
Efficient minimizer orders for large values of k
using minimum decycling sets

David Pellow1, Lianrong Pu1, Baris Ekim2, Lior Kotlar3, Bonnie Berger2, Ron
Shamir1, and Yaron Orenstein4,5

1 Blavatnik School of Computer Science, Tel-Aviv University, Israel
2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, MA
3 Department of Computer Science, Ben-Gurion University, Israel

4 Department of Computer Science, Bar-Ilan University, Israel
5 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University,

Israel

Abstract. Minimizers are ubiquitously used in data structures and al-
gorithms for efficient searching, mapping, and indexing of high-throughput
DNA sequencing data. Minimizer schemes select a minimum k-mer in ev-
ery L-long sub-sequence of the target sequence, where minimality is with
respect to a predefined k-mer order. Commonly used minimizer orders
select more k-mers overall than necessary and therefore provide lim-
ited improvement to runtime and memory usage of downstream analysis
tasks. The recently introduced universal k-mer hitting sets produce mini-
mizer orders resulting in fewer selected k-mers. Unfortunately, generating
compact universal k-mer hitting sets is currently infeasible for k > 13,
and thus cannot help in the many applications that need minimizers of
larger k.
Here, we close this gap by introducing decycling set-based minimizer
orders. We define new orders based on minimum decycling sets, which are
guaranteed to hit any infinitely long sequence. We show that in practice
these new minimizer orders select a number of k-mers comparable to that
of minimizer orders based on universal k-mer hitting sets, and can also
scale up to larger k. Furthermore, we developed a query method that
avoids the need to keep the k-mers of a decycling set in memory, which
enables the use of these minimizer orders for any value of k. We expect
the new decycling set-based minimizer orders to improve the runtime
and memory usage of algorithms and data structures in high-throughput
DNA sequencing analysis.

Keywords: minimizers · de Bruijn graph · high-throughput sequencing
· universal k-mer hitting set



Efficient minimizer orders for large values of k using minimum decycling sets 1

1 Introduction

As the number and depth of high-throughput sequencing experiments grows, ef-
ficient methods to map, store, and search DNA sequences have become critical in
their analysis. Sequence sketching is a fundamental building block of many of the
basic sequence analysis tasks, such as assembly [20,4], alignment [22,19,11], and
binning [2,1,6]. The common principle in all sketching techniques is the selec-
tion of a k-mer representative from a long DNA sequence for indexing sequences
in data structures or algorithms. Key parameters for evaluating the merits of
sketching techniques are density [13], defined as the fraction of k-mers selected,
maximum bin load [12], defined as the maximum number of windows sketched
by a single k-mer, and conservation of the sketch under mutations or sequencing
errors.

One of the most common sequence sketching techniques is minimizers [23].
The minimizer of an L-long sequence is the minimum among all the w = L−k+1
k-mers that it contains, according to some order o over the k-mers. Selecting
the minimizers from all overlapping L-long windows of a sequence provides a
sketch of that sequence. Despite the advantages of minimizers, commonly used
minimizer orders, such as lexicographic and random, have been shown to perform
poorly in density [13] and maximum bin load [6]. In addition, the conservation
under mutations and robustness to errors of such minimizer orders is low relative
to other sketching techniques [3].

A recent breakthrough in developing minimizer orders with lower density has
been achieved by compact universal k-mer hitting sets (UHSs) [18]. A UHS is
a set of k-mers guaranteed to hit any L-long sequence. In terms of a complete
de Bruijn graph of order k, a minimum UHS is a minimum set of nodes whose
removal leaves no path of length L − k + 1 in the graph. Heuristic algorithms
for finding a minimum UHS include DOCKS [18] and PASHA [5], both of which
approach UHS construction as a path covering problem in a complete de Bruijn
graph. The UHS-based minimizer orders were shown to achieve lower density
than common orders [13,5]. However, constructing and storing UHSs is ineffi-
cient due to the exponential dependence of the heuristic algorithms on k, and
currently compact UHSs are available only for k ≤ 13. Key to these methods
is the ability to efficiently identify a minimum decycling set, which is a set of
k-mers guaranteed to hit any infinitely long sequence. A minimum decycling set
can be generated in time log-linear in the de Bruijn graph size [15].

