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Abstract

Motivation

Sequencing long reads presents novel challenges to mapping. One such challenge is low

sequence similarity between the reads and the reference, due to high sequencing error and

mutation rates. This occurs, e.g., in a cancer tumor, or due to differences between strains of

viruses or bacteria. A key idea in mapping algorithms is to sketch sequences with their mini-

mizers. Recently, syncmers were introduced as an alternative sketching method that is

more robust to mutations and sequencing errors.

Results

We introduce parameterized syncmer schemes (PSS), a generalization of syncmers, and

provide a theoretical analysis for multi-parameter schemes. By combining PSS with down-

sampling or minimizers we can achieve any desired compression and window guarantee.

We implemented the use of PSS in the popular minimap2 and Winnowmap2 mappers. In

tests on simulated and real long-read data from a variety of genomes, the PSS-based algo-

rithms, with scheme parameters selected on the basis of our theoretical analysis, reduced

unmapped reads by 20-60% at high compression while usually using less memory. The

advantage was more pronounced at low sequence identity. At sequence identity of 75% and

medium compression, PSS-minimap had only 37% as many unmapped reads, and 8%

fewer of the reads that did map were incorrectly mapped. Even at lower compression and

error rates, PSS-based mapping mapped more reads than the original minimizer-based

mappers as well as mappers using the original syncmer schemes. We conclude that using

PSS can improve mapping of long reads in a wide range of settings.

Author summary

Popular long-read mappers use minimizers, the minimal hashed k-mers from overlapping

windows, as alignment seeds. Recent work showed that syncmers, which select a fixed set

of k-mers as seeds, are more likely to be conserved under errors or mutations than
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minimizers, making them potentially useful for mapping error-prone long reads. We

introduce a framework for creating syncmers, that we call parameterized syncmer

schemes, which generalize those introduced so far, and provide a theoretical analysis of

their properties. We implemented parameterized syncmer schemes in the minimap2 and

Winnowmap2 long-read mappers. Using parameters selected on the basis of our theoreti-

cal analysis we demonstrate improved mapping performance, with fewer unmapped and

incorrectly mapped reads on a variety of simulated and real datasets. The improvements

are consistent across a broad range of compression rates and sequence identities, with the

most significant improvements for lower sequence identity (high error or mutation rates)

and high compression.

This is a PLOS Computational Biology Methods paper.

Introduction

As the volume of third-generation, long-read sequencing data increases, new computational

methods are needed to efficiently analyze massive datasets of long reads. One of the most basic

steps in analysis of sequencing data is mapping reads to a known reference sequence or to a

database of many sequences. Several long-read mappers have been proposed [1, 2], with mini-

map2 [3] being the most popular. minimap2 is a multi-purpose sequence mapper that uses

sequence minimizers as alignment seeds. Minimizers, the minimum valued k-mers in win-

dows of w overlapping k-mers of a sequence, are used to sketch sequences. They have greatly

improved the computational efficiency of many different sequence analysis algorithms (e.g.

[4], [5], [6]). A key criterion in evaluating minimizer schemes is their compression rate, the

number of k-mers in the sequence divided by the number of k-mers selected. Achieving higher

compression rate is desirable, as fewer seeds are used.

Recent work has shown that minimizers are less effective under high error or mutation

rates [7]. Motivated by this observation, Edgar [7] recently introduced a novel family of k-mer

selection schemes called syncmers. Syncmers are a set of k-mers defined by the position of

their minimum s-long substring (s-minimizer). Syncmers constitute a predetermined subset of

all possible k-mers and, unlike minimizers, they are defined by the sequence of the k-mer only

and do not depend on the rest of the window in which they appear. Syncmers are therefore

more likely to be conserved under mutations than minimizers. This difference is crucial in

long reads, which have much higher error rate than short reads [8]. Another key difference

between syncmer and minimizer schemes is that the latter guarantee, for any input parameter

w, selection of a k-mer in every window of w consecutive k-mers (this is called a window guar-
antee), while syncmers do not. For longer reads with a higher error rate, conservation of the

selected k-mers becomes more important than the window guarantee, especially when there

are also mutations. For example, it was shown that with 90% identity between aligned

sequences, only about 30% of the positions on the sequence will overlap a conserved minimizer

in minimap2 [7].

Edgar defined several syncmer variants, including the families of open syncmers, whose s-
minimizer appears at one specific position, and closed syncmers, whose s-minimizer appears at

either the first or the last position in the k-mer [7]. He computed the properties of a range of
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syncmer schemes and used them to choose a scheme with a desired lower bound on compres-

sion rate. Shaw and Yu [9] recently formalized the notions of the conservation of selected posi-

tions and their clustering along a sequence, and provided a broader theoretical analysis.

In this work we generalize Edgar’s syncmer schemes to multiple arbitrary s-minimizer posi-

tions. We call these parameterized syncmer schemes (PSS; we use this acronym for both singu-

lar and plural). The parameters are the possible indices of the s-minimizer in a selected k-mer,

and an n-parameter scheme uses n such indices. An example is a 3-parameter scheme that

selects any 15-mer with the minimum 5-mer appearing at position 1, 5, or 9. PSS have the

advantage of allowing for a larger range of compression rates than syncmers by varying the

number of parameters used, k-mer length, and s-minimizer length.

Two important related features of a scheme are robustness to sequence changes and the dis-

tances between selected positions. The conservation of a scheme is the fraction of positions in

a sequence covered by selected k-mers that are unchanged after the sequence is mutated. The

spread of a scheme is a vector of probabilities, where P(α) is the probability of selecting at least

one position in a window of length α. Recently, Shaw and Yu [9] obtained expressions for the

conservation of open and closed syncmers as a function of spread and implemented these

syncmers in minimap2. Here we extend the theoretical analysis by presenting a general recur-

sive expression for the spread of any PSS, including downsampling. These expressions allow

for the calculation of the conservation of any PSS. We analyse properties of PSS, including

their conservation and spread, and determine which schemes perform well in terms of these

properties for a given compression rate through theoretical analysis and empirical testing.

Additionally, while closed syncmers are a subset of 2-parameter PSS, our analysis demon-

strates that they are not the optimal 2-parameter scheme under realistic mutation rates, and it

enables us to instead select the best 2-parameter scheme in terms of conservation and spread.

We introduced PSS into two leading long-read mappers: the latest release of minimap2 [10]

and Winnowmap2 [11], where PSS parameters were selected based on our theoretical analysis,

and measured the performance compared to the original algorithms on both simulated and

real long-read data. The PSS increased the number of mapped reads across a large range of

compression rates, resulting in 20–60% fewer unmapped reads at high compression. Even at

lower compression, the PSS mappers had 2–15% fewer unmapped reads. The PSS versions

used less memory but had longer mapping times than the original mappers for the same com-

pression. The most marked improvements were observed when identity of the mapped reads

and reference sequences were low. With identity of 65% and 75% and medium compression,

PSS mappers had 50–60% fewer unmapped reads and still had 8–13% fewer incorrectly

mapped reads. When using the 2-parameter PSS with best conservation and spread according

to our theoretical analysis in minimap2 in comparison to minimap2 using Edgar’s closed sync-

mers, the former showed a consistent improvement of up to 7% fewer unmapped reads.

