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1 Abstract

In the past few years the gene expression microarray (GEM) technology has become a
central tool in the field of functional genomics. This field deals with exploring the
functions of different gene products, the control mechanisms regulating their activity,
their expression levels and their interactions. In the GEM technology, the expression
levels of thousands of genes in a biological sample are determined in a single
experiment.

This work describes the development of a bioinformatics software tool called
EXPANDER (EXPression ANalyzer and DisplayER), that was designed to help
researchers in analyzing GEM data, and allow viewing the raw data and analysis
results via convenient graphical displays. The tool incorporates several conventional
GEM analysis algorithms and custom ones that have been developed in the
computational genomics group in Tel-Aviv University, and provides them with an
easy-to-operate user interface. Among the tool's capabilities are clustering,
biclustering, functional enrichment and promoter analysis, in addition to a variety of
visualizations. EXPANDER was programmed using the Java programming language
and it can be run on several platforms, including Windows and Unix. It was written in
an object oriented approach, suitable for such a large scale applications that requires
many different modules that interact with one another. EXPANDER based analyses
are demonstrated using three different biological datasets, and novel biological

conclusions are drawn.

The EXPANDER tool is freely available for academic research, and is broadly used
both for in-house research projects in biology and medicine at Tel Aviv University,
and in other institutions. Over four hundred laboratories have downloaded the
software over the last year. It is under ongoing development in order to keep it a state-
of-the-art research tool with unique capabilities.

Key terms. Functional genomics, gene expression microarrays, software, cDNA
microarrays, high-density oligonucleotide arrays, clustering, biclustering, functional

analysis, promoter analysis.



2 Introduction and summary

2.1 Gene Expression Microarray technology

The Gene Expression Microarray (GEM) technology plays a central role in the field
of functional genomics. This field is based on the recent progress achieved in genome
sequencing (Hieter et al. 1997) and other high throughput techniques. It deals with
exploring the function of different gene products, the control mechanisms regulating
their activity, their expression levels and their interactions.

In the GEM technology, the expression levels of thousands of genes in abiological
sample are determined in a single experiment. Genes printed on a slide (usually glass)
are hybridized against labeled probes, prepared from the cell lines that are being
tested.

There are currently two man methods implementing this technology: cDNA
microarrays and high-density oligonucleotide arrays ("DNA chips'). They differ in
the way genes are represented on the slide, the way the slide is prepared, and some of
the experimental stages, but are used usualy for the same needs. The methods used to
analyze the data are similar, but while the first method produces relative expression
level values, the second produces absol ute val ues.

2.1.1 cDNA Microarrays

This method was developed in the department of Biochemistry of Stanford university
in 1996, and has since been adopted by many laboratories. In this method agrid of
cDNA dots is printed over a glass slide. Each dot contains cDNA molecules (0.2-2kb
long) from a clone of a single gene. A grid containing 10000 such dots can be printed
on a dlide of size 2.5x2.5cm? (Shalon et al. 1996). Currently, newer, more advanced
printing methods are being developed, that will alow the represention of a whole
genome on asingle array (Hughes et al. 2001).

The experiment involves the following steps: (1) Extracting mRNA molecules from
two cell populations (the test population and the reference population). (2) Reverse



transcription of the mRNA molecules to create labeled cDNA molecules, by using
fluorescent nucleotides (with different colors for the test population and for the
reference population). (3) Co-hybridization of the cDNA from the test and the
reference populations to the same array. (4) Scanning the array using a laser scanner.
The last stage is performed separately for each of the two color frequencies, to create

two imagefiles.

The expression levels evaluated in this method are relative (between the two cell
populations) since the number of cDNA molecules that are printed in each spot cannot
be accurately estimated. Therefore, a common reference population must be used
when attempting to test expression level changes over several conditions.

2.1.2 High-density oligonucleotide arrays

This method was developed and is applied primarily by the company Affymetrix. In
the oligonucleotide array each gene is represented by 10-20 different oligonucleotides
of length 25bp. The oligonucleotides representing a gene are selected in a way that
minimizes their homology to other known sequences, in order to increase their
specificity. The representation of each gene by 10-20 probes increases probe-gene
specificity significantly. The oligonucleotides are synthesized over aglass dide, using
a photolithographic method. This method allows the representation of hundreds of
thousands of genes on a single array at the size of about 1.5 sguare centimeters
(McGall et al. 2002).

The experiment is performed for a single population of cells (unlike in the cDNA
microarray method), and involves the following steps: (1) Extracting mRNA
molecules from the tested cell population. (2) Reverse transcription of the mRNA
molecules, using a primer that contains a promoter for the T7 RNA Polymerase, to
create labeled cDNA molecules. (3) Transcription of the synthesized cDNA template,
using T7 RNA Polymerase and tagged nucleotides, to create tagged RNA molecules.
This process causes a linear induction of the initial RNA concentration (up to 100
fold), which alows determining aso very low expression levels. (4) Breaking the
tagged RNA molecules into sections of average length 50bp, and hybridizing them
against the array. (5) Scanning the array using alaser to create an imagefile.



It has been shown that the expression levels determined using this method are
proportional to the amount of mMRNA in the cell (Wodicka et al. 1997).

2.2 Technology applications

In this section, we will describe the main current applications of the GEM technology.

2.2.1 Comparing two mRNA populations by identifying differentially
expressed genes

The purpose of these experiments is to identify genes that exhibit a distinct difference
in expression levels between two tested populations, for example, cells before and
after a certain treatment. This way, the involvement of novel genes in different
biological processes can be revealed. This approach has been utilized in many studies
e.g., to identify novel candidate genes involved in systemic metastases in lung cancer
(Liu et al. 2004), novel candidate genes involved in neurodegenerative disease
(Glanzer et al. 2004), genes regulated by p53 (Zhao et al. 2000) and E2F (Ishida et al.
2001), and genes that comprise the peroxide stimulon in the cyanobacterium
Synechocystis sp (Li et al. 2004).

2.2.2 ldentifying co-expressed genes

The goal here is to discover genes sharing a similar expression pattern over a set of
tested conditions. Such similarity may indicate their involvement in a common
function (e.g., the same metabolic pathway), or in common regulatory mechanisms.
Identifying such gene groups can be achieved using clustering algorithms, applied to
GEM data containing several different conditions (Spellman et al. 1998, Sharan et al.
2000). This approach has been utilized in many studies in order to extract new
biological information from the GEM data (Shannon et al. 2003).

2.2.3 Predicting gene functions

The goa here is to find gene subgroups that share a common function, by detection of
functions that are significantly overrepresented in one cluster of co-expressed genes.
This criterion is called "Functional Enrichment”. If a cluster is significantly enriched



for genes having a certain function, other non-annotated genesin that cluster are more
likely to have the same function. This approach has been successfully used on yeast to
predict the function of over 800 uncharacterized genes (Tanay et al. 2004).

2.2.4 Promoter signal analysis

The goa hereisto revea cis-regulatory mechanisms that are activated as a result of
exposing the cell to certain experimental conditions. To achieve this goal, promoters
of genes in the same co-expression cluster are scanned to find gene subgroups that
share common transcription factor binding sites in a statistically significant manner. It
is plausible that the transcription factors that bind such sites directly regulate the
genes that are responsible for the observed changes in expression levels. This
approach has been used successfully for several organisms and tissues, including the
yeast (Jelinsky et al. 2000, Pilpel et al. 2001) and human Hela cancer cells (Elkon et
al. 2002).

2.2.5 Tissue classification

This can be done by identifying gene expression profiles that are typical for certain
tissues (e.g., tissues from a certain type of cancer). Such profiles constitute a
molecular ‘fingerprint' that can be used to identify the tissue. It has been shown that
these profiles can help distinguish between a cancerous tissue and a normal tissue
(Alon et al. 1999) and even between tissues of different types of cancer (van de Vijver
et al. 2002, Dyrskjot et al. 2003, Golub et al. 1999, Eisen et al. 1998). This
application can have a maor contribution in the field of medical diagnosis and
treatment.

2.2.6 Drug development

The GEM technology assists in several stages in the process of drug development
(Lord et al. 2004, Clarke et al. 2001, Marton et al. 1998, Braxton et al. 1998): (a)
Choosing the target protein by tracing the genes that exhibit significant changes in
expression levels between the norma and the pathological states. (b) Testing
candidate drugs by comparing the cellular expression profile that is achieved after
treatment to the normal (desired) profile (Waddell et al. 2004). (c) Identifying
potential side dfects by examination of the differences between the desired cellular



expression profile and the profile achieved after treatment. (d) Predicting the toxicity
of adrug (as explained in the next section).

2.2.7 Toxicogenomics

In this field, different toxic substances are characterized by the cellular expression
profile that they induce. In recent years, several databases that characterize toxic
substances according to their induced expression profile have been established (Lord
2004, Irwin et al. 2004, Nuwaysir et al. 1999). It has been found that substances with
similar toxic activity induce a similar expression profile. In the future, the toxic
potential of a substance will be evaluated by comparing its induced expression profile
to existing database records (Nuwaysir et al. 1999, Fredrickson et al. 2001).

2.3 Existing analysis tools

Computational analysis tools are crucial for the efficient exploitation of the large
amounts of data produced by GEM experiments. Dealing with such large datasets
requires the development and use of data anaysis agorithms that will extract
biologically meaningful information out of the raw data (Dresen et al. 2003, Eisen et
al. 1998, Quackenbush et al. 2001).

Many of the computational tools that are currently used for GEM analysis focus on
one or several stages of the analysis. Hence, analysis requires the porting of the data
between different software tools. This often requires reformatting the data according
to the different software tools, and makes the employment of more than a small

number of tools simultaneously very cumbersome.

Among the commonly used analysis tools are:

dChip (http://biosunl.harvard.edu/complab/dchip) — A windows application, that

operates on high-density oligonuclecotide arrays. The tool performs severa
normalizations, including tracing and omitting data in contaminated areas, or data that
were cross hybridized (i.e., hybridization of mRNA of one gene to probes of another
gene that has ahighly similar sequence) (Li et al. 2001), filtering out non informative
genes, and identifying genes that are differentially expressed between two conditions.

The program aso performs hierarchical clustering and principal component analysis



(PCA) on the processed data, and produces graphical displays. The software utilizes
the R application (Ripley 2001) and operates on Windows 2000 operating system.

GeneX-Cyber T (http://visitor.ics.uci.edu/genex/cybert/) - a statistical program with a

web interface that can be used on both cDNA microarray data and oligonuclectide
arrays data for the identification of statistically significant differentially expressed
genes. The analysis is based on Bayesian approach and generates text output files and
afileof statistical charts.

Cluster & TreeView - (http://ranalbl.gov/EisenSoftware.htm) — These are an
integrated pair of programs for analyzing and visualizing the results of both cDNA
microarray and high density oligonucleotides experiments (Eisen et al. 1998). The
Cluster program implements the following clustering and analysis methods:
hierarchical clustering, self-organizing maps (SOM), k-means, PCA and hierarchical
clustering. The program operates on Windows only. The TreeView graphical
program enables viewing the results of clustering and other analyses from Cluster. It
supports tree-based and image based browsing of hierarchical trees. It produces
multiple output formats for the generation of images for publications. It operates only
on Windows. Another visualization program, Maple Tree, which is cross-platform
(i.e, runson al operating systems) is now available from the same group. It allowsto
graphically browse the results of clustering analyses from the Cluster software, and
many other clustering and analysis programs.

JExpress (http://www.ii.uib.no/bjarted/jexpress/, Dysvik et al. 2001) — This program

operates on cDNA microarray data. Performs high-level normalization, filtering and
high-level analysis. The analysis methods implemented in JExpress are: Hierarchical
clustering, SOM, PCA, K-means and profile search. The program contains several
visualization tools.

Genesis (http://genome.tugraz.at, Sturn et al. 2002) — A cross platform program that

performs data normalization based on a variety of techniques, for sets of genes or
experiments (mean centering, median centering, divison by SD/RMS and log
transformation) and data filtering (according to missing values and standard
deviation). It implements several clustering algorithms (hierarchical clustering, k-
means, SOM) and provides aso other analysis methods such as Principal Component
Analysis (PCA), and support vector machines (SVM, a classification tool). The



program utilizes severa different similarity measurements (ranging from Pearson
correlation to more sophisticated approaches, like mutual information). It supplies
severa visualizations to view the above analysis results and allows the mapping of
gene expression data onto chromosomal sequences.

Spotfire DecisionSite (http://www.spotfire.se/) — An application for microarray data

analysis and visualization. It implements the following analysis methods:. hierarchical
and K-means clustering, expression profile searchesand PCA. Other analysis methods
reguire the R application (Ripley 2001) and include normalization schemes, variance
anaysis using ANOVA and rule induction analysis with decision trees. The
application incorporates various visualizations such as box plots, pattern displays,
matrix displays, pie charts and dendrogram trees. Annotation information from
various sources can be loaded and integrated into the visualizations. DecisionSite
operates on Windows only.

