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We sought to divide COVID‑19 patients into distinct phenotypical subgroups using echocardiography 
and clinical markers to elucidate the pathogenesis of the disease and its heterogeneous cardiac 
involvement. A total of 506 consecutive patients hospitalized with COVID‑19 infection underwent 
complete evaluation, including echocardiography, at admission. A k‑prototypes algorithm applied 
to patients’ clinical and imaging data at admission partitioned the patients into four phenotypical 
clusters: Clusters 0 and 1 were younger and healthier, 2 and 3 were older with worse cardiac indexes, 
and clusters 1 and 3 had a stronger inflammatory response. The clusters manifested very distinct 
survival patterns (C‑index for the Cox proportional hazard model 0.77), with survival best for cluster 
0, intermediate for 1–2 and worst for 3. Interestingly, cluster 1 showed a harsher disease course than 
cluster 2 but with similar survival. Clusters obtained with echocardiography were more predictive of 
mortality than clusters obtained without echocardiography. Additionally, several echocardiography 
variables (E′ lat, E′ sept, E/e average) showed high discriminative power among the clusters. The 
results suggested that older infected males have a higher chance to deteriorate than older infected 
females. In conclusion, COVID‑19 manifests differently for distinctive clusters of patients. These 
clusters reflect different disease manifestations and prognoses. Although including echocardiography 
improved the predictive power, its marginal contribution over clustering using clinical parameters only 
does not justify the burden of echocardiography data collection.

COVID‐19 infection disease severity ranges widely, from asymptomatic or mild, self‐limiting illness to severe 
progressive pneumonia, multiorgan failure, and  death1.

In addition to respiratory manifestations, several somewhat specific complications have been shown to 
be associated with COVID-19 illness, including cardiac and cardiovascular  complications2, thromboembolic 
 complications3, neurologic  complications4, and inflammatory  manifestations5. As the clinical picture is quite 
variable, a question emerges regarding the factors that direct the disease in a specific course.

The case of cardiac involvement is considerably diverse. Although cardiac complications are common and 
are associated with increased  mortality6, cardiac involvement is heterogeneous, including right ventricular (RV) 
dysfunction or dilatation, left ventricular (LV) diastolic dysfunction and systolic dysfunction (10%)2.

As patients’ baseline characteristics and disease manifestations vary, we hypothesized that different epitomes 
of disease manifestations may be identified. To identify those, we sought to use a strategy of machine learning-
based clustering. Unsupervised discovery of subtypes of a single disease has been widely used in  cardiology7, 
infectious  disease8, and critical care  medicine9 to find better pathologic explanations and improve current treat-
ments for these conditions.

Although several trials have endeavored unsupervised clustering of COVID-19  illness10,11, these included no 
comprehensive data regarding cardiac performance. As the echocardiographic data of patients with COVID-19 
illness are essential for elucidation of both pathogenesis and  prognosis12, we find this addition imperative to an 
enhanced clustering of COVID-19 illness.
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Methods
Details about data acquisition and gathering have been specified  previously2. In brief, we prospectively studied 
consecutive adult patients (aged ≥ 18 years) admitted between March 21, 2020, and September 16, 2020, to the Tel 
Aviv Medical Center due to COVID‐19 infection. All patients had a diagnosis of COVID‐19 infection confirmed 
by a positive reverse‐transcriptase polymerase chain reaction assay. Demographic data, comorbid conditions, 
medications, physical examination, laboratory, and ECG findings were systematically recorded. All patients 
underwent comprehensive transthoracic echocardiography within 48 h of admission as part of a predefined 
step‐by‐step protocol. Clinical and imaging data were collected prospectively. Mortality analysis started at the 
time of baseline echocardiographic examination and included in‐hospital mortality. Mortality was ascertained 
until the end of follow-up, beyond hospitalization and irrespective of discharge date, for all patients by telephone 
calls and was complete for all the patients.

Ethics approval. Since data were evaluated retrospectively, pseudonymously and were solely obtained 
for treatment purposes, the ethics committee of the Tel Aviv Medical Center approved the study (institutional 
review board number 0196‐20‐TLV) and voided the requirement of informed consent. The research was per-
formed in accordance with the Declaration of Helsinki.

