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Abstract

Motivation: Bacteriophages and plasmids usually coexist with their host bacteria in microbial communities and play
important roles in microbial evolution. Accurately identifying sequence contigs as phages, plasmids and bacterial
chromosomes in mixed metagenomic assemblies is critical for further unraveling their functions. Many classifica-
tion tools have been developed for identifying either phages or plasmids in metagenomic assemblies. However,
only two classifiers, PPR-Meta and viralVerify, were proposed to simultaneously identify phages and plasmids in
mixed metagenomic assemblies. Due to the very high fraction of chromosome contigs in the assemblies, both tools
achieve high precision in the classification of chromosomes but perform poorly in classifying phages and plasmids.
Short contigs in these assemblies are often wrongly classified or classified as uncertain.

Results: Here we present 3CAC, a new three-class classifier that improves the precision of phage and plasmid classi-
fication. 3CAC starts with an initial three-class classification generated by existing classifiers and improves the clas-
sification of short contigs and contigs with low confidence classification by using proximity in the assembly graph.
Evaluation on simulated metagenomes and on real human gut microbiome samples showed that 3CAC outper-
formed PPR-Meta and viralVerify in both precision and recall, and increased F1-score by 10-60 percentage points.

Availability and implementation: The 3CAC software is available on https://github.com/Shamir-Lab/3CAC.

Contact: rshamir@tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The metagenomes of microbial communities are mainly composed
of bacterial chromosomes and the associated extrachromosomal
mobile genetic elements (eMGEs), such as plasmids and bacterio-
phages (phages). These eMGEs carry genes related to antibiotic re-
sistance (Calero-Caceres et al., 2019; Lopatkin et al., 2017; Wein
et al., 2019), virulence factors (Kraushaar et al., 2017; Sarowska
et al., 2019) and auxiliary metabolic pathways (Hurwitz and U’Ren,
2016; Kieft et al., 2020; Rosenwasser et al., 2016). They can fre-
quently move between species in the microbial community (Frost
et al., 2005; Sitaraman, 2018) and enable their hosts to rapidly
adapt to environmental changes (Smalla et al., 2015; Thomas and
Nielsen, 2005). Despite their important roles in horizontal gene
transfer events and in antibiotic resistance, our understanding of
these eMGE:s is still limited. Part of the difficulty is the challenge of
identifying such elements efficiently from mixed metagenomic
assemblies (Antipov et al., 2019, 2020; Arredondo-Alonso et al.,
2017; Krishnamurthy and Wang, 2017; Pellow et al., 2021; Suzuki
etal.,2019; Yahara et al., 2021).

Multiple algorithms have been developed for identifying either
phages or plasmids from metagenomic assemblies in recent years.
VirSorter and VirSorter2 identify viral metagenomic fragments by
searching for reference homologs and testing enrichment of virus-
like proteins (Guo et al., 2021; Roux et al, 2015). These

knowledge-based tools have high precision in virus classification but
poor ability to identify novel viruses, due to reference database-
associated bias. Other tools, such as DeepVirFinder (Ren et al.,
2020), Seeker (Auslander et al., 2020) and VIBRANT (Kieft et al.,
2020), use machine learning to learn k-mer signatures of viral
sequences and perform better on novel virus classification, since
they are more loosely linked to annotation databases. cBar is the
first tool designed primarily for plasmid identification in metage-
nomes (Zhou and Xu, 2010). More recently, two supervised-
learning approaches, PlasFlow (Krawczyk et al., 2018) and
PlasClass (Pellow et al., 2020), were shown to classify plasmid frag-
ments better from metagenomic assemblies. Although both phages
and plasmids are commonly found in the metagenomes of microbial
communities, all of these tools identify either only phages or only
plasmids from metagenomic assemblies.

