-42 

Transcription from Pol1 promoter GO:0006360 2.75*10-33 

RNA processing GO:0006396 6.27*10-26 

 

Figure 7.2.7.b shows a part of the expression matrix of bicluster #99. According to the 

expression matrix, the genes in this bicluster are suppressed under stress conditions, 

but are not suppressed under environmental conditions that are not considered 



 

stressful (e.g., hypo-osmotic shock and temperature change from 37° to 25°). A 

cluster with a similar expression profile and enriched functional classes was detected 

by Gasch et al., using the TreeView software. This cluster was produced by 

hierarchically clustering the whole dataset (i.e., using all conditions), and it consists 

almost entirely of genes encoding ribosomal proteins (Gasch et al. 2000). The IDs of 

the genes in the cluster and its exact size were not published, so a direct comparison 

of the gene sets is, unfortunately, impossible. 

 

 
Figure 7.2.7.b: Part of the expression matrix of bicluster #103. Yellow indicates over-expression and 
blue indicates under expression. 

 

 



 

Bicluster #2 consists of 335 genes and 21 conditions.  It was found to be enriched 

with the following functional classes:  

Class Name: Go ID: p-value: 
carbohydrate metabolism  GO:0005975 8.045*10-7 
Protein folding GO:0006457 1.85*10-4 
Energy pathways GO:0006091 2.39*10-4 
Response to stress GO:0006950 3.387*10-4 

 

Figure 7.2.7.c shows the expression matrix of bicluster #2. According to the 

expression matrix, the genes in this bicluster are induced under various kinds of stress 

conditions (Diamide exposure, DTT exposure, heat shock and hyper-osmotic shock), 

and are not induced under environmental conditions that are not considered stressful 

(e.g., temperature change from 37° to 25° in columns 14 and 21). The first condition 

in the matrix ("heat shock 005 minutes hs-2") seems to show repression under stress, 

in conflict with the rest of the results. We suspect that this experiment is faulty, since 

(1) it contradicts results of a repeated experiment under the same condition ("heat 

shock 05 hs-1", column 15) and (2) it also appears to differ from the other heat shock 

conditions also in biclusters 103 and 99.  

These results are consistent with the results reported by Gasch et al., describing a set 

of approximately 300 genes that were induced in ESR. This set was reported to 

consist of genes that are involved in a wide variety of processes, including 

carbohydrate metabolism and protein folding (Gasch et al. 2000). The IDs of the 

genes in this set were not published. 

 



 

 
Figure 7.2.7.c: The expression matrix of bicluster #2. Yellow indicates over-expression and blue 
indicates under expression. 

 

Bicluster #30 consists of 209 genes and 9 conditions (all amino-acid starvation 

conditions along with the first three nitrogen depletion conditions). It was found to be 

enriched with the following functional classes:  

Class Name: Go ID: p-value: 
Amine metabolism GO:0009308 1.58*10-22 
Amino acid metabolism  GO:0006520 2.85*10-21 
Glutamine family amino acid biosynthesis  GO:0009084 3.51*10-10 

Nitrogen metabolism GO:0006807 1.38*10-8 

Sulfur metabolism GO:0006790 3.85*10-8 

 

 



 

Figure 7.2.7.d shows the expression matrix of bicluster #30. According to the 

expression matrix, the genes in this bicluster are induced under amino acid starvation 

or nitrogen depletion conditions, and suppressed in steady state with sorbitol. 

 
Figure 7.2.7.d: The expression matrix of bicluster #30. Yellow indicates over-expression and blue 
indicates under expression. 

 

7.2.6 Performing Promoter analysis on biclusters 

Promoter analysis was performed on the biclusters. The whole dataset was used as 

background set and threshold p-value was set to 5*10-8 without a correction for 

multiple tests (Figure 7.2.8.a). 



 

 

Figure 7.2.8.a: Promoter analysis settings that were used to analyze biclustering results. 

 

43 PWMs corresponding to yeast TF motifs, extracted from the 'Transfac' database 

(version 7.4, April 2004), were used for this analysis. The resulting display contained 

a histogram for each bicluster which was found to be enriched with at least one TF 

binding site. 