GeneXPress (http://genexpress.stanford.edu/, Segal et al. 2004) — Given a clustering
solution (or a file generated by the TreeView software), this application performs

functional analysis and promoter analysis and provides various suitable displays.

GeneCluster (http://www.broad.mit.edu/cancer/software/software.html, Reich et al.

2004) — A cross platform program that facilitates filtering and preprocessing datain a
variety of ways, clustering expression profiles using the SOM algorithm, and viewing
the results. It also allows supervised classification, gene selection and permutation test
methods (Permutation test methods are used to assess the significance of the score for
each gene, i.e. the estimated signal to noise ratio). It includes agorithms for
constructing and testing supervised models that will be able to predict different
variables (e.g. tumor type, treatment outcome etc.) based on the expression values
using weighted voting (WV) and k-nearest neighbors (KNN) algorithms.

TM4 (http://www.tigr.org/software/tm4/, Dudoit et al. 2003) — A package that

consists of four major applications, two of which (Microarray Data Analysis System,
and Multi-experiment Viewer) perform high-level preprocessing, analysis and
visualization of microarray data. These software tools were developed for spotted
two-color arrays, but can be easily adapted to work with single-color formats such as
high density oligonucleotide arrays. Both programs are cross platform.
Microarray Data Analysis System (MIDAS) performs normalization using locally



weighted linear regression (lowess) and total intensity normalization. It also performs
filtering using several methods. MIDAS provides scatter plots that illustrate the
effects of each algorithm on the data. It reads “.tav” files generated by TIGR
Spotfinder program or retrieved from the database via MADAM (another TM4
application). Multi-experiment Viewer (MeV) operates on normalized and filtered
expression files. It incorporates several clustering algorithms such as: hierarchical
clustering, K-means, SOM, SOT (Self Organizing Trees), Gene Shaving and
QT _clust, along with other analysis algorithms such as PCA, Significance Analysis of
Microarrays (SAM) etc. Results can be graphicaly displayed. MeV can handle
several input file formats.

DMT (http://www.affymetrix.com/products/software/specific/dmt.affx) - The Data

Mining Tool (DMT) software, developed by Affymetrix, provides several tools for
filtering and sorting microarray data generated using the Affymetrix GeneChips. Key
features include: pairwise statistical analysis for replicate samples, clustering (SOM
and a modified Pearson’s Correlation Coefficient method) and an option to integrate
annotation information into the data. DMT operates on Windows only.

2.4 Existing GEM Databases

In this section | present some of the more commonly used GEM databases.

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) — one of the

most commonly used public repositories for a wide range of high-throughput
experimental data. These datainclude single and dual channel microarray experiments
measuring MRNA, genomic DNA and protein abundance, as well as non-array
techniques such as serial analysis of gene expression (SAGE), and mass spectrometry
proteomic data. It allows data browsing, query and retrieval. It currently contains over
20,000 sample records (arrays).

Array Express (http://www.ebi.ac.uk/arrayexpress’) — The main European public

repository for microarray data, which is aimed at storing well annotated data in
accordance with the Microaray Gene Expresson Data (MGED) Society
recommendations. The MGED society has defined the MIAME (minimum
information about a microarray experiment) requirements in order to enable the



interpretation of the results of the experiment unambiguously and potentially to
reproduce the experiment (Brazma et al. 2001). The data deposited in Array Express
is expected to fill these requirements. Array Express currently contains record from
over 6000 profiles.

GeneX (http://www.research.ibm.com/journal/g/402/mangalam.html) — an open

source gene expression database and integrated toolset that allows researchers to store
and evaluate their gene expression data independently of the technology used to
obtain the data.

Gene Expression Database (GXD)
(http://www.informatics.jax.org/mgihome/GX D/aboutGX D.shtm) - a community

resource for gene expression information from the laboratory mouse. GXD stores and
integrates different types of expression data and makes these datafreely availablein
formats appropriate for comprehensive analysis. There is particular emphasis on
endogenous gene expression during mouse devel opment.

Stanford Microarray Database (SMD) (http://genome-wwwb5.stanford.edu/) - one

of the first academic databases to be used on an institutional scale. It contains the
largest amount of data of any academic database, due to its close association with one
of the first groups to develop large-scale arrays. It stores raw and normalized data
from microarray experiments, as well as their corresponding image files. It also
provides interfacesfor dataretrieval, analysis and visualization. Datais released to the
public at the researcher's discretion or upon publication.

2.5 Summary of thesis results

This work describes the development of a bioinformatics software tool called
EXPANDER (EXPression ANalyzer and DisplayER), that was designed to help
researchers in analyzing GEM data, and alow viewing the raw data and analysis
results via convenient graphical displays. The tool incorporates several conventional
GEM analysis agorithms and custom ones that have been developed in the
computational genomics group in Tel-Aviv University, and provides them with an
easy-to-operate user interface. Among the tools capabilities are clustering,
biclustering, functional enrichment and promoter analysis, in addition to a variety of

visualizations. EXPANDER was programmed using the Java programming language



and it can be run on several platforms, including Windows and Unix. It was written in
an object oriented approach, suitable for such a large scale applications that requires
many different modules that interact with one another.

EXPANDER based analyses are demonstrated using three different biological
datasets, and novel biological conclusions are drawn.

The EXPANDER tool isfreely available for academic research (it can be downloaded
from www.cs.tau.ac.il/~rshamir/EXPANDER). Over four hundred laboratories have

downloaded the software over the last year. It is broadly used both for in-house
research projects in biology and medicine a Tel Aviv University and in other
ingtitutions. Among the in-house research projects that utilize EXPANDER are a
microarray project that analyzes DNA damage responses in human cells and mouse
tissues, conducted at Yossi Shiloh's laboratory in the Sackler medical school, a
microarray project that studies inflammation processes in brain of mouse models for
Alzheimer disease, conducted at Danny Michelson's laboratory in the George S. Wise
faculty of Life Science and a microarray project that studies mis-regulated signaling
pathways neuroblastomas, conducted at Y oel Klug's laboratory in the George S. Wise
faculty of Life Science. EXPANDER is under ongoing development in order to keep
it a state-of-the-art research tool with unique capabilities.

A preliminary report on the EXPANDER project has been published in (Sharan et al.
2003).



3 Research Objectives

My objective in this research was to develop a computerized tool that will achieve the
following goals:

1) Incorporation of several analysis stages in one program:
Bringing together different tools from all stages of GEM data analysis under a single
platform. These include preprocessing tools, advanced downstream analysis tools and
various visualization tools. The purpose of this integration is to help the user, partly
by eliminating the work that is involved in formatting data to be transferred from one
application to another.

2) Incorporation of novel analysis algorithms which are developed in the
computational genomicslaboratory in Tel-Aviv University:

Several GEM analysis tools have been developed in the computational genomics
laboratory in Tel-Aviv University and are available for academic use, e.g., the
SAMBA (Statistical Algorithmic Method for Bicluster Analysis) agorithm for
biclustering GEM data (Tanay et al. 2002) and the PRIMA (Promoter Integration for
Microarray Analysis) algorithm for promoter analysis (Elkon et al. 2003)). The
incorporation of these tools into the program will provide them with an easy-to-
operate user interface, and will enable viewing and manipulating their results via
convenient graphical displays.

3) Generation of original graphical visualizations:

Such visualizations will hopefully provide an additional point of view on the
biological data, in order to promote the discovery of new insights by analyzing GEM

experiments.
4) Cross platform application:

Our program was designed to run on the two most commonly used operating systems
(Windows and Unix).

Such a program may encourage the usage of the tools and improve the ability of the
user to analyze and extract new biological knowledge from GEM data.



4 Analysis Methods

In this chapter we describe the algorithms and procedures that are included in
EXPANDER, and provide examples of their output. The technical implementation
details will be described in chapter 6.

4.1 The analyzed data

The analysis methods described below are performed on data matrices, in which each
row corresponds to a gene and each column corresponds to an experimental condition.
Thus, a row vector is the expression pattern of a gene, and a column vector is the
expression profile under a particular condition.

The values in the matrix represent the relative (in cDNA microarray data) or absolute
(in high-density oligonucleotide data) measured expression levels. For example, the
value in the i row and the j' column represents the expression level of the i geneiin
the dataset, as measured in the | experimental condition.

4.2 Preprocessing

The purpose of preprocessing is to remove insignificant and useless expression
patterns, and bring al remaining data into a unified form on which downstream
analysis (such as gene clustering, biclustering etc.) can be performed. To achieve this
goal the data from different experiments should be adjusted to the same scale, and
data size should usually be reduced by filtering out non-informative patterns, so that
downstream analysis will run in a reasonable time and will provide meaningful

results.

4.2.1 Normalization

Normalization is the process of reducing sources of variation of non-biologica origin
between arrays (Bolstad et al. 2003). In EXPANDER, normalization schemes are
implemented only for oligonucleotide arrays (it is assumed that for cDNA
microarrays, entries are given in log red/green values that are already rormalized).



EXPANDER implements two non-linear normalization schemes presented and tested
by Bolstad &t al. (2003):

a) Thefirst method, "Quantile normalization" (Bolstad & al. 2003), is a complete
data method (i.e,, it is applied to al arrays together). This method is amed at
creating an identical distribution to each array in the data set, by ranking the
entries in each condition (breaking ties arbitrarily), and replacing each entry
by the average of the entries of itsrank in all conditions.

b) The second method, "Non linear baseline normalization”, is a baseline method
(i.e., al arrays are normalized according to one selected baseline array). In this
method a non-linear regression is used in order to map each array expression
values to the baseline array (Schadt et al. 2002). An XY -scatter plot is created
using the values in the array that is being normalized as the X values and the
corresponding values from the baseline array as the Y values. A nonlinear
regression is performed on this scatter plot using a Lowess (locally weighted
smoothing scatter plots)-like function, in which each x value is mapped to the
average y value of its n nearest neighbors (i.e., the average y of the center of
the window to which it belongs). This normalization should be performed
using a subset of the genes that is considered relatively non-variant (under the
experimental conditions). For this purpose, the user can choose between using
all genes (in case data set is expected to contain mostly non-differential genes)
and using arank invariant subset of genes. Calculating the rank-invariant set is
based on the method presented by C. Li and W.H.Wong (2001).

4.2.2 Filtration

Genes that do not exhibit significant changes in their expression levels under the
tested conditions do not add relevant information to the analysis. Thus, it is preferable
to filter out such genes before performing any downstream analysis such as clustering
or bi-clustering.

EXPANDER implements two filtration schemes:

a) Fold changefilter — only genes whose expression level varies by at least k fold
across the tested conditions are selected. k, as well as the reference array are

determined by the user (the reference array can be set to the array with



minimal expression level). The user can also set an additional requirement of a
minimal (>1) number of conditions in which the required fold change in must

occur.

b) Variation filter - the k genes that exhibit the highest variation in expression
levels throughout all conditions are selected (k is a parameter that is
determined by the user). Variance is used to measure variation for cDNA
microarray data, and coefficient of variation is used to measure variation for
oligonucleotide data.

4.2.3 Standardization

When the range of expression values of different genes is very different, but their
general expression patterns are similar (.e., they have high correlation coefficient),
we would like to see this similarity when looking on a pattern display. Since the
absolute values of expression are different, amanipulation is required in order to view
the patterns on the same scale. Thismanipulation is called standardization.

EXPANDER implements two standardization schemes:

a) Mean 0 and variance 1 — the expression pattern of each probe is set to have a
mean equal to 0 and a variance equal to 1. This method is suitable in most

cases when working on genes.

b) Fixed norm — for each probe, expression levels are divided by the norm of
that expression vector (the root of sum of squares of that vector's entries). This
method is suitable in cases where we expect to find different means between
patterns, or different variance values. For example, when working on time

series conditions, we may expect larger variance in later phases of a response.

4.3 Clustering

Clustering is the process of partitioning elements (in our case, usually expression
patterns of genes) into subsets, which are called clusters, so that two criteria are
satisfied: homogeneity — high similarity between elements from the same cluster, and
separation - low similarity between elements from different clusters (Sharan et al.



2000). There is very rich literature on cluster analysis (Hartigan 1975, Everitt 1993,
Mirkin 1996, Hansen & Jaumard 1997).

4.3.1 K-means

K-meansisaclassical clustering algorithm (Tavazoie et al. 1999), which assumes that
the number of clusters (k) is known. It ams to minimize the distances between
elements and the centroids of their assigned clusters. The algorithm maintains a
partition of the elements into k clusters. Each iteration of k-means modifies the
current partition by checking al possible modifications of the solution, in which one
element is moved to another cluster, and making the change that minimizes the
following error function:

5 o Mow?
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Where: k is the number of clusters, Cy, is the set of indices of dementsin cluster m, n

is the pattern length (the number of conditions), and X is the mean pattern of cluster

m,i.e. Yoi ? ? Xi.
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Hence, each iteration reduces the sum of distances between elements and the centers
of their clusters. This procedure is repeated until no further improvement is achieved.
The above error function uses Euclidian distance as the distance measure. Other
distance measurements can be used in the same way.