Our contribution in this work is thus three-fold: (1) We introduce PSS, generalizing exist-

ing syncmer schemes. (2) We provide a theoretical analysis of PSS properties. The analysis

enables us to choose the optimal scheme in terms of conservation and spread for particular

mutation and compression rates. (3) We provide implementations of minimap2 and Winnow-

map2 that use PSS and demonstrate their improved mapping performance compared to the

original minimizer versions and to using closed syncmers. Unlike previous work, our mapping

implementations also enable downsampling, so that any desired compression rate can be

achieved, and on the other hand they have the option to provide a window guarantee.

The paper is structured as follows: we first provide background, definitions, and terminol-

ogy; the next section provides theoretical analysis of PSS and describes the practical implemen-

tation of PSS and their integration into minimap2 and Winnowmap2; the following section
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presents experimental results of the original and PSS-modified mappers; the final section dis-

cusses the results and future work.

Definitions and background

Basic definitions and notations

For a string S over the alphabet S, a k-mer is a k-long contiguous substring of S. The k-mer

starting at position i is denoted S[i, i + k − 1] (string indices start from 1 throughout). We

work with the nucleotide alphabet: S = {A, C, G, T}.

k-mer order: Given a one-to-one hash function on k-mers o : Sk ! R, we say that k-mer

x1 is less than x2 if o(x1)< o(x2). Examples include lexicographic encoding or random hash.

We will write instead x1 < x2 when o is clear from the context. In this work we use a random

order unless otherwise noted.

Selection schemes

Selection scheme. A selection scheme is a function from a string to the indices of positions

in it f : S� ! PðNÞ (P represents the power set). The scheme implicitly selects the k-mers

starting at these positions. For a string S 2 S�, fk(S) = {i1, i2, . . ., in} is the set of start indices of

the k-mers selected by the scheme.

Minimizers. A minimizer scheme is a selection scheme that chooses the position of the

minimum value k-mer in every window of w consecutive k-mers in S:

Mk;w;oðSÞ ¼
[jSj� w� kþ2

j¼1

argmin
i:i2½j;jþw� 1�

S½i; iþ k � 1�

( )

ð1Þ

where the minimum is according to k-mer ordering o. By convention, ties are broken by

choosing the leftmost position. An example of a minimizer selection scheme is shown in Fig

1A. By construction, minimizers select a k-mer in every window of w k-mers. This property is

called a window guarantee.
Syncmers. A syncmer [7] is a selection scheme that selects a k-mer if its minimum s-mer is

in a particular position or positions. A closed syncmer selects k-mers whose smallest s-mer is at

the start or end of the k-mer, and an open syncmer select k-mers whose smallest s-mer is at the

start only. Note that, unlike minimizers, a syncmer scheme selects k-mers from a predeter-

mined subset of all k-mers and thus may not select a k-mer from every window for a given w.

Parameterized syncmers. We are now ready to introduce the key new concept of this

study. A parameterized syncmer scheme (PSS) with parameters s, k, o and x1, . . ., xn where 0<

x1 < . . .< xn−1 < xn� k − s + 1 selects a k-mer if the minimum s-mer of that k-mer appears at

one of the positions xi in the k-mer. Formally:

Sk;s;o;fx1 ;...;xng
ðSÞ ¼ fijMs;k� sþ1;oðS½i; iþ k � 1�Þ 2 fx1; . . . ; xngg ð2Þ

As o is fixed we will drop it from the notation where possible. An example of a PSS is shown in

Fig 1B. For convenience, we will denote the PSS with parameters x1, . . ., xn as Sk;sðx1; . . . ; xnÞ,
and will drop k and s from the notation where they are not needed. Under these definitions,

the open and closed syncmer schemes are Sk;sð1Þ and Sk;sð1; k � sþ 1Þ, respectively.

Downsampled and windowed schemes. In some situations we wish to cull the selected k-

mers or fill in sequence segments where none was selected. Given a uniformly random hash

function h : Sk! [0, H], for a given string S, downsampling selects syncmers only from the set

of |S|k/δ k-mers with the lowest hash values. We call δ the downsampling rate. Windowed PSS
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fill in gaps using a minimizer scheme, thus providing a window guarantee. See Section A in S1

Text for formal definitions of these sets.

Canonical k-mers. In implementations of PSS we will actually use canonical k-mes,

defined as follows. Denote the reverse complement of x by �x. For a given k-mer order, o, the

canonical form of a k-mer x, denoted by Canonicalo(x), is the smaller of x and �x. For example,

under the lexicographic order, Canonicallex(CGGT) = ACCG. Our theoretical analysis will

focus only on forward (non-canonical) k-mers.

Properties and evaluation criteria of schemes

We define some metrics for evaluating the performance of selection schemes.

Density and compression. The density of a scheme [12] is the expected fraction of posi-

tions selected by the scheme in an infinitely long random sequence: dðf Þ ¼ E½jf ðSÞj=jSj� as

|S|!1. The compression rate [7] is defined as c(f) = 1/d(f), i.e. the factor by which the

sequence S is “compressed” by representing it using only the set of selected k-mers.

Conservation. Conservation [9] is the expected fraction of positions covered by a selected

k-mer in sequence S that will also be covered by the same selected k-mer in the mutated

sequence S0 where S0 is generated by iid base mutations with rate θ. Define the set of positions

covered by the same selected k-mer in both sequences

BSðf ; y; kÞ ¼ fi j 9j 2 fi � kþ 1; i � kþ 2; . . . ; ig

s:t: j 2 f ðSÞ \ f ðS0Þ ^ S½j; jþ k � 1� ¼ S0½j; jþ k � 1�g

Then the conservation of the scheme is defined as Consðf ; y; kÞ ¼ ES½jBSðf ; y; kÞj=jSj�.
Spread and distance distribution. One key feature of a scheme is the distance between

selected positions and the frequency with which selected positions appear close together or far

apart. Shaw and Yu [9] studied the probability distribution of selecting at least one position in

a window of length α. We refer to the vector P(f, α) of these probabilities as the spread.