Echocardiography. Echocardiography was performed in a standard manner with the same equipment 
(CX 50; Philips Medical Systems, Bothell, WA) by cardiologists with expertise in echocardiographic recording 
and interpretation. In accordance with current  guidelines13, the following measures were undertaken to mini-
mize the risk of infection: (1) All echocardiographic studies were bedside studies performed at the designated 
COVID‐19 intensive care or internal ward units. (2) All echocardiographic examinations were performed with 
small, dedicated scanners because of their easier disinfection. (3) Echocardiographic scanners were set aside in 
each COVID‐19-designated ward to minimize the risk of infection spread. (4) Personal protection at the time 
of echocardiographic recordings included N‐95 respirator masks, fluid‐resistant gowns, gloves, head covers, and 
eye shields. (5) Electrocardiographic monitoring during imaging was omitted, and all measurements were per-
formed offline to reduce exposure and contamination. LV diameters, ejection fraction, and mass were measured 
as  recommended14. Measurements of mitral inflow included the peak early filling (E wave) and late diastolic fill-
ing (A wave) velocities, E/A ratio, and deceleration time of early filling velocity. Early diastolic mitral septal and 
lateral annular velocities (e′) were measured in the apical 4‐chamber  view15. Left atrial volume was calculated 
with the biplane area‐length method at end systole. Forward stroke volume was calculated from the LV outflow 
tract with subsequent calculation of cardiac output.

From 4‐chamber views encompassing the entire RV, end‐systolic and end‐diastolic RV areas and tricuspid 
annulus were measured. RV function was evaluated by tricuspid annular plane systolic excursion (TAPSE), 
systolic tricuspid lateral annular velocity measured in the apical 4‐chamber view, and fractional area  change14,16. 
Hemodynamic right‐sided assessment included the measurement of the pulmonic flow acceleration time to 
assess pulmonary vascular  resistance17.

Patients underwent another comprehensive echocardiographic test whenever there was any clinical deteriora-
tion, i.e., the need for mechanical ventilation and hemodynamic support, according to the treating physician’s 
judgment. This test was performed in the same manner as the first test performed upon arrival.

The cohort. Patients who signed the DNR/DNI (n = 24) were removed from the cohort, resulting in 506 
patients. For each patient, we used as input for clustering the measurements that were taken at admission and the 
first echocardiography result. Variables describing outcomes and treatments (n = 23) and medications (n = 43) 
were not part of the input data for clustering and were later used for evaluation of the clinical significance of the 
clusters. Variables that were missing in more than 2/3 of the cohort were also excluded (n = 23). We allowed a 
relatively high missing rate, as the data are sparse, to keep a high number of variables. The missing rate of each 
variable is found in Supplementary 3. This process left 85 continuous variables and 56 categorical variables. 
Thirty-one of the continuous variables and two of the categorical variables were from echocardiography.

Computational methods. Imputation and normalization. Missing values in continuous variables were 
imputed using the Iterative Imputer algorithm based on  MICE18. The continuous variables were normalized 
using the Yeo-Johnson power transform for nonnegative  variables19 (see Supplementary 1). For the categorical 
variables, missing values were imputed with the most frequent value (another method for imputing the categori-
cal variables achieved similar results. For details, see Supplementary 1).

Clustering. We used the k-prototypes20 algorithm, which is a distance-based algorithm that allows the use of 
mixed data, i.e., both categorical and continuous variables. We chose k-prototypes because it was reported as 
one of the best performers in a recent benchmark study on mixed-data clustering  algorithms21. The algorithm 
receives as input the number of clusters k and uses the distance function between variable vectors x, y:

where x1, . . . xp are numerical variables, xp+1, . . . xm are categorical variables and δ is the Hamming distance 
function. γ defines the relative weight assigned to the categorical variables. We used γ = 3 and k = 4 (see Sup-
plementary 2, 3).
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To obtain robust clustering, we applied consensus  clustering22 to multiple clustering results obtained on 
subsampled data. In each repetition, we randomly chose a fraction r of the patients and clustered them using 
k-prototypes. The process was repeated n times. For patients i and j , define M(i, j) as the fraction of times in 
which they were in the same cluster, and the distance between them as D(i, j) = 1−M(i, j) . Applying (regular) 
k-means on the distance matrix D gives the final clusters. We used r = 0.85 and n = 50 (see Supplementary 2).

