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Abstract 

Integrative analysis of multi-omic datasets has proven to be extremely valuable in cancer research and 

precision medicine. However, obtaining multimodal data from the same samples is often difficult. 

Integrating multiple datasets of different omics remains a challenge, with only a few available algorithms 

developed to solve it. 

Here, we present INTEND (IntegratioN of Transcriptomic and EpigeNomic Data), a novel algorithm for 

integrating gene expression and DNA methylation datasets covering disjoint sets of samples. To enable 

integration, INTEND learns a predictive model between the two omics by training on multi-omic data 

measured on the same set of samples. In comprehensive testing on eleven TCGA cancer datasets spanning 

4329 patients, INTEND achieves significantly superior results compared to four state-of-the-art integration 

algorithms. We also demonstrate INTEND’s ability to uncover connections between DNA methylation and 

the regulation of gene expression in the joint analysis of two lung adenocarcinoma single-omic datasets 

from different sources. INTEND’s data-driven approach makes it a valuable multi-omic data integration 

tool. 

The code for INTEND is available at https://github.com/Shamir-Lab/INTEND. 

1 Introduction 
Emerging technological advances in recent years have made high throughput genome-wide sequencing a 

central tool for biological research. It allows the collective analysis of various types of biological data 

(commonly termed ‘omics’), in a single tissue or even at the level of a single cell. These include genomics – 

covering the DNA sequence itself; transcriptomics – the expression levels of genes in the form of messenger 

RNAs; epigenomics –reversible modifications on the genetic data, e.g. DNA methylation and chromatin 

accessibility; proteomics – the levels of translated proteins; and more. Although the analysis of a single 

omic may generate meaningful insights, it may be necessary to conduct a multi-omic integrative analysis 

to comprehensively understand a biological system and its complexities. For brevity, will use throughout 

the term integration for integrative analysis. Hence, integrating different omic datasets is one of the most 

interesting challenges in computational biology today, with the potential of opening new avenues in cancer 

research and precision medicine (Chakraborty et al. 2018; Efremova and Teichmann 2020; “Method of the 

Year 2019: Single-Cell Multimodal Omics” 2020) 

1.1  Multi-omic integration – diverse problems, diverse approaches 
One way to obtain multi-omics data for analysis is to simultaneously measure more than one omic from 

the same tissue. For example, TCGA (The Cancer Genome Atlas) (McLendon et al. 2008) contains 

multimodal data for numerous tissues spanning dozens of cancer types. The main data types covered by 

TCGA are genotype, copy number variations, genome methylation, mRNA expression, and miRNA 

expression, along with clinical data. Multimodal data can be also obtained at the cell level by 
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simultaneously measuring multiple types of molecules within the cell (Angermueller et al. 2016; Clark et al. 

2018; Argelaguet et al. 2019). Such technologies are relatively new and expensive, and thus so far there is 

much less data of multiple omics from the same cells. 

Schematically, we can categorize the integration problems into three scenarios (Figure 1A): 

a. Single omic – multiple datasets (SO/MD). Here only one omic type is used but multiple datasets 

(typically experiments from different labs or studies) need to be analyzed together. 

b. Multiple omic – single dataset (MO/SD). Here there is one set of samples on which several omics 

were measured, and the feature sets of the different omics are disjoint. 

c. Multiple omics – multiple datasets (MO/MD). This problem generalizes both (a) and (b). 

Many algorithms were developed to handle the integration in the MO/SD setting. These include DIABLO 

(Singh et al. 2019), iCluster (Shen, Olshen, and Ladanyi 2009), and MOFA/MOFA+ (Argelaguet et al. 2018; 

2020), which use latent variable analysis approach; iNMF (Yang and Michailidis 2016), which uses non-

negative matrix factorization; similarity-based methods like SNF (B. Wang et al. 2014), NEMO (Rappoport 

and Shamir 2019b; 2018) and MONET (Rappoport, Safra, and Shamir 2020); and scAI (Jin, Zhang, and Nie 

2020), which specializes in single-cell data. Other algorithms were developed to tackle the integration in 

the SO/MD setting. These algorithms should balance the tradeoff between the removal of batch effects 

and the conservation of biological variance (Luecken et al. 2020). Relevant examples are MNN (Haghverdi 

et al. 2018), Seurat v3 (Stuart et al. 2019), scVI (Lopez et al. 2018), Scanorama (Hie, Bryson, and Berger 

2019), LIGER (Welch et al. 2019), Conos (Barkas et al. 2019) and Harmony (Korsunsky et al. 2019). 

The challenge we address in this paper is the composition of the two problems discussed above: MO/MD 

integration. Only a few algorithms have been developed to tackle this challenge. Both LIGER and Seurat v3 

were used to integrate different omic datasets of disjoint sets of cells, specifically transcriptome and 

epigenome datasets. LIGER was shown to integrate scRNA-seq with genome-wide DNA methylation, and 

Seurat to integrate scRNA-seq with scATAC-seq (measuring chromatin accessibility).  

The motivation behind integrating datasets across different experiments arises from the difficulties to 

obtain multimodal data from the same samples. These difficulties may be technical inabilities, as 

mentioned in the context of single-cell data, and economical, a significant factor also in the case of bulk 

sequencing data. An algorithm that can integrate two different omic datasets measured from disjoint sets 

of samples, could assist researchers in utilizing data that has already been collected in the past, allowing a 

multi-omic systemic view on the investigated subject. This could increase efficiency, both in time and in 

cost. Consider the situation where the methylation patterns inside tumors of a specific cancer subtype are 

being investigated. The multi-omics approach could suggest further inquiry of the epigenome-

transcriptome connections, i.e. obtaining mRNA sequencing from every tumor and conducting an 

integrative analysis of the methylation and gene expression patterns together. As RNA-seq data is widely 

available for many cancer subtypes, it may be the case that such RNA-seq data is already available for other 

samples of that cancer subtype. With an algorithm that can integrate RNA-seq and DNA methylation 

datasets measured on disjoint samples, the researcher could conduct an integrative multi-omic analysis 

while measuring only the methylation patterns, thus requiring fewer resources. 

The algorithms for MO/MD integration can be classified according to the correspondence information they 

require as input. Some methods require partial correspondence between the samples (either tissues or 

cells). One example is the semi-supervised correspondence approach of the MAGAN algorithm (Amodio 

and Krishnaswamy 2018). This approach uses matching pairs of samples from both datasets to learn the 

correct alignment of the datasets. Other methods, as LIGER and Seurat, require correspondence 

information between the features of the different omics. Finally, some methods do not require any 

correspondence information and assume a common underlying structure that is maintained across 
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technologies and omics. Such methods usually belong to the class of machine learning algorithms that solve 

the unsupervised manifold alignment problem. One algorithm that uses such techniques to integrate 

single-cell multi-omics data is the maximum mean discrepancy-manifold alignment (MMD-MA) algorithm 

(Liu et al. 2019) Another algorithm that can jointly embed two datasets, without any correspondence 

information between their features or samples, is the joint Laplacian manifold alignment algorithm (JLMA) 

(C. Wang and Mahadevan 2008). Using a method that does not require any correspondence information 

may sound appealing, but may not perform adequately when the assumed common underlying structure 

is weak. 