4.3.2 Self Organizing Maps

The Self Organizing Maps (SOM) (Tamayo et al. 1999) algorithm assumes that the
number of clusters is known. Those clusters are organized as a set of nodes in a two
dimensiona kxl grid, where k*| is the number of clusters. Each of the nodes is
associated with a reference vector of the same dimension as the expression patterns.
The algorithm iteratively selects a random data point (p), identifies its nearest
reference vector np, and updates al reference nodes according to a learning function.
In that function the extent of change in vector j is proportional to the proximity of its
node n; to node npin the grid, and also decreases with iteration number.



The learning function used in EXPANDER is the 'neighborhood function' (Tamayo et
al. 1999):

{a(i) if d(np,n)) ?r
f(ny, np, 1) =
0  Otherwise
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Here | is the total number of iterations, i is the current iteration number and the
constant value is set to 3. a(i) is called the 'learning rate’ and decreases with the

iteration number. d(x,y) is distance between the grid points corresponding to x and y.

After calculating the learning function, the algorithm updates reference vectors using
the following function:

Nigk =N + T, N, 1)* Ok N i1k )

Where nj i« is the value of reference vector j in position k after i iterations, and Xy is

the value of the randomly chosen data-point (vector) p in position k.

433 CLICK

The CLICK algorithm (CLuster ldentification via Connectivity Kernels) was
developed in the Computational Genomics group of Tel-Aviv University (Sharan et
al. 2000). It uses a graph theoretic approach to clustering. The input data are
represented as a weighted graph, in which each gene is represented by a vertex, and
the similarity between the expression patterns of each two genes is used to caculate

the weight of the edge connecting their vertices.

The algorithm recursively partitions the current set of elements into two subsets by
computing a minimum weight cut. If the sub graph induced by the current set of
elements has a positive minimum cut value, then it is declared a kernel. Otherwise,



the set is split into two subsets separated by the minimum cut. The set of kernels and
the set of singletons (elements not assigned to kernels) serve as a basis for the
eventual clusters that are obtained by merging singletons and kernels heuristicaly.

CLICK uses a probabilistic model in order to determine the weights on graph edges
and the stopping criterion. The key probabilistic assumption of the model is that
pairwise similarity values between elements, S(x,y), are normally distributed, i.e.
S(xy) ~ N(?:,? %) if (x,y) are 'mates, and S(x,y) ~ N(?-,? %) if (x,y) are 'non
mates, where pr >Ug. This assumption often holds on real data. These parameters as
well as the probability that two elements are 'mates (Pmaes), are estimated using the
EM agorithm (seee.g., Mirkin et al. 1996).

EXPANDER operates CLICK via an externa module written in C++ by Naama
Arbily and Dr. Roded Sharan from the Computational Genomics group of Tel-Aviv
University.

4.3.4 Hierarchical clustering

Hierarchical clustering does not partition the genes into subsets. Instead it creates a
hierarchy of the elements that can be represented by a dendrogram. This can be done
using the 'agglomerative’ method (Eisen et al. 1998), which starts with an initia
partition into single element clusters and successively merges clusters until all
elements belong to the same 'cluster'.

The algorithm iteratively merges clusters whose similarity value is the highest. After
merging two clusters the dissimilarity (distance) matrix changes, and the new
distances (between the merged clusters and al the other clusters) are calculated in one
of three schemes:

a) Single-linkage: Ck,i~> j ? min?dki,dk;}
b) Complete-linkage: Ck,i» j ? max?dki,dk;}

n* dei ? n* dkj
n?n

i J

c) Average-linkage: where n; is the number of elementsin cluster
i.

In EXPANDER, hierarchical clustering is performed using the above method, and

distance calculation scheme can be selected by the user.



4.4 Biclustering

In gene expression data, a bicluster is a subset of the genes exhibiting consistent
patterns over a subset of the conditions. Biclustering overcomes some of the
limitations of clustering: first, in clustering one assumes that related genes behave
similarly across all measured conditions. This assumption does not hold for large
datasets containing hundreds of heterogeneous conditions from many experiments.
Second, a clustering solution is a partition of the genes into disjoint sets, implying an
association of each gene with asingle biological function or process, which may be an
oversimplification of the biological system (Tanay et al. 2002).

441 SAMBA

The SAMBA algorithm for biclustering (Statistical Algorithmic Method for Bicluster
Analysis) was developed in the computationa genomics group of Tel-Aviv University
(Tanay et al. 2002). It detects significant biclusters in a large expression dataset,
using a graph theoretic approach coupled with statistical modeling of the data. The
data is represented as a bipartite graph G=(U,V,E), where: U is the set of conditions,
V is the set of genes, and there exists an edge e=(u,v) if and only if u responds to v
(expression level of gene u changes significantly in condition v).

The SAMBA agorithm detects significant biclusters by using graph agorithms to
find sub-graphs of the described bipartite graph that are relatively dense. For more
details see (Tanay et. al. 2002).

EXPANDER operates SAMBA via an externa module written in C++ by Amos
Tanay from the Computational Genomics group of Tel-Aviv University.

4.5 Analysis of clustering solutions

After clustering/bi-clustering gene expression data, we wish to explore the biological
guality and meaning of the results. Several methods are implemented in EXPANDER
to assess the quality of a clustering solution and to explore its biological meaning.



45.1 Homogeneity and separation scores

Homogeneity and separation measurements can be used in order to assess the quality
of a clustering solution. In EXPANDER the extent of homogeneity within each
cluster is calculated by averaging the similarity of all pairs of genes that belong to that
cluster. The extent of separation is calculated by averaging the similarity of al pairs
of elements from different clusters.

4.5.2 Functional analysis

The functional analysis calculation is performed in order to detect clusters that are
significantly enriched for genes from a certain functional class. Enrichment is
evaluated by comparing the frequency of genes of a certain function in the cluster to
the frequency of that function in the set of all genes, which is called the background
set. To achieve this EXPANDER utilizes functional annotations (supplied in external
files for mouse, human and yeast), which use the standard vocabulary introduced by
the Gene Ontology (GO) consortium (Ashburner et al. 2000). To identify enriched
functional categories a hyper geometric calculation is performed and a p-vaue is
calculated for each pair of acluster C and functional classf:
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Where n is the size of the background set, K is the number of genesin cluster C that
belong to functional class f, and Ky, is the number of genes in background set that
belong to functional classf. If a p-value is below a certain threshold, then the cluster
appears to be enriched with that functional category.

EXPANDER operates functional analysis via an external module written in Perl by
Amos Tanay from the Computational Genomics group of Tel-Aviv University. In this
implementation the user can control the level of the functiona class in the GO tree by
Setting a parameter of 'maximal class size' so that classes larger than that size are not

taken into account (they are considered too general). If two groups of genes



corresponding to two functional classes in the same cluster are very similar, both
functions are treated as one. This is performed in order to reduce the level of
degeneracy in the results.

The background set used for calculation is determined by the user. It can be the whole
dataset, the filtered data set or a set provided by the user.

Currently, no correction for multiple tests is applied when performing functional
analysis via EXPANDER. The used functiona attributes are highly redundant and
strongly inter-dependent, and the subject of multiple tests correction when tests are
not independent is still being studied. Thus, correction will have to be added in the
future (A conservative Bonferroni correction would multiply the p-values by the total
number of tests, i.e., the number of clusters times the number of functional classes).

4.5.3 Promoter analysis

The goal of promoter analysis is to identify the transcription factors that bring about
the observed differences in gene expression in the data. To achieve this, EXPANDER
employs a promoter analysis software called PRIMA (PRomoter Integration in
Microarray Analysis) that was developed at the computational genomics group in Tel-
Aviv University (Elkon et al. 2003).

Based on the assumption that genes exhibiting similar expression patterns across
multiple conditions will share cis-regulatory elements in their promoters, PRIMA
seeks out these common sequence elements. Given a target set of promoters (e.g., the
promoters of genes in an identified cluster), a background set of promoters and a
collection of known binding site profiles (see below), PRIMA performs statistical
tests (using a hyper-geometric calculation) in order to identify transcription factors
(TFs) whose binding site profiles are significantly more prevalent in the target set
than in the background set. For each cluster and each TF binding site profile a p-value
is calculated.

The background set used for calculation is determined by the user. It can be all genes,
the genes left after filtering or a set of genes provided by the user. If the p-valueis
sufficiently low, then the cluster appears to be enriched with that binding site. At the
user's request, the Bonferroni multiple tests correction can be applied on the results.



In order to perform this analysis efficiently, TF motif fingerprint files for each species
(currently human and mouse) are supplied with EXPANDER. A set of 19,244 human
promoter sequences, spanning from 1000 bp upstream the transcription start site
(TSS) to 200 bp downstream the TSS, was scanned using PRIMA in order to locate
putative binding sites (hits). The binding sites are modeled as a position-specific
weight matrix, or PWM. The scan was performed for each TF motif in the Transfac
database (Matys et al. 2003) version 7.4 (April 2004). The number of hits of a PWM
in each promoter is called the PWM's fingerprint. The human promoter sequences
were downloaded from Ensembl (http://www.ensembl.org), release 19.34b. Another

set of fingerprints was prepared on mouse promoters (19,923 promoters, Ensembl
release 19.30).

EXPANDER operates PRIMA via an external module written in C++ by Chaim
Linhart from the Computational Genomics group of Tel-Aviv University.



5 Visualization methods

In this chapter we describe the main visualization methods used in EXPANDER.

Two datasets are used in the following examples: the first, referred to as dataset A, is
yeast cell cycle data that is constructed of 698 genes over 72 conditions (Spellman et
al. 1998). The second, referred to as dataset B, is expression profiles of mouse lymph
nodes of wild-type and ATM™ mice at different time points after irradiation. Genesin
dataset B were filtered using the fold change method (see section 7.1) and the filtered
dataset used here is constructed of 1205 genes over 6 conditions (see section 7.1).
Additional examples are provided in chapter 7.



5.1 Matrix displays

5.1.1 Expression matrix

This tool is very smilar to "heat map"
matrix representation introduced by Eisen
et al. (1998). Gene-expression data are
rendered on the screen either in color or
gray levels (colors can be configured via
the 'Settings dialog, accessible from the
'Options' menu of the main menu bar). In
the color display blue (green) indicates
under-expression, and yellow (red)
indicates over-expression. In the grayscale
display a darker rectangle indicates a
higher expression value.

A color scale appears next to the matrix
(upper right side) and is adso available as a
mobile frame through the 'Options' menu

(or through the right click pop-up menu).

When data are clustered, this visualization
is available aso with rows ordered
according to clusters. Columns appear in
their original order in the matrix.
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Figure 5.1.1.a: An example of the matrix visualization of datase
A Only 20 out of 72 conditions are shown here the user car
select which conditions will appear in the visualization). Row anc
column orders here are asin the input, but reordering can be done
in several ways (see below).



In grayscale display grey levels can take values between 0 (black) and 255 (white).

The valueis calculated using the following equation:

. Xi ’) Xmm
GL 2 255 ? (int) ———— *
Xmax 9 Xmm
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Where X; isthe expression level that is being rendered, Xmax and Xpin are the maximal
and minimal expression values in the matrix, respectively. In color display the color is
determined according to the sign of the expression value, i.e., yellow (red) for positive
values and blue (green) for negative values. The user can also set the center of scale
(i.e., the value in which colors are switched) to be the average expression value. In
this case the color will be determined according to the sign of the expression value
minus the average expression value. The intensity (In) of the color is determined
according to the equation:
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Where SV is the value of color switching and X, Xma and Xmin are as described
above. The logarithmic scale is used since it is more sensitive to small values and less
influenced by higher extreme values.

In order to reduce the influence of extreme values on the color scale, the maximal,
minimal and average expression values are calculated using a sample vector of
numbers that are randomly selected from the matrix, and disregarding the top and the
bottom 5%.



5.1.2 Similarity matrix

This tool shows the similarity matrix representation used by Ben-Dor et al. (1999). It

presents similarity values between expression patterns of all pairs of genes. The

similarity measurement used in EXPANDER is the Pearson correlation coefficient.

The symmetric similarity matrix has rows and columns corresponding to elements

(usually genes). Similarity values are rendered on the screen either in color or gray

levels (colors can be configured through the ‘Matrix Display’ dialog box, accessible

from the 'Options menu of the main menu bar).

In the color display, yellow (red)
indicate a similarity value above
average, and blue (green) indicate
a similarity value below average.
In the grayscale display, a darker
cell indicates ahigher similarity. A
color scale appears next to the
matrix (upper right side) and is
also available as a mobile frame
through the "Options” menu (or the
right click pop-up menu).

When data are clustered, this
visualization is available also with
rows ordered according to clusters.
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Figure 5.1.2.a. a similarity matrix display for clustered
gene expression data of dataset A. Rows and columns here
are ordered according to the clustering solution, so that
clustered elements appear contiguously. The clusters are

noticeable as rectangles along the main diagonal.



5.2 Pattern displays

5.2.1 Mean cluster patterns

This tool displays the mean pattern of each cluster in a separate panel. In each panel
the x-axis contains the conditions and the y-axis is the expression value. The mean
pattern is displayed along with error bars representing standard deviations.