Fig 1. Minimizer and syncmer schemes. In both examples the lexicographic order is used, and only forward k-mers

are considered. The underlying sequence is shown at the top. By convention the leftmost position is selected in the case

of a tie. (A) Minimizers. Here w = 3 and k = 5, so the minimizer is the least 5-mer in every window of length 7. The

minimizer of each window is highlighted in yellow; (B) Syncmers. Here we show the 1-parameter syncmer with k = 5,

s = 2 and x1 = 3, S5;2;lexð3Þ. It selects 5-mers if their 2-minimizer appears at position 3. The 2-minimizer in each 5-mer

is underlined in red, and selected k-mers are highlighted in yellow. The start positions of the k-mers in the underlying

sequence that are selected by each scheme appear in red and are marked with red arrows at the top. Sequence positions

6–7 constitute a gap in the syncmer selection as they are not covered by any selected k-mer.

https://doi.org/10.1371/journal.pcbi.1010638.g001
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We define the distance distribution of consecutive selected positions: Pr(f, n) is the probabil-

ity that position i + n is the next selected position given that position i is selected.

pN metric. The pN metric (N 2 [0, 100]) is the Nth percentile of the distance distribution,

i.e., it is the length l for which N% of the distances between consecutive selected positions are

of length� l.
ℓ and ℓ2 metrics. A gap is a nonempty stretch of sequence between two consecutive

selected k-mers. Gaps are uncovered by the scheme. Let the lengths of the gaps generated by a

scheme on the sequence S be l1, l2, . . .. We define ‘ ¼ 1

jSj

P

i
li and ‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jSj

P

i
l2i

r
. Note that the

expected value of ℓ is 1 − conservation.

While these metrics are defined in expectation for given sequence and mutation models

and the selection scheme, we also use the analogously defined empirical values measured on a

specific sequence. The metrics may also be considered on the positions selected by a scheme in

a reference, or only on the selected positions that are conserved after mutation or sequencing

error. We refer to the latter using the subscript mut, for example, ℓ2,mut is defined analogously

to ℓ2 except the gaps are between consecutive selected k-mers that are conserved after

mutation.

Choosing an appropriate metric to compare schemes

While Edgar shows convincingly that conservation is a more appropriate metric for comparing

selection schemes than density, we argue that ℓ2,mut contains additional important information

for the purpose of mapping. Specifically, observe that, for given mutation rate θ, k, and selec-

tion scheme f, we have E½‘mut;y;f ;k� ¼ 1 � Consðy; f ; kÞ. While ℓ (and conservation) counts the

number of bases that are not covered by conserved selected k-mers, it treats all gap lengths

equally. In contrast, ℓ2,mut penalizes a few large gaps more than many smaller gaps with the

same total length. See the example in Fig 2. When the selected k-mers are used as seeds for

mapping, it is important to avoid large gaps, in order to enable read mapping across gaps.

Thus, while ℓ and ℓ2 are correlated, ℓ2 provides additional information on how the selection

scheme may affect mapping performance, and we use it throughout to select the scheme for

given values of k, mutation, and compression in our syncmer-based mappers.

Analysis of syncmer schemes—Prior work

Edgar recently defined syncmers as an alternative to minimizers and other selection schemes

with the goal of improving conservation rather than density, arguing that density is often

Fig 2. ℓ vs. ℓ2 metric. The selected positions of three different selection schemes S1, S2 and S3 on the same sequence.

Selected k-mers are highlighted and underlined. All schemes have the same number of selected k-mers, but the metrics

are different. S1: ℓ = 0.529, ℓ2 = 2.974. S2: ℓ = 0.529, ℓ2 = 1.81. S3: ℓ = 0.647, ℓ2 = 2.808. While S1 and S2 have the same ℓ
value, the k-mers selected by S2 are more evenly spread and thus S2 has much lower ℓ2. Some of the k-mers selected by

S3 overlap, resulting in a higher ℓ value than the other schemes. However, because the gaps between covered bases are

more evenly spread, the ℓ2 value is lower than that of S1. Intuitively, it will be easier to map reads using seeds selected

by S3 than S1 despite the higher ℓ value, suggesting that ℓ2 is a more appropriate metric.

https://doi.org/10.1371/journal.pcbi.1010638.g002
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dictated by the application and system constraints [7]. He introduced open and closed sync-

mers and their rotated variants. Analyses of syncmer densities, window guarantees, and distri-

butions were provided for open, closed, and downsampled syncmers. Note that the window

guarantee for closed syncmers is for a fixed w = k − s for k-mer and s-minimizer lengths k and

s rather than for any given w.

Shaw and Yu greatly extended the framework for theoretical analysis of syncmers [9]. They

defined the spread and conservation of a scheme. The two are connected through the number

of unmutated k-mers overlapping a given position, α(θ, k), for a given mutation rate, θ. Letting

P(f) = [P(f, 1), P(f, 2), . . .P(f, k)] be the spread, and P(α(θ, k)) = [P(α(θ, k) = 1), P(α(θ, k) = 2),

. . ., P(α(θ, k) = k)], then Cons(f, θ, k) = P(f) � P(α(θ, k)). Note that there is a closed form expres-

sion for calculating P(α(θ, k) = α)), and that P(f, 1) = d(f). Their theoretical framework allowed

Shaw and Yu to obtain expressions for the spread (and therefore conservation) of open and

closed syncmers and other selection schemes.

Methods

In this section we first outline the main results of our theoretical analysis of PSS. These results

provide guidance for choosing PSS parameters in practice. We then describe how we modify

mappers to utilize them. Due to space constraints the full derivations and analysis are deferred

to Section B in S1 Text. Raw data for results presented in this and subsequent sections are

available in S1 Data.

Recursive expressions for conservation of PSS

Shaw and Yu [9] obtained expressions for open and closed syncmer conservation as a function

of spread. Here we present a general recursive expression for the spread of any PSS, including

with downsampling. These expressions allow for the calculation of the conservation of any

PSS. The full derivation of the general expression is presented in Section B.1 of S1 Text while

here we present only the final expression itself.

Consider a window of α consecutive k-mers. We assume random sequence (i.e., made up of

iid bases) throughout. Let sβ be the s-minimizer in the α-window, at position β. Then if t is a

parameter of the syncmer scheme, sβ generates a syncmer if it is not in the first t − 1 or last

k − t positions in the α-window. If β is not in a position where it generates a syncmer, we recur-

sively check to the left or right of β to see if a syncmer is generated by the s-minimizer of that

region. See Fig 3 for an example.

For a PSS f with k-mer length k, s-minimizer length s, and downsampling rate δ, let P(α) be

the probability of selecting at least one syncmer in a window of α adjacent k-mers. We assume

a uniformly random hash over the s-mers, and condition on the position, β, of the s-minimizer

in the α-window. For each β we sum over two cases: 1) β generates at least one syncmer that is

not lost due to downsampling, 2) β does not generate a syncmer, or all are lost due to down-

sampling, in which case a syncmer may be generated by the part of the window to the left or

right, resulting in a recursive expression. Let PR = P(α − β) and PL = P(β − k + s − 1). Then we

have:

PðaÞ ¼ pb
X

b

PðajbÞ

�
1

kþ a � s
�
Xkþa� s

b¼1

½ð1 � ð1 �
1

d
Þ
countðbÞ

Þ þ ð1 �
1

d
Þ
countðbÞ PR þ PL � PR � PLð Þ�

The probability of any of the k + α − s starting positions being the s-minimizer is denoted as pβ
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and assumed to be uniform. This assumption starts to break down when the s-minimizer is

not unique, thus we note that the probability is approximate. count(β) represents the number

of syncmers generated by the s-minimizer sβ. For example, count(β) = 0 in the red region

of Fig 3 and count(β) = 2 in the overlapped region when β = 6 or 7 in Fig 3C. Note we define

P(α) = 0 when α� 0.