In our study, we developed a method for the integration of transcriptomic and epigenomic data across 

different experiments. We focused on the integration of gene expression and DNA methylation. 

Specializing in two particular creates a less general method, but allows us to develop a stronger model: we 

can incorporate the known biological connections between gene expression and DNA methylation. 

1.2  Associations between DNA methylation and gene expression 
The regulation of gene expression allows cells to increase or decrease the production of proteins or RNA. 

Such adjustments enable response to external changes in the environment and to internal signals within 

cells. In complex multicellular organisms, the regulation of genes in particular cellular contexts enables the 

differentiation and proliferation of cells. Epigenetic modifications mainly include DNA methylation and 

histone protein modifications, which alter the chromatin structure. These modifications are known to be 

key factors in the regulation of gene expression. In the last two decades, a strong connection has been 

established between epigenetic modifications and the development of cancer. Hence, the integration of 

transcriptomic and epigenomic data has the potential to broaden our understanding of the molecular 

mechanisms orchestrating the regulation of genes, in both normal and malignant tissues. 

DNA methylation in mammals occurs almost exclusively in the 5’ position of a Cytosine followed by a 

Guanine, commonly termed a CpG site. CpG dinucleotides tend to cluster in CpG islands (CGIs), regions 

with a high frequency of CpG sites. The majority of CpG dinucleotides (75%) throughout the mammalian 

genomes are methylated (Tost 2010), except for CGIs, which are mostly unmethylated. About 70% of the 

proximal promoters of human genes contain a CGI, and reciprocally, about 50% of the CGIs are located 

near a gene’s transcription start site (TSS). In fact, CGIs are strongly linked to  the regulation of transcription 

(Deaton and Bird 2011). Although CGIs are mostly hypomethylated, there are known examples of their 

methylation, resulting in stable silencing of the associated promoter. However, it is believed that CGI 

methylation does not initiate the silencing of genes, but assists in making the silenced state permanent 

(Deaton and Bird 2011). For example, in X chromosome inactivation, the methylation process of CGIs in the 

X chromosome has been shown to start only after gene silencing. However, when DNA methylation is 

inhibited, genes in the X chromosome can be reactivated. 

The connection between CGI hypermethylation and silencing of genes is not the only relationship observed 

between methylation and gene expression. There is evidence of both strong positive and strong negative 

correlations between gene-body methylation and gene expression (Jjingo et al. 2012). Other studies have 

shown that hypermethylation of CGIs in cancer tissues is not always accompanied by a decrease in gene 

expression (Moarii et al. 2015). These findings suggest that DNA methylation can play diverse roles in gene 

regulation, depending on the genomic context (Bhasin et al. 2015). This should be considered when using 

multi-omic integration algorithms like LIGER and Seurat, which require correspondence information 

between the features of the different omics. The methods that are currently used to link the feature spaces 

of DNA methylation and gene expression assume a simplistic connection between the two (see LIGER 

description in the Supplement). The complex and not fully understood relationship between DNA 

methylation and gene expression stresses the necessity for a more sophisticated approach. 
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1.3  Our approach 
In this paper, we present a novel algorithm for the MO/MD problem. The algorithm is called INTEND 

(IntegratioN of Transcriptomic and EpigeNomic Data). Specifically, INTEND aims to integrate gene 

expression (GE) and DNA methylation (DM) datasets covering disjoint sets of samples. INTEND does not 

use any correspondence information between the samples in the two datasets (e.g. knowing which GE and 

DM profiles originated from the same individual). To handle the complex connections between DM and 

GE, INTEND learns a predictive model between the two, by training on multi-omic data measured on the 

same set of samples. To the best of our knowledge, this is the first use of a predictive model in the context 

of the studied problem.  

As a preliminary step, for each gene, INTEND learns a function that predicts its expression based on the 

methylation levels in sites located proximal to it. To integrate the target methylation and gene expression 

datasets, INTEND first predicts for each methylation profile its expression profile. Then, it identifies a set 

of genes that will be used for the joint embedding of the expression and predicted expression datasets. At 

this stage, both datasets share the same feature space. INTEND then employs canonical-correlation 

analysis (CCA) to jointly reduce their dimension.  

We evaluated the performance of INTEND by comparing it to four state-of-the-art MO/MD integration 

methods: LIGER, Seurat v3, JLMA, and MMD-MA. The first two require correspondence information 

between the different omic features, in order to create a common feature space before the integration, 

whereas the last two do not require such information. We used eleven TCGA cancer datasets spanning 

4329 patients for testing the algorithms in multiple integration tasks. We also showed the utility of the 

method in identifying SKCM cancer subtypes and in joint analysis of LUAD using two single-omic datasets 

obtained from different individuals. 

2 Materials and Methods 

2.1  INTEND algorithm 
INTEND works in two phases (Figure 1B). The training phase receives as input training data consisting of GE 

and DM profiles measured on the same set of samples. The algorithm uses this data to learn the 

connections between the omics. This will allow it later to make accurate predictions of expression levels of 

specified genes based on a given methylation profile. The training process can be executed once for any 

number of future integration tasks. Intuitively, the multimodal data used in the training process should be 

“biologically similar” to the datasets that INTEND will integrate subsequently. However, as we shall show, 

even when we used INTEND to integrate datasets covering tumor types that were different from the ones 

covered by the multimodal training data, it performed well. 

For the embedding phase, INTEND’s inputs are from two disjoint cohorts, denoted T1 and T2.  They include 

a DM matrix for T1 and a GE matrix for T2. It proceeds in three steps: (1) Creation of predicted GE matrix 

for T1 based on the DM data. (2) Selection of a subset of the genes based on the predicted GE for T1, the 

GE for T2, and the trained model from the preliminary step. (3) Reducing jointly the dimension of the two 

GE datasets on the selected gene set. 

2.1.1 The training phase 
The preliminary training phase aims to learn connections between GE and DM using training data. Its inputs 

are expression and methylation profiles for the same set of 𝑛 samples. 𝐸𝑡𝑟𝑎𝑖𝑛 is an |𝑓𝐸| × 𝑛 expression 

matrix, where 𝑓𝐸  is the set of genes for which the expression was measured. The methylation matrix 𝑀𝑡𝑟𝑎𝑖𝑛  

has dimensions |𝑓𝑀| × 𝑛, where 𝑓𝑀 is the set of measured methylation sites. The goal is to determine a 
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function 𝑝(𝑔) for every gene 𝑔, that predicts the expression level of 𝑔 based on the methylation levels of 

potentially relevant sites. Let 𝑓𝑀
(𝑔)

⊆ 𝑓𝑀 be the set of relevant sites (its creation is described below). For a 

methylation profile 𝑚(𝑔) ∈ ℝ
|𝑓𝑀

(𝑔)
|
, we seek a function 𝑝(𝑔): ℝ

|𝑓𝑀
(𝑔)

|
⟶ ℝ, s.t. 𝑝(𝑔)(𝑚(𝑔)) is the predicted 

expression level of 𝑔. 