File Options
B8 @
Cluster: 1, Size= 254 Cluster: 2, Size = 167 Cluster; 3, Size =82 M axis legend:
1 <=> Cond1
20 20 20 2 <=> Cond2

3 <=» Cond3
4 <=» Cond4
§ «<=» Conds
fi <=» Condf
7 <=» Cond7?
# <=> Condd

1.0 J%ﬁ [ 10 y}{ 10 u
00 Trl \l T ] M S— T l 0 [ \T TE=T: LI
CRR i  akiis
1.0 -1.0 -1.0
1 2 345678 1 2345678 1 234867 8
Cluster 4, Size =77 Chister: &, 8ize = 36 Cluster &, Size =25

[ LHMT . LHTM\: : e m
ST LT T

123468678 133468678 12345678 |7

Figure 5.2.1.a. Mean patterns display of the clustering solution of dataset A. Only 8 conditions are
displayed (can be determined by the user) so that pattern differences will be noticeable. (The clustering
isthesameasinfig5.1.2.a).

Upon clicking on one of the panels, a frame is opened containing a list of al genesin
the cluster (probe IDs and gene symbols). The list can be sorted according to one of
the columns by clicking on the column header.



5.2.2 Cluster contour

This tool displays a contour of a |Fie options

particular cluster selected by the | |8 @
user. A contour of a cluster Contourfor cluster: 1 i M axis legend:
. . 1 «<=> Cond1
consists of two sets of line /| 2 <=> Cond2
4.0 3 <=> Cond3
segments, one representing the g
i 6 <=> Condé
mean pattern plus one standard | #° | 7 <=> Cond?

i 8 <=> Cond8

deviation, and the other | .,

representing mean pattern minus
-2.0
one standard deviation.

-4.0

12 3 4 5 B F 8

Figure 5.2.2.a. A contour of cluster number 1 from a
clustering solution for dataset A. Only 8 conditions are
displayed (can be determined by the user).

5.2.3 Patterns of all genes in a cluster

This tool displays a graph of al

gene patterns in a particular
cluster selected by the user. Each

All Patterns In Cluster 1 { axis legend:
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pattern appears in a different
color.

Upon clicking on the panel, a
frame is opened containing a list
of al genesin the cluster. The list

can be sorted according to one of

the columns by clicking on the
Figure 5.2.3.a. Patterns of all genes in cluster number 1
from a clustering solution for dataset A. Only 8 conditions
are displayed (can be determined by the user).

column header.



5.3 Scatter plots

5.3.1 PCA analysis display

This tool transforms the original
data from an n-dimensional space
(where n is the origina pattern
length) to a 2 dimensiona space,
so that each gene is represented
by a dot on an XY scatter plot.
The transformation is based on
the PCA (Principa Component
Analysis) algorithm
et al. 2000).
If clustering is performed before

the dots

(Raychaudhuri
operating the tool,
representing the genes on the
chart appear in different colors,
their  cluster

according to

numbers. The display tool tip
shows the name of the gene
represented by the dot located

under the curser.
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Figure5.3.1.a

A PCA analysis display of dataset A after it

has been clustered. Each color represents a different
cluster. Cursor position on the scatter plot corresponds to

the gene SRI 1.



5.3.2 Data plots of two arrays

This tool displays a scatter plot of two
arrays, selected by the user. The i point
is (x,y) if the expression value of the i
geneisxinarray 1andy in array 2 For
normalized data, points should be located
around the y=x line (marked on the
Two additional
corresponding to y=x+1 and y=x-1 are
Genes that

scatter  plot). lines
also marked on the plot.
deviate markedly from these bounds
indicate significant overexpression in one
array (condition) versus the other, and
may be potentially useful for explaining
the biological differences between the
conditions.

5.4 Histograms

5.4.1 Functional analysis display
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Figure 5.3.2.a. A scatter plot of two arrays from
dataset B. The displayed arrays are wtO - wild
type before treatment with ionizing radiation vs.
wt30 — wild type 30 min. after treatment with
ionizing radiation. Data are well normalized,
thus, most points are located around the y=x line.
Cursor position corresponds to affymetrix probe
withid: 101578 f_at.

After performing functional analysis (see section 4.4.2 for details) this tool displays a

histogram for each cluster, containing a column for each significant functional class

(i.e.,, one that is much more frequent than would be expected at random). The

definition of significance depends on the user’s selection of threshold p-value. The

height of a column is proportional to the percentage of the corresponding functional

classin the cluster.
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Figure 5.4.1.a. The display of functional analysis performed on a clustering solution dataset A.

Threshold p-value had been set to 5*10°%°.

Upon clicking on a column, a dialog box is displayed
containing the class name, p-value, and a list of the
genes in the cluster that belong to the class. For mouse
and human these lists are connected to the web, so that
when a user clicks on an item in the list, the relevant
LocusLink page is displayed with information
regarding the gene.
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5.4.2 Promoter analysis display

After performing promoter analysis (see section 4.4.3 for details), this tool displays a
histogram for each cluster, containing a column for each significantly enriched
transcription factor motif. The required significance level is determined by the user’s
selection of threshold p-value.

The height of a column is proportional to the ratio of the frequency of the TF motif in
the cluster vs. its frequency in the background set. Upon clicking on a column, a
dialog box is displayed containing the TF name, p-value, the percentage of promoters
in the cluster that contain the motif, relative abundance (frequency in cluster divided
by frequency in background set) and a list of the genes in the cluster that contain the
motif in their promoters. For mouse and human these lists are linked to the web, so
that when a user clicks on an item in the list, the relevant LocusLink
(http://www.nchi.nlm.nih.gov/LocusLink/) page is displayed with information

regarding the gene.
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Figure 5.4.2.a. The display of promoter analysis performed on a clustering solution of dataset B.
Threshold p-value has been set to 0.05, and the Bonferroni correction for multiple tests has been used.




5.5 Dendrogram trees

5.5.1 Hierarchical clustering results display

After performing a hierarchical
clustering (see section 4.2.4 for
details) this tool displays the
resulting dendrogram tree in one
of the following manners
according to the user's selection:
a) A stand alone vertical tree
with gene names next to the
leaves.

b) A vertica tree at the left side
of an expression matrix, so that
the matrix rows are ordered
according to the order of the tree
leaves.

c) A tree that appears both
vertically (at the left side) and
horizontally (above) the
smilarity matrix, with rows and
columns ordered according to
the order of the tree leaves.
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Figure 5.5.1.a. A display of hierarchical clustering results
on dataset A The complete linkage scheme had been used to
calculate distances. In this example the dendrogram tree is
displayed next to the expression matrix.



5.6 Datatables

5.6.1 Biclustering results data table

After performing biclustering (see section 4.3 for details), this tool displays a table of

al biclusters. Filtering can be performed according to: bicluster score, number of

genes, number of conditions or maximum p-value for enriched functional class.

File. Options

& ©

=

2

Bic numn| Bic Scare [# Conditions

# Genas

Significant Gene Annotation;

3 1145 B

e e A e I A S e S B e S N e R

|191.238
1155383
[191.385

[ e

=

_Annotationd | p‘v‘alum | % Annotated [# of annota..| |

earnucle__os_ome

-nucléarnucleosome GODDDD?BB

ltelomerase-i |ndependenttelumere maintenance- . 4 779EE 15

li= o | @ iin =1 | oo | | o o o |

113

1z
7

=

Figure 5.6.1.a. Part of the data table displaying the results of biclustering of dataset A Functional
analysis had been performed on the biclusters. Here the biclusters are sorted alphabetically according
to the name of the most enriched functional category.



Upon selecting (double clicking) alinein
the table, an expresson matrix is
displayed (see section 5.1.1 for details). It
shows the sub-matrix of the expression
data for the genes and conditions that
belong to the bicluster. An additional
column is displayed for each significantly
enriched functional class that appears in
the table,

whether it belongs to that class. Gene and

indicating for each gene,

condition names appear next to the
matrix.
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Figure 5.6.1.b. An expression matrix of bicluster
#31 from the biclustering results shown in Figure
5.6.1.a. The first two columns correspond to
functional classes that were detected as
significantly enriched in this bicluster. A red mark
in such a column indicates that the gene belongs
to this functional class. We can see that there are
13 'cell cycleé genes of which 10 are 'DNA
replication and chromosome cycle' genes in this
bicluster.



6 Software development and architecture

In this chapter we describe the software development process and outline the
architecture and its main building blocks. We also explain our considerations in
making the key decisions regarding the devel opment.

6.1 Selecting the development language

EXPANDER was developed in Javafor the following reasons:

& The java programming language is object oriented, and thus suitable for such a
large scale application that requires many different modules that interact with one
another.

& A code written in Javais cross platform, i.e., it runswith little or no changeson
different operating systems. This enables biologists to use the application on any
operating system.

& The Java language incorporates graphical implementations for window
application programming, that give solutions to differences between windowing
systems of different operating systems (e.g. Win32 vs. Linux), and can be easily
expanded. This is very important to the development of graphical visualization
tools such asthis one.

& |t isrelatively simple to run external modules written in other (more efficient)
programming languages via an application written in Java. This is achieved by
using the Runtime class supplied by SUN.

6.2 Architectural considerations and overview

6.2.1 Architecture considerations
The main guidelines leading me in my design were:

? Create a clear separation between data management, data analysis and graphic
display.

? Exploit the advantages of object oriented programming (inheritance,
encapsulation etc.) in order to make the code as simple and elegant as
possible, and to simplify the addition of new functionalities.



6.2.2 Overview

The considerations described above led to the planning of the scheme described in
Figure 6.2.2.a. The program structure is presented as three main modules, the Data
M anagement module that consists of the Data package, the Data Analysis module
that consists of the Algorithm and the Visualization Tools packages and the
Graphical Interface module that consists of the Display, Display Frame and Dialog
packages. During the program operation the modules interact with each other. The
Utility Package contains several classes that are used by all modules, and thus, is an
open access package. A more detailed overview scheme will be given in section 6.8,
after the components have been described.

Main Frame

Algorithm

package \
Data 3 Data Data

Analysis package | (Management
Visualization
Tools
pckage g
Display 3
package
Utility Dialog >Graphica|
package* package Interface
Display Frame
J
* = Open access package

» = access

Figure 6.2.2.a. A scheme describing the general design of the functional modulesin the program. Each
general module (package) is represented by a rectangle, and interactions between modules are
represented by arrows.



6.3 Data management

The following classes are used in EXPANDER to store and access the data, while the
application is running:

6.3.1 The FloatMatrix class

This class was created in order to simplify operations on matrices containing numbers
in floating point representation. Such matrices are often used in the program. Each
object contains a two dimensional array of floating point numbers, and some
additional parameters such as the average value, whether or not the matrix is
transposed, etc. In addition to ordinary 'get' and 'set' methods, this class also contains
some matrix normalization and standardization schemes that can be applied on any
matrix, and are used for microarray data normalization and standardization.

6.3.2 The BasicElement and ElementArray classes

The BasicElement class was created in order to represent one gene or one condition in
the data. For each gene/condition, an object of BasicElement is created, containing its
name, id, whether or not it is being used for current calculations and a few other
details.

The ElementArray class holds and manages the entire set of genes/conditions in the
data. It contains an array of objects of type BasicElement. In addition to ordinary 'get’
and 'set’ methods, this class can perform variable queries regarding the data such as:
getting an element index by its name, getting an array of names of the used elements
only (elements that are currently flagged as used for analysis), etc.



6.3.3 The MainData class
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Figure 6.3.3.a. A scheme describing the structure of the MainData module of the program. Each
rectangle represents an object of a class. Class names are written in the rectangle. The names of all
main data members in the MainData class are written in the MainData rectangle, and the arrows are
pointing at the corresponding class objects.

This class holds and manages most of the data used by the program. A single object of
thistype exists at any given time, and isinitialized when the user requests to load data
from an input file. The structure of the classis described in Figure 6.3.3.a.

The class contains two objects of type ElementArray (one for genes and one for
conditions) and three objects of type FloatMatrix (for input expression data,
preprocessed expression data and similarity data). It also contains some additional
parameters such as the recently used standardization method, the used similarity type,
the input data type, etc. In addition to ordinary 'get’ and 'set’ methods, this class also
contains methods for loading input data from file, for preprocessing data (filtering,
normalizing and standardizing expression data), calculating similarity matrix
according to expression data, and writing data into files (this is required for operating
external modules viaEXPANDER).

6.3.4 The Bicluster and BicSet classes

The Bicluster class was created in order to contain al information regarding one

bicluster calculated by operating a biclustering algorithm. It contains a vector of



indices of all genes in the bicluster and a vector of indices of all conditions in the
bicluster, aswell asascore. It also contains required 'get’ and 'set’ methods.

The BicSet class holds and manages the entire set of Bicluster objects generated by a
biclustering algorithm. In addition to the set of objects of type Bicluster, this class
also contains a vector of significant functional annotations for each bicluster (if
calculated). It contains some simple 'get’ and 'set’ methods as well as several query
methods such as getting an array of all gene/condition names in a particular bicluster,
or getting a FloatMatrix object containing expression data of a particular bicluster.