Evaluation of clusters. To evaluate the quality of the clusters, we looked for clinically significant characteris-
tics of the patients composing the different clusters. For each variable, we tested its significance under the null 
assumption that it does not vary between clusters. For the continuous variables, we performed ANOVA, and for 
the categorical variables, we performed the Chi2 test, both implemented in  SciPy23. P-values were corrected for 
multiple testing with FDR.

To find variables that are most discriminative between clusters, we computed the absolute standardized mean 
differences (ASMD) score (see Supplementary 1).

To visualize the different characteristics of the clusters, we created a radar plot of selected variables. Each 
variable was normalized to [0.2–1], where 0.2 is the lowest cluster average or percentage and 1 is the highest.

To analyze the survival trends in different clusters, we plotted the Kaplan–Meier survival  curves24 for each 
cluster and computed the conditional multivariate log-rank test to compare the survival plots across the clusters. 
To measure the predictability of the clusters for in-hospital mortality, we estimated survival times from the Cox 
proportional hazard  model25 with binary variables that represent the cluster’s membership as the covariates of 
the model and calculated the c-index26.

We also wished to evaluate whether the clusters showed distinct survival patterns among the patients who 
received respiratory support. For that, we built another Cox proportional hazard model for in-hospital mortality 
using only the patients who received respiratory support, with cluster labels as the covariates. We excluded Cluster 
0, where only one patient received such support, and computed hazard ratios per cluster (relative to cluster 1). 
Implementations of Kaplan–Meier, Cox proportional hazard, C-index and log-rank were taken from  lifelines27.

Evaluating the contribution of echocardiography. To evaluate the contribution of the 33 echocardiography vari-
ables to creating meaningful clusters, we tested the change in c-index obtained after randomly permuting across 
patients the values for each of the 33 variables, independently for each variable. In this way, we kept the distribu-
tion of each variable and the number of input variables unchanged. Next, we performed a similar process where 
we randomly chose 31 continuous variables and 2 categorical variables (the same numbers as for the echocar-
diography variables) and permuted their values to compare the contribution of the echocardiography data to 
randomly chosen variables. We also tested the change in echocardiography measurements over time using the 
results of a second echocardiography that some of the patients underwent. Full details of this analysis are found 
in Supplementary 6.

Results
The final cohort studied included 506 hospitalized patients with PCR-positive COVID-19 of average age 62.31 
and 36.96% females (n = 187). Further demographic and clinical characteristics are shown in Table 1.

Identifying distinct patient subgroups. We clustered the patients into four clusters labeled 0 to 3, with 
sizes of 128, 195, 112, and 71, respectively. We analyzed several possible values for the number k of clusters and 
selected k = 4 as the appropriate number (see full analysis in Supplementary 2). As we demonstrate below, the 
echocardiography parameters had a major contribution to the quality of the results.

Table 1.  Demographics and selected clinical features of the cohort. MEWS COVID-19 Modified Early 
Warning Score for clinical  deterioration28, CRP C-reactive protein, a marker of inflammation.

Feature Average ± STD/percentage

Number of individuals 506

Age 62.31 ± 17.30

Sex (female) 36.96%

Total days in hospital 9.28 ± 12.02

MEWS score at admission 4.66 ± 3.15

CRP at admission 85.27 ± 78.01

History of hypertension 45.45%

Diabetes 31.42%

Obesity 26.09%

Ischemic heart disease (IHD) or congestive heart failure (CHF) 19.96%

Chronic renal failure (CRF) 9.68%

Dementia/cognitive decline 6.92%

Liver disease 3.56%
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The main parameters that significantly distinguish between the clusters are presented in Table 2, and the full 
list is shown in Supplementary 3. Based on these parameters, the most prominent characteristics of the clusters 
are as follows:

• Cluster 0—young patients (average age: 43.63 ) with less medical history of significant diseases, with mild 
signs of inflammation at admission (low CRP) and no deaths.

• Cluster 1—relatively young patients (average age: 61.27) with a more severe inflammatory process. Of these, 
27% received respiratory support, and 10% died while hospitalized.