Calculating ℓ2,mut

We compute ℓ2,mut using the distance distribution. Let D(α) represent the probability that the

distance between two adjacent syncmer positions is α − 1, and Dmut(α) be the same under

mutation, then the expressions for ℓmut and ℓ2,mut can be written as:

‘mut ¼
X1

x¼kþ1

ðx � kÞ � Dmutðxþ 1Þ ð3Þ

‘2;mut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1

x¼kþ1

ðx � kÞ2 � Dmutðxþ 1Þ

s

ð4Þ

To calculate D(α) we define the new quantity F(α) denoting the probability that only the

first or only the last k-mer in a window of α k-mers is a syncmer, respectively. We refer to

these k-mers as K1 and Kα respectively. Note that for P(α) defined as above, 1 − P(α) gives the

probability that no k-mer in an α-window is a syncmer.

We compute F(α) by conditioning on β as before. For simplicity we divide the sum over β
into cases based on the syncmers that are generated by sβ. With some abuse of notation, we let

Ki represent the event that sβ generates Ki as a syncmer.

FðaÞ �
Xkþa� s

b¼1

1

kþ a � s
�

1

d
: 1 �

1

d

� �countðbÞ� 1

� ð1 � Pða � bÞÞ K1

1 �
1

d

� �countðbÞ

� Fðb � kþ s � 1Þ � ð1 � Pða � bÞÞ otherwise

8
>>>><

>>>>:

In the first case we have the probability that K1 is not downsampled, any other syncmer

Fig 3. Illustration of s-minimizers generating syncmers. A window of α = 5 consecutive 11-mers. A: When s = 5 and

t = 3, then the s-minimizer of the entire window generates a syncmer when its starting index is in the green region. If

the s-minimizer is in one of the red regions then a syncmer may be generated by the s-minimizer of the remaining part

of the window. For a two parameter scheme the s-minimizer creates two syncmer generating regions that may be

disjoint (B) if s> t2 − t1 or overlapping (C) if s< t2 − t1. In this example, t1 = 3 and t2 = 9 in B and t2 = 6 in C.

https://doi.org/10.1371/journal.pcbi.1010638.g003
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generated by sβ is downsampled, and there are no other syncmers generated to the right of β.

In the second case we have the probability that any syncmers generated by sβ are down-

sampled, no syncmers are generated to the right of β, and the recursive computation of the

probability that the s-minimizer of the segment to the left of β generates a syncmer at K1.

Similarly, D(α) is the probability that in a window of α k-mers only the first and last k-mers

are syncmers. Then

DðaÞ �
Xkþa� s

b¼1

1

kþ a � s
�

1

d

� �2

� 1 �
1

d

� �countðbÞ� 2

K1;Ka

1

d
� 1 �

1

d

� �countðbÞ� 1

� Fða � bÞ K1;:Ka

1

d
� 1 �

1

d

� �countðbÞ� 1

� Fðb � kþ s � 1Þ Ka;:K1

1 �
1

d

� �countðbÞ

� Fðb � kþ s � 1Þ � Fða � bÞ otherwise

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

To compute ℓ2,mut we need the analogous expressions Fmut(α) and Dmut(α). The expressions

for these values are more involved, and left to Section B.3 of S1 Text. For a given mutation rate

and compression, we compute the theoretical ℓ2,mut of all PSS according to these expressions.

We can then select the PSS with parameters yielding the lowest ℓ2,mut.

Because of the recursive nature of the theoretical expressions, their computation even to a

fixed accuracy is time consuming. In practice, simulating a very long sequence, selecting sync-

mers, and simulating mutations to determine this metric empirically is less time consuming.

Our tests show that the theoretical and empirical results are very close. For example, for

S15;5;lexði; jÞ for 1� i< j� 11 and 15% mutations, the average difference was 0.26%. (See

Table A in S1 Text and Table C in S1 Data). We used this simulation method to compute ℓ2,mut

for k = 11, 13, 15, 17 and 19, mutation rates 0.05, 0.15 and 0.25, and all 2- and 3-parameter

schemes. The results are presented in Table B of S1 Data (note that for 1-parameter schemes

the best ℓ2 and ℓ are the same, and thus already known from [9]). ℓ2,mut values computed using

the theoretical expressions for some parameter combinations are available in Table C of S1

Data.

Achieving the target compression

A simple extension of the expression for compression of open and closed syncmers yields that

the compression of an n-parameter PSS is� k� sþ1

n , where we assume that s is long enough rela-

tive to k so that the s-minimizer is likely to be unique. Table D of S1 Data contains the ℓ2,mut

values for schemes that achieve the same compression either by using more parameters or by

downsampling. The table shows that it is preferable to achieve a specific compression with

minimal downsampling. For example, the ℓ2 of the best 2-parameter scheme with a downsam-

pling rate of 2 is an order of magnitude worse than that of the best 1-parameter scheme that

has the same compression without downsampling. Thus, to choose the PSS with best ℓ2,mut for

a given target compression, we can choose one with parameters that yield the compression

closest to, but below, the desired compression and then downsample to reach the desired

compression.

Note that while for 1-parameter PSS the scheme with best conservation (and ℓ2) always has

its s-minimizer in the middle position as shown by Shaw and Yu [9], for multi-parameter PSS,
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which scheme has best ℓ2,mut may change depending on mutation rate and compression, and

there is no scheme that has lowest ℓ2,mut in every setting. Table B in S1 Data is used to select

the scheme with lowest ℓ2,mut for a given setting.

Implementing PSS in mappers

We modified the code of minimap2 (v2.22-r1105-dirty) and Winnowmap2 (v2.03) to select

our syncmer variants as seeds instead of minimizers. The code for our new syncmer-based

mappers is available from https://github.com/Shamir-Lab/syncmer_mapping.

The implementation of the syncmer schemes defined in Definitions and background is

straightforward. Sequences are scanned from left to right, the canonical k-mer (under random

hash h1) at each position is identified, and the index of the minimum s-mer under random

hash h2 is determined, and compared against the list of allowed positions of the PSS. Note that,

like the minimizers in the original mappers, the PSS implementation uses canonical encoding

of the k-mers. This means that the theoretical analysis above does not hold exactly for these

schemes, however, in practice, the overall trend holds as we will show in the Results section.

For downsampled schemes, syncmers are selected if their hash value normalized between 0

and 1 is below 1/δ where δ is the downsampling rate. Note that h2, a different hash function

than h1 must be used to ensure random downsampling. Windowed schemes are integrated

into the minimizer selection scheme of the mappers except that syncmers are selected in each

window first. If no syncmer is present, then the minimizer is selected.

