
Tel Aviv University

The Sackler Faculty of Medicine

Graduate School

Field: Bioinformatics

Subject: Tools for analysis and visualization of gene

expression data obtained using microarrays

Submitted by Adi Maron-Katz

This work was carried out in partial fulfillment of the requirements for an M. Sc.

degree, in the Sackler Faculty of Medicine, Tel Aviv University.

Advisors: Prof. Ron Shamir

 Prof. Yosef Shiloh

July 2004

AAcckknnoowwlleeddggeemmeennttss::

I would like to thank all the people who assisted me in this work: I thank Dr. Roded

Sharan, for giving me the opportunity of working on EXPANDER, Amos Tanay and

Chaim Linhart for their guidance, help and support throughout the development

process, and Naama Arbili and Israel Steinfeld for great assistance in user support and

version updates. I am grateful to Ran Elkon from Prof. Yossi Shiloh's lab, for devoted

counseling, to my dear family for its support and last but not least, to my advisors,

Prof. Ron Shamir and Prof. Yossi Shiloh, for their devoted guidance throughout this

work.

This study was supported in part by an infrastructure research grant from the Ministry

of Science and Technology, Israel.

CCoonntteennttss

11 AABBSSTTRRAACCTT ..88

 IINNTTRROODDUUCCTTIIOONN AANNDD SSUUMMMMAARRYY ..99

2.1 Gene Expression Microarray technology ...9

2.1.1 cDNA Microarrays ...9

2.1.2 High-density oligonucleotide arrays..10

2.2 Technology applications 11

2.2.1 Comparing two mRNA populations by identifying differentially

expressed genes ..11

2.2.2 Identifying co-expressed genes ..11

2.2.3 Predicting gene functions ...11

2.2.4 Promoter signal analysis ...12

2.2.5 Tissue classification ..12

2.2.6 Drug development...12

2.2.7 Toxicogenomics ..13

2.3 Existing analysis tools 13

2.4 Existing GEM Databases 16

2.5 Summary of thesis results 17

33 RREESSEEAARRCCHH OOBBJJEECCTTIIVVEESS .. 1199

44 AANNAALLYYSSIISS MMEETTHHOODDSS .. 2200

4.1 The analyzed data 20

4.2 Preprocessing 20

4.2.1 Normalization..20

4.2.2 Filtration ..21

4.2.3 Standardization..22

4.3 Clustering 22

4.3.1 K-means...23

4.3.2 Self Organizing Maps ...23

4.3.3 CLICK (Cluster Identification via Connectivity Kernels)24

4.3.4 Hierarchical clustering..25

4.4 Biclustering 26

4.4.1 SAMBA ...26

4.5 Analysis of clustering solutions 26

4.5.1 Homogeneity and separation scores ..27

4.5.2 Functional analysis ...27

 Promoter analysis ..28

55 VVIISSUUAALLIIZZAATTIIOONN MMEETTHHOODDSS .. 3300

5.1 Matrix displays 31

5.1.1 Expression matrix ...31

5.1.2 Similarity matrix ...33

5.2 Pattern displays 34

5.2.1 Mean cluster patterns ..34

5.2.2 Cluster contour..35

5.2.3 Patterns of all genes in a cluster ...35

5.3 Scatter plots 36

5.3.1 PCA analysis display ..36

5.3.2 Data plots of two arrays..37

5.4 Histograms 37

5.4.1 Functional analysis display ..37

5.4.2 Promoter analysis display ...39

5.5 Dendrogram trees 40

5.5.1 Hierarchical clustering results display ...40

5.6 Data tables 41

5.6.1 Biclustering results data table ..41

66 SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT AANNDD AARRCCHHIITTEECCTTUURREE.. 4433

6.1 Selecting the development language 43

6.2 Architectural considerations and overview ..43

6.2.1 Architecture considerations..43

6.2.2 Overview ...44

6.3 Data management 45

6.3.1 The FloatMatrix class ...45

6.3.2 The BasicElement and ElementArray classes...45

6.3.3 The MainData class ..46

6.3.4 The Bicluster and BicSet classes ...46

6.3.5 The Preferences class..47

6.4 Data analysis 47

6.4.1 The Algorithm class..47

6.4.2 The ClusteringAlgorithm class ..48

6.4.3 Classes extending ClusteringAlgorithm ..48

6.4.4 Classes extending Algorithm ...48

6.4.5 Handling external modules via Algorithm classes48

6.4.6 From data analysis to display: the visualization tools49

6.5 The graphical Interface 50

6.5.1 The DisplayPanel class ...50

6.5.2 Displaying matrices ..50

6.5.3 Displaying charts ..51

6.5.4 Displaying data tables...52

6.5.5 Displaying dendrogram trees ...52

6.5.6 Creating the display frames ..53

6.6 The Main Frame - How it all comes together53

6.7 The utility Package 54

6.7.1 Handling float vectors – the VecCalc class...54

6.7.2 The Strings class ...54

6.7.3 The Constants class...55

6.7.4 Connecting to the WEB – the URLHandler class.....................................55

6.8 A detailed overview 55

77 EEXXPPAANNDDEERR AASS AANN IINNSSTTRRUUMMEENNTT IINN TTHHEE HHAANNDDSS OOFF TTHHEE RREESSEEAARRCCHHEERR.................. 5577

7.1 Example 1: Analysis of oligonucleotide array data from the mouse

lymph nodes 57

7.1.1 The data ...57

7.1.2 Loading the data..58

7.1.3 Preprocessing the data ..59

7.1.4 Viewing raw data ..60

7.1.5 Clustering the data ..60

7.1.6 Viewing clustered data ...61

7.1.7 Performing functional analysis on clusters ...64

7.1.8 Performing promoter analysis on clusters ...66

7.2 Example 2: Analysis of yeast c-DNA microarray data concerning

responses to environmental changes 68

7.2.1 The data ...68

7.2.2 Loading the data..68

7.2.3 Biclustering the data ...69

7.2.4 Performing functional analysis on biclusters ..69

7.2.5 Viewing biclusters and significant functional classes71

7.2.6 Performing Promoter analysis on biclusters..76

7.2.7 Discussion ...79

7.3 Example 3: Analysis of published cDNA microarray data associated

with cell cycle progression in human cells 81

7.3.1 The data ...81

7.3.2 Loading the data..81

7.3.3 Preprocessing the data ..81

7.3.4 Loading a clustering solution ...82

7.3.5 Viewing clustered data ...82

7.3.6 Functional analysis ...84

7.3.7 Promoter analysis ..87

7.3.8 Discussion ...89

88 BBIIBBLLIIOOGGRRAAPPHHYY .. 9900

11 AAbbssttrraacctt

In the past few years the gene expression microarray (GEM) technology has become a

central tool in the field of functional genomics. This field deals with exploring the

functions of different gene products, the control mechanisms regulating their activity,

their expression levels and their interactions. In the GEM technology, the expression

levels of thousands of genes in a biological sample are determined in a single

experiment.

 This work describes the development of a bioinformatics software tool called

EXPANDER (EXPression ANalyzer and DisplayER), that was designed to help

researchers in analyzing GEM data, and allow viewing the raw data and analysis

results via convenient graphical displays. The tool incorporates several conventional

GEM analysis algorithms and custom ones that have been developed in the

computational genomics group in Tel-Aviv University, and provides them with an

easy-to-operate user interface. Among the tool's capabilities are clustering,

biclustering, functional enrichment and promoter analysis, in addition to a variety of

visualizations. EXPANDER was programmed using the Java programming language

and it can be run on several platforms, including Windows and Unix. It was written in

an object oriented approach, suitable for such a large scale applications that requires

many different modules that interact with one another. EXPANDER based analyses

are demonstrated using three different biological datasets, and novel biological

conclusions are drawn.

The EXPANDER tool is freely available for academic research, and is broadly used

both for in-house research projects in biology and medicine at Tel Aviv University,

and in other institutions. Over four hundred laboratories have downloaded the

software over the last year. It is under ongoing development in order to keep it a state-

of-the-art research tool with unique capabilities.

Key terms: Functional genomics, gene expression microarrays, software, cDNA

microarrays, high-density oligonucleotide arrays, clustering, biclustering, functional

analysis, promoter analysis.

22 IInnttrroodduuccttiioonn aanndd ssuummmmaarryy

2.1 Gene Expression Microarray technology

The Gene Expression Microarray (GEM) technology plays a central role in the field

of functional genomics. This field is based on the recent progress achieved in genome

sequencing (Hieter et al. 1997) and other high throughput techniques. It deals with

exploring the function of different gene products, the control mechanisms regulating

their activity, their expression levels and their interactions.

 In the GEM technology, the expression levels of thousands of genes in a biological

sample are determined in a single experiment. Genes printed on a slide (usually glass)

are hybridized against labeled probes, prepared from the cell lines that are being

tested.

There are currently two main methods implementing this technology: cDNA

microarrays and high-density oligonucleotide arrays ("DNA chips"). They differ in

the way genes are represented on the slide, the way the slide is prepared, and some of

the experimental stages, but are used usually for the same needs. The methods used to

analyze the data are similar, but while the first method produces relative expression

level values, the second produces absolute values.

2.1.1 cDNA Microarrays

This method was developed in the department of Biochemistry of Stanford university

in 1996, and has since been adopted by many laboratories. In this method a grid of

cDNA dots is printed over a glass slide. Each dot contains cDNA molecules (0.2-2kb

long) from a clone of a single gene. A grid containing 10000 such dots can be printed

on a slide of size 2.5x2.5cm2 (Shalon et al. 1996). Currently, newer, more advanced

printing methods are being developed, that will allow the represention of a whole

genome on a single array (Hughes et al. 2001).

The experiment involves the following steps: (1) Extracting mRNA molecules from

two cell populations (the test population and the reference population). (2) Reverse

transcription of the mRNA molecules to create labeled cDNA molecules, by using

fluorescent nucleotides (with different colors for the test population and for the

reference population). (3) Co-hybridization of the cDNA from the test and the

reference populations to the same array. (4) Scanning the array using a laser scanner.

The last stage is performed separately for each of the two color frequencies, to create

two image files.

The expression levels evaluated in this method are relative (between the two cell

populations) since the number of cDNA molecules that are printed in each spot cannot

be accurately estimated. Therefore, a common reference population must be used

when attempting to test expression level changes over several conditions.

2.1.2 High-density oligonucleotide arrays

This method was developed and is applied primarily by the company Affymetrix. In

the oligonucleotide array each gene is represented by 10-20 different oligonucleotides

of length 25bp. The oligonucleotides representing a gene are selected in a way that

minimizes their homology to other known sequences, in order to increase their

specificity. The representation of each gene by 10-20 probes increases probe-gene

specificity significantly. The oligonucleotides are synthesized over a glass slide, using

a photolithographic method. This method allows the representation of hundreds of

thousands of genes on a single array at the size of about 1.5 square centimeters

(McGall et al. 2002).

The experiment is performed for a single population of cells (unlike in the cDNA

microarray method), and involves the following steps: (1) Extracting mRNA

molecules from the tested cell population. (2) Reverse transcription of the mRNA

molecules, using a primer that contains a promoter for the T7 RNA Polymerase, to

create labeled cDNA molecules. (3) Transcription of the synthesized cDNA template,

using T7 RNA Polymerase and tagged nucleotides, to create tagged RNA molecules.

This process causes a linear induction of the initial RNA concentration (up to 100

fold), which allows determining also very low expression levels. (4) Breaking the

tagged RNA molecules into sections of average length 50bp, and hybridizing them

against the array. (5) Scanning the array using a laser to create an image file.

It has been shown that the expression levels determined using this method are

proportional to the amount of mRNA in the cell (Wodicka et al. 1997).

2.2 Technology applications

In this section, we will describe the main current applications of the GEM technology.

2.2.1 Comparing two mRNA populations by identifying differentially
expressed genes

The purpose of these experiments is to identify genes that exhibit a distinct difference

in expression levels between two tested populations, for example, cells before and

after a certain treatment. This way, the involvement of novel genes in different

biological processes can be revealed. This approach has been utilized in many studies

e.g., to identify novel candidate genes involved in systemic metastases in lung cancer

(Liu et al. 2004), novel candidate genes involved in neurodegenerative disease

(Glanzer et al. 2004), genes regulated by p53 (Zhao et al. 2000) and E2F (Ishida et al.

2001), and genes that comprise the peroxide stimulon in the cyanobacterium

Synechocystis sp (Li et al. 2004).

2.2.2 Identifying co-expressed genes

The goal here is to discover genes sharing a similar expression pattern over a set of

tested conditions. Such similarity may indicate their involvement in a common

function (e.g., the same metabolic pathway), or in common regulatory mechanisms.

Identifying such gene groups can be achieved using clustering algorithms, applied to

GEM data containing several different conditions (Spellman et al. 1998, Sharan et al.

2000). This approach has been utilized in many studies in order to extract new

biological information from the GEM data (Shannon et al. 2003).

2.2.3 Predicting gene functions

The goal here is to find gene subgroups that share a common function, by detection of

functions that are significantly overrepresented in one cluster of co-expressed genes.

This criterion is called "Functional Enrichment". If a cluster is significantly enriched

for genes having a certain function, other non-annotated genes in that cluster are more

likely to have the same function. This approach has been successfully used on yeast to

predict the function of over 800 uncharacterized genes (Tanay et al. 2004).

2.2.4 Promoter signal analysis

The goal here is to reveal cis-regulatory mechanisms that are activated as a result of

exposing the cell to certain experimental conditions. To achieve this goal, promoters

of genes in the same co-expression cluster are scanned to find gene subgroups that

share common transcription factor binding sites in a statistically significant manner. It

is plausible that the transcription factors that bind such sites directly regulate the

genes that are responsible for the observed changes in expression levels. This

approach has been used successfully for several organisms and tissues, including the

yeast (Jelinsky et al. 2000, Pilpel et al. 2001) and human Hela cancer cells (Elkon et

al. 2002).

2.2.5 Tissue classification

This can be done by identifying gene expression profiles that are typical for certain

tissues (e.g., tissues from a certain type of cancer). Such profiles constitute a

molecular 'fingerprint' that can be used to identify the tissue. It has been shown that

these profiles can help distinguish between a cancerous tissue and a normal tissue

(Alon et al. 1999) and even between tissues of different types of cancer (van de Vijver

et al. 2002, Dyrskjot et al. 2003, Golub et al. 1999, Eisen et al. 1998). This

application can have a major contribution in the field of medical diagnosis and

treatment.

2.2.6 Drug development

The GEM technology assists in several stages in the process of drug development

(Lord et al. 2004, Clarke et al. 2001, Marton et al. 1998, Braxton et al. 1998): (a)

Choosing the target protein by tracing the genes that exhibit significant changes in

expression levels between the normal and the pathological states. (b) Testing

candidate drugs by comparing the cellular expression profile that is achieved after

treatment to the normal (desired) profile (Waddell et al. 2004). (c) Identifying

potential side effects by examination of the differences between the desired cellular

expression profile and the profile achieved after treatment. (d) Predicting the toxicity

of a drug (as explained in the next section).