• Cluster 2—older patients (average age: 76.67) with fewer inflammatory markers upon admission, with a 
richer medical history (e.g., 75% with hypertension) and more females than any other cluster (69%).

• Cluster 3—older patients (average age: 76.22) with marked inflammatory processes and a significant medical 
history (e.g., 83% with hypertension). These patients had the highest in-hospital mortality rate (54%).

To further assess the discriminative value of the different variables between the clusters, we calculated the 
absolute standardized mean differences (ASMD) scores for all variables. Figure 1 shows the variables with the 
highest scores. Among the variables with high ASMD are some natural COVID-19 parameters, such as CRP for 
inflammatory state, pulmonary ultrasound findings and findings in chest X-ray for lung function, and MEWS 
and SOFA, established warning scores for clinical deterioration. Age had the highest score, and several echocar-
diography variables, in particular left ventricle variables (E′ lat, E′ sept, E/e average), were scored high. We also 
evaluated the clinical merit of the clusters by calculating their discriminative power with respect to outcomes, 
which were not part of the input for clustering. Among them, in-hospital mortality and respiratory support-
related variables scored high.

Table 2.  Statistics of selected variables that were significantly different among the clusters. P-values were 
computed using ANOVA for continuous variables and Chi2 for categorical variables, and FDR corrected for 
multiple testing. *Continuous variables, mean ± SD of each cluster. **This outcome variables were not used by 
the clustering algorithm. CRP C-reactive protein a marker of inflammation, MEWS COVID-19 Modified Early 
Warning Score for clinical  deterioration29. E/e average a left ventricle echocardiography parameter, At a right 
ventricle echocardiography parameter.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 p-value

Number of individuals 128 128 112 71 –

Age* 43.63 ± 12.82 43.63 ± 12.82 76.67 ± 10.88 76.22 ± 10.41 6 ×  10–82

CRP* 33.71 ± 37.73 33.71 ± 37.73 36.31 ± 35.26 133.42 ± 81.62 6 ×  10–48

MEWS score at Admission* 1.91 ± 2.07 1.91 ± 2.07 5.07 ± 2.46 7.68 ± 2.99 2 ×  10–32

E/e average* 6.98 ± 1.59 6.98 ± 1.59 12.33 ± 5.56 14.35 ± 5.79 2 ×  10–35

At* 108.43 ± 25.59 108.43 ± 25.59 81.26 ± 27.93 68.80 ± 19.75 3 ×  10–24

O2 Saturation* 96.75 ± 3.13 96.75 ± 3.13 95.10 ± 4.77 86.45 ± 12.29 1 ×  10–17

BNP 19.00 ± 17.85 19.00 ± 17.85 162.74 ± 206.94 609.94 ± 917.85 2 ×  10–16

Troponin 8.49 ± 18.03 8.49 ± 18.03 20.84 ± 38.65 479.01 ± 1837.05 2 ×  10–3

History of hypertension 9% 9% 75% 83% 7 ×  10–32

Sex (Female) 38% 38% 69% 32% 3 ×  10–15

Respiratory support** 1% 1% 13% 62% 1 ×  10–22

In hospital mortality** 0% 0% 6% 54% 3 ×  10–27
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Figure 1.  Variables with the highest ASMD scores. In red are outcomes that were not used for the clustering; in 
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Figure 2 shows a radar plot of significantly distinguishing variables (see Supplementary 4) that were selected 
to represent different aspects of the disease and the characteristics of the patients. Cluster 0 stands out as hav-
ing the best results in most health-related parameters. In contrast, cluster 3 has the most severe results in most 
parameters. Cluster 2 patients have very similar age distributions to those in cluster 3, they have higher rates 
of dementia, and in both clusters we see high rates of hypertension and other comorbidities (likely due to high 
average age). However, remarkably, the COVID-19-related parameters of cluster 2 are much better: low CRP 
and high O2 saturation (this variable was reversed, so a high value in the plot means low O2 saturation). On the 
other hand, patients in cluster 1 were younger with fewer background diseases but worse COVID-19-related 
variables, such as high CRP, chest X-ray findings and O2 saturation.