Pseudocode describing these implementations is presented in Algorithm 1 for regular PSS

and in Algorithm A in Section C of S1 Text for windowed PSS. Additional implementation

and optimization details are presented in Section D of S1 Text.

Results

We first evaluate different PSS on real genomes to demonstrate their properties compared to

the theoretical analysis presented above. We then compare PSS-based mapping to the original

minimizer-based versions of minimap2 and Winnowmap2 on simulated and real read data,

using the theoretical analysis to select schemes with best ℓ2,mut. We used canonical k-mers in

our experiments. The reasons for this choice are explained in subsection “The impact of using

canonical k-mers” below. We show that, under realistic mutation rates, these schemes perform

not only better than minimizers, but also better than closed syncmers, which do not have opti-

mal ℓ2,mut. Parameters and command lines used for all tools are shown in Section E of S1 Text.

The reference sequences used for these experiments were: human genome GRCh38.p13

[13], human chromosome X from CHM13 (v1.0) [14], E. coli K12 [15], and a set of microbial
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genomes that we will call BAC, containing assemblies of 15 microbes for which PacBio long-

read data is available [16] (three of the microbes were used in [9], see Section G in S1 Text for

more details). Information about the sequences is presented in Table 1.

We simulated PacBio and ONT reads from the human genome and from BAC with a depth

of 10 using PBSIM [17] and NanoSim [18]. Details of simulation parameters are found in Sec-

tion F in S1 Text.

For tests on real read datasets we selected a random set of 10K ONT reads of the NA12878

cell line with read length capped at 10kb (SRA accession ERR3279003), and 1K PacBio reads

for each of the BAC microbes [16]. Details are available in Table 2.

Performance of parameterized syncmer schemes

Our theoretical analysis of PSS properties above relies on a number of assumptions. Specifi-

cally, it assumes uniform iid sequences and mutations, allows substitutions only, and treats the

sequence as a single forward strand. We therefore examined the properties of PSS on real

genomes where these assumptions do not necessarily apply, and compared them to minimizer

schemes.

We used k = 15 and selected the PSS with best ℓ2,mut (“optimal PSS”) with theoretical com-

pression 5.5 and 10 (Sð3; 9Þ and Sð6Þ, respectively). The default minimizer scheme of mini-

map2 uses k = 15 and w = 10 yielding the theoretical compression of 5.5. A theoretical

compression of 10 is achieved by minimap2 with k = 15 and w = 19. For compression 5.5 we

also included in the comparison closed syncmers (i.e. Sð1; 11Þ) and a PSS that should perform

poorly according to the theoretical analysis (“bad PSS”, Sð1; 2Þ). We compared the schemes on

both unmutated sequences and on sequences with iid substitutions simulated at a rate of 15%.

Since conservation is defined for index-preserving mutations, indels were not simulated

(sequencing errors were included in all subsequent simulations in the following sections).

We tested the schemes on the ECK12 and CHM13X sequences, with and without muta-

tions. On unmutated reference sequences, minimizers outperformed PSS, with much lower ℓ2

and p100 values for schemes with the same compression (Table B in Section H of S1 Text).

The theoretically best PSS outperformed the closed syncmer scheme and the “bad PSS”. In

Table 1. Reference genomes. Basic information about the reference genomes used in our experiments. # scaffolds is the number of individual sequences present in the ref-

erence genome fasta file and can include unplaced scaffolds, alternates, etc. Length is the total length (in nt) of all of the scaffolds together, excluding ambiguous bases.

Dataset Source Species # scaffolds Length

GRCh GRCh38 [13] Human 639 3.111G

CHM13X CHM13 chrX [14] Human 1 154.3M

BAC PacBio [16] Microbial 24 59.1M

ECK12 GCF_000005845.2 [15] E. coli K-12 1 4.6M

https://doi.org/10.1371/journal.pcbi.1010638.t001

Table 2. Reads information. The long-read datasets used in our experiments. Source names are from Table 1 where relevant. PB = PacBio, ONT = Oxford Nanopore

Technologies.

Dataset Source Read type # reads Mean length (std)

pbsim_x CHM13X PB simulated 173891 8871.1 (5570.1)

pbsim_bac BAC PB simulated 66428 8894.2 (5617.4)

ns_chm13 CHM13 ONT simulated 1000 8722.8 (7030.7)

pb_bac BAC PB real 15000 9488.3 (5207.2)

ont_na12878 ERR3279003 ONT real 10000 7131.6 (2348.5)

https://doi.org/10.1371/journal.pcbi.1010638.t002
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contrast, under mutation, the advantage of syncmers is clear (Table 3): PSS had better perfor-

mance in all metrics, with the theoretically best PSS performing better than minimizers and

closed syncmers. This holds true even for relatively low mutation rates of less than 5%

(Table C in S1 Text). While PSS had significantly more conserved positions than minimizers,

the “bad PSS” Sð1; 2Þ had a worse distribution of selected positions and thus poorer ℓ and ℓ2

than minimizers.

The fraction of unmapped reads

We mapped reads using minimap2 and Winnowmap2 with M15;10 (low compression), M15;50

(medium), and M15;100 (high) on four datasets. For each dataset, syncmer-minimap and sync-

mer-winnowmap parameters yielding the best theoretical ℓ2,mut for the same compression

achieved by minimap2 were selected. This resulted in S15;5ð3; 9Þmatching the low compres-

sion, and S15;4ð6Þmatching the medium and high compression. The downsampling rate was

manually selected to match the real compression of the corresponding minimizer scheme as

closely as possible. The exact compression and downsampling rates are given in Table E in S1

Data. For PacBio reads homopolymer compression was used by all mappers. Note that for

ONT reads Winnowmap2 uses SV mode.

Fig 4 (top) shows the percentage of unmapped reads of the mappers for simulated PacBio

and ONT reads mapped to the human reference genome. See Fig D in S1 Text. for additional

results, including windowed mappers. Syncmer variants performed essentially the same or bet-

ter than the original mappers in all cases, with the largest advantage at high compression. All

mappers did much better on the PacBio reads than on ONT reads, which have a higher pro-

portion of deletions and substitutions. The jump in the fraction of unmapped reads between

medium and high compression may indicate that in order to overcome the large fraction of

non-conserved seeds, existing mappers need to use a lower compression with many redundant

seeds.

We compared the performance of all mappers on real data (Table 2) across a range of com-

pression values. The ONT reads were mapped against the human reference GRCh and the Pac-

Bio bacterial reads were mapped against the BAC reference. For the original minimap2 and

Winnowmap2 different values of compression were achieved by varying w. For the syncmer

Table 3. Performance metrics of minimizer and syncmer schemes on real sequences with simulated mutations. Substitutions were introduced in the references at a

rate of 15%. The values shown are for the conserved selected k-mers. # conserved is the number of k-mers selected by a scheme that were conserved under mutation. Best

performance is shown in bold. “Optimal PSS” refers to the PSS with the lowest theoretical ℓ2,θ (Table SD2) for θ = 0.15.