6.3.5 The Preferences class

This class contains all of the user's preferences for the application settings. These
include the threshold p-value for functional enrichment analysis, the organism being
studied, matrix display preferences (colors etc.), biclustering algorithm parameters,
and more. Only one object of this type exists when the application is running, and it
reads and writes itself from and into a preferences file, saved after the application is
closed, so that user preferences will be saved from one session to another.

6.4 Data analysis

Each of the top level analysis methods used by EXPANDER is incorporated in a class
that is derived from the general abstract class Algorithm,

6.4.1 The Algorithm class

The Algorithm class is an abstract class that represents a general algorithm. It is used
as a super-class from which all algorithm classes in the program are derived. It
contains a reference to the MainData object, as well as a list of temporary files that
are to be deleted after completing the operation of Algorithm by incorporating a
clean-up method. It also contains the virtual getType and operate methods (these are
methods that must be implemented in derived classes).



6.4.2 The ClusteringAlgorithm class

The ClusteringAlgorithm classis derived from the Algorithm class and is a super-class
of al clustering algorithm classes. It contains an array of integers that holds the
clustering results, and some additional data such as clusters homogeneity and
separation measurements.

This class implements al operations that are to be performed by all clustering
algorithms, such as calculating homogeneity and separation of clustering solutions,
calculating the mean patterns of clusters, writing a clustering solution into a file, and

more.

6.4.3 Classes extending ClusteringAlgorithm

A separate class has been created for each clustering algorithm implemented by
EXPANDER. Each such class is derived from the ClusteringAlgorithm class, and
contains a different implementation for the ‘operate’ method. The SOMAIlgorithmand
KMeansAlgorithm classes contain the algorithm steps in the code, whereas the
ClickAlgorithm class operates an external module, and reads the resulting output into
its clustering results vector.

6.4.4 Classes extending Algorithm

Some of the algorithms implemented by EXPANDER are not clustering algorithms.
These are also derived from the generic Algorithm class. An example for such aclass
is the PCAAlgorithm class which implements the PCA algorithm in order to project

each expression pattern from n dimensionsto two dimensions.

6.4.5 Handling external modules via Algorithm classes

Some of the algorithms act as interfaces which operate external modules in order to
perform the required analysis. An example for such an algorithm is the CLICK
clustering algorithm or the functional analysis algorithm. These classes are required to
operate an external script/application located under the EXPANDER directory. To
handle the operation of such external modules we have used the java class Process. In
order to overcome a documented Java bug which causes the Process object to 'hang'
during operation, we have created the class External ProcessHandler. An object of



this class is created for each process, and operates by reading the input and error
streams generated by the process, and generating relevant messages to be displayed
by EXPANDER.

6.4.6 From data analysis to display: the visualization tools

In the process of generating and manipulating a visualization in EXPANDER, some
calculations are carried out (with or without using an Algorithm class), after which, a
suitable display object is created. In some cases, additional input is requested from the
user. These stages are all performed by the visualization tool.

The visualization tool is the 'glue’ that connects the data, the analysis and the display.
It is created by the main frame when the user requests the use of atool (for example:
expression matrix). The tool has constant access to the main data objects, and it
creates the display panel and frame to display analysis results.

Each visualization tool is defined in a class that is derived (directly or indirectly)
from the abstract super-class VisualizationTool.

The VisualizationT ool class

The VisualizationTool class is a super class from which all visualization tool classes
are derived. It creates and holds a DisplayPanel object and a DisplayFrame object. It
also holds a reference to the MainData object. It defines all operations that are
required in all or most of the visualization tools (such as the method for creating a
display frame).

The VisualizationToolWithClust class

The VisualizationToolWithClust class is derived from the VisualizationTool class. It
holds a reference to a ClusteringAlgorithm object, as well as methods designed to
handle clustering results (e.g., a specia method for creating a table that contains
clustering information). All visualization tools that operate on clustered data only are
derived from this classs Two examples for such classes are the
Functional AnalysisTool and the Promoter AnalysisTool that are both derived from the
VisualizationToolWithClust class. The FunctionalAnalysisTool class operates an
external module that calculates the significance of different functional classes in the



each cluster, and detects significantly enriched classes (for details see section 4.5.2).
The Promoter AnalysisTool class operates an external module, the PRIMA software,
that performs statistical tests in order to identify transcription factors (TFs) whose
binding site profiles are significantly enriched in the different clusters (for details see
section 4.5.3). Both classes utilize the ExternalProcessHandler class, described in
section 6.4.5, to handle these external processes.

6.5 The graphical Interface

The graphical interface is composed of the input dialogs (used for data input) and the
different display panelsthat are used for visualizations and display of analysis results.

The Dialog package contains the classes that are used for requesting input data from
the user. All are derived from thejavaclass Dialog.

To generate the different displays, a class was defined for each display type. Each
display class is derived (directly or indirectly) from the abstract super-class
DisplayPanel (described below). The Display package contains all classes that are
used to display graphical visualizations on the screen. Drawing on the screen is
performed using the  Swing graphical user interface  library
(http://java.sun.com/docs/books/tutorial/uiswing/).

6.5.1 The DisplayPanel class

The DisplayPanel class is derived from the Swing class JPanel. It implements all
operations that are required for the graphical displays such as. a print method that
enables sending its contents to be printed, a paint method that is called whenever the
panel is repainted on the screen, and a mouse motion listener event handler that
detects mouse motions and operates a method that updates the tool-tip text according
to the position of the cursor on the display.

6.5.2 Displaying matrices
The matrix display is performed using the MatrixDisplayer class, which is derived

from the DisplayPanel class. Matrix colors are rendered according to the float values

in each position in the matrix.



Color rendering is performed once upon display initiation, and saved for as long as
the displayer object exists. This is because recalculating the colors each time a 'paint’
event takes place is very time consuming. The colors are kept in a data structure
caled colorMatrix, which is an array of objects of type ColorArr. Each ColorArr
represents one color, and contains a vector of positions on screen (x,y) which areto be
colored inthat color.

Whenever a 'paint’ event takes place, the matrix is repainted on the screen via the
‘onDisplay’ method which uses the Java Graphics class to change the color and then
fill al rectanglesthat are to be colored in that color (according to the colorMatrix data
structure). Rectangle size is determined according to the scale used, and is changed
when the user operates the zoom in/out option.

6.5.3 Displaying charts

The following chart displays are implemented in EXPANDER: XY scatter plot,
pattern displayer and histogram. These are implemented in three separate classes,
XYScatter Displayer, PatternDisplayer, and Histogram, which are all derived from the
Chart super-class.

The Chart super-class holds all parameters and methods required for drawing the axis
system and labels. The display magnitude (scale) is determined according to the size
of the frame, and is updated automatically whenever the frame is resized (i.e,
whenever a'paint’ event takes place).

The XYScatter Displayer class holds a vector of points (X, y, point name, point color)
to be displayed on the chart. Points are painted on the screen in the form of a '+
symbol, which is centered round the relevant (x, y) vaues. This class also holds a
vector of point positions in pixels on the screen. This vector is updated whenever the
display is repainted on the screen. It is used in order to efficiently display the
appropriate tool-tip text whenever the cursor is placed on or very close to one of the
points.

The PatternDisplayer class holds a vector of patterns. Each pattern is described by a
series of float numbers that represent the y values of the pattern, a name, a series of
error bar sizes (one for each point) and a color (the x values of the pattern are
consecutive, e.g., time points). This class also holds a vector of pattern positions in



pixels on the screen. This vector is updated whenever the display is repainted on the
screen. It is used in order to efficiently display the appropriate tool-tip text whenever
the cursor is placed on or very close to one of the patterns.

The Histogram class holds a vector of al histogram columns. Each column is
described by its position, width, height, name, color and reference to a dialog box that
contains some information regarding the column. On the display each column is
defined by the application as a button, which when clicked, causes the display of the
associated dialog box.

6.5.4 Displaying data tables

Data tables are used by EXPANDER to display clustering results, bi-clustering
results, the contents of a selected cluster, and other types of required information. The
Swing class JTable is used in order to display a data table. Data are input into a table
using a table model (implemented in class ClusteredDataTableModel). In order to
allow sorting a table according to the contents of a column, a TableSorter class was

written.

The biclustering results table can be filtered according to the user selection. This is
performed in the 'updateTable’ method of the class BicResDisplayer by using a
BicsFilter object. The BicsFilter class holds various parameters that define a filter
operation, such as: minimal and maximal score, minimal and maxima number of
conditions per bicluster, minimal and maxima number of genes per bicluster,
threshold functional annotation p-value, etc. This class implements a method that
receives aBicluster object, and returns whether or not it should be displayed under the
current filter definitions.

6.5.5 Displaying dendrogram trees

Dendrogram trees are used in EXPANDER to display the results of a hierarchical
clustering algorithm. The TreeNode class is used to hold all dendrogram tree data. In
order to display a dendrogram tree on the screen the DisplayTree class was defined.
This class holds the tree in the form of a TreeNode object as well as an array of leaf
labels and leaf positions on screen. It also implements several drawing methods that
are used to draw the tree on the screen.



6.5.6 Creating the display frames

In order to show a display panel on the screen, a frame that contains this panel must
be created. This frame is created using the DisplayFrame class (or one of the classes
derived from it). An object of that type is created by the visualization tool in the
‘createDisplayFrame method. The display frame contains a separate menu bar, which
enables the user to perform operations on the display, such as zoom in, zoom out, save
etc.

Each DisplayFrame object contains one DisplayPanel object, a tool bar containing
buttons that enable operations on the display, a pop-up menu and a dialog box with
information regarding the display. Most of the methods implemented in the
DisplayFrame class are event handlers for handling different menu options.

6.6 The Main Frame - How it all comes together

Mdzgtr;w/' MainData
pgﬁig;?;?\ ™ Preferences
biCllt'fto'lb‘lgo\\’ ClusteringAlgorithm

displays BiclusteringAlgorithm

Z VisualizationT ool

DisplayPanel | DisplayPanel

Figure 6.6.a. A scheme describing the MainFrame class and its key components. Data member s of the
class are listed in the MainFram rectangle, and arrows are pointing at the rectangles representing the
different objectsthat comprise them.

The MainFrame class is derived from the Swing class JFrame. A single object of this
type is created upon running the application. This object exists for as long as the
application is running, and it can be referred to as the application ‘manager’.



The main frame contains the main menu bar, through which the user operates the
different analysis and display tools, as well as a status bar, through which the
application can send messages to the user regarding the application's status. When an
input data file is loaded by the user, the main frame creates and holds the MainData
object. The clustering and biclustering algorithms are also created and operated by the
main frame upon user's request, and are kept as data members. The main frame also
holds a vector containing al open displays, and an object of type Preferences,
containing all currently selected application settings.

Most of the methods implemented in the main frame class are event handlers for

handling different menu options.

6.7 The utility Package

This package contains classes for which no objects are formed. These classes are
designed to contain information/methods that are relevant for the whole application at

al times.

6.7.1 Handling float vectors — the VecCalc class

The VecCalc class contains various methods that are designed to handle floating
number vectors. It implements operations such as sort, find maxima value, find
minimal value, calculate average, calculate standard deviation, etc. The methods can
be used by all objects in the application, and do not require the existence of an object
of thistype.

6.7.2 The Strings class

All constant strings used by the application (e.g., messages to the user) are defined in
the Strings class. This simplifies the process of changing text since it allows all
changesto be performed only once, and in awell known, fixed place.

The Strings class aso defines several string manipulation methods that are not
available in the Java.Sring class, and are required by severa classes in the
application. An example for such amethod is the float ToStr method, which deals with
displaying afloat number as a string.



6.7.3 The Constants class

All constant integers (enumerations) that are used in more than one place in the
application are defined in the Constants class. Again, this simplifies the process of
changing such enumerations, since it allows all changes to be performed only once,
and in awell known, fixed place.

6.7.4 Connecting to the WEB - the URLHandler class

Some of the data tables displayed by EXPANDER contain gene names, which can be
used as links to web pages containing information regarding those genes (upon
clicking such a name, a web browser is opened, and displays the relevant
information). To implement this feature | have created the URLHandler class. The
URLHandler class operates the web browser via the Java.Runtime object, by sending
the appropriate command line, selected according to the operating system on which
the application is running. In case of falure, this class generates the proper error
message. Once again, the methods can be used by all objects in the application, and
do not require the existence of an object of thistype.

6.8 A detailed overview

We are now ready to view in more detail the overall architecture of the system. Figure
6.8.a shows a detailed version of the scheme displayed in Figure 6.2.2.a. The main
classes in each package are displayed within the package rectangle. The relations
between the different classes are described using arrows.