2.2.7 Toxicogenomics

In this field, different toxic substances are characterized by the cellular expression

profile that they induce. In recent years, several databases that characterize toxic

substances according to their induced expression profile have been established (Lord

2004, Irwin et al. 2004, Nuwaysir et al. 1999). It has been found that substances with

similar toxic activity induce a similar expression profile. In the future, the toxic

potential of a substance will be evaluated by comparing its induced expression profile

to existing database records (Nuwaysir et al. 1999, Fredrickson et al. 2001).

2.3 Existing analysis tools

Computational analysis tools are crucial for the efficient exploitation of the large

amounts of data produced by GEM experiments. Dealing with such large datasets

requires the development and use of data analysis algorithms that will extract

biologically meaningful information out of the raw data (Dresen et al. 2003, Eisen et

al. 1998, Quackenbush et al. 2001).

Many of the computational tools that are currently used for GEM analysis focus on

one or several stages of the analysis. Hence, analysis requires the porting of the data

between different software tools. This often requires reformatting the data according

to the different software tools, and makes the employment of more than a small

number of tools simultaneously very cumbersome.

Among the commonly used analysis tools are:

dChip (http://biosun1.harvard.edu/complab/dchip) – A windows application, that

operates on high-density oligonucleotide arrays. The tool performs several

normalizations, including tracing and omitting data in contaminated areas, or data that

were cross hybridized (i.e., hybridization of mRNA of one gene to probes of another

gene that has a highly similar sequence) (Li et al. 2001), filtering out non informative

genes, and identifying genes that are differentially expressed between two conditions.

The program also performs hierarchical clustering and principal component analysis

(PCA) on the processed data, and produces graphical displays. The software utilizes

the R application (Ripley 2001) and operates on Windows 2000 operating system.

GeneX-CyberT (http://visitor.ics.uci.edu/genex/cybert/) - a statistical program with a

web interface that can be used on both cDNA microarray data and oligonucleotide

arrays data for the identification of statistically significant differentially expressed

genes. The analysis is based on Bayesian approach and generates text output files and

a file of statistical charts.

Cluster & TreeView - (http://rana.lbl.gov/EisenSoftware.htm) – These are an

integrated pair of programs for analyzing and visualizing the results of both cDNA

microarray and high density oligonucleotides experiments (Eisen et al. 1998). The

Cluster program implements the following clustering and analysis methods:

hierarchical clustering, self-organizing maps (SOM), k-means, PCA and hierarchical

clustering. The program operates on Windows only. The TreeView graphical

program enables viewing the results of clustering and other analyses from Cluster. It

supports tree-based and image based browsing of hierarchical trees. It produces

multiple output formats for the generation of images for publications. It operates only

on Windows. Another visualization program, Maple Tree, which is cross-platform

(i.e., runs on all operating systems) is now available from the same group. It allows to

graphically browse the results of clustering analyses from the Cluster software, and

many other clustering and analysis programs.

JExpress (http://www.ii.uib.no/bjarted/jexpress/, Dysvik et al. 2001) – This program

operates on cDNA microarray data. Performs high-level normalization, filtering and

high-level analysis. The analysis methods implemented in JExpress are: Hierarchical

clustering, SOM, PCA, K-means and profile search. The program contains several

visualization tools.

Genesis (http://genome.tugraz.at, Sturn et al. 2002) – A cross platform program that

performs data normalization based on a variety of techniques, for sets of genes or

experiments (mean centering, median centering, division by SD/RMS and log

transformation) and data filtering (according to missing values and standard

deviation). It implements several clustering algorithms (hierarchical clustering, k-

means, SOM) and provides also other analysis methods such as Principal Component

Analysis (PCA), and support vector machines (SVM, a classification tool). The

program utilizes several different similarity measurements (ranging from Pearson

correlation to more sophisticated approaches, like mutual information). It supplies

several visualizations to view the above analysis results and allows the mapping of

gene expression data onto chromosomal sequences.

Spotfire DecisionSite (http://www.spotfire.se/) – An application for microarray data

analysis and visualization. It implements the following analysis methods: hierarchical

and K-means clustering, expression profile searches and PCA. Other analysis methods

require the R application (Ripley 2001) and include normalization schemes, variance

analysis using ANOVA and rule induction analysis with decision trees. The

application incorporates various visualizations such as box plots, pattern displays,

matrix displays, pie charts and dendrogram trees. Annotation information from

various sources can be loaded and integrated into the visualizations. DecisionSite

operates on Windows only.

GeneXPress (http://genexpress.stanford.edu/, Segal et al. 2004) – Given a clustering

solution (or a file generated by the TreeView software), this application performs

functional analysis and promoter analysis and provides various suitable displays.

GeneCluster (http://www.broad.mit.edu/cancer/software/software.html, Reich et al.

2004) – A cross platform program that facilitates filtering and preprocessing data in a

variety of ways, clustering expression profiles using the SOM algorithm, and viewing

the results. It also allows supervised classification, gene selection and permutation test

methods (Permutation test methods are used to assess the significance of the score for

each gene, i.e. the estimated signal to noise ratio). It includes algorithms for

constructing and testing supervised models that will be able to predict different

variables (e.g. tumor type, treatment outcome etc.) based on the expression values

using weighted voting (WV) and k-nearest neighbors (KNN) algorithms.

TM4 (http://www.tigr.org/software/tm4/, Dudoit et al. 2003) – A package that

consists of four major applications, two of which (Microarray Data Analysis System,

and Multi-experiment Viewer) perform high-level preprocessing, analysis and

visualization of microarray data. These software tools were developed for spotted

two-color arrays, but can be easily adapted to work with single-color formats such as

high density oligonucleotide arrays. Both programs are cross platform.

Microarray Data Analysis System (MIDAS) performs normalization using locally

weighted linear regression (lowess) and total intensity normalization. It also performs

filtering using several methods. MIDAS provides scatter plots that illustrate the

effects of each algorithm on the data. It reads “.tav” files generated by TIGR

Spotfinder program or retrieved from the database via MADAM (another TM4

application). Multi-experiment Viewer (MeV) operates on normalized and filtered

expression files. It incorporates several clustering algorithms such as: hierarchical

clustering, K-means, SOM, SOT (Self Organizing Trees), Gene Shaving and

QT_clust, along with other analysis algorithms such as PCA, Significance Analysis of

Microarrays (SAM) etc. Results can be graphically displayed. MeV can handle

several input file formats.

DMT (http://www.affymetrix.com/products/software/specific/dmt.affx) - The Data

Mining Tool (DMT) software, developed by Affymetrix, provides several tools for

filtering and sorting microarray data generated using the Affymetrix GeneChips. Key

features include: pairwise statistical analysis for replicate samples, clustering (SOM

and a modified Pearson’s Correlation Coefficient method) and an option to integrate

annotation information into the data. DMT operates on Windows only.

2.4 Existing GEM Databases

In this section I present some of the more commonly used GEM databases.

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) – one of the

most commonly used public repositories for a wide range of high-throughput

experimental data. These data include single and dual channel microarray experiments

measuring mRNA, genomic DNA and protein abundance, as well as non-array

techniques such as serial analysis of gene expression (SAGE), and mass spectrometry

proteomic data. It allows data browsing, query and retrieval. It currently contains over

20,000 sample records (arrays).

Array Express (http://www.ebi.ac.uk/arrayexpress/) – The main European public

repository for microarray data, which is aimed at storing well annotated data in

accordance with the Microarray Gene Expression Data (MGED) Society

recommendations. The MGED society has defined the MIAME (minimum

information about a microarray experiment) requirements in order to enable the

interpretation of the results of the experiment unambiguously and potentially to

reproduce the experiment (Brazma et al. 2001). The data deposited in Array Express

is expected to fill these requirements. Array Express currently contains record from

over 6000 profiles.

GeneX (http://www.research.ibm.com/journal/sj/402/mangalam.html) – an open

source gene expression database and integrated toolset that allows researchers to store

and evaluate their gene expression data independently of the technology used to

obtain the data.

Gene Expression Database (GXD)

(http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtm) - a community

resource for gene expression information from the laboratory mouse. GXD stores and

integrates different types of expression data and makes these data freely available in

formats appropriate for comprehensive analysis. There is particular emphasis on

endogenous gene expression during mouse development.

Stanford Microarray Database (SMD) (http://genome-www5.stanford.edu/) - one

of the first academic databases to be used on an institutional scale. It contains the

largest amount of data of any academic database, due to its close association with one

of the first groups to develop large-scale arrays. It stores raw and normalized data

from microarray experiments, as well as their corresponding image files. It also

provides interfaces for data retrieval, analysis and visualization. Data is released to the

public at the researcher's discretion or upon publication.

2.5 Summary of thesis results

This work describes the development of a bioinformatics software tool called

EXPANDER (EXPression ANalyzer and DisplayER), that was designed to help

researchers in analyzing GEM data, and allow viewing the raw data and analysis

results via convenient graphical displays. The tool incorporates several conventional

GEM analysis algorithms and custom ones that have been developed in the

computational genomics group in Tel-Aviv University, and provides them with an

easy-to-operate user interface. Among the tools capabilities are clustering,

biclustering, functional enrichment and promoter analysis, in addition to a variety of

visualizations. EXPANDER was programmed using the Java programming language

and it can be run on several platforms, including Windows and Unix. It was written in

an object oriented approach, suitable for such a large scale applications that requires

many different modules that interact with one another.

EXPANDER based analyses are demonstrated using three different biological

datasets, and novel biological conclusions are drawn.

The EXPANDER tool is freely available for academic research (it can be downloaded

from www.cs.tau.ac.il/~rshamir/EXPANDER). Over four hundred laboratories have

downloaded the software over the last year. It is broadly used both for in-house

research projects in biology and medicine at Tel Aviv University and in other

institutions. Among the in-house research projects that utilize EXPANDER are a

microarray project that analyzes DNA damage responses in human cells and mouse

tissues, conducted at Yossi Shiloh's laboratory in the Sackler medical school, a

microarray project that studies inflammation processes in brain of mouse models for

Alzheimer disease, conducted at Danny Michelson's laboratory in the George S. Wise

faculty of Life Science and a microarray project that studies mis-regulated signaling

pathways neuroblastomas, conducted at Yoel Klug's laboratory in the George S. Wise

faculty of Life Science. EXPANDER is under ongoing development in order to keep

it a state-of-the-art research tool with unique capabilities.

A preliminary report on the EXPANDER project has been published in (Sharan et al.

2003).

33 RReesseeaarrcchh OObbjjeeccttiivveess

My objective in this research was to develop a computerized tool that will achieve the

following goals:

1) Incorporation of several analysis stages in one program:

Bringing together different tools from all stages of GEM data analysis under a single

platform. These include preprocessing tools, advanced downstream analysis tools and

various visualization tools. The purpose of this integration is to help the user, partly

by eliminating the work that is involved in formatting data to be transferred from one

application to another.

2) Incorporation of novel analysis algorithms which are developed in the

computational genomics laboratory in Tel-Aviv University:

Several GEM analysis tools have been developed in the computational genomics

laboratory in Tel-Aviv University and are available for academic use, e.g., the

SAMBA (Statistical Algorithmic Method for Bicluster Analysis) algorithm for

biclustering GEM data (Tanay et al. 2002) and the PRIMA (Promoter Integration for

Microarray Analysis) algorithm for promoter analysis (Elkon et al. 2003)). The

incorporation of these tools into the program will provide them with an easy-to-

operate user interface, and will enable viewing and manipulating their results via

convenient graphical displays.

3) Generation of original graphical visualizations:

Such visualizations will hopefully provide an additional point of view on the

biological data, in order to promote the discovery of new insights by analyzing GEM

experiments.

4) Cross platform application:

Our program was designed to run on the two most commonly used operating systems

(Windows and Unix).

Such a program may encourage the usage of the tools and improve the ability of the

user to analyze and extract new biological knowledge from GEM data.

44 AAnnaallyyssiiss MMeetthhooddss

In this chapter we describe the algorithms and procedures that are included in

EXPANDER, and provide examples of their output. The technical implementation

details will be described in chapter 6.

4.1 The analyzed data

The analysis methods described below are performed on data matrices, in which each

row corresponds to a gene and each column corresponds to an experimental condition.

Thus, a row vector is the expression pattern of a gene, and a column vector is the

expression profile under a particular condition.

The values in the matrix represent the relative (in cDNA microarray data) or absolute

(in high-density oligonucleotide data) measured expression levels. For example, the

value in the ith row and the jth column represents the expression level of the ith gene in

the dataset, as measured in the jth experimental condition.

4.2 Preprocessing

The purpose of preprocessing is to remove insignificant and useless expression

patterns, and bring all remaining data into a unified form on which downstream

analysis (such as gene clustering, biclustering etc.) can be performed. To achieve this

goal the data from different experiments should be adjusted to the same scale, and

data size should usually be reduced by filtering out non-informative patterns, so that

downstream analysis will run in a reasonable time and will provide meaningful

results.

4.2.1 Normalization

Normalization is the process of reducing sources of variation of non-biological origin

between arrays (Bolstad et al. 2003). In EXPANDER, normalization schemes are

implemented only for oligonucleotide arrays (it is assumed that for cDNA

microarrays, entries are given in log red/green values that are already normalized).

EXPANDER implements two non-linear normalization schemes presented and tested

by Bolstad et al. (2003):

a) The first method, "Quantile normalization" (Bolstad et al. 2003), is a complete

data method (i.e., it is applied to all arrays together). This method is aimed at

creating an identical distribution to each array in the data set, by ranking the

entries in each condition (breaking ties arbitrarily), and replacing each entry

by the average of the entries of its rank in all conditions.

b) The second method, "Non linear baseline normalization", is a baseline method

(i.e., all arrays are normalized according to one selected baseline array). In this

method a non-linear regression is used in order to map each array expression

values to the baseline array (Schadt et al. 2002). An XY-scatter plot is created

using the values in the array that is being normalized as the X values and the

corresponding values from the baseline array as the Y values. A nonlinear

regression is performed on this scatter plot using a Lowess (locally weighted

smoothing scatter plots)-like function, in which each x value is mapped to the

average y value of its n nearest neighbors (i.e., the average y of the center of

the window to which it belongs). This normalization should be performed

using a subset of the genes that is considered relatively non-variant (under the

experimental conditions). For this purpose, the user can choose between using

all genes (in case data set is expected to contain mostly non-differential genes)

and using a rank invariant subset of genes. Calculating the rank-invariant set is

based on the method presented by C. Li and W.H.Wong (2001).

4.2.2 Filtration

Genes that do not exhibit significant changes in their expression levels under the

tested conditions do not add relevant information to the analysis. Thus, it is preferable

to filter out such genes before performing any downstream analysis such as clustering

or bi-clustering.

EXPANDER implements two filtration schemes:

a) Fold change filter – only genes whose expression level varies by at least k fold

across the tested conditions are selected. k, as well as the reference array are

determined by the user (the reference array can be set to the array with

minimal expression level). The user can also set an additional requirement of a

minimal (>1) number of conditions in which the required fold change in must

occur.

b) Variation filter - the k genes that exhibit the highest variation in expression

levels throughout all conditions are selected (k is a parameter that is

determined by the user). Variance is used to measure variation for cDNA

microarray data, and coefficient of variation is used to measure variation for

oligonucleotide data.