Partly due to the challenges in constructing UHSs, other recent works have fo-
cused on developing sequence-specific minimizer orders. For example, sequence-
specific minimizer orders have been used in binning applications to achieve lower
maximum bin size or more balanced bins than general minimizers [1,6]. Hoang
et al. [8] used deep learning to achieve sequence-specific low-density minimizers
for much longer k (up to 320). Still, these solutions are tailored to a specific
sequence, and cannot be generally applied.

In this work, we developed new methods to construct general minimizer or-
ders that scale to larger k. We defined minimizer orders based only on a minimum
decycling set. We further improved the scalability of our approach by implement-



2 D. Pellow et al.

ing an efficient method to query in linear time if a k-mer belongs to a minimum
decycling set without the need to construct, store, or query the whole set. Fi-
nally, we demonstrate that our new decycling-set-based minimizer orders achieve
density that is comparable to or better than UHS-based orders. The minimizer
orders we defined thus provide for the first time general orders with low density
that can scale to any value of k. All code developed under this project is publicly
available via github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder.

2 Preliminaries and definitions

We begin by defining and providing theoretical background on concepts neces-
sary for the description and evaluation of our methods.

k-mer: For a string S over an alphabet Σ, a k-mer is a contiguous substring of
length k. We denote the k-mer starting at position i as S[i, i+ k − 1].

k-mer order: For a function on k-mers o : Σk → R, we say that k-mer x1 is
less than x2 under o (x1 <o x2) iff o(x1) < o(x2).

Minimizer scheme: A minimizer scheme is a function fk,w,o : Σw+k−1 →
{0, . . . , w−1}. Function f returns the position of the minimum k-mer in a given
window of w overlapping k-mers (i.e., in every L = w + k − 1 long window).
By convention, ties are broken by choosing the left-most k-mer. The minimizers
of a string S, denoted as Mk,w,o(S), are all the positions in the string that are
selected by applying the scheme to all overlapping L-long windows of S:

Mk,w,o(S) =

|S|−w−k+1⋃
j=0

{
argmino

i:i∈[j,j+w−1]

S[i, i+ k − 1]

}

Universal hitting set (UHS): A universal hitting set Uk,L ⊆ Σk is a set of
k-mers such that any L-long string contains at least one k-mer from Uk,L as a
contiguous substring. By construction, at least one k-mer from Uk,L must appear
in every window of w = L − k + 1 overlapping k-mers, and thus it is possible
to define minimizer orders that are compatible with a UHS. An order oUk,L,h

is compatible with Uk,L if for x1 ∈ Uk,L, x2 ̸∈ Uk,L =⇒ x1 <Uk,L,h x2, and
otherwise, when x1 and x2 are either both in or both not in the UHS, then
x1 <Uk,L,h x2 ⇐⇒ h(x1) < h(x2) for some order h.

Partition-compatible minimizer order: We extend the above definition of
UHS-compatible orders to minimizer orders that are compatible with an ordered
partition of Σk. Given an ordered partition of Σk, Π = [C1, . . . , Cm], we define
a compatible minimizer order oΠ,h such that for x1 ∈ Ci, x2 ∈ Cj i < j =⇒
x1 <Π,h x2 and if i = j then x1 <Π,h x2 ⇐⇒ h(x1) < h(x2) for some order h.

de Bruijn graph: A de Bruijn graph (dBG) of order k is a directed graph in
which every node is labelled with a distinct k-mer and there may be a directed

github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder


Efficient minimizer orders for large values of k using minimum decycling sets 3

edge from node a to b iff the (k − 1)-long suffix of a is the same as the (k − 1)-
long prefix of b. The edge is labelled with the (k + 1)-long merge of the two
labels. A complete dBG has a node for every possible k-mer and an edge for
every possible (k+1)-mer. Paths in a dBG of order k represent sequences, and a
path of w nodes represents a sequence of w overlapping k-mers. Thus, the nodes
represented by a UHS Uk,L will be a covering set for all (L− k + 1)-long paths
in a complete dBG of order k.