Dataset Scheme Description Compression ℓ ℓ2 p90 p100 # conserved

ECK12 M15;10 minimap minimizer 76.65 0.86 13.77 211 1045 60,557

S15;5ð3; 9Þ optimal PSS 62.91 0.84 12.97 182 941 73,779

S15;5ð1; 11Þ closed syncmer 63.37 0.85 13.42 188 1277 73,245

S15;5ð1; 2Þ “bad PSS” 63.23 0.87 14.19 195 1443 73,413

M15;19 minimap minimizer 154.13 0.91 17.85 378 1981 30,115

S15;6ð6Þ optimal PSS 116.04 0.90 16.18 303 1542 40,001

CHM13X M15;10 minimap minimizer 54.29 0.81 11.70 152 1219 2,841,498

S15;5ð3; 9Þ optimal PSS 45.65 0.80 11.12 132 1193 3,379,361

S15;5ð1; 11Þ closed syncmer 44.71 0.81 11.46 134 1248 3,450,241

S15;5ð1; 2Þ “bad PSS” 43.87 0.82 12.07 137 1387 3,515,931

M15;19 minimap minimizer 107.91 0.88 15.12 270 1946 1,429,555

S15;6ð6Þ optimal PSS 83.20 0.86 13.83 219 1927 1,854,097

https://doi.org/10.1371/journal.pcbi.1010638.t003
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variants, schemes were selected with the best ℓ2,mut according to the theoretical analysis and

then downsampled, as discussed above (Achieving the target compression). Results are shown

in Fig 5. The syncmer variants had consistently higher percentage of mapped reads than the

original minimizer-based mappers, with syncmer-winnowmap performing the best across the

larger part of the compression range. For high compression, the minimizers had 20–40% more

unmapped reads than the syncmers. At low compression rates of 5.5–11, minimizers had

2–15% more unmapped reads than syncmers. Full results and scheme parameters are given in

Table F of S1 Data.

Fig 4. The percentage of unmapped and incorrectly mapped reads—simulated data. Top: Percent unmapped for

low, medium and high compression. (A) PacBio reads simulated from the CHM13X sequence mapped against ChrX

sequences from GRCh38; (B) 1000 ONT reads simulated from CHM13 mapped against GRCh38. Bottom: The

percentage of incorrectly mapped reads for low, medium and high compression. (C) PacBio reads simulated from the

CHM13 ChrX sequence mapped against CHM13X; (D) PacBio reads simulated from the 15 bacterial species in BAC

pooled together and mapped against the union of their references.

https://doi.org/10.1371/journal.pcbi.1010638.g004

Fig 5. Percentage of unmapped reads—Real datasets. Percentage is shown as a function of compression rate, PSS

parameters were chosen to achieve the desired compression with lowest ℓ2,mut. (A) Pooled PacBio bacterial reads

mapped against BAC. (B) ONT human cell-line reads mapped against GRCh38.

https://doi.org/10.1371/journal.pcbi.1010638.g005
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To compare the performance of PSS to the original syncmers, we mapped the PacBio

bacterial reads against BAC using syncmer-minimap with S15;5ð3; 9Þ, the theoretically best

2-parameter scheme, and with closed syncmers (equivalent to S15;5ð1; 11Þ) across a range of

compression values. The results are shown in Fig E of S1 Text. The PSS selected by our analysis

had consistently fewer unmapped reads than closed syncmers. Note that 1-parameter PSS and

open syncmers with offsets are equivalent and the best scheme always has its s-minimizer in

the middle position as discussed above and by Shaw and Yu [9]. In addition, the compression

achieved by 3-parameter schemes is lower than necessary to achieve good mapping perfor-

mance. Thus, the main advantage of PSS over syncmers is for 2-parameter schemes.

Mapping correctness

We evaluated the mapping correctness for PacBio simulated reads as done in [1] (see Section F

in S1 Text for details). The percentage of the mapped reads simulated from CHM13X and the

BAC genomes that were incorrectly mapped is shown in Fig 4 (bottom). Winnowmap was

consistently better than minimap, and the syncmer variants of Winnowmap performed best at

medium and high compression. On the BAC genomes (bottom right) syncmer minimap per-

formed worse than the regular minimap, but % incorrectly mapped was very low for all map-

pers. Note that when mapping rates are different, the percent incorrectly mapped may not be

directly comparable.

Although we cannot evaluate the mapping correctness on the real datasets, the mapping

quality scores reported by minimap2 can be used to compare the different mappers. On the

real datasets, reads mapped by syncmer-minimap but not by minimap2 generally had higher

mapping quality than those mapped by minimap2 and not syncmer-minimap. For example,

for the human cell line ONT reads, comparing minimap2 with M15;50 to syncmer-minimap,

the 39 minimap-only reads had average mapping quality 31.4 (median 27), while the 94 sync-

mer-minimap-only reads had an average quality score of 38.7 (median 42.5). Full results for

different compression rates are presented in Table G of S1 Data.

Impact of sequence identity level

We examined the impact of the level of identity between the sequenced reads and the reference

to which they are aligned. Differences between the sequences can be due to sequencing errors,

mutations in the sequenced organism, or differences between sequenced and reference strains.

We simulated 1000 PacBio reads from CHM13X at percent identity 65%, 75%, 87% and 95%.

The results are shown in Fig 6 and H in S1 Text. For minimap2 and Winnowmap2 we used

M15;50, and in the syncmer variants we used S15;4ð6Þ with the other parameters selected as

above to match the compression of minimap2.

The syncmer variants outperformed the original tools in terms of fraction of reads mapped,

with larger gains as percent identity decreases. All tools performed very well at higher percent

identity, indicating that more than enough seeds were selected and conserved to adequately

map all reads (and thus perhaps compression could be increased). Winnowmap2 performed

noticeably worse at lower percent identity, leaving almost all reads unmapped at 65% identity.

Syncmer-minimap outperformed minimap2 on the fraction of correctly mapped reads in all

cases. Winnowmap2 correctly mapped a larger fraction of the mapped reads at 75% identity,

but mapped only 35% of the reads, compared to� 95% for the other variants. At 95% identity

the syncmer variants had fewer incorrectly mapped reads. While very low percent identity

may be unrealistic in some cases, these results highlight the impact of the increased conserva-

tion of syncmers.
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Performance of windowed syncmer schemes

Windowed schemes combine syncmers and minimizers, complementing the syncmer scheme

to provide a window guarantee. Section K of S1 Text presents the results of the experiments on

windowed PSS. Although windowed schemes perform better than the unwindowed on some

metrics (compare Table F in S1 Text and Table 3), in practice the windowed variants of our

syncmer mappers were similar or worse than the variants without windowing for the same

compression in most cases (Figs F-I in S1 Text).