Main
Frame Algorithm package Data package
Algorithm—»PCAAIlgo MainData—e FloatM atrix
\A \E
HierarchicalAlgo lementArray
ClusteringAlgorithm Data
\A
ClickAlgo BicSet ——®Bicluster M anagement
SOMAIgo '
MeansAlgo : Preferences
BiclusteringAlgo
Display package ~
Data DisplfyPanel
Analys Chart—Histogram
Visualization tools package YScatt_erPIot
VisualizationTool ternDisplayer
PCATool l —® o
RawDataM atrixToo MatrixDisplayer
DataDendrogramT ool ... )
DendrogfaDisplayer
SimilarityMatrixDisplayer
VisualizationTool WithClust
' N
PromoterAnalysisTool ¥ \ | | = .
Functional AnalysisTool Graphical
ClusterredDataMatrixTool... Interface
~~_ Dialog package
| Jtility package . Display frame package
: Strings Displ ayFrame
: Constants
! VecClac : M atrlxDlspaJ yFrame
: URLHandler BicResDisplayFrame
..........................: MultH|$sD|$|ayFran']e
— =inheritance
—— = access —
....... = Open access

Figure 6.8.a. A General scheme, describing the different packages, the central classes that they contain and
the different relationships among them. The MainFrame class creates and manages all other components.
Classes of the Algorithm package can access instances of the Data package classes. Classes of the
Visualization tool package can access, create and manage instances of classes from the Data package,
Algorithm packages, Dial og package and Display Frame package, that arerequired for the operation of these
tools. The Utility package has open access since it contains classes that are required by all components.



7 EXPANDER as an instrument in the hands of the
researcher

In this chapter we present three examples of EXPANDER-based anaysis of
biological datasets. This alows us to demonstrate various capabilities of the software
and to draw novel biological conclusions.

7.1 Example 1: Analysis of oligonucleotide array data from
the mouse lymph nodes

7.1.1 The data

The data we describe here were generated as part of an attempt to dissect the DNA
damage response using gene expression profiles. The experiments were conducted by
Sharon Rashi-Elkeles, Ran Elkon from the Shiloh lab in cooperation with Nir
Weizmann and Ari Barzilai from the George S Wise Faculty of Life Science in Tel-
Aviv University, Ninette Amariglio and Gideon Rechavi from the Department of
Pediatric Hemato-Oncology unit of Functional Genomics at the Sheba Medical
Center, and Chaim Linhart, Roded Sharan and Ron Shamir from the computational
genomics laboratory in Tel Aviv University.

Atm is a protein kinase encoded by the gene that is mutated in the human disorder
ataxia-telangiectasa (A-T). The disease which is characterized by progressive
neurodegeneration that leads to severe ataxia and many other defects including
immune deficiencies, cancer proneness, chromosomal instability, and ionizing
radiation sensitivity (Chong et al. 2000). Atm activity is required in cell cycle
checkpoints and DNA repair after exposure to ionizing radiation. ATM-deficient cells
exhibit an extremely high sensitivity to ionizing radiation and to multiple double
stranded breaks.

In this study, global transcriptional responses were recorded in wild-type and in Atm-
deficient lymph node tissues of mice exposed to whole body irradiation with 15 Gy of
IR. mMRNA was collected 0, 30 and 120 min after irradiation. Affymetrix GeneChips
MGU74Av2 were used in this study. The chips containing above 12,000 probe sets, of
which 6000 correspond to functionally characterized mouse genes and the rest



correspond to ESTs. Samples from untreated mice were probed in independent
hybridization triplicates (three repetitions) and samples from irradiated mice were
probed in independent hybridization duplicates (two repetitions). A representative
expression level for each probe set in each of the six tested conditions was computed
by averaging the probe-set signal intensities in the replicate arrays. This study has not
been published yet.

7.1.2 Loading the data

The input file used in this analysis contains data for 6982 gene probes (Affymetrix
IDs) and 6 conditions. These genes remained after filtering out all genes that were
marked "Unpresent” by the Affymetrix software (i.e., genes that are not expressed in
lymph node cdls under any of the 6 conditions). Expression levels under 40 were
arbitrarily set to 40. The conversion file contains the LocusLink 1Ds corresponding to
probe Affymetrix IDs. Figure 1.1.2.a contains an image of the input dialog box that
was used to load the data.

Raw Data File: |IEDataUyrnph nndesIThy_Data_Six_cunds_afﬁrids.std.urig| - | Browse |

Ibs Comversion File: |D:Ladimarun_EampleDataUmnph nodes'conversiontxt |‘r | Browse ‘

Data Type: | Oligonucleotide Array v"|

Ok Cancel |

Figure 1.1.2.a. Thefileinput dialog box that was used to load the input data. The Raw Data File Name
field contains the name of the expression data file. The IDs Conversion File field contains the name of
the file that contains the LocusLink 1Ds corresponding to each gene ID from the expression file. The
Data Type field was set to Oligonucleotide Array.



7.1.3 Preprocessing the data

A fold change filter was applied, so that only genes g | sl s X

changed by afactor of at least 1.75 across the six m&%ﬂn ch.reqme' Symbol [

e 00009_r_at Soxd
tested conditions were selected. 1205 of the probe fiooaiz at I
00022 at  [Cish
00033 at  [Msh2
0o

sets met this criterion. The remaining genes were

displayed in alist showninFigure7.1.3.a

00054

00277 at  linhba
00245 _at
00249 f_at

00323 a1 i

00413 at  Zap3-pending
00421 at  |Krizd

00428 at  |Lamc2
00440 f at  |Ankd =

£

Figure 7.1.3.a. Part of thelist of genes
that remained after applying the fold
changefilter.

Next, data were standardized so that the expression levels of each gene would have
mean 0 and variance 1. Figure 7.1.3.b shows the menu option and dialog box that

were used to operate the standardization.

lustering Visualizations Options Help
p 0N \SampleDatalThymusiThy Data Six cands affyids.bd
. Standartization X

Standartization Policy: | Mean 0 andvariance 1 |

4

View Scatter Piots

| ok || cancar |

Figure 7.1.3.b. Themenu option and dialog box that were used to operate the standar dization.



7.1.4 Viewing raw data

The raw data were viewed using the Raw “
Data Matrix visualization. Figure 7.1.4.a %
shows the displayed matrix. The resolution
was changed using the Zoom in and Zoom
out options. When using high resolution,
gene names were displayed next to their

corresponding rows in the matrix (not

shown infigure).

7.1.5 Clustering the data

The CLICK algorithm was used to
cluster the genes into distinct
subsets. CLICK identified 15
clusters, out of which 9 contain
more than 40 genes, and left 4
outlier genes unclustered
(singletons). For each cluster, the
size and homogeneity are specified.
The overall average homogeneity is
0.8468 and the overal average

separation valueis -0.0737.

Figure 7.1.5.a. The clustering info dialog
that was displayed after running the
CLICK algorithm.
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Figure 7.1.4.a. A fraction of the raw
data matrix display of the data after
filtration and standardization have been
performed. A color scale appears at the

top right corner of the display.
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7.1.6 Viewing clustered data

A general impression of the clustering results was achieved
by using the clustered expression matrix and the clustered
similarity matrix visualizations.

Figure 7.1.6.a. shows the clustered matrix display. The order
of the six conditions here and in all other displays is: wild
type time points 0, 30, 120, ATM ™ time points 0, 30, 120. For
example, clusters 1 and 2 contain genes that respond
primarily in the mutant, at time points 30 and 120
respectively.

Figure 7.1.6.a. A clustered data matrix visualization of the CLICK
clustering solution that was described in section 7.1.5. Patterns of genes
that were clustered together appear consecutively. Clusters are separated
by white lines.
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The clustered similarity matrix display can give a general impression of the
similarity/dissimilarity between different clusters and the similarity of genes within
the same cluster. In Figure 7.1.6.b. for example, we can see that cluster 1 is very

different from clusters 25, 8, 9 and 13, and more similar to clusters 6-7, 10-12 and
14.

Clustered Data Similarity.[ D:\adimaron_\SampleData\Thymus\Thy_Data Six conds affyi... g@
File Options

alejE 2]a]4

—

oo T
FRm TS e BT Lt [T
FIEH S R T [T B

—

Figure 7.1.6.b. A clustered data similarity matrix display of the CLICK clustering solution. It can be
seen that similarity within clusters is much higher than the similarity between genes from different
clusters. Animpression of the similarity between clustersis also given here.

Cluster patterns were examined by using the 'All clusters mean patterns' visualization,
shown in Figure 7.1.6.c. Cluster 1, for example contains 209 genes, which have an
expression peak in experimental condition 5 (at30). Biologically, this cluster seemsto
contain genes that are over-expressed in Atm deficient mice shortly after exposure to
IR (30 min.), and then return to basal level.

Cluster 3 contains 175 genes, which have an expression peak in experimenta
condition 3 (120 min after exposure of wt cellsto IR). Biologically, this cluster seems
to contain genes that respond more slowly in wild-type mice after exposure to IR
("second wave'" response), but do not respond to IR in Atm-deficient mice. These may



be genesthat aredirectly or indirectly under regulatory control of ATM, and therefore

the knock-out prevents their upregulation in response to irradiation.

Mean Patterns of All Clusters with Error Bars.[ D:\adimaron_\SampleData\Thymus\Thy Data Six conds affyids.txt] E]@@
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Figure 7.1.6.c. A mean patterns display of the CLICK clusters. Cluster number and size appear at the
top of each panel. The X axis contains the condition numbers, and is interpreted in the legend at the
right side of the frame. The Y axis contains the expression values. Error bars represent +1standard
deviation. In this display patterns seemto be very different from each other, indicating high separation
between clusters, while error bars are not very big, indicating high homogeneity within clusters.
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Figure 7.1.6.d. A part of the cluster contents list that
was displayed upon clicking the mean patterns display
of cluster 1.



7.1.7 Performing functional analysis on clusters

In order to characterize the biological processes activated following IR, a functional
analysis was performed on the clustered data. First, parameters were set through the
settings dialog box (this box is reached from the Options menu). Mouse was selected
as the examined organism, annotation type was set to ‘GO’ (using al three type of GO
categories. process, function and location), analysis background set was set to
'Original Data (unfiltered) and threshold p-value set to: 5*10°° (fig. 7.1.7.a).

¢ | Functional Analysis | Promoter An
Select Annmtation Type: | ga T]

fosus en: (¥ Process vl Function [+ Location

Selact Organisme: | mouse -

Do not consider classes over the size of |_3I:IIIIIII

Uso | Original Data '-'”| as background set

Background File: i

Threshoid p-Value: |50E-6 |

__glﬂ Cancel

Figure 7.1.7.a. A snapshot of the Functional analysis settings dialog box, as it was configured prior to
the functional analysisthat is described in this section.

The results of the analysis are shown in Figure 7.1.7.b. The p-values, frequency of
classes within clusters and the lists of genes for each column were displayed upon
clicking the relevant columns in the histogram (not shown). Cluster 2 was found to be
highly enriched for genes of the immune response functional class (p = 7.3*10%) and
with genes of the response to pest/pathogen/parasite functional class (p = 4.54*10°°).
Since cluster 2 contains genes that exhibit an expression pattern of "second wave"
response in ATM™" mice only, a possible biological explanation for these results is
that the absence of a normal response in the cell to irradiation damages causes an
inflammatory reaction in which the genes in cluster 2 are highly expressed.



Cluster 5 was found to be highly enriched for genes of the muscle development and
muscle contraction functional classes (p = 7.78*10* and 1.4*10*° respectively). It
was aso found to be enriched for genes of the actine cytoskeleton and the
cytoskeleton functional classes (p = 6.78*10° and 7.03* 10”' respectively). We found
no good biologica explanation for these results.

Clusters Functional Analysis| D:\adimaron_ \SampleDatatlymph ... E|E|E|
File Options

=

@4

Cluster; 2, Size; 209

%frarm 15,
cluster HE

10 | I
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0.0
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110

% fram 15% =
0

&

=

0

Significantly enriched Functional Clagses

Colors; Classes:

immune response - GO000E955
responseto pestipathogeniparasite - GO:000961 3
muscle devalopment- GO:0007517
rrascle canfraction - GO:O00G936
actin cytoskeleton - GO:0015629
. cytnskeleton - GO0005856
* PYalue = 6.0E-7,* P-Value = 5.0E-8; ®* P-Value = 5.0E-9

Figure 7.1.7.b. A snapshot of the Functional analysisresults display.



7.1.8 Performing promoter analysis on clusters

In order to reveal regulators whose activation is compromised in Atm-deficient
tissues, promoter anaysis was performed, assuming that genes that exhibit similar
transcriptional expression patterns across multiple conditions will share cis-regulatory
elementsin their promoters.