4.2.3 Standardization

When the range of expression values of different genes is very different, but their

general expression patterns are similar (i.e., they have high correlation coefficient),

we would like to see this similarity when looking on a pattern display. Since the

absolute values of expression are different, a manipulation is required in order to view

the patterns on the same scale. This manipulation is called standardization.

EXPANDER implements two standardization schemes:

a) Mean 0 and variance 1 – the expression pattern of each probe is set to have a

mean equal to 0 and a variance equal to 1. This method is suitable in most

cases when working on genes.

b) Fixed norm – for each probe, expression levels are divided by the norm of

that expression vector (the root of sum of squares of that vector's entries). This

method is suitable in cases where we expect to find different means between

patterns, or different variance values. For example, when working on time

series conditions, we may expect larger variance in later phases of a response.

4.3 Clustering

Clustering is the process of partitioning elements (in our case, usually expression

patterns of genes) into subsets, which are called clusters, so that two criteria are

satisfied: homogeneity – high similarity between elements from the same cluster, and

separation - low similarity between elements from different clusters (Sharan et al.

2000). There is very rich literature on cluster analysis (Hartigan 1975, Everitt 1993,

Mirkin 1996, Hansen & Jaumard 1997).

4.3.1 K-means

K-means is a classical clustering algorithm (Tavazoie et al. 1999), which assumes that

the number of clusters (k) is known. It aims to minimize the distances between

elements and the centroids of their assigned clusters. The algorithm maintains a

partition of the elements into k clusters. Each iteration of k-means modifies the

current partition by checking all possible modifications of the solution, in which one

element is moved to another cluster, and making the change that minimizes the

following error function:

? ??
?

?
?

?
?

?
k

m cj

n

i
xx

m

miji

1 1

2

Where: k is the number of clusters, Cm is the set of indices of elements in cluster m, n

is the pattern length (the number of conditions), and mx is the mean pattern of cluster

m, i.e. ?
?

?
Cmj

ji
m

mi x
c

x
||

1
.

 Hence, each iteration reduces the sum of distances between elements and the centers

of their clusters. This procedure is repeated until no further improvement is achieved.

The above error function uses Euclidian distance as the distance measure. Other

distance measurements can be used in the same way.

4.3.2 Self Organizing Maps

The Self Organizing Maps (SOM) (Tamayo et al. 1999) algorithm assumes that the

number of clusters is known. Those clusters are organized as a set of nodes in a two

dimensional kxl grid, where k*l is the number of clusters. Each of the nodes is

associated with a reference vector of the same dimension as the expression patterns.

The algorithm iteratively selects a random data point (p), identifies its nearest

reference vector np, and updates all reference nodes according to a learning function.

In that function the extent of change in vector j is proportional to the proximity of its

node n j to node np in the grid, and also decreases with iteration number.

The learning function used in EXPANDER is the 'neighborhood function' (Tamayo et

al. 1999):

 a(i) if rnnd jp ?),(

 0 Otherwise

iI

I
i

*100
*02.0

)(
?

??

)1(
I
i

constr ???

Here I is the total number of iterations, i is the current iteration number and the

constant value is set to 3. a(i) is called the 'learning rate' and decreases with the

iteration number. d(x,y) is distance between the grid points corresponding to x and y.

After calculating the learning function, the algorithm updates reference vectors using

the following function:

 nj (i,k) = nj (i-1,k) + f(nj, np, i)*(xpk- nj (i-1,k))

Where nj (i,k) is the value of reference vector j in position k after i iterations, and xpk is

the value of the randomly chosen data-point (vector) p in position k.

4.3.3 CLICK

The CLICK algorithm (CLuster Identification via Connectivity Kernels) was

developed in the Computational Genomics group of Tel-Aviv University (Sharan et

al. 2000). It uses a graph theoretic approach to clustering. The input data are

represented as a weighted graph, in which each gene is represented by a vertex, and

the similarity between the expression patterns of each two genes is used to calculate

the weight of the edge connecting their vertices.

 The algorithm recursively partitions the current set of elements into two subsets by

computing a minimum weight cut. If the sub graph induced by the current set of

elements has a positive minimum cut value, then it is declared a kernel. Otherwise,

=f(nj, np, i)

the set is split into two subsets separated by the minimum cut. The set of kernels and

the set of singletons (elements not assigned to kernels) serve as a basis for the

eventual clusters that are obtained by merging singletons and kernels heuristically.

 CLICK uses a probabilistic model in order to determine the weights on graph edges

and the stopping criterion. The key probabilistic assumption of the model is that

pairwise similarity values between elements, S(x,y), are normally distributed, i.e.

S(x,y)),(~ 2
TTN ?? if (x,y) are 'mates', and S(x,y)),(~ 2

FFN ?? if (x,y) are 'non

mates', where µT >µF. This assumption often holds on real data. These parameters as

well as the probability that two elements are 'mates' (pmates), are estimated using the

EM algorithm (see e.g., Mirkin et al. 1996).

EXPANDER operates CLICK via an external module written in C++ by Naama

Arbily and Dr. Roded Sharan from the Computational Genomics group of Tel-Aviv

University.

4.3.4 Hierarchical clustering

Hierarchical clustering does not partition the genes into subsets. Instead it creates a

hierarchy of the elements that can be represented by a dendrogram. This can be done

using the 'agglomerative' method (Eisen et al. 1998), which starts with an initial

partition into single element clusters and successively merges clusters until all

elements belong to the same 'cluster'.

The algorithm iteratively merges clusters whose similarity value is the highest. After

merging two clusters the dissimilarity (distance) matrix changes, and the new

distances (between the merged clusters and all the other clusters) are calculated in one

of three schemes:

a) Single-linkage: ? },min, k jk ijik ddd ??

b) Complete-linkage: ? },max, k jk ijik ddd ??

c) Average-linkage:
ji

k jjk ii

nn
*dn*dn

?
?

 where ni is the number of elements in cluster

i.

In EXPANDER, hierarchical clustering is performed using the above method, and

distance calculation scheme can be selected by the user.

4.4 Biclustering

In gene expression data, a bicluster is a subset of the genes exhibiting consistent

patterns over a subset of the conditions. Biclustering overcomes some of the

limitations of clustering: first, in clustering one assumes that related genes behave

similarly across all measured conditions. This assumption does not hold for large

datasets containing hundreds of heterogeneous conditions from many experiments.

Second, a clustering solution is a partition of the genes into disjoint sets, implying an

association of each gene with a single biological function or process, which may be an

oversimplification of the biological system (Tanay et al. 2002).

4.4.1 SAMBA

The SAMBA algorithm for biclustering (Statistical Algorithmic Method for Bicluster

Analysis) was developed in the computational genomics group of Tel-Aviv University

(Tanay et al. 2002). It detects significant biclusters in a large expression dataset,

using a graph theoretic approach coupled with statistical modeling of the data. The

data is represented as a bipartite graph G=(U,V,E), where: U is the set of conditions,

V is the set of genes, and there exists an edge e=(u,v) if and only if u responds to v

(expression level of gene u changes significantly in condition v).

The SAMBA algorithm detects significant biclusters by using graph algorithms to

find sub-graphs of the described bipartite graph that are relatively dense. For more

details see (Tanay et. al. 2002).

EXPANDER operates SAMBA via an external module written in C++ by Amos

Tanay from the Computational Genomics group of Tel-Aviv University.

4.5 Analysis of clustering solutions

After clustering/bi-clustering gene expression data, we wish to explore the biological

quality and meaning of the results. Several methods are implemented in EXPANDER

to assess the quality of a clustering solution and to explore its biological meaning.

4.5.1 Homogeneity and separation scores

Homogeneity and separation measurements can be used in order to assess the quality

of a clustering solution. In EXPANDER the extent of homogeneity within each

cluster is calculated by averaging the similarity of all pairs of genes that belong to that

cluster. The extent of separation is calculated by averaging the similarity of all pairs

of elements from different clusters.

4.5.2 Functional analysis

The functional analysis calculation is performed in order to detect clusters that are

significantly enriched for genes from a certain functional class. Enrichment is

evaluated by comparing the frequency of genes of a certain function in the cluster to

the frequency of that function in the set of all genes, which is called the background

set. To achieve this EXPANDER utilizes functional annotations (supplied in external

files for mouse, human and yeast), which use the standard vocabulary introduced by

the Gene Ontology (GO) consortium (Ashburner et al. 2000). To identify enriched

functional categories a hyper geometric calculation is performed and a p-value is

calculated for each pair of a cluster C and functional class f:

 P-value(C, f) = ?
?

?
?

?

?

?
?

?

?

?
?
?

?
?
?
?

? ?

??
?

?

?

?
?

?

?

||

||||

C

Kct

b

b

n

K

Cn

tK

C

t

Where n is the size of the background set, Kc is the number of genes in cluster C that

belong to functional class f, and Kb is the number of genes in background set that

belong to functional class f. If a p-value is below a certain threshold, then the cluster

appears to be enriched with that functional category.

EXPANDER operates functional analysis via an external module written in Perl by

Amos Tanay from the Computational Genomics group of Tel-Aviv University. In this

implementation the user can control the level of the functional class in the GO tree by

setting a parameter of 'maximal class size' so that classes larger than that size are not

taken into account (they are considered too general). If two groups of genes

corresponding to two functional classes in the same cluster are very similar, both

functions are treated as one. This is performed in order to reduce the level of

degeneracy in the results.

The background set used for calculation is determined by the user. It can be the whole

dataset, the filtered data set or a set provided by the user.

Currently, no correction for multiple tests is applied when performing functional

analysis via EXPANDER. The used functional attributes are highly redundant and

strongly inter-dependent, and the subject of multiple tests correction when tests are

not independent is still being studied. Thus, correction will have to be added in the

future (A conservative Bonferroni correction would multiply the p-values by the total

number of tests, i.e., the number of clusters times the number of functional classes).

4.5.3 Promoter analysis

The goal of promoter analysis is to identify the transcription factors that bring about

the observed differences in gene expression in the data. To achieve this, EXPANDER

employs a promoter analysis software called PRIMA (PRomoter Integration in

Microarray Analysis) that was developed at the computational genomics group in Tel-

Aviv University (Elkon et al. 2003).

Based on the assumption that genes exhibiting similar expression patterns across

multiple conditions will share cis-regulatory elements in their promoters, PRIMA

seeks out these common sequence elements. Given a target set of promoters (e.g., the

promoters of genes in an identified cluster), a background set of promoters and a

collection of known binding site profiles (see below), PRIMA performs statistical

tests (using a hyper-geometric calculation) in order to identify transcription factors

(TFs) whose binding site profiles are significantly more prevalent in the target set

than in the background set. For each cluster and each TF binding site profile a p-value

is calculated.

The background set used for calculation is determined by the user. It can be all genes,

the genes left after filtering or a set of genes provided by the user. If the p-value is

sufficiently low, then the cluster appears to be enriched with that binding site. At the

user's request, the Bonferroni multiple tests correction can be applied on the results.

In order to perform this analysis efficiently, TF motif fingerprint files for each species

(currently human and mouse) are supplied with EXPANDER. A set of 19,244 human

promoter sequences, spanning from 1000 bp upstream the transcription start site

(TSS) to 200 bp downstream the TSS, was scanned using PRIMA in order to locate

putative binding sites (hits). The binding sites are modeled as a position-specific

weight matrix, or PWM. The scan was performed for each TF motif in the Transfac

database (Matys et al. 2003) version 7.4 (April 2004). The number of hits of a PWM

in each promoter is called the PWM's fingerprint. The human promoter sequences

were downloaded from Ensembl (http://www.ensembl.org), release 19.34b. Another

set of fingerprints was prepared on mouse promoters (19,923 promoters, Ensembl

release 19.30).

EXPANDER operates PRIMA via an external module written in C++ by Chaim

Linhart from the Computational Genomics group of Tel-Aviv University.

55 VViissuuaalliizzaattiioonn mmeetthhooddss

In this chapter we describe the main visualization methods used in EXPANDER.

Two datasets are used in the following examples: the first, referred to as dataset A, is

yeast cell cycle data that is constructed of 698 genes over 72 conditions (Spellman et

al. 1998). The second, referred to as dataset B, is expression profiles of mouse lymph

nodes of wild-type and ATM-/- mice at different time points after irradiation. Genes in

dataset B were filtered using the fold change method (see section 7.1) and the filtered

dataset used here is constructed of 1205 genes over 6 conditions (see section 7.1).

Additional examples are provided in chapter 7.

5.1 Matrix displays

5.1.1 Expression matrix

This tool is very similar to "heat map"

matrix representation introduced by Eisen

et al. (1998). Gene-expression data are

rendered on the screen either in color or

gray levels (colors can be configured via

the 'Settings' dialog, accessible from the

'Options' menu of the main menu bar). In

the color display blue (green) indicates

under-expression, and yellow (red)

indicates over-expression. In the grayscale

display a darker rectangle indicates a

higher expression value.

 A color scale appears next to the matrix

(upper right side) and is also available as a

mobile frame through the 'Options' menu

(or through the right click pop-up menu).

When data are clustered, this visualization

is available also with rows ordered

according to clusters. Columns appear in

their original order in the matrix.

Figure 5.1.1.a: An example of the matrix visualization of dataset
A. Only 20 out of 72 conditions are shown here (the user can
select which conditions will appear in the visualization). Row and
column orders here are as in the input, but reordering can be done
in several ways (see below).

In grayscale display grey levels can take values between 0 (black) and 255 (white).

The value is calculated using the following equation:

255*
XX

XX
(int)255

minmax

mini

?

?
??GL

Where Xi is the expression level that is being rendered, Xmax and Xmin are the maximal

and minimal expression values in the matrix, respectively. In color display the color is

determined according to the sign of the expression value, i.e., yellow (red) for positive

values and blue (green) for negative values. The user can also set the center of scale

(i.e., the value in which colors are switched) to be the average expression value. In

this case the color will be determined according to the sign of the expression value

minus the average expression value. The intensity (In) of the color is determined

according to the equation:

 ??
?

??
? ?? 255*)1(log 2

range
X

In
i

SVX

SVX

if

if

SVX

XSV

i

i

range
?

?

?

??
?
?

?
max

min

Where SV is the value of color switching and Xi, Xmax and Xmin are as described

above. The logarithmic scale is used since it is more sensitive to small values and less

influenced by higher extreme values.

In order to reduce the influence of extreme values on the color scale, the maximal,

minimal and average expression values are calculated using a sample vector of

numbers that are randomly selected from the matrix, and disregarding the top and the

bottom 5%.

5.1.2 Similarity matrix

This tool shows the similarity matrix representation used by Ben-Dor et al. (1999). It

presents similarity values between expression patterns of all pairs of genes. The

similarity measurement used in EXPANDER is the Pearson correlation coefficient.

The symmetric similarity matrix has rows and columns corresponding to elements

(usually genes). Similarity values are rendered on the screen either in color or gray

levels (colors can be configured through the ‘Matrix Display’ dialog box, accessible

from the 'Options' menu of the main menu bar).

In the color display, yellow (red)

indicate a similarity value above

average, and blue (green) indicate

a similarity value below average.