Model 

We hypothesized that accurately predicting the expression levels of even a small number of genes, from 

an input methylation matrix, will enable successful integration. To achieve this goal, we developed a 

prediction model considering the known connections between methylation in promoter CGIs and gene 

expression (Deaton and Bird 2011), as well as gene-body methylation (Jjingo et al. 2012). Furthermore, to 

capture the variation in the correlation between methylation and expression across the CGI, its shores and 

shelves, and also outside CGIs (Moarii et al. 2015), the model uses the methylation levels in each probe 

separately. 

For each 𝑔 ∈ 𝑓𝐸  we set 𝑓𝑀
(𝑔)

 to be all the probed methylation sites in the range [𝐶5′-end − 10kb, 𝐶3′-end +

10kb], where 𝐶5′-end and 𝐶3′-end are the coordinates of 𝑔’s 5′-end and 3′-end on the chromosome, 

respectively. While in certain cases more distal methylation sites were reported to affect gene expression 

(Aran, Sabato, and Hellman 2013), the main effect is usually due to proximal sites (Deaton and Bird 2011). 

We limited the range in order to have modest-size gene models. As we will show, such models provide a 

good basis for the integration task. 

The size of 𝑓𝑀
(𝑔)

 may vary due to the variability in gene length and the assay’s coverage. Genes that had 

less than two measured methylation sites were removed from the model. For example, in a TCGA training 

set that we used, spanning 10 cancer subtypes (the datasets listed in Table 1, excluding LUAD) and spanning 

3852 tumor samples, 𝑓𝑀
(𝑔)

 contained 25 sites on average, a median of 19, and a maximum of 1055 sites 

(Supplementary Figure 1). Let 𝑓𝑀 = ⋃ 𝑓𝑀
(𝑔)

 the union of the used methylation sites for all genes. 

For each 𝑔, after obtaining 𝑓𝑀
(𝑔)

, INTEND uses Lasso regression model (Tibshirani 1996; Friedman, Hastie, 

and Tibshirani 2010) to learn the prediction function 𝑝(𝑔) and select model features. Lasso was run using 

the glmnet R package and the optimal value of the penalty constant was chosen using 10-fold cross-

validation on the training set.  Using Lasso allows the preliminary step to handle genes with a large number 

of methylation sites, by ignoring sites that have little relevance for the gene expression prediction. For 

example, in training on the 10 cancer subtypes mentioned above, the maximal number of probes with non-

zero coefficients per gene was 424, and the median was 12 (Supplementary Figure 2). 

After calculating 𝑝(𝑔) for every 𝑔 in every training sample, the 2000 genes with the highest 𝑅2 between 

predicted and observed gene expression are identified for use in the next stages of INTEND. For example, 

using the above training set, the average 𝑅2 of all 19143 genes considered was 0.30, and the average 𝑅2 

of the top 2000 genes was 0.68 (Supplementary Figure 3).  

Note that when applying the preliminary step to certain cancer subtypes, the subsequent algorithmic steps 

use only data from other subtypes, in order to avoid overfitting. 

 

2.1.2 The embedding phase 
The inputs for the main phase of the algorithm are: 

1. A DM matrix 𝑀, for one target set of samples (T1), of dimensions |𝑓𝑀| × 𝑛𝑀 

2. A GE matrix 𝐸 for a second, disjoint target set of samples (T2), of dimension |𝑓𝐸| × 𝑛𝐸  

3. A desired dimension 𝑑 for the shared space 
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Additionally, the prediction functions 𝑝(𝑔) for each 𝑔 from the preliminary step are used. The requested 

output is a 𝑑 × (𝑛𝑀 + 𝑛𝐸) matrix denoted 𝑆, which contains the projections of the input and predicted 

expression profiles into the shared 𝑑-dimensional space. The phase has three steps: 

Step 1: Gene expression prediction using methylation data 

Let 𝑝(𝑔) be the learned prediction function for gene 𝑔 and let  𝑚1, 𝑚2, … , 𝑚𝑛𝑀
 be the methylation profiles 

in 𝑀. Recall that 𝑚𝑖
(𝑔)

 describes the methylation levels of 𝑚𝑖  in 𝑓𝑀
(𝑔)

 (possibly with some coefficients zeroed 

by the Lasso process). We apply 𝑝(𝑔) on 𝑚𝑖
(𝑔)

and get the predicted expression 𝑒𝑖
(𝑔)

. We denote the 

predicted expression profile for 𝑚𝑖  as 𝑒𝑖 = {𝑒𝑖
(𝑔)

 | 𝑔 ∈ 𝑓𝐸}. This step results in the predicted expression 

matrix 𝑃 = (𝑒1, 𝑒2, … , 𝑒𝑛𝑀
). 

Step 2: Selecting genes 
Denote the 2000 genes selected in the training phase by 𝐺𝑅. The expression of these genes has the highest 

likelihood to be predicted accurately by the methylation profile, at least in the tissue types and states 

included in the training set. However, the target datasets may originate from a different tissue type or 

state. Hence, an additional heuristic for feature selection is employed. Genes may be regulated by 

mechanisms other than DNA methylation. Thus we assumed that the genes that are most likely to be 

regulated by the methylation profile are the ones with high variability in both methylation and expression 

levels. Let 𝐺𝐸 denote the 2000 genes with the highest expression variability in 𝐸. Let 𝐺𝑃 denote the 2000 

genes with the highest variance in the predicted expression 𝑃. We select the following genes from 𝐸 and 

𝑃: 

The resulting matrices are 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

,  with dimensions |𝐺𝑠| × 𝑛𝐸  and |𝐺𝑠| × 𝑛𝑀 respectively. The size of 

𝐺𝑠  varies depending on the training and target datasets. Finally, each row of 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

 is centered and 

scaled separately so that each feature has zero mean expression level and unit variance. 

Step 3: Embedding 
The last step applies CCA to 𝐸𝐺𝑠

 and 𝑃𝐺𝑠
, and produces the integrated matrix 𝑆. CCA is a dimension reduction 

method that finds linear combinations of features across datasets such that these combinations have 

maximum correlation (Hotelling 1936). It was used in the context of computational genomics to project 

datasets that share the same samples but have different features (the MO/SD setting) to a common low-

dimensional feature space. CCA has been used in this way for example in multi-omic clustering (Witten and 

Tibshirani 2009; Rappoport and Shamir 2018). In contrast, here we apply CCA to 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

, which cover 

samples from different datasets but share the same set of genes 𝐺𝑠  (similar to the SO/MD setting). This 

approach for utilizing CCA was introduced in Seurat v2 (Butler et al. 2018). 