Thirty four biclusters were found to be significantly enriched with at least one TF 

binding site.  

Bicluster #99 was found to be highly enriched with RAP1 motif, with a p-value = 

1.83*10-19 (Figure 7.2.8.b). Recall that our functional analysis identified this bicluster 

as related to ribosomal proteins. These results are in correlation with previous studies, 

demonstrating that the repression of ribosomal protein genes is regulated by the 

transcription factor Rap1p (Moehle and Hinnebusch 1991; Li et al. 1999). 

Bicluster #103 was not found to be enriched with any of the tested motifs. 

Bicluster #2 was found to be enriched with STRE (Stress Response Element) motif, 

with a p-value = 1.74*10-18 (Figure 7.2.8.c). These results are in agreement with 

previous studies that have identified STRE sequences in many stress-induced genes 

(Kandror et al. 2004; Boorsma et al. 2004). Two transcription factors, Msn2p and 

Msn4p, are involved in STRE-mediated gene expression (Martinez-Pastor et al., 

1996). Both factors bind to STRE in vitro and in vivo and are required for the 



 

induction of an STRE-LEU2-lacZ reporter gene in response to different forms of 

stress (Martinez-Pastor et al., 1996). 

  

Bicluster #30 was found to be enriched with GCN4, CBF1 and AP-1 motifs, p-values 

are shown in Figure (Figure 7.2.8.d). GCN4 is a transcription factor that is known to 

play a key role in the regulation of amino acid metabolism in yeasts (Hinnebusch 

1984). It has been shown to bind degenerate variants of the pseudo palindrome 

5'ATGACTCAT3' known as the AP-1 site (Suckow et al. 1994) (i.e., the motifs 

identified as AP-1 binding sites in this bicluster are probably the same motifs 

identified as CGN4 binding sites).  CBF1 is a transcription factor that is necessary for 

the expression of genes involved in methionine biosynthesis, and deletion of CBF1 

renders S. Cerevisiae methionine auxotrophic (Kuras  and Thomas 1995). These 

results support the suggestion presented by Gacsh et al. that ESR regulation is both 

gene specific and condition specific, and that the expression of genes in ESR is 

regulated by different transcription factors depending on the conditions (Gasch et al. 

2000).  

 

 

 
Figure 7.2.8.b. Promoter analysis results for bicluster #99. Upon clicking a column in the histogram, 
an info dialog box appears. 

 
 



 

   
Figure 7.2.8.c. Promoter analysis results for bicluster #2. 

 

 
Figure 7.2.8.d. Promoter analysis results for bicluster #30.  

 

7.2.7 Discussion 

The genomic expression programs characterized in the study of Gasch et al. and in 

this analysis reveal that yeast cells respond to environmental changes by altering the 

expression of thousands of genes, creating a genomic expression program that is 

customized for each environment (Gasch et al. 2002). 

Our biclustering analysis detected several biclusters which were found to be highly 

enriched for genes that encode ribosomal proteins. As would be expected, bicluster 

expression matrices indicate down regulation of these genes under stressful conditions 

and upregulation when environmental conditions improve (e.g. 37° to 25°, hypo 



 

osmotic shock etc.). One such bicluster (#99) was found to be significantly enriched 

for genes that contain a RAP1 binding site in their promoters. It has been shown that 

the majority of ribosomal protein (RP) genes and a number of the translation factors 

genes contain binding sites for the essential Rap1 protein in their upstream regions 

(Shore 1994). 

Another type of biclusters that were detected in our analysis was highly enriched for 

genes that are involved in ribosome biogenesis and assembly and transcription from 

pol1 promoter. As in the biclusters described above, expression matrices indicate 

down regulation of these genes under stressful conditions and upregulation under 

normal environmental conditions.  