Interestingly, sex significantly differed among the clusters. Cluster 2 is significantly enriched with female 
patients and the only cluster with a majority of females, while clusters 1 and 3 have a percentage of females below 
the cohort average (37%). A comparison of outcomes between males and females aged 80 and above in the full 
cohort showed that males are significantly more likely to receive respiratory support (p-value = 0.02), which is a 
sign for deterioration. All other outcomes were worse in males but not significantly so, perhaps due to the small 
sample size. For full details see Supplementary 7.

We also wished to evaluate to what extent the clusters differ in terms of in-hospital mortality. Figure 3 shows 
the Kaplan-Meyer survival curves of the four subgroups. We can see three distinct survival patterns, with no 
deaths in cluster 0, an intermediate survival pattern for clusters 1 and 2, and the worst survival of cluster 3. The 
log-rank test to assess differences in survival functions across clusters produced a highly significant p-value of 
2.73e−12. The c-index for the Cox proportional hazard model (see “Methods”) was 0.77, which is relatively high.

Note that clusters 1 and 2 are very different in terms of age but have similar survival plots. For a detailed 
comparison of clusters 1 and 2, see Supplementary 5. While many parameters seem to be age related, Fig. 3 sug-
gests that the course of the disease is not entirely dominated by age.

Figure 4 shows the fraction of patients in each cluster who received respiratory and hemodynamic support. 
Patients in Clusters 1 and 3 suffered from severe disease, and therefore, a higher percentage of them were treated 
with respiratory or hemodynamic support (drug or mechanical).

Figure 2.  Radar plot for selected variables in clusters. Each variable is normalized to [0.2, 1], where 0.2 is the 
lowest cluster average/percentage and 1 is the highest. For ease of interpretability, the scale of some variables 
was reversed so that an increase from 0.2 to 1 always accounts for worse conditions. Underlined variables were 
reversed. *Echocardiography features: E/e average left ventricle feature, At right ventricle feature, SVI Stroke 
volume index. **Hypertension and Dementia are shown as examples for past diseases. Other past diseases 
showed similar trends (Supplementary 3). CRP C-reactive protein a marker of inflammation; MEWS COVID-19 
Modified Early Warning Score for clinical  deterioration28, eGFR Estimated Glomerular Filtration Rate.
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Clusters 1–3 included a substantial number of patients who needed respiratory support. To test if their risk 
differed across clusters, we built a Cox proportional hazard ratio model for in-hospital mortality based only on 
those patients, using cluster labels as the covariates. Cluster 0 was excluded because only one patient in that 
group was ventilated. Cluster 1 was used as a reference. The hazard ratios were 1.25 (0.50, 3.14) for cluster 2 
and 4.27 (2.42, 7.52) for cluster 3 (95% confidence interval in parentheses). Hence, ventilated patients in cluster 
3 were at higher risk than those in cluster 1, although their inflammatory condition was similar at admission 
(CRP 129 vs. 133, see Table 1). Ventilated patients in cluster 2 were at a similar risk to those in cluster 1 despite 
the age difference between the groups. Although patients in cluster 2 were relatively older, they arrived in better 
inflammatory condition. The Cox model for the ventilated patients shows similar trends in survival to the full 
cohort, as was observed in the Kaplan–Meier curves in Fig. 3 (results not shown).

There were no significant differences between clusters in terms of treatment. For more details see Supple-
mentary 8.

Echocardiography contribution. Full statistics of the echocardiography variables are presented in 
Table 3. To further assess the contribution of the echocardiography data to the formation of meaningful clusters, 
we shuffled the echocardiography values, reclustered the resulting data 50 times (see “Methods”) and recom-
puted the c-index and log-rank p-values in each case. The average log-rank p-value was 1.97e−06 ± 6.54e−06 
with a median of 3.98e−07, far less significant than on the original data (2.73e−12, Fig. 3). The average c-index 
was 0.74 ± 0.01, a decline of 0.03 compared to the initial clustering with the echocardiography variables. A clus-
tering solution obtained without the echocardiography variables obtained a c-index of 0.74 ± 0.01 and a log rank 
p-value of 4.66e−06 ± 5.2e−0.06. While the gaps are modest, they are statistically significant. Together, these tests 
suggest that clusters obtained with echocardiography data are more predictive of mortality.