Decycling set A decycling set in a graph G = (V,E) is a set of nodes whose
removal results in an acyclic graph. Finding a minimum decycling set (also called
feedback vertex set) in an arbitrary graph is NP-hard [9]. We are interested in a
minimum decycling set in a complete dBG of order k, which we denote by Dk.
Mykkeltveit [15] gave an efficient algorithm to construct such a set in time log-
linear in the complete dBG size. A pure cycle is a set of nodes corresponding to
all the cyclic rotations of some k-mer [15]. Mykkeltveit showed that Dk contains
a single node from each pure cycle in a complete dBG. Moreover, each pure
cycle defines a conjugacy class, and thus the pure cycles factor the complete
dBG, namely every k-mer belongs to exactly one of the pure cycles.

Mykkeltveit embedding: To determine which of the cyclic rotations of a k-
mer to include in Dk, Mykkeltveit defined an embedding of k-mers in the complex

plane. For a k-mer x, M(x) = (R(x), I(x)) =
(

k−1∑
i=0

xi sin
(
2πi
k

)
,
k−1∑
i=0

xi cos
(
2πi
k

))
,

where xi is the numeric encoding of the i-th character of x (in our case the
encoding of the DNA alphabet is: A=0, C=1, G=2, T=3) (Figure 1). The min-
imum decycling set constructed by Mykkeltveit’s algorithm includes for each
conjugacy class the first counter-clockwise rotation x such that R(x) > 0. When
all rotations have R(x) = 0, any arbitrary k-mer from the cycle can be selected.

Mykkeltviet’s algorithm has an efficient implementation due to Knuth [10].
This implementation uses the FKM algorithm [7] to enumerate the k-mer con-
jugacy classes in lexicographic order. The representative selected for each class
is first one with R(x) > 0, and for classes with R(x) = 0 for all k-mer rotations,
the lexicographically smallest k-mer is included in the decycling set. A mini-
mum decycling set consists of O(|Σ|k/k) k-mers and it can be generated in time
O(k|Σ|k), i.e. log-linear in the dBG size [15,21].

Minimizer density: The expected density of a minimizer scheme is the fraction
of k-mer positions that will be selected as minimizers in expectation over an
infinitely long random i.i.d. sequence. The particular density of a minimizer
scheme on a specific sequence S (e.g., the human genome) is the fraction of
k-mer positions selected by the scheme on that sequence.

density(S) =
|Mk,w,o(S)|
|S| − k + 1

The density factor normalizes density for the window size w of the scheme.
We follow the definition of Zheng et al. [8]: for a sequence S the density factor is

df(S) =
|Mk,w,o(S)|
|S|−L+1 · (w+1), where L = w+ k− 1. This definition of the density



4 D. Pellow et al.

Fig. 1: Mykkeltveit embedding. The embedding is shown for the rotations
of the k-mer ACACT, indicated above each subfigure. Each letter of the k-mer
encodes a weight (in parentheses) placed at the k-th roots of unity (red dots).
The embedding represents the center of mass of the k-mer (black dot). The sign
of each embedding projected onto the real axis is shown below each rotation. In
this example, ACTAC (red box) is the first counter-clockwise rotation x with
R(x) > 0, and is thus selected by Mykkeltveit’s algorithm to participate in a
minimum decycling set.

factor removes the dependence on L, e.g. making the expected density factor of
all random minimizers the same, regardless of k and L. Note that other works
define the density factor simply as the density times a factor of (w+1) (c.f. [13]).
Expected and particular density factors are defined analogously to expected and
particular density. The expected density factor of random minimizers has been
shown to be 2 [13] and there is a general non-tight lower-bound of 1.5 [14].