The impact of using canonical k-mers

In practice, since canonical k-mers are used in the mappers that we modified, we implemented

PSS using canonical k-mers, in order to enable a fair comparison to them. We did so although

the theoretical analysis used to select the PSS was developed for single stranded sequences. The

selection of canonical k-mers can be thought of as selection of forward k-mers on each strand,

followed by culling of the non-canonical k-mers from the union set. The distribution of dis-

tances between selected positions on each strand are the same, assuming random DNA. There-

fore, we hypothesize that PSS with good theoretical properties in the forward strand analysis

will preserve these properties in this selection process.

To test the effect of using canonical k-mers, we recomputed the performance metrics

shown in Table 3 using only forward (non-canonical) k-mers. Table D in S1 Text shows that

there are only minor differences in the ranking of schemes when using forward-only and

canonical k-mers. In addition, ℓ2,mut values for non-canonical k-mers were computed by simu-

lation for some values of k, s, and mutation rate, and are reported in Table H of S1 Data.

Again, there were only minor changes in the rankings of schemes, as expected (Table I in

S1 Data).

We also wished to test the impact of using canonical k-mers on the distance distribution

between selected positions. Fig B in S1 Text shows the distance distributions for syncmers

selected only using forward strand k-mers and using canonical k-mers. We conclude that

while the theory is limited to single-stranded sequences it shows trends that hold for canonical

k-mers. Further details can be found in Section I of S1 Text.

Finally, as another comparison of the possible effect on mapping to minimizer-based map-

ping we artificially disabled seed selection from the reverse strand (i.e. allowing only forward

k-mers to be selected) in the indexing and mapping stages of minimap2 and the syncmer

Fig 6. Impact of percent sequence identity on mapping quality. We varied the mutation rate of 1000 PacBio

simulated reads from CHM13X. The figures present the % unmapped and incorrectly mapped by each method. (A) %

unmapped reads. (B) % of the mapped reads that were incorrectly mapped.

https://doi.org/10.1371/journal.pcbi.1010638.g006
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variant. Results are shown in Fig C in S1 Text and should be compared to Figs 5 and 7.

Although this drastically reduces mapping performance, we still observe the same mapping

performance improvement gained by using syncmers.

Runtime and memory

We compared the runtime and memory usage of the six tested mappers on a number of data-

sets. All experiments were performed on a 44-core, 2.2 GHz server with 792 GB of RAM,

using 50 threads. Peak RSS (in GB) and real time (in seconds) as measured by the tools are

reported.

Table 4 compares the separate performance of indexing and mapping on simulated PacBio

and ONT reads from bacteria and human. Winnowmap was not compared as it does not allow

for separate indexing and mapping, a disadvantage when many read sets will be mapped to the

same reference. For syncmer-minimap the same parameters matched to the minimizers as

above were used. At low compression minimap2 had better runtimes for both indexing and

mapping, and memory usage was similar between the tools. At high compression syncmer-

minimap had longer indexing time but lower mapping time and required less than half the

memory. This is in addition to having only 1/3 as many unmapped reads (Fig D(A) in

S1 Text).

We also compared the runtime and memory of all the runs for different compression rates

shown in Fig 5. Results are shown in Fig 7. Note that the results here are for indexing and map-

ping together. minimap2 was consistently the fastest, followed by syncmer-minimap, which

took 50–100% longer. Interestingly, the two datasets show opposite trends in memory usage

Fig 7. Memory usage and runtime vs. compression—Real data. (A,B) Runtime in seconds to index the reference and

map reads by each method. (C,D) Peak RAM usage in GB to index the reference and map reads. (A) and (C) are on

PacBio bacterial reads. (B) and (D) are for ONT human cell-line reads.

https://doi.org/10.1371/journal.pcbi.1010638.g007
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(Fig 7C and 7D). This is because the bacterial reference genomes are relatively short, and thus

the memory bottleneck is in the mapping stage, while for the human reference genome the

memory bottleneck is in the indexing stage. Increasing compression lowers index size but

results in longer alignments between seeds, requiring more memory in the mapping phase.

Thus, when indexing is the bottleneck, increasing compression reduces memory, while when

mapping is the bottleneck it increases memory. Winnowmap2 and its variants used less mem-

ory in the mapping phase while minimap2 and its variants used less memory in the indexing

phase. In the case that indexing was the bottleneck, the syncmer variants required lower mem-

ory usage than the original mappers across most of the range of compression rates (Fig 7D).

Discussion

In this study we generalized the notion of syncmers to PSS and derived their theoretical prop-

erties. We incorporated PSS into the long-read mappers minimap2 and Winnowmap2. Our

syncmer mappers outperformed minimap2 and Winnowmap2, by mapping more reads and

correctly mapping a higher fraction of those mapped across a range of different compression

values for multiple real and simulated datasets.

As our results show, the advantage of using syncmers is most marked at high compression

and high error rates, as is expected due to their higher conservation. Yet the advantage is

already manifest at the lower compression rates commonly used by existing mappers. For

large genomes, such as the human genome, using the higher compression enabled by syncmers

also leads to lower RAM usage. Using the PSS with the best ℓ2,mut also improves over closed

syncmers due to their better distribution. Syncmer-minimap is slower than the highly opti-

mized minimap2, taking 50–100% longer to map reads, but it is faster than Winnowmap2.

Future work should focus on lowering the runtime by optimizing the syncmer mapping

implementation.

The well-developed minimap2 and Winnowmap2 software tools have a variety of internal

parameters, and by adjusting them one may be able to achieve some of the performance advan-

tage of PSS. The approach we propose here is more principled and avoids the need to guess or

grid search across parameters in order to get the best mapping performance. Increased perfor-

mance achieved in such a manner could likely improve the syncmer mappers as well, as

improving the choice of alignment seeds is orthogonal to many of the other algorithmic details

of read mapping.

There are a number of issues and questions that this work leaves open, particularly in the

theoretical analysis. First, the analysis of windowed schemes and downsampled schemes under

mutation remains to be completed. Second, an expression for ℓ2 for minimizer schemes could

Table 4. Runtime and memory. Time (in seconds) and RAM (in GB) needed to index the reference and map the simulated reads by each of the tools. The second and

third dataset use the same reference. Syncmer variant parameters were selected to match the minimap2 compression rates as above.

Task Method Scheme Index time Index mem Map time Map mem

bacterial reads vs BAC minimap2 M15;10 3.29 0.32 11.10 3.14

Syncmer minimap S15;5ð3; 9Þ 3.81 0.31 11.63 2.93

ChrX reads vs CHM13X minimap2 M15;10 7.96 1.01 65.29 5.35

Syncmer minimap S15;5ð3; 9Þ 9.52 0.99 141.05 6.73

minimap2 M15;100 4.4 0.45 59.05 16.06

Syncmer minimap S15;4ð6Þ 7.12 0.45 47.83 7.56

bacterial reads vs CHM13X minimap2 M15;10 As above As above 25.61 8.26

Syncmer minimap S15;5ð3; 9Þ 46.59 9.28

https://doi.org/10.1371/journal.pcbi.1010638.t004
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also be obtained. Third, can the theory be expanded to canonical k-mers? Fourth, it would be

helpful to obtain more robust definitions of conservation and ℓ2 that do not depend on pre-

serving indices between sequences, thereby allowing indels to be included in the theoretical

analysis. Finally, what is the ideal metric for evaluating the performance of schemes? While we

argue that ℓ2 is preferable to ℓ, other new metrics may capture mapping performance even

more accurately.