Let us denote 𝑋 = 𝐸𝐺𝑠
∈ ℝ |𝐺𝑠|×𝑛𝐸  and 𝑌 = 𝑃𝐺𝑠

∈ ℝ|𝐺𝑠|×𝑛𝑀 . Let 𝑑 ≤ min (𝑛𝐸 , 𝑛𝑀). CCA aims to find 

canonical correlation vectors 𝑢1, … 𝑢𝑑 , 𝑣1, … , 𝑣𝑑 such that the correlations between the projections 𝑋𝑢𝑖  

and 𝑌𝑣𝑖  are maximized, under the constraint that  𝑋𝑢𝑖 is uncorrelated with 𝑋𝑢𝑗 for 𝑗 < 𝑖 and the same for 

𝑌𝑣𝑖  and 𝑌𝑣𝑗 . To get the first pair of canonical correlation vectors, the following optimization problem 

should be solved: 

When |𝐺𝑠| is smaller than the number of samples 𝑛𝐸  and/or 𝑛𝑀, the solution for 𝑢1, 𝑣1 is not unique. To 

overcome this, as proposed in Butler et al., the covariance matrix within each dataset is treated as if it were 

diagonal, resulting in the following problem: 

 𝐺𝑠 = 𝐺𝑅⋂𝐺𝐸⋂𝐺𝑃 (1) 

 (𝑢1, 𝑣1) = argmax
𝑢∈ℝ𝑛𝐸  ,𝑣∈ℝ𝑛𝑀

𝑢𝑇𝑋𝑇𝑌𝑣 𝑠. 𝑡 {𝑢𝑇𝑋𝑇𝑋𝑢 = 1
𝑣𝑇𝑌𝑇𝑌𝑣 = 1

 (2) 
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We scale and center the columns of 𝑋 and 𝑌 to have a mean of 0 and variance of 1 (in the previous step 

the same process was applied to the rows). The problem can solved using Lagrange multipliers. See the 

Supplement for details.   

The code for INTEND is available at https://github.com/Shamir-Lab/INTEND. 

 

 

Figure 1. (A) Three scenarios of integration problems: Green: single omic – multiple datasets (SO/MD); red: 
multiple omic – single dataset (MO/SD); blue: multiple omics – multiple datasets (MO/MD). (B) An overview of 
the two phases of INTEND: the training phase and the embedding phase. 

2.2  Data 

2.2.1 TCGA data 
To assess performance, we used RNA-seq and DM data from TCGA (McLendon et al. 2008) covering 11 

different cancer types. See Table 1 for cancer types, their abbreviations and statistics. The data was 

downloaded using the TCGA-Assembler software (Wei et al. 2018; Zhu, Qiu, and Ji 2014). We used only 

4329 samples for which both omics were measured.  

The DM data we used was gathered with Illumina’s Infinium HumanMethylation450 BeadChip assay. The 

levels of > 450,000 methylation sites were reported as 𝛽-values. The RNA-seq data was gathered with 

Illumina HiSeq assay, and quantified using RSEM (Li and Dewey 2011). In each GE and DM sample the zero 

counts were removed, then the raw count values were divided by the 75th percentile of the counts, and 

then multiplied by 1000. In both omics, we downloaded the data after these transformations from the 

TCGA website. 

 

Table 1. Summary information of TCGA cancer datasets used 

Cancer type Abbreviation 

Number of patient samples 

Gene 

expression 

DNA 

methylation 
Both 

Acute Myeloid Leukemia AML 173 194 170 

Bladder Urothelial Carcinoma BLCA 427 440 425 

Colon Adenocarcinoma COAD 328 353 298 

 (𝑢1, 𝑣1) = argmax
𝑢,𝑣

𝑢𝑇𝑋𝑇𝑌𝑣 𝑠. 𝑡 {
‖𝑢‖2

2 = 1

‖𝑣‖2
2 = 1

 (3) 

A B 
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Brain Lower-Grade Glioma LGG 534 534 530 

Liver Hepatocellular Carcinoma LIHC 424 430 414 

Lung Adenocarcinoma LUAD 576 507 477 

Pancreatic Adenocarcinoma PAAD 183 195 183 

Prostate Adenocarcinoma PRAD 550 553 533 

Sarcoma  SARC 265 269 263 

Skin Cutaneous Melanoma SKCM 473 475 473 

Thyroid Carcinoma THCA 572 571 563 

 

2.2.2 An additional LUAD gene expression dataset 
In addition to the TCGA LUAD data, we used RNA-seq profiles from 172 tumors of LUAD patients from 

Singapore (Chen et al. 2020). GE was quantified with RSEM and normalized as done for the TCGA data. 

2.2.3 Data preprocessing 
To handle missing values, for each dataset, features with > 5% missing values were removed, and then 

samples with >  5% missing values were removed. Subsequently, the missing values per each feature were 

imputed to the mean of this feature across all samples. The number of features and samples in each dataset 

we used, before and after the handling of missing values, are described in Supplementary Table 1. Finally, 

for GE data from all sources and for all purposes, we added 1 pseudo-count to each value and  log-

transformed the result. 

2.2.4 Running other algorithms 
We evaluated the performance of INTEND by comparing it to four state-of-the-art MO/MD integration 

methods: LIGER, Seurat v3, JLMA, and MMD-MA. The methods are briefly described in the Supplement. To 

use LIGER and Seurat, we supplied the algorithms with an aggregated gene-level methylation matrix as 

input, as they require correspondence information between features across omics. The aggregated matrix 

computation process is described in the Supplement. JLMA and MMD-MA algorithms do not require 

correspondence information between the features. However, empirical results from (Liu et al. 2019) 

showed that JLMA failed to integrate GE and DM using the local geometry metric as a measure for cross-

omic similarity. Hence, we computed the cross-omic similarity matrix for JLMA based on the aggregated 

gene-level methylation matrix. For MMD-MA we used both the original methylation data and gene-level 

methylation matrix as inputs. We denoted the runs of JLMA and MMD-MA with the gene-level methylation 

matrix as JLMA WFCI (with features correspondence information) and MMD-MA WFCI. We ran all the 

algorithms with their default recommended hyper-parameters, and whenever applicable, we used the 

algorithm’s pipeline for feature selection and normalization. Since MMD-MA and JLMA do not include a 

method for feature selection, when running them in the WFCI mode, we selected the 𝑛 genes with the 

highest variance in expression, for 𝑛 = 500 and 2000. Further details regarding how each of the algorithms 

was applied, including hyper-parameters and additional necessary preprocessing steps, are described in 

the Supplement. 