Currently, only two published tools, PPR-Meta (Fang et al.,
2019) and viralVerify (Antipov et al., 2020), can identify phages
and plasmids simultaneously from metagenomic assemblies.
However, due to the overwhelming abundance of chromosome frag-
ments in the assemblies (usually >70%), both tools achieve high
precision in chromosome classification but very low precision in
classification of phages and plasmids (Antipov et al., 2020; Fang
et al., 2019). Moreover, classification of short contigs is challenging
for all the existing classifiers, as they analyze each contig independ-
ently (Antipov et al., 2020; Fang et al., 2019; Krawczyk et al., 2018;
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Ren et al., 2017; Roux et al., 2015). Here we present 3CAC (three-
Class Adjacency based Classifier), an algorithm that employs
existing two-class and three-class classifiers to generate an initial
three-class classification with high precision, and then improves the
classification of short contigs and of contigs classified with lower
confidence by taking advantage of classification of their neighbors
in the assembly graph. Evaluation on simulated and real metage-
nome datasets with short and long reads showed that 3CAC
improved both precision and recall, and increased Fl-score by at
least 10 percentage points.

2 Materials and methods

3CAC accepts as input a set of contigs and its associated assembly
graph, uses the classification result of existing tools as a starting
point, and repeatedly improves the classification using the assembly
graph. Its output is a classification of each contig in the input as
phage, plasmid, chromosome or uncertain. Figure 1 shows the
workflow of 3CAC algorithm. The details of the algorithm are
described below.

2.1 Generating the initial classification
3CAC exploits existing two-class and three-class classifiers to gener-
ate an initial three-class classification as follows.

2.1.1 Generating a three-class classification

The algorithm runs either viralVerify or PPR-Meta on the set of the
input contigs and classifies each contig as phage, plasmid, chromo-
some or uncertain. viralVerify was designed to classify contigs as
viral, nonviral or uncertain. Moreover, for nonviral contigs,
viralVerify can further classify them as plasmid or nonplasmid using
-p option. Here, we used -p option of viralVerify to classify each of
the input contigs as viral, plasmid, chromosome, or uncertain. PPR-
Meta calculates three scores representing the probabilities of a con-
tig to be classified as a phage, plasmid, or chromosome. By default,
PPR-Meta classifies a contig into the class with the highest score. If
a specified score threshold is provided and no score passes the
threshold, the sequence will be classified as uncertain. Here, we ran
PPR-Meta with a score threshold of 0.7.

2.1.2 Improving plasmid classification

To improve the precision of plasmid classification, PlasClass is run
on contigs classified as plasmids in Section 2.1.1. PlasClass outputs
for each contig the probability that it originated from a plasmid. By
default, PlasClass classifies a contig as plasmid if it has a probability
>0.5 and as chromosome otherwise. To assure high precision, here
we identify contigs with probability >0.7 as plasmids. Contigs with
probability <0.3 are moved to the chromosome class. The remain-
ing contigs are reclassified as uncertain.

2.1.3 Improving phage classification
Similarly, in order to improve the precision of phage classification, we
run DeepVirFinder on all contigs classified as phages in Section 2.1.1.
DeepVirFinder generates a score and a p-value for each input contig.
Contigs with higher scores or lower p-values are more likely to be
viral sequences. Here, a contig is kept in the phage class if its p-value
< 0.03 and moved to the chromosome class if its p-value > 0.03 and
its score < 0.5. The remaining contigs are reclassified as uncertain.
We will denote the algorithm up to this step Initial(vV) and
Initial(PM) if viralVerify or PPR-Meta were used in step (1),
respectively.

2.2 Refining the classification using the assembly graph
In metagenomics, assemblers such as metaFlye and metaSPAdes use
assembly graphs as the core data structure to combine overlapped k-
mers into contigs. Initially, nodes in the assembly graph are k-mers
and edges represent (k — 1)-long overlaps between them. Each lon-
gest path of nodes with indegree and outdegree =1 is then collapsed
into a single node representing the corresponding sequence contig.
In our description below, nodes in the assembly graph are the con-
tigs, and two contigs x and y are connected by an outgoing edge
from x to y if the k-1 suffix of x and the k-1 prefix of y are identical.
The neighbors of a contig are its adjacent nodes in the assembly
graph. Existing classifiers take contigs as input and classify each of
them independently based on its sequence. The overlap information
between neighboring contigs in the assembly graphs was ignored by
all the existing classifiers. However, recent studies showed that
neighboring contigs in an assembly graph are more likely to come
from the same taxonomic group (Barnum et al., 2018;
Mallawaarachchi et al., 2020). Based on this insight, here we exploit
the assembly graph to improve the classification by the following
two steps.