3 Methods

The current heuristic algorithms that generate compact UHSs begin by con-
structing a minimum decycling set Dk. We propose using Dk as an “approx-
imate UHS” and defining an order based on it. The rationale for this idea is
threefold. First, for most combinations of k and L, the majority of k-mers in
UHSs generated by these heuristics belong to Dk. Second, as discussed above,
Dk can be generated very efficiently, while the subsequent k-mer additions that
the heuristics perform in order to remove long paths are very slow. Third, Zheng
et al. [24] showed that following the removal of a minimum decycling set from a
complete dBG of order k, the longest remaining path has length O(k3), which
bounds the length of the longest remaining sequence. Below we explore this idea
and develop several variants of decycling set-based minimizer orders.

3.1 Decycling set-based minimizer orders

We define a partition-compatible order based only on a minimum decycling set
Dk and use it in lieu of a UHS-based minimizer order. In this order, k-mers in
Dk precede all other k-mers. Within each set, a random hash function is used
to compare between k-mers. Dk can be constructed efficiently using Knuth’s
implementation of Mykkeltveit’s algorithm [15] as described above.



Efficient minimizer orders for large values of k using minimum decycling sets 5

For large values of k, when Dk is too large to store or takes too much time
to compute, we can instead scan the target sequence and for every k-mer test
its membership in Dk on the fly using the procedure outlined in Algorithm 1.
The real parts of the embeddings of a k-mer x and its clockwise rotation x′

are computed in O(k) time and compared to determine if x is the first counter-
clockwise rotation with R(x) > 0. If R(x) = R(x′) = 0, then the algorithm
determines whether x is a lexicographically smallest rotation in O(k) time.

Algorithm 1 Decycling set membership

Input: k-mer x, |x| = k
Output: Membership in the minimum decycling set Dk

1: for i ∈ [0, k − 1] do ci = sin(2πi/k)

2: R(x) =
k−1∑
i=0

cixi

3: x′ = xk−1x0x1..xk−2

4: R(x′) =
k−1∑
i=0

cix
′
i

5: if R(x) > 0 then ▷ Check if x is the first rotation with R(x) > 0
6: if R(x′) ≤ 0 then return true

7: else if R(x) = 0 then
8: if R(x′) = 0 then ▷ Check if x is the lexico. smallest rotation
9: i← 0
10: for j ∈ [1, 2k − 1] do
11: if xj mod k < xi then return false

12: if xj mod k > xi then i = 0
13: else i← i+ 1

14: if (j ≥ k − 1) ∧ (i mod k = 0) then return true

15: return false

Proposition 1 (Alg. 1 correctness). Alg. 1 correctly determines whether a
k-mer is a member of Dk in time O(k).

Proof. The proof follows from the definition of Dk. We say that a k-mer x is
positive, negative, or non-positive if R(x) > 0, < 0, or ≤ 0, respectively. Recall
that a k-mer x ∈ Dk iff either: (i) it is the first positive counter-clockwise rota-
tion in its conjugacy class; or, (ii) all k-mers in the conjugacy class have R = 0
and x is a lexicographically smallest rotation.
For (i), line 6 returns true iff the input k-mer x is the first positive counter-
clockwise rotation in its conjugacy class, i.e. x has R(x) > 0 and the one letter
clockwise rotation of x, denoted x′ has R(x′) ≤ 0.
For (ii), note that if two consecutive rotations of a k-mer x, x′ have R(x) =
R(x′) = 0 (lines 7-8), then all k-mers in that conjugacy class have zero embed-
ding (Lemma 1 in Mykkeltveit [15]). The loop in lines 10-14 checks all possible
rotations of x and returns false if it finds a k-mer that is lexicographically smaller