2.3 Evaluating the quality of the results 
For the TCGA data, we have the true pairing of samples that represent different omic measurements of the 

same patient. This pairing is not given as input to the integration algorithms and can therefore be used to 

evaluate their results. We use the metric defined in Liu et al. to evaluate the algorithms. For GE and DM 

input datasets covering  𝑛𝐸  and 𝑛𝑀 samples respectively, each algorithm produces a 𝑑-long vector of the 
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projected expression 𝑒𝑖 for each sample 𝑖 and a 𝑑-long vector of the projected estimated expression 𝑚𝑗  

based on the methylation for each sample 𝑗. For patient 𝑖, let 𝑓𝑖  be the fraction of samples 𝑗 with projections 

𝑚𝑗 closer to 𝑒𝑖 than 𝑚𝑖. We call it the “fraction of samples closer than the true match” (FOSCTTM). 

FOSCTTM ranges from 0 to 1, where 0 means that the true match of a sample 𝑖 is the closest to 𝑖 in the 

projected space. We calculate the FOSCTTM for every sample in the GE and DM datasets, and average 

these values. A perfect integration will have a score of 0. For a random projection, the expected FOSCTTM 

is 0.5. 

2.4 Clustering 
For clustering (subsection 3.3), we used the k-means algorithm of Hartigan and Wong (1979), with 

maximum number of 100 iterations and 100 different starting solutions. We selected the desired number 

of clusters using the “elbow method” as described in Rappoport and Shamir (2018). Let 𝑣(𝑖) be the total 

within-cluster sum of squares for a solution with 𝑖 clusters, then we chose 𝑖 for which the point 𝑣(𝑖) had 

the maximum curvature. Specifically, we chose the 𝑖 that maximized the following approximation of the 

second derivative of 𝑣: 

 

3 Results 
We applied INTEND in several settings. In the first part, we applied INTEND and four other algorithms in 

several integration tasks of GE and DM data, using eleven cancer datasets from TCGA. We also 

demonstrated the utility of the method in identifying SKCM cancer subtypes. In the second part, we used 

INTEND for the integration of datasets from two different sources, covering two populations of LUAD 

patients.   

 

Our first set of analyses compared five algorithms: INTEND, LIGER, Seurat v3 (hereafter: Seurat), MMD-MA, 

and JLMA. We used eleven datasets of different cancer types from TCGA. First, we integrated GE and DM 

data of the same cancer type, for each of the eleven types. Next, we integrated data of four cancer types 

simultaneously.  

 

3.1 Single cancer dataset integration task 
We first ran the algorithms with input datasets of a single cancer subtype. We used the eleven datasets 

listed in Table 1. For each dataset, we considered only the subset of samples measured in both omics. The 

total number of samples used in these integration tasks was 4329, where dataset sizes ranged from 170 to 

563. For each cancer dataset, we trained a new regression model in INTEND’s preliminary phase, using the 

samples of the remaining ten cancer datasets as the training set. To evaluate the results, we used the 

pairing information between samples from the two omics measured on the same tissue to calculate the 

FOSCTTM score. 

We ran the algorithms using projected space dimension 𝑑 ranging from 2 to 40, and recorded the best 

integration scores (average FOSCTTM). The results are summarized in  

Table 2 and Supplementary Figure 5. INTEND performed best across all datasets and all 𝑑 values, and 

substantially better than the rest, with MMD-MA the second performer. In fact, INTEND results were often 

1-2 orders of magnitude better than those of all the other methods. 

𝑣[𝑖 + 1] + 𝑣[𝑖 − 1] − 2𝑣[𝑖] (4) 
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Table 2. Average FOSCTTM of algorithms for integrating GE and DM data 

Cancer/Alg INTEND LIGER Seurat v3 MMD-MA 

MMD-MA 

WFCI 

(500) 

MMD-MA 

WFCI 

(2000) 

JLMA 

WFCI 

(500) 

JLMA 

WFCI 

(2000) 

AML 2.42 (25) 29.83 (7) 17.05 (36) 23.63 (40) 19.08 (40) 22.35 (40) 24.01 (8) 28.38 (7) 

BLCA 0.04 (39) 39.62 (9) 13.86 (40) 11.20 (40) 16.34 (40) 14.58 (40) 34.80 (40) 37.11 (40) 

COAD 0.02 (37) 26.84 (19) 19.14 (40) 12.59 (40) 12.19 (40) 12.92 (40) 32.98 (5) 34.73 (4) 

LGG 6.82 (22) 41.97 (8) 32.06 (26) 8.88 (40) 15.50 (40) 12.08 (40) 37.41 (14) 32.38 (12) 

LIHC 0.14 (36) 42.34 (3) 19.23 (38) 16.04 (30) 11.02 (30) 12.94 (30) 32.68 (21) 36.03 (12) 

LUAD 0.06 (32) 36.72 (4) 16.36 (39) 8.71 (40) 14.11 (40) 13.89 (40) 29.60 (9) 32.16 (8) 

PAAD 0.55 (30) 36.68 (15) 24.18 (35) 11.07 (40) 23.42 (40) 16.27 (40) 29.83 (3) 27.44 (2) 

PRAD 0.37 (38) 35.96 (8) 16.32 (17) 10.88 (40) 11.15 (40) 10.99 (40) 27.14 (2) 29.53 (2) 

SARC 0.05 (35) 42.06 (15) 12.86 (36) 8.86 (40) 20.97 (40) 17.42 (40) 34.47 (7) 34.73 (5) 

SKCM 0.03 (39) 42.20 (17) 18.97 (37) 16.02 (40) 20.53 (40) 16.62 (40) 32.11 (15) 34.71 (3) 

THCA 3.07 (11) 32.58 (7) 15.96 (36) 6.71 (40) 7.78 (40) 6.65 (40) 30.95 (2) 27.52 (5) 

Average 

(all datasets) 
1.23 (31) 36.98 (10) 18.73 (34) 12.24 (39) 15.64 (39) 14.25 (39) 31.45 (11) 32.25 (9) 

Average FOSCTTM score (percent) for each algorithm on each of the eleven cancer datasets. The optimal 

score is 0%, and the expected score for a random projection is 50%. The requested shared space 

dimension 𝑑 ranges from 2 to 40 for each algorithm. The score shown is the best across all values of 𝑑, and 

the optimal 𝑑 is written in parenthesis. The numbers 500 and 2000 for MMD-MA and JLMA denote the 

number of selected genes in the WFCI runs. 

In later analyses, we preferred to use the same space dimension 𝑑 for all algorithms. MMD-MA and JLMA 

do not recommend a method for determining 𝑑. For Seurat, the authors originally suggested approaches 

to select 𝑑   (Butler et al. 2018) but later noted that the identification of this value remains a challenge 

(Stuart et al. 2019). After running all methods for 𝑑 ∈ [2,40] for all datasets, we observed that most 

algorithms reach a plateau in the FOSCTTM score around 𝑑 = 40 (Supplementary Figure 5). Hence, in 

subsequent runs we set 𝑑 = 40 for all algorithms, with one exception: LIGER failed to run on the AML 

dataset with 𝑑 = 40 or 𝑑 = 39, so in that case we used 𝑑 = 38. 
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Figure 2. Distribution of FOSCTTM (%) scores in INTEND results on each cancer type. 