In the grayscale display, a darker

cell indicates a higher similarity. A

color scale appears next to the

matrix (upper right side) and is

also available as a mobile frame

through the `Options` menu (or the

right click pop-up menu).

When data are clustered, this

visualization is available also with

rows ordered according to clusters.

Figure 5.1.2.a. a similarity matrix display for clustered

gene expression data of dataset A. Rows and columns here

are ordered according to the clustering solution, so that

clustered elements appear contiguously. The clusters are

noticeable as rectangles along the main diagonal.

5.2 Pattern displays

5.2.1 Mean cluster patterns

This tool displays the mean pattern of each cluster in a separate panel. In each panel

the x-axis contains the conditions and the y-axis is the expression value. The mean

pattern is displayed along with error bars representing standard deviations.

Figure 5.2.1.a. Mean patterns display of the clustering solution of dataset A. Only 8 conditions are
displayed (can be determined by the user) so that pattern differences will be noticeable. (The clustering
is the same as in fig 5.1.2.a).

Upon clicking on one of the panels, a frame is opened containing a list of all genes in

the cluster (probe IDs and gene symbols). The list can be sorted according to one of

the columns by clicking on the column header.

5.2.2 Cluster contour

This tool displays a contour of a

particular cluster selected by the

user. A contour of a cluster

consists of two sets of line

segments, one representing the

mean pattern plus one standard

deviation, and the other

representing mean pattern minus

one standard deviation.

Figure 5.2.2.a. A contour of cluster number 1 from a
clustering solution for dataset A. Only 8 conditions are
displayed (can be determined by the user).

5.2.3 Patterns of all genes in a cluster

This tool displays a graph of all

gene patterns in a particular

cluster selected by the user. Each

pattern appears in a different

color.

Upon clicking on the panel, a

frame is opened containing a list

of all genes in the cluster. The list

can be sorted according to one of

the columns by clicking on the

column header.

Figure 5.2.3.a. Patterns of all genes in cluster number 1
from a clustering solution for dataset A. Only 8 conditions
are displayed (can be determined by the user).

5.3 Scatter plots

5.3.1 PCA analysis display

This tool transforms the original

data from an n-dimensional space

(where n is the original pattern

length) to a 2 dimensional space,

so that each gene is represented

by a dot on an XY scatter plot.

The transformation is based on

the PCA (Principal Component

Analysis) algorithm

(Raychaudhuri et al. 2000).

If clustering is performed before

operating the tool, the dots

representing the genes on the

chart appear in different colors,

according to their cluster

numbers. The display tool tip

shows the name of the gene

represented by the dot located

under the curser.

Figure 5.3.1.a. A PCA analysis display of dataset A after it
has been clustered. Each color represents a different
cluster. Cursor position on the scatter plot corresponds to
the gene SRI1.

5.3.2 Data plots of two arrays

This tool displays a scatter plot of two

arrays, selected by the user. The ith point

is (x,y) if the expression value of the ith

gene is x in array 1 and y in array 2. For

normalized data, points should be located

around the y=x line (marked on the

scatter plot). Two additional lines

corresponding to y=x+1 and y=x-1 are

also marked on the plot. Genes that

deviate markedly from these bounds

indicate significant overexpression in one

array (condition) versus the other, and

may be potentially useful for explaining

the biological differences between the

conditions.

Figure 5.3.2.a. A scatter plot of two arrays from
dataset B. The displayed arrays are wt0 - wild
type before treatment with ionizing radiation vs.
wt30 – wild type 30 min. after treatment with
ionizing radiation. Data are well normalized,
thus, most points are located around the y=x line.
Cursor position corresponds to affymetrix probe
with id: 101578_f_at.

5.4 Histograms

5.4.1 Functional analysis display

After performing functional analysis (see section 4.4.2 for details) this tool displays a

histogram for each cluster, containing a column for each significant functional class

(i.e., one that is much more frequent than would be expected at random). The

definition of significance depends on the user’s selection of threshold p-value. The

height of a column is proportional to the percentage of the corresponding functional

class in the cluster.

Figure 5.4.1.a. The display of functional analysis performed on a clustering solution dataset A.
Threshold p-value had been set to 5*10-10.

Upon clicking on a column, a dialog box is displayed

containing the class name, p-value, and a list of the

genes in the cluster that belong to the class. For mouse

and human these lists are connected to the web, so that

when a user clicks on an item in the list, the relevant

LocusLink page is displayed with information

regarding the gene.

Figure 5.4.1.b. A dialog box which
is displayed upon clicking the
DNA metabolism column in the
histogram shown in Figure
5.4.1.a.

5.4.2 Promoter analysis display

After performing promoter analysis (see section 4.4.3 for details), this tool displays a

histogram for each cluster, containing a column for each significantly enriched

transcription factor motif. The required significance level is determined by the user’s

selection of threshold p-value.

The height of a column is proportional to the ratio of the frequency of the TF motif in

the cluster vs. its frequency in the background set. Upon clicking on a column, a

dialog box is displayed containing the TF name, p-value, the percentage of promoters

in the cluster that contain the motif, relative abundance (frequency in cluster divided

by frequency in background set) and a list of the genes in the cluster that contain the

motif in their promoters. For mouse and human these lists are linked to the web, so

that when a user clicks on an item in the list, the relevant LocusLink

(http://www.ncbi.nlm.nih.gov/LocusLink/) page is displayed with information

regarding the gene.

Figure 5.4.2.a. The display of promoter analysis performed on a clustering solution of dataset B.
Threshold p-value has been set to 0.05, and the Bonferroni correction for multiple tests has been used.

5.5 Dendrogram trees

5.5.1 Hierarchical clustering results display

After performing a hierarchical

clustering (see section 4.2.4 for

details) this tool displays the

resulting dendrogram tree in one

of the following manners

according to the user's selection:

a) A stand alone vertical tree

with gene names next to the

leaves.

b) A vertical tree at the left side

of an expression matrix, so that

the matrix rows are ordered

according to the order of the tree

leaves.

c) A tree that appears both

vertically (at the left side) and

horizontally (above) the

similarity matrix, with rows and

columns ordered according to

the order of the tree leaves.

Figure 5.5.1.a. A display of hierarchical clustering results
on dataset A. The complete linkage scheme had been used to
calculate distances. In this example the dendrogram tree is
displayed next to the expression matrix.

5.6 Data tables

5.6.1 Biclustering results data table

After performing biclustering (see section 4.3 for details), this tool displays a table of

all biclusters. Filtering can be performed according to: bicluster score, number of

genes, number of conditions or maximum p-value for enriched functional class.

Figure 5.6.1.a. Part of the data table displaying the results of biclustering of dataset A. Functional
analysis had been performed on the biclusters. Here the biclusters are sorted alphabetically according
to the name of the most enriched functional category.

Upon selecting (double clicking) a line in

the table, an expression matrix is

displayed (see section 5.1.1 for details). It

shows the sub-matrix of the expression

data for the genes and conditions that

belong to the bicluster. An additional

column is displayed for each significantly

enriched functional class that appears in

the table, indicating for each gene,

whether it belongs to that class. Gene and

condition names appear next to the

matrix.

Figure 5.6.1.b. An expression matrix of bicluster
#31 from the biclustering results shown in Figure
5.6.1.a. The first two columns correspond to
functional classes that were detected as
significantly enriched in this bicluster. A red mark
in such a column indicates that the gene belongs
to this functional class. We can see that there are
13 'cell cycle' genes of which 10 are 'DNA
replication and chromosome cycle' genes in this
bicluster.

66 SSooffttwwaarree ddeevveellooppmmeenntt aanndd aarrcchhiitteeccttuurree

In this chapter we describe the software development process and outline the

architecture and its main building blocks. We also explain our considerations in

making the key decisions regarding the development.

6.1 Selecting the development language

EXPANDER was developed in Java for the following reasons:

? The java programming language is object oriented, and thus suitable for such a

large scale application that requires many different modules that interact with one

another.

? A code written in Java is cross platform, i.e., it runs with little or no changes on

different operating systems. This enables biologists to use the application on any

operating system.

? The Java language incorporates graphical implementations for window

application programming, that give solutions to differences between windowing

systems of different operating systems (e.g. Win32 vs. Linux), and can be easily

expanded. This is very important to the development of graphical visualization

tools such as this one.

? It is relatively simple to run external modules written in other (more efficient)

programming languages via an application written in Java. This is achieved by

using the Runtime class supplied by SUN.

6.2 Architectural considerations and overview

6.2.1 Architecture considerations

The main guidelines leading me in my design were:

? Create a clear separation between data management, data analysis and graphic

display.

? Exploit the advantages of object oriented programming (inheritance,

encapsulation etc.) in order to make the code as simple and elegant as

possible, and to simplify the addition of new functionalities.

6.2.2 Overview

The considerations described above led to the planning of the scheme described in

Figure 6.2.2.a. The program structure is presented as three main modules, the Data

Management module that consists of the Data package, the Data Analysis module

that consists of the Algorithm and the Visualization Tools packages and the

Graphical Interface module that consists of the Display, Display Frame and Dialog

packages. During the program operation the modules interact with each other. The

Utility Package contains several classes that are used by all modules, and thus, is an

open access package. A more detailed overview scheme will be given in section 6.8,

after the components have been described.

Figure 6.2.2.a. A scheme describing the general design of the functional modules in the program. Each
general module (package) is represented by a rectangle, and interactions between modules are
represented by arrows.

Algorithm
package

Data
package

Display
package

Main Frame

Visualization
Tools
package

Data
Analysis

Data
Management

Dialog
package

Graphical
Interface

Utility
package*

* = open access
 = access

Display Frame
package

6.3 Data management

The following classes are used in EXPANDER to store and access the data, while the

application is running:

6.3.1 The FloatMatrix class

This class was created in order to simplify operations on matrices containing numbers

in floating point representation. Such matrices are often used in the program. Each

object contains a two dimensional array of floating point numbers, and some

additional parameters such as the average value, whether or not the matrix is

transposed, etc. In addition to ordinary 'get' and 'set' methods, this class also contains

some matrix normalization and standardization schemes that can be applied on any

matrix, and are used for microarray data normalization and standardization.

6.3.2 The BasicElement and ElementArray classes

The BasicElement class was created in order to represent one gene or one condition in

the data. For each gene/condition, an object of BasicElement is created, containing its

name, id, whether or not it is being used for current calculations and a few other

details.

The ElementArray class holds and manages the entire set of genes/conditions in the

data. It contains an array of objects of type BasicElement. In addition to ordinary 'get'

and 'set' methods, this class can perform variable queries regarding the data such as:

getting an element index by its name, getting an array of names of the used elements

only (elements that are currently flagged as used for analysis), etc.

6.3.3 The MainData class

Figure 6.3.3.a. A scheme describing the structure of the MainData module of the program. Each
rectangle represents an object of a class. Class names are written in the rectangle. The names of all
main data members in the MainData class are written in the MainData rectangle, and the arrows are
pointing at the corresponding class objects.

This class holds and manages most of the data used by the program. A single object of

this type exists at any given time, and is initialized when the user requests to load data

from an input file. The structure of the class is described in Figure 6.3.3.a.

The class contains two objects of type ElementArray (one for genes and one for

conditions) and three objects of type FloatMatrix (for input expression data,

preprocessed expression data and similarity data). It also contains some additional

parameters such as the recently used standardization method, the used similarity type,

the input data type, etc. In addition to ordinary 'get' and 'set' methods, this class also

contains methods for loading input data from file, for preprocessing data (filtering,

normalizing and standardizing expression data), calculating similarity matrix

according to expression data, and writing data into files (this is required for operating

external modules via EXPANDER).

6.3.4 The Bicluster and BicSet classes

The Bicluster class was created in order to contain all information regarding one

bicluster calculated by operating a biclustering algorithm. It contains a vector of

MainData
Genes
Conditions
Fingerprints
usedFingerpritns
similarityMatrix

ElementArray

ElementArray

FloatMatrix

FloatMatrix

FloatMatrix

BasicElemen

BasicElemen

BasicElemen

BasicElemen

indices of all genes in the bicluster and a vector of indices of all conditions in the

bicluster, as well as a score. It also contains required 'get' and 'set' methods.

The BicSet class holds and manages the entire set of Bicluster objects generated by a

biclustering algorithm. In addition to the set of objects of type Bicluster, this class

also contains a vector of significant functional annotations for each bicluster (if

calculated). It contains some simple 'get' and 'set' methods as well as several query

methods such as getting an array of all gene/condition names in a particular bicluster,

or getting a FloatMatrix object containing expression data of a particular bicluster.

6.3.5 The Preferences class

This class contains all of the user's preferences for the application settings. These

include the threshold p-value for functional enrichment analysis, the organism being

studied, matrix display preferences (colors etc.), biclustering algorithm parameters,

and more. Only one object of this type exists when the application is running, and it

reads and writes itself from and into a preferences file, saved after the application is

closed, so that user preferences will be saved from one session to another.

6.4 Data analysis

Each of the top level analysis methods used by EXPANDER is incorporated in a class

that is derived from the general abstract class Algorithm.

6.4.1 The Algorithm class

The Algorithm class is an abstract class that represents a general algorithm. It is used

as a super-class from which all algorithm classes in the program are derived. It

contains a reference to the MainData object, as well as a list of temporary files that

are to be deleted after completing the operation of Algorithm by incorporating a

clean-up method. It also contains the virtual getType and operate methods (these are

methods that must be implemented in derived classes).

6.4.2 The ClusteringAlgorithm class

The ClusteringAlgorithm class is derived from the Algorithm class and is a super-class

of all clustering algorithm classes. It contains an array of integers that holds the

clustering results, and some additional data such as clusters homogeneity and

separation measurements.

This class implements all operations that are to be performed by all clustering

algorithms, such as calculating homogeneity and separation of clustering solutions,

calculating the mean patterns of clusters, writing a clustering solution into a file, and

more.

6.4.3 Classes extending ClusteringAlgorithm

A separate class has been created for each clustering algorithm implemented by

EXPANDER. Each such class is derived from the ClusteringAlgorithm class, and

contains a different implementation for the 'operate' method. The SOMAlgorithm and

KMeansAlgorithm classes contain the algorithm steps in the code, whereas the

ClickAlgorithm class operates an external module, and reads the resulting output into

its clustering results vector.

6.4.4 Classes extending Algorithm

Some of the algorithms implemented by EXPANDER are not clustering algorithms.

These are also derived from the generic Algorithm class. An example for such a class

is the PCAAlgorithm class which implements the PCA algorithm in order to project

each expression pattern from n dimensions to two dimensions.

6.4.5 Handling external modules via Algorithm classes

Some of the algorithms act as interfaces which operate external modules in order to

perform the required analysis. An example for such an algorithm is the CLICK

clustering algorithm or the functional analysis algorithm. These classes are required to

operate an external script/application located under the EXPANDER directory. To

handle the operation of such external modules we have used the java class Process. In

order to overcome a documented Java bug which causes the Process object to 'hang'

during operation, we have created the class ExternalProcessHandler. An object of

this class is created for each process, and operates by reading the input and error

streams generated by the process, and generating relevant messages to be displayed

by EXPANDER.