Input (a) Generating the initial classification using existing tools

Viral
Cl

Viral classifier —I_.

hromosome/uncertain

Plasmid| _
Plasmid classifier

Assembly graph

Correction  * T Propagation * .

i | 3-class

! ! i | classifier

¥ Assembled contigs ] S
: : l

' ! O A L@

: | ‘N o

1 i . oy ©

H
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Fig. 1. Workflow of 3CAC algorithm. (a) Generating the initial classification using existing classifiers. The current version of 3CAC employs PPR-Meta or viralVerify as the
three-class classifier, DeepVirFinder as the viral classifier and PlasClass as the plasmid classifier. (b) Refining the classification using the assembly graph. Contigs/vertices with
color red, blue, green and grey represent contigs classified as phages, plasmids, chromosomes and uncertain, respectively. (b1) The result of the first phase projected on the as-
sembly graph. (b2) After the correction step. The four contigs encircled in (b1) were corrected. (b3) After the propagation step.
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2.2.1 Correction of classified contigs

A classified contig is called incongruous if it has >2 classified neigh-
bors and all of them belong to same class, while this contig belongs
to a different class. We reason that an incongruous contig was
wrongly classified and its classification needs to be consistent with
its classified neighbors. Therefore, 3CAC scans all the incongruous
contigs in decreasing order of the number of their classified neigh-
bors and corrects the classification of each incongruous contig to
match its classified neighbors. Note that once an incongruous contig
is corrected, this contig and all its neighbors will not be corrected
anymore.

2.2.2 Propagation from classified contigs to unclassified contigs
An unclassified contig is called implied if it has one or more classi-
fied neighbors and all of them belong to same class. 3CAC dynamic-
ally maintains a sorted list of implied contigs in decreasing order of
the number of their classified neighbors. At each iteration, 3CAC
classifies the first implied contig on the list according to its classified
neighbors and then updates the sorted list. Note that only the un-
classified neighbors of the first implied contig need to be updated at
each iteration. We repeat this step until the list is empty.

Figure 1b shows the result of applying correction and propaga-
tion steps in Sections 2.2.1 and 2.2.2 in a small assembly graph,
which is part of the graph generated by assembling simulated long
reads (Sim4; see details in Section 3).

We will use the names 3CAC(vV) and 3CAC(PM) for the full
3CAC algorithms initialized with viralVerify and PPR-Meta solu-
tions, respectively.

3 Results

We tested 3CAC on both simulated and real metagenome assemblies
and compared it to PPR-Meta and viralVerify.

3.1 Evaluation criteria
3CAC, viralVerify and PPR-Meta were evaluated based on preci-
sion, recall and F1 score, calculated as follows.

* Precision: the fraction of correctly classified contigs among all
classified contigs. Note that uncertain contigs were not included
in the calculation.

* Recall: the fraction of correctly classified contigs among all
contigs.

* F1 score: the harmonic mean of the precision and recall,
which can be calculated as: F1 score = (2 precision x
recall) / (precision+ recall).

Following Fang et al. (2019); Pellow et al. (2020), the precision,
recall and F1 score here were calculated by counting the number of
contigs and did not take into account their length. The precision and
recall were also calculated separately for phage, plasmid and
chromosome classification. For example, the precision of phage

classification was calculated as the fraction of correctly classified
phage contigs among all contigs classified as phages, and the recall
of phage classification was calculated as the fraction of correctly
classified phage contigs among all phage contigs.

3.2 Performance on simulated metagenome assemblies
We generated two short-read and two long-read metagenome assem-
blies as follows. Sequences of complete bacterial genomes were ran-
domly selected from the NCBI database along with their associated
plasmids. The abundance of bacterial genomes was modeled by the
log-normal distribution and the copy numbers of plasmids were simu-
lated by the geometric distribution with parameter p =
min(1,log(L)/7) where L is the plasmid length as in Pellow et al.
(2020). The phage genomes and their abundance profiles were
sampled from Ren ez al. (2017). Two metagenomic datasets of differ-
ent complexities were designed. For each of the datasets, 150 bp-long
short reads were simulated from the genome sequences using
InSilicoSeq (Gourlé ez al., 2019) and assembled by metaSPAdes (Nurk
et al., 2016). Long reads were simulated from the genome sequences
using NanoSim (Yang et al., 2017) and assembled by metaFlye
(Kolmogorov et al., 2020). The error rate of long reads was 9.8% and
their average length was 14.9kb. For each assembly, contigs were
matched to the reference genomes used in the simulation by minimap2
(Li, 2018). Contigs having matches to a reference genome with >90%
mapping identity along >80% of the contig length were assigned to
the class of that reference, and these assignments were used as the
gold standard (ground truth) to test the classifiers. Table 1 presents a
summary of the simulated metagenome assemblies.