Next, we analyzed the FOSCTTM per sample across all methods and datasets. Figure 2 shows boxplots of 
the FOSCTTM per sample for each algorithm and cancer dataset using 𝒅 = 𝟒𝟎. INTEND’s advantage was 
prominent, with the entire FOSCTTM interquartile range (𝑰𝑸𝑹) at zero for eight of the 11 datasets tested. 
In six of the 11 datasets, the FOSCTTM was perfect (zero) for > 𝟗𝟎% of the samples. 

We analyzed in more detail the results for the COAD dataset. We used UMAP (McInnes, Healy, and Melville 

2018) for the 2D projection of the samples from the original omic feature spaces and from the integration 
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shared space. Figure 3 shows the results for INTEND, LIGER, Seurat, and MMD-MA algorithms. The results 

for JLMA WFCI and MMD-MA WFCI versions are presented in Supplementary Figure 6. 

Figure 3A-B show the projections from the original feature spaces. One can appreciate that pairwise 

distances are not preserved between the omics. Figure 3C-F show for each algorithm the projections from 

the shared feature space. It is evident that the level of mixing between the two omics is highest for INTEND, 

intermediate for MMD-MA and lower for Seurat and LIGER. 3G-J show the same projections as in Figures 

3C-F with the 10 samples of Figure 3B marked. Evidently, INTEND does a much better job in projecting 

omics from the same sample to close positions. For example, the two points labeled 3 belong to distinct 

clusters of samples in both the DM and the GE spaces. INTEND was the only method to succeed in 

projecting the points from both omics into the same cluster in the shared space. A similar advantage of 

INTEND was obtained for all other cancer types, even when the average FOSCTTM was higher 

(Supplementary Figures 7-16). 

 

 

Figure 3. Results of integration of GE and DM samples from the colon adenocarcinoma dataset by different 
algorithms. (A) UMAP plots of the original data.  (B) The same plots as in A. To appreciate concordance between 
omics, ten samples were randomly selected, and their matching points in both omics were labeled. (C-F) UMAP 
plots of the samples after they were projected to a shared space by each algorithm. (G-J) The same plots as in 
C-F with the selected points labeled. In all plots colors correspond to omics. 
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3.2 Joint integration of multiple cancer types 
In a second test, we applied the algorithms on four cancer datasets simultaneously. We used the datasets 

of COAD, LIHC, SARC and SKCM, covering 1448 GE and DM profiles. We did not supply the cancer type of 

each sample to the algorithms. We used the remaining seven TCGA datasets as the training set in INTEND’s 

training phase. INTEND performed this task with the best FOSCTTM integration score (Supplementary 

Figure 17), with perfect FOSCTTM for > 65% of the samples, and 1-2 orders of magnitudes better than the 

other methods: The mean scores were 0.37% for INTEND, 41.59% for LIGER, 9.33% for Seurat, and 4.01% 

for MMD-MA. 

Figure 4 shows 2D projections of the mapping by each of the algorithms. INTEND, Seurat and MMD-MA 

projected the samples from the different cancer datasets into separate clusters in the shared space (Figure 

4G-J). In contrast, LIGER failed to preserve the biological variance among the tissue types, mapping samples 

of different types to the same clusters (Figure 4I). While INTEND mixed the samples from both omics in 

each cancer type cluster, Seurat and MMD-MA created clusters with substantial separation between the 

samples from each omic (Figure 4C-F). 

To further evaluate the results, we tested the quality of classifying the DM samples to specific cancer types 

based on the types of their neighboring GE samples in the shared space, as follows. Each DM sample was 

assigned by majority voting to the cancer type most represented among its five closest GE samples in the 

shared space. The confusion matrices between the inferred and true assignments are shown in Figure 4K-

N. INTEND performed best, with > 97% of DM samples in each cancer type correctly classified. MMD-MA 

performed slightly worse: three cancer types had high accuracy classification, but the SARC cancer type 

had > 9% of the samples misclassified as SKCM. For Seurat, three cancer types had high accuracy 

classification, but the SKCM cancer type had >26% of the samples misclassified as SARC. The LIGER 

projections led to the lowest accuracy classification. 
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Figure 4. Results of joint integration of GE and DM samples of four cancer datasets: COAD, LIHC, SARC, and 
SKCM.  (A-B) UMAP plots of the original data colored by omic (A) and by cancer type (B). (C-J) UMAP plots of the 
sample projections into the shared space by INTEND, LIGER, Seurat v3, and MMD-MA, colored by omic (C-F) and 
by cancer type (G-J). (K-N) Confusion matrices for the classification of the DM sample projections into cancer 
types based on majority vote among the five nearest GE samples in the shared space. 

 

3.3 Using INTEND to identify subtypes in skin cutaneous melanoma  
Clustering of single-omic cancer data is commonly used to identify subtypes. The quality of the clustering 

solution can be evaluated by the significance of separation in survival among subtypes. It has been 

observed that for certain cancer types, one omic may produce much better clustering than another. For 

example, Rappoport and Shamir (2018) benchmarked eight clustering algorithms on the TCGA SKCM data, 

and observed that GE profile clustering produced clusters with significant difference in survival in all 

algorithms, while in DM profile clustering only one algorithm showed such result. We hypothesized that in 
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such cases, we could use INTEND to obtain GE predictions from the DM data, then jointly embed in the 

shared space the predictions and a set of GE profiles from the same cancer subtype, and achieve higher 

significance of separation in survival between clusters of the embedded predictions. 

We used a dataset of 473 SKCM samples from TCGA that had both GE and DM profiles. We created 30 

random partitions of this set into two equal disjoint groups, and for each partition, we used the first group's 

DM profiles and the second's GE profiles. We used INTEND to obtain a predicted gene expression matrix 

(P) from the DM samples and then embed P jointly with the GE profiles. Call the embedded P data EP. For 

the training phase of INTEND model, we used samples from all TCGA datasets listed in Table 1 but excluded 

the SKCM dataset. 

We first clustered separately the original partitioned DM and GE data. We performed each clustering task 

using k-means (see Methods) after selecting the 2000 features with the highest variance and normalizing 

the features to have zero mean and a standard deviation of one (as in Rappoport and Shamir (2018)). We 

ran the algorithm for 𝑘 between 2 and 15, and selected the desired number of clusters using the “elbow 

method” (see Methods). We measured differential survival between clusters by computing the 𝑝-value for 

the log-rank test. We estimated the 𝑝-values using permutation tests (Rappoport and Shamir 2019a). As 

we hypothesized, in most cases, the clustering of the GE data obtained more significant differential survival 

between clusters than the clustering of the DM data, with the log-rank 𝑝-value of the first being lower in 

27 of the 30 partitions. 