6.4.6 From data analysis to display: the visualization tools

In the process of generating and manipulating a visualization in EXPANDER, some

calculations are carried out (with or without using an Algorithm class), after which, a

suitable display object is created. In some cases, additional input is requested from the

user. These stages are all performed by the visualization tool.

The visualization tool is the 'glue' that connects the data, the analysis and the display.

It is created by the main frame when the user requests the use of a tool (for example:

expression matrix). The tool has constant access to the main data objects, and it

creates the display panel and frame to display analysis results.

 Each visualization tool is defined in a class that is derived (directly or indirectly)

from the abstract super-class VisualizationTool.

The VisualizationTool class

The VisualizationTool class is a super class from which all visualization tool classes

are derived. It creates and holds a DisplayPanel object and a DisplayFrame object. It

also holds a reference to the MainData object. It defines all operations that are

required in all or most of the visualization tools (such as the method for creating a

display frame).

The VisualizationToolWithClust class

The VisualizationToolWithClust class is derived from the VisualizationTool class. It

holds a reference to a ClusteringAlgorithm object, as well as methods designed to

handle clustering results (e.g., a special method for creating a table that contains

clustering information). All visualization tools that operate on clustered data only are

derived from this class. Two examples for such classes are the

FunctionalAnalysisTool and the PromoterAnalysisTool that are both derived from the

VisualizationToolWithClust class. The FunctionalAnalysisTool class operates an

external module that calculates the significance of different functional classes in the

each cluster, and detects significantly enriched classes (for details see section 4.5.2).

The PromoterAnalysisTool class operates an external module, the PRIMA software,

that performs statistical tests in order to identify transcription factors (TFs) whose

binding site profiles are significantly enriched in the different clusters (for details see

section 4.5.3). Both classes utilize the ExternalProcessHandler class, described in

section 6.4.5, to handle these external processes.

6.5 The graphical Interface

The graphical interface is composed of the input dialogs (used for data input) and the

different display panels that are used for visualizations and display of analysis results.

The Dialog package contains the classes that are used for requesting input data from

the user. All are derived from the java class Dialog.

To generate the different displays, a class was defined for each display type. Each

display class is derived (directly or indirectly) from the abstract super-class

DisplayPanel (described below). The Display package contains all classes that are

used to display graphical visualizations on the screen. Drawing on the screen is

performed using the Swing graphical user interface library

(http://java.sun.com/docs/books/tutorial/uiswing/).

6.5.1 The DisplayPanel class

The DisplayPanel class is derived from the Swing class JPanel. It implements all

operations that are required for the graphical displays such as: a print method that

enables sending its contents to be printed, a paint method that is called whenever the

panel is repainted on the screen, and a mouse motion listener event handler that

detects mouse motions and operates a method that updates the tool-tip text according

to the position of the cursor on the display.

6.5.2 Displaying matrices

The matrix display is performed using the MatrixDisplayer class, which is derived

from the DisplayPanel class. Matrix colors are rendered according to the float values

in each position in the matrix.

Color rendering is performed once upon display initiation, and saved for as long as

the displayer object exists. This is because recalculating the colors each time a 'paint'

event takes place is very time consuming. The colors are kept in a data structure

called colorMatrix, which is an array of objects of type ColorArr. Each ColorArr

represents one color, and contains a vector of positions on screen (x,y) which are to be

colored in that color.

Whenever a 'paint' event takes place, the matrix is repainted on the screen via the

'onDisplay' method which uses the Java Graphics class to change the color and then

fill all rectangles that are to be colored in that color (according to the colorMatrix data

structure). Rectangle size is determined according to the scale used, and is changed

when the user operates the zoom in/out option.

6.5.3 Displaying charts

The following chart displays are implemented in EXPANDER: XY scatter plot,

pattern displayer and histogram. These are implemented in three separate classes,

XYScatterDisplayer, PatternDisplayer, and Histogram, which are all derived from the

Chart super-class.

The Chart super-class holds all parameters and methods required for drawing the axis

system and labels. The display magnitude (scale) is determined according to the size

of the frame, and is updated automatically whenever the frame is resized (i.e.,

whenever a 'paint' event takes place).

The XYScatterDisplayer class holds a vector of points (x, y, point name, point color)

to be displayed on the chart. Points are painted on the screen in the form of a '+'

symbol, which is centered round the relevant (x, y) values. This class also holds a

vector of point positions in pixels on the screen. This vector is updated whenever the

display is repainted on the screen. It is used in order to efficiently display the

appropriate tool-tip text whenever the cursor is placed on or very close to one of the

points.

The PatternDisplayer class holds a vector of patterns. Each pattern is described by a

series of float numbers that represent the y values of the pattern, a name, a series of

error bar sizes (one for each point) and a color (the x values of the pattern are

consecutive, e.g., time points). This class also holds a vector of pattern positions in

pixels on the screen. This vector is updated whenever the display is repainted on the

screen. It is used in order to efficiently display the appropriate tool-tip text whenever

the cursor is placed on or very close to one of the patterns.

The Histogram class holds a vector of all histogram columns. Each column is

described by its position, width, height, name, color and reference to a dialog box that

contains some information regarding the column. On the display each column is

defined by the application as a button, which when clicked, causes the display of the

associated dialog box.

6.5.4 Displaying data tables

Data tables are used by EXPANDER to display clustering results, bi-clustering

results, the contents of a selected cluster, and other types of required information. The

Swing class JTable is used in order to display a data table. Data are input into a table

using a table model (implemented in class ClusteredDataTableModel). In order to

allow sorting a table according to the contents of a column, a TableSorter class was

written.

The biclustering results table can be filtered according to the user selection. This is

performed in the 'updateTable' method of the class BicResDisplayer by using a

BicsFilter object. The BicsFilter class holds various parameters that define a filter

operation, such as: minimal and maximal score, minimal and maximal number of

conditions per bicluster, minimal and maximal number of genes per bicluster,

threshold functional annotation p-value, etc. This class implements a method that

receives a Bicluster object, and returns whether or not it should be displayed under the

current filter definitions.

6.5.5 Displaying dendrogram trees

Dendrogram trees are used in EXPANDER to display the results of a hierarchical

clustering algorithm. The TreeNode class is used to hold all dendrogram tree data. In

order to display a dendrogram tree on the screen the DisplayTree class was defined.

This class holds the tree in the form of a TreeNode object as well as an array of leaf

labels and leaf positions on screen. It also implements several drawing methods that

are used to draw the tree on the screen.

6.5.6 Creating the display frames

In order to show a display panel on the screen, a frame that contains this panel must

be created. This frame is created using the DisplayFrame class (or one of the classes

derived from it). An object of that type is created by the visualization tool in the

'createDisplayFrame' method. The display frame contains a separate menu bar, which

enables the user to perform operations on the display, such as zoom in, zoom out, save

etc.

Each DisplayFrame object contains one DisplayPanel object, a tool bar containing

buttons that enable operations on the display, a pop-up menu and a dialog box with

information regarding the display. Most of the methods implemented in the

DisplayFrame class are event handlers for handling different menu options.

6.6 The Main Frame - How it all comes together

Figure 6.6.a. A scheme describing the MainFrame class and its key components. Data members of the
class are listed in the MainFram rectangle, and arrows are pointing at the rectangles representing the
different objects that comprise them.

The MainFrame class is derived from the Swing class JFrame. A single object of this

type is created upon running the application. This object exists for as long as the

application is running, and it can be referred to as the application 'manager'.

MainFrame
data

preferences
clustAlgo

biclustAlgo
tool

displays

MainData

Preferences

ClusteringAlgorithm

BiclusteringAlgorithm

VisualizationTool

DisplayPanel DisplayPanel

 The main frame contains the main menu bar, through which the user operates the

different analysis and display tools, as well as a status bar, through which the

application can send messages to the user regarding the application's status. When an

input data file is loaded by the user, the main frame creates and holds the MainData

object. The clustering and biclustering algorithms are also created and operated by the

main frame upon user's request, and are kept as data members. The main frame also

holds a vector containing all open displays, and an object of type Preferences,

containing all currently selected application settings.

Most of the methods implemented in the main frame class are event handlers for

handling different menu options.

6.7 The utility Package

This package contains classes for which no objects are formed. These classes are

designed to contain information/methods that are relevant for the whole application at

all times.

6.7.1 Handling float vectors – the VecCalc class

The VecCalc class contains various methods that are designed to handle floating

number vectors. It implements operations such as sort, find maximal value, find

minimal value, calculate average, calculate standard deviation, etc. The methods can

be used by all objects in the application, and do not require the existence of an object

of this type.

6.7.2 The Strings class

All constant strings used by the application (e.g., messages to the user) are defined in

the Strings class. This simplifies the process of changing text since it allows all

changes to be performed only once, and in a well known, fixed place.

The Strings class also defines several string manipulation methods that are not

available in the Java.String class, and are required by several classes in the

application. An example for such a method is the floatToStr method, which deals with

displaying a float number as a string.

6.7.3 The Constants class

All constant integers (enumerations) that are used in more than one place in the

application are defined in the Constants class. Again, this simplifies the process of

changing such enumerations, since it allows all changes to be performed only once,

and in a well known, fixed place.

6.7.4 Connecting to the WEB – the URLHandler class

Some of the data tables displayed by EXPANDER contain gene names, which can be

used as links to web pages containing information regarding those genes (upon

clicking such a name, a web browser is opened, and displays the relevant

information). To implement this feature I have created the URLHandler class. The

URLHandler class operates the web browser via the Java.Runtime object, by sending

the appropriate command line, selected according to the operating system on which

the application is running. In case of failure, this class generates the proper error

message. Once again, the methods can be used by all objects in the application, and

do not require the existence of an object of this type.

6.8 A detailed overview

We are now ready to view in more detail the overall architecture of the system. Figure

6.8.a shows a detailed version of the scheme displayed in Figure 6.2.2.a. The main

classes in each package are displayed within the package rectangle. The relations

between the different classes are described using arrows.

Figure 6.8.a. A General scheme, describing the different packages, the central classes that they contain and
the different relationships among them. The MainFrame class creates and manages all other components.
Classes of the Algorithm package can access instances of the Data package classes. Classes of the
Visualization tool package can access, create and manage instances of classes from the Data package,
Algorithm packages, Dialog package and Display Frame package, that are required for the operation of these
tools. The Utility package has open access since it contains classes that are required by all components.

Algorithm PCAAlgo

 HierarchicalAlgo

ClusteringAlgorithm

 ClickAlgo

 SOMAlgo

 KMeansAlgo

 BiclusteringAlgo

MainData FloatMatrix

 ElementArray

BicSet Bicluster

Main
Frame

Data
Management

Strings

Constants

VecClac

URLHandler

DisplayPanel

 Chart Histogram
 XYScatterPlot
 PatternDisplayer

 MatrixDisplayer

DendrograDisplayer
 SimilarityMatrixDisplayer

…….

Algorithm package Data package

Utility package

= inheritance
= access
= open access

Visualization tools package

Display package

Dialog package

 DisplayFrame

MatrixDispalyFrame

 BicResDisplayFrame

 MultHistsDisplayFrame

Display frame package

Preferences

Graphical
Interface

VisualizationTool

 PCATool
 RawDataMatrixTool
 DataDendrogramTool ...

VisualizationToolWithClust

PromoterAnalysisTool
 FunctionalAnalysisTool
 ClusterredDataMatrixTool…

Data
Analysis

77 EEXXPPAANNDDEERR aass aann iinnssttrruummeenntt iinn tthhee hhaannddss ooff tthhee
rreesseeaarrcchheerr

In this chapter we present three examples of EXPANDER-based analysis of

biological datasets. This allows us to demonstrate various capabilities of the software

and to draw novel biological conclusions.

7.1 Example 1: Analysis of oligonucleotide array data from

the mouse lymph nodes

7.1.1 The data

The data we describe here were generated as part of an attempt to dissect the DNA

damage response using gene expression profiles. The experiments were conducted by

Sharon Rashi-Elkeles, Ran Elkon from the Shiloh lab in cooperation with Nir

Weizmann and Ari Barzilai from the George S. Wise Faculty of Life Science in Tel-

Aviv University, Ninette Amariglio and Gideon Rechavi from the Department of

Pediatric Hemato-Oncology unit of Functional Genomics at the Sheba Medical

Center, and Chaim Linhart, Roded Sharan and Ron Shamir from the computational

genomics laboratory in Tel Aviv University.

Atm is a protein kinase encoded by the gene that is mutated in the human disorder

ataxia-telangiectasia (A-T). The disease which is characterized by progressive

neurodegeneration that leads to severe ataxia and many other defects including

immune deficiencies, cancer proneness, chromosomal instability, and ionizing

radiation sensitivity (Chong et al. 2000). Atm activity is required in cell cycle

checkpoints and DNA repair after exposure to ionizing radiation. ATM-deficient cells

exhibit an extremely high sensitivity to ionizing radiation and to multiple double

stranded breaks.

In this study, global transcriptional responses were recorded in wild-type and in Atm-

deficient lymph node tissues of mice exposed to whole body irradiation with 15 Gy of

IR. mRNA was collected 0, 30 and 120 min after irradiation. Affymetrix GeneChips

MGU74Av2 were used in this study. The chips containing above 12,000 probe sets, of

which 6000 correspond to functionally characterized mouse genes and the rest

correspond to ESTs. Samples from untreated mice were probed in independent

hybridization triplicates (three repetitions) and samples from irradiated mice were

probed in independent hybridization duplicates (two repetitions). A representative

expression level for each probe set in each of the six tested conditions was computed

by averaging the probe-set signal intensities in the replicate arrays. This study has not

been published yet.

7.1.2 Loading the data

The input file used in this analysis contains data for 6982 gene probes (Affymetrix

IDs) and 6 conditions. These genes remained after filtering out all genes that were

marked "Unpresent" by the Affymetrix software (i.e., genes that are not expressed in

lymph node cells under any of the 6 conditions). Expression levels under 40 were

arbitrarily set to 40. The conversion file contains the LocusLink IDs corresponding to

probe Affymetrix IDs. Figure 1.1.2.a contains an image of the input dialog box that

was used to load the data.

Figure 1.1.2.a. The file input dialog box that was used to load the input data. The Raw Data File Name
field contains the name of the expression data file. The IDs Conversion File field contains the name of
the file that contains the LocusLink IDs corresponding to each gene ID from the expression file. The
Data Type field was set to Oligonucleotide Array.

7.1.3 Preprocessing the data

A fold change filter was applied, so that only genes

changed by a factor of at least 1.75 across the six

tested conditions were selected. 1205 of the probe

sets met this criterion. The remaining genes were

displayed in a list shown in Figure 7.1.3.a.

Figure 7.1.3.a. Part of the list of genes
that remained after applying the fold
change filter.

Next, data were standardized so that the expression levels of each gene would have

mean 0 and variance 1. Figure 7.1.3.b shows the menu option and dialog box that

were used to operate the standardization.

Figure 7.1.3.b. The menu option and dialog box that were used to operate the standardization.

7.1.4 Viewing raw data

The raw data were viewed using the Raw

Data Matrix visualization. Figure 7.1.4.a.

shows the displayed matrix. The resolution

was changed using the Zoom in and Zoom

out options. When using high resolution,

gene names were displayed next to their

corresponding rows in the matrix (not

shown in figure).