As another test of the contribution, we repeated the process of choosing at random 31 of the 85 continuous 
variables and 2 of the 56 categorical and shuffling their values. The average of 50 random choices was 0.73 ± 0.03, 
similar to just shuffling the echocardiography parameters. The average p-value of the log-rank test is 2.29e−04 ± 
8.88e−04 with a median of 2.45e−08. This means that the echocardiography data are roughly as meaningful for 

Figure 3.  Kaplan–Meier survival curves for each cluster for the event “In-hospital mortality”. P is the log-rank 
p-value.
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forming the clustering as the rest of the parameters. It also shows redundancy in the contribution of different 
variables, as the changes are relatively small.

Echocardiography over time. Forty-eight patients who suffered clinical deterioration underwent mul-
tiple echocardiography measurements adjacent to the time of deterioration (only the first echocardiography 
measurement was used as input for the clustering). The differences in selected echocardiography variables 
between the first and second echocardiography results are shown in Supplementary 6. Due to the small sample 
size, the differences are not statistically significant, but some parameters show a trend.

Discussion
In the above trial, we have shown that hospitalized COVID-19 patients can be divided at admission into different 
clusters that have significant implications regarding disease course and final prognosis.

Although some aspects of the clusters seem self-evident (e.g., young patients have a better prognosis than 
old patients), others are less obvious, raising interest in the model’s ability to influence our understanding of 
COVID-19’s pathophysiology and progression and possibly help tailor treatments based on patient characteris-
tics. The clusters significantly differed in natural COVID-19 parameters, such as CRP, chest X-ray findings and 
MEWS score, suggesting that the clusters are different in terms of the state of the disease. Moreover, the clusters 

Table 3.  Statistics of all echocardiography variables. P-values were computed using ANOVA for continuous 
variables (in italics) and Chi2 for categorical variables (in bold), and FDR corrected for multiple testing. For 
the continuous variables mean ± SD values in each cluster are presented. *Bad heart condition (≥ 2) value of 2 
or above of at least one of the following: AS, AR, MS, MR, TS, TR, PS, PR.

Variable

Cluster 0 Cluster 1 Cluster 2 Cluster 3

p-value
mean ± std/
percentage # of patients

mean ± std/
percentage # of patients

mean ± std/
percentage # of patients

mean ± std/
percentage # of patients

E’ Lat 11.32 ± 2.76 126 8.82 ± 2.61 172 6.50 ± 2.01 110 6.55 ± 1.73 57 1.16E-45

E’ Sept 8.37 ± 1.83 125 6.92 ± 1.68 171 5.37 ± 1.35 110 5.06 ± 1.16 58 2.68E-45

E/e average 6.98 ± 1.59 126 8.50 ± 3.01 170 12.33 ± 5.56 111 14.35 ± 5.79 58 1.87E-35

E/E’ Sept 8.02 ± 1.89 115 9.34 ± 3.09 165 13.15 ± 6.39 104 16.21 ± 6.88 50 3.54E-29

E/E’ Lat 6.01 ± 1.58 116 7.62 ± 3.32 164 11.28 ± 5.32 104 12.47 ± 5.33 49 1.02E-28

A 49.99 ± 10.23 125 62.76 ± 17.22 173 76.31 ± 20.72 98 69.13 ± 20.06 45 1.35E-25

At 108.43 ± 25.59 117 85.08 ± 21.33 162 81.26 ± 27.93 95 68.80 ± 19.75 60 3.21E-24

IVSD 7.51 ± 1.90 127 9.08 ± 2.06 176 10.24 ± 2.16 111 9.83 ± 2.29 62 1.89E-21

Diastolic Grade 0.21 ± 0.43 117 0.77 ± 0.99 152 1.41 ± 1.39 93 1.83 ± 1.46 41 9.78E-20

RA Pressure 6.09 ± 2.17 124 7.11 ± 3.09 161 8.19 ± 3.74 105 11.12 ± 4.69 58 1.45E-18