Next, for each of the 30 partitions, we used INTEND’s joint embedding of the DM and GE samples to classify 

the DM samples based on the k-means clustering of the GE samples. Each DM sample was assigned by 

majority voting (with ties broken at random) to the cluster most represented among the five GE 

embeddings closest to its matching EP representation in the shared space. In 23 of the 30 splits, clustering 

the DM samples using this method obtained more significant differential survival than using the k-means 

clustering of the DM samples. The average log-rank 𝑝-values for the clusterings for all 30 random splits 

were: 0.07 for the GE k-means clustering, 0.56 for the DM k-means clustering, and 0.21 for the integration-

based DM clustering, as described above. 

We further investigated one of the 23 partitions for which the integration-based DM clustering achieved 

more significant differential survival than the DM clustering. For that partition, the DM  clustering resulted 

in two clusters with insignificant differential survival (𝑝-value=0.978, Figure 5A), whereas the GE clustering 

resulted in two clusters with significant differential survival (𝑝-value=0.018, Figure 5B). The integration-

based DM clustering also obtained significant differential survival between clusters (𝑝-value=0.036, Figure 

5C). 

Next, we tested whether the subtypes obtained by the integration-based DM clustering were biologically 

or clinically more similar to those obtained by the GE k-means clustering. We found that primary tumor 

and metastases samples were represented in each of the DM k-means clusters exactly in their portion of 

all DM samples (18.26% of primary tumor samples in both clusters). By contrast, when looking at the GE 

clusters, the primary tumor samples were overrepresented in one cluster and underrepresented in the 

other (28.21% of primary tumor samples in the first cluster, 5.94% in the second, 17.89% in all GE samples). 

We observed a similar pattern in the integration-based DM clustering: 23.77% of primary tumor samples 

in one cluster and 11.34% in the other (and 18.26% in all DM samples). This example shows the potential 

of transferring biological information between GE and DM samples measured on different populations, 

using INTEND’s integration. 
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Figure 5. Kaplan-Meier plots of clusters of SKCM patients obtained using DM profiles, GE profiles, and their 
INTEND embeddings. (A) Plot for clusters of the original DM profiles. (B) Plot for clusters of the original GE 

profiles.  (C) Plot for clusters of the DM profiles obtained by the integration-based clustering. See Supplementary 
Figure 18A-E for the UMAP plots and the clusters. 

3.4  Joint analysis of lung adenocarcinoma datasets from different sources 

Our next goal was to test the utility of INTEND in joint analysis of two datasets, one of DM profiles and one 

of GE profiles, coming from different sources. We used data from two studies of LUAD: GE of 172 tumor 

samples from Chen et al. (2020), and DM profiles of 477 samples from TCGA. The datasets were collected 

in different studies covering disjoint groups of LUAD patients. 

3.4.1 Integration  
For the training phase of the model, we used samples from all TCGA datasets listed in Table 1 but excluded 

the LUAD dataset. The integration results are summarized in Figure 6A-B. As the two target datasets here 

are disjoint we cannot use FOSCTTM to evaluate their mixing in the embedding phase. As a sanity check, 

we considered for each sample its closest 32 neighbors (5% of the samples) in the shared space. We 

expected that if the local neighborhood of a sample is well mixed, the number of samples from each omic 

in the neighborhood would reflect the relative sizes of the target datasets. For each sample we measured 

the ratio between the observed and expected number of samples from the other omic in its neighborhood. 

If the omics are fully separated we would expect this ratio to be near zero, whereas for perfectly mixed 

samples we would expect it to be close to 1. The mean computed ratio for all samples in the shared space 

was 1.003 (𝑆𝐷 = ±0.258), and the 𝐼𝑄𝑅 was 0.82 − 1.15, indicating well-mixed samples across omics. 

3.4.2 Correlations between methylation at specific sites and expression 
Next, we wished to test if INTEND application on the two datasets can be used to reveal connections 

between specific distal DM sites and the regulation of GE in LUAD tumors, even though the GE profiles and 

DM profiles used here were collected from disjoint sets of patients. For this task, we extracted the 

estimated correlations between methylation levels at specific CpG sites and the expression levels of 

specified genes as follows. 

We considered for every gene 𝑔, the methylation sites located within ±1Mb of 𝑔 (including sites in 𝑔). 

There was a total of approximately 10.14 million such gene-site pairs, for which the expression and 

methylation levels were measured, covering 18,553 different genes. Recall that INTEND model was trained 

using proximal sites located only within ±10Kb from each gene, while here we explore mostly distal 

methylation sites. To estimate the correlation between the methylation level at site 𝑠 and the expression 

level of gene 𝑔, we used INTEND projections to get matchings between GE and DM profiles from different 

patients. First, to match GE and DM profiles, we found the mutual nearest neighbors between the 

projections of all DM and GE samples in the shared space, using the batchelor R package (Haghverdi et al. 

2018). A pair of a GE profile 𝑒 and a DM profile 𝑚 was considered a match if the projection of 𝑚 was in the 

𝑝-value: 0.978 𝑝-value: 0.018 𝑝-value: 0.036 
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𝑘-nearest neighbors of the projection of 𝑒 and vice versa (i.e. the projections of 𝑒 and 𝑚 are mutual k-

nearest neighbors). For 𝑘 = 5 we obtained 270 matches between GE and DM profiles (out of 172 ⋅ 477 =

82,044 possible matches). Next, using the 270 matches, we computed the Pearson‘s correlation coefficient 

and tested the statistical significance of the association between the expression level and the methylation 

level of each considered gene-site pair. 

We wished to assess the validity of the estimated correlations, based on the created 270 matchings of GE 

and DM samples from the two LUAD datasets (from here on: “estimated correlations”).  We compared the 

estimations to the correlations obtained from 477 pairs of GE and DM profiles measured from the same 

tissue, from the multi-omic LUAD TCGA dataset. For each of the approximately 10.14 million gene-site pairs 

previously described, we also computed the correlation between the expression of the gene and the 

methylation level of the relevant site, based on the multi-omic TCGA dataset (from here on: “TCGA-

observed correlations”). Figure 6C shows for each gene-site pair the estimated correlation versus the 

TCGA-observed correlation. Approximately 5.08% of the considered gene-site pairs were detected with 

significant correlation (𝑝-value< 0.01), either positive or negative, according to both methods. For 95.63% 

of these significant pairs, the estimated correlation coefficient had the same sign as the TCGA-observed 

correlation. We also tested for each of the considered genes, the correlation between the estimated 

correlation and the TCGA-observed correlation, for all sites relevant for that gene. Out of the 18,553 

considered genes, there was a significant positive correlation between the estimated and TCGA-observed 

correlations (𝑝-value< 0.05) for 14,693 of the genes. The correlation between the estimated and TCGA-

observed correlations was above 0.8 for 1,041 of the genes, and above 0.9 for 180 of them (Figure 6D). 