Figure 2 shows the performance of PPR-Meta, viralVerify and
the first phase of 3CAC on these simulated metagenome assemblies.
Both PPR-Meta and viralVerify had high precision in chromosome
classification, but their precision in phage and plasmid classification
was usually low. Further analysis revealed that both of the algo-
rithms distinguished well between phages and plasmids. Their low
precision in phage and plasmid classification was due to contamin-
ation from chromosome contigs (Supplementary Table S1). Utilizing
two-class classifiers, PlasClass and DeepVirFinder, the first phase of
3CAC improved markedly the precision in phage and plasmid classi-
fication, while it decreased a little bit the precision in chromosome
classification (Fig. 2, Supplementary Table S2). In contrast, recall
decreased in phage and plasmid classification, but increased in
chromosome classification (Supplementary Fig. S1).

Figure 3 shows the results of initial phase of 3CAC on the short-
read simulated metagenome assemblies for different contig lengths.
Short contigs tended to have lower recall in the initial classification
of 3CAC, while precision was not sensitive to the contig length.
When the initial classification of 3CAC was generated based on the
PPR-Meta solution, recall decreased sharply for contigs with length
<1kb. When the viralVerify solution was used, recall was even
lower for contig shorter than 1kb and improvement with size was
roughly linear. We reasoned that these classifiers classified each of
the input contigs independently, and so short contigs could not be
classified reliably. However, Table 1 shows that more than half of
the contigs assembled from short reads are shorter than 1kb. To

Table 1. Properties of the simulated and the real metagenome datasets and of their assemblies

Dataset Read type ~ Number of # of genome references # of assembled contigs Short contigs
reads
chromosome  plasmid  phage chromosome  plasmid  phage (< 1kb)
Sim1 MiSeq 61M 50 193 200 12494 1699 696 8991
Sim2 MiSeq 100M 100 410 500 40412 5350 2926 33640
Sim3 Nanopore 0.5M 50 193 200 890 166 175 45
Sim4 Nanopore 1M 100 410 500 2491 395 413 152
Sim2021-Miseq MiSeq 100M 100 433 500 34211 3512 2014 25861
Sim2021-Nano Nanopore 1M 100 433 500 2413 345 342 143
Gut-HiSeq HiSeq 53.8M 19053 20838 13903 130252 943 383 110128
Gut-Pacbio Pacbio 14.7M 19053 20838 13903 4671 64 8 723

Note: The number of genome references for the real human gut metagenomes is the number of all complete chromosome, plasmid and phage genomes in NCBI

database.
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Fig. 2. Precision of the initial classification of 3CAC compared to PPR-Meta and
viralVerify. Sim1 and Sim2 are assembled from short reads. Sim3 and Sim4 are
assembled from long reads. See Supplementary Figure S1 for recall.
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Fig. 4. Performance on contigs assembled from simulated long reads. Results are
shown for contigs of lengths <1kb, 1-2kb, ..., 9-10kb, >10kb.

assist in the classification of these short contigs, 3CAC was designed
to take advantage of the longer contigs with confident classification
and that are neighbors of these short contigs in the assembly graph.
Figure 3 shows that 3CAC significantly increased recall for all con-
tigs with almost no loss of precision. Remarkably, the recall for con-
tigs shorter than 1kb increased from <0.2 to >0.8. For contigs
assembled from long reads, 3CAC not only improved the recall sub-
stantially but also slightly improved the precision (Fig. 4).

The analysis above shows that the two phases of 3CAC algo-
rithm improved the precision and recall for the three-class

Fig. 5. Performance of three-class classifiers on the simulated metagenome assem-
blies. Sim1 and Sim2 are assembled from short reads. Sim3 and Sim4 are assembled
from long reads.

classification. Evaluation of PPR-Meta, viralVerify and 3CAC on
these simulated metagenome assemblies showed that 3CAC per-
formed the best in both precision and recall (Fig. 5, Supplementary
Tables S1 and S3). We also calculated the precision, recall and F1
scores for phage, plasmid and chromosome classification separately
(Supplementary Table S4). 3CAC had the best F1 scores on all the
datasets. Note that PPR-Meta here was run with default setting.
Running PPR-Meta with 0.7 score threshold (as done in Initial(PM))
resulted in higher precision but lower recall and lower F1 score.
Supplementary Table S5 shows that 3CAC also outperformed PPR-
Meta with a score threshold of 0.7.