Figure 7.1.4.a. A fraction of the raw
data matrix display of the data after
filtration and standardization have been
performed. A color scale appears at the
top right corner of the display.

7.1.5 Clustering the data

The CLICK algorithm was used to

cluster the genes into distinct

subsets. CLICK identified 15

clusters, out of which 9 contain

more than 40 genes, and left 4

outlier genes unclustered

(singletons). For each cluster, the

size and homogeneity are specified.

The overall average homogeneity is

0.8468 and the overall average

separation value is -0.0737.

Figure 7.1.5.a. The clustering info dialog
that was displayed after running the
CLICK algorithm.

7.1.6 Viewing clustered data

A general impression of the clustering results was achieved

by using the clustered expression matrix and the clustered

similarity matrix visualizations.

Figure 7.1.6.a. shows the clustered matrix display. The order

of the six conditions here and in all other displays is: wild

type time points 0, 30, 120, ATM-/- time points 0, 30, 120. For

example, clusters 1 and 2 contain genes that respond

primarily in the mutant, at time points 30 and 120

respectively.

Figure 7.1.6.a. A clustered data matrix visualization of the CLICK
clustering solution that was described in section 7.1.5. Patterns of genes
that were clustered together appear consecutively. Clusters are separated
by white lines.

The clustered similarity matrix display can give a general impression of the

similarity/dissimilarity between different clusters and the similarity of genes within

the same cluster. In Figure 7.1.6.b. for example, we can see that cluster 1 is very

different from clusters 2-5, 8, 9 and 13, and more similar to clusters 6-7, 10-12 and

14.

Figure 7.1.6.b. A clustered data similarity matrix display of the CLICK clustering solution. It can be
seen that similarity within clusters is much higher than the similarity between genes from different
clusters. An impression of the similarity between clusters is also given here.

Cluster patterns were examined by using the 'All clusters mean patterns' visualization,

shown in Figure 7.1.6.c. Cluster 1, for example contains 209 genes, which have an

expression peak in experimental condition 5 (at30). Biologically, this cluster seems to

contain genes that are over-expressed in Atm deficient mice shortly after exposure to

IR (30 min.), and then return to basal level.

Cluster 3 contains 175 genes, which have an expression peak in experimental

condition 3 (120 min after exposure of wt cells to IR). Biologically, this cluster seems

to contain genes that respond more slowly in wild-type mice after exposure to IR

("second wave" response), but do not respond to IR in Atm-deficient mice. These may

be genes that are directly or indirectly under regulatory control of ATM, and therefore

the knock-out prevents their upregulation in response to irradiation.

Figure 7.1.6.c. A mean patterns display of the CLICK clusters. Cluster number and size appear at the
top of each panel. The X axis contains the condition numbers, and is interpreted in the legend at the
right side of the frame. The Y axis contains the expression values. Error bars represent ±1standard
deviation. In this display patterns seem to be very different from each other, indicating high separation
between clusters, while error bars are not very big, indicating high homogeneity within clusters.

Cluster content can be viewed by

clicking the relevant panel in the

display. This brings up a dialog box,

containing all genes that belong to

that cluster (fig. 7.1.6.d).

Figure 7.1.6.d. A part of the cluster contents list that
was displayed upon clicking the mean patterns display
of cluster 1.

7.1.7 Performing functional analysis on clusters

In order to characterize the biological processes activated following IR, a functional

analysis was performed on the clustered data. First, parameters were set through the

settings dialog box (this box is reached from the Options menu). Mouse was selected

as the examined organism, annotation type was set to 'GO' (using all three type of GO

categories: process, function and location), analysis background set was set to

'Original Data' (unfiltered) and threshold p-value set to: 5*10-6 (fig. 7.1.7.a).

Figure 7.1.7.a. A snapshot of the Functional analysis settings dialog box, as it was configured prior to
the functional analysis that is described in this section.

The results of the analysis are shown in Figure 7.1.7.b. The p-values, frequency of

classes within clusters and the lists of genes for each column were displayed upon

clicking the relevant columns in the histogram (not shown). Cluster 2 was found to be

highly enriched for genes of the immune response functional class (p = 7.3*10-14) and

with genes of the response to pest/pathogen/parasite functional class (p = 4.54*10-9).

Since cluster 2 contains genes that exhibit an expression pattern of "second wave"

response in ATM-/- mice only, a possible biological explanation for these results is

that the absence of a normal response in the cell to irradiation damages causes an

inflammatory reaction in which the genes in cluster 2 are highly expressed.

 Cluster 5 was found to be highly enriched for genes of the muscle development and

muscle contraction functional classes (p = 7.78*10-14 and 1.4*10-10 respectively). It

was also found to be enriched for genes of the actine cytoskeleton and the

cytoskeleton functional classes (p = 6.78*10-7 and 7.03*10-7 respectively). We found

no good biological explanation for these results.

Figure 7.1.7.b. A snapshot of the Functional analysis results display.

7.1.8 Performing promoter analysis on clusters

In order to reveal regulators whose activation is compromised in Atm-deficient

tissues, promoter analysis was performed, assuming that genes that exhibit similar

transcriptional expression patterns across multiple conditions will share cis-regulatory

elements in their promoters.

Parameters were set through the settings dialog. 'mouse' was selected as the examined

organism, fingerprint file was selected, the background set was set to "Original Data"

(unfiltered), and the threshold p-value was set to 0.05 with FDR Bonferroni correction

(fig. 7.1.8.a).

Figure 7.1.8.a. A snapshot of the promoter analysis settings dialog box, as it was configured prior to
the analysis that is described in this section.

The results of the analysis are shown in Figure 7.1.8.b.

Figure 7.1.8.b. A snapshot of the resulting display of promoter analysis performed on the clusters
described in section 7.1.5. p-values, relative frequencies and gene lists were displayed by clicking on
the relative columns.

Cluster 3 was found to be highly enriched with promoters that contain binding sites

for NF-kappaB (NF?B_73 is another PWM for NF-kappaB), NF-kappaB_(p65)

(which is a subunit of NF-kappaB) and p53. The display shows that the incidence of

the p53 binding profile is 4-fold higher among the promoters of cluster 3 than in the

background set (p = 0.0041), and the incidence of the NF-kappaB binding profile is 3-

fold higher among the promoters of cluster 3 than in the background set (p = 0.0204).

The results suggest that genes in cluster 3 might be regulated by one or more of these

transcription factors, which are well established stress-induced transcriptional

regulators (Amudson et al. 2003). These results support previous studies that reported

compromised IR-induced activation of both NF-kappaB and p53 in Atm-deficient

tissues and in cell lines derived from A-T patients (Banin et al., 1998; Li et al., 2001c;

Piret et al., 1999 ; Saito et al., 2002).

7.2 Example 2: Analysis of yeast cDNA microarray data

concerning responses to environmental changes

7.2.1 The data

In this example we analyze a published dataset dealing with yeast stress responses.

DNA microarrays were used to measure changes in transcript levels over time for the

yeast genes, in response to a variety of stress conditions. These include temperature

shocks, hydrogen peroxide, menadione (a superoxide-generating drug), diamide (a

sulfhydryl-oxidizing agent), dithiothreitol (a disulfide-reducing agent), hyper-osmotic

shock, amino acid starvation, nitrogen source depletion and progression into

stationery phase. The expression levels were also measured under several

environmental change conditions that are not considered stressful, such as

temperature change from 37° to 25° and hypo-osmotic shock. The dataset contains

gene expression measurements for all 6153 putative yeast genes in 15 different time

series under various environmental conditions, generating a set of 173 expression

profiles (Gasch et al. 2000).

7.2.2 Loading the data

Data was loaded without a conversion file since gene IDs in the input file match the

IDs in fingerprint and annotation files supplied by EXPANDER.

7.2.3 Biclustering the data

Biclustering was performed on the entire

dataset using default parameters. 124

biclusters were detected. A part of the

results is shown in Figure 7.2.3.a.

Note the variability in the dimensions of

the biclusters, with the number of

conditions varying between 5 and 73 and

the number of genes varying between 79

and 350.

Figure 7.2.3.a: A part of the biclusters table.
Biclusters are sorted according to their score, and
only the top scoring biclusters are displayed.

7.2.4 Performing functional analysis on biclusters

Functional analysis was performed on the biclusters. The whole dataset was used as

background set, and only "Process" annotations were tested. Threshold p-value was

set to 5*10-4 (Figure 7.2.6.a).

Figure 7.2.4.a: Functional analysis settings used to analyze biclustering results.

The resulting biclusters table contained also information on the significant functional

classes in each bicluster. Part of the table is shown in Figure 7.2.6.b. 53 out of all 124

biclusters scored higher than 1000. Over half of the biclusters consist of more than

100 genes, and almost all of them consist of less than 40 conditions.

Figure 7.2.4.b. Part the biclusters table that contains also significantly enriched functional classes.
Four columns are used to describe each enriched functional class. These include annotation name, p-
value, percentage in bicluster and the number of genes in the cluster that have this annotation. Scroll
bars facilitate browsing through the data.

7.2.5 Viewing biclusters and significant functional classes

Biclusters with high scores are viewed by clicking on the corresponding rows in the

table. For each bicluster, an expression matrix is displayed. For each significant

functional class, a column is added to the matrix display, indicating for each gene,

whether or not it belongs to that class.

Bicluster #99 has the highest score (13,163.5), and it consists of 306 genes and 73

conditions. It was found to be enriched with the following functional classes:

Class Name: Go ID: p-value:
ribosome GO:0005840 Under 10-45

cytosolic ribosome GO:0005830 Under 10-45

Ribonucleoprotein complex GO:0030529 Under 10-45

cytosolic large ribosomal subunit (sensu Eukarya) GO:0005842 5.12*10-42
cytosol GO:0005829 3.43*10-39

Figure 7.2.7.a shows a part of the expression matrix of bicluster #99. According to the

expression matrix, the genes in this bicluster are suppressed under most of the tested

stress conditions, but are not suppressed under environmental conditions that are not

considered stressful (i.e., hypo-osmotic shock in columns 8,9 and temperature change

from 37° to 25° in columns 3, 4). A cluster with a similar expression profile and

enriched functional classes was detected in the research that was previously

performed on this data by Gasch et al., where different methods were used for

analysis (Gasch et al. 2000). These results support previous observations of

repression of ribosomal protein genes during multiple stress responses (Warner 1999;

Sakaki et al. 2003). These results support the conclusion, presented by Gasch et al.,

that suppression of genes involved in protein synthesis is a general feature of the

"environmental stress response" (ESR) (Gasch et al. 2000).

Figure 7.2.7.a: Part of the expression matrix of bicluster #99. Yellow indicates over-expression and
blue indicates under expression.

Bicluster #103 consists of 192 genes and 66 conditions. It was found to be enriched

with the following functional classes:

Class Name: GO ID: p-value:
nucleolus GO:0005730 Under 10-45

Ribosome biogenesis and assembly GO:0042254 3.18*10-42

Ribosome biogenesis GO:0007046 4.41*10-42

Transcription from Pol1 promoter GO:0006360 2.75*10-33

RNA processing GO:0006396 6.27*10-26

Figure 7.2.7.b shows a part of the expression matrix of bicluster #99. According to the

expression matrix, the genes in this bicluster are suppressed under stress conditions,

but are not suppressed under environmental conditions that are not considered

stressful (e.g., hypo-osmotic shock and temperature change from 37° to 25°). A

cluster with a similar expression profile and enriched functional classes was detected

by Gasch et al., using the TreeView software. This cluster was produced by

hierarchically clustering the whole dataset (i.e., using all conditions), and it consists

almost entirely of genes encoding ribosomal proteins (Gasch et al. 2000). The IDs of

the genes in the cluster and its exact size were not published, so a direct comparison

of the gene sets is, unfortunately, impossible.

Figure 7.2.7.b: Part of the expression matrix of bicluster #103. Yellow indicates over-expression and
blue indicates under expression.

Bicluster #2 consists of 335 genes and 21 conditions. It was found to be enriched

with the following functional classes:

Class Name: Go ID: p-value:
carbohydrate metabolism GO:0005975 8.045*10-7
Protein folding GO:0006457 1.85*10-4
Energy pathways GO:0006091 2.39*10-4
Response to stress GO:0006950 3.387*10-4

Figure 7.2.7.c shows the expression matrix of bicluster #2. According to the

expression matrix, the genes in this bicluster are induced under various kinds of stress

conditions (Diamide exposure, DTT exposure, heat shock and hyper-osmotic shock),

and are not induced under environmental conditions that are not considered stressful

(e.g., temperature change from 37° to 25° in columns 14 and 21). The first condition

in the matrix ("heat shock 005 minutes hs-2") seems to show repression under stress,

in conflict with the rest of the results. We suspect that this experiment is faulty, since

(1) it contradicts results of a repeated experiment under the same condition ("heat

shock 05 hs-1", column 15) and (2) it also appears to differ from the other heat shock

conditions also in biclusters 103 and 99.

These results are consistent with the results reported by Gasch et al., describing a set

of approximately 300 genes that were induced in ESR. This set was reported to

consist of genes that are involved in a wide variety of processes, including

carbohydrate metabolism and protein folding (Gasch et al. 2000). The IDs of the

genes in this set were not published.

Figure 7.2.7.c: The expression matrix of bicluster #2. Yellow indicates over-expression and blue
indicates under expression.

Bicluster #30 consists of 209 genes and 9 conditions (all amino-acid starvation

conditions along with the first three nitrogen depletion conditions). It was found to be

enriched with the following functional classes:

Class Name: Go ID: p-value:
Amine metabolism GO:0009308 1.58*10-22
Amino acid metabolism GO:0006520 2.85*10-21
Glutamine family amino acid biosynthesis GO:0009084 3.51*10-10

Nitrogen metabolism GO:0006807 1.38*10-8

Sulfur metabolism GO:0006790 3.85*10-8

Figure 7.2.7.d shows the expression matrix of bicluster #30. According to the

expression matrix, the genes in this bicluster are induced under amino acid starvation

or nitrogen depletion conditions, and suppressed in steady state with sorbitol.

Figure 7.2.7.d: The expression matrix of bicluster #30. Yellow indicates over-expression and blue
indicates under expression.

7.2.6 Performing Promoter analysis on biclusters

Promoter analysis was performed on the biclusters. The whole dataset was used as

background set and threshold p-value was set to 5*10-8 without a correction for

multiple tests (Figure 7.2.8.a).

Figure 7.2.8.a: Promoter analysis settings that were used to analyze biclustering results.

43 PWMs corresponding to yeast TF motifs, extracted from the 'Transfac' database

(version 7.4, April 2004), were used for this analysis. The resulting display contained

a histogram for each bicluster which was found to be enriched with at least one TF

binding site.

Thirty four biclusters were found to be significantly enriched with at least one TF

binding site.

Bicluster #99 was found to be highly enriched with RAP1 motif, with a p-value =

1.83*10-19 (Figure 7.2.8.b). Recall that our functional analysis identified this bicluster

as related to ribosomal proteins. These results are in correlation with previous studies,

demonstrating that the repression of ribosomal protein genes is regulated by the

transcription factor Rap1p (Moehle and Hinnebusch 1991; Li et al. 1999).