E/A 1.35 ± 0.40 125 1.03 ± 0.32 173 0.87 ± 0.26 98 1.20 ± 0.67 45 1.95E-18

At < 100 33%(38) 115 77%(123) 160 77%(71) 92 93%(52) 56 2.45E-18

LV mass 111.06 ± 36.50 125 151.03 ± 51.31 169 140.04 ± 50.25 108 171.47 ± 67.81 61 3.18E-14

TAPSE 2.39 ± 0.39 123 2.39 ± 0.48 170 2.15 ± 0.48 110 1.89 ± 0.47 61 2.55E-13

LA volume 46.23 ± 17.74 123 59.35 ± 24.03 172 61.43 ± 27.22 109 76.39 ± 29.07 61 4.84E-13

EF 58.58 ± 4.67 127 57.51 ± 5.39 174 58.21 ± 5.85 112 51.44 ± 9.52 59 1.27E-12

LAVI 24.61 ± 9.10 93 30.13 ± 11.43 139 34.86 ± 15.67 87 42.07 ± 17.33 46 2.36E-12

SV 60.28 ± 17.70 126 68.07 ± 16.25 174 54.61 ± 18.06 109 54.05 ± 16.66 62 7.02E-11

LVEDD 43.74 ± 5.72 126 45.90 ± 5.53 177 40.83 ± 6.87 110 46.75 ± 8.23 62 7.62E-11

RVED area 19.89 ± 4.32 99 21.99 ± 4.58 143 18.82 ± 4.70 90 23.65 ± 5.39 56 1.04E-09

LVESD 27.89 ± 4.98 124 29.92 ± 5.81 175 26.77 ± 5.84 106 32.33 ± 9.63 62 9.95E-08

RV S’ 11.08 ± 1.94 122 12.03 ± 2.59 173 10.80 ± 3.12 104 9.73 ± 3.02 60 1.06E-07

Bad heart condi-
tion (≥ 2)* 1%(1) 128 2%(4) 195 11%(12) 112 18%(13) 71 2.12E-07

RVES area 11.27 ± 3.37 56 13.13 ± 3.97 66 10.67 ± 2.77 50 14.99 ± 5.80 31 6.30E-06

E 64.89 ± 14.21 127 62.52 ± 17.36 178 67.68 ± 25.86 112 77.82 ± 22.56 61 7.66E-06

CO 4.38 ± 1.22 126 5.69 ± 4.45 170 4.03 ± 1.28 107 4.23 ± 1.45 59 7.58E-06

Pericardial fluid 0.07 ± 0.26 127 0.08 ± 0.28 179 0.22 ± 0.42 112 0.30 ± 0.49 61 7.60E-06

E decel time 166.00 ± 35.04 115 180.34 ± 50.32 167 198.18 ± 56.85 102 165.64 ± 55.32 53 1.19E-05

SVI 32.47 ± 9.40 96 34.92 ± 8.70 141 31.04 ± 9.61 86 29.42 ± 9.82 47 1.34E-03

HR at Echo date 73.75 ± 12.35 126 78.92 ± 14.33 174 74.51 ± 15.09 108 80.00 ± 17.51 61 2.98E-03

CI 2.35 ± 0.66 96 3.00 ± 2.74 138 2.31 ± 0.76 84 2.26 ± 0.77 45 8.29E-03

EF Simp 65.10 ± 9.88 104 63.87 ± 12.43 149 63.63 ± 12.32 89 58.31 ± 15.68 49 1.87E-02

RVFAC CALC 45.63 ± 10.31 53 39.98 ± 13.56 64 42.53 ± 9.82 48 40.34 ± 12.56 29 7.16E-02
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are also separated by mortality- and respiratory-related variables that were not part of the input data, showing 
good separation among the clusters in terms of these outcomes. A further analysis of the survival patterns shows 
that the clusters manifest very distinct survival patterns.