A potential source of bias in evaluating 3CAC is the fact that the
reference genomes of our simulated metagenome assemblies may
have been used for training the various classifiers. To eliminate the
possible bias and evaluate the ability of 3CAC to classify novel spe-
cies, additional short-read and long-read metagenome simulations
were done using only genomes released on NCBI after January 2021
(Sim2021-Miseq and Sim2021-Nano in Table 1). Since all the classi-
fiers that we used were developed prior to that date, all the tested
genomes in these metagenome assemblies were not included in the
training of the classifiers used by 3CAC. Evaluation of Sim2021-
Miseq and Sim2021-Nano showed that 3CAC performed equally
well in classification of novel species (Supplementary Fig. S2 and
Table $4, S5).

Overall 3CAC(vV) achieved the best precision, recall, and F1
score in all six simulations, and 3CAC(PM) was a close second
(Supplementary Table S5). PPR-Meta and viralVerify had 25-60
lower percentage points in F1 score on the short-read simulations,
and 14-30 lower percentage points on the long-read simulations.

3.3 Performance on human gut microbiome samples

Five publicly available human gut microbiome samples with short-
read sequencing datasets (NCBI accession numbers: ERR12976697,
ERR1297651, ERR1297751, ERR1297845, ERR1297770) were
selected and assembled together using metaSPAdes (Nurk et al.,
2016). Another set of five human gut microbiome samples with
long-read sequencing datasets (NCBI accession numbers:
SRX2529348, SRX2529347, SRX2529346, SRX2529341,
SRX2529340) were selected from Suzuki et al. (2019) and
assembled together using metaFlye (Kolmogorov et al., 2020). To
identify the class of contigs in the real metagenome assemblies, we
downloaded all complete phage, plasmid and chromosome genomes
from NCBI database and mapped contigs to all the reference
genomes using minimap2 (Li, 2018). A contig was considered
matched to a reference sequence if it had >80% mapping identity
along >80% of the contig length. Contigs that matched to reference
genomes of two or more classes were excluded to avoid ambiguity.
Overall, 131 578 out of 469 022 contigs in the short-read assembly
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Fig. 6. Performance of three-class classifiers on contigs assembled from short-read
sequencing of human gut microbiome samples. (a) Performance on all contigs;
(b) performance on non-isolated contigs in the assembly graph.
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Fig. 7. Performance of three-class classifiers on contigs assembled from long-read
sequencing of human gut microbiome samples. (a) Performance on all contigs;
(b) performance on non-isolated contigs in the assembly graph.

and 4743 out of 12541 contigs in the long-read assembly had
matches to a single class and were used as the gold standard to test
the classifiers. Table 1 summarizes the properties of the datasets and
the assemblies.

Figures 6a and 7a show the results of PPR-Meta, viralVerify and
3CAC on the short-read and long-read assemblies, respectively. On
the long-read assembly, 3CAC(vV) and 3CAC(PM) had comparable
performance. 3CAC was best in precision, recall and F1 score
(Fig. 7).

Interestingly, on the short-read assembly, 3CAC(PM) and PPR-
Meta had higher F1 score than 3CAC(vV) (Fig. 6a). Further analysis
revealed that this was due to a large number of isolated contigs in
the short-read assembly graph. The second phase of 3CAC was only
performed on contigs that have neighbors in the assembly graph.
However, 59% of the contigs assembled from short reads were iso-
lated and had no neighbors in the assembly graph, while the fraction
on the long-read assembly was only 21%. Figures 6b and 7b show
the results on the non-isolated contigs in the assembly graph. For
both long-read and short-read assemblies, 3CAC(PM) and
3CAC(vV) had comparable performance and outperformed PPR-
meta and viralVerify in precision, recall and F1 score.