Bicluster #103 was not found to be enriched with any of the tested motifs.

Bicluster #2 was found to be enriched with STRE (Stress Response Element) motif,

with a p-value = 1.74*10-18 (Figure 7.2.8.c). These results are in agreement with

previous studies that have identified STRE sequences in many stress-induced genes

(Kandror et al. 2004; Boorsma et al. 2004). Two transcription factors, Msn2p and

Msn4p, are involved in STRE-mediated gene expression (Martinez-Pastor et al.,

1996). Both factors bind to STRE in vitro and in vivo and are required for the

induction of an STRE-LEU2-lacZ reporter gene in response to different forms of

stress (Martinez-Pastor et al., 1996).

Bicluster #30 was found to be enriched with GCN4, CBF1 and AP-1 motifs, p-values

are shown in Figure (Figure 7.2.8.d). GCN4 is a transcription factor that is known to

play a key role in the regulation of amino acid metabolism in yeasts (Hinnebusch

1984). It has been shown to bind degenerate variants of the pseudo palindrome

5'ATGACTCAT3' known as the AP-1 site (Suckow et al. 1994) (i.e., the motifs

identified as AP-1 binding sites in this bicluster are probably the same motifs

identified as CGN4 binding sites). CBF1 is a transcription factor that is necessary for

the expression of genes involved in methionine biosynthesis, and deletion of CBF1

renders S. Cerevisiae methionine auxotrophic (Kuras and Thomas 1995). These

results support the suggestion presented by Gacsh et al. that ESR regulation is both

gene specific and condition specific, and that the expression of genes in ESR is

regulated by different transcription factors depending on the conditions (Gasch et al.

2000).

Figure 7.2.8.b. Promoter analysis results for bicluster #99. Upon clicking a column in the histogram,
an info dialog box appears.

Figure 7.2.8.c. Promoter analysis results for bicluster #2.

Figure 7.2.8.d. Promoter analysis results for bicluster #30.

7.2.7 Discussion

The genomic expression programs characterized in the study of Gasch et al. and in

this analysis reveal that yeast cells respond to environmental changes by altering the

expression of thousands of genes, creating a genomic expression program that is

customized for each environment (Gasch et al. 2002).

Our biclustering analysis detected several biclusters which were found to be highly

enriched for genes that encode ribosomal proteins. As would be expected, bicluster

expression matrices indicate down regulation of these genes under stressful conditions

and upregulation when environmental conditions improve (e.g. 37° to 25°, hypo

osmotic shock etc.). One such bicluster (#99) was found to be significantly enriched

for genes that contain a RAP1 binding site in their promoters. It has been shown that

the majority of ribosomal protein (RP) genes and a number of the translation factors

genes contain binding sites for the essential Rap1 protein in their upstream regions

(Shore 1994).

Another type of biclusters that were detected in our analysis was highly enriched for

genes that are involved in ribosome biogenesis and assembly and transcription from

pol1 promoter. As in the biclusters described above, expression matrices indicate

down regulation of these genes under stressful conditions and upregulation under

normal environmental conditions.

Our biclustering algorithm also detected a bicluster of genes that are highly expressed

under amino acid starvation and nitrogen depletion conditions. This bicluster was

found to be highly enriched for genes that are involved in amine and amino acids

metabolism and biosynthesis. It was found to be significantly enriched for genes that

contain binding sites for GCN4, CBF1 and Ap1 in their promoters. GCN4 is a known

transcriptional activator of amino acid biosynthetic genes (Sattlegger et al. 2004) and

CBF1 is a transcription factor that is necessary for the expression of genes involved in

methionine biosynthesis (Kuras and Thomas 1995). The reason for the enrichment in

Ap1 binding sites is not clear. One possible reason is that CGN4 binds degenerate

variants of the pseudo palindrome 5'ATGACTCAT3' known as the AP-1 site (Suckow

et al. 1994).

Our analysis recovered the key conclusions reported by Gasch et al. (2000). A key

difference in our methodology is the elimination of the need to use prior biological

knowledge and of the subjective pre-selection of conditions for the analysis. All

biclusters and their condition sets (including biclusters containing a small set of

conditions, such as bicluster #30), were automatically detected by the SAMBA

biclustering algorithm from the entire dataset.

7.3 Example 3: Analysis of cDNA microarray data associated

with cell cycle progression in human cells

7.3.1 The data

cDNA microarrays were used to measure gene expression in human cancer cell line,

HeLa cells (Whitfield et al. 2002). Prior to the microarray preparation cell cultures

were synchronized in three different ways: a double thymidine block, a thymidine –

nocodazole block and a mitotic shake off (a physical method) (Whitfield et al. 2002).

Altogether 114 arrays were prepared for different cell cycle stages and using different

synchronization methods. Whitfield et al. identified 874 genes (represented by 1134

elements or probes) as periodically expressed during the cell. Our analysis focused on

this set only.

7.3.2 Loading the data

The raw data were edited to fit the required EXPANDER input format and contents

(some of the columns from the original data file were excluded and array names were

changed to be unique). The edited dataset was loaded, along with a conversion file

that converted UIDs to LocusLink IDs. Missing values were automatically set to 0,

since in cDNA microarrays values are expected by EXPANDER to be given as log

ratios so the value 0 indicates a normal expression level (ratio = 1).

7.3.3 Preprocessing the data

Data were filtered using an input file containing 1134 IDs of elements representing

the 874 genes that were reported as periodically expressed (this file was downloaded

from http://genome-www.stanford.edu/Human-CellCycle/Hela/index.shtml). Since

we used an external clustering solution generated by Whitfield et al. (see below), no

additional filtering was performed.

7.3.4 Loading a clustering solution

Whitfield et al. (2002) partitioned

the cell cycle regulated genes

according to their expression

periodicity patterns into five

clusters, corresponding to cell

cycle phases G1/S(1), S(2), G2(3),

G2/M(4), and M/G1(5). This

partition was loaded as a clustering

solution.

Figure 7.3.4.a shows the clustering

results dialog that also reports the

homogeneity and separation of the

clustering. These values were

calculated by EXPANDER

according to the expression

patterns.

Figure 7.3.4.a. Clustering results dialog produced by
EXPANDER after loading the gene partition into
clusters as provided by Whitfield et al.

7.3.5 Viewing clustered data

Figure 7.3.5.a shows the clustered expression matrix display. Patterns of genes which

were clustered together appear next to each other.

Figure 7.3.5.a. A clustered expression matrix display of the data. The display contains 1134 elements
representing 874 genes, which were identified as periodically expressed. Clusters are separated by
white lines. The clustering solution was provided by Whitfield et al.

Figure 7.3.5.b shows a PCA visualization of the data. Each element is represented as a

point on an XY scatter plot. Elements from the same cluster appear in the same color

(Note that different probes of the same gene are displayed separately). In this Figure

we can see that the similarities and distances between patterns (vectors) in the data are

preserved reasonably well in the projection to two dimensions.

Figure 7.3.5.b. A PCA visualization of the data. Elements from the same cluster appear in the same
color.

7.3.6 Functional analysis

To identify functional classes that are specifically enriched in each of the cell cycle

phases, functional analysis was performed twice: (1) using only the 874 genes

identified as periodically expressed during cell cycle as the background set. (2) using

the whole genome as the background set.

Figure 7.3.6.a shows the visualization of the first analysis. Cluster 2 (S phase) was

found to be highly enriched for genes of the functional class 'DNA metabolism' (p =

2*10-11) and 'S phase of mitotic cell cycle' (p = 6*10-7). It was also found to be

enriched for genes of the 'DNA replication and chromosome cycle', 'replisome' and '

replication fork' functional classes (p < 0.0005). Cluster 3 (G2) was found to be

enriched for genes of the 'mitosis' functional class (p = 1.5*10-4). Cluster 4 (G2/M)

was found to be enriched for genes of the functional classes 'cytoskeleton' (p = 4*10-

5) and 'microtubule cytoskeleton' (p = 2*10-4). The results are summarized in table

7.3.6.a.

 The results in the second analysis support the results in the first, and the p-values

obtained had even higher significance, but they contain additional classes that were

not identified in the first analysis (results not shown). Some of those classes (e.g.,

'mitotic cell cycle' and 'regulation of cell cycle') were identified in several of the

clusters. Other classes were identified in only one or two of the clusters, e.g., 'DNA

repair' in clusters 1 and 2, 'response to DNA damage stimulus' in clusters 1 and 2.

The reason to these differences in results is the significant over-representation of

genes of cell cycle related functional classes in the entire set of 874 genes. Random

partitions of the dataset are also expected to yield clusters where some of these

functional classes are enriched with respect to the entire genome. Thus, it is preferable

to use the filtered dataset as the background set if one wishes to detect phase-specific

functionalities, and to use the unfiltered background for finding general cell-cycle

functions.

Figure 7.3.6.a. The functional analysis visualization. Threshold p-value was set to 0.0005. Only genes
identified as periodically expressed during cell cycle were used as background. Clusters 2 (S phase), 3
(G2) and 4(M/G1) were identified as significantly enriched with several functional classes.

Cluster
(phase):

Enriched functional class: p-value:

2 (S) DNA metabolism 2.317E-11

 S phase of mitotic cell cycle 6.358E-7

 DNA replication and chromosome cycle 8.734E-5

 replisome 2.081E-4

 replication fork 2.081E-4

3 (G2) mitosis 1.498E-4

4 (G2/M) cytoskeleton 4.143E-5

 microtubule cytoskeleton 2.234E-4

Table 7.3.6.a: Functional analysis results when using the filtered dataset as background.

7.3.7 Promoter analysis

In previous work (Elkon et al. 2002), promoter analysis was performed on the above

clusters using the PRIMA software. At the time of the analysis the available promoter

set contained sequences for 568 of the 874. The human fingerprint file that is

currently used by EXPANDER contains TF fingerprints for promoter sequences of

717 out of the 874 cell cycle responding genes, so the richer set was used in the

current analysis.

The promoter analysis was performed twice: (1) using only the 874 genes identified

as periodically expressed in cell cycle as the background set; (2) using the whole

genome as the background set. We do not show again the visualization but rather

concentrate on the results. These are summarized in Tables 7.3.7.a and b for the

analysis (1) and (2), respectively.

In analysis (1), only promoters from cluster 1 (G1/S) were found to be significantly

enriched with TF-binding sites. All TF binding sites that were identified as enriched

in analysis (1) in cluster 1 (G1/S) were also detected in analysis (2), with higher p-

values. This is due to the significant overrepresentation of theses motifs in the entire

set of 874 genes (see table 7.3.7.c). The same analysis was previously performed by

Elkon et al. and yielded no results with p-value < 5*10-4. The improvement is clearly

due to the updated fingerprint files.

Both Arnt and YY1 PWMs that were previously identified by Elkon et al. as

significantly enriched (p < 0.001) in promoters of genes which are expressed in G1/S

and M/G1, respectively, were not detected in this analysis. This is probably due to the

differences in the fingerprint files that were used for the analyses. Since the current

analysis is based on substantially more promoters, we believe that Arnt and YY1 were

false positive detections.

Cluster TF Number of promoters with

hits

Number of hits p-value:

1 (G1/S) E2F 26 31 1.41*10-7
 Sp1 36 51 4.27*10-4
 Ncx 20 21 1.56*10-4
Table 7.3.7.a. Promoter analysis results when using filtered data as background

Cluster TF Number of promoters with

hits

Number of hits p-value:

1 (G1/S) E2F 19 24 3.1*10-11
 NF-Y 39 54 1.07*10-7
 Ncx 20 21 5.9*10-6
 Sp1 36 51 2.96*10-5
2 (S) E2F 17 20 1.21*10-9
 NF-Y 26 40 6.69*10-4
3 (G2) NF-Y 44 69 3.86*10-8
 Sp1 60 86 6.23*10-5
4 (G2/M) NF-Y 55 81 5.52*10-9
5 (M/G1) NF-Y 32 45 3.44*10-5
 CREB 25 31 9.1*10-4
Table 7.3.7.b. Promoter analysis results when using the un filtered data as background

To explore the distribution of binding sites in the filtered dataset in relation to the

whole genome, a different clustering file was loaded to EXPANDER, classifying all

874 genes into one cluster. Promoter analysis was then performed using the entire

genome as background set. The results are summarized in table 7.3.7.c. All TF

binding site motifs that were identified as enriched in the entire set of cell cycle

responding genes in the previous study (Elkon et al. 2002) were detected in this study

as well. Two additional motifs, Alpha-CP1 and ETF were identified in this study.

TF Number of promoters

with hits

Number of hits p-value:

E2F 55 64 9.84*10-23
NF-Y 174 267 3.83*10-13
Sp1 225 322 1.12*10-7
Alpha-CP1 83 105 1.15*10-5
ETF 234 378 4.46*10-5
CREB 99 118 8.47*10-5
ATF 110 127 1.68*10-4
Nrf-1 106 134 4.94*10-4

Table 7.3.7.c. Promoter analysis results on the entire set of cell cycle periodically expressed genes,
when using the whole genome as background.

7.3.8 Discussion

The E2F family is well documented as a prime regulator of the mammalian cell-cycle.

Pathways that modulate the activity of E2F are frequently disrupted in human cancers,

leading to mis-regulated cellular proliferation (Nevins 2001). The E2F PWM obtained

highly significant enrichment scores in all the analyses performed by Elkon et al.

(2002), and also in the analysis described above, which was performed using more

data, demonstrating the sensitivity of PRIMA in revealing true signals. As in the

analysis performed by Elkon et al., E2F was found to be highly enriched in promoters

of genes that are expressed in G1/S and in S phases.

Three TFs, E2F, SP1 and Ncx were detected as enriched (p-value < 5*10-4) in cluster

1 (G1/S) in this analysis, when using only the cell cycle responding genes as

background set. These were not detected in the analysis performed by Elkon et al.,

probably due to the differences in the fingerprint files that were used for the analyses.

The Sp1 has been previously shown to be involved in cell cycle regulation (Clem et

al. 2003). Ncx is known to be expressed in neural crest derived tissues (Iitsuka et al.

1999). No evidence that connects Ncx to cell cycle regulation has been found.

All the TFs that were previously identified by Elkon et al. as highly enriched in

promoters of all 874 genes (in comparison to their prevalence in promoters of the

whole genome), were detected again in this analysis. In addition, two new TFs,

Alpha-CP1 and ETF were detected as highly enriched. ETF is a known transcriptional

activator of p53 (Hale and Braithwaite 1999). Alpha-CP1 is a transcription factor that

belongs to a group of factors which are known to bind to the sequence CAATT

(Alonso et al. 1996).

88 BBiibblliiooggrraapphhyy

Alon, U., Barkai N., et al. Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96(12), 6745-50,
1999.

Alonso, C.R., Pesce, C.G. and Kornblihtt, A.R.The CCAAT-binding proteins CP1 and NF-I cooperate
with ATF-2 in the transcription of the fibronectin gene. Biol Chem. 271(36):22271-9, 1996.

Amundson, S.A., Bittner, M. and Fornace, A.J.Jr.Functional genomics as a window on radiation stress
signaling. Oncogene. 22(37):5828-33, 2003.

Ashburner, M. Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K.,
Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,
J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet. 25(1):25-9, 2000.