6 D. Pellow et al.

than x (line 11), otherwise it returns true either if it checked all possible rota-
tions and none of them is lexicographically smaller than x (i = 0 and j ≥ k− 1)
or it finds that x is identical to one of its rotations and x is a lexicographically
smallest rotation (i = k and j ≥ k − 1).
The embedding computations (lines 1, 2, and 4) take O(k) time. The loop be-
ginning on line 10 can run for at most 2k times and performs constant time
computations per iteration for a total running time of O(k). ⊓⊔

3.2 Double decycling set-based minimizer orders

By symmetry, Mykkeltveit’s construction can be used to create a minimum de-
cycling set using the first counter-clockwise negative k-mer x in each conjugacy
class rather than the first positive one. We refer to this set as the symmetric de-
cycling set D̃k. The decycling set and symmetric decycling set divide sequences
according to the following interesting property:

Theorem 1 (remaining path partition). In any remaining path in the com-
plete dBG after removing Dk, all the positive nodes precede all the non-positive
nodes.

In other words, a remaining path must consist of two distinct parts: A positive
part, containing only positive k-mers, followed by the second non-positive part
consisting of non-positive k-mers only. The proof relies on two lemmas:

Lemma 1. The k-mers associated with all incoming neighbours of a node x in
a dBG have the same R(x).

Proof. All incoming neighbours y of x differ only in y0, and have embedding

with R(y) = y0 sin(0) +
k−1∑
i=1

sin(2πi/k)yi =
k−1∑
i=1

sin(2πi/k)yi.

Lemma 2. The pure cycles factor the complete dBG, namely, every k-mer be-
longs to exactly one of the pure cycles.

Proof. Every k-mer is on some pure cycle corresponding to its rotations. Assume
the contrary that k-mer x is on two distinct pure cycles, C1 and C2. Let y be the
last common node in the path in C1 ∩ C2 starting from x. Then, the edges out
of y in the two cycles are distinct, contradicting the fact that both correspond
to the cyclic rotation of y.

Proof (Thm. 1). Let xi be the first non-positive node in a remaining path
x1, . . . , xt and assume the contrary that there exists a positive xj for j > i.
W.l.o.g. assume xj is the first with that property in the path. Let C be the pure
cycle that contains xj . C exists and it is well defined by Lemma 2. Let y be the
node preceding xj in C. By Lemma 1, R(xj−1) = R(y). Since y is non-positive,
xj should be in Dk as the first positive node in C, a contradiction. ⊓⊔



Efficient minimizer orders for large values of k using minimum decycling sets 7

By a similar argument, in a remaining path after removing D̃k, the negative
nodes precede all other nodes. Thus, removal of a double decycling set consisting
of Dk ∪ D̃k would leave only short remaining paths that cannot contain both
negative and positive k-mers.

We define a partition-compatible minimizer order based on double decycling
sets with Π = {Dk, D̃k \ Dk, Σ

k \ (Dk ∪ D̃k)}. Because the double decycling set
leaves even shorter remaining paths, we hypothesize that this minimizer order
may achieve lower density compared to the one using only a single decycling set.

3.3 Modified decycling set-based minimizer orders

We defined another variant of the decycling set-based order to account for ho-
mopolymers. Long homopolymers in a sequence can increase the particular den-
sity of a decycling set-compatible minimizer order, and removing them from the
set may improve the scheme performance. However, we note that all homopoly-
mers have an embedding with R(x) = 0. Since in practice k-mers with embedding
0 are only a small fraction of the decycling set, we simply choose to exclude all
of them from the decycling set. The resulting set is denoted D′

k, and we call the
corresponding order modified decycling set-based order. This relieves us of the
need to perform lines 7-14 in Algorithm 1, and as a result could speed up the
membership test. Modified symmetric decycling sets D̃′

k are defined analogously,
as is the modified double decycling set compatible order.