Our biclustering algorithm also detected a bicluster of genes that are highly expressed 

under amino acid starvation and nitrogen depletion conditions. This bicluster was 

found to be highly enriched for genes that are involved in amine and amino acids 

metabolism and biosynthesis. It was found to be significantly enriched for genes that 

contain binding sites for GCN4, CBF1 and Ap1 in their promoters. GCN4 is a known 

transcriptional activator of amino acid biosynthetic genes (Sattlegger et al.  2004) and 

CBF1 is a transcription factor that is necessary for the expression of genes involved in 

methionine biosynthesis (Kuras  and Thomas 1995). The reason for the enrichment in 

Ap1 binding sites is not clear. One possible reason is that CGN4 binds degenerate 

variants of the pseudo palindrome 5'ATGACTCAT3' known as the AP-1 site (Suckow 

et al. 1994). 

Our analysis recovered the key conclusions reported by Gasch et al. (2000). A key 

difference in our methodology is the elimination of the need to use prior biological 

knowledge and of the subjective pre-selection of conditions for the analysis. All 

biclusters and their condition sets (including biclusters containing a small set of 

conditions, such as bicluster #30), were automatically detected by the SAMBA 

biclustering algorithm from the entire dataset. 

 

 

 

 



 

 

7.3 Example 3: Analysis of cDNA microarray data associated 

with cell cycle progression in human cells 

7.3.1 The data  

cDNA microarrays were used to measure gene expression in human cancer cell line, 

HeLa cells (Whitfield et al. 2002).  Prior to the microarray preparation cell cultures 

were synchronized in three different ways: a double thymidine block, a thymidine –

nocodazole block and a mitotic shake off (a physical method) (Whitfield et al. 2002). 

Altogether 114 arrays were prepared for different cell cycle stages and using different 

synchronization methods.  Whitfield et al. identified 874 genes (represented by 1134 

elements or probes) as periodically expressed during the cell. Our analysis focused on 

this set only. 

7.3.2 Loading the data 

The raw data were edited to fit the required EXPANDER input format and contents 

(some of the columns from the original data file were excluded and array names were 

changed to be unique). The edited dataset was loaded, along with a conversion file 

that converted UIDs to LocusLink IDs. Missing values were automatically set to 0, 

since in cDNA microarrays values are expected by EXPANDER to be given as log 

ratios so the value 0 indicates a normal expression level (ratio = 1). 

7.3.3 Preprocessing the data  

Data were filtered using an input file containing 1134 IDs of elements representing 

the 874 genes that were reported as periodically expressed (this file was downloaded 

from http://genome-www.stanford.edu/Human-CellCycle/Hela/index.shtml). Since 

we used an external clustering solution generated by Whitfield et al. (see below), no 

additional filtering was performed. 



 

7.3.4 Loading a clustering solution 

Whitfield et al. (2002) partitioned 

the cell cycle regulated genes 

according to their expression 

periodicity patterns into five 

clusters, corresponding to cell 

cycle phases G1/S(1), S(2), G2(3), 

G2/M(4), and M/G1(5). This 

partition was loaded as a clustering 

solution. 

Figure 7.3.4.a shows the clustering 

results dialog that also reports the 

homogeneity and separation of the 

clustering. These values were 

calculated by EXPANDER 

according to the expression 

patterns. 

 

 

Figure 7.3.4.a. Clustering results dialog produced by 
EXPANDER after loading the gene partition into 
clusters as provided by Whitfield et al. 

 

7.3.5 Viewing clustered data 

Figure 7.3.5.a shows the clustered expression matrix display. Patterns of genes which 

were clustered together appear next to each other.  

 



 

 
Figure 7.3.5.a. A clustered expression matrix display of the data. The display contains 1134 elements 
representing 874 genes, which were identified as periodically expressed. Clusters are separated by 
white lines. The clustering solution was provided by Whitfield et al. 



 

 

Figure 7.3.5.b shows a PCA visualization of the data. Each element is represented as a 

point on an XY scatter plot. Elements from the same cluster appear in the same color 

(Note that different probes of the same gene are displayed separately). In this Figure 

we can see that the similarities and distances between patterns (vectors) in the data are 

preserved reasonably well in the projection to two dimensions.  

 
Figure 7.3.5.b.  A PCA visualization of the data. Elements from the same cluster appear in the same 
color. 