This demonstrates the potential of INTEND integration method to uncover connections between DNA 

methylation and the regulation of gene expression, both for proximal and distal methylation sites. 

3.4.2.1 An in-depth look at the regulation of Thymidine Kinase 1  
We chose to look in detail at the distal methylation sites of the gene Thymidine Kinase 1 (TK1). High 

expression of TK1 was recorded in many solid tumors, and was associated specifically with poor prognosis 

of patients with LUAD (Malvi et al. 2019; Jagarlamudi and Shaw 2018; He et al. 2010). We computed the 

correlation between the methylation levels in 964 sites within 1Mb from TK1, and its expression level. 

The estimated correlations based on the matching of GE and DM profiles from INTEND projections were 

highly concordant with the correlations computed using the multi-omic TCGA dataset (𝑅2 = 0.824, Figure 

6E). 

Methylation patterns in enhancer regions are known to be altered in cancer and are closely linked to 

changes in expression of cancer-related genes (Aran, Sabato, and Hellman 2013). Therefore, we checked if 

strong expression-methylation correlations extracted from INTEND projections can indicate potential distal 

enhancer regions. We used the GeneHancer database of enhancers and their inferred target genes 

(Fishilevich et al. 2017) for information on TK1 enhancers. There were eight enhancer regions supported 

by at least four GH sources, seven of them within a 100Kb range from TK1. Figure 6F shows the enhancer 

regions located ±100Kb from TK1, and the correlations between methylation and TK1 expression, for sites 

located in this range. 14 out of the 15 sites in this range with strong negative correlation (𝑝-value< 1e-5), 

are located in one of the documented enhancer regions. Note that all but two of them fall outside the 

±10Kb used for the training phase. 

Out of the 964 sites in 1Mb range from TK1, we investigated the ten sites with the strongest negative 

estimated correlations (full details in Supplementary Table 2). Eight of them are located in two of the 

enhancer regions shown in Figure 6F (seven of them in a short interval of less than 500 bases). The other 

two sites, cg11868461 and cg05110391, are located approximately 350Kb downstream and 400kB 

upstream the TSS, respectively. They were not in one of the regions marked by GeneHancer as TK1 

enhancers. Nevertheless, both cg11868461 and cg05110391 were identified as “enhancer probes” (not 
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specifically related to TK1) by Mullen et al. (2020), using H3K27ac ChIP-seq data from normal and tumor 

lung tissue samples to identify lung-relevant enhancer regions. 

 

 

 

 

TK1 𝑅2 = 0.824 

𝑅2 = 0.182 
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Figure 6. INTEND results on LUAD GE profiles from Chen et al. (2020) and DM profiles from TCGA. (A-B) 
UMAP plots of the original data (A) and of the projections into the shared space (B), colored by omic. (C) 
Scatterplot of the estimated correlations based on the matching of INTEND projections versus the observed 
correlations from the multi-omic TCGA dataset, for each of the considered 10.14 million gene-site pairs. The 
pairs for which the site is within 10Kb from the gene are colored in orange. These gene-site pairs were considered 
in INTEND training phase on the TCGA datasets (excluding LUAD). (D) Histogram of the correlation between the 
estimated and TCGA-observed gene-site correlations, per gene. (E) Correlation coefficients between TK1 
expression and methylation levels, at 964 sites located ±1Mb from TK1. Y axis: correlations when TK1 expression 
is based on INTEND projections; x axis: correlations when both the GE and the paired DM data were taken from 
TCGA. Correlations with 𝒑-value< 𝟏e-5 based on both methods are colored in dark blue (F) Estimated 
correlation coefficients based on INTEND projections in sites located ±100Kb from TK1. The x axis shows their 
genomic location (build GRCh37/hg19). Correlations with 𝒑-value< 𝟏e-5 are colored in dark blue, TK1 location 
is marked by the green arrow. The highlighted yellow regions indicate enhancer regions supported by at least 
four GeneHancer sources 

 

 

 

4 Discussion 
We presented the INTEND algorithm for integrating gene expression and DNA methylation from different 

datasets. We tested it on multiple multi-omic cancer datasets and compared it with extant multi-omic 

integration algorithms. INTEND showed significantly superior results on all tested datasets when 

integrating data from single and multiple cancer types, both in terms of FOSCTTM score and in classification 

to cancer types according to the integration results. We demonstrated the potential of INTEND to transfer 

biological information between GE and DM samples measured on non-overlapping populations of skin 

cutaneous melanoma patients. Clustering DM samples achieved higher significance of separation in 

survival between clusters when using the integration results of the DM and GE data, than using the original 

DM data only. In another typical use case, we tested INTEND in joint analysis of two lung adenocarcinoma 

datasets from different sources. Here INTEND demonstrated its potential to uncover connections between 

DNA methylation and the regulation of gene expression. 

INTEND’s novelty mainly resides in the incorporation of the prediction of a GE profile from a DM profile of 

a sample, into the MO/MD integration problem. Unlike algorithms such as LIGER and Seurat, which were 

developed mainly to solve the SO/MD problem and then were extended to solve the MO/MD problem, 

INTEND suggests another method to generate the correspondence information between features – a 

paramount part for the integration. INTEND presents a data-driven approach to generate a predicted gene 

expression matrix, thus effectively reducing the MO/MD problem of integrating GE and DM profiles to the 

simpler SO/MD problem of integrating multiple GE datasets. Importantly, the data necessary for the 

training phase of INTEND can represent different populations than the data used for the embedding phase. 

In all cases presented in this paper, the used training data originated from samples from other cancer types 

than represented in the target datasets for integration. 

INTEND has several limitations. First, the training phase requires multi-omic data measured on the same 

set of samples, which is not required for the other algorithms we tested. While the training data is not 

required to be from a similar population to the target data, it is necessary that the omics will be measured 

in the same method on the train and target datasets. Obtaining multi-omic measurements may be harder 

in several scenarios, e.g. single-cell multi-omic data. Second, the final step in the embedding, applying CCA, 
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may be less effective when the target datasets contain non-overlapping sample populations (e.g. when one 

of the target datasets contains a group of samples from a cancer type which is not present in the second). 

Stuart et al. 2019 addressed this limitation of using CCA as a final step and introduced a method to 

overcome it, using the concept of mutual nearest neighbors to identify anchors between the target 

datasets. 

Lastly, we note two possible directions of extending this work. The first is the integration of other pairs of 

omics, in addition to GE and DM, in a similar method. Here we used an established, simple biological 

observation, namely the relation between the state of proximal methylation sites to the gene’s expression, 

to build a model and uncover the connections between GE and DM based on available multi-omic data. 

This concept may be extended to other pairs of omics with available data measuring both on the same set 

of samples. Another future research direction is the incorporation of methods from algorithms tackling the 

SO/MD integration problem, after the first step in INTEND’s embedding phase, which results in the 

predicted GE matrix. 
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