Parameters were set through the settings dialog. 'mouse’ was selected as the examined
organism, fingerprint file was selected, the background set was set to "Origina Data’

(unfiltered), and the threshold p-value was set to 0.05with FDR Bonferroni correction
(fig. 7.1.8.9).

i tering |1 aly | Functional Analysis | Promoter Analysis |

'L:ii Operate on clusters . Operate on biclusters

Select Fingerprints fle; |‘fp.l‘|.i‘lni.l‘|.||ﬁ'skeﬂ.l12£l[r.‘fpTi]l]lI.I-ISMmF'mHl's'__mds;u‘lg.txl -

Selact Organism: | mouse

Threshokl pyalue: |[0.05 |

Mulliple tesis carrection; | Bonferoni '|

Use Ol‘igmal Data v.l as hackground set

Background File: | = |

Save resulis as: | |v | | Browse
ok J Cancel |

Figure 7.1.8.a. A snapshot of the promoter analysis settings dialog box, as it was configured prior to
the analysisthat is described in this section.

The results of the analysis are shown in Figure 7.1.8.b.



Fie_opions

Cluster; 3 Size: 158

Significant Transcription Factors

Freguenc
v Ratio

Clusters Promoter Analysis[ D:\adimaron \SampleData\Thy... g@@ & Transeription Factor Info

M99997[NFKB_73]
p-value 0.0204

Covers 14 % of promoters in cluster
Relative Freguency: 3.5090

Gene |0

Gene Eymbaol

67603

18035

16362

18034

57783

15894

20910

18036

14622

14825

Colors: Classes:

MO0053[MF-kappaB_{p&5)]

26410

13506

20310

BEOTE

56460

MIDgaTHFKE_T3]
MO0024[p53]

MODD54[ME-kappaB]
* states P-Value = 0.0050;* states P-Value < 5 0E-4, = states P-Value < 5 D00E|~

Figure 7.1.8.b. A snapshot of the resulting display of promoter analysis performed on the clusters
described in section 7.1.5. p-values, relative frequencies and gene lists were displayed by clicking on
the relative columns.

Cluster 3 was found to be highly enriched with promoters that contain binding sites
for NF-kappaB (NF?B_73 is another PWM for NF-kappaB), NF-kappaB (p65)
(which is asubunit of NF-kappaB) and p53. The display shows that the incidence of
the p53 binding profile is 4-fold higher among the promoters of cluster 3 than in the
background set (p = 0.0041), and the incidence of the NF-kappaB binding profile is3-
fold higher among the promoters of cluster 3 than in the background set (p = 0.0204).

The results suggest that genesin cluster 3 might be regulated by one or more of these
transcription factors, which are well established stress-induced transcriptional
regulators (Amudson et al. 2003). These results support previous studies that reported
compromised IR-induced activation of both NF-kappaB and p53 in Atm-deficient
tissues and in cell lines derived from A-T patients (Banin et al., 1998; Li et al., 2001c;
Piret et al., 1999 ; Saito et al., 2002).



7.2 Example 2: Analysis of yeast cDNA microarray data

concerning responses to environmental changes

7.2.1 The data

In this example we analyze a published dataset dealing with yeast stress responses.
DNA microarrays were used to measure changes in transcript levels over time for the
yeast genes, in response to a variety of stress conditions. These include temperature
shocks, hydrogen peroxide, menadione (a superoxide-generating drug), diamide (a
sulfhydryl-oxidizing agent), dithiothreitol (a disulfide-reducing agent), hyper-osmotic
shock, amino acid starvation, nitrogen source depletion and progression into
stationery phase. The expression levels were aso measured under severa
environmental change conditions that are not considered stressful, such as
temperature change from 37° to 25° and hypo-osmotic shock. The dataset contains
gene expression measurements for all 6153 putative yeast genes in 15 different time
series under various environmental conditions, generating a set of 173 expression
profiles (Gasch et al. 2000).

7.2.2 Loading the data

Data was loaded without a conversion file since gene IDs in the input file match the

IDsin fingerprint and annotation files supplied by EXPANDER.



7.2.3 Biclustering the data

Biclustering was performed on the entire
dataset using default parameters. 124
biclusters were detected. A part of the
resultsis shown in Figure 7.2.3.a.

Note the variability in the dimensions of
the biclusters, with the number of
conditions varying between 5 and 73 and
the number of genes varying between 79
and 350.

Biclustering Visualization] D:\.. E|E|[')Z|
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Figure 7.23.a: A part of the biclusters table.
Biclusters are sorted according to their score, and
only the top scoring biclusters are displayed.

7.2.4 Performing functional analysis on biclusters

Functional analysis was performed on the biclusters. The whole dataset was used as

background set, and only "Process" annotations were tested. Threshold p-value was

set to 510 (Figure 7.2.6.a).
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Figure 7.2.4.a: Functional analysis settings used to analyze biclustering results.

The resulting biclusters table contained also information on the significant functional
classes in each bicluster. Part of the table is shown in Figure 7.2.6.b. 53 out of all 124
biclusters scored higher than 1000. Over half of the biclusters consist of more than
100 genes, and amost all of them consist of less than 40 conditions.
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Figure 7.2.4.b. Part the biclusters table that contains also significantly enriched functional classes.
Four columns are used to describe each enriched functional class. These include annotation name, p-
value, percentage in bicluster and the number of genesin the cluster that have this annotation. Scroll
bars facilitate browsing through the data.



7.2.5 Viewing biclusters and significant functional classes

Biclusters with high scores are viewed by clicking on the corresponding rows in the
table. For each bicluster, an expression matrix is displayed. For each significant
functional class, a column is added to the matrix display, indicating for each gene,
whether or not it belongs to that class.

Bicluster #99 has the highest score (13,163.5), and it consists of 306 genes and 73
conditions. It was found to be enriched with the following functional classes:

Class Name: Go ID: p-value:
ribosome G0:0005840 Under 10%
cytosolic ribosome G0:0005830 Under 10%
Ribonucleoprotein complex G0:0030529 Under 10%
cytosolic large ribosomal subunit (sensu Eukarya) | GO:0005842 5.12*10™%
cytosol GO:0005829 | 34310

Figure 7.2.7.a shows a part of the expression matrix of bicluster #99. According to the
expression matrix, the genes in this bicluster are suppressed under most of the tested
stress conditions, but are not suppressed under environmental conditions that are not
considered stressful (i.e., hypo-osmotic shock in columns 8,9 and temperature change
from 37° to 25° in columns 3, 4). A cluster with a similar expression profile and
enriched functional classes was detected in the research that was previousy
performed on this data by Gasch et al., where different methods were used for
anaysis (Gasch et al. 2000). These results support previous observations of
repression of ribosomal protein genes during multiple stress responses (Warner 1999;
Sakaki et al. 2003). These results support the conclusion, presented by Gasch et al.,
that suppression of genes involved in protein synthesis is a general feature of the
"environmental stressresponse” (ESR) (Gasch et al. 2000).
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7.2.7.a; Part of the expression matrix of bicluster #99. Yellow indicates over-expression and

blue indicates under expression.

Bicluster #103 consists of 192 genes and 66 conditions. It was found to be enriched

with the following functional classes:

Class Name: GO ID: p-value:
nucleolus G0:0005730 | Under 10%
Ribosome biogenesis and assembly GO:0042254 | 3.18*10°%
Ribosome biogenesis GO:0007046 | 4.41*10°*
Transcription from Pol1 promoter GO:0006360 | 2.75*10°*
RNA processing GO:0006396 | 6.27*10°%°

Figure 7.2.7.b shows a part of the expression matrix of bicluster #99. According to the

expression matrix, the genes in this bicluster are suppressed under stress conditions,

but are not suppressed under environmental conditions that are not considered




cluster with a similar expression profile and enriched functional classes was detected
by Gasch et al., using the TreeView software. This cluster was produced by

stressful (e.g., hypo-osmotic shock and temperature change from 37° to 25°). A
hierarchically clustering the whole dataset (i.e., using al conditions), and it consists
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almost entirely of genes encoding ribosomal proteins (Gasch et al. 2000). The IDs of
the genes in the cluster and its exact size were not published, so a direct comparison

of the gene setsis, unfortunately, impossible.

tibosome hiogenesis and assembly- GO:0042254
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Figure 7.2.7.b: Part of the expression matrix of bicluster #103. Yellow indicates over-expression and

blue indicates under expression.



Bicluster #2 consists of 335 genes and 21 conditions. It was found to be enriched
with the following functional classes:

Class Name: Go ID: p-value:
carbohydrate metabolism GO:0005975 | 8.045*10°”
Protein folding GO0:0006457 | 1.85*10*
Energy pathways G0:0006091 | 2.39*10*
Response to stress GO:0006950 | 3.387+10*

Figure 7.2.7.c shows the expression matrix of bicluster #2. According to the
expression matrix, the genesin this bicluster are induced under various kinds of stress
conditions (Diamide exposure, DTT exposure, heat shock and hyper-osmotic shock),
and are not induced under environmental conditions that are not considered stressful
(e.g., temperature change from 37° to 25° in columns 14 and 21). The first condition
in the matrix ("heat shock 005 minutes hs-2") seems to show repression under stress,
in conflict with the rest of the results. We suspect that this experiment is faulty, since
(2) it contradicts results of a repeated experiment under the same condition ("heat
shock 05 hs-1", column 15) and (2) it also appears to differ from the other heat shock
conditions aso in biclusters 103 and 99.

These results are consistent with the results reported by Gasch et al., describing a set
of approximately 300 genes that were induced in ESR. This set was reported to
consist of genes that are involved in a wide variety of processes, including
carbohydrate metabolism and protein folding (Gasch et al. 2000). The IDs of the
genesin this set were not published.
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Figure 7.2.7.c. The expression matrix of bicluster #2. Yellow indicates over-expression and blue
indicates under expression.

Bicluster #30 consists of 209 genes and 9 conditions (all amino-acid starvation
conditions along with the first three nitrogen depletion conditions). It was found to be
enriched with the following functional classes:

Class Name: Go ID: p-value:
Amine metabolism G0:0009308 | 1.58* 10
Amino acid metabolism G0:0006520 | 2.85*10%"
Glutamine family amino acid biosynthesis G0:0009084 | 3.51*10™°
Nitrogen metabolism G0:0006807 | 1.38*10°
Sulfur metabolism G0:0006790 | 3.85*10°




Figure 7.2.7.d shows the expression matrix of bicluster #30. According to the
expression matrix, the genes in this bicluster are induced under amino acid starvation
or nitrogen depletion conditions, and suppressed in steady state with sorbitol.
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Figure 7.2.7.d: The expression matrix of bicluster #30. Yellow indicates over-expression and blue
indicates under expression.

7.2.6 Performing Promoter analysis on biclusters

Promoter analysis was performed on the biclusters. The whole dataset was used as

background set and threshold p-value was set to 5*10® without a correction for
multiple tests (Figure 7.2.8.a).
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Figure 7.2.8.a: Promoter analysis settings that were used to analyze biclustering results.

43 PWMs corresponding to yeast TF motifs, extracted from the "Transfac' database
(version 7.4, April 2004), were used for this analysis. The resulting display contained
a histogram for each bicluster which was found to be enriched with at least one TF
binding site.

Thirty four biclusters were found to be significantly enriched with at least one TF
binding site.

Bicluster #99 was found to be highly enriched with RAP1 motif, with a p-value =
1.83*10*° (Figure 7.2.8.b). Recall that our functional analysis identified this bicluster
as related to ribosomal proteins. These results are in correlation with previous studies,
demonstrating that the repression of ribosomal protein genes is regulated by the
transcription factor Raplp (Moehle and Hinnebusch 1991, Li et al. 1999).

Bicluster #103 was not found to be enriched with any of the tested motifs.

Bicluster #2 was found to be enriched with STRE (Stress Response Element) motif,
with a p-value = 1.74*10*® (Figure 7.2.8.c). These results are in agreement with
previous studies that have identified STRE sequences in many stress-induced genes
(Kandror et al. 2004; Boorsma et al. 2004). Two transcription factors, Msn2p and
Msndp, are involved in STRE-mediated gene expression (Martinez-Pastor et al.,
1996). Both factors bind to STRE in vitro and in vivo and are required for the



induction of an STRE-LEUZ2-lacZ reporter gene in response to different forms of
stress (Martinez-Pastor et al., 1996).

Bicluster #30 was found to be enriched with GCN4, CBF1 and AP-1 moatifs, p-values
are shown in Figure (Figure 7.2.8.d). GCN4 is a transcription factor that is known to
play a key role in the regulation o amino acid metabolism in yeasts (Hinnebusch
1984). It has been shown to bind degenerate variants of the pseudo palindrome
5ATGACTCAT3 known as the AP-1 site (Suckow et al. 1994) (i.e., the motifs
identified as AP-1 binding sites in this bicluster are probably the same motifs
identified as CGN4 binding sites). CBFL1 is a transcription factor that is necessary for
the expression of genes involved in methionine biosynthesis, and deletion of CBF1
renders S. Cerevisiae methionine auxotrophic (Kuras and Thomas 1995). These
results support the suggestion presented by Gacsh et al. that ESR regulation is both
gene specific and condition specific, and that the expression of genes in ESR is
regulated by different transcription factors depending on the conditions (Gasch et al.
2000).
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Figure 7.2.8.b. Promoter analysis results for bicluster #99. Upon clicking a column in the histogram,
an info dialog box appears.
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Figure 7.2.8.c. Promoter analysisresultsfor bicluster #2.
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Figure 7.2.8.d. Promoter analysisresultsfor bicluster #30.