 

 

7.3.6 Functional analysis 

To identify functional classes that are specifically enriched in each of the cell cycle 

phases, functional analysis was performed twice: (1) using only the 874 genes 

identified as periodically expressed during cell cycle as the background set. (2) using 

the whole genome as the background set.  

Figure 7.3.6.a shows the visualization of the first analysis. Cluster 2 (S phase) was 

found to be highly enriched for genes of the functional class 'DNA metabolism' (p = 

2*10-11) and 'S phase of mitotic cell cycle' (p = 6*10-7). It was also found to be 



 

enriched for genes of the 'DNA replication and chromosome cycle', 'replisome' and ' 

replication fork' functional classes (p < 0.0005). Cluster 3 (G2) was found to be 

enriched for genes of the 'mitosis' functional class (p = 1.5*10-4). Cluster 4 (G2/M) 

was found to be enriched for genes of the functional classes 'cytoskeleton' (p =  4*10-

5) and 'microtubule cytoskeleton' (p = 2*10-4). The results are summarized in table 

7.3.6.a. 

 The results in the second analysis support the results in the first, and the p-values 

obtained had even higher significance, but they contain additional classes that were 

not identified in the first analysis (results not shown). Some of those classes (e.g., 

'mitotic cell cycle' and 'regulation of cell cycle') were identified in several of the 

clusters. Other classes were identified in only one or two of the clusters, e.g., 'DNA 

repair' in clusters 1 and 2, 'response to DNA damage stimulus' in clusters 1 and 2. 

The reason to these differences in results is the significant over-representation of 

genes of cell cycle related functional classes in the entire set of 874 genes. Random 

partitions of the dataset are also expected to yield clusters where some of these 

functional classes are enriched with respect to the entire genome. Thus, it is preferable 

to use the filtered dataset as the background set if one wishes to detect phase-specific 

functionalities, and to use the unfiltered background for finding general cell-cycle 

functions. 

 



 

 
Figure 7.3.6.a. The functional analysis visualization. Threshold p-value was set to 0.0005. Only genes 
identified as periodically expressed during cell cycle were used as background. Clusters 2 (S phase), 3 
(G2) and 4(M/G1) were identified as significantly enriched with several functional classes.  

 

 

 

Cluster 
(phase): 

Enriched functional class:  p-value: 

2 (S) DNA metabolism 2.317E-11 

 S phase of mitotic cell cycle 6.358E-7  

 DNA replication and chromosome cycle 8.734E-5  

 replisome 2.081E-4  

 replication fork 2.081E-4  

3 (G2) mitosis  1.498E-4 

4 (G2/M) cytoskeleton 4.143E-5  

 microtubule cytoskeleton 2.234E-4 

Table 7.3.6.a: Functional analysis results when using the filtered dataset as background. 

 



 

7.3.7 Promoter analysis  

In previous work (Elkon et al. 2002), promoter analysis was performed on the above 

clusters using the PRIMA software. At the time of the analysis the available promoter 

set contained sequences for 568 of the 874. The human fingerprint file that is 

currently used by EXPANDER contains TF fingerprints for promoter sequences of 

717 out of the 874 cell cycle responding genes, so the richer set was used in the 

current analysis.  

The promoter analysis was performed twice: (1) using only the 874 genes identified 

as periodically expressed in cell cycle as the background set; (2) using the whole 

genome as the background set. We do not show again the visualization but rather 

concentrate on the results. These are summarized in Tables 7.3.7.a and b for the 

analysis (1) and (2), respectively. 

In analysis (1), only promoters from cluster 1 (G1/S) were found to be significantly 

enriched with TF-binding sites. All TF binding sites that were identified as enriched 

in analysis (1) in cluster 1 (G1/S) were also detected in analysis (2), with higher p-

values. This is due to the significant overrepresentation of theses motifs in the entire 

set of 874 genes (see table 7.3.7.c). The same analysis was previously performed by 

Elkon et al. and yielded no results with p-value < 5*10-4. The improvement is clearly 

due to the updated fingerprint files.  