The main point of interest is the difference between clusters 1 and 2. Patients in cluster 1 were younger with 
fewer chronic diseases and less cardiac involvement on the one hand and higher levels of inflammatory markers 
and markers of pulmonary involvement on the other hand. Cluster 2 had the highest average patient age, but 
lower levels of inflammatory markers and notably was the only cluster enriched with females. This suggests that 
older infected males may be more prone to deteriorate, in comparison to females in the same age group. This 
is also supported by significantly higher rate of respiratory support provided to older males, in comparison to 
older females, across the whole cohort. An interesting finding is that pulmonary artery acceleration time was 
similar between clusters, possibly signifying that it is a marker of both pulmonary dysfunction due to increased 
afterload because of pulmonary vasoconstriction and cardiac intrinsic dysfunction. Although these clusters had 
very different starting points on admission, the patient’s overall survival was similar in both. However, there 
were still significant differences in the need for hemodynamic support and respiratory support, with patients in 
cluster 1 necessitating more support. This difference might be explained by a different mechanism of deterioration 
between the two groups, possibly due to different pathological responses in the heart and lung systems between 
clusters. These differences show that the clusters are not only statistically and computationally justified but may 
also signify slightly different clinical entities.

Another noteworthy comparison is between cluster 1 and cluster 3. While the inflammatory state at admis-
sion was similar in the two clusters, the survival of cluster 3 was much worse, both when comparing the full 
clusters and when comparing only the ventilated patients. We can attribute the higher mortality to other factors, 
particularly age and comorbidity  burden28.

Variance in clinical deterioration of clusters. Another interesting finding is the difference between 
clusters of patients with clinical deterioration. Patients in clusters 1 and 3 had a decrease in stroke volume upon 
clinical deterioration together with an increase in right ventricular diastolic area (Table 3). This combination of 
an increase in RV preload (increase in right ventricular diastolic area) combined with a decrease in cardiac out-
put (stroke volume) suggests that in patients in clusters 1 and 3, the right ventricle worked on the flat portion of 
the Frank–Starling  curve30, signifying significant right ventricular failure. This is in contrast with patients from 
cluster 2 who had an increase in stroke volume with unchanged RV area, suggesting normal RV filling pressure 
and high output, indicating that in patients from cluster 2, clinical deterioration was due to cytokine storm and 
vasodilatation and not due to RV failure.

Effect of echocardiography on clusters.. Although previous studies have tried to cluster COVID-19 
patients, none have used echocardiography in the process. As previously demonstrated, echocardiography has 
added value over clinical characteristics alone in determining prognosis. In this study, we have shown that echo-
cardiography data contributed to patient clustering in a modest but statistically significant manner and that clus-
tering performed using echocardiographic data yields clusters that are better at predicting prognosis. However, 
conducting echocardiography is far more complex than obtaining the other clinical variables, the contribution of 
echocardiography, although significant, does not seem to justify the additional collection burden.

Limitations. The study was performed only on patients who were admitted to the hospital and thus cannot 
be generalized to the entire population of patients with COVID-19. However, hospitalized patients were needed 
to perform echocardiography on each patient, and admitted patients are usually higher risk patients and thus of 
higher interest to study.

Furthermore, the study was performed on patients admitted during the first wave of COVID-19, before the 
emergence of new treatments, the availability of vaccines and the appearance of new strains of CVOID-19, such 
as the Delta and Omicron strains, and thus may not be relevant to the current manifestations of disease with 
newer treatments, vaccines and strains. Our group plans to perform a similar study on current patients to evalu-
ate the clusters in a contemporary setting.

Additionally, this study was performed on patients admitted only to one center, and the results may not be 
generalizable to other cohorts of patients. Although we tried to find validation cohorts to compare the results 
and prevent overfitting, none were available that had comprehensive echocardiographic data. Furthermore, 
we used consensus clustering and carefully chose the clustering algorithm’s hyperparameters to ensure robust 
clustering results.

Regarding the echocardiography contribution, although the current results do not support performing echo-
cardiography at baseline in all patients, we did not include direct cardiac complications (such as myocardial 
infarction, myocarditis, and cardiac arrhythmias) as outcomes. Therefore, we cannot estimate the predictive 
ability of baseline echocardiography and cluster assignment of these conditions.

In conclusion, hospitalized COVID-19 patients were segregated into different clusters according to demo-
graphic, clinical and echocardiographic data at admission. These clusters of patients showed different disease 
courses and proved valuable in determining prognosis.

Data availability
The data described and analyzed in this study may be made available upon reasonable request to Y.T. (yant@
tlvmc.gov.il).
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Code availability
The code used in this study is available at https:// github. com/ Erans hp/ clust ering_ echo_ covid. git.
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