Figure 8 and Supplementary Table S4 show the precision, recall
and F1 score separately for phage, plasmid and chromosome classifi-
cations in both short-read and long-read assemblies. In classification
of phages and plasmids, 3CAC had the highest F1 score for both
short-read and long-read assemblies. The improvement in long-read
assembly is more significant than in short-read assembly. This may
be due to the higher quality of long-read assembly and thus the bet-
ter gold standards (see more details in Section 4). PPR-Meta had the
highest recall in phage and plasmid classification. However, its pre-
cision was as low as 0.01 in classifying phages from the short-read
assembly, which resulted in the lowest F1 score. In chromosome
classification, 3CAC had the highest F1 score in the long-read as-
sembly while PPR-Meta performed slightly better in the short-read
assembly.

3.4 Software and resource usage

3CAC uses classification results generated by existing classifiers as a
starting point, and so the running time of its first phase depends on
the classifiers used. Supplementary Table S6 shows that viralVerify
was the most time-consuming, followed by PPR-Meta. PlasClass
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Fig. 8. Performance of three-class classifiers in classification of phages, plasmids and
chromosomes on contigs assembled from short-read (left) and long-read (right)
sequencing of human gut microbiome samples.

and DeepVirFinder were fast as they were only run on a subset of
the input contigs. Time consumed by the second phase of 3CAC was
tiny compared to PPR-Meta and viralVerify. In all tests, the peak
memory usage of 3CAC was <15 GB. Performance was measured
on a 44-core, 2.2 GHz server with 792 GB of RAM. 3CAC is freely
available on GitHub via https://github.com/Shamir-Lab/3CAC.

4 Discussion and conclusion

In this study, we introduced 3CAC, a new method that classifies
contigs in assembly graphs into bacterial, plasmid, viral, and uncer-
tain. 3CAC generates an initial three-class classification with high
precision by combining existing three-class classifiers with two-class
classifiers and further improves the classification of short and uncer-
tain contigs by exploiting the structure of the assembly graph.
Evaluation on real and simulated metagenomes assembled from
both short and long reads showed that 3CAC significantly improved
the recall with almost no loss of the precision. Moreover, it
increased F1 score by 10-60 percentage points.

In the correction step of 3CAC, the order of treating incongruous
contigs with the same number of classified neighbors may affect the
results. A similar situation occurs in the propagation step. We tried
several random orders and the results were very stable (<1% differ-
ence, Supplementary Table S7).

Should a user interested specifically in a two-way classification
prefer a dedicated two-way classifier over 3CAC? We compared
PlasClass to 3CAC in plasmid classification, and DeepVirFinder to
3CAC in phage classification. The results on the six simulated data-
sets show that 3CAC had superior precision and F1 score in all cases
(Supplementary Tables S8 and S9).

Evaluation of the performance of classifiers on real metagenome
assemblies remains challenging due to the lack of gold standard. By
mapping contigs to all the available reference genomes, we are able
to identify the class of a fraction of the contigs. However, as shown
in previous studies (Fang et al., 2019), some plasmid genomes are
quite similar to their host bacterial chromosomes. Thus, many con-
tigs from metagenome assemblies have matches to both plasmid and
chromosome reference genomes, and it is hard to identify their
classes. Additionally, many contigs with no matches to the reference
database may represent novel species, but they were excluded from
our evaluation. Keeping in mind these shortcomings of the gold
standard for real metagenome assemblies, 3CAC outperformed
existing three-class classifiers substantially. The recent emergence of
HiFi reads, which yield high quality of metagenome assemblies
(Bickhart ez al., 2022), may result in more complete reference
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databases and better gold standards for real metagenome assemblies
in the future.

3CAC has some limitations. The propagation step of 3CAC can
greatly improve the recall with almost no loss of the precision, but it
can only be applied to non-isolated contigs in the assembly graph.
The recall of isolated contigs is still limited by the performance of
existing classifiers. 3CAC relies on existing two-class and three-class
classifiers. In the future, we plan to turn 3CAC into a stand-alone
classification tool. The detection of prophages and other non-
bacterial sequences that integrate into bacterial genome is challeng-
ing to all classifiers, including 3CAC. Tools designed specifically for
prophage detection are recommended for this task (Sirén et al.,
2021; Starikova et al., 2020). Finally, there is room for extending
3CAC to a four-class algorithm that would be able to classify also
eukaryotic contigs in metagenome assemblies (West et al., 2018).
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