Both Arnt and YY1 PWMs that were previously identified by Elkon et al. as 

significantly enriched (p < 0.001) in promoters of genes which are expressed in G1/S 

and M/G1, respectively, were not detected in this analysis. This is probably due to the 

differences in the fingerprint files that were used for the analyses. Since the current 

analysis is based on substantially more promoters, we believe that Arnt and YY1 were 

false positive detections.  

  

Cluster  TF Number of promoters with 

hits 

Number of hits p-value: 

1 (G1/S) E2F 26 31 1.41*10-7 
 Sp1 36 51 4.27*10-4 
 Ncx 20 21 1.56*10-4 
Table 7.3.7.a. Promoter analysis results when using filtered data as background 



 

 

 

Cluster  TF Number of promoters with 

hits 

Number of hits p-value: 

1 (G1/S) E2F 19 24 3.1*10-11 
 NF-Y 39 54 1.07*10-7 
 Ncx 20 21 5.9*10-6 
 Sp1 36 51 2.96*10-5 
2 (S) E2F 17 20 1.21*10-9 
 NF-Y 26 40 6.69*10-4 
3 (G2) NF-Y 44 69 3.86*10-8 
 Sp1 60 86 6.23*10-5 
4 (G2/M) NF-Y 55 81 5.52*10-9 
5 (M/G1) NF-Y 32 45 3.44*10-5 
 CREB 25 31 9.1*10-4 
Table 7.3.7.b. Promoter analysis results when using the un filtered data as background  

 

To explore the distribution of binding sites in the filtered dataset in relation to the 

whole genome, a different clustering file was loaded to EXPANDER, classifying all 

874 genes into one cluster. Promoter analysis was then performed using the entire 

genome as background set. The results are summarized in table 7.3.7.c. All TF 

binding site motifs that were identified as enriched in the entire set of cell cycle 

responding genes in the previous study (Elkon et al. 2002) were detected in this study 

as well. Two additional motifs, Alpha-CP1 and ETF were identified in this study.                                                           

 

TF Number of promoters 

with hits 

Number of hits p-value: 

E2F 55 64 9.84*10-23 
NF-Y 174 267 3.83*10-13 
Sp1 225 322 1.12*10-7 
Alpha-CP1 83 105 1.15*10-5 
ETF 234 378 4.46*10-5 
CREB 99 118 8.47*10-5 
ATF 110 127 1.68*10-4 
Nrf-1 106 134 4.94*10-4 

Table 7.3.7.c. Promoter analysis results on the entire set of cell cycle periodically expressed genes, 
when using the whole genome as background.    

 



 

7.3.8 Discussion 

The E2F family is well documented as a prime regulator of the mammalian cell-cycle. 

Pathways that modulate the activity of E2F are frequently disrupted in human cancers, 

leading to mis-regulated cellular proliferation (Nevins 2001). The E2F PWM obtained 

highly significant enrichment scores in all the analyses performed by Elkon et al. 

(2002), and also in the analysis described above, which was performed using more 

data, demonstrating the sensitivity of PRIMA in revealing true signals. As in the 

analysis performed by Elkon et al., E2F was found to be highly enriched in promoters 

of genes that are expressed in G1/S and in S phases. 

Three TFs, E2F, SP1 and Ncx were detected as enriched (p-value < 5*10-4) in cluster 

1 (G1/S) in this analysis, when using only the cell cycle responding genes as 

background set. These were not detected in the analysis performed by Elkon et al., 

probably due to the differences in the fingerprint files that were used for the analyses. 

The Sp1 has been previously shown to be involved in cell cycle regulation (Clem et 

al. 2003). Ncx is known to be expressed in neural crest derived tissues (Iitsuka et al. 

1999). No evidence that connects Ncx to cell cycle regulation has been found.  

All the TFs that were previously identified by Elkon et al. as highly enriched in 

promoters of all 874 genes (in comparison to their prevalence in promoters of the 

whole genome), were detected again in this analysis. In addition, two new TFs, 

Alpha-CP1 and ETF were detected as highly enriched. ETF is a known transcriptional 

activator of p53 (Hale and Braithwaite 1999). Alpha-CP1 is a transcription factor that 

belongs to a group of factors which are known to bind to the sequence CAATT 

(Alonso et al. 1996).  
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