Banin, S., L. Moyal, S. Shieh, Y. Taya, C. W. Anderson, L. Chessa, N. I. Smorodinsky, C. Prives, Y.
Reiss, Y. Shiloh, and Y. Ziv. Enhanced phosphorylation of p53 by ATM in response to DNA damage.
Science 281:1674-7, 1998.

Ben-Dor, A., Shamir, R., Yakhini, Z. Clustering gene expression patterns. J Comput Biol 6(3-4):281-
97 1999.

Bolstad, B. M. Irizarry, R. A. Astrand, M. and Speed, T. P. A Comparison of Normalization Methods
for High Density Oligonucleotide Array Data Based on Variance and Bias. Bioinformatics 19(2):185-
193, 2003.

Boorsma, A., de Nobel, H., ter Riet, B., Bargmann, B., Brul, S., Hellingwerf, K.J. and Klis, F.M.
Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast.
21(5):413-27, 2004.

Braxton, S. and Bedilion, T. The integration of microarray information in the drug development
process. Curr Opin Biotechnol 9(6), 643-9, 1998.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J.,
Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I.F.,
Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J.,
Taylor, R., Vilo, J. and Vingron, M. Minimum information about a microarray experiment (MIAME)-
toward standards for microarray data. Nat Genet. 29(4):373, 2001.

Chong, M. J., Murray, M. R., Gosink, E.C. , Russell, H. R. , Srinivasan, A., Kapsetaki, M., Korsmeyer,
S. J., McKinnon, P. J. . Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central
nervous system. Proc Natl Acad Sci U S A. 97:889-894, 2000.

Clarke, P. A., te Poele, R. et al. Gene expression microarray analysis in cancer biology, pharmacology,
and drug development: progress and potential. Biochem Pharmacol 62(10), 1311-36, 2001.

Clem, A.L., Hamid, T. and Kakar, S.S. Characterization of the role of Sp1 and NF-Y in differential
regulation of PTTG/securin expression in tumor cells. Gene. 322:113-21, 2003.

Dresen, I.M., Husing, J., Kruse, E., Boes, T. and Jockel, K.H. Software packages for quantitative
microarray-based gene expression analysis. Curr Pharm Biotechnol. 4(6):417-37, 2003.

Dudoit, S., Gentleman, R.C. and Quackenbush, J. Open source software for the analysis of microarray
data. Biotechniques. Suppl:45-51, 2003.

Dysvik, B. and Jonassen, I.J-Express: exploring gene expression data using Java. Bioinformatics
17(4):369-70 2001.

Dyrskjot, L., Thykjaer, T., Kruhoffer, M., Jensen, J.L., Marcussen, N., Hamilton-Dutoit, S., Wolf, H.
and Orntoft, T.F. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet.
33(1):90-6, 2003.

Eisen, M. B., Spellman, P. T. et al. Cluster analysis and display of genome-wide expression patterns.
Proc Natl Acad Sci U S A 95(25), 14863-8, 1998.

Elkon, R., Linhart, C. Sharan, R. Samir, R. and Shiloh, Y. Genome-Wide In Silico Identification of
Transcriptional Regulators Controlling the Cell Cycle in Human Cells. Genome Research, Vol. 13(5),
pp. 773-780, 2003.

Everitt, B. 1993. Cluster analysis. London: Edward Arnold, third edition.

Fredrickson, H. L., Perkins, E. J. et al. Towards environmental toxicogenomics -- development of a
flow-through, high-density DNA hybridization array and its application to ecotoxicity assessment. Sci
Total Environ 274(1-3), 137-49, 2001.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D.,
Brown, P.O. Genomic expression programs in the response of yeast cells to environmental changes.
Mol Biol Cell. 11(12):4241-57, 2000.

Glanzer, J.G., Haydon, P.G. and Eberwine, J.H. Expression profile analysis of neurodegenerative
disease: advances in specificity and resolution. Neurochem Res. 29(6):1161-8, 2004.

Golub, T. R., Slonim, D. K. et al. Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286(5439), 531-7, 1999.

Hale, T.K. and Braithwaite, A.W. The adenovirus oncoprotein E1a stimulates binding of transcription
factor ETF to transcriptionally activate the p53 gene. J Biol Chem. 274(34):23777-86, 1999.

Hansen, P. and Jaumard, B. Cluster analysis and mathematical programming. Mathematical Pro-

gramming 79:191-215, 1997.

Hartigan, J. Clustering Algorithms. John Wiley and Sons, 1975.

Hieter, P. and Boguski, M. Functional genomics: it's all how you read it. Science 278(5338), 601-2,
1997.

Hinnebusch, A.G. Evidence for translational regulation of the activator of general amino acid control in
yeast. Proc Natl Acad Sci U S A. 81(20):6442-6, 1984.

Hughes, T.R., Mao, M., Jones, A.R., Burchard, J., Marton, M.J., Shannon, K.W., Lefkowitz, S.M.,
Ziman, M., Schelter, J.M., Meyer, M.R., Kobayashi, S., Davis, C., Dai, H., He, Y.D., Stephaniants,
S.B., Cavet, G., Walker, W.L., West, A., Coffey, E., Shoemaker, D.D., Stoughton, R., Blanchard, A.P.,
Friend, S.H., Linsley, P.S. Expression profiling using microarrays fabricated by an ink-jet
oligonucleotide synthesizer. Nat Biotechnol. 19(4):342-7, 2001.

Iitsuka, Y., Shimizu, H., Kang, M.M., Sasagawa, K., Sekiya, S., Tokuhisa, T. and Hatano, M. An
enhancer element for expression of the Ncx (Enx, Hox11L1) gene in neural crest-derived cells. J Biol
Chem. 274(34):24401-7, 1999.

Irwin, R.D., Boorman, G.A., Cunningham, M.L., Heinloth, A.N., Malarkey, D.E. and Paules, R.S.
Application of toxicogenomics to toxicology: basic concepts in the analysis of microarray data. Toxicol
Pathol. 32 Suppl 1:72-83, 2004.

Ishida, S., Huang, E. et al. Role for E2F in control of both DNA replication and mitotic functions as
revealed from DNA microarray analysis. Mol Cell Biol 21(14), 4684-99, 2001.

Jelinsky, S. A., Estep, P. et al. Regulatory networks revealed by transcriptional profiling of damaged
Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol
20(21), 8157-67, 2000

Kandror, O., Bretschneider, N., Kreydin, E., Cavalieri, D. and Goldberg, A.L.Yeast adapt to near-
freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain
molecular chaperones. Mol Cell. 13(6):771-81, 2004.

Kuras, L. and Thomas, D. Identification of the yeast methionine biosynthetic genes that require the
centromere binding factor 1 for their transcriptional activation. FEBS Lett. 367 pp.15-18 ,1995.

Li, B., Nierras, C.R. and Warner, J.R.Transcriptional elements involved in the repression of ribosomal
protein synthesis Mol Cell Biol. 19(8):5393-404 (1999).

Li, C. and W. H. Wong. Model-based analysis of oligonucleotide arrays: model validation, design
issues and standard error applications. Genome Biology 2(8), 1–11 ,2001.(a)

Li, C. and Wong, W. H. Model-based analysis of oligonucleotide arrays: Expression index computation
and outlier detection. PNAS, 98(1),31-36,2001.(b)

Li, H., Singh, A.K., McIntyre, L.M. and Sherman, L.A. Differential gene expression in response to
hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J Bacteriol.
186(11):3331-45, 2004.

Li, N., S. Banin, H. Ouyang, G. C. Li, G. Courtois, Y. Shiloh, M. Karin, and G. Rotman. ATM is
required for IkappaB kinase (IKKk) activation in response to DNA double strand breaks. J Biol Chem
276:8898-903, 2001. (c)

Liu, J., Blackhall, F., Seiden-Long, I., Jurisica, I., Navab, R., Liu, N., Radulovich, N., Wigle, D.,
Sultan, M., Hu, J., Tsao, M.S. and Johnston, M.R. Modeling of lung cancer by an orthotopically
growing H460SM variant cell line reveals novel candidate genes for systemic metastasis. Oncogene.
2004 Jul 12 [Epub ahead of print].

Lord, P.G. Progress in applying genomics in drug development. Toxicol Lett. 149(1-3):371-5, 2004.

Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. and Estruch, F. The
Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional
induction through the stress response element (STRE).EMBO J. 15(9):2227-35, 1996.

Marton, M. J., DeRisi, J. L. et al. Drug target validation and identification of secondary drug target
effects using DNA microarrays. Nat Med 4(11), 1293-301, 1998.

Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D.,
Kel, A.E., Kel-Margoulis, O.V., Kloos, D.U., Land, S., Lewicki-Potapov, B., Michael, H., Munch, R.,
Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S. and Wingender, E. TRANSFAC: transcriptional
regulation, from patterns to profiles. Nucleic Acids Res. 31(1):374-8, 2003.

McGall, G.H., Christians, F.C. High-density genechip oligonucleotide probe arrays. Adv Biochem Eng
Biotechnol. 77:21-42, 2002.

Mirkin, B. Mathematical Classification and Clustering. Kluwer, Dordrecht 1996.

Moehle, C.M. and Hinnebusch, A.G. Association of RAP1 binding sites with stringent control of
ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol Cell Biol.11(5):2723-35, 1991.

Nevins, J.R.The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10: 699-703, 2001.

Nuwaysir, E. F., Bittner, M. et al. Microarrays and toxicology: the advent of toxicogenomics. Mol
Carcinog 24(3), 153-9, 1999.

Quackenbush, J. Computational analysis of microarray data. Nat Rev Genet 2(6), 418-27, 2001.

Pilpel, Y., Sudarsanam, P. et al. Identifying regulatory networks by combinatorial analysis of promoter
elements. Nat Genet 29(2), 153-9, 2001

Piret, B., S. Schoonbroodt, and J. Piette. The ATM protein is required for sustained activation of NF-
kappaB following DNA damage. Oncogene 18:2261-71, 1999.

Raychaudhuri, S., Stuart, J.M., Altman, R.B. Principal components analysis to summarize microarray
experiments: application to sporulation time series. Pac Symp Biocomput.:455-66, 2000.

Reich, M., Ohm, K., Angelo, M., Tamayo, P. and Mesirov, J.P. GeneCluster 2.0: an advanced toolset
for bioarray analysis. Bioinformatics [Epub ahead of print],2004.

Ripley, B.D. The R project in statistical computing. MSOR Connections. The newsletter of the LTSN
Maths, Stats & OR Network., 1(1):23-25, 2001.

Saito, S., A. A. Goodarzi, Y. Higashimoto, Y. Noda, S. P. Lees-Miller, E. Appella, and C. W.
Anderson. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to
ionizing radiation. J Biol Chem 277:12491-4, 2002.

Sakaki, K., Tashiro, K., Kuhara, S. and Mihara, K. Response of genes associated with mitochondrial
function to mild heat stress in yeast Saccharomyces cerevisiae.J Biochem (Tokyo). 134(3):373-84,
2003.

Sattlegger, E., Swanson, M.J., Ashcraft, E.A., Jennings, J.L., Fekete, R.A., Link, A.J., Hinnebusch,
A.G. YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino
acid control when overexpressed. J Biol Chem. 2004

Schadt, E., C. Li, B. Eliss, and W. H. Wong. Feature extraction and normalization algorithms for high-
density oligonucleotide gene expression array data. J. Cell. Biochem. 84(S37),120–125, 2002.

Sgal, E., Yelensky, R., Kaushal, A., Pham, T., Regev, A., Koller, D. and Friedman, N. GeneXPress: A
Visualization and Statistical Analysis Tool for Gene Expression and Sequence Data. Proceedings of the
11th Inter. Conf. on Intelligent Systems for Molecular Biology (ISMB), 2004.

Shalon, D., Smith, S. J., et al. A DNA microarray system for analyzing complex DNA samples using
two-color fluorescent probe hybridization. Genome Res 6(7), 639-45, 1996

Shannon, W., Culverhouse, R. and Duncan, J. Analyzing microarray data using cluster analysis.
Pharmacogenomics. 4(1):41-52, 2003.

Sharan, R. and Shamir, R. CLICK: a clustering algorithm with applications to gene expression analysis.
Proc Int Conf Intell Syst Mol Biol 8, 307-16, 2000.

Sharan, R., Maron-Katz, A. and Shamir, R. CLICK and EXPANDER: A System for Clustering and
Visualizing Gene Expression Data. Bioinformatics Vol. 19 No. 14 pp. 1787--1799, 2003.

Shore, D., RAP1: a protean regulator in yeast. Trends Genet. 10 pp. 408–412, 1994.

Spellman, P. T., Sherlock, G., et al. Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12), 3273-97, 1998.

Sturn, A., Quackenbush, J. and Trajanoski, Z. Genesis: cluster analysis of microarray data.
Bioinformatics. 18(1):207-8, 2002.

Suckow, M., Schwamborn, K., Kisters-Woike, B., von Wilcken-Bergmann, B. and Muller-Hill B.
Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator
GCN4 can change its DNA binding specificity. Nucleic Acids Res. 22(21):4395-404, 1994.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and
Golub, T. R. Interpreting patterns of gene expression with self-organizing maps: methods and
application to hematopoietic differentiation. Proc Natl Acad Sci U S A, 96, 2907-2912, 1999.

Tanay, A. Sharan, R. and Shamir, R. Discovering statistically significant biclusters in gene expression
data. Bioinformatics, 18(1), 136-144, 2002.

Tanay, A., Sharan, R., Kupiec, M. and Shamir, R. Revealing modularity and organization in the yeast
molecular network by integrated analysis of highly heterogeneous genomewide data. PNAS 101 (9)
2981-2986, 2004.

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M. Systematic determination
of genetic network architecture. Nat Genet, 22: 281-285, 1999.

van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J.,
Peterse, J.L., Roberts, C., Marton, M.J., Parrish, M., Atsma, D., Witteveen, A., Glas, A., Delahaye, L.,
van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E.T., Friend, S.H. and Bernards, R. A gene-
expression signature as a predictor of survival in breast cancer. N Engl J Med. 347(25):1999-2009,
2002.

Waddell, S.J., Stabler, R.A., Laing, K., Kremer, L., Reynolds, R.C. and Besra GS. The use of
microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in
response to anti-bacterial compounds. Tuberculosis (Edinb). 84(3-4):263-74, 2004.

Warner, J.R. The economics of ribosome biosynthesis in yeast.Trends Biochem Sci. 24(11):437-40,
1999.

Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C.,

Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D. Identification of genes periodically expressed in
the human cell cycle and their expression in tumors. Mol Biol Cell. 13(6):1977-2000, 2002.

Wodicka, L., Dong, H., et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat
Biotechnol 15(13), 1359-67,1997.

Yang, C.R., Wilson-Van Patten, C., Planchon, S.M., Wuerzberger-Davis, S.M., Davis, T.W., Cuthill,
S., Miyamoto, S. and Boothman, D.A. Coordinate modulation of Sp1, NF-kappa B, and p53 in
confluent human malignant melanoma cells after ionizing radiation. FASEB J. 2000 Feb;14(2):379-90.

Zhao, R., Gish, K. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide
arrays. Genes Dev 14(8), 981-93, 2000.