4 Results

We compared the performance of our new decycling set-based minimizer orders
to UHS-based orders and random orders, across a range of k and L values.
We measured performance using expected and particular density factors. Ex-
pected density factors were estimated by measuring density on five random i.i.d.
sequences of 1M nt. Particular density factors were measured on a randomly se-
lected 1M nt segment from chromosome X of the CHM13 telomere-to-telomere
human genome assembly [16] with 10 repetitions using different seeds for the
pseudo-random hash functions. We used Python’s hash function as the pseudo-
random hash to compare between k-mers within each set of a partition. Scripts to
compute the expected and particular density of the different minimizer orders are
available from github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder.

4.1 Decycling set-based orders outperform UHS-based orders

Figure 2 compares the density factors of the tested orders for k = 11 and vary-
ing L values, and for k = 5 to 15 and L = 100. Average density factors over
the repeated runs are shown for visual clarity. The same plots with error bars
displayed are in Figure S1. The order denoted “decycling-UHS” is a variant of
UHS order in which the decycling set k-mers precede the rest of the UHS. UHS-
and decycling-UHS-compatible orders were generated by DOCKS for k < 12 and

github.com/OrensteinLab/DecyclingSetBasedMinimizerOrder


8 D. Pellow et al.

by PASHA for 12 ≤ k ≤ 13. The sets of PASHA are slightly less compact than
those of DOCKS, hence the slight bump in density factor for the UHS order at
k = 12 (Figures 2A,B). UHSs for larger k could not be generated due to time-
and storage-intensive computation required for every combination of k and L.
In contrast, the decycling set-based orders have the distinct advantage of being
easily computed on the fly for any (k, L) combination.

A B

C D

Fig. 2:Density factor of decycling set-based minimizer orders and UHS-
based orders. The expected density (A,C) and particular density factors on
CHM13X (B,D) of different minimizer orders is compared for fixed L = 100 and
varying k (A,B) and fixed k = 11 and varying L (C,D).

The decycling set-based orders consistently perform similarly or better than
UHS-based orders. As expected, random orders typically do worst, and the rel-
ative improvement of UHS- and decyling set-based orders compared to random
orders increases with k. Conversely, as L grows for fixed k the density factors
of the different methods are more similar. The particular density matches the
expected density relatively closely for all orders but is much noisier (Figure S1).

4.2 Scaling to k ≥ 20

We compared the decycling set-based orders to the random baseline orders for
much larger k than is possible with UHS-compatible orders. Figure 3 shows



Efficient minimizer orders for large values of k using minimum decycling sets 9

A B

C D

E F

Fig. 3: Density factors of decycling set-based orders for large k. The
expected density factor (A,C,E) and the particular density factor on CHM13X
(B,D,F) of different minimizer orders is compared for fixed k = 20 (A,B), fixed
k = 50 (C,D), and fixed k = 100 (E,F) for varying L. Note that in C-F the
lines for the modified and unmodified orders are almost identical.

results for k = 20, 50 and 100. Average density factors over the repeated runs
are shown. The same plots with error bars displayed are in Figure S2.

As k grows, the advantage of the decycling set-based order becomes even
more pronounced and the double decycling set-based order improves more signif-
icantly over the decycling set-based order. This is true in particular for shorter
L, with the differences between the decycling and double decycling set-based
orders disappearing as L grows. At the same time, for larger k, the modified
variants of the decycling set and double decycling set orders perform essentially



10 D. Pellow et al.

the same as the original, but with improved k-mer query runtime. In all cases,
the particular density factor is very close to that of the expected density factor.