Another possible avenue to explore is in the definition of the selection scheme itself. Is it

possible to select k-mers in a biased way in order to increase the compression but still retain

the beneficial distance distribution of syncmer schemes? Or could a sequence-specific set of k-

mers be determined efficiently for any desired compression rate? The quest for a “best” selec-

tion scheme is not over.

Supporting information

S1 Text. Supplementary information, figures and tables.

(PDF)

S1 Data. Supplementary data tables A-I.

(XLSX)

Acknowledgments

We thank members of the Shamir Lab for their helpful comments.

Author Contributions

Conceptualization: Abhinav Dutta, David Pellow, Ron Shamir.

Formal analysis: Abhinav Dutta, David Pellow.

Funding acquisition: Ron Shamir.

Investigation: Abhinav Dutta, David Pellow.

Methodology: Abhinav Dutta, David Pellow.

Software: Abhinav Dutta.

Supervision: David Pellow, Ron Shamir.

Validation: Abhinav Dutta.

Writing – original draft: David Pellow.

Writing – review & editing: Abhinav Dutta, David Pellow, Ron Shamir.

References
1. Jain C, Rhie A, Zhang H, Chu C, Walenz BP, Koren S, et al. Weighted minimizer sampling improves

long read mapping. Bioinformatics. 2020; 36(Supplement_1):i111–i118. https://doi.org/10.1093/

bioinformatics/btaa435 PMID: 32657365

2. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, et al. Accurate detec-

tion of complex structural variations using single-molecule sequencing. Nature methods. 2018; 15

(6):461–468. https://doi.org/10.1038/s41592-018-0001-7 PMID: 29713083

3. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18):3094–3100.

https://doi.org/10.1093/bioinformatics/bty191 PMID: 29750242

4. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in

low memory. Bioinformatics. 2016; 32(12):i201–i208. https://doi.org/10.1093/bioinformatics/btw279

PMID: 27307618

PLOS COMPUTATIONAL BIOLOGY Parameterized syncmer schemes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010638 October 28, 2022 18 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010638.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010638.s002
https://doi.org/10.1093/bioinformatics/btaa435
https://doi.org/10.1093/bioinformatics/btaa435
http://www.ncbi.nlm.nih.gov/pubmed/32657365
https://doi.org/10.1038/s41592-018-0001-7
http://www.ncbi.nlm.nih.gov/pubmed/29713083
https://doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pubmed/29750242
https://doi.org/10.1093/bioinformatics/btw279
http://www.ncbi.nlm.nih.gov/pubmed/27307618
https://doi.org/10.1371/journal.pcbi.1010638


5. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics.

2017; 33(17):2759–2761. https://doi.org/10.1093/bioinformatics/btx304 PMID: 28472236

6. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome biology. 2019;

20(1):1–13. https://doi.org/10.1186/s13059-019-1891-0 PMID: 31779668

7. Edgar R. Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological

sequences. PeerJ. 2021; 9:e10805. https://doi.org/10.7717/peerj.10805 PMID: 33604186

8. Dohm JC, Peters P, Stralis-Pavese N, Himmelbauer H. Benchmarking of long-read correction methods.

NAR Genomics and Bioinformatics. 2020; 2(2):lqaa037. https://doi.org/10.1093/nargab/lqaa037 PMID:

33575591

9. Shaw J, Yu YW. Theory of local k-mer selection with applications to long-read alignment. Bioinformat-

ics. 2021.

10. Li H. New strategies to improve minimap2 alignment accuracy. arXiv preprint arXiv:210803515. 2021.

11. Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. Long-read mapping to repetitive reference

sequences using Winnowmap2. Nature Methods. 2022; p. 1–6. PMID: 35365778

12. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for document fingerprinting. In: Pro-

ceedings of the 2003 ACM SIGMOD international conference on Management of data; 2003. p. 76–85.

13. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, et al. Evaluation of GRCh38

and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.

Genome research. 2017; 27(5):849–864. https://doi.org/10.1101/gr.213611.116 PMID: 28396521

14. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a

human genome. Science. 2022; 376(6588):44–53. https://doi.org/10.1126/science.abj6987 PMID:

35357919

15. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome

sequence of Escherichia coli K-12. Science. 1997; 277(5331):1453–1462. https://doi.org/10.1126/

science.277.5331.1453 PMID: 9278503

16. PacificBiosciences. Microbial Multiplexing Data Set 48 plex: PacBio Sequel II System, Chemistry v2.0,

SMRT Link v8.0 Analysis; 2019. https://github.com/PacificBiosciences/DevNet/wiki/Microbial-

Multiplexing-Data-Set—48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-

Analysis.

17. Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator—toward accurate genome assembly. Bioin-

formatics. 2013; 29(1):119–121. https://doi.org/10.1093/bioinformatics/bts649 PMID: 23129296

18. Yang C, Chu J, Warren RL, Birol I. NanoSim: nanopore sequence read simulator based on statistical

characterization. GigaScience. 2017; 6(4):gix010. https://doi.org/10.1093/gigascience/gix010 PMID:

28327957

PLOS COMPUTATIONAL BIOLOGY Parameterized syncmer schemes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010638 October 28, 2022 19 / 19

https://doi.org/10.1093/bioinformatics/btx304
http://www.ncbi.nlm.nih.gov/pubmed/28472236
https://doi.org/10.1186/s13059-019-1891-0
http://www.ncbi.nlm.nih.gov/pubmed/31779668
https://doi.org/10.7717/peerj.10805
http://www.ncbi.nlm.nih.gov/pubmed/33604186
https://doi.org/10.1093/nargab/lqaa037
http://www.ncbi.nlm.nih.gov/pubmed/33575591
http://www.ncbi.nlm.nih.gov/pubmed/35365778
https://doi.org/10.1101/gr.213611.116
http://www.ncbi.nlm.nih.gov/pubmed/28396521
https://doi.org/10.1126/science.abj6987
http://www.ncbi.nlm.nih.gov/pubmed/35357919
https://doi.org/10.1126/science.277.5331.1453
https://doi.org/10.1126/science.277.5331.1453
http://www.ncbi.nlm.nih.gov/pubmed/9278503
https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis
https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis
https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing-Data-Set---48-plex:-PacBio-Sequel-II-System,-Chemistry-v2.0,-SMRT-Link-v8.0-Analysis
https://doi.org/10.1093/bioinformatics/bts649
http://www.ncbi.nlm.nih.gov/pubmed/23129296
https://doi.org/10.1093/gigascience/gix010
http://www.ncbi.nlm.nih.gov/pubmed/28327957
https://doi.org/10.1371/journal.pcbi.1010638