7.2.7 Discussion

The genomic expression programs characterized in the study of Gasch et al. and in
this analysis reveal that yeast cells respond to environmental changes by altering the
expression of thousands of genes, creating a genomic expression program that is
customized for each environment (Gasch et al. 2002).

Our biclustering analysis detected several biclusters which were found to be highly
enriched for genes that encode ribosomal proteins. As would be expected, bicluster
expression matrices indicate down regulation of these genes under stressful conditions
and upregulation when environmental conditions improve (e.g. 37° to 25°, hypo



osmotic shock etc.). One such bicluster (#99) was found to be significantly enriched
for genes that contain a RAP1 binding site in their promoters. It has been shown that
the majority of ribosomal protein (RP) genes and a number of the translation factors
genes contain binding sites for the essential Rapl protein in their upstream regions
(Shore 1994).

Another type of biclusters that were detected in our analysis was highly enriched for
genes that are involved in ribosome biogenesis and assembly and transcription from
poll promoter. As in the biclusters described above, expression matrices indicate
down regulation of these genes under stressful conditions and upregulation under

normal environmental conditions.

Our biclustering algorithm also detected a bicluster of genes that are highly expressed
under amino acid starvation and nitrogen depletion conditions. This bicluster was
found to be highly enriched for genes that are involved in amine and amino acids
metabolism and biosynthesis. It was found to be significantly enriched for genes that
contain binding sites for GCN4, CBF1 and Apl in their promoters. GCN4 is a known
transcriptional activator of amino acid biosynthetic genes (Sattlegger et al. 2004) and
CBF1 isatranscription factor that is necessary for the expression of genesinvolved in
methionine biosynthesis (Kuras and Thomas 1995). The reason for the enrichment in
Apl binding sites is not clear. One possible reason is that CGN4 binds degenerate
variants of the pseudo palindrome 5ATGACTCAT3' known as the AP-1 site (Suckow
et al. 1994).

Our analysis recovered the key conclusions reported by Gasch et al. (2000). A key
difference in our methodology is the elimination of the need to use prior biological
knowledge and of the subjective pre-selection of conditions for the analysis. All
biclusters and their condition sets (including biclusters containing a small set of
conditions, such as bicluster #30), were automatically detected by the SAMBA
biclustering algorithm from the entire dataset.



7.3 Example 3: Analysis of cDNA microarray data associated
with cell cycle progression in human cells

7.3.1 The data

cDNA microarrays were used to measure gene expression in human cancer cell line,
HelLa cells (Whitfield et al. 2002). Prior to the microarray preparation cell cultures
were synchronized in three different ways: a double thymidine block, a thymidine —
nocodazole block and a mitotic shake off (a physical method) (Whitfield et al. 2002).
Altogether 114 arrays were prepared for different cell cycle stages and using different
synchronization methods. Whitfield et al. identified 874 genes (represented by 1134
elements or probes) as periodically expressed during the cell. Our analysis focused on
this set only.

7.3.2 Loading the data

The raw data were edited to fit the required EXPANDER input format and contents
(some of the columns from the original data file were excluded and array names were
changed to be unique). The edited dataset was loaded, along with a conversion file
that converted UIDs to LocusLink IDs. Missing values were automatically set to 0,
since in cDNA microarrays values are expected by EXPANDER to be given as log
ratios so the value O indicates anormal expression level (ratio = 1).

7.3.3 Preprocessing the data

Data were filtered using an input file containing 1134 IDs of elements representing
the 874 genes that were reported as periodically expressed (this file was downloaded
from http://genome-www.stanford.edu/Human-CellCycle/Hela/index.shtml).  Since

we used an external clustering solution generated by Whitfield et al. (see below), no
additional filtering was performed.



7.3.4 Loading a clustering solution

Whitfield et a. (2002) partitioned
the cell cycle regulated genes

Clustering Info:
according to their expression ||DataSize: 1134 % 114
Clustering Method: Clustering file
File name: Dohadimaron_AThesisyanalysisihu
clusters, corresponding to cell ||number of clusters: 5
Kumber of singletons: O

cycle phases GL/S(1), S(2), G2(3), Overall Average Homogeneity 0.569
G2/M(4), and MI/GL(5). This §irerall Average Separation: 0.04

partition was loaded as a clustering

periodicity patterns into five

solution. Cluster number | 5z
L IEE

Figure 7.3.4.a shows the clustering % . é;;
results dialog that also reports the |4 273

: . 5 1150
homogeneity and separation of the
clustering. These values were {4 >
calculated by EXPANDER Erint I Ok
according to the expression
patterns. Figure 7.3.4.a. Clustering results dialog produced by

EXPANDER after loading the gene partition into
clusters as provided by Whitfield et al.

7.3.5 Viewing clustered data

Figure 7.3.5.a shows the clustered expression matrix display. Patterns of genes which
were clustered together appear next to each other.
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Figure 7.35.a. A clustered expression matrix display of the data. The display contains 1134 elements
representing 874 genes, which were identified as periodically expressed. Clusters are separated by
white lines. The clustering solution was provided by Whitfield et al.



Figure 7.3.5.b shows a PCA visualization of the data. Each element is represented as a
point on an XY scatter plot. Elements from the same cluster appear in the same color
(Note that different probes of the same gene are displayed separately). In this Figure
we can see that the similarities and distances between patterns (vectors) in the data are
preserved reasonably well in the projection to two dimensions.
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Figure 7.35.b. A PCA visualization of the data. Elements from the same cluster appear in the same
color.

7.3.6 Functional analysis

To identify functional classes that are specifically enriched in each of the cell cycle
phases, functional analysis was performed twice: (1) using only the 874 genes
identified as periodically expressed during cell cycle as the background set. (2) using
the whole genome as the background set.

Figure 7.3.6.a shows the visualization of the first analysis. Cluster 2 (S phase) was
found to be highly enriched for genes of the functional class 'DNA metabolism' (p =
210" and 'S phase of mitotic cell cycle' (p = 6*107). It was aso found to be



enriched for genes of the 'DNA replication and chromosome cycle', 'replisome and '
replication fork' functional classes (p < 0.0005). Cluster 3 (G2) was found to be
enriched for genes of the 'mitosis’ functional class (p = 1.510%). Cluster 4 (G2/M)
was found to be enriched for genes of the functional classes 'cytoskeleton' (p = 4*10°
®) and microtubule cytoskeleton' (p = 2*10™). The results are summarized in table
7.3.6.a

The results in the second analysis support the results in the first, and the p-values
obtained had even higher significance, but they contain additional classes that were
not identified in the first analysis (results not shown). Some of those classes (e.g.,
'mitotic cell cycle' and 'regulation of cell cycle’) were identified in several of the
clusters. Other classes were identified in only one or two of the clusters, e.g., 'DNA
repair' in clusters 1 and 2, 'response to DNA damage stimulus' in clusters 1 and 2.

The reason to these differences in results is the significant over-representation of
genes of cell cycle related functional classes in the entire set of 874 genes. Random
partitions of the dataset are aso expected to yield clusters where some of these
functional classes are enriched with respect to the entire genome. Thus, it is preferable
to use the filtered dataset as the background set if one wishes to detect phase-specific
functionalities, and to use the unfiltered background for finding general cell-cycle
functions.
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Figure 7.3.6.a. The functional analysis visualization. Threshold p-value was set to 0.0005. Only genes
identified as periodically expressed during cell cycle were used as background. Clusters 2 (S phase), 3
(G2) and 4(M/G1) were identified as significantly enriched with several functional classes.

Cluster Enriched functional class: p-value:

(phase):

2(5 DNA metabolism 2.317E-11
S phase of mitotic cell cycle 6.358E-7
DNA replication and chromosome cycle 8.734E-5
replisome 2.081E-4
replication fork 2.081E-4

3(G2) mitosis 1.498E-4

4 (G2/M) | cytoskeleton 4.143E-5
microtubule cytoskeleton 2.234E-4

Table 7.3.6.a: Functional analysis results when using thefiltered dataset as background.




7.3.7 Promoter analysis

In previous work (Elkon et al. 2002), promoter analysis was performed on the above
clusters using the PRIMA software. At the time of the analysis the available promoter
set contained sequences for 568 of the 874. The human fingerprint file that is
currently used by EXPANDER contains TF fingerprints for promoter sequences of
717 out of the 874 cell cycle responding genes, so the richer set was used in the

current analysis.

The promoter analysis was performed twice: (1) using only the 874 genes identified
as periodically expressed in cell cycle as the background set; (2) using the whole
genome as the background set. We do not show again the visualization but rather
concentrate on the results. These are summarized in Tables 7.3.7.a and b for the
analysis (1) and (2), respectively.

In analysis (1), only promoters from cluster 1 (G1/S) were found to be significantly
enriched with TF-binding sites. All TF binding sites that were identified as enriched
in analysis (1) in cluster 1 (G1/S) were also detected in analysis (2), with higher p-
values. This is due to the significant overrepresentation of theses motifs in the entire
set of 874 genes (see table 7.3.7.c). The same analysis was previously performed by
Elkon et al. and yielded no results with p-value < 5¢10™*. The improvement is clearly
due to the updated fingerprint files.

Both Arnt and YY1 PWMs that were previously identified by Elkon et a. as
significantly enriched (p < 0.001) in promoters of genes which are expressed in G1/S
and M/G1, respectively, were not detected in this analysis. Thisis probably due to the
differences in the fingerprint files that were used for the analyses. Since the current
analysisis based on substantially more promoters, we believe that Arnt and YY 1 were
false positive detections.

Cluster TF Number of promoters with | Number of hits | p-value:
hits
1(GVS) | E2F 26 31 141107
Spl 36 51 42710
Ncx 20 21 1.56*10™

Table 7.3.7.a. Promoter analysis results when using filtered data as background




Cluster TF Number of promoters with | Number of hits | p-value:
hits

1(GUS) | E2F 19 24 31*10™
NF-Y 39 54 1.07*10"
Ncx 20 21 5.9*10°
Spil 36 51 2.96*10°

2(S E2F 17 20 1.21¥10°
NF-Y 26 40 6.69*10™

3(G2) NF-Y 44 69 3.86*10°
Spl 60 86 6.23*10°

4(G2/M) | NF-Y 55 81 5.52*10™

5(M/G1) | NF-Y 32 45 3.44*10™
CREB 25 31 9.1*10"

Table 7.3.7.b. Promoter analysis results when using the un filtered data as background

To explore the distribution of binding sites in the filtered dataset in relation to the
whole genome, a different clustering file was loaded to EXPANDER, classifying all
874 genes into one cluster. Promoter analysis was then performed using the entire
genome as background set. The results are summarized in table 7.3.7.c. All TF
binding site motifs that were identified as enriched in the entire set of cell cycle
responding genes in the previous study (Elkon et al. 2002) were detected in this study
as well. Two additiona motifs, AlphaCP1 and ETF were identified in this study.

TF Number of promoters | Number of hits | p-value:
with hits

E2F 55 64 9.84*10*°
NF-Y 174 267 3.83*10™°
Spl 225 322 1.12*10°7
Alphe-CP1 | 83 105 115107
ETF 234 378 4.46*10°
CREB 99 118 8.47*107
ATF 110 127 1.6810*
Nrf-1 106 134 4.94*10*

Table 7.3.7.c. Promoter analysis results on the entire set of cell cycle periodically expressed genes,
when using the whole genome as background.




7.3.8 Discussion

The E2F family iswell documented as a prime regulator of the mammalian cell-cycle.
Pathways that modulate the activity of E2F are frequently disrupted in human cancers,
leading to mis-regulated cellular proliferation (Nevins 2001). The E2F PWM obtained
highly significant enrichment scores in al the analyses performed by Elkon et &.
(2002), and also in the analysis described above, which was performed using more
data, demonstrating the sensitivity of PRIMA in revealing true signals. As in the
analysis performed by Elkon et al., E2F was found to be highly enriched in promoters
of genesthat are expressed in GL/S and in S phases.

Three TFs, E2F, SP1 and Ncx were detected as enriched (p-value < 5*10°%) in cluster
1 (GLYS) in this anaysis, when using only the cell cycle responding genes as
background set. These were not detected in the analysis performed by Elkon et al.,
probably due to the differences in the fingerprint files that were used for the analyses.
The Spl has been previously shown to be involved in cell cycle regulation (Clem et
al. 2003). Ncx is known to be expressed in neural crest derived tissues (litsuka et al.
1999). No evidence that connects Ncx to cell cycle regulation has been found.

All the TFs that were previously identified by Elkon et al. as highly enriched in
promoters of al 874 genes (in comparison to their prevalence in promoters of the
whole genome), were detected again in this analysis. In addition, two new TFs,
Alpha-CP1 and ETF were detected as highly enriched. ETF is aknown transcriptional
activator of p53 (Hale and Braithwaite 1999). Alpha-CPL1 is a transcription factor that
belongs to a group of factors which are known to bind to the sequence CAATT
(Alonso et al. 1996).
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