5 Discussion

In this work, we solved one of the major limitations of UHS-based minimizer
orders. By relieving the strict requirement of generating a set of k-mers that hits
every L-long sequence, we were able to generate minimizer orders that are close
to universal and can be calculated efficiently on the fly. Based on Mykkveltveit’s
algorithm, we developed a method to determine if a k-mer belongs to a minimum
decycling set, which can be applied to any k. We demonstrated that minimizer
orders based on minimum decycling sets are comparable or better in their density
to minimizer orders based on UHSs, thus achieving good performance while
avoiding escalating runtime and memory usage with the increase of k.

We also defined the modified and double decycling set orders. For longer k
and relatively shorter L, the double decycling set-based order yields much lower
density than even the decycling set-based order. Although we did not perform
extensive runtime comparisons of the methods, the double decycling set-based
order is generally slower to compute than the decycling set-based order, and the
modified orders perform fewer computations and thus can be slightly faster. As
the density of the different methods converges as L increases, this suggests using
modified double decycling set-based order for smaller L to achieve lower density,
while modified decycling set-based order can be used for larger L and achieve
similar density with faster running times. Based on the results we have presented,
a general rule-of-thumb appears to be that the advantage of the double decycling
set persists until around L = 2.5k.

We see several promising future directions to take. First, it may be possible to
more rigorously define which of the different decycling set-based orders is better
to use for each given combination of k and L. Second, frequency-based orders
are known to be highly efficient in terms of density while easily computable as
sequence-specific minimizer orders. It will be interesting to extend our work by
ranking each of the sets in a partition by their frequency in a specific sequence
dataset to achieve lower density values (as was recently shown by incorporating
UHS-based orders with frequency ranking [17]). Third, it may be possible to
use decycling sets and their variants as sketches without defining compatible
minimizer orders by simply including all decycling set k-mers in the sketch. By
choosing an appropriate value of k and decycling set variant it may be possible
to achieve a given desired density. Such schemes would be better conserved than
minimizers as they are not dependent on a longer sequence window.

Our new approach can enable more efficient analyses of high-throughput
DNA sequencing data. By implementing our new decycling set-based minimizer
orders in data structures and algorithms of high-throughput DNA sequencing
analysis, we expect to see reductions in runtime and memory usage, beyond what
was previously demonstrated using UHS-based minimizer orders.



Efficient minimizer orders for large values of k using minimum decycling sets 11

Acknowledgments

This study was supported by a United States–Israel Binational Science Founda-
tion (BSF) grant no. 2020297 to YO and BB. RS was supported in part by the
Israel Science Foundation (grant 2206/22) and by Len Blavatnik and the Blavat-
nik Family foundation. DP and LP were supported in part by fellowships from
the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University. LP was
supported in part by the National Natural Science Foundation of China project
61902072.

References

1. Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn graphs from se-
quencing data quickly and in low memory. Bioinformatics 32(12), i201–i208 (2016)

2. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015), https:
//doi.org/10.1093/bioinformatics/btv022

3. Edgar, R.: Syncmers are more sensitive than minimizers for selecting conserved
k-mers in biological sequences. PeerJ 9, e10805 (2021)

4. Ekim, B., Berger, B., Chikhi, R.: Minimizer-space de bruijn graphs: Whole-genome
assembly of long reads in minutes on a personal computer. Cell Systems (2021)

5. Ekim, B., Berger, B., Orenstein, Y.: A randomized parallel algorithm for efficiently
finding near-optimal universal hitting sets. In: Research in Computational Molec-
ular Biology. pp. 37–53. Springer International Publishing (2020)

6. Flomin, D., Pellow, D., Shamir, R.: Data set-adaptive minimizer order reduces
memory usage in k-mer counting. Journal of Computational Biology (2022)

7. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de bruijn se-
quences. Discrete Mathematics 23(3), 207–210 (1978), https://www.sciencedirect.
com/science/article/pii/0012365X7890002X

8. Hoang, M., Zheng, H., Kingsford, C.: Differentiable learning of sequence-specific
minimizer schemes with deepminimizer. Journal of Computational Biology (2022)

9. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

10. Knuth, D.E.: Unavoidable2. http://www-cs-faculty.stanford.edu/∼uno/programs/
unavoidable2.w (2003)

11. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094–3100 (2018)

12. Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X., Suri, S.: Memory efficient minimum
substring partitioning. In: Proceedings of the VLDB Endowment. vol. 6, pp. 169–
180. VLDB Endowment (2013)

13. Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kingsford, C.: Im-
proving the performance of minimizers and winnowing schemes. Bioinformatics
33(14), i110–i117 (2017), https://doi.org/10.1093/bioinformatics/btx235

14. Marçais, G., DeBlasio, D., Kingsford, C.: Asymptotically optimal minimiz-
ers schemes. Bioinformatics 34(13), i13–i22 (2018), https://doi.org/10.1093/
bioinformatics/bty258

15. Mykkeltveit, J.: A proof of Golomb’s conjecture for the de Bruijn graph. Journal
of Combinatorial Theory, Series B 13(1), 40–45 (1972), http://www.sciencedirect.
com/science/article/pii/0095895672900068

https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1093/bioinformatics/btv022
https://www.sciencedirect.com/science/article/pii/0012365X7890002X
https://www.sciencedirect.com/science/article/pii/0012365X7890002X
http://www-cs-faculty.stanford.edu/~uno/programs/unavoidable2.w
http://www-cs-faculty.stanford.edu/~uno/programs/unavoidable2.w
https://doi.org/10.1093/bioinformatics/btx235
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1093/bioinformatics/bty258
http://www.sciencedirect.com/science/article/pii/0095895672900068
http://www.sciencedirect.com/science/article/pii/0095895672900068


12 D. Pellow et al.

16. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A.V., Mikheenko, A., Voll-
ger, M.R., Altemose, N., Uralsky, L., Phillippy, A.M., et al.: The complete sequence
of a human genome. Science 376(6588), 44–53 (2022), https://www.science.org/
doi/abs/10.1126/science.abj6987

17. Nyström-Persson, J., Keeble-Gagnère, G., Zawad, N.: Compact and evenly dis-
tributed k-mer binning for genomic sequences. Bioinformatics 37(17), 2563–2569
(2021)

18. Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.: Designing small
universal k-mer hitting sets for improved analysis of high-throughput sequencing.
PLoS Computational Biology 13(10), e1005777 (2017)

19. Pellow, D., Dutta, A., Shamir, R.: Parameterized syncmer schemes improve long-
read mapping. bioRxiv (2022)

20. Rautiainen, M., Marschall, T.: MBG: Minimizer-based sparse de Bruijn Graph
construction. Bioinformatics 37(16), 2476–2478 (2021), https://doi.org/10.1093/
bioinformatics/btab004

21. Ruskey, F., Savage, C., Wang, T.M.Y.: Generating necklaces. Journal of Algorithms
13(3), 414–430 (1992)

22. Sahlin, K.: Flexible seed size enables ultra-fast and accurate read alignment.
bioRxiv (2022), https://www.biorxiv.org/content/early/2022/05/25/2021.06.18.
449070

23. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data. pp. 76–85 (2003)

24. Zheng, H., Kingsford, C., Marçais, G.: Lower density selection schemes via small
universal hitting sets with short remaining path length. In: Research in Computa-
tional Molecular Biology. pp. 202–217. Springer International Publishing (2020)

https://www.science.org/doi/abs/10.1126/science.abj6987
https://www.science.org/doi/abs/10.1126/science.abj6987
https://doi.org/10.1093/bioinformatics/btab004
https://doi.org/10.1093/bioinformatics/btab004
https://www.biorxiv.org/content/early/2022/05/25/2021.06.18.449070
https://www.biorxiv.org/content/early/2022/05/25/2021.06.18.449070

	Efficient minimizer orders for large values of k using minimum decycling sets

